These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Robust Indices of Hardy-Weinberg Disequilibrium for QTL Fine Mapping  

Microsoft Academic Search

Hardy-Weinberg disequilibrium (HWD) measures have been proposed using dense markers to fine map a quantitative trait locus (QTL) to regions < ? 1 cM. Earlier HWD measures may introduce bias in the fine mapping because they are dependent on marker allele frequencies across loci. Hence, HWD indices that do not depend on marker allele frequencies are desired for fine mapping.

Hong-Wen Deng; Yu-Mei Li; Miao-Xin Li; Peng-Yuan Liu

2003-01-01

2

QTL fine-mapping with recombinant-inbred heterogeneous stocks and in vitro heterogeneous stocks  

E-print Network

QTL fine-mapping with recombinant-inbred heterogeneous stocks and in vitro heterogeneous stocks of about 100 Rec- ombinant Inbred Lines (RIL) derived from an HS, and which we called an RIHS, was ideally with an inbred line (IVHS). This method required some additional gen- otyping but avoided the breeding delays

Valdar, William

3

Fine-mapping of muscle weight QTL in LG/J and SM/J intercrosses1 Lionikas A1  

E-print Network

). Because of the world's growing geriatric population, age-related loss of strength and55 muscle massFine-mapping of muscle weight QTL in LG/J and SM/J intercrosses1 2 Lionikas A1 , Cheng R3 , Lim JE5 and Cancer Biology, Duke University Medical Center, Durham, NC 2770813 14 15 16 Running title: Muscle weight

Gilad, Yoav

4

Fine-mapping QTL for mastitis resistance on BTA9 in three Nordic red cattle breeds  

PubMed Central

A QTL affecting clinical mastitis and/or somatic cell score (SCS) has been reported previously on chromosome 9 from studies in 16 families from the Swedish Red and White (SRB), Finnish Ayrshire (FA) and Danish Red (DR) breeds. In order to refine the QTL location, 67 markers were genotyped over the whole chromosome in the 16 original families and 18 additional half-sib families. This enabled linkage disequilibrium information to be used in the analysis. Data were analysed by an approach that combines information from linkage and linkage disequilibrium, which allowed the QTL affecting clinical mastitis to be mapped to a small interval (<1 cM) between the markers BM4208 and INRA084. This QTL showed a pleiotropic effect on SCS in the DR and SRB breeds. Haplotypes associated with variations in mastitis resistance were identified. The haplotypes were predictive in the general population and can be used in marker-assisted selection. Pleiotropic effects of the mastitis QTL were studied for three milk production traits and eight udder conformation traits. This QTL was also associated with yield traits in DR but not in FA or SRB. No QTL were found for udder conformation traits on chromosome 9. PMID:18462482

Sahana, G; Lund, M S; Andersson-Eklund, L; Hastings, N; Fernandez, A; Iso-Touru, T; Thomsen, B; Viitala, S; S?rensen, P; Williams, J L; Vilkki, J

2008-01-01

5

Confirmation and fine-mapping of clinical mastitis and somatic cell score QTL in Nordic Holstein cattle.  

PubMed

A genome-wide association study of 2098 progeny-tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine-map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP-by-trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis-related traits. Among them, 21 SNP-by-trait combinations exceeded the genome-wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker-based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL. PMID:23647142

Sahana, G; Guldbrandtsen, B; Thomsen, B; Lund, M S

2013-12-01

6

QTL Fine Mapping by Measuring and Testing for Hardy-Weinberg and Linkage Disequilibrium at a Series of Linked Marker Loci in Extreme Samples of Populations  

Microsoft Academic Search

It has recently been demonstrated that fine-scale mapping of a susceptibility locus for a complex disease can be accomplished on the basis of deviations from Hardy-Weinberg (HW) equilibrium at closely linked marker loci among affected individuals. We extend this theory to fine-scale localization of a quantitative-trait locus (QTL) from extreme individuals in populations, by means of HW and linkage-disequilibrium (LD)

Hong-Wen Deng; Wei-Min Chen; Robert R. Recker

2000-01-01

7

Linkage, QTL, Mapping Populations and  

E-print Network

germplasm; Near Isogenic Lines (NIL). 3 #12;QTL mapping in an F2 4 + from Parent 2+ from Parent 1 1 2 5 6 7, recombinant inbred line 9Buckler and Thornsberry (2002) #12;Linkage Linkage � Association of two or more lociLinkage, QTL, Mapping Populations and Marker-Assisted-Selection Dave Douches, Allen Van Deynze

Douches, David S.

8

Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F2 and advanced intercross lines  

PubMed Central

Prepulse inhibition (PPI) of the startle response is a measure of sensorimotor gating, a process that filters out extraneous sensory, motor and cognitive information. Humans with neurological and psychiatric disorders, including schizophrenia, obsessive-compulsive disorder and Huntington’s disease, exhibit a reduction in PPI. Habituation of the startle response is also disrupted in schizophrenic patients. In order to elucidate the genes involved in sensorimotor gating, we phenotyped 472 mice from an F2 cross between LG/J × SM/J for PPI and genotyped these mice genome-wide using 162 single nucleotide polymorphism (SNP) markers. We used prepulse intensity levels that were 3, 6 and 12 dB above background (PPI3, PPI6 and PPI12, respectively). We identified a significant quantitative trait locus (QTL) on chromosome 12 for all three prepulse intensities as well as a significant QTL for both PPI6 and PPI12 on chromosome 11. We identified QTLs on chromosomes 7 and 17 for the startle response when sex was included as an interactive covariate and found a QTL for habituation of the startle response on chromosome 4. We also phenotyped 135 mice from an F34 advanced intercross line (AIL) between LG/J × SM/J for PPI and genotyped them at more than 3000 SNP markers. Inclusions of data from the AIL mice reduced the size of several of these QTLs to less than 5 cM. These results will be useful for identifying genes that influence sensorimotor gaiting and show the power of AIL for fine mapping of QTLs. PMID:20597988

Samocha, K. E.; Lim, J. E.; Cheng, R.; Sokoloff, G.; Palmer, A. A.

2013-01-01

9

INVESTIGATION QTL Mapping and Candidate Gene Analysis  

E-print Network

the median and mean telomere lengths from 178 recombinant inbred lines of the IBM mapping population and telomere length in the IBM population and diverse inbred lines by quantitative real-time PCR. A slightINVESTIGATION QTL Mapping and Candidate Gene Analysis of Telomere Length Control Factors in Maize

Ronquist, Fredrik

10

The efficiency of designs for fine-mapping of quantitative trait loci using combined linkage disequilibrium and linkage  

Microsoft Academic Search

In a simulation study, different designs were compared for efficiency of fine-mapping of QTL. The variance component method for fine-mapping of QTL was used to estimate QTL position and variance components. The design of many families with small size gave a higher mapping resolution than a design with few families of large size. However, the difference is small in half

Sang Hong Lee; Julius Werf

2004-01-01

11

Educational Software for Mapping Quantitative Trait Loci (QTL)  

ERIC Educational Resources Information Center

This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

Helms, T. C.; Doetkott, C.

2007-01-01

12

Linkage analysis and QTL mapping in autotetraploid species  

E-print Network

Linkage analysis and QTL mapping in autotetraploid species Christine Hackett Biomathematics, Karen McLean and Rhonda Meyer #12;Outline � Part 1 � Segregation analysis � Cluster analysis � Linkage analysis � Part 2 � QTL analysis #12;Part 1: Segregation analysis and Linkage analysis � Segregation

Douches, David S.

13

Mapping dynamic QTL for plant height in triticale  

PubMed Central

Background Plant height is a prime example of a dynamic trait that changes constantly throughout adult development. In this study we utilised a large triticale mapping population, comprising 647 doubled haploid lines derived from 4 families, to phenotype for plant height by a precision phenotyping platform at multiple time points. Results Using multiple-line cross QTL mapping we identified main effect and epistatic QTL for plant height for each of the time points. Interestingly, some QTL were detected at all time points whereas others were specific to particular developmental stages. Furthermore, the contribution of the QTL to the genotypic variance of plant height also varied with time as exemplified by a major QTL identified on chromosome 6A. Conclusions Taken together, our results in the small grain cereal triticale reveal the importance of considering temporal genetic patterns in the regulation of complex traits such as plant height. PMID:24885543

2014-01-01

14

An Introgression Line Population of Lycopersicon pennellii in the Cultivated Tomato Enables the Identification and Fine Mapping of Yield-Associated QTL  

Microsoft Academic Search

Methodologies for mapping of genes underlying quantitative traits have advanced considerably but have not been accompanied by a parallel development of new population structures. We present a novel population consisting of 50 introgression lines (ILs) originating from a cross between the green-fruited species Lycopersicon pennellii and the cultivated tomato (cv M82). Each of the lines contains a single homozygous restriction

Yuval Eshed; Dani Zamir

15

A large QTL for fear and anxiety mapped using an F2 cross can be dissected into multiple smaller QTLs  

PubMed Central

Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS-10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all of the difference between CSS-10 and B6. We then produced congenic strains to fine-map that interval. We identified two congenic strains that captured some or all of the QTL. The larger congenic strain (Line 1; 122.387121 – 129.068 Mb; build 37) appeared to account for all of the difference between CSS-10 and B6. The smaller congenic strain (Line 2; 127.277–129.068 Mb) was intermediate between CSS-10 and B6. We used haplotype mapping followed by qPCR to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis-eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs demonstrates a weaknesses of two-stage approaches that seek to use coarse mapping to identify large regions followed by fine-mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations we have successfully fine mapped two QTLs to small regions and identified putative candidate genes, demonstrating that the congenic approach can be effective for fine mapping QTLs. PMID:23876074

Parker, Clarissa C.; Sokoloff, Greta; Leung, Emily; Kirkpatrick, Stacey L.; Palmer, Abraham A.

2013-01-01

16

Confidence intervals in QTL mapping by bootstrapping  

Microsoft Academic Search

The determination of empirical confidence intervals for the location of quantitative trait loci (QTLs) was investigated using simulation. Empirical confidence intervals were calculated using a bootstrap resampling method for a backcross population derived from inbred lines. Sample sizes were either 200 or 500 individuals, and the QTL explained 1, 5, or 10% of the phenotypic variance. The method worked well

Peter M. Visscher; Robin Thompson; Chris S. Haley

1996-01-01

17

Mapping of QTL affecting incidence of blood and meat inclusions in egg layers  

PubMed Central

Background Occurrence of blood and meat inclusions is an internal egg quality defect. Mass candling reveals most of the spots, but because brown eggshell hampers selection in brown chicken lines it has not been possible to eliminate the defect by selection. Estimated frequency of blood and meat inclusions in brown layers is about 18% whereas it is 0.5% in white egg layers. Several factors are known to increase the incidence of this fault: genetic background, low level of vitamin A and/or D, stress or infections, for instance. To study the genetic background of the defect, a mapping population of 1599 F2 hens from a cross of White Rock and Rhode Island Red lines was set up. Results Our histopathological analyses show that blood spots consist of mainly erythrocytes and that meat spots are accumulations of necrotic material. Linkage analysis of 27 chromosomes with 162 microsatellite markers revealed one significant quantitative trait locus (QTL) affecting blood spot and meat spot frequency. We sequenced a fragment of a candidate gene within the region, ZO-2, coding for a tight junction protein. Nine polymorphisms were detected and two of them were included in fine-mapping and association analysis. Fine-mapping defined the QTL result. To further verify the QTL, association analyses were carried out in two independent commercial breeding lines with the marker MCW241 and surrounding SNPs. Association was found mainly in a 0.8 Mb-wide chromosomal area on GGAZ. Conclusions There was good agreement between the location of the QTL region on chromosome Z and the association results in the commercial breeds analyzed. Variations found in tight junction protein ZO-2 and microRNA gga-mir-1556 may predispose egg layers to blood and meat spot defects. This paper describes the first results of detailed QTL analyses of the blood and meat spots trait(s) in chickens. PMID:21668941

2011-01-01

18

STATISTICS IN GENOME SCIENCE: QTL MAPPING SAUNAK SEN1  

E-print Network

of the draft human genome sequence caused a lot of interest in the general pub- lic. Some of it is legitimate. The completion of the human genome sequence is like having a parts list for a car with no idea what they doSTATISTICS IN GENOME SCIENCE: QTL MAPPING ´SAUNAK SEN1 April 29, 2002 INTRODUCTION The objective

Sen, Saunak

19

QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines  

E-print Network

QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines Sureshkumar Advanced Intercross- Recombinant Inbred Lines. PLoS ONE 4(2): e4318. doi:10.1371/journal.pone.0004318 need to be identified by quantitative trait locus (QTL) mapping. Unfortunately, QTL positions typically

Weigel, Detlef

20

Fine-Scale Mapping of Quantitative Trait Loci Using Historical Recombinations  

PubMed Central

With increasing popularity of QTL mapping in economically important animals and experimental species, the need for statistical methodology for fine-scale QTL mapping becomes increasingly urgent. The ability to disentangle several linked QTL depends on the number of recombination events. An obvious approach to increase the recombination events is to increase sample size, but this approach is often constrained by resources. Moreover, increasing the sample size beyond a certain point will not further reduce the length of confidence interval for QTL map locations. The alternative approach is to use historical recombinations. We use analytical methods to examine the properties of fine QTL mapping using historical recombinations that are accumulated through repeated intercrossing from an F(2) population. We demonstrate that, using the historical recombinations, both simple and multiple regression models can reduce significantly the lengths of support intervals for estimated QTL map locations and the variances of estimated QTL map locations. We also demonstrate that, while the simple regression model using historical recombinations does not reduce the variances of the estimated additive and dominant effects, the multiple regression model does. We further determine the power and threshold values for both the simple and multiple regression models. In addition, we calculate the Kullback-Leibler distance and Fisher information for the simple regression model, in the hope to further understand the advantages and disadvantages of using historical recombinations relative to F(2) data. PMID:9093869

Xiong, M.; Guo, S. W.

1997-01-01

21

Fine mapping and single nucleotide polymorphism effects estimation on pig chromosomes 1, 4, 7, 8, 17 and X  

PubMed Central

Fine mapping of quantitative trait loci (QTL) from previous linkage studies was performed on pig chromosomes 1, 4, 7, 8, 17, and X which were known to harbor QTL. Traits were divided into: growth performance, carcass, internal organs, cut yields, and meat quality. Fifty families were used of a F2 population produced by crossing local Brazilian Piau boars with commercial sows. The linkage map consisted of 237 SNP and 37 microsatellite markers covering 866 centimorgans. QTL were identified by regression interval mapping using GridQTL. Individual marker effects were estimated by Bayesian LASSO regression using R. In total, 32 QTL affecting the evaluated traits were detected along the chromosomes studied. Seven of the QTL were known from previous studies using our F2 population, and 25 novel QTL resulted from the increased marker coverage. Six of the seven QTL that were significant at the 5% genome-wide level had SNPs within their confidence interval whose effects were among the 5% largest effects. The combined use of microsatellites along with SNP markers increased the saturation of the genome map and led to smaller confidence intervals of the QTL. The results showed that the tested models yield similar improvements in QTL mapping accuracy. PMID:24385854

Hidalgo, Andre M.; Lopes, Paulo S.; Paixao, Debora M.; Silva, Fabyano F.; Bastiaansen, John W.M.; Paiva, Samuel R.; Faria, Danielle A.; Guimaraes, Simone E.F.

2013-01-01

22

Development and characterization of 96 microsatellite markers suitable for QTL mapping and accession control in an Arabidopsis core collection  

PubMed Central

Background To identify plant genes involved in various key traits, QTL mapping is a powerful approach. This approach is based on the use of mapped molecular markers to identify genomic regions controlling quantitative traits followed by a fine mapping and eventually positional cloning of candidate genes. Mapping technologies using SNP markers are still rather expensive and not feasible in every laboratory. In contrast, microsatellite (also called SSR for Simple Sequence Repeat) markers are technologically less demanding and less costly for any laboratory interested in genetic mapping. Results In this study, we present the development and the characterization of a panel of 96 highly polymorphic SSR markers along the Arabidopsis thaliana genome allowing QTL mapping among accessions of the Versailles 24 core collection that covers a high percentage of the A. thaliana genetic diversity. These markers can be used for any QTL mapping analysis involving any of these accessions. We optimized the use of these markers in order to reveal polymorphism using standard PCR conditions and agarose gel electrophoresis. In addition, we showed that the use of only three of these markers allows differentiating all 24 accessions which makes this set of markers a powerful tool to control accession identity or any cross between any of these accessions. Conclusion The set of SSR markers developed in this study provides a simple and efficient tool for any laboratory focusing on QTL mapping in A. thaliana and a simple means to control seed stock or crosses between accessions. PMID:24447639

2014-01-01

23

Mapping of QTL for Resistance against the Crucifer Specialist Herbivore Pieris brassicae in a New  

E-print Network

Department of Biology, Duke University, Durham, North Carolina, United States of America Background Islands (Cvi) [3], several insect resistance QTL have been mapped and, subsequently, several were cloned

Boyer, Edmond

24

Body composition and gene expression QTL mapping in mice reveals imprinting and interaction effects  

PubMed Central

Background Shifts in body composition, such as accumulation of body fat, can be a symptom of many chronic human diseases; hence, efforts have been made to investigate the genetic mechanisms that underlie body composition. For example, a few quantitative trait loci (QTL) have been discovered using genome-wide association studies, which will eventually lead to the discovery of causal mutations that are associated with tissue traits. Although some body composition QTL have been identified in mice, limited research has been focused on the imprinting and interaction effects that are involved in these traits. Previously, we found that Myostatin genotype, reciprocal cross, and sex interacted with numerous chromosomal regions to affect growth traits. Results Here, we report on the identification of muscle, adipose, and morphometric phenotypic QTL (pQTL), translation and transcription QTL (tQTL) and expression QTL (eQTL) by applying a QTL model with additive, dominance, imprinting, and interaction effects. Using an F2 population of 1000 mice derived from the Myostatin-null C57BL/6 and M16i mouse lines, six imprinted pQTL were discovered on chromosomes 6, 9, 10, 11, and 18. We also identified two IGF1 and two Atp2a2 eQTL, which could be important trans-regulatory elements. pQTL, tQTL and eQTL that interacted with Myostatin, reciprocal cross, and sex were detected as well. Combining with the additive and dominance effect, these variants accounted for a large amount of phenotypic variation in this study. Conclusions Our study indicates that both imprinting and interaction effects are important components of the genetic model of body composition traits. Furthermore, the integration of eQTL and traditional QTL mapping may help to explain more phenotypic variation than either alone, thereby uncovering more molecular details of how tissue traits are regulated. PMID:24165562

2013-01-01

25

Genetic complexity of an obesity QTL (Fob3) revealed by detailed genetic mapping  

E-print Network

15, from the L-Iine into the F-line background. We have further mapped this QTL by progeny testing fat percentage was 0.98 (Hastings and Hill 1989). From these popula- tions, two inbred lines wereGenetic complexity of an obesity QTL (Fob3) revealed by detailed genetic mapping Ioannis M

Keightley, Peter

26

ORIGINAL PAPER QTL mapping of powdery mildew resistance in WI 2757  

E-print Network

was conducted with 132 F2:3 families derived from two cucumber inbred lines WI 2757 (resis- tant) and True LemonORIGINAL PAPER QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L mechanisms of PM resistance in cucumber are not well understood. A 3-year QTL mapping study of PM resistance

Yandell, Brian S.

27

QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines  

PubMed Central

Background Even when phenotypic differences are large between natural or domesticated strains, the underlying genetic basis is often complex, and causal genomic regions need to be identified by quantitative trait locus (QTL) mapping. Unfortunately, QTL positions typically have large confidence intervals, which can, for example, lead to one QTL being masked by another, when two closely linked loci are detected as a single QTL. One strategy to increase the power of precisely localizing small effect QTL, is the use of an intercross approach before inbreeding to produce Advanced Intercross RILs (AI-RILs). Methodology/Principal Findings We present two new AI-RIL populations of Arabidopsis thaliana genotyped with an average intermarker distance of 600 kb. The advanced intercrossing design led to expansion of the genetic map in the two populations, which contain recombination events corresponding to 50 kb/cM in an F2 population. We used the AI-RILs to map QTL for light response and flowering time, and to identify segregation distortion in one of the AI-RIL populations due to a negative epistatic interaction between two genomic regions. Conclusions/Significance The two new AI-RIL populations, EstC and KendC, derived from crosses of Columbia (Col) to Estland (Est-1) and Kendallville (Kend-L) provide an excellent resource for high precision QTL mapping. Moreover, because they have been genotyped with over 100 common markers, they are also excellent material for comparative QTL mapping. PMID:19183806

Singh, Anandita; Warthmann, Norman; Kim, Min Chul; Maloof, Julin N.; Loudet, Olivier; Trainer, Gabriel T.; Dabi, Tsegaye; Borevitz, Justin O.; Chory, Joanne; Weigel, Detlef

2009-01-01

28

Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions  

PubMed Central

Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 ?M NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1328-3) contains supplementary material, which is available to authorized users. PMID:20390245

Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

2010-01-01

29

QTL mapping of clubroot resistance in radish (Raphanus sativus L.).  

PubMed

A QTL analysis for clubroot resistance (CR) of radish was performed using an F(2) population derived from a crossing of a CR Japanese radish and a clubroot-susceptible (CS) Chinese radish. F(3) plants obtained by selfing of F(2) plants were used for the CR tests. The potted seedlings were inoculated and the symptom was evaluated 6 weeks thereafter. The mean disease indexes of the F(3) plants were used for the phenotype of the F(2). The results of two CR tests were analyzed for the presence of QTL. A linkage map was constructed using AFLP and SSR markers; it spanned 554 cM and contained 18 linkage groups. A CR locus was observed in the top region of linkage group 1 in two tests. Therefore, the present results suggest that a large part of radish CR is controlled by a single gene or closely linked genes in this radish population, although minor effects of other genomic areas cannot be ruled out. The CR locus was named Crs1. Markers linked to Crs1 showed sequence homology to the genomic region of the top of chromosome 3 of Arabidopsis, as in the case of Crr3, a CR locus in Brassica rapa. These markers should be useful for breeding CR cultivars of radish. As Japanese radishes are known to be highly resistant or immune to clubroot, these markers may also be useful in the introgression of this CR gene to Brassica crops. PMID:20012934

Kamei, Akito; Tsuro, Masato; Kubo, Nakao; Hayashi, Takeshi; Wang, Ning; Fujimura, Tatsuhito; Hirai, Masashi

2010-03-01

30

QTL Map Meets Population Genomics: An Application to Rice  

PubMed Central

Genes involved in the transition from wild to cultivated crop species should be of great agronomic importance. Population genomic approaches utilizing genome resequencing data have been recently applied for this purpose, although it only reports a large list of candidate genes with no biological information. Here, by resequencing more than 30 genomes altogether of wild rice Oryza rufipogon and cultivated rice O. sativa, we identified a number of regions with clear footprints of selection during the domestication process. We then focused on identifying candidate domestication genes in these regions by utilizing the wealth of QTL information in rice. We were able to identify a number of interesting candidates such as transcription factors that should control key domestication traits such as shattering, awn length, and seed dormancy. Other candidates include those that might have been related to the improvement of grain quality and those that might have been involved in the local adaptation to dry conditions and colder environments. Our study shows that population genomic approaches and QTL mapping information can be used together to identify genes that might be of agronomic importance. PMID:24376738

Takuno, Shohei; Yoshida, Kentaro; Sugino, Ryuichi P.; Kosugi, Shunichi; Natsume, Satoshi; Mitsuoka, Chikako; Uemura, Aiko; Takagi, Hiroki; Abe, Akira; Ishii, Takashige; Terauchi, Ryohei; Innan, Hideki

2013-01-01

31

INVESTIGATION Coding Gene SNP Mapping Reveals QTL Linked to  

E-print Network

Charr (Salvelinus fontinalis) Christopher Sauvage,*,,1,2 Marie Vagner,,§,1 Nicolas Derôme,* Céline Audet QTL for 27 phenotypes related to growth and stress responses in brook charr (Salvelinus fontinalis QTL detection single-nucleotide polymorphism growth stress response Salvelinus fontinalis Quantitative

Bernatchez, Louis

32

A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.  

PubMed

A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape) was constructed in a late-generation recombinant inbred line (RIL) population, using genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL), cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed. PMID:24386142

Liu, Liezhao; Qu, Cunmin; Wittkop, Benjamin; Yi, Bin; Xiao, Yang; He, Yajun; Snowdon, Rod J; Li, Jiana

2013-01-01

33

Mapping of pigmentation QTL on an anchored genome assembly of the cichlid fish, Metriaclima zebra  

PubMed Central

Background Pigmentation patterns are one of the most recognizable phenotypes across the animal kingdom. They play an important role in camouflage, communication, mate recognition and mate choice. Most progress on understanding the genetics of pigmentation has been achieved via mutational analysis, with relatively little work done to understand variation in natural populations. Pigment patterns vary dramatically among species of cichlid fish from Lake Malawi, and are thought to be important in speciation. In this study, we crossed two species, Metriaclima zebra and M. mbenjii, that differ in several aspects of their body and fin color. We genotyped 798 SNPs in 160 F2 male individuals to construct a linkage map that was used to identify quantitative trait loci (QTL) associated with the pigmentation traits of interest. We also used the linkage map to anchor portions of the M. zebra genome assembly. Results We constructed a linkage map consisting of 834 markers in 22 linkage groups that spanned over 1,933 cM. QTL analysis detected one QTL each for dorsal fin xanthophores, caudal fin xanthophores, and pelvic fin melanophores. Dorsal fin and caudal fin xanthophores share a QTL on LG12, while pelvic fin melanophores have a QTL on LG11. We used the mapped markers to anchor 66.5% of the M. zebra genome assembly. Within each QTL interval we identified several candidate genes that might play a role in pigment cell development. Conclusion This is one of a few studies to identify QTL for natural variation in fish pigmentation. The QTL intervals we identified did not contain any pigmentation genes previously identified by mutagenesis studies in other species. We expect that further work on these intervals will identify new genes involved in pigment cell development in natural populations. PMID:23622422

2013-01-01

34

QTL mapping of root angle in F2 populations from maize ?B73? × teosinte ?Zea luxurians?  

Microsoft Academic Search

We evaluated variation in nodal root angle in the genus Zea and performed quantitative trait locus (QTL) mapping for the trait. Angle (in degrees) of roots emerging from the second (2nd-root angle) and third (3rd-root angle) nodes from the bottom of shoot showed wide variation in nine accessions; relatively high repeatability was obtained. QTL analyses controlling root angle were performed

Fumie Omori; Yoshiro Mano

2007-01-01

35

Linkage Analysis and QTL Mapping Using SNP Dosage Data in a Tetraploid Potato Mapping Population  

PubMed Central

New sequencing and genotyping technologies have enabled researchers to generate high density SNP genotype data for mapping populations. In polyploid species, SNP data usually contain a new type of information, the allele dosage, which is not used by current methodologies for linkage analysis and QTL mapping. Here we extend existing methodology to use dosage data on SNPs in an autotetraploid mapping population. The SNP dosages are inferred from allele intensity ratios using normal mixture models. The steps of the linkage analysis (testing for distorted segregation, clustering SNPs, calculation of recombination fractions and LOD scores, ordering of SNPs and inference of parental phase) are extended to use the dosage information. For QTL analysis, the probability of each possible offspring genotype is inferred at a grid of locations along the chromosome from the ordered parental genotypes and phases and the offspring dosages. A normal mixture model is then used to relate trait values to the offspring genotypes and to identify the most likely locations for QTLs. These methods are applied to analyse a tetraploid potato mapping population of parents and 190 offspring, genotyped using an Infinium 8300 Potato SNP Array. Linkage maps for each of the 12 chromosomes are constructed. The allele intensity ratios are mapped as quantitative traits to check that their position and phase agrees with that of the corresponding SNP. This analysis confirms most SNP positions, and eliminates some problem SNPs to give high-density maps for each chromosome, with between 74 and 152 SNPs mapped and between 100 and 300 further SNPs allocated to approximate bins. Low numbers of double reduction products were detected. Overall 3839 of the 5378 polymorphic SNPs can be assigned putative genetic locations. This methodology can be applied to construct high-density linkage maps in any autotetraploid species, and could also be extended to higher autopolyploids. PMID:23704960

Hackett, Christine A.; McLean, Karen; Bryan, Glenn J.

2013-01-01

36

Genetic Architecture of Sexual Selection: QTL Mapping of Male Song and Female Receiver Traits in an Acoustic  

E-print Network

is expected. We employed a standard crossing design between inbred lines and used AFLP markers to buildGenetic Architecture of Sexual Selection: QTL Mapping of Male Song and Female Receiver Traits a linkage map for this species and locate quantitative trait loci (QTL) that influence male song and female

Chittka, Lars

37

Optimum allocation of resources for QTL detection using a nested association mapping strategy in maize.  

PubMed

In quantitative trait locus (QTL) mapping studies, it is mandatory that the available financial resources are spent in such a way that the power for detection of QTL is maximized. The objective of this study was to optimize for three different fixed budgets the power of QTL detection 1 - beta* in recombinant inbred line (RIL) populations derived from a nested design by varying (1) the genetic complexity of the trait, (2) the costs for developing, genotyping, and phenotyping RILs, (3) the total number of RILs, and (4) the number of environments and replications per environment used for phenotyping. Our computer simulations were based on empirical data of 653 single nucleotide polymorphism markers of 26 diverse maize inbred lines which were selected on the basis of 100 simple sequence repeat markers out of a worldwide sample of 260 maize inbreds to capture the maximum genetic diversity. For the standard scenario of costs, the optimum number of test environments (E (opt)) ranged across the examined total budgets from 7 to 19 in the scenarios with 25 QTL. In comparison, the E (opt) values observed for the scenarios with 50 and 100 QTL were slightly higher. Our finding of differences in 1 - beta* estimates between experiments with optimally and sub-optimally allocated resources illustrated the potential to improve the power for QTL detection without increasing the total resources necessary for a QTL mapping experiment. Furthermore, the results of our study indicated that also in studies using the latest genomics tools to dissect quantitative traits, it is required to evaluate the individuals of the mapping population in a high number of environments with a high number of replications per environment. PMID:19847390

Stich, Benjamin; Utz, H Friedrich; Piepho, Hans-Peter; Maurer, Hans P; Melchinger, Albrecht E

2010-02-01

38

Identification and QTL mapping of whitefly resistance components in Solanum galapagense.  

PubMed

Solanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance. Quantitative trait loci (QTL) for adult survival co-localized with type IV trichome characteristics (presence, density, gland longevity and gland size). A major QTL (Wf-1) was found for adult survival and trichome characters on Chromosome 2. This QTL explained 54.1 % of the variation in adult survival and 81.5 % of the occurrence of type IV trichomes. A minor QTL (Wf-2) for adult survival and trichome characters was identified on Chromosome 9. The major QTL was confirmed in F3 populations. Comprehensive metabolomics, based on GCMS profiling, revealed that 16 metabolites segregating in the F2 mapping population were associated with Wf-1 and/or Wf-2. Analysis of the 10 most resistant and susceptible F2 genotypes by LCMS showed that several acyl sugars were present in significantly higher concentration in the whitefly resistant genotypes, suggesting a role for these components in the resistance as well. Our results show that whitefly resistance in S. galapagense seems to inherit relatively simple compared to whitefly resistance from other sources and this offers great prospects for resistance breeding as well as elucidating the underlying molecular mechanism(s) of the resistance. PMID:23440381

Firdaus, Syarifin; van Heusden, Adriaan W; Hidayati, Nurul; Supena, Ence Darmo Jaya; Mumm, Roland; de Vos, Ric C H; Visser, Richard G F; Vosman, Ben

2013-06-01

39

Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population  

Microsoft Academic Search

Earliness, an adaptative trait and factor of variation for agronomic characters, is a major trait in plant breeding. Its constituent traits, photoperiod sensitivity (PS), vernalization requirement (VR) and intrinsic earliness (IE), are largely under independent genetic controls. Mapping of major genes and quantitative trait loci (QTL) controlling these components is in progress. Most of the studies focusing on earliness considered

E. Hanocq; M. Niarquin; E. Heumez; M. Rousset; J. Le Gouis

2004-01-01

40

Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line  

Microsoft Academic Search

Fine-mapping of loci related to complex quantitative traits is essential for map-based cloning. A residual heterozygous line (RHL) of soybean ( Glycine max) derived from a recombinant inbred line (RIL) was used for fine-mapping FT1, which is a major quantitative trait locus (QTL) responsible for soybean flowering time. The residual heterozygous line RHL1-156 was selected from the RILs that were

Naoki Yamanaka; Satoshi Watanabe; Kyoko Toda; Masaki Hayashi; Hiroki Fuchigami; Ryoji Takahashi; Kyuya Harada

2005-01-01

41

QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti  

PubMed Central

Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

2014-01-01

42

Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits  

Microsoft Academic Search

New microsatellites markers [simple sequence repeat (SSR)] have been isolated from rose and integrated into an existing amplified\\u000a fragment-length polymorphism genetic map. This new map was used to identify quantitative trait locus (QTL) controlling date\\u000a of flowering and number of petals. From a rose bud expressed sequence tag (EST) database of 2,556 unigenes and a rose genomic\\u000a library, 44 EST-SSRs

L. Hibrand-Saint Oyant; L. Crespel; S. Rajapakse; L. Zhang; F. Foucher

2008-01-01

43

Advanced Intercross Lines, an Experimental Population for Fine Genetic Mapping  

Microsoft Academic Search

An advanced intercrossed line (AIL) is an experimental population that can provide more accurate estimates of quantitative trait loci (QTL) map location than conventional mapping populations. An AIL is produced by randomly and sequentially intercrossing a population that initially originated from a cross between two inbred lines or some variant thereof. This provides increasing probability of recombination between any two

A. Darvasi; M. Soller

1995-01-01

44

Mapping QTL for dollar spot resistance in creeping bentgrass (Agrostis stolonifera L.).  

PubMed

Dollar spot caused by Sclerotinia homoeocarpa F. T. Bennett is the most economically important turf disease on golf courses in North America. Dollar spot resistance in a creeping bentgrass cultivar would greatly reduce the frequency, costs, and environmental impacts of fungicide application. Little work has been done to understand the genetics of resistance to dollar spot in creeping bentgrass. Therefore, QTL analysis was used to determine the location, number and effects of genomic regions associated with dollar spot resistance in the field. To meet this objective, field inoculations using a single isolate were performed over 2 years and multiple locations using progeny of a full sib mapping population '549 x 372'. Dollar spot resistance seems to be inherited quantitatively and broad sense heritability for resistance was estimated to be 0.88. We have detected one QTL with large effect on linkage group 7.1 with LOD values ranging from 3.4 to 8.6 and explaining 14-36% of the phenotypic variance. Several smaller effect QTL specific to rating dates, locations and years were also detected. The association of the tightly linked markers with the LG 7.1 QTL based on 106 progeny was further examined by single marker analysis on all 697 progeny. The high significance of the QTL on LG 7.1 at a sample size of 697 (P < 0.0001), along with its consistency across locations, years and ratings dates, indicated that it was stable over environments. Markers tightly linked to the QTL can be utilized for marker-assisted selection in future bentgrass breeding programs. PMID:16969681

Chakraborty, N; Curley, J; Warnke, S; Casler, M D; Jung, G

2006-11-01

45

Quantitative genomics of voluntary exercise in mice: transcriptional analysis and mapping of expression QTL in muscle.  

PubMed

Motivation and ability both underlie voluntary exercise, each with a potentially unique genetic architecture. Muscle structure and function are one of many morphological and physiological systems acting to simultaneously determine exercise ability. We generated a large (n = 815) advanced intercross line of mice (G4) derived from a line selectively bred for increased wheel running (high runner) and the C57BL/6J inbred strain. We previously mapped quantitative trait loci (QTL) contributing to voluntary exercise, body composition, and changes in body composition as a result of exercise. Using brain tissue in a subset of the G4 (n = 244), we have also previously reported expression QTL (eQTL) colocalizing with the QTL for the higher-level phenotypes. Here, we examined the transcriptional landscape of hind limb muscle tissue via global mRNA expression profiles. Correlations revealed an ?1,168% increase in significant relationships between muscle transcript expression levels and the same exercise and body composition phenotypes examined previously in the brain. The exercise trait most often significantly correlated with gene expression in the brain was running duration while in the muscle it was maximum running speed. This difference may indicate that time spent engaging in exercise behavior may be more influenced by central (neurobiological) mechanisms, while intensity of exercise may be largely controlled by peripheral mechanisms. Additionally, we used subsets of cis-acting eQTL, colocalizing with QTL, to identify candidate genes based on both positional and functional evidence. We discuss three plausible candidate genes (Insig2, Prcp, Sparc) and their potential regulatory role. PMID:24939925

Kelly, Scott A; Nehrenberg, Derrick L; Hua, Kunjie; Garland, Theodore; Pomp, Daniel

2014-08-15

46

Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar  

PubMed Central

Background The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions. Results Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E) interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes. Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL) for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5), the transition from shoot to bud (date1.5), the duration of bud formation (subproc1) and bud maturation (subproc2)) eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs). These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set. Conclusions This study provides a better understanding of the physiological and genetic dissection of bud set in poplar. The putative QTL identified will be tested for associations in P. nigra natural populations. The identified QTL and CGs will also serve as useful targets for poplar breeding. PMID:22471289

2012-01-01

47

QTL mapping of resistance to sorghum downy mildew in maize  

E-print Network

.......................................................................................................... 97 APPENDIX G......................................................................................................... 100 APPENDIX H......................................................................................................... 103... ??????????... 45 12f Genetic marker map for chromosome 6 ??????????... 46 12g Genetic marker map for chromosome 7 ??????????... 47 12h Genetic marker map for chromosome 8 ??????????... 48 12i Genetic marker map for chromosome 9...

Sabry, Ahmed Mohamed-Bashir

2004-09-30

48

A Set of Lotus japonicus Gifu x Lotus burttii Recombinant Inbred Lines Facilitates Map-based Cloning and QTL Mapping  

PubMed Central

Model legumes such as Lotus japonicus have contributed significantly to the understanding of symbiotic nitrogen fixation. This insight is mainly a result of forward genetic screens followed by map-based cloning to identify causal alleles. The L. japonicus ecotype ‘Gifu’ was used as a common parent for inter-accession crosses to produce F2 mapping populations either with other L. japonicus ecotypes, MG-20 and Funakura, or with the related species L. filicaulis. These populations have all been used for genetic studies but segregation distortion, suppression of recombination, low polymorphism levels, and poor viability have also been observed. More recently, the diploid species L. burttii has been identified as a fertile crossing partner of L. japonicus. To assess its qualities in genetic linkage analysis and to enable quantitative trait locus (QTL) mapping for a wider range of traits in Lotus species, we have generated and genotyped a set of 163 Gifu × L. burttii recombinant inbred lines (RILs). By direct comparisons of RIL and F2 population data, we show that L. burttii is a valid alternative to MG-20 as a Gifu mapping partner. In addition, we demonstrate the utility of the Gifu × L. burttii RILs in QTL mapping by identifying an Nfr1-linked QTL for Sinorhizobium fredii nodulation. PMID:22619310

Sandal, Niels; Jin, Haojie; Rodriguez-Navarro, Dulce Nombre; Temprano, Francisco; Cvitanich, Cristina; Brachmann, Andreas; Sato, Shusei; Kawaguchi, Masayoshi; Tabata, Satoshi; Parniske, Martin; Ruiz-Sainz, Jose E.; Andersen, Stig U.; Stougaard, Jens

2012-01-01

49

QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.)  

PubMed Central

A quantitative trait locus (QTL) analysis designed for a multi-parent population was carried out and tested in oil palm (Elaeis guineensis Jacq.), which is a diploid cross-fertilising perennial species. A new extension of the MCQTL package was especially designed for crosses between heterozygous parents. The algorithm, which is now available for any allogamous species, was used to perform and compare two types of QTL search for small size families, within-family analysis and across-family analysis, using data from a 2 × 2 complete factorial mating experiment involving four parents from three selected gene pools. A consensus genetic map of the factorial design was produced using 251 microsatellite loci, the locus of the Sh major gene controlling fruit shell presence, and an AFLP marker of that gene. A set of 76 QTLs involved in 24 quantitative phenotypic traits was identified. A comparison of the QTL detection results showed that the across-family analysis proved to be efficient due to the interconnected families, but the family size issue is just partially solved. The identification of QTL markers for small progeny numbers and for marker-assisted selection strategies is discussed. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1284-y) contains supplementary material, which is available to authorized users. PMID:20182696

Jourjon, M. F.; Marseillac, N.; Berger, A.; Flori, A.; Asmady, H.; Adon, B.; Singh, R.; Nouy, B.; Potier, F.; Cheah, S. C.; Rohde, W.; Ritter, E.; Courtois, B.; Charrier, A.; Mangin, B.

2010-01-01

50

Graph-regularized dual Lasso for robust eQTL mapping  

PubMed Central

Motivation: As a promising tool for dissecting the genetic basis of complex traits, expression quantitative trait loci (eQTL) mapping has attracted increasing research interest. An important issue in eQTL mapping is how to effectively integrate networks representing interactions among genetic markers and genes. Recently, several Lasso-based methods have been proposed to leverage such network information. Despite their success, existing methods have three common limitations: (i) a preprocessing step is usually needed to cluster the networks; (ii) the incompleteness of the networks and the noise in them are not considered; (iii) other available information, such as location of genetic markers and pathway information are not integrated. Results: To address the limitations of the existing methods, we propose Graph-regularized Dual Lasso (GDL), a robust approach for eQTL mapping. GDL integrates the correlation structures among genetic markers and traits simultaneously. It also takes into account the incompleteness of the networks and is robust to the noise. GDL utilizes graph-based regularizers to model the prior networks and does not require an explicit clustering step. Moreover, it enables further refinement of the partial and noisy networks. We further generalize GDL to incorporate the location of genetic makers and gene-pathway information. We perform extensive experimental evaluations using both simulated and real datasets. Experimental results demonstrate that the proposed methods can effectively integrate various available priori knowledge and significantly outperform the state-of-the-art eQTL mapping methods. Availability: Software for both C++ version and Matlab version is available at http://www.cs.unc.edu/?weicheng/. Contact: weiwang@cs.ucla.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931977

Cheng, Wei; Zhang, Xiang; Guo, Zhishan; Shi, Yu; Wang, Wei

2014-01-01

51

Coding Gene SNP Mapping Reveals QTL Linked to Growth and Stress Response in Brook Charr (Salvelinus fontinalis)  

PubMed Central

Growth performance and reduced stress response are traits of major interest in fish production. Growth and stress-related quantitative trait loci (QTL) have been already identified in several salmonid species, but little effort has been devoted to charrs (genus Salvelinus). Moreover, most QTL studies to date focused on one or very few traits, and little investigation has been devoted to QTL identification for gene expression. Here, our objective was to identify QTL for 27 phenotypes related to growth and stress responses in brook charr (Salvelinus fontinalis), which is one of the most economically important freshwater aquaculture species in Canada. Phenotypes included 12 growth parameters, six blood and plasma variables, three hepatic variables, and one plasma hormone level as well as the relative expression measurements of five genes of interest linked to growth regulation. QTL analysis relied on a linkage map recently built from S. fontinalis consisting of both single-nucleotide polymorphism (SNP, n = 266) and microsatellite (n =81) markers in an F2 interstrain hybrid population (n = 171). We identified 63 growth-related QTL and four stress-related QTL across 18 of the 40 linkage groups of the brook charr linkage map. Percent variance explained, confidence interval, and allelic QTL effects also were investigated to provide insight into the genetic architecture of growth- and stress-related QTL. QTL related to growth performance and stress response that were identified could be classified into two groups: (1) a group composed of the numerous, small-effect QTL associated with some traits related to growth (i.e., weight) that may be under the control of a large number of genes or pleiotropic genes, and (2) a group of less numerous QTL associated with growth (i.e., gene expression) and with stress-related QTL that display a larger effect, suggesting that these QTL are under the control of a limited number of genes of major effect. This study represents a first step toward the identification of genes potentially linked to phenotypic variation of growth and stress response in brook charr. The ultimate goal is to provide new tools for developing Molecular Assisted Selection for this species. PMID:22690380

Sauvage, Christopher; Vagner, Marie; Derome, Nicolas; Audet, Celine; Bernatchez, Louis

2012-01-01

52

Coding Gene SNP Mapping Reveals QTL Linked to Growth and Stress Response in Brook Charr (Salvelinus fontinalis).  

PubMed

Growth performance and reduced stress response are traits of major interest in fish production. Growth and stress-related quantitative trait loci (QTL) have been already identified in several salmonid species, but little effort has been devoted to charrs (genus Salvelinus). Moreover, most QTL studies to date focused on one or very few traits, and little investigation has been devoted to QTL identification for gene expression. Here, our objective was to identify QTL for 27 phenotypes related to growth and stress responses in brook charr (Salvelinus fontinalis), which is one of the most economically important freshwater aquaculture species in Canada. Phenotypes included 12 growth parameters, six blood and plasma variables, three hepatic variables, and one plasma hormone level as well as the relative expression measurements of five genes of interest linked to growth regulation. QTL analysis relied on a linkage map recently built from S. fontinalis consisting of both single-nucleotide polymorphism (SNP, n = 266) and microsatellite (n =81) markers in an F(2) interstrain hybrid population (n = 171). We identified 63 growth-related QTL and four stress-related QTL across 18 of the 40 linkage groups of the brook charr linkage map. Percent variance explained, confidence interval, and allelic QTL effects also were investigated to provide insight into the genetic architecture of growth- and stress-related QTL. QTL related to growth performance and stress response that were identified could be classified into two groups: (1) a group composed of the numerous, small-effect QTL associated with some traits related to growth (i.e., weight) that may be under the control of a large number of genes or pleiotropic genes, and (2) a group of less numerous QTL associated with growth (i.e., gene expression) and with stress-related QTL that display a larger effect, suggesting that these QTL are under the control of a limited number of genes of major effect. This study represents a first step toward the identification of genes potentially linked to phenotypic variation of growth and stress response in brook charr. The ultimate goal is to provide new tools for developing Molecular Assisted Selection for this species. PMID:22690380

Sauvage, Christopher; Vagner, Marie; Derôme, Nicolas; Audet, Céline; Bernatchez, Louis

2012-06-01

53

Genetic mapping of a 7R Al tolerance QTL in triticale (x Triticosecale Wittmack).  

PubMed

Triticale (x Triticosecale Wittmack) is a relatively new cereal crop. In Poland, triticale is grown on 12 % of arable land ( http://www.stat.gov.pl ). There is an increasing interest in its cultivation due to lowered production costs and increased adaptation to adverse environmental conditions. However, it has an insufficient tolerance to the presence of aluminum ions (Al(3+)) in the soil. The number of genes controlling aluminum tolerance in triticale and their chromosomal location is not known. Two F2 mapping biparental populations (MP1 and MP15) segregating for aluminum (Al) tolerance were tested with AFLP, SSR, DArT, and specific PCR markers. Genetic mapping enabled the construction of linkage groups representing chromosomes 7R, 5R and 2B. Obtained linkage groups were common for both mapping populations and mostly included the same markers. Composite interval mapping (CIM) allowed identification of a single QTL that mapped to the 7R chromosome and explained 25 % (MP1) and 36 % (MP15) of phenotypic variation. The B1, B26 and Xscm150 markers were 0.04 cM and 0.02 cM from the maximum of the LOD function in the MP1 and MP15, respectively and were highly associated with aluminum tolerance as indicated by Kruskal-Wallis nonparametric test. Moreover, the molecular markers B1, B26, Xrems1162 and Xscm92, previously associated with the Alt4 locus that encoded an aluminum-activated malate transporter (ScALMT1) that was involved in Al tolerance in rye (Secale cereale) also mapped within QTL. Biochemical analysis of plants represented MP1 and MP15 mapping populations confirmed that the QTL located on 7R chromosome in both mapping populations is responsible for Al tolerance. PMID:24222435

Niedziela, A; Bednarek, P T; Labudda, M; Ma?kowski, D R; Anio?, A

2014-02-01

54

Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing  

PubMed Central

Understanding how organisms interact with their environments is increasingly important for conservation efforts in many species, especially in light of highly anticipated climate changes. One method for understanding this relationship is to use genetic maps and QTL mapping to detect genomic regions linked to phenotypic traits of importance for adaptation. We used high-throughput genotyping by sequencing (GBS) to both detect and map thousands of SNPs in haploid Chinook salmon (Oncorhynchus tshawytscha). We next applied this map to detect QTL related to temperature tolerance and body size in families of diploid Chinook salmon. Using these techniques, we mapped 3534 SNPs in 34 linkage groups which is consistent with the haploid chromosome number for Chinook salmon. We successfully detected three QTL for temperature tolerance and one QTL for body size at the experiment-wide level, as well as additional QTL significant at the chromosome-wide level. The use of haploids coupled with GBS provides a robust pathway to rapidly develop genomic resources in nonmodel organisms; these QTL represent preliminary progress toward linking traits of conservation interest to regions in the Chinook salmon genome. PMID:24822082

Everett, Meredith V; Seeb, James E

2014-01-01

55

Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing.  

PubMed

Understanding how organisms interact with their environments is increasingly important for conservation efforts in many species, especially in light of highly anticipated climate changes. One method for understanding this relationship is to use genetic maps and QTL mapping to detect genomic regions linked to phenotypic traits of importance for adaptation. We used high-throughput genotyping by sequencing (GBS) to both detect and map thousands of SNPs in haploid Chinook salmon (Oncorhynchus tshawytscha). We next applied this map to detect QTL related to temperature tolerance and body size in families of diploid Chinook salmon. Using these techniques, we mapped 3534 SNPs in 34 linkage groups which is consistent with the haploid chromosome number for Chinook salmon. We successfully detected three QTL for temperature tolerance and one QTL for body size at the experiment-wide level, as well as additional QTL significant at the chromosome-wide level. The use of haploids coupled with GBS provides a robust pathway to rapidly develop genomic resources in nonmodel organisms; these QTL represent preliminary progress toward linking traits of conservation interest to regions in the Chinook salmon genome. PMID:24822082

Everett, Meredith V; Seeb, James E

2014-04-01

56

QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments  

PubMed Central

Background The genomic architecture of bud phenology and height growth remains poorly known in most forest trees. In non model species, QTL studies have shown limited application because most often QTL data could not be validated from one experiment to another. The aim of our study was to overcome this limitation by basing QTL detection on the construction of genetic maps highly-enriched in gene markers, and by assessing QTLs across pedigrees, years, and environments. Results Four saturated individual linkage maps representing two unrelated mapping populations of 260 and 500 clonally replicated progeny were assembled from 471 to 570 markers, including from 283 to 451 gene SNPs obtained using a multiplexed genotyping assay. Thence, a composite linkage map was assembled with 836 gene markers. For individual linkage maps, a total of 33 distinct quantitative trait loci (QTLs) were observed for bud flush, 52 for bud set, and 52 for height growth. For the composite map, the corresponding numbers of QTL clusters were 11, 13, and 10. About 20% of QTLs were replicated between the two mapping populations and nearly 50% revealed spatial and/or temporal stability. Three to four occurrences of overlapping QTLs between characters were noted, indicating regions with potential pleiotropic effects. Moreover, some of the genes involved in the QTLs were also underlined by recent genome scans or expression profile studies. Overall, the proportion of phenotypic variance explained by each QTL ranged from 3.0 to 16.4% for bud flush, from 2.7 to 22.2% for bud set, and from 2.5 to 10.5% for height growth. Up to 70% of the total character variance could be accounted for by QTLs for bud flush or bud set, and up to 59% for height growth. Conclusions This study provides a basic understanding of the genomic architecture related to bud flush, bud set, and height growth in a conifer species, and a useful indicator to compare with Angiosperms. It will serve as a basic reference to functional and association genetic studies of adaptation and growth in Picea taxa. The putative QTNs identified will be tested for associations in natural populations, with potential applications in molecular breeding and gene conservation programs. QTLs mapping consistently across years and environments could also be the most important targets for breeding, because they represent genomic regions that may be least affected by G × E interactions. PMID:21392393

2011-01-01

57

Mapping QTL influencing gastrointestinal nematode burden in Dutch Holstein-Friesian dairy cattle  

PubMed Central

Background Parasitic gastroenteritis caused by nematodes is only second to mastitis in terms of health costs to dairy farmers in developed countries. Sustainable control strategies complementing anthelmintics are desired, including selective breeding for enhanced resistance. Results and Conclusion To quantify and characterize the genetic contribution to variation in resistance to gastro-intestinal parasites, we measured the heritability of faecal egg and larval counts in the Dutch Holstein-Friesian dairy cattle population. The heritability of faecal egg counts ranged from 7 to 21% and was generally higher than for larval counts. We performed a whole genome scan in 12 paternal half-daughter groups for a total of 768 cows, corresponding to the ~10% most and least infected daughters within each family (selective genotyping). Two genome-wide significant QTL were identified in an across-family analysis, respectively on chromosomes 9 and 19, coinciding with previous findings in orthologous chromosomal regions in sheep. We identified six more suggestive QTL by within-family analysis. An additional 73 informative SNPs were genotyped on chromosome 19 and the ensuing high density map used in a variance component approach to simultaneously exploit linkage and linkage disequilibrium in an initial inconclusive attempt to refine the QTL map position. PMID:19254385

Coppieters, Wouter; Mes, Ted HM; Druet, Tom; Farnir, Frederic; Tamma, Nico; Schrooten, Chris; Cornelissen, Albert WCA; Georges, Michel; Ploeger, Harm W

2009-01-01

58

Comparative genome and QTL mapping between maritime and loblolly pines  

Microsoft Academic Search

Genetic markers developed from expressed sequence tags (ESTs) were used as orthologous loci for comparative genome studies in the genus Pinus. A total of 309 ESTs derived from conifer gene sequences were tested for amplification and polymorphism in maritime pine (Pinus pinaster Ait.). Electrophoresis-based techniques made it possible to map 50 expressed sequence tag polymorphisms (ESTPs). The map positions of

David Chagné; Garth Brown; Céline Lalanne; Delphine Madur; David Pot; David Neale; Christophe Plomion

2003-01-01

59

Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate  

PubMed Central

Background Delineating the genetic basis of body composition is important to agriculture and medicine. In addition, the incorporation of gene-gene interactions in the statistical model provides further insight into the genetic factors that underlie body composition traits. We used Bayesian model selection to comprehensively map main, epistatic and sex-specific QTL in an F2 reciprocal intercross between two chicken lines divergently selected for high or low growth rate. Results We identified 17 QTL with main effects across 13 chromosomes and several sex-specific and sex-antagonistic QTL for breast meat yield, thigh + drumstick yield and abdominal fatness. Different sets of QTL were found for both breast muscles [Pectoralis (P) major and P. minor], which suggests that they could be controlled by different regulatory mechanisms. Significant interactions of QTL by sex allowed detection of sex-specific and sex-antagonistic QTL for body composition and abdominal fat. We found several female-specific P. major QTL and sex-antagonistic P. minor and abdominal fatness QTL. Also, several QTL on different chromosomes interact with each other to affect body composition and abdominal fatness. Conclusions The detection of main effects, epistasis and sex-dimorphic QTL suggest complex genetic regulation of somatic growth. An understanding of such regulatory mechanisms is key to mapping specific genes that underlie QTL controlling somatic growth in an avian model. PMID:20149241

2010-01-01

60

Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL Verification and candidate gene mapping.  

PubMed Central

A long-term series of experiments to map QTL influencing wood property traits in loblolly pine has been completed. These experiments were designed to identify and subsequently verify QTL in multiple genetic backgrounds, environments, and growing seasons. Verification of QTL is necessary to substantiate a biological basis for observed marker-trait associations, to provide precise estimates of the magnitude of QTL effects, and to predict QTL expression at a given age or in a particular environment. Verification was based on the repeated detection of QTL among populations, as well as among multiple growing seasons for each population. Temporal stability of QTL was moderate, with approximately half being detected in multiple seasons. Fewer QTL were common to different populations, but the results are nonetheless encouraging for restricted applications of marker-assisted selection. QTL from larger populations accounted for less phenotypic variation than QTL detected in smaller populations, emphasizing the need for experiments employing much larger families. Additionally, 18 candidate genes related to lignin biosynthesis and cell wall structure were mapped genetically. Several candidate genes colocated with wood property QTL; however, these relationships must be verified in future experiments. PMID:12930758

Brown, Garth R; Bassoni, Daniel L; Gill, Geoffrey P; Fontana, Joseph R; Wheeler, Nicholas C; Megraw, Robert A; Davis, Mark F; Sewell, Mitchell M; Tuskan, Gerald A; Neale, David B

2003-01-01

61

Quantitative trait loci (QTL) mapping of resistance to strongyles and coccidia in the free-living Soay sheep ( Ovis aries)  

Microsoft Academic Search

A genome-wide scan was performed to detect quantitative trait loci (QTL) for resistance to gastrointestinal parasites and ectoparasitic keds segregating in the free-living Soay sheep population on St. Kilda (UK). The mapping panel consisted of a single pedigree of 882 individuals of which 588 were genotyped. The Soay linkage map used for the scans comprised 251 markers covering the whole

Dario Beraldi; Allan F. McRae; Jacob Gratten; Jill G. Pilkington; Jon Slate; Peter M. Visscher; Josephine M. Pemberton

2007-01-01

62

An Evaluation of High-Throughput Approaches to QTL Mapping in Saccharomyces cerevisiae  

PubMed Central

Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of >700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in pooled approaches, providing valuable lessons for future designs of complex trait mapping studies. PMID:24374355

Wilkening, Stefan; Lin, Gen; Fritsch, Emilie S.; Tekkedil, Manu M.; Anders, Simon; Kuehn, Raquel; Nguyen, Michelle; Aiyar, Raeka S.; Proctor, Michael; Sakhanenko, Nikita A.; Galas, David J.; Gagneur, Julien; Deutschbauer, Adam; Steinmetz, Lars M.

2014-01-01

63

Fine Mapping of a Grain-Weight Quantitative Trait Locus in the Pericentromeric Region of Rice Chromosome 3  

PubMed Central

As the basis for fine mapping of a grain-weight QTL, gw3.1, a set of near isogenic lines (NILs), was developed from an Oryza sativa, cv. Jefferson × O. rufipogon (IRGC105491) population based on five generations of backcrossing and seven generations of selfing. Despite the use of an interspecific cross for mapping and the pericentromeric location of the QTL, we observed no suppression of recombination and have been able to narrow down the location of the gene underlying this QTL to a 93.8-kb region. The locus was associated with transgressive variation for grain size and grain weight in this population and features prominently in many other inter- and intraspecific crosses of rice. The phenotype was difficult to evaluate due to the large amount of variance in size and weight among grains on a panicle and between grains on primary and secondary panicles, underscoring the value of using multiple approaches to phenotyping, including extreme sampling and NIL group-mean comparisons. The fact that a QTL for kernel size has also been identified in a homeologous region of maize chromosome 1 suggests that this locus, in which the dominant O. rufipogon allele confers small seed size, may be associated with domestication in cereals. PMID:15611185

Li, Jiming; Thomson, Michael; McCouch, Susan R.

2004-01-01

64

XVIth QTLMAS: simulated dataset and comparative analysis of submitted results for QTL mapping and genomic evaluation  

PubMed Central

Background A common dataset was simulated and made available to participants of the XVIth QTL-MAS workshop. Tasks for the participants were to detect QTLs affecting three traits, to assess their possible pleiotropic effects, and to evaluate the breeding values in a candidate population without phenotypes using genomic information. Methods Four generations consisting of 20 males and 1000 females were generated by mating each male with 50 females. The genome consisted of 5 chromosomes, each of 100 Mb size and carrying 2,000 equally distributed SNPs. Three traits were simulated in order to mimic milk yield, fat yield and fat content. Genetic (co)variances were generated from 50 QTLs with pleiotropic effects. Phenotypes for all traits were expressed only in females, and were provided for the first 3 generations. Fourteen methods for detecting single-trait QTL and 3 methods for investigating their pleiotropic nature were proposed. QTL mapping results were compared according to the following criteria: number of true QTL detected; number of false positives; and the proportion of the true genetic variance explained by submitted positions. Eleven methods for estimating direct genomic values of the candidate population were proposed. Accuracies and bias of predictions were assessed by comparing estimated direct genomic values with true breeding values. Results The number of true detections ranged from 0 to 8 across methods and traits, false positives from 0 to 15, and the proportion of genetic variance captured from 0 to 0.82, respectively. The accuracy and bias of genomic predictions varied from 0.74 to 0.85 and from 0.86 to 1.34 across traits and methods, respectively. Conclusions The best results in terms of detection power were obtained by ridge regression that, however, led to a large number of false positives. Good results both in terms of true detections and false positives were obtained by the approaches that fit polygenic effects in the model. The investigation of the pleiotropic nature of the QTL permitted the identification of few additional markers compared to the single-trait analyses. Bayesian and grouped regularized regression methods performed similarly for genomic prediction while GBLUP produced the poorest results.

2014-01-01

65

The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol.  

PubMed

Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies. PMID:21444760

Leduc, Magalie S; Lyons, Malcolm; Darvishi, Katayoon; Walsh, Kenneth; Sheehan, Susan; Amend, Sarah; Cox, Allison; Orho-Melander, Marju; Kathiresan, Sekar; Paigen, Beverly; Korstanje, Ron

2011-06-01

66

Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping  

Microsoft Academic Search

To map quantitative trait loci (QTL) for growth and carcass traits in a purebred Japanese Black cattle population, we conducted\\u000a multiple QTL analyses using 15 paternal half-sib families comprising 7860 offspring. We identified 40 QTL with significant\\u000a linkages at false discovery rates of less than 0.1, which included 12 for intramuscular fat deposition called marbling and\\u000a 12 for cold carcass

Akiko Takasuga; Toshio Watanabe; Yasushi Mizoguchi; Takashi Hirano; Naoya Ihara; Atsushi Takano; Kou Yokouchi; Akira Fujikawa; Kazuyoshi Chiba; Naohiko Kobayashi; Ken Tatsuda; Toshiaki Oe; Megumi Furukawa-Kuroiwa; Atsuko Nishimura-Abe; Tatsuo Fujita; Kazuya Inoue; Kazunori Mizoshita; Atsushi Ogino; Yoshikazu Sugimoto

2007-01-01

67

QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep  

PubMed Central

Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male–male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep. PMID:21847139

Poissant, J; Davis, C S; Malenfant, R M; Hogg, J T; Coltman, D W

2012-01-01

68

Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.).  

PubMed

Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2–26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL. PMID:23959525

He, Xinyao; Skinnes, Helge; Oliver, Rebekah E; Jackson, Eric W; Bjørnstad, Asmund

2013-10-01

69

Genetic variation, linkage mapping of QTL and correlation studies for yield, root, and agronomic traits for aerobic adaptation  

PubMed Central

Background Water scarcity and drought have seriously threatened traditional rice cultivation practices in several parts of the world, including India. Aerobic rice that uses significantly less water than traditional flooded systems has emerged as a promising water-saving technology. The identification of QTL conferring improved aerobic adaptation may facilitate the development of high-yielding aerobic rice varieties. In this study, experiments were conducted for mapping QTL for yield, root-related traits, and agronomic traits under aerobic conditions using HKR47 × MAS26 and MASARB25 × Pusa Basmati 1460 F2:3 mapping populations. Results A total of 35 QTL associated with 14 traits were mapped on chromosomes 1, 2, 5, 6, 8, 9, and 11 in MASARB25 x Pusa Basmati 1460 and 14 QTL associated with 9 traits were mapped on chromosomes 1, 2, 8, 9, 10, 11, and 12 in HKR47 × MAS26. Two QTL (qGY8.1 with an R2 value of 34.0% and qGY2.1 with an R2 value of 22.8%) and one QTL (qGY2.2 with an R2 value of 43.2%) were identified for grain yield under aerobic conditions in the mapping populations MASARB25 × Pusa Basmati 1460 and HKR47 × MAS26, respectively. A number of breeding lines with higher yield per plant, root length, dry biomass, length-breadth ratio, and with Pusa Basmati 1460-specific alleles in a homozygous or heterozygous condition at the BAD2 locus were identified that will serve as novel material for the selection of stable aerobic Basmati rice breeding lines. Conclusions Our results identified positive correlation between some of the root traits and yield under aerobic conditions, indicating the role of root traits for improving yield under aerobic situations possibly through improved water and nutrient uptake. Co-localization of QTL for yield, root traits, and yield-related agronomic traits indicates that the identified QTL may be immediately exploited in marker-assisted-breeding to develop novel high-yielding aerobic rice varieties. PMID:24168061

2013-01-01

70

Fine mapping of a quantitative trait locus for bovine milk fat composition on Bos taurus autosome 19.  

PubMed

A major quantitative trait locus (QTL) for milk fat content and fatty acids in both milk and adipose tissue has been detected on Bos taurus autosome 19 (BTA19) in several cattle breeds. The objective of this study was to refine the location of the QTL on BTA19 for bovine milk fat composition using a denser set of markers. Opportunities for fine mapping were provided by imputation from 50,000 genotyped single nucleotide polymorphisms (SNP) toward a high-density SNP panel with up to 777,000 SNP. The QTL region was narrowed down to a linkage disequilibrium block formed by 22 SNP covering 85,007 bp, from 51,303,322 to 51,388,329 bp on BTA19. This linkage disequilibrium block contained 2 genes: coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN). The gene CCDC57 is minimally characterized and has not been associated with bovine milk fat previously, but is expressed in the mammary gland. The gene FASN has been associated with bovine milk fat and fat in adipose tissue before. This gene is a likely candidate for the QTL on BTA19 because of its involvement in de novo fat synthesis. Future studies using sequence data of both CCDC57 and FASN, and eventually functional studies, will have to be pursued to assign the causal variant(s). PMID:24315323

Bouwman, Aniek C; Visker, Marleen H P W; van Arendonk, Johana M; Bovenhuis, Henk

2014-02-01

71

Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish (Coregonus clupeaformis).  

PubMed

The evolution of reproductive isolation in an ecological context may involve multiple facets of species divergence on which divergent selection may operate. These include variation in quantitative phenotypic traits, regulation of gene expression, and differential transmission of particular allelic combinations. Thus, an integrative approach to the speciation process involves identifying the genetic basis of these traits, in order to understand how they are affected by divergent selection in nature and how they ultimately contribute to reproductive isolation. In the Lake Whitefish (Coregonus clupeaformis), dwarf and normal species pairs sympatrically occur in several North American postglacial lakes. The limnetic dwarf whitefish distinguishes from its normal benthic relative by numerous life history, behavioural, morphological and gene expression traits, in relation with the exploitation of distinct ecological niches. Here, we have applied the RAD-Sequencing method to a hybrid backcross family to reconstruct a high-density genetic linkage map and perform QTL mapping in the Lake Whitefish. The 3061 cM map encompassed 3438 segregating RAD markers distributed over 40 linkage groups, for an average resolution of 0.89 cM. We mapped phenotypic and expression QTL underlying ecologically important traits as well as transmission ratio distortion QTL, and identified genomic regions harbouring clusters of such QTL. A narrow genomic region strongly associated with sex determination was also evidenced. Positional and functional information revealed in this study will be useful in ongoing population genomic studies to illuminate our understanding of the genomic architecture of reproductive isolation between whitefish species pairs. PMID:23181719

Gagnaire, Pierre-Alexandre; Normandeau, Eric; Pavey, Scott A; Bernatchez, Louis

2013-06-01

72

Variable selection for large p small n regression models with incomplete data: Mapping QTL with epistases  

PubMed Central

Background Identifying quantitative trait loci (QTL) for both additive and epistatic effects raises the statistical issue of selecting variables from a large number of candidates using a small number of observations. Missing trait and/or marker values prevent one from directly applying the classical model selection criteria such as Akaike's information criterion (AIC) and Bayesian information criterion (BIC). Results We propose a two-step Bayesian variable selection method which deals with the sparse parameter space and the small sample size issues. The regression coefficient priors are flexible enough to incorporate the characteristic of "large p small n" data. Specifically, sparseness and possible asymmetry of the significant coefficients are dealt with by developing a Gibbs sampling algorithm to stochastically search through low-dimensional subspaces for significant variables. The superior performance of the approach is demonstrated via simulation study. We also applied it to real QTL mapping datasets. Conclusion The two-step procedure coupled with Bayesian classification offers flexibility in modeling "large p small n" data, especially for the sparse and asymmetric parameter space. This approach can be extended to other settings characterized by high dimension and low sample size. PMID:18510743

Zhang, Min; Zhang, Dabao; Wells, Martin T

2008-01-01

73

Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations  

PubMed Central

Background Common bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Host resistance is practically the most effective and environmentally-sound approach to control CBB. Unlike conventional QTL discovery strategies, in which bi-parental populations (F2, RIL, or DH) need to be developed, association mapping-based strategies can use plant breeding populations to synchronize QTL discovery and cultivar development. Results A population of 469 dry bean lines of different market classes representing plant materials routinely developed in a bean breeding program were used. Of them, 395 lines were evaluated for CBB resistance at 14 and 21 DAI (Days After Inoculation) in the summer of 2009 in an artificially inoculated CBB nursery in south-western Ontario. All lines were genotyped using 132 SNPs (Single Nucleotide Polymorphisms) evenly distributed across the genome. Of the 132 SNPs, 26 SNPs had more than 20% missing data, 12 SNPs were monomorphic, and 17 SNPs had a MAF (Minor Allelic Frequency) of less than 0.20, therefore only 75 SNPs were used for association study, based on one SNP per locus. The best possible population structure was to assign 36% and 64% of the lines into Andean and Mesoamerican subgroups, respectively. Kinship analysis also revealed complex familial relationships among all lines, which corresponds with the known pedigree history. MLM (Mixed Linear Model) analysis, including population structure and kinship, was used to discover marker-trait associations. Eighteen and 22 markers were significantly associated with CBB rating at 14 and 21 DAI, respectively. Fourteen markers were significant for both dates and the markers UBC420, SU91, g321, g471, and g796 were highly significant (p ? 0.001). Furthermore, 12 significant SNP markers were co-localized with or close to the CBB-QTLs identified previously in bi-parental QTL mapping studies. Conclusions This study demonstrated that association mapping using a reasonable number of markers, distributed across the genome and with application of plant materials that are routinely developed in a plant breeding program can detect significant QTLs for traits of interest. PMID:21435233

2011-01-01

74

A High-Density Genetic Map Identifies a Novel Major QTL for Boron Efficiency in Oilseed Rape (Brassica napus L.)  

PubMed Central

Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus. PMID:25375356

Wang, Xiaohua; Zhao, Hua; Shi, Lei; Xu, Fangsen

2014-01-01

75

Genetic Mapping and QTL Analysis of Growth-Related Traits in Pinctada fucata Using Restriction-Site Associated DNA Sequencing  

PubMed Central

The pearl oyster, Pinctada fucata (P. fucata), is one of the marine bivalves that is predominantly cultured for pearl production. To obtain more genetic information for breeding purposes, we constructed a high-density linkage map of P. fucata and identified quantitative trait loci (QTL) for growth-related traits. One F1 family, which included the two parents, 48 largest progeny and 50 smallest progeny, was sampled to construct a linkage map using restriction site-associated DNA sequencing (RAD-Seq). With low coverage data, 1956.53 million clean reads and 86,342 candidate RAD loci were generated. A total of 1373 segregating SNPs were used to construct a sex-average linkage map. This spanned 1091.81 centimorgans (cM), with 14 linkage groups and an average marker interval of 1.41 cM. The genetic linkage map coverage, Coa, was 97.24%. Thirty-nine QTL-peak loci, for seven growth-related traits, were identified using the single-marker analysis, nonparametric mapping Kruskal-Wallis (KW) test. Parameters included three for shell height, six for shell length, five for shell width, four for hinge length, 11 for total weight, eight for soft tissue weight and two for shell weight. The QTL peak loci for shell height, shell length and shell weight were all located in linkage group 6. The genotype frequencies of most QTL peak loci showed significant differences between the large subpopulation and the small subpopulation (P<0.05). These results highlight the effectiveness of RAD-Seq as a tool for generation of QTL-targeted and genome-wide marker data in the non-model animal, P. fucata, and its possible utility in marker-assisted selection (MAS). PMID:25369421

Li, Yaoguo; He, Maoxian

2014-01-01

76

The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus.  

PubMed

We constructed a linkage map for the population QDH, which was derived from a cross between an oilseed rape cultivar and a resynthesised Brassica napus. The linkage map included ten markers linked to loci orthologous to those encoding fatty acid biosynthesis genes in Arabidopsis thaliana. The QDH population contains a high level of allelic variation, particularly in the C genome. We conducted quantitative trait locus (QTL) analyses, using field data obtained over 3 years, for the fatty acid composition of seed oil. The population segregates for the two major loci controlling erucic acid content, on linkage groups A8 and C3, which quantitatively affect the content of other fatty acids and is a problem generally encountered when crossing "wild" germplasm with cultivated "double low" oilseed rape cultivars. We assessed three methods for QTL analysis, interval mapping, multiple QTL mapping and single marker regression analysis of the subset of lines with low erucic acid. We found the third of these methods to be most appropriate for our main purpose, which was the study of the genetic control of the desaturation of 18-carbon fatty acids. This method enabled us to decouple the effect of the segregation of the erucic acid-controlling loci and identify 34 QTL for fatty acid content of seed oil, 14 in the A genome and 20 in the C genome. The QTL indicate the presence of 13 loci with novel alleles inherited from the progenitors of the resynthesised B. napus that might be useful for modulating the content or extent of desaturation of polyunsaturated fatty acids, only one of which coincides with the anticipated position of a candidate gene, an orthologue of FAD2. PMID:21184048

Smooker, A M; Wells, R; Morgan, C; Beaudoin, F; Cho, K; Fraser, F; Bancroft, I

2011-04-01

77

QTL mapping of agronomic traits in tef [Eragrostis tef (Zucc) Trotter  

PubMed Central

Background Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in Ethiopia. Tef is an allotetraploid with a base chromosome number of 10 (2n = 4× = 40) and a genome size of 730 Mbp. The goal of this study was to identify agronomically important quantitative trait loci (QTL) using recombinant inbred lines (RIL) derived from an inter-specific cross between E. tef and E. pilosa (30-5). Results Twenty-two yield-related and morphological traits were assessed across eight different locations in Ethiopia during the growing seasons of 1999 and 2000. Using composite interval mapping and a linkage map incorporating 192 loci, 99 QTLs were identified on 15 of the 21 linkage groups for 19 traits. Twelve QTLs on nine linkage groups were identified for grain yield. Clusters of more than five QTLs for various traits were identified on seven linkage groups. The largest cluster (10 QTLs) was identified on linkage group 8; eight of these QTLs were for yield or yield components, suggesting linkage or pleotrophic effects of loci. There were 15 two-way interactions of loci to detect potential epistasis identified and 75% of the interactions were derived from yield and shoot biomass. Thirty-one percent of the QTLs were observed in multiple environments; two yield QTLs were consistent across all agro-ecology zones. For 29.3% of the QTLs, the alleles from E. pilosa (30-5) had a beneficial effect. Conclusion The extensive QTL data generated for tef in this study will provide a basis for initiating molecular breeding to improve agronomic traits in this staple food crop for the people of Ethiopia. PMID:17565675

Yu, Ju-Kyung; Graznak, Elizabeth; Breseghello, Flavio; Tefera, Hailu; Sorrells, Mark E

2007-01-01

78

Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 x Mo17 (IBM) population of maize.  

PubMed

The Mediterranean corn borer or pink stem borer (MCB, Sesamia nonagrioides Lefebvre) causes important yield losses as a consequence of stalk tunneling and direct kernel damage. B73 and Mo17 are the source of the most commercial valuable maize inbred lines in temperate zones, while the intermated B73 x Mo17 (IBM) population is an invaluable source for QTL identification. However, no or few experiments have been carried out to detect QTL for corn borer resistance in the B73 x Mo17 population. The objective of this work was to locate QTL for resistance to stem tunneling and kernel damage by MCB in the IBM population. We detected a QTL for kernel damage at bin 8.05, although the effect was small and two QTL for stalk tunneling at bins 1.06 and 9.04 in which the additive effects were 4 cm, approximately. The two QTL detected for MCB resistance were close to other QTL consistently found for European corn borer (ECB, Ostrinia nubilalis Hübner) resistance, indicating mechanisms of resistance common to both pests or gene clusters controlling resistance to different plagues. The precise mapping achieved with the IBM population will facilitate the QTL pyramiding and the positional cloning of the detected QTL. PMID:19756472

Ordas, Bernardo; Malvar, Rosa A; Santiago, Rogelio; Sandoya, German; Romay, Maria C; Butron, Ana

2009-11-01

79

Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations.  

PubMed

A novel high-density consensus wheat genetic map was obtained based on three related RIL populations, and the important chromosomal regions affecting yield and related traits were specified. A prerequisite for mapping quantitative trait locus (QTL) is to build a genetic linkage map. In this study, three recombinant inbred line populations (represented by WL, WY, and WJ) sharing one common parental line were used for map construction and subsequently for QTL detection of yield-related traits. PCR-based and diversity arrays technology markers were screened in the three populations. The integrated genetic map contains 1,127 marker loci, which span 2,976.75 cM for the whole genome, 985.93 cM for the A genome, 922.16 cM for the B genome, and 1,068.65 cM for the D genome. Phenotypic values were evaluated in four environments for populations WY and WJ, but three environments for population WL. Individual and combined phenotypic values across environments were used for QTL detection. A total of 165 putative additive QTL were identified, 22 of which showed significant additive-by-environment interaction effects. A total of 65 QTL (51.5%) were stable across environments, and 23 of these (35.4%) were common stable QTL that were identified in at least two populations. Notably, QTkw-5B.1, QTkw-6A.2, and QTkw-7B.1 were common major stable QTL in at least two populations, exhibiting 11.28-16.06, 5.64-18.69, and 6.76-21.16% of the phenotypic variance, respectively. Genetic relationships between kernel dimensions and kernel weight and between yield components and yield were evaluated. Moreover, QTL or regions that commonly interact across genetic backgrounds were discussed by comparing the results of the present study with those of previous similar studies. The present study provides useful information for marker-assisted selection in breeding wheat varieties with high yield. PMID:24326459

Cui, Fa; Zhao, Chunhua; Ding, Anming; Li, Jun; Wang, Lin; Li, Xingfeng; Bao, Yinguang; Li, Junming; Wang, Honggang

2014-03-01

80

Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton.  

PubMed

Diseases such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represent expanding threats to cotton production. Integrating disease resistance into high-yielding, high-fiber quality cotton (Gossypium spp.) cultivars is one of the most important objectives in cotton breeding programs worldwide. In this study, we conducted a comprehensive analysis of gene action in cotton governing FOV race 4 resistance by combining conventional inheritance and quantitative trait loci (QTL) mapping with molecular markers. A set of diverse cotton populations was generated from crosses encompassing multiple genetic backgrounds. FOV race 4 resistance was investigated using seven parents and their derived populations: three intraspecific (G. hirsutum × G. hirsutum L. and G. barbadense × G. barbadense L.) F1 and F2; five interspecific (G. hirsutum × G. barbadense) F1 and F2; and one RIL. Parents and populations were evaluated for disease severity index (DSI) of leaves, and vascular stem and root staining (VRS) in four greenhouse and two field experiments. Initially, a single resistance gene (Fov4) model was observed in F2 populations based on inheritance of phenotypes. This single Fov4 gene had a major dominant gene action and conferred resistance to FOV race 4 in Pima-S6. The Fov4 gene appears to be located near a genome region on chromosome 14 marked with a QTL Fov4-C14 1 , which made the biggest contribution to the FOV race 4 resistance of the generated F2 progeny. Additional genetic and QTL analyses also identified a set of 11 SSR markers that indicated the involvement of more than one gene and gene interactions across six linkage groups/chromosomes (3, 6, 8, 14, 17, and 25) in the inheritance of FOV race 4 resistance. QTLs detected with minor effects in these populations explained 5-19 % of the DSI or VRS variation. Identified SSR markers for the resistance QTLs with major and minor effects will facilitate for the first time marker-assisted selection for the introgression of FOV race 4 resistance into elite cultivars during the breeding process. PMID:23471458

Ulloa, Mauricio; Hutmacher, Robert B; Roberts, Philip A; Wright, Steven D; Nichols, Robert L; Michael Davis, R

2013-05-01

81

Multi-environment QTL mapping in blackcurrant (Ribes nigrum L.) using mixed models.  

PubMed

The first genetic linkage map of blackcurrant, published by Brennan et al. (Euphytica 161:19-34, 2008), identified regions where quantitative trait loci (QTLs) for some important traits were located. The analysis was complicated by the fact that the mapping population was found to contain two subgroups, with segregation ratios consistent with these being crossed and selfed offspring. The QTL analysis was based on the trait mean over 3 years and focused on the crossed offspring. Here we proposed a mixed model multi-environment approach for this population. The 3 years are considered as three separate environments, the data from both the selfed and crossed offspring are combined and different residual terms are explored to model the correlation between the years. This permits tests for interactions between the QTLs, the year and the type of offspring (selfed or crossed). This is applied to re-analyse two important traits, anthocyanin concentration and budbreak. Several additional QTLs were identified, some affecting the trait in both the selfed and crossed offspring, others in just one. PMID:20652803

Hackett, C A; Russell, J; Jorgensen, L; Gordon, S L; Brennan, R M

2010-11-01

82

QTL Analysis and Candidate Gene Mapping for the Polyphenol Content in Cider Apple  

PubMed Central

Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this study are specific to this population, while others are consistent with previous studies. This study presents for the first time in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is discussed. PMID:25271925

Verdu, Cindy F.; Guyot, Sylvain; Childebrand, Nicolas; Bahut, Muriel; Celton, Jean-Marc; Gaillard, Sylvain; Lasserre-Zuber, Pauline; Troggio, Michela; Guilet, David; Laurens, Francois

2014-01-01

83

Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress  

PubMed Central

Background Drought is one of the most important abiotic stresses that cause drastic reduction in rice grain yield (GY) in rainfed environments. The identification and introgression of QTL leading to high GY under drought have been advocated to be the preferred breeding strategy to improve drought tolerance of popular rice varieties. Genetic control of GY under reproductive-stage drought stress (RS) was studied in two BC1F4 mapping populations derived from crosses of Kali Aus, a drought-tolerant aus cultivar, with high-yielding popular varieties MTU1010 and IR64. The aim was to identify QTL for GY under RS that show a large and consistent effect for the trait. Bulk segregant analysis (BSA) was used to identify significant markers putatively linked with high GY under drought. Results QTL analysis revealed major-effect GY QTL: qDTY 1.2 , qDTY 2.2 and qDTY 1.3 , qDTY 2.3 (DTY; Drought grain yield) under drought consistently over two seasons in Kali Aus/2*MTU1010 and Kali Aus/2*IR64 populations, respectively. qDTY 1.2 and qDTY 2.2 explained an additive effect of 288 kg ha?1 and 567 kg ha?1 in Kali Aus/2*MTU1010, whereas qDTY 1.3 and qDTY 2.3 explained an additive effect of 198 kg ha?1 and 147 kg ha?1 in Kali Aus/2*IR64 populations, respectively. Epistatic interaction was observed for DTF (days to flowering) between regions on chromosome 2 flanked by markers RM154–RM324 and RM263–RM573 and major epistatic QTL for GY showing interaction between genomic locations on chromosome 1 at marker interval RM488–RM315 and chromosome 2 at RM324–RM263 in 2012 DS and 2013 DS RS in Kali Aus/2*IR64 mapping populations. Conclusion The QTL, qDTY 1.2 , qDTY 1.3 , qDTY 2.2 , and qDTY 2.3, identified in this study can be used to improve GY of mega varieties MTU1010 and IR64 under different degrees of severity of drought stress through marker-aided backcrossing and provide farmers with improved varieties that effectively combine high yield potential with good yield under drought. The observed epistatic interaction for GY and DTF will contribute to our understanding of the genetic basis of agronomically important traits and enhance predictive ability at an individualized level in agriculture. PMID:24885990

2014-01-01

84

[QTL mapping and interaction analysis of genotype x environment (Fe2+ -concentrations ) for mesocotyl length in rice (Oryza sativa L.)].  

PubMed

A recombinant inbred lines (RILs) population derived from a cross between Zhenshan97B and Miyang46 was used for detecting QTLs with additive effects and additive-by-additive epistasis for rice mesocotyl length. A linkage map consisting of 207 DNA markers,distributing on the 12 chromosomes of rice,was employed for QTL mapping by using software QTL Mapper 1.6 of mixed linear model. Rice mesocotyl length under germination conditions with 4 different FeSO4 concentrations (0, 1.79, 7.16, 14.32 mmol/L) was measured 7 days after planting. A total of 6 QTLs with significant additive effects on chromosome 1, 5 and 9, with variance explained of 3.5%-11.4%, eleven QTLs with significant additive x additive epistatic effects on chromosome 1, 2, 3, 4, 5, 8 were detected, with variance explained of 4.5%-8.1%. In addition, one QTL for environmental interaction (Fe2+ -concentrations) was detected. PMID:16078739

Ouyang, You-Nan; Zhang, Qiu-Ying; Zhang, Ke-Qin; Yu, Sheng-Miao; Zhuang, Jie-Yun; Jin, Qian-Yu; Cheng, Shi-Hua

2005-07-01

85

Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population.  

PubMed

While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC(2)F(3) lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL. PMID:21479934

Buerstmayr, Maria; Lemmens, Marc; Steiner, Barbara; Buerstmayr, Hermann

2011-07-01

86

QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.).  

PubMed

Cold stress at the seedling stage is a major threat to rice production. Cold tolerance is controlled by complex genetic factors. We used an F7 recombinant inbred line (RIL) population of 123 individuals derived from a cross of the cold-tolerant japonica cultivar Jinbu and the cold-susceptible indica cultivar BR29 for QTL mapping. Phenotypic evaluation of the parents and RILs in an 18/8 °C (day/night) cold stress regime revealed continuous variation for cold tolerance. Six QTLs including two on chromosome 1 and one each on chromosomes 2, 4, 10, and 11 for seedling cold tolerance were identified with phenotypic variation (R(2)) ranging from 6.1 to 16.5 %. The QTL combinations (qSCT1 and qSCT11) were detected in all stable cold-tolerant RIL groups, which explained the critical threshold of 27.1 % for the R(2) value determining cold tolerance at the seedling stage. Two QTLs (qSCT1 and qSCT11) on chromosomes 1 and 11, respectively, were fine mapped. The markers In1-c3, derived from the open reading frame (ORF) LOC_Os01g69910 encoding calmodulin-binding transcription activator (CAMTA), and In11-d1, derived from ORF LOC_Os11g37720 (Duf6 gene), co-segregated with seedling cold tolerance. The result may provide useful information on seedling cold tolerance mechanism and provide DNA markers for a marker-assisted breeding program to improve seedling cold tolerance in indica rice varieties. PMID:24464311

Kim, Suk-Man; Suh, Jung-Pil; Lee, Chung-Koon; Lee, Jeong-Heui; Kim, Yeong-Gyu; Jena, Kshirod Kumar

2014-06-01

87

Fine-mapping natural alleles: quantitative complementation to the rescue  

PubMed Central

Mapping the genes responsible for natural variation and divergence is a challenging task. Many studies have mapped genes to genomic regions, or generated lists of candidates, but few studies have implicated specific genes with a high standard of evidence. I propose that combining recent advances in genomic engineering with a modified version of the quantitative complementation test will help turn candidate genes into causal genes. By creating loss-of-function mutations in natural strains, and using these mutations to quantitatively fail-to-complement natural alleles, fine mapping should be greatly facilitated. As an example, I propose that the CRISPR/Cas9 system could be combined with the FLP/FRT system to fine-map genes in the numerous systems where inversions have frustrated these efforts. PMID:24628660

Turner, Thomas L.

2014-01-01

88

Genetic Linkage Map Construction and QTL Mapping of Salt Tolerance Traits in Zoysiagrass (Zoysia japonica)  

PubMed Central

Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection. PMID:25203715

Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu

2014-01-01

89

QTL mapping of vernalization response in perennial ryegrass ( Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1  

Microsoft Academic Search

The objective of this study was to map quantitative trait loci (QTL) for the vernalization response in perennial ryegrass ( Lolium perenne L.). The mapping population consisted of 184 F 2 genotypes produced from a cross between one genotype of a synthetic perennial ryegrass variety “Veyo” and one genotype from the perennial ryegrass ecotype “Falster”. Veyo and Falster were chosen

Louise Bach Jensen; Jeppe Reitan Andersen; Ursula Frei; Yongzhong Xing; Chris Taylor; Preben Bach Holm; Thomas Lübberstedt

2005-01-01

90

The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population  

PubMed Central

Background The improvement of fruit aroma is currently one of the most sought-after objectives in peach breeding programs. To better characterize and assess the genetic potential for increasing aroma quality by breeding, a quantity trait locus (QTL) analysis approach was carried out in an F1 population segregating largely for fruit traits. Results Linkage maps were constructed using the IPSC peach 9 K Infinium ® II array, rendering dense genetic maps, except in the case of certain chromosomes, probably due to identity-by-descent of those chromosomes in the parental genotypes. The variability in compounds associated with aroma was analyzed by a metabolomic approach based on GC-MS to profile 81 volatiles across the population from two locations. Quality-related traits were also studied to assess possible pleiotropic effects. Correlation-based analysis of the volatile dataset revealed that the peach volatilome is organized into modules formed by compounds from the same biosynthetic origin or which share similar chemical structures. QTL mapping showed clustering of volatile QTL included in the same volatile modules, indicating that some are subjected to joint genetic control. The monoterpene module is controlled by a unique locus at the top of LG4, a locus previously shown to affect the levels of two terpenoid compounds. At the bottom of LG4, a locus controlling several volatiles but also melting/non-melting and maturity-related traits was found, suggesting putative pleiotropic effects. In addition, two novel loci controlling lactones and esters in linkage groups 5 and 6 were discovered. Conclusions The results presented here give light on the mode of inheritance of the peach volatilome confirming previously loci controlling the aroma of peach but also identifying novel ones. PMID:24885290

2014-01-01

91

Genetic mapping of QTL for resistance to Fusarium head blight spread (type 2 resistance) in a Triticum dicoccoides × Triticum durum backcross-derived population.  

PubMed

Improvement of resistance to Fusarium head blight (FHB) is a continuous challenge for durum wheat breeders, particularly due to the limited genetic variation within this crop species. We accordingly generated a backcross-derived mapping population using the type 2 FHB resistant Triticum dicoccoides line Mt. Gerizim #36 as donor and the modern Austrian T. durum cultivar Helidur as recipient; 103 BC1F6:7 lines were phenotyped for type 2 FHB resistance using single-spikelet inoculations and genotyped with 421 DNA markers (SSR and AFLP). QTL mapping revealed two highly significant QTL, mapping to chromosomes 3A and 6B, respectively. For both QTL the T. dicoccoides allele improved type 2 FHB resistance. Recombinant lines with both favorable alleles fixed conferred high resistance to FHB similar to that observed in the T. dicoccoides parent. The results appear directly applicable for durum wheat resistance breeding. PMID:23921957

Buerstmayr, Maria; Alimari, Abdallah; Steiner, Barbara; Buerstmayr, Hermann

2013-11-01

92

Bayesian Association-Based Fine Mapping in Small Chromosomal Segments  

Microsoft Academic Search

A Bayesian method for fine mapping is presented, which deals with multiallelic markers (with two or more alleles), unknown phase, missing data, multiple causal variants, and both continuous and binary phenotypes. We consider small chromosomal segments spanned by a dense set of closely linked markers and putative genes only at marker points. In the phenotypic model, locus-specific indicator variables are

Mikko J. Sillanpaa; Madhuchhanda Bhattacharjee

2004-01-01

93

QTL mapping based on different genetic systems for essential amino acid contents in cottonseeds in different environments.  

PubMed

Cottonseeds are rich in various essential amino acids. However, the inheritance of them at molecular level are still not defined across various genetic systems. In the present study, using a newly developed mapping model that can analyze the embryo and maternal main effects as well as QTL × environment interaction effects on quantitative quality trait loci (QTLs) in cottonseeds, a study on QTL located in the tetraploid embryo and tetraploid maternal plant genomes for essential amino acid contents in cottonseeds under different environments was carried out, using the immortal F2 (IF2) populations from a set of 188 recombinant inbred lines derived from an intraspecific hybrid cross of two upland cotton germplasms HS46 and MARKCBUCAG8US-1-88 as experimental materials. The results showed a total of 35 QTLs associated with these quality traits in cottonseeds. Nineteen QTLs were subsequently mapped on chromosome 5, 6 and 8 in sub-A genome and chromosome 15, 18, 22 and 23 in sub-D genome. Eighteen QTLs were also found having QTL × environment (QE) interaction effects. The genetic main effects from QTLs located on chromosomes in the embryo and maternal plant genomes and their QE effects in different environments were all important for these essential amino acids in cottonseeds. The results suggested that the influence of environmental factors on the expression of some QTLs located in different genetic systems should be considered when improving for these amino acids. This study can serve as the foundation for the improvement of these essential amino acids in cottonseeds. PMID:23555562

Liu, Haiying; Quampah, Alfred; Chen, Jinhong; Li, Jinrong; Huang, Zhuangrong; He, Qiuling; Zhu, Shuijin; Shi, Chunhai

2013-01-01

94

Molecular Mapping and Validation of a Major QTL Conferring Resistance to a Defoliating Isolate of Verticillium Wilt in Cotton (Gossypium hirsutum L.)  

PubMed Central

Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2?3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2?3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1–27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW. PMID:24781706

Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

2014-01-01

95

Mapping QTL Using Naturally Occurring Genetic Variance among Commercial Inbred Lines of Maize (Zea mays L.)  

Microsoft Academic Search

Abstract ,There are many commercial inbred lines available in crops. Large amount of genetic variation is preserved among,these lines. The genealogical history of the inbred lines is usually well documented. However, quantitative trait loci (QTL) responsible for the genetic variances among,the lines are largely unexplored due to lack of statistical methods. In this study, we show that the pedigree information

Yuan-Ming Zhang; Yongcai Mao; Chongqing Xie; Howie Smith; Lang Luo; Shizhong Xu

2005-01-01

96

Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding  

PubMed Central

Background Polyploidy can result in genetic bottlenecks, especially for species of monophyletic origin. Cultivated peanut is an allotetraploid harbouring limited genetic diversity, likely resulting from the combined effects of its single origin and domestication. Peanut wild relatives represent an important source of novel alleles that could be used to broaden the genetic basis of the cultigen. Using an advanced backcross population developed with a synthetic amphidiploid as donor of wild alleles, under two water regimes, we conducted a detailed QTL study for several traits involved in peanut productivity and adaptation as well as domestication. Results A total of 95 QTLs were mapped in the two water treatments. About half of the QTL positive effects were associated with alleles of the wild parent and several QTLs involved in yield components were specific to the water-limited treatment. QTLs detected for the same trait mapped to non-homeologous genomic regions, suggesting differential control in subgenomes as a consequence of polyploidization. The noteworthy clustering of QTLs for traits involved in seed and pod size and in plant and pod morphology suggests, as in many crops, that a small number of loci have contributed to peanut domestication. Conclusion In our study, we have identified QTLs that differentiated cultivated peanut from its wild relatives as well as wild alleles that contributed positive variation to several traits involved in peanut productivity and adaptation. These findings offer novel opportunities for peanut improvement using wild relatives. PMID:22340522

2012-01-01

97

QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits  

PubMed Central

Background Asparagus bean (Vigna. unguiculata. ssp sesquipedalis) is a subspecies and special vegetable type of cowpea (Vigna. unguiculata L. Walp.) important in Asia. Genetic basis of horticulturally important traits of asparagus bean is still poorly understood, hindering the utilization of targeted, DNA marker-assisted breeding in this crop. Here we report the identification of quantitative trait loci (QTLs) and epistatic interactions for four horticultural traits, namely, days to first flowering (FLD), nodes to first flower (NFF), leaf senescence (LS) and pod number per plant (PN) using a recombinant inbred line (RIL) population of asparagus bean. Results A similar genetic mode of one major QTL plus a few minor QTLs was found to dominate each of the four traits, with the number of QTLs for individual traits ranging from three to four. These QTLs were distributed on 7 of the 11 chromosomes. Major QTLs for FLD, NFF and LS were co-localized on LG 11, indicative of tight linkage. Genome wide epistasis analysis detected two and one interactive locus pairs that significantly affect FLD and LS, respectively, and the epistatic QTLs for FLD appeared to work in different ways. Synteny based comparison of QTL locations revealed conservation of chromosome regions controlling these traits in related legume crops. Conclusion Major, minor, and epistatic QTLs were found to contribute to the inheritance of the FLD, NFF, LS, and PN. Positions of many of these QTLs are conserved among closely related legume species, indicating common mechanisms they share. To our best knowledge, this is the first QTL mapping report using an asparagus bean × asparagus bean intervarietal population and provides marker-trait associations for marker-assisted approaches to selection. PMID:23375055

2013-01-01

98

Fine mapping of type 2 diabetes susceptibility loci.  

PubMed

Genome-wide association studies of type 2 diabetes have been extremely successful in discovering loci that contribute genetic effects to susceptibility to the disease. However, at the vast majority of these loci, the variants and transcripts through which these effects on type 2 diabetes are mediated are unknown, limiting progress in defining the pathophysiological basis of the disease. In this review, we will describe available approaches for assaying genetic variation across loci and discuss statistical methods to determine the most likely causal variants in the region. We will consider the utility of trans-ethnic meta-analysis for fine mapping by leveraging the differences in the structure of linkage disequilibrium between diverse populations. Finally, we will discuss progress in fine-mapping type 2 diabetes susceptibility loci to date and consider the prospects for future efforts to localise causal variants for the disease. PMID:25239271

Morris, Andrew P

2014-11-01

99

Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354.  

PubMed

Meloidogyne incognita (Kofoid and White) Chitwood (Mi) is the most economically damaging species of the root-knot nematode to soybean and other crops in the southern USA. PI 96354 was identified to carry a high level of resistance to galling and Mi egg production. Two Quantitative Trait Locus (QTLs) were found to condition the resistance in PI 96354 including a major QTL and a minor QTL on chromosome 10 and chromosome 18, respectively. To fine map the major QTL on chromosome 10, F5:6 recombinant inbred lines from the cross between PI 96354 and susceptible genotype Bossier were genotyped with Simple Sequence Repeats (SSR) markers to identify recombinational events. Analysis of lines carrying key recombination events placed the Mi-resistant allele on chromosome 10 to a 235-kb region of the 'Williams 82' genome sequence with 30 annotated genes. Candidate gene analysis identified four genes with cell wall modification function that have several mutations in promoter, exon, 5', and 3'UTR regions. qPCR analysis showed significant difference in expression levels of these four genes in Bossier compared to PI 96354 in the presence of Mi. Thirty Mi-resistant soybean lines were found to have same SNPs in these 4 candidate genes as PI 96354 while 12 Mi-susceptible lines possess the 'Bossier' genotype. The mutant SNPs were used to develop KASP assays to detect the resistant allele on chromosome 10. The four candidate genes identified in this study can be used in further studies to investigate the role of cell wall modification genes in conferring Mi resistance in PI 96354. PMID:23568221

Pham, Anh-Tung; McNally, Kaitlin; Abdel-Haleem, Hussein; Roger Boerma, H; Li, Zenglu

2013-07-01

100

Fine mapping of the major Soybean dwarf virus resistance gene Rsdv1 of the soybean cultivar 'Wilis'  

PubMed Central

Soybean dwarf virus (SbDV), a Luteoviridae family member, causes dwarfing, yellowing and sterility of soybean (Glycine max), leading to one of the most serious problems in soybean production in northern Japan. Previous studies revealed that the Indonesian soybean cultivar ‘Wilis’ is resistant to SbDV and that the resistance can be introduced into Japanese cultivars. A major QTL for SbDV resistance has been reported between SSR markers Sat_217 and Satt211 on chromosome 5. In this study, we named this QTL Rsdv1 (resistance to SbDV) and developed near-isogenic lines incorporating Rsdv1 (Rsdv1-NILs) using Sat_217 and Satt211 markers. The Rsdv1-NILs were resistant to SbDV in greenhouse inoculation and field tests, indicating that Rsdv1 alone is sufficient for the resistance phenotype. We fine-mapped Rsdv1 within the 44-kb region between Sat_11 and Sct_13. None of the six genes predicted in this region was closely related to known virus resistance genes in plants. Thus, Rsdv1 may confer resistance by a previously unknown mechanism. We suggest that Rsdv1 may be a useful source for the Japanese soybean breeding program to introduce SbDV resistance. PMID:24399914

Yamashita, Yoko; Takeuchi, Toru; Ohnishi, Shizen; Sasaki, Jun; Tazawa, Akiko

2013-01-01

101

Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.).  

PubMed

Identification of genes for quantitative traits is difficult using any single approach due to complex inheritance of the traits and limited resolving power of the individual techniques. Here a combination of genetic mapping and bulked transcriptome profiling was used to narrow down the number of differentially expressed salt-responsive genes in rice in order to identify functional polymorphism of genes underlying the quantitative trait loci (QTL). A population of recombinant inbred lines (RILs) derived from cross between salt-tolerant variety CSR 27 and salt-sensitive variety MI 48 was used to map QTL for salt ion concentrations in different tissues and salt stress susceptibility index (SSI) for spikelet fertility, grain weight, and grain yield. Eight significant QTL intervals were mapped on chromosomes 1, 8, and 12 for the salt ion concentrations and a QTL controlling SSI for spikelet fertility was co-located in one of these intervals on chromosome 8. However, there were total 2,681 genes in these QTL intervals, making it difficult to pinpoint the genes responsible for the functional differences for the traits. Similarly, transcriptome profiling of the seedlings of tolerant and sensitive parents grown under control and salt-stress conditions showed 798 and 2,407 differentially expressed gene probes, respectively. By analyzing pools of RNA extracted from ten each of extremely tolerant and extremely sensitive RILs to normalize the background noise, the number of differentially expressed genes under salt stress was drastically reduced to 30 only. Two of these genes, an integral transmembrane protein DUF6 and a cation chloride cotransporter, were not only co-located in the QTL intervals but also showed the expected distortion of allele frequencies in the extreme tolerant and sensitive RILs, and therefore are suitable for future validation studies and development of functional markers for salt tolerance in rice to facilitate marker-assisted breeding. PMID:20602115

Pandit, Awadhesh; Rai, Vandna; Bal, Subhashis; Sinha, Shikha; Kumar, Vinod; Chauhan, Mahesh; Gautam, Raj K; Singh, Rakesh; Sharma, Prakash C; Singh, Ashok K; Gaikwad, Kishor; Sharma, Tilak R; Mohapatra, Trilochan; Singh, Nagendra K

2010-08-01

102

Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield  

Microsoft Academic Search

Oil content in rapeseed (Brassica napus L.) is generally regarded as a character with high heritability that is negatively correlated with protein content and influenced by plant developmental and yield related traits. To evaluate possible genetic interrelationships between these traits and oil content, QTL for oil content were mapped using data on oil content and on oil content conditioned on

Jianyi Zhao; Heiko C. Becker; Dongqing Zhang; Yaofeng Zhang; Wolfgang Ecke

2006-01-01

103

Plasticity of primary and secondary growth dynamics in Eucalyptus hybrids: a quantitative genetics and QTL mapping perspective  

PubMed Central

Background The genetic basis of growth traits has been widely studied in forest trees. Quantitative trait locus (QTL) studies have highlighted the presence of both stable and unstable genomic regions accounting for biomass production with respect to tree age and genetic background, but results remain scarce regarding the interplay between QTLs and the environment. In this study, our main objective was to dissect the genetic architecture of the growth trajectory with emphasis on genotype x environment interaction by measuring primary and secondary growth covering intervals connected with environmental variations. Results Three different trials with the same family of Eucalyptus urophylla x E. grandis hybrids (with different genotypes) were planted in the Republic of Congo, corresponding to two QTL mapping experiments and one clonal test. Height and radial growths were monitored at regular intervals from the seedling stage to five years old. The correlation between growth increments and an aridity index revealed that growth before two years old (r?=?0.5; 0.69) was more responsive to changes in water availability than late growth (r?=?0.39; 0.42) for both height and circumference. We found a regular increase in heritability with time for cumulative growth for both height [0.06 - 0.33] and circumference [0.06 - 0.38]. Heritabilities for incremental growth were more heterogeneous over time even if ranges of variation were similar (height [0-0.31]; circumference [0.19 to 0.48]). Within the trials, QTL analysis revealed collocations between primary and secondary growth QTLs as well as between early growth increments and final growth QTLs. Between trials, few common QTLs were detected highlighting a strong environmental effect on the genetic architecture of growth, validated by significant QTL x E interactions. Conclusion These results suggest that early growth responses to water availability determine the genetic architecture of total growth at the mature stage and highlight the importance of considering growth as a composite trait (such as yields for annual plants) for a better understanding of its genetic bases. PMID:23978279

2013-01-01

104

Fine mapping of complex trait genes combining pedigree and linkage disequilibrium information: a Bayesian unified framework.  

PubMed Central

We present a Bayesian method that combines linkage and linkage disequilibrium (LDL) information for quantitative trait locus (QTL) mapping. This method uses jointly all marker information (haplotypes) and all available pedigree information; i.e., it is not restricted to any specific experimental design and it is not required that phases are known. Infinitesimal genetic effects or environmental noise ("fixed") effects can equally be fitted. A diallelic QTL is assumed and both additive and dominant effects can be estimated. We have implemented a combined Gibbs/Metropolis-Hastings sampling to obtain the marginal posterior distributions of the parameters of interest. We have also implemented a Bayesian variant of usual disequilibrium measures like D' and r(2) between QTL and markers. We illustrate the method with simulated data in "simple" (two-generation full-sib families) and "complex" (four-generation) pedigrees. We compared the estimates with and without using linkage disequilibrium information. In general, using LDL resulted in estimates of QTL position that were much better than linkage-only estimates when there was complete disequilibrium between the mutant QTL allele and the marker. This advantage, however, decreased when the association was only partial. In all cases, additive and dominant effects were estimated accurately either with or without disequilibrium information. PMID:12702692

Perez-Enciso, Miguel

2003-01-01

105

A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach.  

PubMed

Quantitative trait loci (QTL) influencing the weight of abdominal fat (AF) and of breast muscle (BM) were detected on chicken chromosome 5 (GGA5) using two successive F(2) crosses between two divergently selected 'Fat' and 'Lean' INRA broiler lines. Based on these results, the aim of the present study was to identify the number, location and effects of these putative QTL by performing multitrait and multi-QTL analyses of the whole available data set. Data concerned 1186 F(2) offspring produced by 10 F(1) sires and 85 F(1) dams. AF and BM traits were measured on F(2) animals at slaughter, at 8 (first cross) or 9 (second cross) weeks of age. The F(0), F(1) and F(2) birds were genotyped for 11 microsatellite markers evenly spaced along GGA5. Before QTL detection, phenotypes were adjusted for the fixed effects of sex, F(2) design, hatching group within the design, and for body weight as a covariable. Univariate analyses confirmed the QTL segregation for AF and BM on GGA5 in male offspring, but not in female offspring. Analyses of male offspring data using multitrait and linked-QTL models led us to conclude the presence of two QTL on the distal part of GGA5, each controlling one trait. Linked QTL models were applied after correction of phenotypic values for the effects of these distal QTL. Several QTL for AF and BM were then discovered in the central region of GGA5, splitting one large QTL region for AF into several distinct QTL. Neither the 'Fat' nor the 'Lean' line appeared to be fixed for any QTL genotype. These results have important implications for prospective fine mapping studies and for the identification of underlying genes and causal mutations. PMID:19243366

Le Mignon, G; Pitel, F; Gilbert, H; Le Bihan-Duval, E; Vignoles, F; Demeure, O; Lagarrigue, S; Simon, J; Cogburn, L A; Aggrey, S E; Douaire, M; Le Roy, P

2009-04-01

106

Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis).  

PubMed

As natural selection must act on underlying genetic variation, discovering the number and location of loci under the influence of selection is imperative towards understanding adaptive divergence in evolving populations. Studies employing genome scans have hypothesized that the action of divergent selection should reduce gene flow at the genomic locations implicated in adaptation and speciation among natural populations, yet once 'outlier' patterns of variation have been identified the function and role of such loci needs to be confirmed. We integrated adaptive QTL mapping and genomic scans among diverging sympatric pairs of the lake whitefish (Coregonus clupeaformis) species complex in order to test the hypothesis that differentiation between dwarf and normal ecotypes at growth-associated QTL was maintained by directional selection. We found evidence of significantly high levels of molecular divergence among eight growth QTL where two of the strongest candidate loci under the influence of directional selection exhibited parallel reductions of gene flow over multiple populations. PMID:15660930

Rogers, S M; Bernatchez, L

2005-02-01

107

Comparative map and trait viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments.  

PubMed

In the past few decades, a wealth of genomic data has been produced in a wide variety of species using a diverse array of functional and molecular marker approaches. In order to unlock the full potential of the information contained in these independent experiments, researchers need efficient and intuitive means to identify common genomic regions and genes involved in the expression of target phenotypic traits across diverse conditions. To address this need, we have developed a Comparative Map and Trait Viewer (CMTV) tool that can be used to construct dynamic aggregations of a variety of types of genomic datasets. By algorithmically determining correspondences between sets of objects on multiple genomic maps, the CMTV can display syntenic regions across taxa, combine maps from separate experiments into a consensus map, or project data from different maps into a common coordinate framework using dynamic coordinate translations between source and target maps. We present a case study that illustrates the utility of the tool for managing large and varied datasets by integrating data collected by CIMMYT in maize drought tolerance research with data from public sources. This example will focus on one of the visualization features for Quantitative Trait Locus (QTL) data, using likelihood ratio (LR) files produced by generic QTL analysis software and displaying the data in a unique visual manner across different combinations of traits, environments and crosses. Once a genomic region of interest has been identified, the CMTV can search and display additional QTLs meeting a particular threshold for that region, or other functional data such as sets of differentially expressed genes located in the region; it thus provides an easily used means for organizing and manipulating data sets that have been dynamically integrated under the focus of the researcher's specific hypothesis. PMID:15604756

Sawkins, M C; Farmer, A D; Hoisington, D; Sullivan, J; Tolopko, A; Jiang, Z; Ribaut, J-M

2004-10-01

108

A Molecular Genetic Linkage Map of Eucommia ulmoides and Quantitative Trait Loci (QTL) Analysis for Growth Traits  

PubMed Central

Eucommia ulmoides is an economically important tree species for both herbal medicine and organic chemical industry. Effort to breed varieties with improved yield and quality is limited by the lack of knowledge on the genetic basis of the traits. A genetic linkage map of E. ulmoides was constructed from a full-sib family using sequence-related amplified polymorphism, amplified fragment length polymorphism, inter-simple sequence repeat and simple sequence repeat markers. In total, 706 markers were mapped in 25 linkage groups covering 2133 cM. The genetic linkage map covered approximately 89% of the estimated E. ulmoides genome with an average of 3.1 cM between adjacent markers. The present genetic linkage map was used to identify quantitative trait loci (QTL) affecting growth-related traits. Eighteen QTLs were found to explain 12.4%–33.3% of the phenotypic variance. This genetic linkage map provides a tool for marker-assisted selection and for studies of genome in E. ulmoides. PMID:24477264

Li, Yu; Wang, Dawei; Li, Zhouqi; Wei, Junkun; Jin, Cangfu; Liu, Minhao

2014-01-01

109

Genetic Map Construction and Quantitative Trait Locus (QTL) Detection of Growth-Related Traits in Litopenaeus vannamei for Selective Breeding Applications  

PubMed Central

Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection (MAS) in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei, based on amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs) which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW), total length (TL) and partial carapace length (PCL), two QTLs for body length (BL), one QTL for first abdominal segment depth (FASD), third abdominal segment depth (TASD) and first abdominal segment width (FASW), which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L. vannamei and Penaeusjaponicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L. vannamei. PMID:24086466

Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao

2013-01-01

110

Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.)  

PubMed Central

Background Yellow mustard (Sinapis alba L.) is an important condiment crop for the spice trade in the world. It has lagged behind oilseed Brassica species in molecular marker development and application. Intron length polymorphism (ILP) markers are highly polymorphic, co-dominant and cost-effective. The cross-species applicability of ILP markers from Brassica species and Arabidopsis makes them possible to be used for genetic linkage mapping and further QTL analysis of agronomic traits in yellow mustard. Results A total of 250 ILP and 14 SSR markers were mapped on 12 linkage groups and designated as Sal01-12 in yellow mustard. The constructed map covered a total genetic length of 890.4 cM with an average marker interval of 3.3 cM. The QTL for erucic content co-localized with the fatty acid elongase 1 (FAE1) gene on Sal03. The self-(in)compatibility gene was assigned to Sal08. The 4-hydroxybenzyl, 3-indolylmethyl and 4-hydroxy-3-indolylmethyl glucosinolate contents were each controlled by one major QTL, all of which were located on Sal02. Two QTLs, accounting for the respective 20.4% and 19.2% of the total variation of 2-hydroxy-3-butenyl glucosinolate content, were identified and mapped to Sal02 and Sal11. Comparative synteny analysis revealed that yellow mustard was phylogenetically related to Arabidopsis thaliana and had undergone extensive chromosomal rearrangements during speciation. Conclusion The linkage map based on ILP and SSR markers was constructed and used for QTL analysis of seed quality traits in yellow mustard. The markers tightly linked with the genes for different glucosinolate components will be used for marker-assisted selection and map-based cloning. The ILP markers and linkage map provide useful molecular tools for yellow mustard breeding. PMID:24066707

2013-01-01

111

Detection of QTL controlling metabolism, meat quality, and liver quality traits of the overfed interspecific hybrid mule duck.  

PubMed

The mule duck, an interspecific hybrid obtained by crossing common duck (Anas platyrhynchos) females with Muscovy (Cairina moschata) drakes, is widely used for fatty liver production. The purpose of the present study was to detect and map single and pleiotropic QTL that segregate in the common duck species, and influence the expression of traits in their overfed mule duck offspring. To this end, we generated a common duck backcross (BC) population by crossing Kaiya and heavy Pekin experimental lines, which differ notably in regard to the BW and overfeeding ability of their mule progeny. The BC females were mated to Muscovy drakes and, on average, 4 male mule ducks hatched per BC female (1600 in total) and were measured for growth, metabolism during growth and the overfeeding period, overfeeding ability, and the quality of their breast meat and fatty liver. The phenotypic value of BC females was estimated for each trait by assigning to each female the mean value of the phenotypes of her offspring. Estimations allowed for variance, which depended on the number of male offspring per BC and the heritability of the trait considered. The genetic map used for QTL detection consisted of 91 microsatellite markers aggregated into 16 linkage groups (LG) covering a total of 778 cM. Twenty-two QTL were found to be significant at the 1% chromosome-wide threshold level using the single-trait detection option of the QTLMap software. Most of the QTL detected were related to the quality of breast meat and fatty liver: QTL for meat pH 20 min post mortem were mapped to LG4 (at the 1% genome-wide significance level), and QTL for meat lipid content and cooking losses were mapped to LG2a. The QTL related to fatty liver weight and liver protein and lipid content were for the most part detected on LG2c and LG9. Multitrait analysis highlighted the pleiotropic effects of QTL in these chromosome regions. Apart from the strong QTL for plasma triglyceride content at the end of the overfeeding period mapped to chromosome Z using single-trait analysis, all metabolic trait QTL were detected with the multitrait approach: the QTL mapped to LG14 and LG21 affected the plasma cholesterol and triglyceride contents, whereas the QTL mapped to LG2a seemed to impact glycemia and the basal plasma corticosterone content. A greater density genetic map will be needed to further fine map the QTL. PMID:23148259

Kileh-Wais, M; Elsen, J M; Vignal, A; Feves, K; Vignoles, F; Fernandez, X; Manse, H; Davail, S; André, J M; Bastianelli, D; Bonnal, L; Filangi, O; Baéza, E; Guéméné, D; Genêt, C; Bernadet, M D; Dubos, F; Marie-Etancelin, C

2013-02-01

112

Construction of Chromosome Segment Substitution Lines in Peanut (Arachis hypogaea L.) Using a Wild Synthetic and QTL Mapping for Plant Morphology  

PubMed Central

Chromosome segment substitution lines (CSSLs) are powerful QTL mapping populations that have been used to elucidate the molecular basis of interesting traits of wild species. Cultivated peanut is an allotetraploid with limited genetic diversity. Capturing the genetic diversity from peanut wild relatives is an important objective in many peanut breeding programs. In this study, we used a marker-assisted backcrossing strategy to produce a population of 122 CSSLs from the cross between the wild synthetic allotetraploid (A. ipaënsis×A. duranensis)4x and the cultivated Fleur11 variety. The 122 CSSLs offered a broad coverage of the peanut genome, with target wild chromosome segments averaging 39.2 cM in length. As a demonstration of the utility of these lines, four traits were evaluated in a subset of 80 CSSLs. A total of 28 lines showed significant differences from Fleur11. The line×trait significant associations were assigned to 42 QTLs: 14 for plant growth habit, 15 for height of the main stem, 12 for plant spread and one for flower color. Among the 42 QTLs, 37 were assigned to genomic regions and three QTL positions were considered putative. One important finding arising from this QTL analysis is that peanut growth habit is a complex trait that is governed by several QTLs with different effects. The CSSL population developed in this study has proved efficient for deciphering the molecular basis of trait variations and will be useful to the peanut scientific community for future QTL mapping studies. PMID:23185268

Fonceka, Daniel; Tossim, Hodo-Abalo; Rivallan, Ronan; Vignes, Helene; Lacut, Elodie; de Bellis, Fabien; Faye, Issa; Ndoye, Ousmane; Leal-Bertioli, Soraya C. M.; Valls, Jose F. M.; Bertioli, David J.; Glaszmann, Jean-Christophe; Courtois, Brigitte; Rami, Jean-Francois

2012-01-01

113

Linkage Relationships Among Multiple QTL for Horticultural Traits and Late Blight (P. infestans) Resistance on Chromosome 5 Introgressed from Wild Tomato Solanum habrochaites  

PubMed Central

When the allele of a wild species at a quantitative trait locus (QTL) conferring a desirable trait is introduced into cultivated species, undesirable effects on other traits may occur. These negative phenotypic effects may result from the presence of wild alleles at other closely linked loci that are transferred along with the desired QTL allele (i.e., linkage drag) and/or from pleiotropic effects of the desired allele. Previously, a QTL for resistance to Phytophthora infestans on chromosome 5 of Solanum habrochaites was mapped and introgressed into cultivated tomato (S. lycopersicum). Near-isogenic lines (NILs) were generated and used for fine-mapping of this resistance QTL, which revealed coincident or linked QTL with undesirable effects on yield, maturity, fruit size, and plant architecture traits. Subsequent higher-resolution mapping with chromosome 5 sub-NILs revealed the presence of multiple P. infestans resistance QTL within this 12.3 cM region. In our present study, these sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over the course of two years. Each previously detected single horticultural trait QTL fractionated into two or more QTL. A total of 41 QTL were detected across all traits, with ?30% exhibiting significant QTL × environment interactions. Colocation of QTL for multiple traits suggests either pleiotropy or tightly linked genes control these traits. The complex genetic architecture of horticultural and P. infestans resistance trait QTL within this S. habrochaites region of chromosome 5 presents challenges and opportunities for breeding efforts in cultivated tomato. PMID:24122052

Haggard, J. Erron; Johnson, Emily B.; St. Clair, Dina A.

2013-01-01

114

Genetic architecture of sexual selection: QTL mapping of male song and female receiver traits in an acoustic moth.  

PubMed

Models of indirect (genetic) benefits sexual selection predict linkage disequilibria between genes that influence male traits and female preferences, owing to non-random mate choice or physical linkage. Such linkage disequilibria can accelerate the evolution of traits and preferences to exaggerated levels. Both theory and recent empirical findings on species recognition suggest that such linkage disequilibria may result from physical linkage or pleiotropy, but very little work has addressed this possibility within the context of sexual selection. We studied the genetic architecture of sexually selected traits by analyzing signals and preferences in an acoustic moth, Achroia grisella, in which males attract females with a train of ultrasound pulses and females prefer loud songs and a fast pulse rhythm. Both male signal characters and female preferences are repeatable and heritable traits. Moreover, female choice is based largely on male song, while males do not appear to provide direct benefits at mating. Thus, some genetic correlation between song and preference traits is expected. We employed a standard crossing design between inbred lines and used AFLP markers to build a linkage map for this species and locate quantitative trait loci (QTL) that influence male song and female preference. Our analyses mostly revealed QTLs of moderate strength that influence various male signal and female receiver traits, but one QTL was found that exerts a major influence on the pulse-pair rate of male song, a critical trait in female attraction. However, we found no evidence of specific co-localization of QTLs influencing male signal and female receiver traits on the same linkage groups. This finding suggests that the sexual selection process would proceed at a modest rate in A. grisella and that evolution toward exaggerated character states may be tempered. We suggest that this equilibrium state may be more the norm than the exception among animal species. PMID:22957082

Limousin, Denis; Streiff, Réjane; Courtois, Brigitte; Dupuy, Virginie; Alem, Sylvain; Greenfield, Michael D

2012-01-01

115

ORIGINAL PAPER Fine mapping QMi-C11 a major QTL controlling root-knot  

E-print Network

The identification and utilization of a high- level of host plant resistance is the most effective and economical, where it is found in all areas where cotton is grown. Infected plants produce extensive abnormal growth, which forms galls or knots throughout the root system at the nematode feeding site. In the US alone, RKN

Chee, Peng W.

116

Fine Quantitative Trait Loci Mapping of Carbon and Nitrogen Metabolism Enzyme Activities and Seedling Biomass in the Maize IBM Mapping Population1[W][OA  

PubMed Central

Understanding the genetic basis of nitrogen and carbon metabolism will accelerate the development of plant varieties with high yield and improved nitrogen use efficiency. A robotized platform was used to measure the activities of 10 enzymes from carbon and nitrogen metabolism in the maize (Zea mays) intermated B73 × Mo17 mapping population, which provides almost a 4-fold increase in genetic map distance compared with conventional mapping populations. Seedling/juvenile biomass was included to identify its genetic factors and relationships with enzyme activities. All 10 enzymes showed heritable variation in activity. There were strong positive correlations between activities of different enzymes, indicating that they are coregulated. Negative correlations were detected between biomass and the activity of six enzymes. In total, 73 significant quantitative trait loci (QTL) were found that influence the activity of these 10 enzymes and eight QTL that influence biomass. While some QTL were shared by different enzymes or biomass, we critically evaluated the probability that this may be fortuitous. All enzyme activity QTL were in trans to the known genomic locations of structural genes, except for single cis-QTL for nitrate reductase, Glu dehydrogenase, and shikimate dehydrogenase; the low frequency and low additive magnitude compared with trans-QTL indicate that cis-regulation is relatively unimportant versus trans-regulation. Two-gene epistatic interactions were identified for eight enzymes and for biomass, with three epistatic QTL being shared by two other traits; however, epistasis explained on average only 2.8% of the genetic variance. Overall, this study identifies more QTL at a higher resolution than previous studies of genetic variation in metabolism. PMID:20971858

Zhang, Nengyi; Gibon, Yves; Gur, Amit; Chen, Charles; Lepak, Nicholas; Hohne, Melanie; Zhang, Zhiwu; Kroon, Dallas; Tschoep, Hendrik; Stitt, Mark; Buckler, Edward

2010-01-01

117

Large-Scale East-Asian eQTL Mapping Reveals Novel Candidate Genes for LD Mapping and the Genomic Landscape of Transcriptional Effects of Sequence Variants  

PubMed Central

Profiles of sequence variants that influence gene transcription are very important for understanding mechanisms that affect phenotypic variation and disease susceptibility. Using genotypes at 1.4 million SNPs and a comprehensive transcriptional profile of 15,454 coding genes and 6,113 lincRNA genes obtained from peripheral blood cells of 298 Japanese individuals, we mapped expression quantitative trait loci (eQTLs). We identified 3,804 cis-eQTLs (within 500 kb from target genes) and 165 trans-eQTLs (>500 kb away or on different chromosomes). Cis-eQTLs were often located in transcribed or adjacent regions of genes; among these regions, 5? untranslated regions and 5? flanking regions had the largest effects. Epigenetic evidence for regulatory potential accumulated in public databases explained the magnitude of the effects of our eQTLs. Cis-eQTLs were often located near the respective target genes, if not within genes. Large effect sizes were observed with eQTLs near target genes, and effect sizes were obviously attenuated as the eQTL distance from the gene increased. Using a very stringent significance threshold, we identified 165 large-effect trans-eQTLs. We used our eQTL map to assess 8,069 disease-associated SNPs identified in 1,436 genome-wide association studies (GWAS). We identified genes that might be truly causative, but GWAS might have failed to identify for 148 out of the GWAS-identified SNPs; for example, TUFM (P?=?3.3E-48) was identified for inflammatory bowel disease (early onset); ZFP90 (P?=?4.4E-34) for ulcerative colitis; and IDUA (P?=?2.2E-11) for Parkinson's disease. We identified four genes (P<2.0E-14) that might be related to three diseases and two hematological traits; each expression is regulated by trans-eQTLs on a different chromosome than the gene. PMID:24956270

Narahara, Maiko; Higasa, Koichiro; Nakamura, Seiji; Tabara, Yasuharu; Kawaguchi, Takahisa; Ishii, Miho; Matsubara, Kenichi; Matsuda, Fumihiko; Yamada, Ryo

2014-01-01

118

QTL mapping of leukocyte telomere length in American Indians: The Strong Heart Family Study  

PubMed Central

Telomeres play a central role in cellular senescence and are associated with a variety of age-related disorders such as dementia, Alzheimer's disease and atherosclerosis. Telomere length varies greatly among individuals of the same age, and is heritable. Here we performed a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing leukocyte telomere length (LTL) measured by quantitative PCR in 3,665 American Indians (aged 14 – 93 years) from 94 large, multi-generational families. All participants were recruited by the Strong Heart Family Study (SHFS), a prospective study to identify genetic factors for cardiovascular disease and its risk factors in American Indians residing in Oklahoma, Arizona and Dakota. LTL heritability was estimated to be between 51% and 62%, suggesting a strong genetic predisposition to interindividual variation of LTL in this population. Significant QTLs were localized to chromosome 13 (Logarithm of odds score (LOD) = 3.9) at 13q12.11, to 18q22.2 (LOD = 3.2) and to 3p14.1 (LOD = 3.0) for Oklahoma. This is the first study to identify susceptibility loci influencing leukocyte telomere variation in American Indians, a minority group suffering from a disproportionately high rate of type 2 diabetes and other age-related disorders. PMID:24036517

Lin, Jue; Matsuguchi, Tet; Blackburn, Elizabeth; Best, Lyle G.; Lee, Elisa T.; MacCluer, Jean W.; Cole, Shelley A.; Zhao, Jinying

2013-01-01

119

QTL mapping of the production of wine aroma compounds by yeast  

PubMed Central

Background Wine aroma results from the combination of numerous volatile compounds, some produced by yeast and others produced in the grapes and further metabolized by yeast. However, little is known about the consequences of the genetic variation of yeast on the production of these volatile metabolites, or on the metabolic pathways involved in the metabolism of grape compounds. As a tool to decipher how wine aroma develops, we analyzed, under two experimental conditions, the production of 44 compounds by a population of 30 segregants from a cross between a laboratory strain and an industrial strain genotyped at high density. Results We detected eight genomic regions explaining the diversity concerning 15 compounds, some produced de novo by yeast, such as nerolidol, ethyl esters and phenyl ethanol, and others derived from grape compounds such as citronellol, and cis-rose oxide. In three of these eight regions, we identified genes involved in the phenotype. Hemizygote comparison allowed the attribution of differences in the production of nerolidol and 2-phenyl ethanol to the PDR8 and ABZ1 genes, respectively. Deletion of a PLB2 gene confirmed its involvement in the production of ethyl esters. A comparison of allelic variants of PDR8 and ABZ1 in a set of available sequences revealed that both genes present a higher than expected number of non-synonymous mutations indicating possible balancing selection. Conclusions This study illustrates the value of QTL analysis for the analysis of metabolic traits, and in particular the production of wine aromas. It also identifies the particular role of the PDR8 gene in the production of farnesyldiphosphate derivatives, of ABZ1 in the production of numerous compounds and of PLB2 in ethyl ester synthesis. This work also provides a basis for elucidating the metabolism of various grape compounds, such as citronellol and cis-rose oxide. PMID:23110365

2012-01-01

120

Detection of novel SNPs and mapping of the fatness QTL on pig chromosome 7q1.1-1.4 region.  

PubMed

Many QTLs for fatness traits have been mapped on pig chromosome 7q1.1-1.4 in various pig resource populations. Eight novel markers, including seven SNPs and one insertion or deletion within BTNL1, COL21A1, PPARD, GLP1R, MDFI, GNMT, ABCC10, and PLA2G7 genes, as well as two previously reported SNPs in SLC39A7 and HMGA1 genes, were genotyped in Large White and Meishan pig breeds. Except for two SNPs in HMGA1 and ABCC10 genes, allele frequencies of the other eight markers are highly significant different between Chinese indigenous Meishan breeds and Large White pig breeds. Eight polymorphic sites were then used for linkage and QTL mapping to refine the fatness QTL in a Large White × Meishan F(2) resource population. Five chromosome-wise significant QTLs were detected, of which the QTLs for leaf fat weight, backfat thickness at 6-7th rib and rump, and mean backfat thickness were narrowed to the interval between PPARD and GLP1R genes and the QTL for backfat thickness at thorax-waist between GNMT and PLA2G7 genes on SSC7p1.1-q1.4. PMID:22194164

Huang, W H; Ma, Z X; Xu, Z Y; Xiong, Y Z; Zuo, B

2011-01-01

121

Genetic linkage map construction and QTL identification of juvenile growth traits in Torreya grandis.  

PubMed

Torreya grandis Fort. ex Lindl, a conifer species widely distributed in Southeastern China, is of high economic value by producing edible, nutrient seeds. However, knowledge about the genome structure and organization of this species is poorly understood, thereby limiting the effective use of its gene resources. Here, we report on a first genetic linkage map for Torreya grandis using 96 progeny randomly chosen from a half-sib family of a commercially cultivated variety of this species, Torreya grandis Fort. ex Lindl cv. Merrillii. The map contains 262 molecular markers, i.e., 75 random amplified polymorphic DNAs (RAPD), 119 inter-simple sequence repeats (ISSR) and 62 amplified fragments length polymorphisms (AFLP), and spans a total of 7,139.9 cM, separated by 10 linkage groups. The linkage map was used to map quantitative trait loci (QTLs) associated with juvenile growth traits by functional mapping. We identified four basal diameter-related QTLs on linkage groups 1, 5 and 9; four height-related QTLs on linkage groups 1, 2, 5 and 8. It was observed that the genetic effects of QTLs on growth traits vary with age, suggesting the dynamic behavior of growth QTLs. Part of the QTLs was found to display a pleiotropic effect on basal diameter growth and height growth. PMID:25079139

Zeng, Yanru; Ye, Shengyue; Yu, Weiwu; Wu, Song; Hou, Wei; Wu, Rongling; Dai, Wensheng; Chang, Jun

2014-01-01

122

Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize - Setosphaeria turcica pathosystem  

PubMed Central

Background Studies on host-pathogen interactions in a range of pathosystems have revealed an array of mechanisms by which plants reduce the efficiency of pathogenesis. While R-gene mediated resistance confers highly effective defense responses against pathogen invasion, quantitative resistance is associated with intermediate levels of resistance that reduces disease progress. To test the hypothesis that specific loci affect distinct stages of fungal pathogenesis, a set of maize introgression lines was used for mapping and characterization of quantitative trait loci (QTL) conditioning resistance to Setosphaeria turcica, the causal agent of northern leaf blight (NLB). To better understand the nature of quantitative resistance, the identified QTL were further tested for three secondary hypotheses: (1) that disease QTL differ by host developmental stage; (2) that their performance changes across environments; and (3) that they condition broad-spectrum resistance. Results Among a set of 82 introgression lines, seven lines were confirmed as more resistant or susceptible than B73. Two NLB QTL were validated in BC4F2 segregating populations and advanced introgression lines. These loci, designated qNLB1.02 and qNLB1.06, were investigated in detail by comparing the introgression lines with B73 for a series of macroscopic and microscopic disease components targeting different stages of NLB development. Repeated greenhouse and field trials revealed that qNLB1.06Tx303 (the Tx303 allele at bin 1.06) reduces the efficiency of fungal penetration, while qNLB1.02B73 (the B73 allele at bin 1.02) enhances the accumulation of callose and phenolics surrounding infection sites, reduces hyphal growth into the vascular bundle and impairs the subsequent necrotrophic colonization in the leaves. The QTL were equally effective in both juvenile and adult plants; qNLB1.06Tx303 showed greater effectiveness in the field than in the greenhouse. In addition to NLB resistance, qNLB1.02B73 was associated with resistance to Stewart's wilt and common rust, while qNLB1.06Tx303 conferred resistance to Stewart's wilt. The non-specific resistance may be attributed to pleiotropy or linkage. Conclusions Our research has led to successful identification of two reliably-expressed QTL that can potentially be utilized to protect maize from S. turcica in different environments. This approach to identifying and dissecting quantitative resistance in plants will facilitate the application of quantitative resistance in crop protection. PMID:20529319

2010-01-01

123

A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila  

PubMed Central

Background Production of carp dominates world aquaculture. More than 1.1 million tonnes of rohu carp, Labeo rohita (Hamilton), were produced in 2010. Aeromonas hydrophila is a bacterial pathogen causing aeromoniasis in rohu, and is a major problem for carp production worldwide. There is a need to better understand the genetic mechanisms affecting resistance to this disease, and to develop tools that can be used with selective breeding to improve resistance. Here we use a 6 K SNP array to genotype 21 full-sibling families of L. rohita that were experimentally challenged intra-peritoneally with a virulent strain of A. hydrophila to scan the genome for quantitative trait loci associated with disease resistance. Results In all, 3193 SNPs were found to be informative and were used to create a linkage map and to scan for QTL affecting resistance to A. hydrophila. The linkage map consisted of 25 linkage groups, corresponding to the number of haploid chromosomes in L. rohita. Male and female linkage maps were similar in terms of order, coverage (1384 and 1393 cM, respectively) and average interval distances (1.32 and 1.35 cM, respectively). Forty-one percent of the SNPs were annotated with gene identity using BLAST (cut off E-score of 0.001). Twenty-one SNPs mapping to ten linkage groups showed significant associations with the traits hours of survival and dead or alive (P <0.05 after Bonferroni correction). Of the SNPs showing significant or suggestive associations with the traits, several were homologous to genes of known immune function or were in close linkage to such genes. Genes of interest included heat shock proteins (70, 60, 105 and “small heat shock proteins”), mucin (5b precursor and 2), lectin (receptor and CD22), tributyltin-binding protein, major histocompatibility loci (I and II), complement protein component c7-1, perforin 1, ubiquitin (ligase, factor e4b isoform 2 and conjugation enzyme e2 c), proteasome subunit, T-cell antigen receptor and lymphocyte specific protein tyrosine kinase. Conclusions A panel of markers has been identified that will be validated for use with both genomic and marker-assisted selection to improve resistance of L. rohita to A. hydrophila. PMID:24984705

2014-01-01

124

Use of AFLP markers for gene mapping and QTL detection in the rat.  

PubMed

The AFLP technique is a new DNA marker technology based on the selective amplification of restriction fragments. Multiple polymorphic markers are simultaneously produced and can be tested in one PCR. No prior information on genomic DNA sequences is needed. In the current study, we contribute 18 AFLP markers to the linkage map of the rat. Seven AFLP markers were assigned to specific chromosomes by analysis of a (BN x ACI)F1 x ACI backcross progeny. Another 11 AFLP markers were mapped by using a panel of the H x B/B x H recombinant inbred (RI) strains. Genotypes of these AFLP markers were also tested for correlations with some blood pressure phenotypes in the RI strains. Suggestive correlation was found between the mean arterial pressure and two closely linked AFLP markers located on chromosome 20. The current study illustrates the value of AFLP markers for the construction of linkage maps and the detection of quantitative trait loci. PMID:8938440

Otsen, M; den Bieman, M; Kuiper, M T; Pravenec, M; Kren, V; Kurtz, T W; Jacob, H J; Lankhorst, A; van Zutphen, B F

1996-11-01

125

Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers  

Microsoft Academic Search

Popping expansion volume is the most important quality trait in popcorn (Zea mays L.), but its genetics is not well understood. The objectives of this study were to map quantitative trait loci (QTLs) responsible for popping expansion volume in a popcorn 2 dent corn cross, and to compare the predicted efficiencies of phenotypic selection, marker-based selection, and marker-assisted selection for

H.-J. Lu; R. Bernardo; H. Ohm

2003-01-01

126

Genetic map construction and QTL mapping of resistance to blackleg ( Leptosphaeria maculans ) disease in Australian canola ( Brassica napus L.) cultivars  

Microsoft Academic Search

Genetic map construction and identification of quantitative trait loci (QTLs) for blackleg resistance were performed for four\\u000a mapping populations derived from five different canola source cultivars. Three of the populations were generated from crosses\\u000a between single genotypes from the blackleg-resistant cultivars Caiman, Camberra and AVSapphire and the blackleg-susceptible cultivar Westar10. The fourth population was derived from a cross between genotypes

S. Kaur; N. O. I. Cogan; G. Ye; R. C. Baillie; M. L. Hand; A. E. Ling; A. K. Mcgearey; J. Kaur; C. J. Hopkins; M. Todorovic; H. Mountford; D. Edwards; J. Batley; W. Burton; P. Salisbury; N. Gororo; S. Marcroft; G. Kearney; K. F. Smith; J. W. Forster; G. C. Spangenberg

2009-01-01

127

Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm  

Microsoft Academic Search

Seed dormancy is one of the most important traits in germination process to control malting and pre-harvest sprouting in barley\\u000a (Hordeum vulgare L.). EST based linkage maps were constructed on seven recombinant inbred (RI) and one doubled haploid (DH) populations derived\\u000a from crosses including eleven cultivated and one wild barley strains showing the wide range of seed dormancy levels. Seed

Kiyosumi Hori; Kazuhiro Sato; Kazuyoshi Takeda

2007-01-01

128

QTL Methodology in Behavior Genetics  

Microsoft Academic Search

In the second chapter of this volume, biometrical models in behavioral genetics are presented. Such models provide the foundation\\u000a for quantitative trait locus (QTL) analysis. The present chapter specifically deals with applying those models to QTL analysis,\\u000a in both linkage and association contexts. Until relatively recently, linkage was the preferred method for mapping QTLs. The\\u000a approach has limited power in

Stacey S. Cherny

129

Copyright 1999 by the Genetics Society of America The Genetic Architecture of Selection Response: Inferences From Fine-Scale  

E-print Network

lines in an unselected inbred background, and QTL were detected using composite interval mapping: Inferences From Fine-Scale Mapping of Bristle Number Quantitative Trait Loci in Drosophila melanogaster for abdominal and sternopleural bristle number have been mapped with high resolution to the X and third

Mackay, Trudy F.C.

130

Genetic Mapping and QTL Analysis of Growth Traits in the Large Yellow Croaker Larimichthys crocea.  

PubMed

Large yellow croaker (Larimichthys crocea) is an important maricultured species in China. A genetic linkage map of the large yellow croaker was constructed using type II microsatellites and expressed sequence tag (EST)-derived microsatellites in two half-sib families (two females and one male). A total of 289 microsatellite markers (contained 93 EST-SSRs) were integrated into 24 linkage groups, which agreed with the haploid chromosome number. The map spanned a length of 1,430.8 cm with an average interval of 5.4 cm, covering 83.9 % of the estimated genome size (1,704.8 cm). A total of seven quantitative trait locis (QTLs) were detected for growth traits on five linkage groups, including two 1 % and five 5 % chromosome-wide significant QTLs, and explained from 2.33 to 5.31 % of the trait variation. The identified QTLs can be applied in marker-assisted selection programs to improve the growth traits. PMID:25070688

Ye, Hua; Liu, Yang; Liu, Xiande; Wang, Xiaoqing; Wang, Zhiyong

2014-12-01

131

Abundance and Distribution of Transposable Elements in Two Drosophila QTL Mapping Resources  

PubMed Central

Here we present computational machinery to efficiently and accurately identify transposable element (TE) insertions in 146 next-generation sequenced inbred strains of Drosophila melanogaster. The panel of lines we use in our study is composed of strains from a pair of genetic mapping resources: the Drosophila Genetic Reference Panel (DGRP) and the Drosophila Synthetic Population Resource (DSPR). We identified 23,087 TE insertions in these lines, of which 83.3% are found in only one line. There are marked differences in the distribution of elements over the genome, with TEs found at higher densities on the X chromosome, and in regions of low recombination. We also identified many more TEs per base pair of intronic sequence and fewer TEs per base pair of exonic sequence than expected if TEs are located at random locations in the euchromatic genome. There was substantial variation in TE load across genes. For example, the paralogs derailed and derailed-2 show a significant difference in the number of TE insertions, potentially reflecting differences in the selection acting on these loci. When considering TE families, we find a very weak effect of gene family size on TE insertions per gene, indicating that as gene family size increases the number of TE insertions in a given gene within that family also increases. TEs are known to be associated with certain phenotypes, and our data will allow investigators using the DGRP and DSPR to assess the functional role of TE insertions in complex trait variation more generally. Notably, because most TEs are very rare and often private to a single line, causative TEs resulting in phenotypic differences among individuals may typically fail to replicate across mapping panels since individual elements are unlikely to segregate in both panels. Our data suggest that “burden tests” that test for the effect of TEs as a class may be more fruitful. PMID:23883524

Cridland, Julie M.; Macdonald, Stuart J.; Long, Anthony D.; Thornton, Kevin R.

2013-01-01

132

A BAC\\/BIBAC-based physical map of chickpea, Cicer arietinum L  

Microsoft Academic Search

BACKGROUND: Chickpea (Cicer arietinum L.) is the third most important pulse crop worldwide. Despite its importance, relatively little is known about its genome. The availability of a genome-wide physical map allows rapid fine mapping of QTL, development of high-density genome maps, and sequencing of the entire genome. However, no such a physical map has been developed in chickpea. RESULTS: We

Xiaojun Zhang; Chantel F Scheuring; Meiping Zhang; Jennifer J Dong; Yang Zhang; James J Huang; Mi-Kyung Lee; Shahal Abbo; Amir Sherman; Dani Shtienberg; Weidong Chen; Fred Muehlbauer; Hong-Bin Zhang

2010-01-01

133

Mapping QTLs with epistatic effects and QTL x environment interactions for plant height using a doubled haploid population in cultivated wheat.  

PubMed

Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai'an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTL x environment interactions (QEs). Two major QTLs, Qph4B and Qph4D, which accounted for 14.51% and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rht1 and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL effects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS). PMID:18407059

Zhang, Kunpu; Tian, Jichun; Zhao, Liang; Wang, Shanshan

2008-02-01

134

Mapping QTL for biomass yield and its components in rice (Oryza sativa L.).  

PubMed

Additive effects, additive by additive epistatic effects, and their environmental interactions of QTLs are important genetic components of quantitative traits. Genetic architecture underlying rice biomass yield and its two component traits (straw yield and grain yield) were analyzed for a population of 125 DH lines from an inter-subspecific cross of IR64/Azucena. The mixed-model based composite interval mapping approach (MCIM) was used to detect QTLs, There were 12 QTLs detected with additive main effects, 27 QTLs involved in digenic interaction with aa and/or aae effects, and 18 QTLs affected by environments with ae and/or aae effects. It was revealed that epistatic effects and QE interaction effects existed on biomass yield and its component traits in rice. In addition, the genetic basis of relationships among these traits were investigated. Four QTLs and one pair of epistatic QTLs were detected to be responsible for the positive correlation between biomass yield and straw yield. Three QTLs might be responsible for the negative correlation between straw yield and grain yield. This result could partially explain the genetic basis of correlation among the three traits, and provide useful information for genetic improvement of these traits by marker-assisted selection. PMID:16875318

Liu, Gui-Fu; Yang, Jian; Zhu, Jun

2006-07-01

135

Bayesian QTL mapping for multiple families derived from crossing a set of inbred lines to a reference line  

Microsoft Academic Search

In some crop species, germplasm collections consisting of a large number of accessions that include traditional landraces, modern cultivars and wild species have recently been established. Such collections are regarded as useful stocks of genes for breeding programs. However, to efficiently utilize these collections for plant breeding, understanding genetic variation in agronomic traits at the QTL level between the accessions

T Hayashi; H Iwata

2009-01-01

136

Genome-wide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip  

PubMed Central

Background The traditional strategy to map QTL is to use linkage analysis employing a limited number of markers. These analyses report wide QTL confidence intervals, making very difficult to identify the gene and polymorphisms underlying the QTL effects. The arrival of genome-wide panels of SNPs makes available thousands of markers increasing the information content and therefore the likelihood of detecting and fine mapping QTL regions. The aims of the current study are to confirm previous QTL regions for growth and body composition traits in different generations of an Iberian x Landrace intercross (IBMAP) and especially identify new ones with narrow confidence intervals by employing the PorcineSNP60 BeadChip in linkage analyses. Results Three generations (F3, Backcross 1 and Backcross 2) of the IBMAP and their related animals were genotyped with PorcineSNP60 BeadChip. A total of 8,417 SNPs equidistantly distributed across autosomes were selected after filtering by quality, position and frequency to perform the QTL scan. The joint and separate analyses of the different IBMAP generations allowed confirming QTL regions previously identified in chromosomes 4 and 6 as well as new ones mainly for backfat thickness in chromosomes 4, 5, 11, 14 and 17 and shoulder weight in chromosomes 1, 2, 9 and 13; and many other to the chromosome-wide signification level. In addition, most of the detected QTLs displayed narrow confidence intervals, making easier the selection of positional candidate genes. Conclusions The use of higher density of markers has allowed to confirm results obtained in previous QTL scans carried out with microsatellites. Moreover several new QTL regions have been now identified in regions probably not covered by markers in previous scans, most of these QTLs displayed narrow confidence intervals. Finally, prominent putative biological and positional candidate genes underlying those QTL effects are listed based on recent porcine genome annotation. PMID:22607048

2012-01-01

137

Association analysis with lipid traits of 2 candidate genes (LRP12 and TRIB1) mapping to a SSC4 QTL for serum triglyceride concentration in pigs.  

PubMed

The performance of a genome scan for serum lipid traits at 45 and 190 d in 5 half-sib families of Duroc pigs allowed us to detect several pig chromosomal regions with significant effects on these phenotypes. In the current work, we aimed to refine the position of 1 chromosome 4 (SSC4) genome-wide significant QTL for serum triglyceride concentration at 190 d. Genotyping of 4 additional microsatellites allowed reduction of the 90% confidence interval of this QTL to the genomic interval between markers SW2409 and SW839. Sequencing experiments were performed to characterize the variability of 2 lipid-related genes, the lipoprotein receptor-related protein 12 (LRP12) and tribbles homolog 1 (TRIB1) loci, that map to this region. In this way, 2 (c.771A > G and c.1101A > G) and 1 (c.*156_157del) polymorphisms were identified at the LRP12 coding region and TRIB1 3' untranslated region, respectively. Association analyses between LRP12 and TRIB1 genotypes did not reveal any significant effect on serum lipid concentrations, suggesting that variation of these two loci does not explain the segregation of the SSC4 QTL. However, highly significant associations were observed for gluteus medius saturated fatty acid content (LRP12 c.1101A > G, P = 0.0006; TRIB1 c.*156_157del, P = 0.0003). In the light of these and other findings, the potential involvement of LRP12 and TRIB1 in muscle lipid metabolism deserves to be further explored. PMID:23408821

Melo, C; Quintanilla, R; Gallardo, D; Zidi, A; Jordana, J; Díaz, I; Pena, R N; Amills, M

2013-04-01

138

Prediction of IBD based on population history for fine gene mapping.  

PubMed

A novel multiple regression method (RM) is developed to predict identity-by-descent probabilities at a locus L (IBDL), among individuals without pedigree, given information on surrounding markers and population history. These IBDL probabilities are a function of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous population over generations. Three parameters are sufficient to describe population history: effective population size (Ne), number of generations since foundation (T), and marker allele frequencies among founders (p). IBDL are used in a simulation study to map a quantitative trait locus (QTL) via variance component estimation. RM is compared to a coalescent method (CM) in terms of power and robustness of QTL detection. Differences between RM and CM are small but significant. For example, RM is more powerful than CM in dioecious populations, but not in monoecious populations. Moreover, RM is more robust than CM when marker phases are unknown or when there is complete LD among founders or Ne is wrong, and less robust when p is wrong. CM utilises all marker haplotype information, whereas RM utilises information contained in each individual marker and all possible marker pairs but not in higher order interactions. RM consists of a family of models encompassing four different population structures, and two ways of using marker information, which contrasts with the single model that must cater for all possible evolutionary scenarios in CM. PMID:16635447

Hernández-Sánchez, Jules; Haley, Chris S; Woolliams, John A

2006-01-01

139

Fine-scale mapping using Hardy-Weinberg disequilibrium  

Microsoft Academic Search

(Received 12.9.00. Accepted 22.12.00) summary Hardy{Weinberg disequilibrium (HWD) among affected individuals has recently been proposed for ne-scale mapping of disease susceptibility genes. We investigate the statistical properties of several available HWD measures and develop a new HWD measure J for ne-scale mapping. It is shown both theoretically and through simulations that the available HWD measures depend not only on the

R. JIANG; J. DONG; D. WANG; F. Z. SUN

2001-01-01

140

Fine-mapping nicotine resistance loci in Drosophila using a multiparent advanced generation inter-cross population.  

PubMed

Animals in nature are frequently challenged by toxic compounds, from those that occur naturally in plants as a defense against herbivory, to pesticides used to protect crops. On exposure to such xenobiotic substances, animals mount a transcriptional response, generating detoxification enzymes and transporters that metabolize and remove the toxin. Genetic variation in this response can lead to variation in the susceptibility of different genotypes to the toxic effects of a given xenobiotic. Here we use Drosophila melanogaster to dissect the genetic basis of larval resistance to nicotine, a common plant defense chemical and widely used addictive drug in humans. We identified quantitative trait loci (QTL) for the trait using the DSPR (Drosophila Synthetic Population Resource), a panel of multiparental advanced intercross lines. Mapped QTL collectively explain 68.4% of the broad-sense heritability for nicotine resistance. The two largest-effect loci-contributing 50.3 and 8.5% to the genetic variation-map to short regions encompassing members of classic detoxification gene families. The largest QTL resides over a cluster of ten UDP-glucuronosyltransferase (UGT) genes, while the next largest QTL harbors a pair of cytochrome P450 genes. Using RNAseq we measured gene expression in a pair of DSPR founders predicted to harbor different alleles at both QTL and showed that Ugt86Dd, Cyp28d1, and Cyp28d2 had significantly higher expression in the founder carrying the allele conferring greater resistance. These genes are very strong candidates to harbor causative, regulatory polymorphisms that explain a large fraction of the genetic variation in larval nicotine resistance in the DSPR. PMID:25236448

Marriage, Tara N; King, Elizabeth G; Long, Anthony D; Macdonald, Stuart J

2014-09-01

141

A first generation BAC-based physical map of the channel catfish genome  

Microsoft Academic Search

BACKGROUND: Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the karyotype and to support fine mapping of phenotypic trait alleles such as Quantitative Trait Loci (QTL) and the

Sylvie M-A Quiniou; Geoffrey C Waldbieser; Mary V Duke

2007-01-01

142

Microarray assisted fine mapping of quantitative trait loci on Chromosome 15 for susceptibility to seizure-induced cell death in mice  

PubMed Central

Prior studies with crosses of the FVB/NJ (FVB; seizure-induced cell death susceptible) mouse and the seizure-induced cell death resistant mouse, C57BL/6J (B6), revealed the presence of a quantitative trait locus (QTL) on chromosome 15 (Chr. 15) that influenced susceptibility to kainic acid-induced cell death (Sicd2). In an earlier study, we confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure-induced cell death through the creation of the FVB.B6-Sicd2 congenic strain and created three interval-specific congenic lines (ISCLs) that encompass Sicd2 on Chr. 15 to fine-map this locus. To further localize this Sicd2 QTL, an additional congenic line carrying overlapping intervals of the B6 segment was created (ISCL-4) and compared to previously created ISCLs-1-3 and assessed for seizure-induced cell death phenotype. While all of the ISCLs exhibited reduced cell death associated with the B6 phenotype, the most dramatic of these, ISCL-4 showed the most extensive reduction in seizure-induced cell death throughout all hippocampal subfields. In order to characterize the susceptibility loci on Sicd2 using this ISCL and identify compelling candidate genes, we have undertaken an integrative genomic strategy of comparing exon transcript abundance in the hippocampus of this newly developed Chr. 15 subcongenic line (ISCL-4) and FVB-like littermates. We identified ten putative candidate genes that are alternatively spliced between the strains and may govern strain-dependent differences in susceptibility to seizure-induced excitotoxic cell death. These results illustrate the importance of identifying transcriptomics variants in expression studies, and implicate novel candidate genes conferring susceptibility to seizure-induced cell death. PMID:24001120

Schauwecker, P. Elyse

2013-01-01

143

Fine-Scale Mapping of Disease Loci via Shattered Coalescent Modeling of Genealogies  

Microsoft Academic Search

We present a Bayesian, Markov-chain Monte Carlo method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. The method explicitly models the genealogy underlying a sample of case chro- mosomes in the vicinity of a putative disease locus, in contrast with the assumption of a star-shaped tree made by many existing multipoint methods. Within this modeling framework, we can allow

A. P. Morris; J. C. Whittaker; D. J. Balding

2002-01-01

144

Brief Genetics Report Fine-Mapping Gene-by-Diet Interactions on Chromosome  

E-print Network

intercross line (AIL) from the SM/J and LG/J inbred strains. Half of our sample was fed a low-fat (15% energyBrief Genetics Report Fine-Mapping Gene-by-Diet Interactions on Chromosome 13 in a LG/J SM/J Murine strains reveals locus-by-diet interactions for all previously mapped loci. Adip7, located on proximal

Hrbek, Tomas - Department of Biology, Universidad de Puerto Rico

145

Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses  

PubMed Central

Background Understanding the basis for volatile organic compound (VOC) biosynthesis and regulation is of great importance for the genetic improvement of fruit flavor. Lactones constitute an essential group of fatty acid-derived VOCs conferring peach-like aroma to a number of fruits including peach, plum, pineapple and strawberry. Early studies on lactone biosynthesis suggest that several enzymatic pathways could be responsible for the diversity of lactones, but detailed information on them remained elusive. In this study, we have integrated genetic mapping and genome-wide transcriptome analysis to investigate the molecular basis of natural variation in ?-decalactone content in strawberry fruit. Results As a result, the fatty acid desaturase FaFAD1 was identified as the gene underlying the locus at LGIII-2 that controls ?-decalactone production in ripening fruit. The FaFAD1 gene is specifically expressed in ripe fruits and its expression fully correlates with the presence of ?-decalactone in all 95 individuals of the mapping population. In addition, we show that the level of expression of FaFAH1, with similarity to cytochrome p450 hydroxylases, significantly correlates with the content of ?-decalactone in the mapping population. The analysis of expression quantitative trait loci (eQTL) suggests that the product of this gene also has a regulatory role in the biosynthetic pathway of lactones. Conclusions Altogether, this study provides mechanistic information of how the production of ?-decalactone is naturally controlled in strawberry, and proposes enzymatic activities necessary for the formation of this VOC in plants. PMID:24742100

2014-01-01

146

Saturation of an Intra-Gene Pool Linkage Map: Towards a Unified Consensus Linkage Map for Fine Mapping and Synteny Analysis in Common Bean  

PubMed Central

Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364×BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364×G19833 (DG) and BAT93×JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning. PMID:22174773

Galeano, Carlos H.; Fernandez, Andrea C.; Franco-Herrera, Natalia; Cichy, Karen A.; McClean, Phillip E.; Vanderleyden, Jos; Blair, Matthew W.

2011-01-01

147

Fine Mapping Reveals Multiple Loci and a Possible Epistatic Interaction within the Mammary Carcinoma Susceptibility  

E-print Network

Fine Mapping Reveals Multiple Loci and a Possible Epistatic Interaction within the Mammary developed a rat genetic model that uses the Wistar-Kyoto (WKy) inbred strain, resistant to developing 7-Furth (WF) strain as the recipient. Here, data from congenic rat lines containing smaller WKy genomic

Gould, Michael N.

148

ORIGINAL PAPER Fine mapping of fw3.2 controlling fruit weight in tomato  

E-print Network

ORIGINAL PAPER Fine mapping of fw3.2 controlling fruit weight in tomato Na Zhang · Marin Talbot: 10 March 2012 � Springer-Verlag 2012 Abstract Tomato (Solanum lycopersicum) is an impor- tant crop for fruit mass in tomato. Identification of the underlying gene will improve our understanding

van der Knaap, Esther

149

Fine Mapping of Loci Linked to Autoimmune Thyroid Disease Identifies Novel Susceptibility Genes  

PubMed Central

Context: Genetic factors play a major role in the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). We have previously identified three loci on chromosomes 10q, 12q, and 14q that showed strong linkage with AITD, HT, and GD, respectively. Objectives: The objective of the study was to identify the AITD susceptibility genes at the 10q, 12q, and 14q loci. Design and Participants: Three hundred forty North American Caucasian AITD patients and 183 healthy controls were studied. The 10q, 12q, and 14q loci were fine mapped by genotyping densely spaced single-nucleotide polymorphisms (SNPs) using the Illumina GoldenGate genotyping platform. Case control association analyses were performed using the UNPHASED computer package. Associated SNPs were reanalyzed in a replication set consisting of 238 AITD patients and 276 controls. Results: Fine mapping of the AITD locus, 10q, showed replicated association of the AITD phenotype (both GD and HT) with SNP rs6479778. This SNP was located within the ARID5B gene recently reported to be associated with rheumatoid arthritis and GD in Japanese. Fine mapping of the GD locus, 14q, revealed replicated association of the GD phenotype with two markers, rs12147587 and rs2284720, located within the NRXN3 and TSHR genes, respectively. Conclusions: Fine mapping of three linked loci identified novel susceptibility genes for AITD. The discoveries of new AITD susceptibility genes will engender a new understanding of AITD etiology. PMID:23118423

Hasham, Alia; Davies, Terry F.; Stefan, Mihaela; Concepcion, Erlinda; Keddache, Mehdi; Greenberg, David A.

2013-01-01

150

Concordance analysis for QTL detection in dairy cattle: a case study of leg morphology  

PubMed Central

Background The present availability of sequence data gives new opportunities to narrow down from QTL (quantitative trait locus) regions to causative mutations. Our objective was to decrease the number of candidate causative mutations in a QTL region. For this, a concordance analysis was applied for a leg conformation trait in dairy cattle. Several QTL were detected for which the QTL status (homozygous or heterozygous for the QTL) was inferred for each individual. Subsequently, the inferred QTL status was used in a concordance analysis to reduce the number of candidate mutations. Methods Twenty QTL for rear leg set side view were mapped using Bayes C. Marker effects estimated during QTL mapping were used to infer the QTL status for each individual. Subsequently, polymorphisms present in the QTL regions were extracted from the whole-genome sequences of 71 Holstein bulls. Only polymorphisms for which the status was concordant with the QTL status were kept as candidate causative mutations. Results QTL status could be inferred for 15 of the 20 QTL. The number of concordant polymorphisms differed between QTL and depended on the number of QTL statuses that could be inferred and the linkage disequilibrium in the QTL region. For some QTL, the concordance analysis was efficient and narrowed down to a limited number of candidate mutations located in one or two genes, while for other QTL a large number of genes contained concordant polymorphisms. Conclusions For regions for which the concordance analysis could be performed, we were able to reduce the number of candidate mutations. For part of the QTL, the concordant analyses narrowed QTL regions down to a limited number of genes, of which some are known for their role in limb or skeletal development in humans and mice. Mutations in these genes are good candidates for QTN (quantitative trait nucleotides) influencing rear leg set side view. PMID:24884971

2014-01-01

151

DEM and bathymetry estimation for mapping a tide?coordinated shoreline from fine spatial resolution satellite sensor imagery  

Microsoft Academic Search

Fine spatial resolution remotely sensed imagery has considerable potential for mapping a shoreline. Although fine spatial resolution imagery typically allows the instantaneous shoreline to be mapped with high accuracy, interest is normally focused on a reference shoreline, defined on a stable vertical datum, which is generally not apparent in the imagery unless acquired at a time carefully coordinated with the

A. M. Muslim; G. M. Foody

2008-01-01

152

Fine Mapping of a Major Insect Resistance QTL in Soybean and its Interaction with Minor Resistance QTLs  

E-print Network

the effec- tiveness of a Bacillus thuringiensis (Bt) transgene in soybean. The objectives of this study were level of insect resis- tance in many crops via conventional breeding prompted genetic engineering with crystal protein genes from Bt (Stewart et al., 1996). However, the widespread use of Bt genes has raised

Parrott, Wayne

153

Fine mapping of complex traits in non-model species: using next generation sequencing and advanced intercross lines in Japanese quail  

PubMed Central

Background As for other non-model species, genetic analyses in quail will benefit greatly from a higher marker density, now attainable thanks to the evolution of sequencing and genotyping technologies. Our objective was to obtain the first genome wide panel of Japanese quail SNP (Single Nucleotide Polymorphism) and to use it for the fine mapping of a QTL for a fear-related behaviour, namely tonic immobility, previously localized on Coturnix japonica chromosome 1. To this aim, two reduced representations of the genome were analysed through high-throughput 454 sequencing: AFLP (Amplified Fragment Length Polymorphism) fragments as representatives of genomic DNA, and EST (Expressed Sequence Tag) as representatives of the transcriptome. Results The sequencing runs produced 399,189 and 1,106,762 sequence reads from cDNA and genomic fragments, respectively. They covered over 434 Mb of sequence in total and allowed us to detect 17,433 putative SNP. Among them, 384 were used to genotype two Advanced Intercross Lines (AIL) obtained from three quail lines differing for duration of tonic immobility. Despite the absence of genotyping for founder individuals in the analysis, the previously identified candidate region on chromosome 1 was refined and led to the identification of a candidate gene. Conclusions These data confirm the efficiency of transcript and AFLP-sequencing for SNP discovery in a non-model species, and its application to the fine mapping of a complex trait. Our results reveal a significant association of duration of tonic immobility with a genomic region comprising the DMD (dystrophin) gene. Further characterization of this candidate gene is needed to decipher its putative role in tonic immobility in Coturnix. PMID:23066875

2012-01-01

154

Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L.  

PubMed

A recessive genic male sterility (RGMS) system, S45 AB, has been developed from spontaneous mutation in Brassica napus canola variety Oro, and is being used for hybrid cultivar development in China. The male sterility of S45 was controlled by two duplicated recessive genes, named as Bnms1 and Bnms2. In this study, a NIL (near-isogenic line) population from the sib-mating of S45 AB was developed and used for the fine mapping of the Bnms1 gene, in which the recessive allele was homozygous at the second locus. AFLP technology combined with BSA (bulked segregant analysis) was used. From a survey of 2,560 primer combinations (+3/+3 selective bases), seven AFLP markers linked closely to the target gene were identified, of which four were successfully converted to sequence characterized amplified region (SCAR) markers. For further analysis, a population of 1,974 individuals was used to map the Bnms1 gene. On the fine map, Bnms1 gene was flanked by two SCAR markers, SC1 and SC7, with genetic distance of 0.1 cM and 0.3 cM, respectively. SC1 was subsequently mapped on linkage group N7 using doubled-haploid mapping populations derived from the crosses Tapidor x Ningyou7 and DH 821 x DHBao 604, available at IMSORB, UK, and our laboratory, respectively. Linkage of an SSR marker, Na12A02, with the Bnms1 gene further confirmed its location on linkage group N7. Na12A02, 2.6 cM away from Bnms1, was a co-dominant marker. These molecular markers developed from this research will facilitate the marker-assisted selection of male sterile lines and the fine map lays a solid foundation for map-based cloning of the Bnms1 gene. PMID:16804725

Yi, Bin; Chen, Yuning; Lei, Shaolin; Tu, Jinxing; Fu, Tingdong

2006-08-01

155

Fine-Scale Mapping of Natural Variation in Fly Fecundity Identifies Neuronal Domain of Expression and Function of an Aquaporin  

PubMed Central

To gain insight into the molecular genetic basis of standing variation in fitness related traits, we identify a novel factor that regulates the molecular and physiological basis of natural variation in female Drosophila melanogaster fecundity. Genetic variation in female fecundity in flies derived from a wild orchard population is heritable and largely independent of other measured life history traits. We map a portion of this variation to a single QTL and then use deficiency mapping to further refine this QTL to 5 candidate genes. Ubiquitous expression of RNAi against only one of these genes, an aquaporin encoded by Drip, reduces fecundity. Within our mapping population Drip mRNA level in the head, but not other tissues, is positively correlated with fecundity. We localize Drip expression to a small population of corazonin producing neurons located in the dorsolateral posterior compartments of the protocerebrum. Expression of Drip–RNAi using both the pan-neuronal ELAV-Gal4 and the Crz-Gal4 drivers reduces fecundity. Low-fecundity RILs have decreased Crz expression and increased expression of pale, the enzyme encoding the rate-limiting step in the production of dopamine, a modulator of insect life histories. Taken together these data suggest that natural variation in Drip expression in the corazonin producing neurons contributes to standing variation in fitness by altering the concentration of two neurohormones. PMID:22509142

Bergland, Alan O.; Chae, Hyo-seok; Kim, Young-Joon; Tatar, Marc

2012-01-01

156

Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa).  

PubMed

A novel rice mutant, lesion mimic and early senescence 1 (lmes1), was induced from the rice 93-11 cultivar in a ?-ray field. This mutant exhibited spontaneous disease-like lesions in the absence of pathogen attack at the beginning of the tillering stage. Moreover, at the booting stage, lmes1 mutants exhibited a significantly increased MDA but decreased chlorophyll content, soluble protein content and photosynthetic rate in the leaves, which are indicative of an early senescence phenotype. The lmes1 mutant was significantly more resistant than 93-11 against rice bacterial blight infection, which was consistent with a marked increase in the expression of three resistance-related genes. Here, we employed a map-based cloning approach to finely map the lmes1 gene. In an initial mapping with 94 F2 individuals derived from a cross between the lmes1 mutant and Nipponbare, the lmes1 gene was located in a 10.6-cM region on the telomere of the long arm of chromosome 7 using simple sequence repeat (SSR) markers. To finely map lmes1, we derived two F2 populations with 940 individuals from two crosses between the lmes1 mutant and two japonica rice varieties, Nipponbare and 02428. Finally, the lmes1 gene was mapped to an 88-kb region between two newly developed inDel markers, Zl-3 and Zl-22, which harbored 15 ORFs. PMID:24832615

Li, Zhi; Zhang, Yingxin; Liu, Lin; Liu, Qunen; Bi, Zhenzhen; Yu, Ning; Cheng, Shihua; Cao, Liyong

2014-07-01

157

Fine-mapping QTLs in advanced intercross lines and other outbred populations.  

PubMed

Quantitative genetic studies in model organisms, particularly in mice, have been extremely successful in identifying chromosomal regions that are associated with a wide variety of behavioral and other traits. However, it is now widely understood that identification of the underlying genes will be far more challenging. In the last few years, a variety of populations have been utilized in an effort to more finely map these chromosomal regions with the goal of identifying specific genes. The common property of these newer populations is that linkage disequilibrium spans relatively short distances, which permits fine-scale mapping resolution. This review focuses on advanced intercross lines (AILs) which are the simplest such population. As originally proposed in 1995 by Darvasi and Soller, an AIL is the product of intercrossing two inbred strains beyond the F2 generation. Unlike recombinant inbred strains, AILs are maintained as outbred populations; brother-sister matings are specifically avoided. Each generation of intercrossing beyond the F2 further degrades linkage disequilibrium between adjacent makers, which allows for fine-scale mapping of quantitative trait loci (QTLs). Advances in genotyping technology and techniques for the statistical analysis of AILs have permitted rapid advances in the application of AILs. We review some of the analytical issues and available software, including QTLRel, EMMA, EMMAX, GEMMA, TASSEL, GRAMMAR, WOMBAT, Mendel, and others. PMID:24906874

Gonzales, Natalia M; Palmer, Abraham A

2014-08-01

158

QTL mapping of genetic determinants of lipoprotein metabolism in mice: Mutations of the apolipoprotein A-II gene affecting lipoprotein turnover  

SciTech Connect

Cholesterol and lipoproteins represent important risk factors for atherosclerosis. In order to better understand the genes involved in determining lipoprotein levels, quantitative trait locus (QTL) mapping was performed using a cross between NZB and SM/J mice. Significant LOD scores for loci determining total cholesterol, HDL cholesterol, LDL and VLDL cholesterol, triglycerides, free fatty acids, and apolipoprotein A-II (apoA-II) were obtained. NZB mice have a 7-10 fold higher apoA-II level SM/J. LOD scores of 19.6 (chow) and 10.3 (high fat) were obtained at the apoA-II gene locus. Comparison of apoA-II levels by apoA-II genotype reveals that {approximately}30% of the variance in apoA-II levels can be accounted for by differences within the apoA-II gene. Northern analysis of mRNA from NZB and SM/J mice fed a high fat diet failed to show any significant differences in mRNA levels. The rates of apoA-II protein synthesis relative to total protein synthesis between the two strains were similar, with a rate of 0.16% for NZB and 0.18% for SM/J. Sequencing of NZB and SM/J apoA-II cDNAs revealed a pro5 to gln5 substitution in SM/J. Therefore, differences in the apoA-II levels between NZB and SM/J may be partly due to a structural difference in apoA-II resulting in an increased rate of apoA-II clearance in SM/J. A coincident QTL for HDL at the same chromosome 1 locus suggests that a structural difference in apoA-II may be affecting the rate of HDL clearance. It is of interest to note that the pro5 to gln5 substitution leads to apoA-II amyloid deposition in the SAM mouse.

Weinreb, A.; Purcell-Huynh, D.A.; Castellani, L.W. [UCLA, Los Angeles, CA (United States)] [and others

1994-09-01

159

Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene  

PubMed Central

Willows (Salix spp.) are important biomass crops due to their ability to grow rapidly with low fertilizer inputs and ease of cultivation in short-rotation coppice cycles. They are relatively undomesticated and highly diverse, but functional testing to identify useful allelic variation is time-consuming in trees and transformation is not yet possible in willow. Arabidopsis is heralded as a model plant from which knowledge can be transferred to advance the improvement of less tractable species. Here, knowledge and methodologies from Arabidopsis were successfully used to identify a gene influencing stem number in coppiced willows, a complex trait of key biological and industrial relevance. The strigolactone-related More AXillary growth (MAX) genes were considered candidates due to their role in shoot branching. We previously demonstrated that willow and Arabidopsis show similar response to strigolactone and that transformation rescue of Arabidopsis max mutants with willow genes could be used to detect allelic differences. Here, this approach was used to screen 45 SxMAX1, SxMAX2, SxMAX3 and SxMAX4 alleles cloned from 15 parents of 11 mapping populations varying in shoot-branching traits. Single-nucleotide polymorphism (SNP) frequencies were locus dependent, ranging from 29.2 to 74.3 polymorphic sites per kb. SxMAX alleles were 98%–99% conserved at the amino acid level, but different protein products varying in their ability to rescue Arabidopsis max mutants were identified. One poor rescuing allele, SxMAX4D, segregated in a willow mapping population where its presence was associated with increased shoot resprouting after coppicing and colocated with a QTL for this trait. PMID:24393130

Salmon, Jemma; Ward, Sally P; Hanley, Steven J; Leyser, Ottoline; Karp, Angela

2014-01-01

160

Dro1, a major QTL involved in deep rooting of rice under upland field conditions.  

PubMed

Developing a deep root system is an important strategy for avoiding drought stress in rice. Using the 'basket' method, the ratio of deep rooting (RDR; the proportion of total roots that elongated through the basket bottom) was calculated to evaluate deep rooting. A new major quantitative trait locus (QTL) controlling RDR was detected on chromosome 9 by using 117 recombinant inbred lines (RILs) derived from a cross between the lowland cultivar IR64, with shallow rooting, and the upland cultivar Kinandang Patong (KP), with deep rooting. This QTL explained 66.6% of the total phenotypic variance in RDR in the RILs. A BC(2)F(3) line homozygous for the KP allele of the QTL had an RDR of 40.4%, compared with 2.6% for the homozygous IR64 allele. Fine mapping of this QTL was undertaken using eight BC(2)F(3) recombinant lines. The RDR QTL Dro1 (Deeper rooting 1) was mapped between the markers RM24393 and RM7424, which delimit a 608.4 kb interval in the reference cultivar Nipponbare. To clarify the influence of Dro1 in an upland field, the root distribution in different soil layers was quantified by means of core sampling. A line homozygous for the KP allele of Dro1 (Dro1-KP) and IR64 did not differ in root dry weight in the shallow soil layers (0-25 cm), but root dry weight of Dro1-KP in deep soil layers (25-50 cm) was significantly greater than that of IR64, suggesting that Dro1 plays a crucial role in increased deep rooting under upland field conditions. PMID:21212298

Uga, Yusaku; Okuno, Kazutoshi; Yano, Masahiro

2011-05-01

161

Genetic mapping and QTL analysis of fruit and flower related traits in cucumber ( Cucumis sativus L.) using recombinant inbred lines  

Microsoft Academic Search

A set of 224 recombinant inbred lines (RILs) derived from a narrow cross between two fresh eaten types (S94 (Northern China\\u000a type) × S06 (Northern European type)) (Cucumis sativus L.) was used to construct a genetic linkage map. With the RILs a 257-point genetic map was constructed including 206 SRAPs,\\u000a 22 SSRs, 25 SCARs, 1 STS, and three economically important morphological markers

X. J. Yuan; J. S. Pan; R. Cai; Y. Guan; L. Z. Liu; W. W. Zhang; Z. Li; H. L. He; C. Zhang; L. T. Si; L. H. Zhu

2008-01-01

162

A genetic linkage map of water yam ( Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance  

Microsoft Academic Search

A genetic linkage map of the tetraploid water yam (Dioscorea alata L.) genome was constructed based on 469 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 was obtained by crossing two improved breeding lines, TDa 95\\/00328 as female parent and TDa 87\\/01091 as male parent. Since the mapping population was an F1

H. D. Mignouna; R. A. Mank; T. H. N. Ellis; N. van den Bosch; R. Asiedu; M. M. Abang; J. Peleman

2002-01-01

163

Characterization and mapping of very fine particles in an engine machining and assembly facility.  

PubMed

Very fine particle number and mass concentrations were mapped in an engine machining and assembly facility in the winter and summer. A condensation particle counter (CPC) was used to measure particle number concentrations in the 0.01 microm to 1 microm range, and an optical particle counter (OPC) was used to measure particle number concentrations in 15 channels between 0.3 microm and 20 microm. The OPC measurements were used to estimate the respirable mass concentration. Very fine particle number concentrations were estimated by subtracting the OPC particle number concentrations from 0.3 microm to 1 microm from the CPC number concentrations. At specific locations during the summer visit, an electrical low pressure impactor was used to measure particle size distribution from 0.07 microm to 10 microm in 12 channels. The geometric mean ratio of respirable mass concentration estimated from the OPC to the gravimetrically measured mass concentration was 0.66 with a geometric standard deviation of 1.5. Very fine particle number concentrations in winter were substantially greater where direct-fire natural gas heaters were operated (7.5 x 10(5) particles/cm(3)) than where steam was used for heat (3 x 10(5) particles/cm(3)). During summer when heaters were off, the very fine particle number concentrations were below 10(5) particles/cm(3), regardless of location. Elevated very fine particle number concentrations were associated with machining operations with poor enclosures. Whereas respirable mass concentrations did not vary noticeably with season, they were greater in areas with poorly fitting enclosures (0.12 mg/m(3)) than in areas where state-of-the-art enclosures were used (0.03 mg/m(3)). These differences were attributed to metalworking fluid mist that escaped from poorly fitting enclosures. Particles generated from direct-fire natural gas heater operation were very small, with a number size distribution modal diameter of less than 0.023 microm. Aerosols generated by machining operations had number size distributions modes in the 0.023 microm to 0.1 microm range. However, multiple modes in the mass size distributions estimated from OPC measurements occurred in the 2-20 microm range. Although elevated, very fine particle concentrations and respirable mass concentrations were both associated with poorly enclosed machining operations; the operation of the direct-fire natural gas heaters resulted in the greatest very fine particle concentrations without elevating the respirable mass concentration. These results suggest that respirable mass concentration may not be an adequate indicator for very fine particle exposure. PMID:17454502

Heitbrink, William A; Evans, Douglas E; Peters, Thomas M; Slavin, Thomas J

2007-05-01

164

Mapping Fiber and Yield QTLs with Main, Epistatic, and QTL × Environment Interaction Effects in Recombinant Inbred Lines of Upland Cotton  

Microsoft Academic Search

Most agronomic traits of cotton (Gossypium hirsutum L.) are quan- titatively inherited and affected by environment. The importance of epistasis as the genetic basis for complex traits has been reported in many crops. In this study, a linkage map was constructed by means of a recombinant inbred line (RIL) population derived from 72353TM-1. Main effects, epistatic effects, and environmental interaction

Xinlian Shen; Tianzhen Zhang; Wangzhen Guo; Xiefei Zhu; Xiaoyang Zhang

2006-01-01

165

Genetic mapping and QTL analysis of horticultural traits in cucumber ( Cucumis sativus L.) using recombinant inbred lines  

Microsoft Academic Search

A set of 171 recombinant inbred lines (RIL) were developed from a narrow cross in cucumber ( Cucumis sativus L.; 2n = 2 x = 14) using the determinate ( de), gynoecious ( F), standard-sized leaf line G421 and the indeterminate, monoecious, little-leaf ( ll) line H-19. A 131-point genetic map was constructed using these RILs and 216 F 2

G. Fazio; J. E. Staub; M. R. Stevens

2003-01-01

166

Fine-mapping subtelomeric deletions and duplications by comparative genomic hybridization in 42 individuals.  

PubMed

Human subtelomere regions contain numerous gene-rich segments and are susceptible to germline rearrangements. The availability of diagnostic test kits to detect subtelomeric rearrangements has resulted in the diagnosis of numerous abnormalities with clinical implications including congenital heart abnormalities and mental retardation. Several of these have been described as clinically recognizable syndromes (e.g., deletion of 1p, 3p, 5q, 6p, 9q, and 22q). Given this, fine-mapping of subtelomeric breakpoints is of increasing importance to the assessment of genotype-phenotype correlations in these recognized syndromes as well as to the identification of additional syndromes. We developed a BAC and cosmid-based DNA array (TEL array) with high-resolution coverage of 10 Mb-sized subtelomeric regions, and used it to analyze 42 samples from unrelated patients with subtelomeric rearrangements whose breakpoints were previously either unmapped or mapped at a lower resolution than that achievable with the TEL array. Six apparently recurrent subtelomeric breakpoint loci were localized to genomic regions containing segmental duplication, copy number variation, and sequence gaps. Small (1 Mb or less) candidate gene regions for clinical phenotypes in separate patients were identified for 3p, 6q, 9q, and 10p deletions as well as for a 19q duplication. In addition to fine-mapping nearly all of the expected breakpoints, several previously unidentified rearrangements were detected. PMID:18257100

DeScipio, Cheryl; Spinner, Nancy B; Kaur, Maninder; Yaeger, Dinah; Conlin, Laura K; Ambrosini, Anthony; Hu, Sufen; Shan, Simei; Krantz, Ian D; Riethman, Harold

2008-03-15

167

Classifying disease chromosomes arising from multiple founders, with application to fine-scale haplotype mapping.  

PubMed

The availability of high-density haplotype data has motivated several fine-scale linkage disequilibrium mapping methods for locating disease-causing mutations. These methods identify loci around which haplotypes of case chromosomes exhibit greater similarity than do those of control chromosomes. A difficulty arising in such mapping is the possibility that case chromosomes have inherited disease-causing mutations from different ancestral chromosomes (founder heterogeneity). Such heterogeneity dilutes measures of case haplotype similarity. This dilution can be mitigated by separating case chromosomes into subsets according to their putative mutation origin, and searching for an area with excessive haplotype similarity within each subset. We propose a nonparametric method for identifying subsets of case chromosomes likely to share a common ancestral progenitor. By simulation studies and application to published data, we show that the method accurately identifies relatively large subsets of chromosomes that share a common founder. We also show that the method allows more precise estimates of the disease mutation loci than obtained by other fine-scale mapping methods. PMID:15389930

Yu, K; Martin, R B; Whittemore, A S

2004-11-01

168

Fine Mapping and Candidate Gene Search of Quantitative Trait Loci for Growth and Obesity Using Mouse Intersubspecific Subcongenic Intercrosses and Exome Sequencing  

PubMed Central

Although growth and body composition traits are quantitative traits of medical and agricultural importance, the genetic and molecular basis of those traits remains elusive. Our previous genome-wide quantitative trait locus (QTL) analyses in an intersubspecific backcross population between C57BL/6JJcl (B6) and wild Mus musculus castaneus mice revealed a major growth QTL (named Pbwg1) on a proximal region of mouse chromosome 2. Using the B6.Cg-Pbwg1 intersubspecific congenic strain created, we revealed 12 closely linked QTLs for body weight and body composition traits on an approximately 44.1-Mb wild-derived congenic region. In this study, we narrowed down genomic regions harboring three (Pbwg1.12, Pbwg1.3 and Pbwg1.5) of the 12 linked QTLs and searched for possible candidate genes for the QTLs. By phenotypic analyses of F2 intercross populations between B6 and each of four B6.Cg-Pbwg1 subcongenic strains with overlapping and non-overlapping introgressed regions, we physically defined Pbwg1.12 affecting body weight to a 3.8-Mb interval (61.5–65.3 Mb) on chromosome 2. We fine-mapped Pbwg1.3 for body length to an 8.0-Mb interval (57.3–65.3) and Pbwg1.5 for abdominal white fat weight to a 2.1-Mb interval (59.4–61.5). The wild-derived allele at Pbwg1.12 and Pbwg1.3 uniquely increased body weight and length despite the fact that the wild mouse has a smaller body size than that of B6, whereas it decreased fat weight at Pbwg1.5. Exome sequencing and candidate gene prioritization suggested that Gcg and Grb14 are putative candidate genes for Pbwg1.12 and that Ly75 and Itgb6 are putative candidate genes for Pbwg1.5. These genes had nonsynonymous SNPs, but the SNPs were predicted to be not harmful to protein functions. These results provide information helpful to identify wild-derived quantitative trait genes causing enhanced growth and resistance to obesity. PMID:25398139

Ishikawa, Akira; Okuno, Sin-ichiro

2014-01-01

169

Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species  

PubMed Central

Background Cowpea [Vigna unguiculata (L.) Walp] exhibits a considerable variation in leaf shape. Although cowpea is mostly utilized as a dry grain and animal fodder crop, cowpea leaves are also used as a high-protein pot herb in many countries of Africa. Results Leaf morphology was studied in the cowpea RIL population, Sanzi (sub-globose leaf shape) x Vita 7 (hastate leaf shape). A QTL for leaf shape, Hls (hastate leaf shape), was identified on the Sanzi x Vita 7 genetic map spanning from 56.54?cM to 67.54?cM distance on linkage group 15. SNP marker 1_0910 was the most significant over the two experiments, accounting for 74.7% phenotypic variance (LOD 33.82) in a greenhouse experiment and 71.5% phenotypic variance (LOD 30.89) in a field experiment. The corresponding Hls locus was positioned on the cowpea consensus genetic map on linkage group 4, spanning from 25.57 to 35.96?cM. A marker-trait association of the Hls region identified SNP marker 1_0349 alleles co-segregating with either the hastate or sub-globose leaf phenotype. High co-linearity was observed for the syntenic Hls region in Medicago truncatula and Glycine max. One syntenic locus for Hls was identified on Medicago chromosome 7 while syntenic regions for Hls were identified on two soybean chromosomes, 3 and 19. In all three syntenic loci, an ortholog for the EZA1/SWINGER (AT4G02020.1) gene was observed and is the candidate gene for the Hls locus. The Hls locus was identified on the cowpea physical map via SNP markers 1_0910, 1_1013 and 1_0992 which were identified in three BAC contigs; contig926, contig821 and contig25. Conclusions This study has demonstrated how integrated genomic resources can be utilized for a candidate gene approach. Identification of genes which control leaf morphology may be utilized to improve the quality of cowpea leaves for vegetable and or forage markets as well as contribute to more fundamental research understanding the control of leaf shape in legumes. PMID:22691139

2012-01-01

170

Informative markers identification and multivariate analysis of selected DxP for the purpose of QTL mapping  

NASA Astrophysics Data System (ADS)

A study was carried out to generate a linkage map of oil palm dura x pisifera (DXP) population. A subset of sample from a DXP mapping family was screened using 325 SSR primers, of which 221 were informative. To date, 150 SSRs have been genotyped across the entire DxP population via capillary sequencer, where 73 SSRs had 1:1 segregation ratio, 64 had 1:1:1:1, 3 had 3:1 and ten had 1:2:1 segregation ratios. Kolmogorov-Smirnov tests by SPSS revealed that most of the bunch quality components had normal distribution which fulfilled one of the pre-requisites to carry out phenotype-genotype correlation association.

Hazirah S., Z.; Maizura, I.; Rajinder, S.; Mohd Isa Z., A.; Ismanizan, I.

2014-09-01

171

Genetic Susceptibility to Lupus: New Insights from fine mapping and genome-wide association studies  

PubMed Central

Genome-wide association studies and fine mapping of candidate regions have rapidly advanced our understanding of the genetic basis of systemic lupus erythematosus (SLE or lupus). More than 20 robust associations have now been identified and confirmed, and have provided insights at the molecular level that refine our understanding of the involvement of processes involved in the host immune response. In addition, genes with as yet unknown roles in SLE pathophysiology have been identified. These findings provide new routes toward improved clinical management of this complex disease. PMID:19337289

Harley, Isaac T.W.; Kaufman, Kenneth M.; Langefeld, Carl D.; Harley, John B.; Kelly, Jennifer A.

2009-01-01

172

Favorable QTL Alleles for Yield and Its Components Identified by Association Mapping in Chinese Upland Cotton Cultivars  

PubMed Central

Linkage disequilibrium based association mapping is a powerful tool for dissecting the genetic basis underlying complex traits. In this study, an association mapping panel consisting of 356 representative Upland cotton cultivars was constructed, evaluated in three environments and genotyped using 381 SSRs to detect molecular markers associated with lint yield and its components. The results showed that abundant phenotypic and moderate genetic diversities existed within this germplasm panel. The population could be divided into two subpopulations, and weak relatedness was detected between pair-wise accessions. LD decayed to the background (r2?=?0.1182, P?0.01), r2?=?0.1 and r2?=?0.2 level within 12–13 cM, 17–18 cM and 3–4 cM, respectively, providing the potential for association mapping of agronomically important traits in Chinese Upland cotton. A total of 55 marker-trait associations were detected between 26 SSRs and seven lint yield traits, based on a mixed linear model (MLM) and Bonferroni correction (P?0.05/145, ?log10P?3.46). Of which 41 could be detected in more than one environment and 17 markers were simultaneously associated with two or more traits. Many associations were consistent with QTLs identified by linkage mapping in previous reports. Phenotypic values of alleles of each loci in 41 stably detected associations were compared, and 23 favorable alleles were identified. Population frequency of each favorable allele in historically released cultivar groups was also evaluated. The QTLs detected in this study will be helpful in further understanding the genetic basis of lint yield and its components, and the favorable alleles may facilitate future high-yield breeding by genomic selection in Upland cotton. PMID:24386089

Mei, Hongxian; Zhu, Xiefei; Zhang, Tianzhen

2013-01-01

173

Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton  

Microsoft Academic Search

Genetic mapping is an essential tool for cotton (Gossypium hirsutum L.) molecular breeding and application of DNA markers for cotton improvement. In this present study, we evaluated an RI population\\u000a including 188 RI lines developed from 94 F2-derived families and their two parental lines, ‘HS 46’ and ‘MARCABUCAG8US-1-88’, at Mississippi State, MS, for two years.\\u000a Fourteen agronomic and fiber traits

Jixiang Wu; Osman Ariel Gutierrez; Johnie N. Jenkins; Jack C. McCarty; Jun Zhu

2009-01-01

174

Identification of candidate genes and mutations in QTL regions for chicken growth using bioinformatic analysis of NGS and SNP-chip data  

PubMed Central

Mapping of chromosomal regions harboring genetic polymorphisms that regulate complex traits is usually followed by a search for the causative mutations underlying the observed effects. This is often a challenging task even after fine mapping, as millions of base pairs including many genes will typically need to be investigated. Thus to trace the causative mutation(s) there is a great need for efficient bioinformatic strategies. Here, we searched for genes and mutations regulating growth in the Virginia chicken lines – an experimental population comprising two lines that have been divergently selected for body weight at 56 days for more than 50 generations. Several quantitative trait loci (QTL) have been mapped in an F2 intercross between the lines, and the regions have subsequently been replicated and fine mapped using an Advanced Intercross Line. We have further analyzed the QTL regions where the largest genetic divergence between the High-Weight selected (HWS) and Low-Weight selected (LWS) lines was observed. Such regions, covering about 37% of the actual QTL regions, were identified by comparing the allele frequencies of the HWS and LWS lines using both individual 60K SNP chip genotyping of birds and analysis of read proportions from genome resequencing of DNA pools. Based on a combination of criteria including significance of the QTL, allele frequency difference of identified mutations between the selected lines, gene information on relevance for growth, and the predicted functional effects of identified mutations we propose here a subset of candidate mutations of highest priority for further evaluation in functional studies. The candidate mutations were identified within the GCG, IGFBP2, GRB14, CRIM1, FGF16, VEGFR-2, ALG11, EDN1, SNX6, and BIRC7 genes. We believe that the proposed method of combining different types of genomic information increases the probability that the genes underlying the observed QTL effects are represented among the candidate mutations identified. PMID:24204379

Ahsan, Muhammad; Li, Xidan; Lundberg, Andreas E.; Kierczak, Marcin; Siegel, Paul B.; Carlborg, Orjan; Marklund, Stefan

2013-01-01

175

Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis  

PubMed Central

We previously used the C57BL/6J (B6) × A/J mouse chromosome substitution strain (CSS) panel to identify a major quantitative trait locus (QTL) on chromosome 11 influencing methamphetamine (MA)-induced locomotor activity. We then made an F2 cross between CSS-11 and B6 and narrowed the locus (Bayes credible interval: 79–109 Mb) which was inherited dominantly and accounted for 14% of the phenotypic variance in the CSS panel. In the present study, we created congenic and subcongenic lines possessing heterozygous portions of this QTL to narrow the interval. We identified one line (84–96 Mb) that recapitulated the QTL, thus narrowing the region to 12 Mb. This interval also produced a small decrease in locomotor activity following prior saline treatment. When we generated subcongenic lines spanning the entire 12 Mb region, the phenotypic difference in MA sensitivity abruptly disappeared, suggesting an epistatic mechanism. We also evaluated the rewarding properties of MA (2 mg/kg, i.p.) in the 84–96 Mb congenic line using the conditioned place preference (CPP) test. We replicated the locomotor difference in the MA-paired CPP chamber, yet observed no effect of genotype on MA-CPP, supporting the specificity of this QTL for MA-induced locomotor activity under these conditions. Last, to aid in prioritizing candidate genes responsible for this QTL, we used the Affymetrix GeneChip® Mouse Gene 1.0ST Array to identify differentially expressed genes in the striatum of drug-naïve, congenic mice. These findings highlight the difficulty of using congenic lines to fine map QTLs and illustrate how epistasis may thwart such efforts. PMID:22487465

Bryant, Camron D.; Kole, Loren A.; Guido, Michael A.; Sokoloff, Greta; Palmer, Abraham A.

2013-01-01

176

Detection of QTL in rainbow trout affecting survival when challenged with Flavobacterium psychrophilum.  

PubMed

Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation in survival following challenge with Flavobacterium psychrophilum (Fp), the causative agent of BCWD in rainbow trout (Oncorhynchus mykiss). A family-based selection program to improve resistance was initiated in 2005 at the USDA National Center for Cool and Cold Water Aquaculture. Select crosses were made in 2007 and 2009 to evaluate family-based disease survival using Fp injection challenges. From each putative F?/BC? family generated in 2009, 200-260 fish were challenged in 4-7 replicates per family. Whole genome QTL scans of three F?/BC? families were conducted with about 270 informative microsatellite loci per family spaced at an average interval size of 6 cM throughout the rainbow trout genome. Markers on chromosomes containing QTL were further evaluated in three additional F?/BC? families. The additional F?/BC? families were sire or dam half-sibs (HS) of the initially genome scanned families. Overall, we identified nine major QTL on seven chromosomes that were significant or highly significant with moderate to large effects of at least 13 % of the total phenotypic variance. The largest effect QTL for BCWD resistance explaining up to 40 % of the phenotypic variance was detected on chromosome OMY8 in family 2009070 and in the combined dam HS family 2009069-070. The nine major QTL identified in this study are candidates for fine mapping to identify new markers that are tightly linked to disease resistance loci for using in marker assisted selection strategies. PMID:24241385

Vallejo, Roger L; Palti, Yniv; Liu, Sixin; Evenhuis, Jason P; Gao, Guangtu; Rexroad, Caird E; Wiens, Gregory D

2014-06-01

177

Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean.  

PubMed

Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2(UC)) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning. PMID:23832048

Oblessuc, Paula Rodrigues; Cardoso Perseguini, Juliana Morini Kupper; Baroni, Renata Moro; Chiorato, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Mondego, Jorge Mauricio Costa; Vidal, Ramon Oliveira; Camargo, Luis Eduardo Aranha; Benchimol-Reis, Luciana Lasry

2013-10-01

178

An eQTL mapping approach reveals that rare variants in the SEMA5A regulatory network impact autism risk.  

PubMed

To date, genome-wide single nucleotide polymorphism (SNP) and copy number variant (CNV) association studies of autism spectrum disorders (ASDs) have led to promising signals but not to easily interpretable or translatable results. Our own genome-wide association study (GWAS) showed significant association to an intergenic SNP near Semaphorin 5A (SEMA5A) and provided evidence for reduced expression of the same gene. In a novel GWAS follow-up approach, we map an expression regulatory pathway for a GWAS candidate gene, SEMA5A, in silico by using population expression and genotype data sets. We find that the SEMA5A regulatory network significantly overlaps rare autism-specific CNVs. The SEMA5A regulatory network includes previous autism candidate genes and regions, including MACROD2, A2BP1, MCPH1, MAST4, CDH8, CADM1, FOXP1, AUTS2, MBD5, 7q21, 20p, USH2A, KIRREL3, DBF4B and RELN, among others. Our results provide: (i) a novel data-derived network implicated in autism, (ii) evidence that the same pathway seeded by an initial SNP association shows association with rare genetic variation in ASDs, (iii) a potential mechanism of action and interpretation for the previous autism candidate genes and genetic variants that fall in this network, and (iv) a novel approach that can be applied to other candidate genes for complex genetic disorders. We take a step towards better understanding of the significance of SEMA5A pathways in autism that can guide interpretation of many other genetic results in ASDs. PMID:23575222

Cheng, Ye; Quinn, Jeffrey Francis; Weiss, Lauren Anne

2013-07-15

179

Segregation of a QTL cluster for home-cage activity using a new mapping method based on regression analysis of congenic mouse strains.  

PubMed

Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6C(MSM), which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6C(MSM). We found one QTL peak that spans 17.6?Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1-3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804

Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T

2014-11-01

180

Comparative genetic analysis of a wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling.  

PubMed

Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping. PMID:21468744

Somyong, Suthasinee; Munkvold, Jesse D; Tanaka, James; Benscher, David; Sorrells, Mark E

2011-09-01

181

Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes.  

PubMed

Psoriasis vulgaris (PsV) risk is strongly associated with variation within the major histocompatibility complex (MHC) region, but its genetic architecture has yet to be fully elucidated. Here, we conducted a large-scale fine-mapping study of PsV risk in the MHC region in 9,247 PsV-affected individuals and 13,589 controls of European descent by imputing class I and II human leukocyte antigen (HLA) genes from SNP genotype data. In addition, we imputed sequence variants for MICA, an MHC HLA-like gene that has been associated with PsV, to evaluate association at that locus as well. We observed that HLA-C(?)06:02 demonstrated the lowest p value for overall PsV risk (p = 1.7 × 10(-364)). Stepwise analysis revealed multiple HLA-C(?)06:02-independent risk variants in both class I and class II HLA genes for PsV susceptibility (HLA-C(?)12:03, HLA-B amino acid positions 67 and 9, HLA-A amino acid position 95, and HLA-DQ?1 amino acid position 53; p < 5.0 × 10(-8)), but no apparent risk conferred by MICA. We further evaluated risk of two major clinical subtypes of PsV, psoriatic arthritis (PsA; n = 3,038) and cutaneous psoriasis (PsC; n = 3,098). We found that risk heterogeneity between PsA and PsC might be driven by HLA-B amino acid position 45 (Pomnibus = 2.2 × 10(-11)), indicating that different genetic factors underlie the overall risk of PsV and the risk of specific PsV subphenotypes. Our study illustrates the value of high-resolution HLA and MICA imputation for fine mapping causal variants in the MHC. PMID:25087609

Okada, Yukinori; Han, Buhm; Tsoi, Lam C; Stuart, Philip E; Ellinghaus, Eva; Tejasvi, Trilokraj; Chandran, Vinod; Pellett, Fawnda; Pollock, Remy; Bowcock, Anne M; Krueger, Gerald G; Weichenthal, Michael; Voorhees, John J; Rahman, Proton; Gregersen, Peter K; Franke, Andre; Nair, Rajan P; Abecasis, Gonçalo R; Gladman, Dafna D; Elder, James T; de Bakker, Paul I W; Raychaudhuri, Soumya

2014-08-01

182

Multi-ethnic fine-mapping of 14 central adiposity loci.  

PubMed

The Genetic Investigation of Anthropometric Traits (GIANT) consortium identified 14 loci in European Ancestry (EA) individuals associated with waist-to-hip ratio (WHR) adjusted for body mass index. These loci are wide and narrowing the signals remains necessary. Twelve of 14 loci identified in GIANT EA samples retained strong associations with WHR in our joint EA/individuals of African Ancestry (AA) analysis (log-Bayes factor >6.1). Trans-ethnic analyses at five loci (TBX15-WARS2, LYPLAL1, ADAMTS9, LY86 and ITPR2-SSPN) substantially narrowed the signals to smaller sets of variants, some of which are in regions that have evidence of regulatory activity. By leveraging varying linkage disequilibrium structures across different populations, single-nucleotide polymorphisms (SNPs) with strong signals and narrower credible sets from trans-ethnic meta-analysis of central obesity provide more precise localizations of potential functional variants and suggest a possible regulatory role. Meta-analysis results for WHR were obtained from 77 167 EA participants from GIANT and 23 564 AA participants from the African Ancestry Anthropometry Genetics Consortium. For fine mapping we interrogated SNPs within ± 250 kb flanking regions of 14 previously reported index SNPs from loci discovered in EA populations by performing trans-ethnic meta-analysis of results from the EA and AA meta-analyses. We applied a Bayesian approach that leverages allelic heterogeneity across populations to combine meta-analysis results and aids in fine-mapping shared variants at these locations. We annotated variants using information from the ENCODE Consortium and Roadmap Epigenomics Project to prioritize variants for possible functionality. PMID:24760767

Liu, Ching-Ti; Buchkovich, Martin L; Winkler, Thomas W; Heid, Iris M; Borecki, Ingrid B; Fox, Caroline S; Mohlke, Karen L; North, Kari E; Adrienne Cupples, L

2014-09-01

183

Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies  

PubMed Central

Standard statistical approaches for prioritization of variants for functional testing in fine-mapping studies either use marginal association statistics or estimate posterior probabilities for variants to be causal under simplifying assumptions. Here, we present a probabilistic framework that integrates association strength with functional genomic annotation data to improve accuracy in selecting plausible causal variants for functional validation. A key feature of our approach is that it empirically estimates the contribution of each functional annotation to the trait of interest directly from summary association statistics while allowing for multiple causal variants at any risk locus. We devise efficient algorithms that estimate the parameters of our model across all risk loci to further increase performance. Using simulations starting from the 1000 Genomes data, we find that our framework consistently outperforms the current state-of-the-art fine-mapping methods, reducing the number of variants that need to be selected to capture 90% of the causal variants from an average of 13.3 to 10.4 SNPs per locus (as compared to the next-best performing strategy). Furthermore, we introduce a cost-to-benefit optimization framework for determining the number of variants to be followed up in functional assays and assess its performance using real and simulation data. We validate our findings using a large scale meta-analysis of four blood lipids traits and find that the relative probability for causality is increased for variants in exons and transcription start sites and decreased in repressed genomic regions at the risk loci of these traits. Using these highly predictive, trait-specific functional annotations, we estimate causality probabilities across all traits and variants, reducing the size of the 90% confidence set from an average of 17.5 to 13.5 variants per locus in this data. PMID:25357204

Kichaev, Gleb; Yang, Wen-Yun; Lindstrom, Sara; Hormozdiari, Farhad; Eskin, Eleazar; Price, Alkes L.; Kraft, Peter; Pasaniuc, Bogdan

2014-01-01

184

Admixture Fine-Mapping in African Americans Implicates XAF1 as a Possible Sarcoidosis Risk Gene  

PubMed Central

Sarcoidosis is a complex, multi-organ granulomatous disease with a likely genetic component. West African ancestry confers a higher risk for sarcoidosis than European ancestry. Admixture mapping provides the most direct method to locate genes that underlie such ethnic variation in disease risk. We sought to identify genetic risk variants within four previously-identified ancestry-associated regions—6p24.3–p12.1, 17p13.3–13.1, 2p13.3–q12.1, and 6q23.3–q25.2—in a sample of 2,727 African Americans. We used logistic regression fit by generalized estimating equations and the MIX score statistic to determine which variants within ancestry-associated regions were associated with risk and responsible for the admixture signal. Fine mapping was performed by imputation, based on a previous genome-wide association study; significant variants were validated by direct genotyping. Within the 6p24.3–p12.1 locus, the most significant ancestry-adjusted SNP was rs74318745 (p?=?9.4*10?11), an intronic SNP within the HLA-DRA gene that did not solely explain the admixture signal, indicating the presence of more than a single risk variant within this well-established sarcoidosis risk region. The locus on chromosome 17p13.3–13.1 revealed a novel sarcoidosis risk SNP, rs6502976 (p?=?9.5*10?6), within intron 5 of the gene X-linked Inhibitor of Apoptosis Associated Factor 1 (XAF1) that accounted for the majority of the admixture linkage signal. Immunohistochemical expression studies demonstrated lack of expression of XAF1 and a corresponding high level of expression of its downstream target, X-linked Inhibitor of Apoptosis (XIAP) in sarcoidosis granulomas. In conclusion, ancestry and association fine mapping revealed a novel sarcoidosis susceptibility gene, XAF1, which has not been identified by previous genome-wide association studies. Based on the known biology of the XIAP/XAF1 apoptosis pathway and the differential expression patterns of XAF1 and XIAP in sarcoidosis granulomas, we suggest that this pathway may play a role in the maintenance of sarcoidosis granulomas. PMID:24663488

Levin, Albert M.; Iannuzzi, Michael C.; Montgomery, Courtney G.; Trudeau, Sheri; Datta, Indrani; Adrianto, Indra; Chitale, Dhananjay A.; McKeigue, Paul; Rybicki, Benjamin A.

2014-01-01

185

Gene by Smoking Interaction in Hypertension: Identification of a Major QTL on Chromosome 15q for Systolic Blood Pressure in Mexican Americans  

PubMed Central

OBJECTIVE Our objective was to investigate the influence of gene by smoking (GxS) interaction on hypertension (HT) and blood pressure (BP) using genome-wide linkage analysis in Mexican Americans, followed by SNP fine mapping of candidate genes in the linked chromosomal region. METHODS We used nonparametric methods to test for linkage of microsatellites with HT and BP measures in smokers, non-smokers, and the combined group. To begin fine-mapping of a major QTL for SBP on chromosome 15q that showed strong evidence for GxS interaction, we genotyped 55 SNPs in 9 candidate genes for association studies using two population-based statistical methods. RESULTS The strongest evidence for GxS interaction (p = 0.0004) was found for SBP on chromosome 15q, where a major QTL (LOD = 3.36) was identified only in non-smokers. Follow-up studies identified three SNPs in three genes (ANPEP, IGF1R, and SLCO3A1) that showed associations with SBP only in non-smokers, cumulatively accounting for a 7 mmHg increase in SBP. However, conditional linkage analyses that accounted for phenotypic effects of these SNPs only slightly reduced the original LOD score. CONCLUSION The detection of a major QTL on chromosome 15q for SBP in non-smokers indicates the presence of loci that influence BP via GxS interactions. However, identification of the genes that underlie such QTL effects remains a challenge. Although we found three candidate genes that showed significant associations with SBP in non-smokers, further studies are required to identify the gene(s) that underlie the chromosome 15q QTL that influences SBP via GxS interactions. PMID:19330903

Montasser, May E.; Shimmin, Lawrence C.; Hanis, Craig L.; Boerwinkle, Eric; Hixson, James E.

2009-01-01

186

Fine mapping of the celiac disease-associated LPP locus reveals a potential functional variant  

PubMed Central

Using the Immunochip for genotyping, we identified 39 non-human leukocyte antigen (non-HLA) loci associated to celiac disease (CeD), an immune-mediated disease with a worldwide frequency of ?1%. The most significant non-HLA signal mapped to the intronic region of 70 kb in the LPP gene. Our aim was to fine map and identify possible functional variants in the LPP locus. We performed a meta-analysis in a cohort of 25 169 individuals from six different populations previously genotyped using Immunochip. Imputation using data from the Genome of the Netherlands and 1000 Genomes projects, followed by meta-analysis, confirmed the strong association signal on the LPP locus (rs2030519, P = 1.79 × 10?49), without any novel associations. The conditional analysis on this top SNP-indicated association to a single common haplotype. By performing haplotype analyses in each population separately, as well as in a combined group of the four populations that reach the significant threshold after correction (P < 0.008), we narrowed down the CeD-associated region from 70 to 2.8 kb (P = 1.35 × 10?44). By intersecting regulatory data from the ENCODE project, we found a functional SNP, rs4686484 (P = 3.12 × 10?49), that maps to several B-cell enhancer elements and a highly conserved region. This SNP was also predicted to change the binding motif of the transcription factors IRF4, IRF11, Nkx2.7 and Nkx2.9, suggesting its role in transcriptional regulation. We later found significantly low levels of LPP mRNA in CeD biopsies compared with controls, thus our results suggest that rs4686484 is the functional variant in this locus, while LPP expression is decreased in CeD. PMID:24334606

Almeida, Rodrigo; Ricano-Ponce, Isis; Kumar, Vinod; Deelen, Patrick; Szperl, Agata; Trynka, Gosia; Gutierrez-Achury, Javier; Kanterakis, Alexandros; Westra, Harm-Jan; Franke, Lude; Swertz, Morris A.; Platteel, Mathieu; Bilbao, Jose Ramon; Barisani, Donatella; Greco, Luigi; Mearin, Luisa; Wolters, Victorien M.; Mulder, Chris; Mazzilli, Maria Cristina; Sood, Ajit; Cukrowska, Bozena; Nunez, Concepcion; Pratesi, Riccardo; Withoff, Sebo; Wijmenga, Cisca

2014-01-01

187

Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster.  

PubMed

Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F(9) recombinant inbred lines (RILs) and 1,944 F(2) plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely linked with the Ccu locus. On the high-resolution map developed with the F(2) population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats in this region. PMID:21104067

Kang, Houxiang; Weng, Yiqun; Yang, Yuhong; Zhang, Zhonghua; Zhang, Shengping; Mao, Zhenchuan; Cheng, Guohua; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

2011-03-01

188

Fine Mapping Study Reveals Novel Candidate Genes for Carotid Intima-Media Thickness in Dominican Families  

PubMed Central

Background Carotid intima-media thickness (CIMT) is a subclinical measure for atherosclerosis. Previously, we have mapped quantitative trait loci (QTLs) for CIMT to chromosomes 7p (MLOD=3.1) and to 14q (MLOD=2.3). We sought to identify the underlying genetic variants within those QTLs, Methods and Results Using the 100 extended Dominican Republican (DR) families (N=1312) used in the original linkage study, we fine mapped the QTLs with 2031 tagging single nucleotide polymorphisms (SNPs). Promising SNPs in the family dataset were examined in an independent population-based subcohort comprised of DR individuals (N=553) from the Northern Manhattan Study. Among the families, evidence for association (P<0.001) was found in multiple genes (ANLN, AOAH, FOXN3, CCDC88C, PRiMA1, and an intergenic SNP rs1667498), with the strongest association at PRiMA1 (P=0.00007, corrected P=0.047). Additional analyses revealed that the association at these loci, except PRiMA1, was highly significant (P= 0.00004~0.00092) in families with evidence for linkage but not in the rest of families (P=0.13~0.80) and the population-based cohort, suggesting the genetic effects at these SNPs are limited to a subgroup of families. In contrast, the association at PRiMA1 was significant in both families with and without evidence for linkage (P=0.002 and 0.019, respectively), and the population-based subcohort (P=0.047), supporting a robust association. Conclusions We identified several candidate genes for CIMT in DR families. Some of the genes manifest genetic effects within a specific subgroup and others were generalized to all groups. Future studies are needed to further evaluate the contribution of these genes to atherosclerosis. PMID:22423143

Wang, Liyong; Beecham, Ashley; Zhuo, Degen; Dong, Chuanhui; Blanton, Susan H.; Rundek, Tatjana; Sacco, Ralph L.

2012-01-01

189

Fine mapping of RppP25, a southern rust resistance gene in maize.  

PubMed

Southern rust (Puccinia polysora Underw.) is a major disease that can cause severe yield losses in maize (Zea mays L.). In our previous study, a major gene RppP25 that confers resistance to southern rust was identified in inbred line P25. Here, we report the fine mapping and candidate gene analysis of RppP25 from the near-isogenic line F939, which harbors RppP25 in the genetic background of the susceptible inbred line F349. The inheritance of resistance to southern rust was investigated in the BC1 F1 and BC3 F1 populations, which were derived from a cross between F939 and F349 (as the recurrent parent). The 1:1 segregation ratio of resistance to susceptible plants in these two populations indicated that the resistance is controlled by a single dominant gene. Ten markers, including three simple sequence repeat (SSR) markers and seven insertion/deletion (InDel) markers, were developed in the RppP25 region. RppP25 was delimited to an interval between P091 and M271, with an estimated length of 40 kb based on the physical map of B73. In this region, a candidate gene was identified that was predicted to encode a putative nucleotide-binding site leucine-rich repeat (NBS-LRR) protein. Two co-segregated markers will aid in pyramiding diverse southern rust resistance alleles into elite materials, and thereby improve southern rust resistance worldwide. PMID:23302046

Zhao, Panfeng; Zhang, Guobin; Wu, Xiaojun; Li, Na; Shi, Dianyi; Zhang, Dengfeng; Ji, Chunfang; Xu, Mingliang; Wang, Shoucai

2013-05-01

190

Resolving candidate genes of mouse skeletal muscle QTL via RNA-Seq and expression network analyses  

PubMed Central

Background We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA) muscle of each strain by RNA-Seq. Results 13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p<0.03). Conclusion Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs. PMID:23126637

2012-01-01

191

Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis.  

PubMed

We genotyped 2,861 cases of primary biliary cirrhosis (PBC) from the UK PBC Consortium and 8,514 UK population controls across 196,524 variants within 186 known autoimmune risk loci. We identified 3 loci newly associated with PBC (at P<5×10(-8)), increasing the number of known susceptibility loci to 25. The most associated variant at 19p12 is a low-frequency nonsynonymous SNP in TYK2, further implicating JAK-STAT and cytokine signaling in disease pathogenesis. An additional five loci contained nonsynonymous variants in high linkage disequilibrium (LD; r2>0.8) with the most associated variant at the locus. We found multiple independent common, low-frequency and rare variant association signals at five loci. Of the 26 independent non-human leukocyte antigen (HLA) signals tagged on the Immunochip, 15 have SNPs in B-lymphoblastoid open chromatin regions in high LD (r2>0.8) with the most associated variant. This study shows how data from dense fine-mapping arrays coupled with functional genomic data can be used to identify candidate causal variants for functional follow-up. PMID:22961000

Liu, Jimmy Z; Almarri, Mohamed A; Gaffney, Daniel J; Mells, George F; Jostins, Luke; Cordell, Heather J; Ducker, Samantha J; Day, Darren B; Heneghan, Michael A; Neuberger, James M; Donaldson, Peter T; Bathgate, Andrew J; Burroughs, Andrew; Davies, Mervyn H; Jones, David E; Alexander, Graeme J; Barrett, Jeffrey C; Sandford, Richard N; Anderson, Carl A

2012-10-01

192

A Genome-Wide, Fine-Scale Map of Natural Pigmentation Variation in Drosophila melanogaster  

PubMed Central

Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS) to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs) segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome. PMID:23754958

Nolte, Viola; Tobler, Raymond; Stobe, Petra; Futschik, Andreas; Schlotterer, Christian

2013-01-01

193

Genealogy and fine mapping of obscuravenosa, a gene affecting the distribution of chloroplasts in leaf veins, and evidence of selection during breeding of tomatoes (Lycopersicon esculentum; Solanaceae).  

PubMed

In the processes of plant domestication and variety development, some traits are under direct selection, while others may be introduced by indirect selection or linkage. In the cultivated tomato (Lycopersicon esculentum = Solanum lycopersicum), and all other Solanaceae examined, chloroplasts are normally absent from subepidermal and mesophyll cells surrounding the leaf veins, and thus, veins appear clear upon subillumination. The tomato mutant obscuravenosa (obv), in contrast, contains chloroplasts in cells around the vein, and thus, veins appear as dark as the surrounding leaf tissue. Among tomato cultivars, the obv allele is common in processing varieties bred for mechanical harvest, but is otherwise rare. We traced the source of obv in processing tomatoes to the cultivar Earliana, released in the 1920s. The obv locus was mapped to chromosome 5, bin 5G, using introgression lines containing single chromosome segments from the wild species L. pennellii. This region also contains a quantitative trait locus (QTL) for plant height, pht5.4, which cosegregated with SP5G, a paralog of self-pruning (sp), the gene that controls the switch between determinate and indeterminate growth in tomato. The pht5.4 QTL was partially dominant and associated with a reduced percentage of red fruit at harvest. Our data suggest that the prevalence of obv in nearly all processing varieties may have resulted from its tight linkage to a QTL conferring a more compact, and horticulturally desirable, plant habit. PMID:21636462

Jones, Carl M; Rick, Charles M; Adams, Dawn; Jernstedt, Judy; Chetelat, Roger T

2007-06-01

194

Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits  

Microsoft Academic Search

Total soluble solids content is a key determinant of tomato fruit quality for processing. Several tomato lines carrying defined introgressions from S. pennellii in a S. lycopersicum background produce fruit with elevated Brix, a refractive index measure of soluble solids. The genetic basis for this trait can be deter- mined by fine-mapping each QTL to a single gene, but this

Charles J. Baxter; Mohammed Sabar; W. Paul Quick; Lee J. Sweetlove

2005-01-01

195

Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor.  

PubMed

Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock. PMID:22393513

Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F A; Kraus, F B

2011-12-01

196

Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor  

PubMed Central

Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock. PMID:22393513

Behrens, Dieter; Huang, Qiang; Gessner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F A; Kraus, F B

2011-01-01

197

A high-density SNP Map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12.  

PubMed

A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman's rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping. PMID:25014030

Talukder, Zahirul I; Gong, Li; Hulke, Brent S; Pegadaraju, Venkatramana; Song, Qijian; Schultz, Quentin; Qi, Lili

2014-01-01

198

NSF StatGen 2009 Bayesian Interval Mapping  

E-print Network

of QTL effects major QTL on linkage map i (modifiers) 0 5 10 15 20 25 30 012 rank order of QTL and complexity (model size) � genetic linkage = correlated estimates of gene effects � limits of biological: maximize number of correctly identified QTL � basic science/evolution � how is the genome organized

Yandell, Brian S.

199

Fine-Mapping IGF1 and Prostate Cancer Risk in African Americans: The Multiethnic Cohort Study.  

PubMed

Genetic variation at insulin-like growth factor 1 (IGF1) has been linked to prostate cancer risk. However, the specific predisposing variants have not been identified. In this study, we fine-mapped the IGF1 locus for prostate cancer risk in African Americans. We conducted targeted Roche GS-Junior 454 resequencing of a 156-kb region of IGF1 in 80 African American aggressive prostate cancer cases. Three hundred and thirty-four IGF1 SNPs were examined for their association with prostate cancer risk in 1,000 African American prostate cancer cases and 991 controls. The top associated SNP in African Americans, rs148371593, was examined in an additional 3,465 prostate cancer cases and 3,425 controls of non-African American ancestry-European Americans, Japanese Americans, Latinos, and Native Hawaiians. The overall association of 334 IGF1 SNPs and prostate cancer risk was assessed using logistic kernel-machine methods. The association between each SNP and prostate cancer risk was evaluated through unconditional logistic regression. A false discovery rate threshold of q < 0.1 was used to determine statistical significance of associations. We identified 8 novel IGF1 SNPs. The cumulative effect of the 334 IGF1 SNPs was not associated with prostate cancer risk (P = 0.13) in African Americans. Twenty SNPs were nominally associated with prostate cancer at P < 0.05. The top associated SNP among African Americans, rs148371593 [minor allele frequency (MAF) = 0.03; P = 0.0014; q > 0.1], did not reach our criterion of statistical significance. This polymorphism was rare in non-African Americans (MAF < 0.003) and was not associated with prostate cancer risk (P = 0.98). Our findings do not support the role of IGF1 variants and prostate cancer risk among African Americans. Cancer Epidemiol Biomarkers Prev; 23(9); 1928-32. ©2014 AACR. PMID:24904019

Giorgi, Elena E; Stram, Daniel O; Taverna, Darin; Turner, Stephen D; Schumacher, Fredrick; Haiman, Christopher A; Lum-Jones, Annette; Tirikainen, Maarit; Caberto, Christian; Duggan, David; Henderson, Brian E; Le Marchand, Loic; Cheng, Iona

2014-09-01

200

Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.  

PubMed

Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date, deciphering the mouse brain functional connectivity (MBFC) with rsfMRI remains a largely underexplored research area, despite the plethora of human brain disorders that can be modeled in this specie. To pave the way from pre-clinical to clinical investigations we characterized here the intrinsic architecture of mouse brain functional circuitry, based on rsfMRI data acquired at 7T using the Cryoprobe technology. High-dimensional spatial group independent component analysis demonstrated fine-grained segregation of cortical and subcortical networks into functional clusters, overlapping with high specificity onto anatomical structures, down to single gray matter nuclei. These clusters, showing a high level of stability and reliability in their patterning, formed the input elements for computing the MBFC network using partial correlation and graph theory. Its topological architecture conserved the fundamental characteristics described for the human and rat brain, such as small-worldness and partitioning into functional modules. Our results additionally showed inter-modular interactions via "network hubs". Each major functional system (motor, somatosensory, limbic, visual, autonomic) was found to have representative hubs that might play an important input/output role and form a functional core for information integration. Moreover, the rostro-dorsal hippocampus formed the highest number of relevant connections with other brain areas, highlighting its importance as core structure for MBFC. PMID:24718287

Mechling, Anna E; Hübner, Neele S; Lee, Hsu-Lei; Hennig, Jürgen; von Elverfeldt, Dominik; Harsan, Laura-Adela

2014-08-01

201

Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae.  

PubMed

Autophagy is a bulk degradation system mediated by biogenesis of autophagosomes under starvation conditions. In Saccharomyces cerevisiae, a membrane sac called the isolation membrane (IM) is generated from the pre-autophagosomal structure (PAS); ultimately, the IM expands to become a mature autophagosome. Eighteen autophagy-related (Atg) proteins are engaged in autophagosome formation at the PAS. However, the cup-shaped IM was visualized just as a dot by fluorescence microscopy, posing a challenge to further understanding the detailed functions of Atg proteins during IM expansion. In this study, we visualized expanding IMs as cup-shaped structures using fluorescence microscopy by enlarging a selective cargo of autophagosomes, and finely mapped the localizations of Atg proteins. The PAS scaffold proteins (Atg13 and Atg17) and phosphatidylinositol 3-kinase complex I were localized to a position at the junction between the IM and the vacuolar membrane, termed the vacuole-IM contact site (VICS). By contrast, Atg1, Atg8 and the Atg16-Atg12-Atg5 complex were present at both the VICS and the cup-shaped IM. We designate this localization the 'IM' pattern. The Atg2-Atg18 complex and Atg9 localized to the edge of the IM, appearing as two or three dots, in close proximity to the endoplasmic reticulum exit sites. Thus, we designate these dots as the 'IM edge' pattern. These data suggest that Atg proteins play individual roles at spatially distinct locations during IM expansion. These findings will facilitate detailed investigations of the function of each Atg protein during autophagosome formation. PMID:23549786

Suzuki, Kuninori; Akioka, Manami; Kondo-Kakuta, Chika; Yamamoto, Hayashi; Ohsumi, Yoshinori

2013-06-01

202

Fine Mapping on Chromosome 10q22-q23 Implicates Neuregulin 3 in Schizophrenia  

PubMed Central

Linkage studies have implicated 10q22-q23 as a schizophrenia (SZ) susceptibility locus in Ashkenazi Jewish (AJ) and Han Chinese from Taiwan populations. To further explore our previous linkage signal in the AJ population (NPL score: 4.27, empirical p = 2 × 10?5), we performed a peakwide association fine mapping study by using 1414 SNPs across ?12.5 Mb in 10q22-q23. We genotyped 1515 AJ individuals, including 285 parent-child trios, 173 unrelated cases, and 487 unrelated controls. We analyzed the binary diagnostic phenotype of SZ and 9 heritable quantitative traits derived from a principal components factor analysis of 73 items from our consensus diagnostic ratings and direct assessment interviews. Although no marker withstood multiple test correction for association with the binary SZ phenotype, we found strong evidence of association by using the “delusion” factor as the quantitative trait at three SNPs (rs10883866, rs10748842, and rs6584400) located in a 13 kb interval in intron 1 of Neuregulin 3 (NRG3). Our best p value from family-based association analysis was 7.26 × 10?7. We replicated this association in the collection of 173 unrelated AJ cases (p = 1.55 × 10?2), with a combined p value of 2.30 × 10?7. After performing 10,000 permutations of each of the phenotypes, we estimated the empirical study-wide significance across all 9 factors (90,000 permutations) to be p = 2.7 × 10?3. NRG3 is primarily expressed in the central nervous system and is one of three paralogs of NRG1, a gene strongly implicated in SZ. These biological properties together with our linkage and association results strongly support NRG3 as a gene involved in SZ. PMID:19118813

Chen, Pei-Lung; Avramopoulos, Dimitrios; Lasseter, Virginia K.; McGrath, John A.; Fallin, M. Daniele; Liang, Kung-Yee; Nestadt, Gerald; Feng, Ningping; Steel, Gary; Cutting, Andrew S.; Wolyniec, Paula; Pulver, Ann E.; Valle, David

2009-01-01

203

Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory  

PubMed Central

While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

2014-01-01

204

Fine-Mapping an Association of FSHR with Preterm Birth in a Finnish Population  

PubMed Central

Preterm birth is a complex disorder defined by gestations of less than 37 weeks. While preterm birth is estimated to have a significant genetic component, relative few genes have been associated with preterm birth. Polymorphism in one such gene, follicle-stimulating hormone receptor (FSHR), has been associated with preterm birth in Finnish and African American mothers but not other populations. To refine the genetic association of FSHR with preterm birth we conducted a fine-mapping study at the FSHR locus in a Finnish cohort. We sequenced a total of 44 kb, including protein-coding and conserved non-coding regions, in 127 preterm and 135 term mothers. Overall, we identified 288 single nucleotide variants and 65 insertion/deletions of 1–2 bp across all subjects. While no common SNPs in protein-coding regions were associated with preterm birth, including one previously associated with timing of fertilization, multiple SNPs spanning the first and second intron showed the strongest associations. Analysis of the associated SNPs revealed that they form both a protective (OR?=?0.50, 95% CI?=?0.25–0.93) as well as a risk (OR?=?1.89, 95% CI?=?1.08–3.39) haplotype with independent effects. In these haplotypes, two SNPs, rs12052281 and rs72822025, were predicted to disrupt ZEB1 and ELF3 transcription factor binding sites, respectively. Our results show that multiple haplotypes at FSHR are associated with preterm birth and we discuss the frequency and structure of these haplotypes outside of the Finnish population as a potential explanation for the absence of FSHR associations in some populations. PMID:24205076

Chun, Sung; Plunkett, Jevon; Teramo, Kari; Muglia, Louis J.; Fay, Justin C.

2013-01-01

205

Fine-mapping an association of FSHR with preterm birth in a Finnish population.  

PubMed

Preterm birth is a complex disorder defined by gestations of less than 37 weeks. While preterm birth is estimated to have a significant genetic component, relative few genes have been associated with preterm birth. Polymorphism in one such gene, follicle-stimulating hormone receptor (FSHR), has been associated with preterm birth in Finnish and African American mothers but not other populations. To refine the genetic association of FSHR with preterm birth we conducted a fine-mapping study at the FSHR locus in a Finnish cohort. We sequenced a total of 44 kb, including protein-coding and conserved non-coding regions, in 127 preterm and 135 term mothers. Overall, we identified 288 single nucleotide variants and 65 insertion/deletions of 1-2 bp across all subjects. While no common SNPs in protein-coding regions were associated with preterm birth, including one previously associated with timing of fertilization, multiple SNPs spanning the first and second intron showed the strongest associations. Analysis of the associated SNPs revealed that they form both a protective (OR?=?0.50, 95% CI?=?0.25-0.93) as well as a risk (OR?=?1.89, 95% CI?=?1.08-3.39) haplotype with independent effects. In these haplotypes, two SNPs, rs12052281 and rs72822025, were predicted to disrupt ZEB1 and ELF3 transcription factor binding sites, respectively. Our results show that multiple haplotypes at FSHR are associated with preterm birth and we discuss the frequency and structure of these haplotypes outside of the Finnish population as a potential explanation for the absence of FSHR associations in some populations. PMID:24205076

Chun, Sung; Plunkett, Jevon; Teramo, Kari; Muglia, Louis J; Fay, Justin C

2013-01-01

206

A note on the efficiencies of sampling strategies in two-stage bayesian regional fine mapping of a quantitative trait.  

PubMed

In focused studies designed to follow up associations detected in a genome-wide association study (GWAS), investigators can proceed to fine-map a genomic region by targeted sequencing or dense genotyping of all variants in the region, aiming to identify a functional sequence variant. For the analysis of a quantitative trait, we consider a Bayesian approach to fine-mapping study design that incorporates stratification according to a promising GWAS tag SNP in the same region. Improved cost-efficiency can be achieved when the fine-mapping phase incorporates a two-stage design, with identification of a smaller set of more promising variants in a subsample taken in stage 1, followed by their evaluation in an independent stage 2 subsample. To avoid the potential negative impact of genetic model misspecification on inference we incorporate genetic model selection based on posterior probabilities for each competing model. Our simulation study shows that, compared to simple random sampling that ignores genetic information from GWAS, tag-SNP-based stratified sample allocation methods reduce the number of variants continuing to stage 2 and are more likely to promote the functional sequence variant into confirmation studies. PMID:25132153

Chen, Zhijian; Craiu, Radu V; Bull, Shelley B

2014-11-01

207

A Fine-Resolution Radar for Mapping Near-Surface Isochronous Layers  

NASA Astrophysics Data System (ADS)

Information on the spatial and temporal variation of snow accumulation is required for interpreting satellite-based radar and laser surface elevation measurements made by CryoSAT and ICESAT altimeters. Current methods of using ice cores and analyzing snow pit stratigraphy is time consuming and prone to errors in spatial representation due to the sparse sampling. Remote sensing methods that can map near-surface internal layers for estimating spatial and temporal variation are required. To accomplish this, we developed a 12-18 GHz FMCW radar to map near-surface layers with 3 cm vertical resolution to a depth of about 10 m. We developed the system to be mobile and self-contained so that spatial variability of the accumulation over a large area can be characterized. The fine resolution of this radar is achieved by its wide bandwidth and by illuminating the target area with a plane-wave, which is implemented using an offset-fed parabolic reflector. Traditional wide-beamwidth antennas are susceptible to spherical wave scattering from off-vertical targets that can potentially mask weaker reflections from internal layers. The radar features a fast transmit waveform synthesizer implemented using a voltage controlled oscillator (VCO) and a phase-locked loop (PLL) using a linear chirp as the reference. The highly linear reference chirp was generated by a direct digital synthesis (DDS) waveform generator and compared against the instantaneous output of the VCO to create a highly linear 12 to 18 GHz transmit chirp. The waveform synthesizer can be swept from 12 to 18 GHz in 500 microseconds. The antenna was mounted on a sled and the radar system was integrated with the antenna feed. We designed and built the sled with a gimbaled antenna mount and sensing control system to ensure that the antenna points at nadir. The radar system was successfully tested at the Summit camp, Greenland, in July 2005. We collected a large amount of data from various locations around Summit camp. The locations include areas adjacent to bamboo stakes measured either weekly or monthly throughout the year to track snow accumulation. Additionally, three snow pits were dug to compare radar data with actual stratigraphy and density. More than 200 sample traces were collected to compare with our snow pit observations. Each sample trace uses 10 sweeps, which are coherently integrated to improve signal-to-noise ratio (SNR). The average snow density was used to determine the dielectric constant, which enables the estimation of the propagation velocity in firn. Our initial results show a high correlation between the snow pit stratigraphy and reflecting layers mapped with the radar. We observed echoes from layers with the radar operated at a single spot, and with the radar traveling at a nearly constant speed along a line over a distance in excess of 4 km. In our presentation we will cover the design and construction of the radar, as well as provide sample results from field experiments at Summit, Greenland. A comparison of experimental data with simulations obtained using density and stratigraphy data will also be shown. Future plans for this system will also be discussed, including plans for measurements at the WAIS divide deep core site in Antarctica during the 2005-2006 field season.

Rink, T. P.; Kanagaratnam, P.; Braaten, D.; Zimmerman, K.; Akins, T.; Gogineni, S.

2005-12-01

208

Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2  

Microsoft Academic Search

In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed.

M. J. W. Jeuken; K. T. B. Pelgrom; P. Stam; P. Lindhout

2008-01-01

209

Fine mapping of chromosome 15q25.1 lung cancer susceptibility in African-Americans  

PubMed Central

Several genome-wide association studies identified the chr15q25.1 region, which includes three nicotinic cholinergic receptor genes (CHRNA5-B4) and the cell proliferation gene (PSMA4), for its association with lung cancer risk in Caucasians. A haplotype and its tagging single nucleotide polymorphisms (SNPs) encompassing six genes from IREB2 to CHRNB4 were most strongly associated with lung cancer risk (OR = 1.3; P < 10?20). In order to narrow the region of association and identify potential causal variations, we performed a fine-mapping study using 77 SNPs in a 194 kb segment of the 15q25.1 region in a sample of 448 African-American lung cancer cases and 611 controls. Four regions, two SNPs and two distinct haplotypes from sliding window analyses, were associated with lung cancer. CHRNA5 rs17486278 G had OR = 1.28, 95% CI 1.07–1.54 and P = 0.008, whereas CHRNB4 rs7178270 G had OR = 0.78, 95% CI 0.66–0.94 and P = 0.008 for lung cancer risk. Lung cancer associations remained significant after pack-year adjustment. Rs7178270 decreased lung cancer risk in women but not in men; gender interaction P = 0.009. For two SNPs (rs7168796 A/G and rs7164594 A/G) upstream of PSMA4, lung cancer risks for people with haplotypes GG and AA were reduced compared with those with AG (OR = 0.56, 95% CI 0.38–0.82; P = 0.003 and OR = 0.73, 95% CI 0.59–0.90, P = 0.004, respectively). A four-SNP haplotype spanning CHRNA5 (rs11637635 C, rs17408276 T, rs16969968 G) and CHRNA3 (rs578776 G) was associated with increased lung cancer risk (P = 0.002). The identified regions contain SNPs predicted to affect gene regulation. There are multiple lung cancer risk loci in the 15q25.1 region in African-Americans. PMID:20587604

Hansen, Helen M.; Xiao, Yuanyuan; Rice, Terri; Bracci, Paige M.; Wrensch, Margaret R.; Sison, Jennette D.; Chang, Jeffery S.; Smirnov, Ivan V.; Patoka, Joseph; Seldin, Michael F.; Quesenberry, Charles P.; Kelsey, Karl T.; Wiencke, John K.

2010-01-01

210

Lineage-specific mapping of quantitative trait loci  

PubMed Central

We present an approach for quantitative trait locus (QTL) mapping, termed as ‘lineage-specific QTL mapping', for inferring allelic changes of QTL evolution along with branches in a phylogeny. We describe and analyze the simplest case: by adding a third taxon into the normal procedure of QTL mapping between pairs of taxa, such inferences can be made along lineages to a presumed common ancestor. Although comparisons of QTL maps among species can identify homology of QTLs by apparent co-location, lineage-specific mapping of QTL can classify homology into (1) orthology (shared origin of QTL) versus (2) paralogy (independent origin of QTL within resolution of map distance). In this light, we present a graphical method that identifies six modes of QTL evolution in a three taxon comparison. We then apply our model to map lineage-specific QTLs for inbreeding among three taxa of yellow monkey-flower: Mimulus guttatus and two inbreeders M. platycalyx and M. micranthus, but critically assuming outcrossing was the ancestral state. The two most common modes of homology across traits were orthologous (shared ancestry of mutation for QTL alleles). The outbreeder M. guttatus had the fewest lineage-specific QTL, in accordance with the presumed ancestry of outbreeding. Extensions of lineage-specific QTL mapping to other types of data and crosses, and to inference of ancestral QTL state, are discussed. PMID:23612690

Chen, C; Ritland, K

2013-01-01

211

Re-Sequencing Data for Refining Candidate Genes and Polymorphisms in QTL Regions Affecting Adiposity in Chicken  

PubMed Central

In this study, we propose an approach aiming at fine-mapping adiposity QTL in chicken, integrating whole genome re-sequencing data. First, two QTL regions for adiposity were identified by performing a classical linkage analysis on 1362 offspring in 11 sire families obtained by crossing two meat-type chicken lines divergently selected for abdominal fat weight. Those regions, located on chromosome 7 and 19, contained a total of 77 and 84 genes, respectively. Then, SNPs and indels in these regions were identified by re-sequencing sires. Considering issues related to polymorphism annotations for regulatory regions, we focused on the 120 and 104 polymorphisms having an impact on protein sequence, and located in coding regions of 35 and 42 genes situated in the two QTL regions. Subsequently, a filter was applied on SNPs considering their potential impact on the protein function based on conservation criteria. For the two regions, we identified 42 and 34 functional polymorphisms carried by 18 and 24 genes, and likely to deeply impact protein, including 3 coding indels and 4 nonsense SNPs. Finally, using gene functional annotation, a short list of 17 and 4 polymorphisms in 6 and 4 functional genes has been defined. Even if we cannot exclude that the causal polymorphisms may be located in regulatory regions, this strategy gives a complete overview of the candidate polymorphisms in coding regions and prioritize them on conservation- and functional-based arguments. PMID:25333370

Roux, Pierre-Francois; Boutin, Morgane; Desert, Colette; Djari, Anis; Esquerre, Diane; Klopp, Christophe

2014-01-01

212

Fractionation, Stability, and Isolate-Specificity of QTL for Resistance to Phytophthora infestans in Cultivated Tomato (Solanum lycopersicum)  

PubMed Central

Cultivated tomato (Solanum lycopersicum) is susceptible to late blight, a major disease caused by Phytophthora infestans, but quantitative resistance exists in the wild tomato species S. habrochaites. Previously, we mapped several quantitative trait loci (QTL) from S. habrochaites and then introgressed each individually into S. lycopersicum. Near-isogenic lines (NILs) were developed, each containing a single introgressed QTL on chromosome 5 or 11. NILs were used to create two recombinant sub-NIL populations, one for each target chromosome region, for higher-resolution mapping. The sub-NIL populations were evaluated for foliar and stem resistance to P. infestans in replicated field experiments over two years, and in replicated growth chamber experiments for resistance to three California isolates. Each of the original single QTL on chromosomes 5 and 11 fractionated into between two and six QTL for both foliar and stem resistance, indicating a complex genetic architecture. The majority of QTL from the field experiments were detected in multiple locations or years, and two of the seven QTL detected in growth chambers were co-located with QTL detected in field experiments, indicating stability of some QTL across environments. QTL that confer foliar and stem resistance frequently co-localized, suggesting that pleiotropy and/or tightly linked genes control the trait phenotypes. Other QTL exhibited isolate-specificity and QTL × environment interactions. Map-based comparisons between QTL mapped in this study and Solanaceae resistance genes/QTL detected in other published studies revealed multiple cases of co-location, suggesting conservation of gene function. PMID:23050225

Johnson, Emily B.; Haggard, J. Erron; St.Clair, Dina A.

2012-01-01

213

Robust Score Statistics for QTL Linkage Analysis  

PubMed Central

The traditional variance components approach for quantitative trait locus (QTL) linkage analysis is sensitive to violations of normality and fails for selected sampling schemes. Recently, a number of new methods have been developed for QTL mapping in humans. Most of the new methods are based on score statistics or regression-based statistics and are expected to be relatively robust to non-normality of the trait distribution and also to selected sampling, at least in terms of type I error. Whereas the theoretical development of these statistics is more or less complete, some practical issues concerning their implementation still need to be addressed. Here we study some of these issues such as the choice of denominator variance estimates, weighting of pedigrees, effect of parameter misspecification, effect of non-normality of the trait distribution, and effect of incorporating dominance. We present a comprehensive discussion of the theoretical properties of various denominator variance estimates and of the weighting issue and then perform simulation studies for nuclear families to compare the methods in terms of power and robustness. Based on our analytical and simulation results, we provide general guidelines regarding the choice of appropriate QTL mapping statistics in practical situations. PMID:18304491

Bhattacharjee, Samsiddhi; Kuo, Chia-Ling; Mukhopadhyay, Nandita; Brock, Guy N.; Weeks, Daniel E.; Feingold, Eleanor

2008-01-01

214

Genetics of phenotypic plasticity: QTL analysis in barley, Hordeum vulgare.  

PubMed

Phenotypic plasticity is the variation in phenotypic traits produced by a genotype in different environments. In contrast, environmental canalization is defined as the insensitivity of a genotype's phenotype to variation in environments. Despite the extensive literature on the evolutionary significance and potential genetic mechanisms driving plasticity and canalization, few studies tried to unravel the genetic basis of this phenomenon. Using both simulations and real data from barley (Hordeum vulgare), we used QTL mapping to obtain insights into the genetics of phenotypic plasticity. We explored two ways of quantifying phenotypic plasticity, namely the phenotypic variance across environments and the Finlay-Wilkinson's regression slope. Each relates to a different concept of stability. Through QTL detection with real and simulated data, we show that each measure of plasticity detects specific types of plasticity QTL. Most of the plasticity QTLs were detected in the data set with the lowest number of environments. All plasticity QTL co-located with loci showing QTL x E interaction and there were no QTL that only affected plasticity. The number of environments that are considered and their homogeneity is a key to interpret the genetic control of phenotypic plasticity. Regulatory pathways of plasticity may vary from one set of environments to another due to unique features of each environment. Therefore, with an increasing number of environments, it may become impossible to detect a single 'consistent' regulatory pathway for all environments. PMID:18941472

Lacaze, X; Hayes, P M; Korol, A

2009-02-01

215

Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations  

PubMed Central

Mapping expression quantitative trait loci (eQTL) has identified genetic variants associated with transcription rates and has provided insight into genotype–phenotype associations obtained from genome-wide association studies (GWAS). Traditional eQTL mapping methods present significant challenges for the multiple-testing burden, resulting in a limited ability to detect eQTL that reside distal to the affected gene. To overcome this, we developed a novel eQTL testing approach, “network-based, large-scale identification of distal eQTL” (NetLIFT), which performs eQTL testing based on the pairwise conditional dependencies between genes’ expression levels. When applied to existing data from yeast segregants, NetLIFT replicated most previously identified distal eQTL and identified 46% more genes with distal effects compared to local effects. In liver data from mouse lines derived through the Collaborative Cross project, NetLIFT detected 5744 genes with local eQTL while 3322 genes had distal eQTL. This analysis revealed founder-of-origin effects for a subset of local eQTL that may contribute to previously described phenotypic differences in metabolic traits. In human lymphoblastoid cell lines, NetLIFT was able to detect 1274 transcripts with distal eQTL that had not been reported in previous studies, while 2483 transcripts with local eQTL were identified. In all species, we found no enrichment for transcription factors facilitating eQTL associations; instead, we found that most trans-acting factors were annotated for metabolic function, suggesting that genetic variation may indirectly regulate multigene pathways by targeting key components of feedback processes within regulatory networks. Furthermore, the unique genetic history of each population appears to influence the detection of genes with local and distal eQTL. PMID:25230953

Weiser, Matthew; Mukherjee, Sayan; Furey, Terrence S.

2014-01-01

216

Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations.  

PubMed

Mapping expression quantitative trait loci (eQTL) has identified genetic variants associated with transcription rates and has provided insight into genotype-phenotype associations obtained from genome-wide association studies (GWAS). Traditional eQTL mapping methods present significant challenges for the multiple-testing burden, resulting in a limited ability to detect eQTL that reside distal to the affected gene. To overcome this, we developed a novel eQTL testing approach, " NET: work-based, L: arge-scale I: dentification o F: dis T: al eQTL" (NetLIFT), which performs eQTL testing based on the pairwise conditional dependencies between genes' expression levels. When applied to existing data from yeast segregants, NetLIFT replicated most previously identified distal eQTL and identified 46% more genes with distal effects compared to local effects. In liver data from mouse lines derived through the Collaborative Cross project, NetLIFT detected 5744 genes with local eQTL while 3322 genes had distal eQTL. This analysis revealed founder-of-origin effects for a subset of local eQTL that may contribute to previously described phenotypic differences in metabolic traits. In human lymphoblastoid cell lines, NetLIFT was able to detect 1274 transcripts with distal eQTL that had not been reported in previous studies, while 2483 transcripts with local eQTL were identified. In all species, we found no enrichment for transcription factors facilitating eQTL associations; instead, we found that most trans-acting factors were annotated for metabolic function, suggesting that genetic variation may indirectly regulate multigene pathways by targeting key components of feedback processes within regulatory networks. Furthermore, the unique genetic history of each population appears to influence the detection of genes with local and distal eQTL. PMID:25230953

Weiser, Matthew; Mukherjee, Sayan; Furey, Terrence S

2014-11-01

217

Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago.  

PubMed

To extend our understanding of flowering time control in eudicots, we screened for mutants in the model legume Medicago truncatula (Medicago). We identified an early flowering mutant, spring1, in a T-DNA mutant screen, but spring1 was not tagged and was deemed a somaclonal mutant. We backcrossed the mutant to wild type R108. The F1 plants and the majority of F2 plants were early flowering like spring1, strongly indicating that spring1 conferred monogenic, dominant early flowering. We hypothesized that the spring1 phenotype resulted from over expression of an activator of flowering. Previously, a major QTL for flowering time in different Medicago accessions was located to an interval on chromosome 7 with six candidate flowering-time activators, including a CONSTANS gene, MtCO, and three FLOWERING LOCUS T (FT) genes. Hence we embarked upon linkage mapping using 29 markers from the MtCO/FT region on chromosome 7 on two populations developed by crossing spring1 with Jester. Spring1 mapped to an interval of ?0.5 Mb on chromosome 7 that excluded MtCO, but contained 78 genes, including the three FT genes. Of these FT genes, only FTa1 was up-regulated in spring1 plants. We then investigated global gene expression in spring1 and R108 by microarray analysis. Overall, they had highly similar gene expression and apart from FTa1, no genes in the mapping interval were differentially expressed. Two MADS transcription factor genes, FRUITFULLb (FULb) and SUPPRESSOR OF OVER EXPRESSION OF CONSTANS1a (SOC1a), that were up-regulated in spring1, were also up-regulated in transgenic Medicago over-expressing FTa1. This suggested that their differential expression in spring1 resulted from the increased abundance of FTa1. A 6255 bp genomic FTa1 fragment, including the complete 5' region, was sequenced, but no changes were observed indicating that the spring1 mutation is not a DNA sequence difference in the FTa1 promoter or introns. PMID:23308229

Yeoh, Chin Chin; Balcerowicz, Martin; Zhang, Lulu; Jaudal, Mauren; Brocard, Lysiane; Ratet, Pascal; Putterill, Joanna

2013-01-01

218

Fine Mapping Links the FTa1 Flowering Time Regulator to the Dominant Spring1 Locus in Medicago  

PubMed Central

To extend our understanding of flowering time control in eudicots, we screened for mutants in the model legume Medicago truncatula (Medicago). We identified an early flowering mutant, spring1, in a T-DNA mutant screen, but spring1 was not tagged and was deemed a somaclonal mutant. We backcrossed the mutant to wild type R108. The F1 plants and the majority of F2 plants were early flowering like spring1, strongly indicating that spring1 conferred monogenic, dominant early flowering. We hypothesized that the spring1 phenotype resulted from over expression of an activator of flowering. Previously, a major QTL for flowering time in different Medicago accessions was located to an interval on chromosome 7 with six candidate flowering- time activators, including a CONSTANS gene, MtCO, and three FLOWERING LOCUS T (FT) genes. Hence we embarked upon linkage mapping using 29 markers from the MtCO/FT region on chromosome 7 on two populations developed by crossing spring1 with Jester. Spring1 mapped to an interval of ?0.5 Mb on chromosome 7 that excluded MtCO, but contained 78 genes, including the three FT genes. Of these FT genes, only FTa1 was up-regulated in spring1 plants. We then investigated global gene expression in spring1 and R108 by microarray analysis. Overall, they had highly similar gene expression and apart from FTa1, no genes in the mapping interval were differentially expressed. Two MADS transcription factor genes, FRUITFULLb (FULb) and SUPPRESSOR OF OVER EXPRESSION OF CONSTANS1a (SOC1a), that were up-regulated in spring1, were also up-regulated in transgenic Medicago over-expressing FTa1. This suggested that their differential expression in spring1 resulted from the increased abundance of FTa1. A 6255 bp genomic FTa1 fragment, including the complete 5? region, was sequenced, but no changes were observed indicating that the spring1 mutation is not a DNA sequence difference in the FTa1 promoter or introns. PMID:23308229

Yeoh, Chin Chin; Balcerowicz, Martin; Zhang, Lulu; Jaudal, Mauren; Brocard, Lysiane; Ratet, Pascal; Putterill, Joanna

2013-01-01

219

Molecular tagging of erucic acid trait in oilseed mustard ( Brassica juncea ) by QTL mapping and single nucleotide polymorphisms in FAE1 gene  

Microsoft Academic Search

Molecular mapping and tagging of the erucic acid trait (C22:1) in Brassica juncea was done by a candidate gene approach. Two QTLs underlying the variation of seed erucic acid content were assigned to two linkage groups of a B. juncea map using a doubled haploid (DH) mapping population derived from high × low erucic acid F 1 hybrid. Two consensus

V. Gupta; A. Mukhopadhyay; N. Arumugam; Y. S. Sodhi; D. Pental; A. K. Pradhan

2004-01-01

220

Bias correction for estimated QTL effects using the penalized maximum likelihood method.  

PubMed

A penalized maximum likelihood method has been proposed as an important approach to the detection of epistatic quantitative trait loci (QTL). However, this approach is not optimal in two special situations: (1) closely linked QTL with effects in opposite directions and (2) small-effect QTL, because the method produces downwardly biased estimates of QTL effects. The present study aims to correct the bias by using correction coefficients and shifting from the use of a uniform prior on the variance parameter of a QTL effect to that of a scaled inverse chi-square prior. The results of Monte Carlo simulation experiments show that the improved method increases the power from 25 to 88% in the detection of two closely linked QTL of equal size in opposite directions and from 60 to 80% in the identification of QTL with small effects (0.5% of the total phenotypic variance). We used the improved method to detect QTL responsible for the barley kernel weight trait using 145 doubled haploid lines developed in the North American Barley Genome Mapping Project. Application of the proposed method to other shrinkage estimation of QTL effects is discussed. PMID:21934700

Zhang, J; Yue, C; Zhang, Y-M

2012-04-01

221

Fine-Scale Mapping of the Nasonia Genome to Chromosomes Using a High-Density Genotyping Microarray  

PubMed Central

Nasonia, a genus of four closely related parasitoid insect species, is a model system for genetic research. Their haplodiploid genetics (haploid males and diploid females) and interfertile species are advantageous for the genetic analysis of complex traits and the genetic basis of species differences. A fine-scale genomic map is an important tool for advancing genetic studies in this system. We developed and used a hybrid genotyping microarray to generate a high-resolution genetic map that covers 79% of the sequenced genome of Nasonia vitripennis. The microarray is based on differential hybridization of species-specific oligos between N. vitripennis and Nasonia giraulti at more than 20,000 markers spanning the Nasonia genome. The map places 729 scaffolds onto the five linkage groups of Nasonia, including locating many smaller scaffolds that would be difficult to map by other means. The microarray was used to characterize 26 segmental introgression lines containing chromosomal regions from one species in the genetic background of another. These segmental introgression lines have been used for rapid screening and mapping of quantitative trait loci involved in species differences. Finally, the microarray is extended to bulk-segregant analysis and genotyping of other Nasonia species combinations. These resources should further expand the usefulness of Nasonia for studies of the genetic basis and architecture of complex traits and speciation. PMID:23390597

Desjardins, Christopher A.; Gadau, Jurgen; Lopez, Jacqueline A.; Niehuis, Oliver; Avery, Amanda R.; Loehlin, David W.; Richards, Stephen; Colbourne, John K.; Werren, John H.

2013-01-01

222

Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns  

Microsoft Academic Search

Abstract. Maps of fire frequency, severity, size, and pattern are useful for strategically planning fire and natural resource management, assessing risk and ecological conditions, illustrating change in disturbance regimes through time, identifying knowledge gaps, and learning how climate, topography, vegetation, and land use influence fire regimes. We review and compare alternative data sources and approaches for mapping fire regimes at

Penelope Morgan; Colin C. Hardy; Thomas W. Swetnam; Matthew G. Rollins; Donald G. Long

223

Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns  

Microsoft Academic Search

Maps of fire frequency, severity, size, and pattern are useful for strategically planning fire and natural resource management, assessing risk and ecological conditions, illustrating change in disturbance regimes through time, identifying knowledge gaps, and learning how climate, topography, vegetation, and land use influence fire regimes. We review and compare alternative data sources and approaches for mapping fire regimes at national,

Penelope MorganA; Colin C. HardyB; Thomas W. SwetnamC; Matthew G. RollinsB; Donald G. LongB

224

Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage.  

PubMed

Soil salinity and alkalinity are important abiotic components that frequently have critical effects on crop growth, productivity and quality. Developing soybean cultivars with high salt tolerance is recognized as an efficient way to maintain sustainable soybean production in a salt stress environment. However, the genetic mechanism of the tolerance must first be elucidated. In this study, 257 soybean cultivars with 135 SSR markers were used to perform epistatic association mapping for salt tolerance. Tolerance was evaluated by assessing the main root length (RL), the fresh and dry weights of roots (FWR and DWR), the biomass of seedlings (BS) and the length of hypocotyls (LH) of healthy seedlings after treatments with control, 100 mM NaCl or 10 mM Na2CO3 solutions for approximately one week under greenhouse conditions. A total of 83 QTL-by-environment (QE) interactions for salt tolerance index were detected: 24 for LR, 12 for FWR, 11 for DWR, 15 for LH and 21 for BS, as well as one epistatic QTL for FWR. Furthermore, 86 QE interactions for alkaline tolerance index were found: 17 for LR, 16 for FWR, 17 for DWR, 18 for LH and 18 for BS. A total of 77 QE interactions for the original trait indicator were detected: 17 for LR, 14 for FWR, 4 for DWR, 21 for LH and 21 for BS, as well as 3 epistatic QTL for BS. Small-effect QTL were frequently observed. Several soybean genes with homology to Arabidopsis thaliana and soybean salt tolerance genes were found in close proximity to the above QTL. Using the novel alleles of the QTL detected above, some elite parental combinations were designed, although these QTL need to be further confirmed. The above results provide a valuable foundation for fine mapping, cloning and molecular breeding by design for soybean alkaline and salt tolerance. PMID:24416275

Zhang, Wen-Jie; Niu, Yuan; Bu, Su-Hong; Li, Meng; Feng, Jian-Ying; Zhang, Jin; Yang, Sheng-Xian; Odinga, Medrine Mmayi; Wei, Shi-Ping; Liu, Xiao-Feng; Zhang, Yuan-Ming

2014-01-01

225

Epistatic Association Mapping for Alkaline and Salinity Tolerance Traits in the Soybean Germination Stage  

PubMed Central

Soil salinity and alkalinity are important abiotic components that frequently have critical effects on crop growth, productivity and quality. Developing soybean cultivars with high salt tolerance is recognized as an efficient way to maintain sustainable soybean production in a salt stress environment. However, the genetic mechanism of the tolerance must first be elucidated. In this study, 257 soybean cultivars with 135 SSR markers were used to perform epistatic association mapping for salt tolerance. Tolerance was evaluated by assessing the main root length (RL), the fresh and dry weights of roots (FWR and DWR), the biomass of seedlings (BS) and the length of hypocotyls (LH) of healthy seedlings after treatments with control, 100 mM NaCl or 10 mM Na2CO3 solutions for approximately one week under greenhouse conditions. A total of 83 QTL-by-environment (QE) interactions for salt tolerance index were detected: 24 for LR, 12 for FWR, 11 for DWR, 15 for LH and 21 for BS, as well as one epistatic QTL for FWR. Furthermore, 86 QE interactions for alkaline tolerance index were found: 17 for LR, 16 for FWR, 17 for DWR, 18 for LH and 18 for BS. A total of 77 QE interactions for the original trait indicator were detected: 17 for LR, 14 for FWR, 4 for DWR, 21 for LH and 21 for BS, as well as 3 epistatic QTL for BS. Small-effect QTL were frequently observed. Several soybean genes with homology to Arabidopsis thaliana and soybean salt tolerance genes were found in close proximity to the above QTL. Using the novel alleles of the QTL detected above, some elite parental combinations were designed, although these QTL need to be further confirmed. The above results provide a valuable foundation for fine mapping, cloning and molecular breeding by design for soybean alkaline and salt tolerance. PMID:24416275

Feng, Jian-Ying; Zhang, Jin; Yang, Sheng-Xian; Odinga, Medrine Mmayi; Wei, Shi-Ping; Liu, Xiao-Feng; Zhang, Yuan-Ming

2014-01-01

226

A Comparison of Linkage Disequilibrium Measures for Fine-Scale Mapping  

Microsoft Academic Search

Linkage mapping generally localizes disease genes to 1- to 2-cM regions of chromosomes. In theory, further refinement of location can be achieved by population-based studies of linkage disequilibrium between disease locus alleles and alleles at adjacent markers. One approach to localization, dubbed simple disequilibrium mapping, is to determine the relative location of the disease locus by plotting disequilibrium values against

B. DEVLIN; NEIL RISCH

1995-01-01

227

High-Resolution Mapping of a Fruit Firmness-Related Quantitative Trait Locus in Tomato Reveals Epistatic Interactions Associated with a Complex Combinatorial Locus1[W][OA  

PubMed Central

Fruit firmness in tomato (Solanum lycopersicum) is determined by a number of factors including cell wall structure, turgor, and cuticle properties. Firmness is a complex polygenic trait involving the coregulation of many genes and has proved especially challenging to unravel. In this study, a quantitative trait locus (QTL) for fruit firmness was mapped to tomato chromosome 2 using the Zamir Solanum pennellii interspecific introgression lines (ILs) and fine-mapped in a population consisting of 7,500 F2 and F3 lines from IL 2-3 and IL 2-4. This firmness QTL contained five distinct subpeaks, Firs.p.QTL2.1 to Firs.p.QTL2.5, and an effect on a distal region of IL 2-4 that was nonoverlapping with IL 2-3. All these effects were located within an 8.6-Mb region. Using genetic markers, each subpeak within this combinatorial locus was mapped to a physical location within the genome, and an ethylene response factor (ERF) underlying Firs.p.QTL2.2 and a region containing three pectin methylesterase (PME) genes underlying Firs.p.QTL2.5 were nominated as QTL candidate genes. Statistical models used to explain the observed variability between lines indicated that these candidates and the nonoverlapping portion of IL 2-4 were sufficient to account for the majority of the fruit firmness effects. Quantitative reverse transcription-polymerase chain reaction was used to quantify the expression of each candidate gene. ERF showed increased expression associated with soft fruit texture in the mapping population. In contrast, PME expression was tightly linked with firm fruit texture. Analysis of a range of recombinant lines revealed evidence for an epistatic interaction that was associated with this combinatorial locus. PMID:22685170

Chapman, Natalie H.; Bonnet, Julien; Grivet, Laurent; Lynn, James; Graham, Neil; Smith, Rebecca; Sun, Guiping; Walley, Peter G.; Poole, Mervin; Causse, Mathilde; King, Graham J.; Baxter, Charles; Seymour, Graham B.

2012-01-01

228

Fine mapping and candidate gene analysis of the nuclear restorer gene Rfp for pol CMS in rapeseed (Brassica napus L.).  

PubMed

The Polima (pol) system of cytoplasmic male sterility (CMS) in rapeseed is widely used in China for commercial hybrid seed production. Genetic studies have shown that its fertility restorer gene (Rfp) is monogenic dominant. For fine mapping of the Rfp gene, a near isogenic line comprising 3,662 individuals of BC(14)F(1) generation segregating for the Rfp gene was created. Based on the sequences of two SCAR markers, SCAP0612ST and SCAP0612EM2, developed by Zhao et al. (Genes Genom 30(3):191-196, 2008) and the synteny region of Brassica napus and other Brassica species, 13 markers strongly linked with the Rfp gene were identified. By integrating three of these markers to the published linkage map, the Rfp gene was mapped on linkage group N9 of B. napus. Using these markers, the Rfp locus was narrowed down to a 29.2-kb genomic region of Brassica rapa. Seven open reading frames (ORFs) were predicted in the target region, of these, ORF2, encoding a PPR protein, was the most likely candidate gene of Rfp. These results lay a solid foundation for map-based cloning of the Rfp gene and will be helpful for marker-assisted selection of elite CMS restorer lines. PMID:22614178

Liu, Zhi; Liu, Pingwu; Long, Furong; Hong, Dengfeng; He, Qingbiao; Yang, Guangsheng

2012-08-01

229

Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L.  

PubMed

The compact (dwarf) plant architecture is an important trait in cucumber (Cucumis sativus L.) breeding that has the potential to be used in once-over mechanical harvest of cucumber production. Compact growth habit is controlled by a simply inherited recessive gene cp. With 150 F(2:3) families derived from two inbred cucumber lines, PI 308915 (compact vining) and PI 249561 (regular vining), we conducted genome-wide molecular mapping with microsatellite (simple sequence repeat, SSR) markers. A framework genetic map was constructed consisting of 187 SSR loci in seven linkage groups (chromosomes) covering 527.5 cM. Linkage analysis placed cp at the distal half of the long arm of cucumber Chromosome 4. Molecular markers cosegregating with the cp locus were identified through whole genome scaffold-based chromosome walking. Fine genetic mapping with 1,269 F(2) plants delimited the cp locus to a 220 kb genomic DNA region. Annotation and function prediction of genes in this region identified a homolog of the cytokinin oxidase (CKX) gene, which may be a potential candidate of compact gene. Alignment of the CKX gene homologs from both parental lines revealed a 3-bp deletion in the first exon of PI 308915, which can serve as a marker for marker-assisted selection of the compact phenotype. This work also provides a solid foundation for map-based cloning of the compact gene and understanding the molecular mechanisms of the dwarfing in cucumber. PMID:21735235

Li, Yuhong; Yang, Luming; Pathak, Mamta; Li, Dawei; He, Xiaoming; Weng, Yiqun

2011-10-01

230

Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed.  

PubMed Central

In order to identify the gene for human X-linked anhidrotic ectodermal dysplasia (EDA), a translocation breakpoint in a female with t(X;1)(q13.1;p36.3) and EDA (patient AK) was finely mapped. The EDA region contains five groups of rare-cutter restriction sites that define CpG islands. The two more centromeric of these islands are associated with transcripts of 3.5 kb and 1.8 kb. The third CpG island maps within <1 kb of the translocation breakpoint in patient AK, as indicated by a genomic rearrangement, and approximately 100 kb centromeric from another previously mapped translocation breakpoint (patient AnLy). Northern analysis with a probe from this CpG island detected an approximately 6-kb mRNA in several fetal tissues tested. An extended YAC contig of 1,200 kb with an average of fivefold coverage was constructed. The two most telomeric CpG islands map 350 kb telomeric of the two translocations. Taken together, the results suggest that the CpG island just proximal of the AK translocation breakpoint lies at the 5' end of a candidate gene for EDA. Images Figure 2 Figure 3 Figure 4 PMID:8554048

Srivastava, A. K.; Montonen, O.; Saarialho-Kere, U.; Chen, E.; Baybayan, P.; Pispa, J.; Limon, J.; Schlessinger, D.; Kere, J.

1996-01-01

231

Locating QTL for osmotic adjustment and dehydration tolerance in rice  

Microsoft Academic Search

Research was conducted to identify and map quantit- ative trait loci (QTL) associated with dehydration tolerance and osmotic adjustment of rice. Osmotic adjustment capacity and lethal osmotic potential were determined for 52 recombinant inbred lines grown in a controlled environment under conditions of a slowly developed stress. The lines were from a cross between an Indica cultivar, Co39, of lowland

J. M. Lilley; M. M. Ludlow; S. R. McCouch; J. C. O'Toole

1996-01-01

232

Detecting QTL for feed intake traits and other performance traits in growing pigs in a Piétrain-Large White backcross.  

PubMed

Knowing the large difference in daily feed intake (DFI) between Large White (LW) and Piétrain (PI) growing pigs, a backcross (BC) population has been set up to map QTL that could be used in marker assisted selection strategies. LW × PI boars were mated with sows from two LW lines to produce 16 sire families. A total of 717 BC progeny were fed ad libitum from 30 to 108 kg BW using single-place electronic feeders. A genome scan was conducted using genotypes for the halothane gene and 118 microsatellite markers spread on the 18 porcine autosomes. Interval mapping analyses were carried out, assuming different QTL alleles between sire families to account for within breed variability using the QTLMap software. The effects of the halothane genotype and of the dam line on the QTL effect estimates were tested. One QTL for DFI (P < 0.05 at the chromosome-wide (CW) level) and one QTL for feed conversion ratio (P < 0.01 at the CW level) were mapped to chromosomes SSC6 - probably due to the halothane alleles - and SSC7, respectively. Three putative QTL for feed intake traits were detected (P < 0.06 at the CW level) on SSC2, SSC7 and SSC9. QTL on feeding traits had effects in the range of 0.20 phenotypic s.d. The relatively low number of QTL detected for these traits suggests a large QTL allele variability within breeds and/or low effects of individual loci. Significant QTL were detected for traits related to carcass composition on chromosomes SSC6, SSC15 and SSC17, and to meat quality on chromosome SSC6 (P < 0.01 at the genome-wide level). QTL effects for body composition on SSC13 and SSC17 differed according to the LW dam line, which confirmed that QTL alleles were segregating in the LW breed. An epistatic effect involving the halothane locus and a QTL for loin weight on SSC7 was identified, the estimated substitution effects for the QTL differing by 200 g between Nn and NN individuals. The interactions between QTL alleles and genetic background or particular genes suggest further work to validate QTL segregations in the populations where marker assisted selection for the QTL would be applied. PMID:22444650

Gilbert, H; Riquet, J; Gruand, J; Billon, Y; Fève, K; Sellier, P; Noblet, J; Bidanel, J P

2010-08-01

233

Efficient fine mapping of the naked caryopsis gene ( nud) by HEGS (High Efficiency Genome Scanning)/AFLP in barley.  

PubMed

The hulled or naked caryopsis character of barley ( Hordeum vulgare L.) is an important trait for edibility and to follow its domestication process. A single recessive gene, nud, controls the naked caryopsis character, and is located on the long arm of chromosome 7H. To develop a fine map around the nud locus efficiently, the HEGS (High Efficiency Genome Scanning) electrophoresis system was combined with amplified fragment length polymorphism (AFLP). From bulked segregant analysis of 1,894 primer combinations, 12 AFLP fragments were selected as linked markers. For mapping, an F(2 )population of 151 individuals derived from a cross between Kobinkatagi (naked type) and Triumph (hulled type) was used. Seven AFLP markers were localized near the nud region. A fine map was developed with one-order higher resolution than before, along with the seven anchor markers. Among the seven linked AFLP markers (KT1-7), KT1, KT2 and KT6 were co-dominant, and the former two were detected for their single-nucleotide polymorphisms (SNPs) in the same length of fragments after electrophoresis with the non-denaturing gels of HEGS. The nud locus has co-segregated with KT3 and KT7, and was flanked by KT2 and KT4, at the 0.3-cM proximal and the 1.2-cM distal side, respectively. Four of these AFLP markers were converted into sequence-characterized amplified region (SCAR) markers, one of which was a dominant marker co-segregating with the nud gene. PMID:12942174

Kikuchi, S; Taketa, S; Ichii, M; Kawasaki, S

2003-12-01

234

Fourteen Years of R/qtl: Just Barely Sustainable  

PubMed Central

R/qtl is an R package for mapping quantitative trait loci (genetic loci that contribute to variation in quantitative traits) in experimental crosses. Its development began in 2000. There have been 38 software releases since 2001. The latest release contains 35k lines of R code and 24k lines of C code, plus 15k lines of code for the documentation. Challenges in the development and maintenance of the software are discussed. A key to the success of R/qtl is that it remains a central tool for the chief developer's own research work, and so its maintenance is of selfish importance.

Broman, Karl W.

2014-01-01

235

Second-generation genetic linkage map of catfish and its integration with the BAC-based physical map.  

PubMed

Construction of high-density genetic linkage maps is crucially important for quantitative trait loci (QTL) studies, and they are more useful when integrated with physical maps. Such integrated maps are valuable genome resources for fine mapping of QTL, comparative genomics, and accurate and efficient whole-genome assembly. Previously, we established both linkage maps and a physical map for channel catfish, Ictalurus punctatus, the dominant aquaculture species in the United States. Here we added 2030 BAC end sequence (BES)-derived microsatellites from 1481 physical map contigs, as well as markers from singleton BES, ESTs, anonymous microsatellites, and SNPs, to construct a second-generation linkage map. Average marker density across the 29 linkage groups reached 1.4 cM/marker. The increased marker density highlighted variations in recombination rates within and among catfish chromosomes. This work effectively anchored 44.8% of the catfish BAC physical map contigs, covering ~52.8% of the genome. The genome size was estimated to be 2546 cM on the linkage map, and the calculated physical distance per centimorgan was 393 Kb. This integrated map should enable comparative studies with teleost model species as well as provide a framework for ordering and assembling whole-genome scaffolds. PMID:23050234

Ninwichian, Parichart; Peatman, Eric; Liu, Hong; Kucuktas, Huseyin; Somridhivej, Benjaporn; Liu, Shikai; Li, Ping; Jiang, Yanliang; Sha, Zhenxia; Kaltenboeck, Ludmilla; Abernathy, Jason W; Wang, Wenqi; Chen, Fei; Lee, Yoona; Wong, Lilian; Wang, Shaolin; Lu, Jianguo; Liu, Zhanjiang

2012-10-01

236

Fine mapping of quantitative trait loci underlying sensory meat quality traits in three French beef cattle breeds.  

PubMed

Improving the traits that underlie meat quality is a major challenge in the beef industry. The objective of this paper was to detect QTL linked to sensory meat quality traits in 3 French beef cattle breeds. We genotyped 1,059, 1,219, and 947 young bulls and their sires belonging to the Charolais, Limousin, and Blonde d'Aquitaine breeds, respectively, using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). After estimating relevant genetic parameters using VCE software, we performed a linkage disequilibrium and linkage analysis on 4 meat traits: intramuscular fat content, muscle lightness, shear force, and tenderness score. Heritability coefficients largely ranged between 0.10 and 0.24; however, they reached a maximum of 0.44 and 0.50 for intramuscular fat content and tenderness score, respectively, in the Charolais breed. The 2 meat texture traits, shear force and tenderness score, were strongly genetically correlated (-0.91 in the Charolais and Limousin breed and -0.86 in the Blonde d'Aquitaine breed), indicating that they are 2 different measures of approximately the same trait. The genetic correlation between tenderness and intramuscular fat content differed across breeds. Using a significance threshold of 5 × 10(-4) for QTL detection, we found more than 200 significant positions across the 29 autosomal chromosomes for the 4 traits in the Charolais and Blonde d'Aquitaine breeds; in contrast, there were only 78 significant positions in the Limousin breed. Few QTL were common across breeds. We detected QTL for intramuscular fat content located near the myostatin gene in the Charolais and Blonde d'Aquitaine breeds. No mutation in this gene has been reported for the Blonde d'Aquitaine breed; therefore, it suggests that an unknown mutation could be segregating in this breed. We confirmed that, in certain breeds, markers in the calpastatin and calpain 1 gene regions affect tenderness. We also found new QTL as several QTL on chromosome 3 that are significantly associated with meat tenderness in the Blonde d'Aquitaine breed. Overall, these results greatly contribute to the goal of building a panel of markers that can be used to select animals of high meat quality. PMID:25149327

Allais, S; Levéziel, H; Hocquette, J F; Rousset, S; Denoyelle, C; Journaux, L; Renand, G

2014-10-01

237

Fine-resolution mapping by haplotype evaluation: the examples of PFIC1 and BRIC.  

PubMed

Loci for two inherited liver diseases, benign recurrent intrahepatic cholestasis (BRIC) and progressive familial intrahepatic cholestasis type 1 (PFIC1), have previously been mapped to 18q21 by a search for shared haplotypes in patients in two isolated populations. This paper describes the use of further haplotype evaluation with a larger sample of patients for both disorders, drawn from several different populations. Our assessment places both loci in the same interval of less than 1 cM and has led to the discovery of the PFIC1/BRIC gene, FIC1; this discovery permits retrospective examination of the general utility of haplotype evaluation and highlights possible caveats regarding this method of genetic mapping. PMID:10323248

Bull, L N; Juijn, J A; Liao, M; van Eijk, M J; Sinke, R J; Stricker, N L; DeYoung, J A; Carlton, V E; Baharloo, S; Klomp, L W; Abukawa, D; Barton, D E; Bass, N M; Bourke, B; Drumm, B; Jankowska, I; Lovisetto, P; McQuaid, S; Pawlowska, J; Tazawa, Y; Villa, E; Tygstrup, N; Berger, R; Knisely, A S; Freimer, N B

1999-03-01

238

Fine mapping of the clubroot resistance gene, Crr3 , in Brassica rapa  

Microsoft Academic Search

A linkage map of Chinese cabbage (Brassica rapa) was constructed to localize the clubroot resistance (CR) gene, Crr3. Quantitative trait loci analysis using an F3 population revealed a sharp peak in the logarithm of odds score around the sequence-tagged site (STS) marker, OPC11-2S. Therefore, this region contained Crr3. Nucleotide sequences of OPC11-2S and its proximal markers showed homology to sequences

M. Saito; N. Kubo; S. Matsumoto; K. Suwabe; M. Tsukada; M. Hirai

2006-01-01

239

The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility.  

PubMed

Aerosol mapping was used to assess particle number and mass concentration in an engine machining and assembly facility in the winter and spring. Number and mass concentration maps were constructed from data collected with two mobile sampling carts, each equipped with a condensation particle counter (10 nm < diameter < 1 microm) and an optical particle counter (300 nm < diameter < 20 microm). Number concentrations inside the facility ranged from 15 to 150 times greater than that outside the facility and were highly dependent on season. The greatest number concentration (>1,000,000 particles cm(-3)) occurred in winter in an area where mass concentration was low (<0.10 mg m(-3)). The increased number of particles was attributed to the exhaust of direct-fire, natural-gas burners used to heat the supply air. The greatest mass concentrations were found around metalworking operations that were poorly enclosed. The larger particles that dominated particle mass in this area were accompanied by ultrafine particles, probably generated through evaporation and subsequent condensation of metalworking fluid components. Repeat mapping events demonstrated that these ultrafine particles persist in workplace air over long time periods. PMID:16361396

Peters, Thomas M; Heitbrink, William A; Evans, Douglas E; Slavin, Thomas J; Maynard, Andrew D

2006-04-01

240

Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley ( Hordeum vulgare L.)  

Microsoft Academic Search

Two hundred and fifty doubled haploid lines were studied from a cross between two 2-row winter barley varieties. The lines were evaluated for several characters in a field experiment for 3 years on two locations with two replications. From a total of 431 RFLP probes 50 were found to be polymorphic and subsequently used to construct a linkage map. Quantitative

G. Backes; A. Graner; B. Foroughi-Wehr; G. Fischbeck; G. Wenzel; A. Jahoor

1995-01-01

241

On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci.  

PubMed Central

The differences between maximum-likelihood (ML) and regression (REG) interval mapping in the analysis of quantitative trait loci (QTL) are investigated analytically and numerically by simulation. The analytical investigation is based on the comparison of the solution sets of the ML and REG methods in the estimation of QTL parameters. Their differences are found to relate to the similarity between the conditional posterior and conditional probabilities of QTL genotypes and depend on several factors, such as the proportion of variance explained by QTL, relative QTL position in an interval, interval size, difference between the sizes of QTL, epistasis, and linkage between QTL. The differences in mean squared error (MSE) of the estimates, likelihood-ratio test (LRT) statistics in testing parameters, and power of QTL detection between the two methods become larger as (1) the proportion of variance explained by QTL becomes higher, (2) the QTL locations are positioned toward the middle of intervals, (3) the QTL are located in wider marker intervals, (4) epistasis between QTL is stronger, (5) the difference between QTL effects becomes larger, and (6) the positions of QTL get closer in QTL mapping. The REG method is biased in the estimation of the proportion of variance explained by QTL, and it may have a serious problem in detecting closely linked QTL when compared to the ML method. In general, the differences between the two methods may be minor, but can be significant when QTL interact or are closely linked. The ML method tends to be more powerful and to give estimates with smaller MSEs and larger LRT statistics. This implies that ML interval mapping can be more accurate, precise, and powerful than REG interval mapping. The REG method is faster in computation, especially when the number of QTL considered in the model is large. Recognizing the factors affecting the differences between REG and ML interval mapping can help an efficient strategy, using both methods in QTL mapping to be outlined. PMID:11014831

Kao, C H

2000-01-01

242

Fine Physical and Genetic Mapping of Powdery Mildew Resistance Gene MlIW172 Originating from Wild Emmer (Triticum dicoccoides)  

PubMed Central

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172. PMID:24955773

Han, Jun; Zhao, Xiaojie; Cui, Yu; Song, Wei; Huo, Naxin; Liang, Yong; Xie, Jingzhong; Wang, Zhenzhong; Wu, Qiuhong; Chen, Yong-Xing; Lu, Ping; Zhang, De-Yun; Wang, Lili; Sun, Hua; Yang, Tsomin; Keeble-Gagnere, Gabriel; Appels, Rudi; Dolezel, Jaroslav; Ling, Hong-Qing; Luo, Mingcheng; Gu, Yongqiang; Sun, Qixin; Liu, Zhiyong

2014-01-01

243

Long-Range Regulatory Polymorphisms Affecting a GABA Receptor Constitute a Quantitative Trait Locus (QTL) for Social Behavior in Caenorhabditis elegans  

PubMed Central

Aggregation is a social behavior that varies between and within species, providing a model to study the genetic basis of behavioral diversity. In the nematode Caenorhabditis elegans, aggregation is regulated by environmental context and by two neuromodulatory pathways, one dependent on the neuropeptide receptor NPR-1 and one dependent on the TGF-? family protein DAF-7. To gain further insight into the genetic regulation of aggregation, we characterize natural variation underlying behavioral differences between two wild-type C. elegans strains, N2 and CB4856. Using quantitative genetic techniques, including a survey of chromosome substitution strains and QTL analysis of recombinant inbred lines, we identify three new QTLs affecting aggregation in addition to the two known N2 mutations in npr-1 and glb-5. Fine-mapping with near-isogenic lines localized one QTL, accounting for 5%–8% of the behavioral variance between N2 and CB4856, 3? to the transcript of the GABA neurotransmitter receptor gene exp-1. Quantitative complementation tests demonstrated that this QTL affects exp-1, identifying exp-1 and GABA signaling as new regulators of aggregation. exp-1 interacts genetically with the daf-7 TGF-? pathway, which integrates food availability and population density, and exp-1 mutations affect the level of daf-7 expression. Our results add to growing evidence that genetic variation affecting neurotransmitter receptor genes is a source of natural behavioral variation. PMID:23284308

Bendesky, Andres; Pitts, Jason; Rockman, Matthew V.; Chen, William C.; Tan, Man-Wah; Kruglyak, Leonid; Bargmann, Cornelia I.

2012-01-01

244

Fine Mapping and Evolution of the Major Sex Determining Region in Turbot (Scophthalmus maximus)  

PubMed Central

Fish sex determination (SD) systems are varied, suggesting evolutionary changes including either multiple evolution origins of genetic SD from nongenetic systems (such as environmental SD) and/or turnover events replacing one genetic system by another. When genetic SD is found, cytological differentiation between the two members of the sex chromosome pair is often minor or undetectable. The turbot (Scophthalmus maximus), a valuable commercial flatfish, has a ZZ/ZW system and a major SD region on linkage group 5 (LG5), but there are also other minor genetic and environmental influences. We here report refined mapping of the turbot SD region, supported by comparative mapping with model fish species, to identify the turbot master SD gene. Six genes were located to the SD region, two of them associated with gonad development (sox2 and dnajc19). All showed a high association with sex within families (P = 0), but not at the population level, so they are probably partially sex-linked genes, but not SD gene itself. Analysis of crossovers in LG5 using two families confirmed a ZZ/ZW system in turbot and suggested a revised map position for the master gene. Genetic diversity and differentiation for 25 LG5 genetic markers showed no differences between males and females sampled from a wild population, suggesting a recent origin of the SD region in turbot. We also analyzed associations with markers of the most relevant sex-related linkage groups in brill (S. rhombus), a closely related species to turbot; the data suggest that an ancient XX/XY system in brill changed to a ZZ/ZW mechanism in turbot. PMID:25106948

Taboada, Xoana; Hermida, Miguel; Pardo, Belen G.; Vera, Manuel; Piferrer, Francesc; Vinas, Ana; Bouza, Carmen; Martinez, Paulino

2014-01-01

245

Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load×QTL interactions.  

PubMed

Mapping studies using populations with introgressed marker-defined genomic regions are continuously increasing knowledge about quantitative trait loci (QTL) that correlate with variation in important crop traits. This knowledge is useful for plant breeding, although combining desired traits in one genotype might be complicated by the mode of inheritance and co-localization of QTL with antagonistic effects, and by physiological trade-offs, and feed-back or feed-forward mechanisms. Therefore, integrating advances at the genetic level with insight into influences of environment and crop management on crop performance remains difficult. Whereas mapping studies can pinpoint correlations between QTL and phenotypic traits for specific conditions, ignoring or overlooking the importance of environment or crop management can jeopardize the relevance of such assessments. Here, we focus on fruit load (a measure determining competition among fruits on one plant) and its strong modulation of QTL effects on fruit size and composition. Following an integral approach, we show which fruit traits are affected by fruit load, to which underlying processes these traits can be linked, and which processes at lower and higher integration levels are affected by fruit load (and subsequently influence fruit traits). This opinion paper (i) argues that a mechanistic framework to interpret interactions between fruit load and QTL effects is needed, (ii) pleads for consideration of the context of agronomic management when detecting QTL, (iii) makes a case for incorporating interacting factors in the experimental set-up of QTL mapping studies, and (iv) provides recommendations to improve efficiency in QTL detection and use, with particular focus on model-based marker-assisted breeding. PMID:24227339

Kromdijk, J; Bertin, N; Heuvelink, E; Molenaar, J; de Visser, P H B; Marcelis, L F M; Struik, P C

2014-01-01

246

Gene Set Enrichment in eQTL Data Identifies Novel Annotations and Pathway Regulators  

PubMed Central

Genome-wide gene expression profiling has been extensively used to generate biological hypotheses based on differential expression. Recently, many studies have used microarrays to measure gene expression levels across genetic mapping populations. These gene expression phenotypes have been used for genome-wide association analyses, an analysis referred to as expression QTL (eQTL) mapping. Here, eQTL analysis was performed in adipose tissue from 28 inbred strains of mice. We focused our analysis on “trans-eQTL bands”, defined as instances in which the expression patterns of many genes were all associated to a common genetic locus. Genes comprising trans-eQTL bands were screened for enrichments in functional gene sets representing known biological pathways, and genes located at associated trans-eQTL band loci were considered candidate transcriptional modulators. We demonstrate that these patterns were enriched for previously characterized relationships between known upstream transcriptional regulators and their downstream target genes. Moreover, we used this strategy to identify both novel regulators and novel members of known pathways. Finally, based on a putative regulatory relationship identified in our analysis, we identified and validated a previously uncharacterized role for cyclin H in the regulation of oxidative phosphorylation. We believe that the specific molecular hypotheses generated in this study will reveal many additional pathway members and regulators, and that the analysis approaches described herein will be broadly applicable to other eQTL data sets. PMID:18464898

Wu, Chunlei; Delano, David L.; Mitro, Nico; Su, Stephen V.; Janes, Jeff; McClurg, Phillip; Batalov, Serge; Welch, Genevieve L.; Zhang, Jie; Orth, Anthony P.; Walker, John R.; Glynne, Richard J.; Cooke, Michael P.; Takahashi, Joseph S.; Shimomura, Kazuhiro; Kohsaka, Akira; Bass, Joseph; Saez, Enrique; Wiltshire, Tim; Su, Andrew I.

2008-01-01

247

Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits  

PubMed Central

The radish displays great morphological variation but the genetic factors underlying this variability are mostly unknown. To identify quantitative trait loci (QTLs) controlling radish morphological traits, we cultivated 94 F4 and F5 recombinant inbred lines derived from a cross between the rat-tail radish and the Japanese radish cultivar ‘Harufuku’ inbred lines. Eight morphological traits (ovule and seed numbers per silique, plant shape, pubescence and root formation) were measured for investigation. We constructed a map composed of 322 markers with a total length of 673.6 cM. The linkage groups were assigned to the radish chromosomes using disomic rape-radish chromosome-addition lines. On the map, eight and 10 QTLs were identified in 2008 and 2009, respectively. The chromosome-linkage group correspondence, the sequence-specific markers and the QTLs detected here will provide useful information for further genetic studies and for selection during radish breeding programs. PMID:23853517

Hashida, Tomoko; Nakatsuji, Ryoichi; Budahn, Holger; Schrader, Otto; Peterka, Herbert; Fujimura, Tatsuhito; Kubo, Nakao; Hirai, Masashi

2013-01-01

248

Fine mapping and candidate gene analysis of the floury endosperm gene, FLO(a), in rice.  

PubMed

In addition to its role as an energy source for plants, animals and humans, starch is also an environmentally friendly alternative to fossil fuels. In rice, the eating and cooking quality of the grain is determined by its starch properties. The floury endosperm of rice has been explored as an agronomical trait in breeding and genetics studies. In the present study, we characterized a floury endosperm mutant, flo(a), derived from treatment of Oryza sativa ssp. japonica cultivar Hwacheong with MNU. The innermost endosperm of the flo(a) mutant exhibited floury characteristics while the outer layer of the endosperm appeared normal. Starch granules in the flo(a) mutant formed a loosely-packed crystalline structure and X-ray diffraction revealed that the overall crystallinity of the starch was decreased compared to wild-type. The FLO(a) gene was isolated via a map-based cloning approach and predicted to encode the tetratricopeptide repeat domain-containing protein, OsTPR. Three mutant alleles contain a nucleotide substitution that generated one stop codon or one splice site, respectively, which presumably disrupts the interaction of the functionally conserved TPR motifs. Taken together, our map-based cloning approach pinpointed an OsTPR as a strong candidate of FLO(a), and the proteins that contain TPR motifs might play a significant role in rice starch biosynthetic pathways. PMID:20016946

Qiao, Yongli; Lee, Song-I; Piao, Rihua; Jiang, Wenzhu; Ham, Tae-Ho; Chin, Joong-Hyoun; Piao, Zhongze; Han, Longzhi; Kang, Si-Yong; Koh, Hee-Jong

2010-02-28

249

Identification and fine mapping of a linear B cell epitope of human vimentin.  

PubMed

Knowledge about antibody-antigen interactions is important for the understanding of the immune system mechanisms and for supporting development of drugs and biomarkers. A tool for identification of these antigenic epitopes of specific antibodies is epitope mapping. In this study, a modified enzyme-linked immunosorbent assay was applied for epitope mapping of a mouse monoclonal vimentin antibody using overlapping resin-bound peptides covering the entire vimentin protein. The minimal epitope required for binding was identified as the LDSLPLVD sequence using N- and C-terminally truncated peptides. The peptide sequence LDSLPLVDTH was identified as the complete epitope, corresponding to amino acids 428-437 in the C-terminal end of the human vimentin protein. Alanine scanning and functionality scanning applying substituted peptides were used to identify amino acids essential for antibody reactivity. In particular, the two aspartate residues were found to be essential for antibody reactivity since these amino acids could not be substituted without a reduction in antibody reactivity. The majority of the remaining amino acids could be substituted without reducing antibody reactivity notably. These results confirm that charged amino acids are essential for antibody reactivity and that the vimentin antibody is dependent on side-chain interactions in combination with backbone interactions. PMID:24792370

Dam, Catharina E; Houen, Gunnar; Hansen, Paul R; Trier, Nicole H

2014-09-01

250

Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription  

PubMed Central

Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

2013-01-01

251

Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice.  

PubMed

A dwarf mutant of rice (Oryza sativa L.) by mutagenesis of ethylene methylsulfonate (EMS) treatment from Nipponbare was identified. The mutant exhibited phenotypes of dwarfism and withered leaf tip (dwl1). Based on the internode length of dwl1, this mutant belongs to the dm type of dwarfing. Analysis of elongation of the second sheath and alpha-amylase activity in endosperm showed that the phenotype caused by dwl1 was insensitive to gibberellin acid treatment. Using a large F2 population derived from a cross between the dwl1 and an indica rice variety, TN1, the DWL1 gene was mapped to the terminal region of the long arm of chromosome 3. Fine-mapping delimited it into a 46 kb physical distance between two STS markers, HL921 and HL944, where 6 open reading frames were predicted. Cloning of DWL1 will contribute to dissecting molecular mechanism that regulates plant height in rice, which will be beneficial to molecular assisted selection of this important trait. PMID:19103426

Jiang, Liang; Guo, Longbiao; Jiang, Hua; Zeng, Dali; Hu, Jiang; Wu, Liwen; Liu, Jian; Gao, Zhenyu; Qian, Qian

2008-12-01

252

Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley.  

PubMed

The barley mutant allele sdw3 confers a gibberellin-insensitive, semi-dwarf phenotype with potential for breeding of new semi-dwarfed barley cultivars. Towards map-based cloning, sdw3 was delimited by high-resolution genetic mapping to a 0.04 cM interval in a "cold spot" of recombination of the proximal region of the short arm of barley chromosome 2H. Extensive synteny between the barley Sdw3 locus (Hvu_sdw3) and the orthologous regions (Osa_sdw3, Sbi_sdw3, Bsy_sdw3) of three other grass species (Oryza sativa, Sorghum bicolor, Brachypodium sylvaticum) allowed for efficient synteny-based marker saturation in the target interval. Comparative sequence analysis revealed colinearity for 23 out of the 38, 35, and 29 genes identified in Brachypodium, rice, and Sorghum, respectively. Markers co-segregating with Hvu_sdw3 were generated from two of these genes. Initial attempts at chromosome walking in barley were performed with seven orthologous gene probes which were delimiting physical distances of 223, 123, and 127 kb in Brachypodium, rice, and Sorghum, respectively. Six non-overlapping small bacterial artificial chromosome (BAC) clone contigs (cumulative length of 670 kb) were obtained, which indicated a considerably larger physical size of Hvu_sdw3. Low-pass sequencing of selected BAC clones from these barley contigs exhibited a substantially lower gene frequency per physical distance and the presence of additional non-colinear genes. Four candidate genes for sdw3 were identified within barley BAC sequences that either co-segregated with the gene sdw3 or were located adjacent to these co-segregating genes. Identification of genic sequences in the sdw3 context provides tools for marker-assisted selection. Eventual identification of the actual gene will contribute new information for a basic understanding of the mechanisms underlying growth regulation in barley. PMID:20464438

Vu, Giang T H; Wicker, Thomas; Buchmann, Jan P; Chandler, Peter M; Matsumoto, Takashi; Graner, Andreas; Stein, Nils

2010-11-01

253

QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.).  

PubMed

At harvest traits such as seed weight are the sum of development and responses to stresses over the growing season and particularly during the reproductive phase of growth. The aim here was to measure quantitative trait loci (QTL) underlying the seed weight from early development to drying post harvest. One hundred forty-three F(5) derived recombinant inbred lines (RILs) developed from the cross of soybean cultivars 'Charleston' and 'Dongnong 594' were used for the analysis of QTL underlying mean 100-seed weight at six different developmental stages. QTL x Environment interactions (QE) were analyzed by a mixed genetic mode based on 3 years' data. At an experiment-wise threshold of a=0.05 and by single-point analysis 94 QTL unaffected by QE underlay the mean seed weight at different developmental stages. Sixty-eight QTL affected by QE that also underlay mean seed weight were identified. From the 162 QTL 42 could be located on 12 linkage groups by composite interval mapping (LOD>2.0). The numbers, locations and types of the QTL and the genetic effects were different at each developmental stage. On linkage group C2 the distantly linked QTL swC2-1, swC2-2 and swC2-3 each affected mean seed weight throughout the different developmental stages. The DNA markers linked to the QTL possessed potential for use in marker-assisted selection for soybean seed size. The identification of QTL with genetic main effects and QE interaction effects suggested that such interactions might significantly alter seed weight during seed development. PMID:18971958

Teng, W; Han, Y; Du, Y; Sun, D; Zhang, Z; Qiu, L; Sun, G; Li, W

2009-04-01

254

Comparison of experimental fine-mapping to in silico prediction results of HIV-1 epitopes reveals ongoing need for mapping experiments.  

PubMed

Methods for identifying physiologically relevant CD8 T-cell epitopes are critically important not only for the development of T-cell-based vaccines but also for understanding host-pathogen interactions. As experimentally mapping an optimal CD8 T-cell epitope is a tedious procedure, many bioinformatic tools have been developed that predict which peptides bind to a given MHC molecule. We assessed the ability of the CD8 T-cell epitope prediction tools syfpeithi, ctlpred and iedb to foretell nine experimentally mapped optimal HIV-specific epitopes. Randomly - for any of the subjects' HLA type and with any matching score - the optimal epitope was predicted in seven of nine epitopes using syfpeithi, in three of nine epitopes using ctlpred and in all nine of nine epitopes using iedb. The optimal epitope within the three highest ranks was given in four of nine epitopes applying syfpeithi, in two of nine epitopes applying ctlpred and in seven of nine epitopes applying iedb when screening for all of the subjects' HLA types. Knowing the HLA restriction of the peptide of interest improved the ranking of the optimal epitope within the predicted results. Epitopes restricted by common HLA alleles were more likely to be predicted than those restricted by uncommon HLA alleles. Epitopes with aberrant lengths compared with the usual HLA-class I nonamers were most likely not predicted. Application of epitope prediction tools together with literature searches for already described optimal epitopes narrows down the possibilities of optimal epitopes within a screening peptide of interest. However, in our opinion, the actual fine-mapping of a CD8 T-cell epitope cannot yet be replaced. PMID:24724694

Roider, Julia; Meissner, Tim; Kraut, Franziska; Vollbrecht, Thomas; Stirner, Renate; Bogner, Johannes R; Draenert, Rika

2014-10-01

255

REVIEW Lab Animal Volume 30 No, 7 J 2001 Review of Statistical Methods for QTl  

E-print Network

REVIEW Lab Animal Volume 30 No, 7 J 2001 Review of Statistical Methods for QTl Mapping of the statistical methods for mapping quantitative trait loci (QTLs, the genes responsible for variation in quan for the identification of drug targets. The author reviews the basic statis tical methods for mapping QTLs in experi

Broman, Karl W.

256

Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley  

PubMed Central

Background The barley-Puccinia hordei (barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, Rphq2 and Rphq3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown. Results An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with Puccinia hordei. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at Rphq2 and Rphq3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (HvERF4) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that Rphq2 or Rphq3 contains a trans-eQTL that modulates expression of HvERF4. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within Rphq2 or Rphq3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of Ph-responsive genes and that hormone-related signalling pathways are actively involved in response to Puccinia hordei. Conclusions Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover trans-eQTL mediated regulatory relays initiated from genes within the QTL regions. PMID:21070652

2010-01-01

257

Genetic analysis and fine mapping of the Ga1-S gene region conferring cross-incompatibility in maize.  

PubMed

Cross-incompatibility genes known as gametophyte factors (ga) are numerous in maize. Many popcorn strains carry these genes and cannot be fertilized by pollen of dent and flint maize strains although the reciprocal crosses are successful. A Chinese popcorn strain SDGa25 carries the strongest allele of Ga1 (Ga1-S) and the majority of Chinese dent and flint maize germplasm are incompatible with SDGa25. The incompatibility is due to pollen tube growth obstruction 2 h after pollination. The pollen tube is arrested in the silk segment 5.5 cm distal to the pollination area and never reaches the ovule. The Ga1-S carried by SDGa25 behaves as a single dominant gene. This gene was mapped between markers SD3 on BAC AC200747 0.827 cM apart on the telomere side and SD12 on BAC AC204382 0.709 cM apart on the centromere side. The genetic region mapped spanning the Ga1-S locus was estimated to be 1.5 cM in length and the physical distance is 2,056,343 bp on ctg156 based on the B73 RefGen_v2 sequence. Gametophyte factors influence gene flow direction and the strongest Ga1-S allele is useful for isolating one category of commercial varieties from another. The eight tightly linked markers to Ga1-S developed in this study would greatly improve marker-assisted introgression efficiency and the fine mapping would facilitate the isolation of the Ga1-S. PMID:22009288

Zhang, Hua; Liu, Xu; Zhang, Yu'e; Jiang, Chuan; Cui, Dezhou; Liu, Huaihua; Li, Detao; Wang, Liwen; Chen, Tingting; Ning, Lihua; Ma, Xia; Chen, Huabang

2012-02-01

258

Fine genetic mapping of the Hyp mutation on mouse chromosome X  

SciTech Connect

The hypophosphatemic (Hyp) mouse is the murine homolog of hypophosphatemic vitamin-D-resistant rickets (HYP) in human. Despite extensive investigations in the Hyp mouse, the pathophysiology of this X-linked dominant disorder remains unclear. As a first step toward cloning the Hyp gene, we have generated a high-resolution linkage map in the vicinity of the Hyp locus using two independent backcross panels segregating the Hyp mutation, one generated from an interspecific mating between C57BL/6J-Hyp/Hyp and Mus spretus and the other from an intrasubspecific mating between C57BL/6J-Hyp/Hyp and Mus musculus castaneus. Linkage analyses in 1101 backcross progeny using a total of 23 DNA markers favor the following gene order from the centromere: DXMit13-(DXMit11, DXMit34)-(DXMit36, Alas2)-(Hyp, DXMit80)-DXMit98-(DXMit28, DXMit33, DXMit70)-Pdhal-DXMit20. This study has localized Hyp to a region of approximately 1 cM flanked by the proximal markers DXMit36 and Alas2 and the distal marker DSMit98. One microsatellite marker, DXMit80, was found to be very tightly linked to Hyp, as it was nonrecombinant with Hyp among all the progeny of both backcrosses corresponding to 1101 meioses. 37 refs., 3 figs., 1 tab.

Du, Lisheng; Desbarats, M.; Cornibert, S.; Malo, D.; Ecarot, B. [McGill Univ., Quebec (Canada)] [McGill Univ., Quebec (Canada)

1996-03-01

259

Fine Mapping of Posttranslational Modifications of the Linker Histone H1 from Drosophila melanogaster  

PubMed Central

The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs), including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear. This is in part due to the fact that most of the studies have been performed in organisms that have several H1 variants, which complicates the analyses. We have chosen Drosophila melanogaster, a model organism, which has a single H1 variant, to approach the study of the role of H1 PTMs during embryonic development. Mass spectrometry mapping of the entire sequence of the protein showed phosphorylation only in the ten N-terminal amino acids, mostly at S10. For the first time, changes in the PTMs of a linker H1 during the development of a multicellular organism are reported. The abundance of H1 monophosphorylated at S10 decreases as the embryos age, which suggests that this PTM is related to cell cycle progression and/or cell differentiation. Additionally, we have found a polymorphism in the protein sequence that can be mistaken with lysine methylation if the analysis is not rigorous. PMID:18253500

Villar-Garea, Ana; Imhof, Axel

2008-01-01

260

Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions.  

PubMed

Partial resistance to Phytophthora sojae in soybean is controlled by multiple quantitative trait loci (QTL). With traditional QTL mapping approaches, power to detect such QTL, frequently of small effect, can be limited by population size. Joint linkage QTL analysis of nested recombinant inbred line (RIL) populations provides improved power to detect QTL through increased population size, recombination, and allelic diversity. However, uniform development and phenotyping of multiple RIL populations can prove difficult. In this study, the effectiveness of joint linkage QTL analysis was evaluated on combinations of two to six nested RIL populations differing in inbreeding generation, phenotypic assay method, and/or marker set used in genotyping. In comparison to linkage analysis in a single population, identification of QTL by joint linkage analysis was only minimally affected by different phenotypic methods used among populations once phenotypic data were standardized. In contrast, genotyping of populations with only partially overlapping sets of markers had a marked negative effect on QTL detection by joint linkage analysis. In total, 16 genetic regions with QTL for partial resistance against P. sojae were identified, including four novel QTL on chromosomes 4, 9, 12, and 16, as well as significant genotype-by-isolate interactions. Resistance alleles from PI 427106 or PI 427105B contributed to a major QTL on chromosome 18, explaining 10-45% of the phenotypic variance. This case study provides guidance on the application of joint linkage QTL analysis of data collected from populations with heterogeneous assay conditions and a genetic framework for partial resistance to P. sojae. PMID:24247235

Lee, Sungwoo; Mian, M A Rouf; Sneller, Clay H; Wang, Hehe; Dorrance, Anne E; McHale, Leah K

2014-02-01

261

Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F 2 population  

Microsoft Academic Search

In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However,\\u000a dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been\\u000a as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches\\u000a is needed.

M. J. W. Jeuken; K. Pelgrom; P. Stam; P. Lindhout

2008-01-01

262

Beckwith-Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination breakpoints and evaluation of several techniques  

PubMed Central

Beckwith–Wiedemann syndrome (BWS) is a phenotypically and genotypically heterogeneous overgrowth syndrome characterized by somatic overgrowth, macroglossia and abdominal wall defects. Other usual findings are hemihyperplasia, embryonal tumours, adrenocortical cytomegaly, ear anomalies, visceromegaly, renal abnormalities, neonatal hypoglycaemia, cleft palate, polydactyly and a positive family history. BWS is a complex, multigenic disorder associated, in up to 90% of patients, with alteration in the expression or function of one or more genes in the 11p15.5 imprinted gene cluster. There are several molecular anomalies associated with BWS and the large proportion of cases, about 85%, is sporadic and karyotypically normal. One of the major categories of BWS molecular alteration (10–20% of cases) is represented by mosaic paternal uniparental disomy (pUPD), namely patients with two paternally derived copies of chromosome 11p15 and no maternal contribution for that. In these patients, in addition to the effects of IGF2 overexpression, a decreased level of the maternally expressed gene CDKN1C may contribute to the BWS phenotype. In this paper, we reviewed a series of nine patients with BWS because of pUPD using several methods with the aim to evaluate the percentage of mosaicism, the methylation status at both loci, the extension of the pUPD at the short arm and the breakpoints of recombination. Fine mapping of mitotic recombination breakpoints by single-nucleotide polymorphism-array in individuals with UPD and fine estimation of epigenetic defects will provide a basis for understanding the aetiology of BWS, allowing more accurate prognostic predictions and facilitating management and surveillance of individuals with this disorder. PMID:21248736

Romanelli, Valeria; Meneses, Heloisa N M; Fernandez, Luis; Martinez-Glez, Victor; Gracia-Bouthelier, Ricardo; F Fraga, Mario; Guillen, Encarna; Nevado, Julian; Gean, Esther; Martorell, Loreto; Marfil, Victoria Esteban; Garcia-Minaur, Sixto; Lapunzina, Pablo

2011-01-01

263

Beckwith-Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination breakpoints and evaluation of several techniques.  

PubMed

Beckwith-Wiedemann syndrome (BWS) is a phenotypically and genotypically heterogeneous overgrowth syndrome characterized by somatic overgrowth, macroglossia and abdominal wall defects. Other usual findings are hemihyperplasia, embryonal tumours, adrenocortical cytomegaly, ear anomalies, visceromegaly, renal abnormalities, neonatal hypoglycaemia, cleft palate, polydactyly and a positive family history. BWS is a complex, multigenic disorder associated, in up to 90% of patients, with alteration in the expression or function of one or more genes in the 11p15.5 imprinted gene cluster. There are several molecular anomalies associated with BWS and the large proportion of cases, about 85%, is sporadic and karyotypically normal. One of the major categories of BWS molecular alteration (10-20% of cases) is represented by mosaic paternal uniparental disomy (pUPD), namely patients with two paternally derived copies of chromosome 11p15 and no maternal contribution for that. In these patients, in addition to the effects of IGF2 overexpression, a decreased level of the maternally expressed gene CDKN1C may contribute to the BWS phenotype. In this paper, we reviewed a series of nine patients with BWS because of pUPD using several methods with the aim to evaluate the percentage of mosaicism, the methylation status at both loci, the extension of the pUPD at the short arm and the breakpoints of recombination. Fine mapping of mitotic recombination breakpoints by single-nucleotide polymorphism-array in individuals with UPD and fine estimation of epigenetic defects will provide a basis for understanding the aetiology of BWS, allowing more accurate prognostic predictions and facilitating management and surveillance of individuals with this disorder. PMID:21248736

Romanelli, Valeria; Meneses, Heloisa N M; Fernández, Luis; Martínez-Glez, Victor; Gracia-Bouthelier, Ricardo; F Fraga, Mario; Guillén, Encarna; Nevado, Julián; Gean, Esther; Martorell, Loreto; Marfil, Victoria Esteban; García-Miñaur, Sixto; Lapunzina, Pablo

2011-04-01

264

Fine-mapping alleles for body weight in LG/J 3 SM/J F2 and F34 advanced intercross lines  

E-print Network

Fine-mapping alleles for body weight in LG/J 3 SM/J F2 and F34 advanced intercross lines Clarissa C in an F2 intercross and an F34 advanced intercross line (AIL). Both crosses were derived from inbred LG

Abney, Mark

265

Molecular genetics of herpes simplex virus. III. Fine mapping of a genetic locus determining resistance to phosphonoacetate by two methods of marker transfer.  

PubMed Central

We have transferred a genetic locus determining resistance to phosphonoacetic acid (PAAr) from one herpes simplex viral genome to another by two methods of marker transfer. One method requires recombination between an intact DNA molecule and a restriction endonuclease DNA fragment, whereas the other requires repair of a partial heteroduplex formed between the two DNA molecules. These two methods mapped the PAAr locus between positions 0.45 and 0.53 map units on the physical map of the viral DNA. Fine mapping of the PAAr locus showed that it maps at or near an EcoRI restriction endonuclease site at either 0.46 or 0.49 map units. We also describe and compare the two methods of marker transfer. Images PMID:219255

Knipe, D M; Ruyechan, W T; Roizman, B

1979-01-01

266

Using near-isogenic barley lines to validate deoxynivalenol (DON) QTL previously identified through association analysis.  

PubMed

Fusarium head blight (FHB) and its associated mycotoxin, deoxynivalenol (DON), are the major biotic factors limiting cereal production in many parts of the world. A recent association mapping (AM) study of US six-row spring barley identified several modest effect quantitative trait loci (QTL) for DON and FHB. To date, few studies have attempted to verify the results of association analyses, particularly for complex traits such as DON and FHB resistance in barley. While AM methods use measures to control for the effects of population structure and multiple testing, false positive associations may still occur. A previous AM study used elite breeding germplasm to identify QTL for FHB and DON. To verify the results of that study, we evaluated the effects of the nine DON QTL using near-isogenic lines (NILs). We created families of contrasting homozygous haplotypes from lines in the original AM populations that were heterozygous for the DON QTL. Seventeen NIL families were evaluated for FHB and DON in three field experiments. Significant differences between contrasting NIL haplotypes were detected for three QTL across environments and/or genetic backgrounds, thereby confirming QTL from the original AM study. Several explanations for those QTL that were not confirmed are discussed, including the effect of genetic background and incomplete sampling of relevant haplotypes. PMID:24343199

Navara, Stephanie; Smith, Kevin P

2014-03-01

267

Disentangling two QTL on porcine chromosome 12 for backfat fatty acid composition.  

PubMed

A previous study allowed the identification of two QTL regions at positions 11-34 cM (QTL1) and 68-76 cM (QTL2) on porcine chromosome SSC12 affecting several backfat fatty acids in an Iberian x Landrace F2 intercross. In the current study, different approaches were performed in order to better delimit the quoted QTL regions and analyze candidate genes. A new chromosome scan, using 81 SNPs selected from the Porcine 60KBeadChip and six previously genotyped microsatellites have refined the QTL positions. Three new functional candidate genes (ACOX1, ACLY, and SREBF1) have been characterized. Moreover, two putative promoters of porcine ACACA gene have also been investigated. New isoforms and 24 SNPs were detected in the four candidate genes, 19 of which were genotyped in the population. ACOX1 and ACLY SNPs failed to explain the effects of QTL1 on palmitic and gadoleic fatty acids. QTL2, affecting palmitoleic, stearic, and vaccenic fatty acids, maps close to the ACACA gene location. The most significant associations have been detected between one intronic (g.53840T > C) and one synonymous (c.5634T > C) ACACA SNPs and these fatty acids. Complementary analyses including ACACA gene expression quantification and association studies in other porcine genetic types do not support the expected causal effect of ACACA SNPs. PMID:23777347

Muñoz, María; Fernández, Ana Isabel; Benítez, Rita; Pena, Ramona N; Folch, Josep María; Rodríguez, María del Carmen; Silió, Luis; Alves, Estefânia

2013-01-01

268

Fine-Mapping Angiotensin-Converting Enzyme Gene: Separate QTLs Identified for Hypertension and for ACE Activity  

PubMed Central

Angiotensin-converting enzyme (ACE) has been implicated in multiple biological system, particularly cardiovascular diseases. However, findings associating ACE insertion/deletion polymorphism with hypertension or other related traits are inconsistent. Therefore, in a two-stage approach, we aimed to fine-map ACE in order to narrow-down the function-specific locations. We genotyped 31 single nucleotide polymorphisms (SNPs) of ACE from 1168 individuals from 305 young-onset (age ?40) hypertension pedigrees, and found four linkage disequilibrium (LD) blocks. A tag-SNP, rs1800764 on LD block 2, upstream of and near the ACE promoter, was significantly associated with young-onset hypertension (p?=?0.04). Tag-SNPs on all LD blocks were significantly associated with ACE activity (p-value: 10–16 to <10–33). The two regions most associated with ACE activity were found between exon13 and intron18 and between intron 20 and 3?UTR, as revealed by measured haplotype analysis. These two major QTLs of ACE activity and the moderate effect variant upstream of ACE promoter for young-onset hypertension were replicated by another independent association study with 842 subjects. PMID:23469169

Chung, Chia-Min; Wang, Ruey-Yun; Fann, Cathy S. J.; Chen, Jaw-Wen; Jong, Yuh-Shiun; Jou, Yuh-Shan; Yang, Hsin-Chou; Kang, Chih-Sen; Chen, Chien-Chung; Chang, Huan-Cheng; Pan, Wen-Harn

2013-01-01

269

Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression  

PubMed Central

Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease. PMID:23535824

Kote-Jarai, Zsofia; Saunders, Edward J.; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Dadaev, Tokhir; Jugurnauth-Little, Sarah; Ross-Adams, Helen; Al Olama, Ali Amin; Benlloch, Sara; Halim, Silvia; Russel, Roslin; Dunning, Alison M.; Luccarini, Craig; Dennis, Joe; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Muir, Ken; Giles, Graham G.; Severi, Gianluca; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Lindstrom, Sara; Kraft, Peter; Hunter, David J.; Gapstur, Susan; Chanock, Stephen; Berndt, Sonja I.; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Canzian, Federico; Riboli, Elio; Key, Tim J.; Travis, Ruth C.; Campa, Daniele; Ingles, Sue A.; John, Esther M.; Hayes, Richard B.; Pharoah, Paul; Khaw, Kay-Tee; Stanford, Janet L.; Ostrander, Elaine A.; Signorello, Lisa B.; Thibodeau, Stephen N.; Schaid, Dan; Maier, Christiane; Vogel, Walther; Kibel, Adam S.; Cybulski, Cezary; Lubinski, Jan; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong Y.; Kaneva, Radka; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A.; Teixeira, Manuel R.; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A.; Sawyer, Emma J.; Morgan, Angela; Dicks, Ed; Baynes, Caroline; Conroy, Don; Bojesen, Stig E.; Kaaks, Rudolf; Vincent, Daniel; Bacot, Francois; Tessier, Daniel C.; Easton, Douglas F.; Eeles, Rosalind A.

2013-01-01

270

Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression.  

PubMed

Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease. PMID:23535824

Kote-Jarai, Zsofia; Saunders, Edward J; Leongamornlert, Daniel A; Tymrakiewicz, Malgorzata; Dadaev, Tokhir; Jugurnauth-Little, Sarah; Ross-Adams, Helen; Al Olama, Ali Amin; Benlloch, Sara; Halim, Silvia; Russell, Roslin; Russel, Roslin; Dunning, Alison M; Luccarini, Craig; Dennis, Joe; Neal, David E; Hamdy, Freddie C; Donovan, Jenny L; Muir, Ken; Giles, Graham G; Severi, Gianluca; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Lindstrom, Sara; Kraft, Peter; Hunter, David J; Gapstur, Susan; Chanock, Stephen; Berndt, Sonja I; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Canzian, Federico; Riboli, Elio; Key, Tim J; Travis, Ruth C; Campa, Daniele; Ingles, Sue A; John, Esther M; Hayes, Richard B; Pharoah, Paul; Khaw, Kay-Tee; Stanford, Janet L; Ostrander, Elaine A; Signorello, Lisa B; Thibodeau, Stephen N; Schaid, Dan; Maier, Christiane; Vogel, Walther; Kibel, Adam S; Cybulski, Cezary; Lubinski, Jan; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong Y; Kaneva, Radka; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A; Teixeira, Manuel R; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A; Sawyer, Emma J; Morgan, Angela; Dicks, Ed; Baynes, Caroline; Conroy, Don; Bojesen, Stig E; Kaaks, Rudolf; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Easton, Douglas F; Eeles, Rosalind A

2013-06-15

271

Approximate analysis of QTL-environment interaction with no limits on the number of environments.  

PubMed Central

An approach is presented here for quantitative trait loci (QTL) mapping analysis that allows for QTL x environment (E) interaction across multiple environments, without necessarily increasing the number of parameters. The main distinction of the proposed model is in the chosen way of approximation of the dependence of putative QTL effects on environmental states. We hypothesize that environmental dependence of a putative QTL effect can be represented as a function of environmental mean value of the trait. Such a description can be applied to take into account the effects of any cosegregating QTLs from other genomic regions that also may vary across environments. The conducted Monte-Carlo simulations and the example of barley multiple environments experiment demonstrate a high potential of the proposed approach for analyzing QTL x E interaction, although the results are only approximated by definition. However, this drawback is compensated by the possibility to utilize information from a potentially unlimited number of environments with a remarkable reduction in the number of parameters, as compared to previously proposed mapping models with QTL x E interactions. PMID:9560414

Korol, A B; Ronin, Y I; Nevo, E

1998-01-01

272

Fine mapping and functional studies of risk variants for type 1 diabetes at chromosome 16p13.13.  

PubMed

Single nucleotide polymorphisms (SNPs) located in the chromosomal region 16p13.13 have been previously associated with risk for several autoimmune diseases, including type 1 diabetes. To identify and localize specific risk variants for type 1 diabetes in this region and understand the mechanism of their action, we resequenced a 455-kb region in type 1 diabetic patients and unaffected control subjects, identifying 93 novel variants. A panel of 939 SNPs that included 46 of these novel variants was genotyped in 3,070 multiplex families with type 1 diabetes. Forty-eight SNPs, all located in CLEC16A, provided a statistically significant association (P < 5.32 × 10(-5)) with disease, with rs34306440 being most significantly associated (P = 5.74 × 10(-6)). The panel of SNPs used for fine mapping was also tested for association with transcript levels for each of the four genes in the region in B lymphoblastoid cell lines. Significant associations were observed only for transcript levels of DEXI, a gene with unknown function. We examined the relationship between the odds ratio for type 1 diabetes and the magnitude of the effect of DEXI transcript levels for each SNP in the region. Among SNPs significantly associated with type 1 diabetes, the common allele conferred an increased risk for disease and corresponded to lower DEXI expression. Our results suggest that the primary mechanism by which genetic variation at CLEC16A contributes to the risk for type 1 diabetes is through reduced expression of DEXI. PMID:25008175

Tomlinson, M Joseph; Pitsillides, Achilleas; Pickin, Rebecca; Mika, Matthew; Keene, Keith L; Hou, Xuanlin; Mychaleckyj, Josyf; Chen, Wei-Min; Concannon, Patrick; Onengut-Gumuscu, Suna

2014-12-01

273

Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity.  

PubMed

Nonobese diabetic (NOD) mice congenic for C57BL/10 (B10)-derived genes in the Idd9 region of chromosome 4 are highly protected from type 1 diabetes (T1D). Idd9 has been divided into three protective subregions (Idd9.1, 9.2, and 9.3), each of which partially prevents disease. In this study we have fine-mapped the Idd9.1 and Idd9.2 regions, revealing further genetic complexity with at least two additional subregions contributing to protection from T1D. Using the NOD sequence from bacterial artificial chromosome clones of the Idd9.1 and Idd9.2 regions as well as whole-genome sequence data recently made available, sequence polymorphisms within the regions highlight a high degree of polymorphism between the NOD and B10 strains in the Idd9 regions. Among numerous candidate genes are several with immunological importance. The Idd9.1 region has been separated into Idd9.1 and Idd9.4, with Lck remaining a candidate gene within Idd9.1. One of the Idd9.2 regions contains the candidate genes Masp2 (encoding mannan-binding lectin serine peptidase 2) and Mtor (encoding mammalian target of rapamycin). From mRNA expression analyses, we have also identified several other differentially expressed candidate genes within the Idd9.1 and Idd9.2 regions. These findings highlight that multiple, relatively small genetic effects combine and interact to produce significant changes in immune tolerance and diabetes onset. PMID:23934554

Hamilton-Williams, Emma E; Rainbow, Daniel B; Cheung, Jocelyn; Christensen, Mikkel; Lyons, Paul A; Peterson, Laurence B; Steward, Charles A; Sherman, Linda A; Wicker, Linda S

2013-10-01

274

Detection of QTL with effects on osmoregulation capacities in the rainbow trout (Oncorhynchus mykiss)  

PubMed Central

Background There is increasing evidence that the ability to adapt to seawater in teleost fish is modulated by genetic factors. Most studies have involved the comparison of species or strains and little is known about the genetic architecture of the trait. To address this question, we searched for QTL affecting osmoregulation capacities after transfer to saline water in a nonmigratory captive-bred population of rainbow trout. Results A QTL design (5 full-sib families, about 200 F2 progeny each) was produced from a cross between F0 grand-parents previously selected during two generations for a high or a low cortisol response after a standardized confinement stress. When fish were about 18 months old (near 204 g body weight), individual progeny were submitted to two successive hyper-osmotic challenges (30 ppt salinity) 14 days apart. Plasma chloride and sodium concentrations were recorded 24 h after each transfer. After the second challenge, fish were sacrificed and a gill index (weight of total gill arches corrected for body weight) was recorded. The genome scan was performed with 196 microsatellites and 85 SNP markers. Unitrait and multiple-trait QTL analyses were carried out on the whole dataset (5 families) through interval mapping methods with the QTLMap software. For post-challenge plasma ion concentrations, significant QTL (P < 0.05) were found on six different linkage groups and highly suggestive ones (P < 0.10) on two additional linkage groups. Most QTL affected concentrations of both chloride and sodium during both challenges, but some were specific to either chloride (2 QTL) or sodium (1 QTL) concentrations. Six QTL (4 significant, 2 suggestive) affecting gill index were discovered. Two were specific to the trait, while the others were also identified as QTL for post-challenge ion concentrations. Altogether, allelic effects were consistent for QTL affecting chloride and sodium concentrations but inconsistent for QTL affecting ion concentrations and gill morphology. There was no systematic lineage effect (grand-parental origin of QTL alleles) on the recorded traits. Conclusions For the first time, genomic loci associated with effects on major physiological components of osmotic adaptation to seawater in a nonmigratory fish were revealed. The results pave the way for further deciphering of the complex regulatory mechanisms underlying seawater adaptation and genes involved in osmoregulatory physiology in rainbow trout and other euryhaline fishes. PMID:21569550

2011-01-01

275

Molecular Genetics of Submergence Tolerance in Rice: QTL Analysis of Key Traits  

PubMed Central

Flash flooding of young rice plants is a common problem for rice farmers in south and south?east Asia. It severely reduces grain yield and increases the unpredictability of cropping. The inheritance and expression of traits associated with submergence stress tolerance at the seedling stage are physiologically and genetically complex. We exploited naturally occurring differences between certain rice lines in their tolerance to submergence and used quantitative trait loci (QTL) mapping to improve understanding of the genetic and physiological basis of submergence tolerance. Three rice populations, each derived from a single cross between two cultivars differing in their response to submergence, were used to identify QTL associated with plant survival and various linked traits. These included total shoot elongation under water, the extent of stimulation of shoot elongation caused by submergence, a visual submergence tolerance score, and leaf senescence under different field conditions, locations and years. Several major QTL determining plant survival, plant height, stimulation of shoot elongation, visual tolerance score and leaf senescence each mapped to the same locus on chromosome 9. These QTL were detected consistently in experiments across all years and in the genetic backgrounds of all three mapping populations. Secondary QTL influencing tolerance were also identified and located on chromosomes 1, 2, 5, 7, 10 and 11. These QTL were specific to particular traits, environments, or genetic backgrounds. All identified QTL contributed to increased submergence tolerance through their effects on decreased underwater shoot elongation or increased maintenance of chlorophyll levels, or on both. These findings establish the foundations of a marker?assisted scheme for introducing submergence tolerance into agriculturally desirable cultivars of rice. PMID:12509344

TOOJINDA, T.; SIANGLIW, M.; TRAGOONRUNG, S.; VANAVICHIT, A.

2003-01-01

276

Polymorphism in the ELOVL6 Gene Is Associated with a Major QTL Effect on Fatty Acid Composition in Pigs  

PubMed Central

Background The ELOVL fatty acid elongase 6 (ELOVL6), the only elongase related to de novo lipogenesis, catalyzes the rate-limiting step in the elongation cycle by controlling the fatty acid balance in mammals. It is located on pig chromosome 8 (SSC8) in a region where a QTL affecting palmitic, and palmitoleic acid composition was previously detected, using an Iberian x Landrace intercross. The main goal of this work was to fine-map the QTL and to evaluate the ELOVL6 gene as a positional candidate gene affecting the percentages of palmitic and palmitoleic fatty acids in pigs. Methodology and Principal Findings The combination of a haplotype-based approach and single-marker analysis allowed us to identify the main, associated interval for the QTL, in which the ELOVL6 gene was identified and selected as a positional candidate gene. A polymorphism in the promoter region of ELOVL6, ELOVL6:c.-533C>T, was highly associated with the percentage of palmitic and palmitoleic acids in muscle and backfat. Significant differences in ELOVL6 gene expression were observed in backfat when animals were classified by the ELOVL6:c.-533C>T genotype. Accordingly, animals carrying the allele associated with a decrease in ELOVL6 gene expression presented an increase in C16:0 and C16:1(n-7) fatty acid content and a decrease of elongation activity ratios in muscle and backfat. Furthermore, a SNP genome-wide association study with ELOVL6 relative expression levels in backfat showed the strongest effect on the SSC8 region in which the ELOVL6 gene is located. Finally, different potential genomic regions associated with ELOVL6 gene expression were also identified by GWAS in liver and muscle, suggesting a differential tissue regulation of the ELOVL6 gene. Conclusions and Significance Our results suggest ELOVL6 as a potential causal gene for the QTL analyzed and, subsequently, for controlling the overall balance of fatty acid composition in pigs. PMID:23341976

Corominas, Jordi; Ramayo-Caldas, Yuliaxis; Puig-Oliveras, Anna; Perez-Montarelo, Dafne; Noguera, Jose L.; Folch, Josep M.; Ballester, Maria

2013-01-01

277

Systematic Genetic Analysis Identifies Cis-eQTL Target Genes Associated with Glioblastoma Patient Survival  

PubMed Central

Prior expression quantitative trait locus (eQTL) studies have demonstrated heritable variation determining differences in gene expression. The majority of eQTL studies were based on cell lines and normal tissues. We performed cis-eQTL analysis using glioblastoma multiforme (GBM) data sets obtained from The Cancer Genome Atlas (TCGA) to systematically investigate germline variation’s contribution to tumor gene expression levels. We identified 985 significant cis-eQTL associations (FDR<0.05) mapped to 978 SNP loci and 159 unique genes. Approximately 57% of these eQTLs have been previously linked to the gene expression in cell lines and normal tissues; 43% of these share cis associations known to be associated with functional annotations. About 25% of these cis-eQTL associations are also common to those identified in Breast Cancer from a recent study. Further investigation of the relationship between gene expression and patient clinical information identified 13 eQTL genes whose expression level significantly correlates with GBM patient survival (p<0.05). Most of these genes are also differentially expressed in tumor samples and organ-specific controls (p<0.05). Our results demonstrated a significant relationship of germline variation with gene expression levels in GBM. The identification of eQTLs-based expression associated survival might be important to the understanding of genetic contribution to GBM cancer prognosis. PMID:25133526

Chen, Qing-Rong; Hu, Ying; Yan, Chunhua; Buetow, Kenneth; Meerzaman, Daoud

2014-01-01

278

Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean  

PubMed Central

Background The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. Results A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix® Soy GeneChip and high-throughput Illumina® whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. Conclusions This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome. PMID:20199683

2010-01-01

279

Comparing the adaptive landscape across trait types: larger QTL effect size in traits under biotic selection  

PubMed Central

Background In a spatially and temporally variable adaptive landscape, mutations operating in opposite directions and mutations of large effect should be commonly fixed due to the shifting locations of phenotypic optima. Similarly, an adaptive landscape with multiple phenotypic optima and deep valleys of low fitness between peaks will favor mutations of large effect. Traits under biotic selection should experience a more spatially and temporally variable adaptive landscape with more phenotypic optima than that experienced by traits under abiotic selection. To test this hypothesis, we assemble information from QTL mapping studies conducted in plants, comparing effect directions and effect sizes of detected QTL controlling traits putatively under abiotic selection to those controlling traits putatively under biotic selection. Results We find no differences in the fraction of antagonistic QTL in traits under abiotic and biotic selection, suggesting similar consistency in selection pressure on these two types of traits. However, we find that QTL controlling traits under biotic selection have a larger effect size than those under abiotic selection, supporting our hypothesis that QTL of large effect are more commonly detected in traits under biotic selection than in traits under abiotic selection. For traits under both abiotic and biotic selection, we find a large number of QTL of large effect, with 10.7% of all QTLs detected controlling more than 20% of the variance in phenotype. Conclusion These results suggest that mutations of large effect are more common in adaptive landscapes strongly determined by biotic forces, but that these types of adaptive landscapes do not result in a higher fraction of mutations acting in opposite directions. The high number of QTL of large effect detected shows that QTL of large effect are more common than predicted by the infinitesimal model of genetic adaptation. PMID:21385379

2011-01-01

280

Transferability and fine-mapping of glucose and insulin quantitative trait loci across populations: CARe, the Candidate Gene Association Resource  

PubMed Central

Aims/hypothesis Hyperglycaemia disproportionately affects African-Americans (AfAs). We tested the transferability of 18 single-nucleotide polymorphisms (SNPs) associated with glycaemic traits identified in European ancestry (EuA) populations in 5,984 non-diabetic AfAs. Methods We meta-analysed SNP associations with fasting glucose (FG) or insulin (FI) in AfAs from five cohorts in the Candidate Gene Association Resource. We: (1) calculated allele frequency differences, variations in linkage disequilibrium (LD), fixation indices (Fsts) and integrated haplotype scores (iHSs); (2) tested EuA SNPs in AfAs; and (3) interrogated within ±250 kb around each EuA SNP in AfAs. Results Allele frequency differences ranged from 0.6% to 54%. Fst exceeded 0.15 at 6/16 loci, indicating modest population differentiation. All iHSs were <2, suggesting no recent positive selection. For 18 SNPs, all directions of effect were the same and 95% CIs of association overlapped when comparing EuA with AfA. For 17 of 18 loci, at least one SNP was nominally associated with FG in AfAs. Four loci were significantly associated with FG (GCK, p=5.8 × 10-8; MTNR1B, p=8.5 × 10-9; and FADS1, p=2.2 × 10-4) or FI (GCKR, p=5.9 × 10-4). At GCK and MTNR1B the EuA and AfA SNPs represented the same signal, while at FADS1, and GCKR, the EuA and best AfA SNPs were weakly correlated (r2<0.2), suggesting allelic heterogeneity for association with FG at these loci. Conclusions/interpretation Few glycaemic SNPs showed strict evidence of transferability from EuA to AfAs. Four loci were significantly associated in both AfAs and those with EuA after accounting for varying LD across ancestral groups, with new signals emerging to aid fine-mapping. PMID:22893027

Liu, C.-T.; Ng, M. C. Y.; Rybin, D.; Adeyemo, A.; Bielinski, S. J.; Boerwinkle, E.; Borecki, I.; Cade, B.; Chen, Y. D. I.; Djousse, L.; Fornage, M.; Goodarzi, M. O.; Grant, S. F. A.; Guo, X.; Harris, T.; Kabagambe, E.; Kizer, J. R.; Liu, Y.; Lunetta, K. L.; Mukamal, K.; Nettleton, J. A.; Pankow, J. S.; Patel, S. R.; Ramos, E.; Rasmussen-Torvik, L.; Rich, S. S.; Rotimi, C. N.; Sarpong, D.; Shriner, D.; Sims, M.; Zmuda, J. M.; Redline, S.; Kao, W. H.; Siscovick, D.; Florez, J. C.; Rotter, J. I.; Dupuis, J.; Wilson, J. G.; Bowden, D. W.; Meigs, J. B.

2013-01-01

281

QTL meta-analysis in Arabidopsis reveals an interaction between leaf senescence and resource allocation to seeds  

PubMed Central

Sequential and monocarpic senescence are observed at vegetative and reproductive stages, respectively. Both facilitate nitrogen (N) remobilization and control the duration of carbon (C) fixation. Genetic and environmental factors control N and C resource allocation to seeds. Studies of natural variation in Arabidopsis thaliana revealed differences between accessions for leaf senescence phenotypes, seed N and C contents, and N remobilization efficiency-related traits. Here, a quantitative genetics approach was used to gain a better understanding of seed filling regulation in relation to leaf senescence and resource allocation. For that purpose, three Arabidopsis recombinant inbred line populations (Ct-1×Col-0, Cvi-0×Col-0, Bur-0×Col-0) were used to map QTL (quantitative trait loci) for ten traits related to senescence, resource allocation, and seed filling. The use of common markers across the three different maps allowed direct comparisons of the positions of the detected QTL in a single consensus map. QTL meta-analysis was then used to identify interesting regions (metaQTL) where QTL for several traits co-localized. MetaQTL were compared with positions of candidate genes known to be involved in senescence processes and flowering time. Finally, investigation of the correlation between yield and seed N concentration in the three populations suggests that leaf senescence disrupts the negative correlation generally observed between these two traits. PMID:24692652

Chardon, Fabien; Jasinski, Sophie; Durandet, Monique; Lecureuil, Alain; Soulay, Fabienne; Bedu, Magali; Guerche, Philippe; Masclaux-Daubresse, Celine

2014-01-01

282

Mapping and use of QTLs controlling pod dehiscence in soybean  

PubMed Central

While the cultivated soybean, Glycine max (L.) Merr., is more recalcitrant to pod dehiscence (shattering-resistant) than wild soybean, Glycine soja Sieb. & Zucc., there is also significant genetic variation in shattering resistance among cultivated soybean cultivars. To reveal the genetic basis and develop DNA markers for pod dehiscence, several research groups have conducted quantitative trait locus (QTL) analysis using segregated populations derived from crosses between G. max accessions or between a G. max and G. soja accession. In the populations of G. max, a major QTL was repeatedly identified near SSR marker Sat_366 on linkage group J (chromosome 16). Minor QTLs were also detected in several studies, although less commonality was found for the magnitudes of effect and location. In G. max × G. soja populations, only QTLs with a relatively small effect were detected. The major QTL found in G. max was further fine-mapped, leading to the development of specific markers for the shattering resistance allele at this locus. The markers were used in a breeding program, resulting in the production of near-isogenic lines with shattering resistance and genetic backgrounds of Japanese elite cultivars. The markers and lines developed will hopefully contribute to the rapid production of a variety of shattering-resistant soybean cultivars. PMID:23136494

Funatsuki, Hideyuki; Hajika, Makita; Yamada, Tetsuya; Suzuki, Masaya; Hagihara, Seiji; Tanaka, Yoshinori; Fujita, Shohei; Ishimoto, Masao; Fujino, Kaien

2012-01-01

283

A Study in Sorghum Bicolor: QTL Analysis of Photoperiod Sensitive Sorghums, Evaluation of Sorghum x Sugarcane Hybrids and Trait Introgression for Intergeneric Hybrid Improvement  

E-print Network

markers, which can be useful to breeders during trait selection (Bernardo 2008). From a plant breeding perspective, QTL mapping is divided into separate yet equally important goals. First, QTL mapping can identify major candidate traits... for introgression, and second, identification of traits can lead to development of genetic markers useful in marker assisted selection (MAS) (Bernardo 2008). Finally, this information can be used to clone the gene if this is a desired or necessary goal. Several...

Bartek, Matthew Scott

2013-07-22

284

26 February 2003 Genetics Brian S. Yandell 1 Gene Mapping  

E-print Network

� segregating cross of inbred lines � B6.ob x BTBR.ob F1 F2 � selected mice with ob/ob alleles at leptin gene26 February 2003 Genetics � Brian S. Yandell 1 Gene Mapping for High Throughput Expression Profiles map gene expression? � what are QTL? � why multiple QTL? � how to select genetic architecture? � how

Yandell, Brian S.

285

Association mapping in plant populations Jean-Luc Jannink  

E-print Network

between inbred parents to map QTL, we create in the F1 hybrid complete association between all marker haploid, F2, or recombinant inbred lines reduces the association between a given QTL and markers distant of propagating lines to allow for a sufficient number of meioses. An alternative approach is "association mapping

Walsh, Bruce

286

Bayesian mapping of quantitative trait loci for complex binary traits.  

PubMed Central

A complex binary trait is a character that has a dichotomous expression but with a polygenic genetic background. Mapping quantitative trait loci (QTL) for such traits is difficult because of the discrete nature and the reduced variation in the phenotypic distribution. Bayesian statistics are proved to be a powerful tool for solving complicated genetic problems, such as multiple QTL with nonadditive effects, and have been successfully applied to QTL mapping for continuous traits. In this study, we show that Bayesian statistics are particularly useful for mapping QTL for complex binary traits. We model the binary trait under the classical threshold model of quantitative genetics. The Bayesian mapping statistics are developed on the basis of the idea of data augmentation. This treatment allows an easy way to generate the value of a hypothetical underlying variable (called the liability) and a threshold, which in turn allow the use of existing Bayesian statistics. The reversible jump Markov chain Monte Carlo algorithm is used to simulate the posterior samples of all unknowns, including the number of QTL, the locations and effects of identified QTL, genotypes of each individual at both the QTL and markers, and eventually the liability of each individual. The Bayesian mapping ends with an estimation of the joint posterior distribution of the number of QTL and the locations and effects of the identified QTL. Utilities of the method are demonstrated using a simulated outbred full-sib family. A computer program written in FORTRAN language is freely available on request. PMID:10880497

Yi, N; Xu, S

2000-01-01

287

QTL analysis of cleistogamy in soybean.  

PubMed

Early-maturing cultivars of soybean [Glycine max (L.) Merr.] native to the shores of the Sea of Okhotsk (Sakhalin and Kuril Islands) and eastern Hokkaido (northern Japan) have a strong tendency to produce cleistogamous flowers throughout their blooming period. A previous study revealed that cleistogamy is controlled by a minimum of two genes with epistatic interaction, one of which is associated with a maturity gene responsible for insensitivity to incandescent long daylength (ILD). This study was conducted to determine the genetic basis of cleistogamy in more detail by QTL mapping. F2 to F4 progenies derived from a cross between a cleistogamous cv. Karafuto-1 and a chasmogamous cv. Toyosuzu were used. A molecular linkage map spanning 2,180 cM comprising 500 markers was constructed using 89 F2 plants. The markers were distributed in 25 linkage groups. An interval mapping method to analyze categorical traits identified four QTLs for cleistogamy, cl1, cl2, cl3 and cl4, in molecular linkage groups (MLGs) C2, D1a, I and L, respectively. Alleles derived from Karafuto-1 had additive effects to increase probability of cleistogamy at cl3 and cl4, whereas the alleles had additive effects to decrease the probablity at cl1 and cl2. Progeny test confirmed the effects of cl3, which had the highest LOD score (5.20). Composite interval mapping revealed four QTLs for flowering date, fd5-fd8. Judging from relative location with markers and association with ILD responses, fd7 and fd8 may correspond to maturity genes E4 and E3, respectively. cl3 and cl4 were located at similar positions as fd7 and fd8, suggesting that the two maturity genes may control cleistogamy by either pleiotropy or close linkage. PMID:18506418

Khan, Nisar A; Githiri, Stephen M; Benitez, Eduardo R; Abe, Jun; Kawasaki, Shinji; Hayashi, Takeshi; Takahashi, Ryoji

2008-08-01

288

Breed relationships facilitate fine-mapping studies: A 7.8-kb deletion cosegregates with Collie eye anomaly across multiple dog breeds  

PubMed Central

The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups. We then use the multibreed approach to fine-map Collie eye anomaly (cea), a complex disorder of ocular development that was initially mapped to a 3.9-cM region on canine chromosome 37. Combined genotypes from affected individuals from four breeds of a single breed group significantly narrowed the candidate gene region to a 103-kb interval spanning only four genes. Sequence analysis revealed that all affected dogs share a homozygous deletion of 7.8 kb in the NHEJ1 gene. This intronic deletion spans a highly conserved binding domain to which several developmentally important proteins bind. This work both establishes that the primary cea mutation arose as a single disease allele in a common ancestor of herding breeds as well as highlights the value of comparative population analysis for refining regions of linkage. PMID:17916641

Parker, Heidi G.; Kukekova, Anna V.; Akey, Dayna T.; Goldstein, Orly; Kirkness, Ewen F.; Baysac, Kathleen C.; Mosher, Dana S.; Aguirre, Gustavo D.; Acland, Gregory M.; Ostrander, Elaine A.

2007-01-01

289

Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize.  

PubMed

The major quantitative trait locus (QTL) qHS2.09 plays an important role in resistance to head smut during maize breeding and production. In this study, a near-isogenic line (NIL), L34, which harbors the major QTL qHS2.09 in bin 2.09, was developed using a resistant donor 'Mo17' in a susceptible genetic background 'Huangzao4'. Using 18,683 genome-wide polymorphic loci, this major QTL was finely mapped into an interval of ?1.10 Mb, flanked by single nucleotide polymorphism (SNP) markers PZE-102187307 and PZE-102188421. Moreover, the favorable allele from 'Mo17' for SNP PZE-102187611 in this interval that was most significantly associated with resistance to head smut (P = 1.88 E-10) and accounted for 39.7 to 44.4% of the phenotypic variance in an association panel consisting of 80 inbred lines. With combined linkage and association mapping, this major QTL was finally located between SNP PZE-102187486 and PZE-102188421 with an interval of ?1.00 Mb. Based on the pedigrees of 'Mo17' and its derivatives widely used in temperate maize breeding programs, the favorable haplotype from 'Mo17' is shown to be the main source of resistance to head smut in these lines. Therefore, the SNPs closely linked to the major QTL qHS2.09, detected in both linkage and association mapping, and could be useful for marker-assisted selection in maize breeding programs. PMID:22439860

Weng, Jianfeng; Liu, Xianjun; Wang, Zhenhua; Wang, Jianjun; Zhang, Lin; Hao, Zhuanfang; Xie, Chuanxiao; Li, Mingshun; Zhang, Degui; Bai, Li; Liu, Changlin; Zhang, Shihuang; Li, Xinhai

2012-07-01

290

vol. 159, supplement the american naturalist march 2002 Genetic Mapping in Hybrid Zones  

E-print Network

the wild sunflower species Helianthus annuus and Helianthus petiolaris. Results indicate that mapping, Helianthus, hybrid zones, QTL, repro- ductive isolation, speciation. Great strides have been made over

Rieseberg, Loren

291

Host genetics and immune control of HIV-1 infection: fine mapping for the extended human MHC region in an African cohort.  

PubMed

Multiple major histocompatibility complex (MHC) loci encoding human leukocyte antigens (HLA) have allelic variants unequivocally associated with differential immune control of HIV-1 infection. Fine mapping based on single nucleotide polymorphisms (SNPs) in the extended MHC (xMHC) region is expected to reveal causal or novel factors and to justify a search for functional mechanisms. We have tested the utility of a custom fine-mapping platform (the ImmunoChip) for 172 HIV-1 seroconverters (SCs) and 449 seroprevalent individuals (SPs) from Lusaka, Zambia, with a focus on more than 6400 informative xMHC SNPs. When conditioned on HLA and nongenetic factors previously associated with HIV-1 viral load (VL) in the study cohort, penalized approaches (HyperLasso models) identified an intergenic SNP (rs3094626 between RPP21 and HLA-E) and an intronic SNP (rs3134931 in NOTCH4) as novel correlates of early set-point VL in SCs. The minor allele of rs2857114 (downstream from HLA-DOB) was an unfavorable factor in SPs. Joint models based on demographic features, HLA alleles and the newly identified SNP variants could explain 29% and 15% of VL variance in SCs and SPs, respectively. These findings and bioinformatics strongly suggest that both classic and nonclassic MHC genes deserve further investigation, especially in Africans with relatively short haplotype blocks. PMID:24784026

Prentice, H A; Pajewski, N M; He, D; Zhang, K; Brown, E E; Kilembe, W; Allen, S; Hunter, E; Kaslow, R A; Tang, J

2014-01-01

292

Quantitative trait loci (QTL) applications to substances of abuse: Physical dependence studies with nitrous oxide and ethanol in BXD mice  

Microsoft Academic Search

Recombinant inbred (RI) mouse strains were developed primarily as a tool to detect and provisionally map major gene loci—those with effects large enough to cause a bimodal distribution in the trait of interest. This implied that progress toward gene mapping was possible only for gene loci accounting for at least half of the genetic variance. More recently, QTL (quantitative trait

J. K. Belknap; P. Metten; M. L. Helms; L. A. O'Toole; S. Angeli-Gade; J. C. Crabbe; T. J. Phillips

1993-01-01

293

RNA-seq based SNPs in some agronomically important oleiferous lines of Brassica rapa and their use for genome-wide linkage mapping and specific-region fine mapping  

PubMed Central

Background Brassica rapa (AA) contains very diverse forms which include oleiferous types and many vegetable types. Genome sequence of B. rapa line Chiifu (ssp. pekinensis), a leafy vegetable type, was published in 2011. Using this knowledge, it is important to develop genomic resources for the oleiferous types of B. rapa. This will allow more involved molecular mapping, in-depth study of molecular mechanisms underlying important agronomic traits and introgression of traits from B. rapa to major oilseed crops - B. juncea (AABB) and B. napus (AACC). The study explores the availability of SNPs in RNA-seq generated contigs of three oleiferous lines of B. rapa - Candle (ssp. oleifera, turnip rape), YSPB-24 and Tetra (ssp. trilocularis, Yellow sarson) and their use in genome-wide linkage mapping and specific-region fine mapping using a RIL population between Chiifu and Tetra. Results RNA-seq was carried out on the RNA isolated from young inflorescences containing unopened floral buds, floral axis and small leaves, using Illumina paired-end sequencing technology. Sequence assembly was carried out using the Velvet de-novo programme and the assembled contigs were organised against Chiifu gene models, available in the BRAD-CDS database. RNA-seq confirmed the presence of more than 17,000 single-copy gene models described in the BRAD database. The assembled contigs and the BRAD gene models were analyzed for the presence of SSRs and SNPs. While the number of SSRs was limited, more than 0.2 million SNPs were observed between Chiifu and the three oleiferous lines. Assays for SNPs were designed using KASPar technology and tested on a F7-RIL population derived from a Chiifu x Tetra cross. The design of the SNP assays were based on three considerations - the 50 bp flanking region of the SNPs should be strictly similar, the SNP should have a read-depth of ?7 and no exon/intron junction should be present within the 101 bp target region. Using these criteria, a total of 640 markers (580 for genome-wide mapping and 60 for specific-region mapping) marking as many genes were tested for mapping. Out of 640 markers that were tested, 594 markers could be mapped unambiguously which included 542 markers for genome-wide mapping and 42 markers for fine mapping of the tet-o locus that is involved with the trait tetralocular ovary in the line Tetra. Conclusion A large number of SNPs and PSVs are present in the transcriptome of B. rapa lines for genome-wide linkage mapping and specific-region fine mapping. Criteria used for SNP identification delivered markers, more than 93% of which could be successfully mapped to the F7–RIL population of Chiifu x Tetra cross. PMID:23837684

2013-01-01

294

Genome Scan for Parent-of-Origin QTL Effects on Bovine Growth and Carcass Traits  

PubMed Central

Parent-of-origin effects (POE) such as genomic imprinting influence growth and body composition in livestock, rodents, and humans. Here, we report the results of a genome scan to detect quantitative trait loci (QTL) with POE on growth and carcass traits in Angus?×?Brahman cattle crossbreds. We identified 24 POE–QTL on 15 Bos taurus autosomes (BTAs) of which six were significant at 5% genome-wide (GW) level and 18 at the 5% chromosome-wide (CW) significance level. Six QTL were paternally expressed while 15 were maternally expressed. Three QTL influencing post-weaning growth map to the proximal end of BTA2 (linkage region of 0–9?cM; genomic region of 5.0–10.8?Mb), for which only one imprinted ortholog is known so far in the human and mouse genomes, and therefore may potentially represent a novel imprinted region. The detected QTL individually explained 1.4???5.1% of each trait’s phenotypic variance. Comparative in silico analysis of bovine genomic locations show that 32 out of 1,442 known mammalian imprinted genes from human and mouse homologs map to the identified QTL regions. Although several of the 32 genes have been associated with quantitative traits in cattle, only two (GNAS and PEG3) have experimental proof of being imprinted in cattle. These results lend additional support to recent reports that POE on quantitative traits in mammals may be more common than previously thought, and strengthen the need to identify and experimentally validate cattle orthologs of imprinted genes so as to investigate their effects on quantitative traits. PMID:22303340

Imumorin, Ikhide G.; Kim, Eun-Hee; Lee, Yun-Mi; De Koning, Dirk-Jan; van Arendonk, Johan A.; De Donato, Marcos; Taylor, Jeremy F.; Kim, Jong-Joo

2011-01-01

295

Fine genetic map of mouse chromosome 10 around the polycystic kidney disease gene, jcpk, and ankyrin 3  

SciTech Connect

A chlorambucil (CHL)-induced mutation of the jcpk (juvenile congenital polycystic kidney disease) gene causes a severe early onset polycystic kidney disease. In an intercross involving Mus musculus castaneus, jcpk was precisely mapped 0.2 cM distal to D10Mit115 and 0.8 cM proximal to D10Mit173. In addition, five genes, Cdc2a, Col6al, Col6a2, Bcr, and Ank3 were mapped in both this jcpk intercross and a (BALB/c X CAST/Ei)F{sub 1} x BALB/c backcross. All five genes were eliminated as possible candidates for jcpk based on the mapping data. The jcpk intercross allowed the orientation of the Ank3 gene relative to the centromere to be determined. D10Mit115, D10Mit173, D10Mit199, and D10Mit200 were separated genetically in this cross. The order and genetic distances of all markers and gene loci mapped in the jcpk intercross were consistent with those derived from the BALB/c backcross, indicating that the CHL-induced lesion has not generated any gross chromosomal abnormalities detectable in these studies. 39 refs., 3 figs.

Bryda, E.C.; Ling, H.; Rathbun, D.E. [New York State Department of Health, Albany, NY (United States)] [and others] [New York State Department of Health, Albany, NY (United States); and others

1996-08-01

296

Progressive bias in species status is symptomatic of fine-grained mapping units subject to repeated sampling  

Microsoft Academic Search

Atlas maps of butterflies invariably fail to distinguish the status of records, that is, whether they are observations of breeding populations or vagrant individuals. Yet, for conservation purposes, it is clearly important to know whether records relate to breeding populations in suitable habitats or not. The high mobility of butterfly adults carries two expectations. First, vagrants will frequently be recorded

Roger L. H. Dennis

2001-01-01

297

Time-related mapping of quantitative trait loci underlying tiller number in rice.  

PubMed Central

Using time-related phenotypic data, methods of composite interval mapping and multiple-trait composite interval mapping based on least squares were applied to map quantitative trait loci (QTL) underlying the development of tiller number in rice. A recombinant inbred population and a corresponding saturated molecular marker linkage map were constructed for the study. Tiller number was recorded every 4 or 5 days for a total of seven times starting at 20 days after sowing. Five QTL were detected on chromosomes 1, 3, and 5. These QTL explained more than half of the genetic variance at the final observation. All the QTL displayed an S-shaped expression curve. Three QTL reached their highest expression rates during active tillering stage, while the other two QTL achieved this either before or after the active tillering stage. PMID:9872968

Wu, W R; Li, W M; Tang, D Z; Lu, H R; Worland, A J

1999-01-01

298

Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar 'Surpass 400'.  

PubMed

Blackleg resistant cultivars have been developed through conventional breeding methods and are successfully used globally to control this disease in canola production. To clone blackleg resistance genes and to understand the mechanism underlying the resistance, a blackleg resistant canola cultivar 'Surpass 400' was used to develop a gene mapping population. A previously reported high density genetic map was used to find a resistance gene region that corresponded to linkage group N10 in B. napus. Differential interactions between the resistant lines and a pathogen isolate were discovered with two resistance genes BLMR1 and BLMR2 identified through linkage analysis of five genome-specific molecular markers. BLMR1 provides resistance through the hypersensitive response that protects inoculated cotyledons from becoming infected, Unlike BLMR1, BLMR2 slows down the development of individual infection loci. BLMR1 and BLMR2 segregated independently in two large F(3)BC(2) populations. Fine mapping of BLMR1 was performed with 12 genome-specific molecular markers. The closest marker with a genetic distance of 0.13 cM to BLMR1 was identified, which lays a solid foundation for cloning BLMR1. PMID:21258998

Long, Yunming; Wang, Zining; Sun, Zudong; Fernando, Dilantha W G; McVetty, Peter B E; Li, Genyi

2011-04-01

299

Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3.  

PubMed

Bacterial spot caused by Xanthomonas euvesicatoria, X. vesicatoria, X. perforans and X. gardneri is one of the most destructive diseases in tomatoes (Solanum lycopersicum L.) growing in tropical and subtropical regions. Exploring resistance genes from diverse germplasm and incorporating them into cultivated varieties are critical for controlling this disease. The S. pimpinellifolium accession PI128216 was reported to carry the Rx4 gene on chromosome 11 conferring hypersensitivity and field resistance to race T3. To facilitate the use of marker-assisted selection in breeding and map-based cloning of the gene, an F(2) population derived from a cross between the susceptible variety OH88119 and the resistant accession PI128216 was created for fine mapping of the Rx4 gene. Using 18 markers developed through various approaches, we mapped the gene to a 45.1-kb region between two markers pcc17 and pcc14 on chromosome 11. A NBS-LRR class of resistance gene was identified as the candidate for the Rx4 gene based on annotation results from the International Tomato Annotation Group. Comparison of the genomic DNA sequences of the Rx4 alleles in PI128216 and OH88119 revealed a 6-bp insertion/deletion (InDel) and eight SNPs. The InDel marker was successfully used to distinguish resistance and susceptibility in 12 tomato lines. These results will facilitate cloning the Rx4 gene and provide a useful tool for marker-assisted selection of this gene in tomato breeding programs. PMID:22038434

Pei, Chengcheng; Wang, Hui; Zhang, Jieyun; Wang, Yuanyuan; Francis, David M; Yang, Wencai

2012-02-01

300

Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population  

Microsoft Academic Search

In Arabidopsis recombinant inbred line (RIL) populations are widely used for quantitative trait locus (QTL) analyses. However, mapping analyses with this type of population can be limited because of the masking effects of major QTL and epistatic interactions of multiple QTL. An alternative type of immortal experimental population commonly used in plant species are sets of introgression lines. Here we

Joost J. B. Keurentjes; Leonie Bentsink; Carlos Alonso-Blanco; M. H. C. Blankestijn-de Vries; S. Effgen; D. Vreugdenhil; M. Koornneef

2007-01-01

301

Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass ( Lolium perenne L.)  

Microsoft Academic Search

Perennial ryegrass is an obligate outbreeding pasture grass of the Poaceae family, with a two-locus (S and Z) gametophytic self-incompatibility (SI) mechanism. This system has provided a major obstacle to targeted varietal development,\\u000a and enhanced knowledge is expected to support more efficient breeding strategies. Comparative genetics and physical mapping\\u000a approaches have been developed to permit molecular cloning of the SI

Hiroshi Shinozuka; Noel O. I. Cogan; Kevin F. Smith; German C. Spangenberg; John W. Forster

2010-01-01

302

A QTL on mouse chromosome 12 for the genetic variance in free-running circadian period between inbred strains of mice  

PubMed Central

Background Many genes control circadian period in mice. Prior studies suggested a quantitative trait locus (QTL) on proximal mouse chromosome 12 for interstrain differences in circadian period. Since the B6.D2NAhrd/J strain has DBA/2 alleles for a portion of proximal chromosome 12 introgressed onto its C57BL/6J background, we hypothesized that these mice would have a shorter circadian period than C57BL/6J mice. Methods We compared circadian phenotypes of B6.D2NAhrd/J and C57BL/6 mice: period of general locomotor activity in constant dark and rest/activity pattern in alternating light and dark. We genotyped the B6.D2NAhrd/J mice to characterize the size of the genomic insert. To aid in identifying candidate quantitative trait genes we queried databases about the resident SNPs, whole brain gene expression in C57BL/6J versus DBA/2J mice, and circadian patterns of gene expression. Results The B6.D2NAhrd/J inbred mice have a shorter circadian period of locomotor activity than the C57BL/6J strain. Furthermore, the genomic insert is associated with another phenotype: the mean phase of activity minimum in the dark part of a light-dark lighting cycle. It was one hour later than in the background strain. The B6.D2NAhrd/J mice have a DBA/2J genomic insert spanning 35.4 to 41.0 megabase pairs on Chromosome 12. The insert contains 15 genes and 12 predicted genes. In this region Ahr (arylhydrocarbon receptor) and Zfp277 (zinc finger protein 277) both contain non-synonymous SNPs. Zfp277 also showed differential expression in whole brain and was cis-regulated. Three genes and one predicted gene showed a circadian pattern of expression in liver, including Zfp277. Conclusion We not only fine-mapped the QTL for circadian period on chromosome 12 but found a new QTL there as well: an association with the timing of the nocturnal activity-minimum. Candidate quantitative trait genes in this QTL are zinc finger protein 277 and arylhydrocarbon receptor. Arylhydrocarbon receptor is structurally related to Bmal1, a canonical clock gene. PMID:17974007

Hofstetter, John R; Svihla-Jones, Doreen A; Mayeda, Aimee R

2007-01-01

303

Structure of the human N-cadherin gene: YAC analysis and fine chromosomal mapping to 18q11.2  

SciTech Connect

The cadherins are a large family of cell adhesion molecules involved in calcium-dependent recognition and adhesion events. The authors have used YAC analysis to determine the structure of the human N-cadherin gene. An 850-kb YAC was isolated and the entire N-cadherin gene mapped to a 250-kb region spanning three putative CpG islands. A PCR and cosmid subcloning strategy was used to define the boundaries for the 16 exons that compose the gene. These were shown to be not only highly conserved between mouse and human N-cadherin genes, but also similar to other cadherins. The first and second introns of the gene are large, a property conserved between the mouse and human genes. In situ hybridization with YAC DNA refined the map position of N-cadherin to human chromosome 18q11.2. 50 refs., 3 figs., 4 tabs.

Wallis, J.; Walsh, F.S. [Guy`s Hospital, London (United Kingdom)] [Guy`s Hospital, London (United Kingdom); Fox, M.F. [Galton Lab., London (United Kingdom)] [Galton Lab., London (United Kingdom)

1994-07-01

304

QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species.  

PubMed

An interspecific F(2) population from a cross between cultivated eggplant, Solanum melongena, and its wild relative, S. linnaeanum, was analyzed for quantitative trait loci (QTL) affecting leaf, flower, fruit and plant traits. A total of 58 plants were genotyped for 207 restriction fragment length polymorphism (RFLP) markers and phenotyped for 18 characters. One to eight loci were detected for each trait with a total of 63 QTL identified. Overall, 46% of the QTL had allelic effects that were the reverse of those predicted from the parental phenotypes. Wild alleles that were agronomically superior to the cultivated alleles were identified for 42% of the QTL identified for flowering time, flower and fruit number, fruit set, calyx size and fruit glossiness. Comparison of the map positions of eggplant loci with those for similar traits in tomato, potato and pepper revealed that 12 of the QTL have putative orthologs in at least one of these other species and that putative orthology was most often observed between eggplant and tomato. Traits showing potential orthology were: leaf length, shape and lobing; days to flowering; number of flowers per inflorescence; plant height and apex, leaf and stem hairiness. The functionally conserved loci included a major leaf lobing QTL ( llob6.1) that is putatively orthologous to the potato leaf ( c) and/or Petroselinum ( Pts) mutants of tomato, two flowering time QTL ( dtf1.1, dtf2.1) that also have putative counterparts in tomato and four QTL for trichomes that have potential orthologs in tomato and potato. These results support the mounting evidence of conservation of gene function during the evolution of eggplant and its relatives from their last common ancestor and indicate that this conservation was not limited to domestication traits. PMID:12677409

Frary, A; Doganlar, S; Daunay, M C; Tanksley, S D

2003-07-01

305

Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1  

PubMed Central

The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ER? to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease. PMID:24290378

Meyer, Kerstin B.; O'Reilly, Martin; Michailidou, Kyriaki; Carlebur, Saskia; Edwards, Stacey L.; French, Juliet D.; Prathalingham, Radhika; Dennis, Joe; Bolla, Manjeet K.; Wang, Qin; de Santiago, Ines; Hopper, John L.; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Van 't Veer, Laura J.; Hogervorst, Frans B.; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A.; Lux, Michael P.; Ekici, Arif B.; Beckmann, Matthias W.; Peto, Julian; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guenel, Pascal; Truong, Therese; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E.; Nordestgaard, B?rge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Zamora, M. Pilar; Arias, Jose I.; Benitez, Javier; Neuhausen, Susan; Anton-Culver, Hoda; Ziogas, Argyrios; Dur, Christina C.; Brenner, Hermann; Muller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Schmutzler, Rita K.; Engel, Christoph; Ditsch, Nina; Brauch, Hiltrud; Bruning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Dork, Thilo; Helbig, Sonja; Bogdanova, Natalia V.; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Chenevix-Trench, Georgia; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Lambrechts, Diether; Thienpont, Bernard; Christiaens, Marie-Rose; Smeets, Ann; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Bernard, Loris; Couch, Fergus J.; Olson, Janet E.; Wang, Xianshu; Purrington, Kristen; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Teo, Soo-Hwang; Yip, Cheng-Har; Phuah, Sze-Yee; Kristensen, Vessela; Grenaker Alnaes, Grethe; B?rresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline M.; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Darabi, Hartef; Eriksson, Kimael; Hooning, Maartje J.; Martens, John W.M.; van den Ouweland, Ans M.W.; van Deurzen, Carolien H.M.; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Reed, Malcolm W.R.; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Pharoah, Paul D.P.; Ghoussaini, Maya; Harrington, Patricia; Tyrer, Jonathan; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Noh, Dong-Young; Hartman, Mikael; Hui, Miao; Lim, Wei-Yen; Buhari, Shaik A.; Hamann, Ute; Forsti, Asta; Rudiger, Thomas; Ulmer, Hans-Ulrich; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Vachon, Celine; Slager, Susan; Fostira, Florentia; Pilarski, Robert; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Ponder, Bruce A.J.; Dunning, Alison M.; Easton, Douglas F.

2013-01-01

306

Comprehensive fine mapping of chr12q12-14 and follow-up replication identify activin receptor 1B (ACVR1B) as a muscle strength gene  

PubMed Central

Muscle strength is important in functional activities of daily living and the prevention of common pathologies. We describe the two-staged fine mapping of a previously identified linkage peak for knee strength on chr12q12-14. First, 209 tagSNPs in/around 74 prioritized genes were genotyped in 500 Caucasian brothers from the Leuven Genes for Muscular Strength study (LGfMS). Combined linkage and family-based association analyses identified activin receptor 1B (ACVR1B) and inhibin ? C (INHBC), part of the transforming growth factor ? pathway regulating myostatin – a negative regulator of muscle mass – signaling, for follow-up. Second, 33 SNPs, selected in these genes based on their likelihood to functionally affect gene expression/function, were genotyped in an extended sample of 536 LGfMS siblings. Strong associations between ACVR1B genotypes and knee muscle strength (P-values up to 0.00002) were present. Of particular interest was the association with rs2854464, located in a putative miR-24-binding site, as miR-24 was implicated in the inhibition of skeletal muscle differentiation. Rs2854464 AA individuals were ?2% stronger than G-allele carriers. The strength increasing effect of the A-allele was also observed in an independent replication sample (n=266) selected from the Baltimore Longitudinal Study of Aging and a Flemish Policy Research Centre Sport, Physical Activity and Health study. However, no genotype-related difference in ACVR1B mRNA expression in quadriceps muscle was observed. In conclusion, we applied a two-stage fine mapping approach, and are the first to identify and partially replicate genetic variants in the ACVR1B gene that account for genetic variation in human muscle strength. PMID:21063444

Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Delecluse, Christophe; Roth, Stephen M; Metter, E Jeffrey; Ferrucci, Luigi; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston P; Thomis, Martine A

2011-01-01

307

Fine mapping reveals that promotion susceptibility locus 1 (Psl1) is a compound locus with multiple genes that modify susceptibility to skin tumor development.  

PubMed

Although it is well known that the majority of human cancers occur as the result of exposure to environmental carcinogens, it is clear that not all individuals exposed to a specific environmental carcinogen have the same risk of developing cancer. Considerable evidence indicates that common allelic variants of low-penetrance, tumor susceptibility genes are responsible for this interindividual variation in risk. We previously reported a skin tumor promotion susceptibility locus, Psl1, which maps to the distal portion of chromosome 9, that modified skin tumor promotion susceptibility in the mouse. Furthermore, Psl1 was shown to consist of at least two subloci (i.e., Psl1.1 and Psl1.2) and that glutathione S-transferase alpha 4 (Gsta4), which maps to Psl1.2, is a skin tumor promotion susceptibility gene. Finally, variants of human GSTA4 were found to be associated with risk of nonmelanoma skin cancer. In the current study, a combination of nested and contiguous C57BL/6 congenic mouse strains, each inheriting a different portion of the Psl1 locus from DBA/2, were tested for susceptibility to skin tumor promotion with 12-O-tetradecanoylphorbol-13-acetate. These analyses indicate that Psl1 is a compound locus with at least six genes, including Gsta4, that modify skin tumor promotion susceptibility. More than 550 protein-coding genes map within the Psl1 locus. Fine mapping of the Psl1 locus, along with two-strain haplotype analysis, gene expression analysis, and the identification of genes with amino acid variants, has produced a list of fewer than 25 candidate skin tumor promotion susceptibility genes. PMID:24700353

Angel, Joe M; Abel, Erika L; Riggs, Penny K; McClellan, S Alex; DiGiovanni, John

2014-06-01

308

Sequence Haplotypes Revealed by Sequence-Tagged Site Fine Mapping of the Ror1 Gene in the Centromeric Region of Barley Chromosome 1H1[w  

PubMed Central

We describe the development of polymerase chain reaction-based, sequence-tagged site (STS) markers for fine mapping of the barley (Hordeum vulgare) Ror1 gene required for broad-spectrum resistance to powdery mildew (Blumeria graminis f. sp. hordei). After locating Ror1 to the centromeric region of barley chromosome 1H using a combined amplified fragment length polymorphism/restriction fragment-length polymorphism (RFLP) approach, sequences of RFLP probes from this chromosome region of barley and corresponding genome regions from the related grass species oat (Avena spp.), wheat, and Triticum monococcum were used to develop STS markers. Primers based on the RFLP probe sequences were used to polymerase chain reaction-amplify and directly sequence homologous DNA stretches from each of four parents that were used for mapping. Over 28,000 bp from 22 markers were compared. In addition to one insertion/deletion of at least 2.0 kb, 79 small unique sequence polymorphisms were observed, including 65 single nucleotide substitutions, two dinucleotide substitutions, 11 insertion/deletions, and one 5-bp/10-bp exchange. The frequency of polymorphism between any two barley lines ranged from 0.9 to 3.0 kb, and was greatest for comparisons involving an Ethiopian landrace. Haplotype structure was observed in the marker sequences over distances of several hundred basepairs. Polymorphisms in 16 STSs were used to generate genetic markers, scored by restriction enzyme digestion or by direct sequencing. Over 2,300 segregants from three populations were used in Ror1 linkage analysis, mapping Ror1 to a 0.2- to 0.5-cM marker interval. We discuss the implications of sequence haplotypes and STS markers for the generation of high-density maps in cereals. PMID:11244105

Collins, Nicholas C.; Lahaye, Thomas; Peterhansel, Christoph; Freialdenhoven, Andreas; Corbitt, Margaret; Schulze-Lefert, Paul

2001-01-01

309

Fine Mapping Reveals That Promotion Susceptibility Locus 1 (Psl1) Is a Compound Locus With Multiple Genes That Modify Susceptibility to Skin Tumor Development  

PubMed Central

Although it is well known that the majority of human cancers occur as the result of exposure to environmental carcinogens, it is clear that not all individuals exposed to a specific environmental carcinogen have the same risk of developing cancer. Considerable evidence indicates that common allelic variants of low-penetrance, tumor susceptibility genes are responsible for this interindividual variation in risk. We previously reported a skin tumor promotion susceptibility locus, Psl1, which maps to the distal portion of chromosome 9, that modified skin tumor promotion susceptibility in the mouse. Furthermore, Psl1 was shown to consist of at least two subloci (i.e., Psl1.1 and Psl1.2) and that glutathione S-transferase alpha 4 (Gsta4), which maps to Psl1.2, is a skin tumor promotion susceptibility gene. Finally, variants of human GSTA4 were found to be associated with risk of nonmelanoma skin cancer. In the current study, a combination of nested and contiguous C57BL/6 congenic mouse strains, each inheriting a different portion of the Psl1 locus from DBA/2, were tested for susceptibility to skin tumor promotion with 12-O-tetradecanoylphorbol-13-acetate. These analyses indicate that Psl1 is a compound locus with at least six genes, including Gsta4, that modify skin tumor promotion susceptibility. More than 550 protein-coding genes map within the Psl1 locus. Fine mapping of the Psl1 locus, along with two-strain haplotype analysis, gene expression analysis, and the identification of genes with amino acid variants, has produced a list of fewer than 25 candidate skin tumor promotion susceptibility genes. PMID:24700353

Angel, Joe M.; Abel, Erika L.; Riggs, Penny K.; McClellan, S. Alex; DiGiovanni, John

2014-01-01

310

Fine mapping of the McLeod locus (XK) to a 150-380-kb region in Xp21  

SciTech Connect

McLeod syndrome characterized by acanthocytosis and the absence of a red-blood-cell Kell antigen (Kx), is a multisystem disorder involving a late-onset myopathy, splenomegaly, and neurological defects. The locus for this syndrome has been mapped, by deletion analysis, to a region between the loci for Duchenne muscular dystrophy (DMD) and chronic granulomatous disease (CGD). In this study, the authors describe a new marker, 3BH/R 0.3 (DXS 709), isolated by cloning the deletion breakpoint of a DMD patient. A long-range restriction map of Xp21, encompassing the gene loci for McLeod and CGD, was constructed, and multiple CpG islands were found clustered in a 700-kb region. Using the new marker, they have limited the McLeod syndrome critical region to 150-380-kb. Within this interval, two CpG-rich islands which may represent candidate sites for the McLeod gene were identified.

Ho, M.F.; Monaco, A.P. (Imperial Cancer Research Fund, Oxford (United States)); Blonden, L.A.J.; Ommen, G.J.B. van (Sylvius Labs., Leiden (Netherlands)); Affara, N.A.; Ferguson-Smith, M.A. (Univ. of Cambridge, MA (United States)); Lehrach, H. (Imperial Cancer Research Fund, London (United Kingdom))

1992-02-01

311

High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines.  

PubMed

Drought is one of the most severe stresses, endangering crop yields worldwide. In order to select drought tolerant genotypes, access to exotic germplasm and efficient phenotyping protocols are needed. In this study the high-throughput phenotyping platform "The Plant Accelerator", Adelaide, Australia, was used to screen a set of 47 juvenile (six week old) wild barley introgression lines (S42ILs) for drought stress responses. The kinetics of growth development was evaluated under early drought stress and well watered treatments. High correlation (r=0.98) between image based biomass estimates and actual biomass was demonstrated, and the suitability of the system to accurately and non-destructively estimate biomass was validated. Subsequently, quantitative trait loci (QTL) were located, which contributed to the genetic control of growth under drought stress. In total, 44 QTL for eleven out of 14 investigated traits were mapped, which for example controlled growth rate and water use efficiency. The correspondence of those QTL with QTL previously identified in field trials is shown. For instance, six out of eight QTL controlling plant height were also found in previous field and glasshouse studies with the same introgression lines. This indicates that phenotyping juvenile plants may assist in predicting adult plant performance. In addition, favorable wild barley alleles for growth and biomass parameters were detected, for instance, a QTL that increased biomass by approximately 36%. In particular, introgression line S42IL-121 revealed improved growth under drought stress compared to the control Scarlett. The introgression line showed a similar behavior in previous field experiments, indicating that S42IL-121 may be an attractive donor for breeding of drought tolerant barley cultivars. PMID:24823485

Honsdorf, Nora; March, Timothy John; Berger, Bettina; Tester, Mark; Pillen, Klaus

2014-01-01

312

Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between markers and QTL.  

PubMed

Effectiveness of marker-assisted selection (MAS) and quantitative trait loci (QTL) mapping using population-wide linkage disequilibrium (LD) between markers and QTL depends on the extent of LD and how it declines with distance in a population. Because marker-QTL LD cannot be observed directly, the objective of this study was to evaluate alternative measures of observable LD between multi-allelic markers as predictors of usable LD of multi-allelic markers with presumed biallelic QTL. Observable LD between marker pairs was evaluated using eight existing measures and one new measure. These consisted of two pooled and standardized measures of LD between pairs of alleles at two markers based on Lewontin's LD measure, two pooled measures of squared correlations between alleles, one standardized measure using Hardy-Weinberg heterozygosities, and four measures based on the chi-square statistic for testing for association between alleles at two loci. In simulated populations with a range of LD generated by drift and a range of marker polymorphism, marker-marker LD measured by a standardized chi-square statistic (denoted chi(2')) was found to be the best predictor of useable marker-QTL LD for a group of multi-allelic markers. Estimates of the level and decline of marker-marker LD with distance obtained from chi(2') were linearly and highly correlated with usable LD of those markers with QTL across population structures and marker polymorphism. Corresponding relationships were poorer for the other marker-marker LD measures. Therefore, when LD is generated by drift, chi(2') is recommended to quantify the amount and extent of usable LD in a population for QTL mapping and MAS based on multi-allelic markers. PMID:16181525

Zhao, H; Nettleton, D; Soller, M; Dekkers, J C M

2005-08-01

313

Fine Epitope Mapping of the Central Immunodominant Region of Nucleoprotein from Crimean-Congo Hemorrhagic Fever Virus (CCHFV).  

PubMed

Crimean-Congo hemorrhagic fever (CCHF), a severe viral disease known to have occurred in over 30 countries and distinct regions, is caused by the tick-borne CCHF virus (CCHFV). Nucleocapsid protein (NP), which is encoded by the S gene, is the primary antigen detectable in infected cells. The goal of the present study was to map the minimal motifs of B-cell epitopes (BCEs) on NP. Five precise BCEs (E1, 247FDEAKK252; E2a, 254VEAL257; E2b, 258NGYLNKH264; E3, 267EVDKA271; and E4, 274DSMITN279) identified through the use of rabbit antiserum, and one BCE (E5, 258NGYL261) recognized using a mouse monoclonal antibody, were confirmed to be within the central region of NP and were partially represented among the predicted epitopes. Notably, the five BCEs identified using the rabbit sera were able to react with positive serum mixtures from five sheep which had been infected naturally with CCHFV. The multiple sequence alignment (MSA) revealed high conservation of the identified BCEs among ten CCHFV strains from different areas. Interestingly, the identified BCEs with only one residue variation can apparently be recognized by the positive sera of sheep naturally infected with CCHFV. Computer-generated three-dimensional structural models indicated that all the antigenic motifs are located on the surface of the NP stalk domain. This report represents the first identification and mapping of the minimal BCEs of CCHFV-NP along with an analysis of their primary and structural properties. Our identification of the minimal linear BCEs of CCHFV-NP may provide fundamental data for developing rapid diagnostic reagents and illuminating the pathogenic mechanism of CCHFV. PMID:25365026

Liu, Dongliang; Li, Yang; Zhao, Jing; Deng, Fei; Duan, Xiaomei; Kou, Chun; Wu, Ting; Li, Yijie; Wang, Yongxing; Ma, Ji; Yang, Jianhua; Hu, Zhihong; Zhang, Fuchun; Zhang, Yujiang; Sun, Surong

2014-01-01

314

Fine Mapping of the Pond Snail Left-Right Asymmetry (Chirality) Locus Using RAD-Seq and Fibre-FISH  

PubMed Central

The left-right asymmetry of snails, including the direction of shell coiling, is determined by the delayed effect of a maternal gene on the chiral twist that takes place during early embryonic cell divisions. Yet, despite being a well-established classical problem, the identity of the gene and the means by which left-right asymmetry is established in snails remain unknown. We here demonstrate the power of new genomic approaches for identification of the chirality gene, “D”. First, heterozygous (Dd) pond snails Lymnaea stagnalis were self-fertilised or backcrossed, and the genotype of more than six thousand offspring inferred, either dextral (DD/Dd) or sinistral (dd). Then, twenty of the offspring were used for Restriction-site-Associated DNA Sequencing (RAD-Seq) to identify anonymous molecular markers that are linked to the chirality locus. A local genetic map was constructed by genotyping three flanking markers in over three thousand snails. The three markers lie either side of the chirality locus, with one very tightly linked (<0.1 cM). Finally, bacterial artificial chromosomes (BACs) were isolated that contained the three loci. Fluorescent in situ hybridization (FISH) of pachytene cells showed that the three BACs tightly cluster on the same bivalent chromosome. Fibre-FISH identified a region of greater that ?0.4 Mb between two BAC clone markers that must contain D. This work therefore establishes the resources for molecular identification of the chirality gene and the variation that underpins sinistral and dextral coiling. More generally, the results also show that combining genomic technologies, such as RAD-Seq and high resolution FISH, is a robust approach for mapping key loci in non-model systems. PMID:23951082

Han, Jie; Yang, Fengtang; Aboobaker, Aziz; Blaxter, Mark L.; Davison, Angus

2013-01-01

315

Fine mapping of the pond snail left-right asymmetry (chirality) locus using RAD-Seq and fibre-FISH.  

PubMed

The left-right asymmetry of snails, including the direction of shell coiling, is determined by the delayed effect of a maternal gene on the chiral twist that takes place during early embryonic cell divisions. Yet, despite being a well-established classical problem, the identity of the gene and the means by which left-right asymmetry is established in snails remain unknown. We here demonstrate the power of new genomic approaches for identification of the chirality gene, "D". First, heterozygous (Dd) pond snails Lymnaea stagnalis were self-fertilised or backcrossed, and the genotype of more than six thousand offspring inferred, either dextral (DD/Dd) or sinistral (dd). Then, twenty of the offspring were used for Restriction-site-Associated DNA Sequencing (RAD-Seq) to identify anonymous molecular markers that are linked to the chirality locus. A local genetic map was constructed by genotyping three flanking markers in over three thousand snails. The three markers lie either side of the chirality locus, with one very tightly linked (<0.1 cM). Finally, bacterial artificial chromosomes (BACs) were isolated that contained the three loci. Fluorescent in situ hybridization (FISH) of pachytene cells showed that the three BACs tightly cluster on the same bivalent chromosome. Fibre-FISH identified a region of greater that ?0.4 Mb between two BAC clone markers that must contain D. This work therefore establishes the resources for molecular identification of the chirality gene and the variation that underpins sinistral and dextral coiling. More generally, the results also show that combining genomic technologies, such as RAD-Seq and high resolution FISH, is a robust approach for mapping key loci in non-model systems. PMID:23951082

Liu, Mengning Maureen; Davey, John W; Banerjee, Ruby; Han, Jie; Yang, Fengtang; Aboobaker, Aziz; Blaxter, Mark L; Davison, Angus

2013-01-01

316

Fine Epitope Mapping of the Central Immunodominant Region of Nucleoprotein from Crimean-Congo Hemorrhagic Fever Virus (CCHFV)  

PubMed Central

Crimean-Congo hemorrhagic fever (CCHF), a severe viral disease known to have occurred in over 30 countries and distinct regions, is caused by the tick-borne CCHF virus (CCHFV). Nucleocapsid protein (NP), which is encoded by the S gene, is the primary antigen detectable in infected cells. The goal of the present study was to map the minimal motifs of B-cell epitopes (BCEs) on NP. Five precise BCEs (E1, 247FDEAKK252; E2a, 254VEAL257; E2b, 258NGYLNKH264; E3, 267EVDKA271; and E4, 274DSMITN279) identified through the use of rabbit antiserum, and one BCE (E5, 258NGYL261) recognized using a mouse monoclonal antibody, were confirmed to be within the central region of NP and were partially represented among the predicted epitopes. Notably, the five BCEs identified using the rabbit sera were able to react with positive serum mixtures from five sheep which had been infected naturally with CCHFV. The multiple sequence alignment (MSA) revealed high conservation of the identified BCEs among ten CCHFV strains from different areas. Interestingly, the identified BCEs with only one residue variation can apparently be recognized by the positive sera of sheep naturally infected with CCHFV. Computer-generated three-dimensional structural models indicated that all the antigenic motifs are located on the surface of the NP stalk domain. This report represents the first identification and mapping of the minimal BCEs of CCHFV-NP along with an analysis of their primary and structural properties. Our identification of the minimal linear BCEs of CCHFV-NP may provide fundamental data for developing rapid diagnostic reagents and illuminating the pathogenic mechanism of CCHFV. PMID:25365026

Liu, Dongliang; Li, Yang; Zhao, Jing; Deng, Fei; Duan, Xiaomei; Kou, Chun; Wu, Ting; Li, Yijie; Wang, Yongxing; Ma, Ji; Yang, Jianhua; Hu, Zhihong; Zhang, Fuchun; Zhang, Yujiang; Sun, Surong

2014-01-01

317

Functional screening of an asthma QTL in YAC transgenic mice  

SciTech Connect

While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q33, the authors characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a one megabase interva2048 chromosome 5q31 containing 23 genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180 kb region containing 5 genes, including human interleukin 4 (IL4) and interleukin 13 (IL13), which induce IgE class switching in B cells5. Further analysis of these mice and mice transgenic for only murine Il4 and Il13 demonstrated that moderate changes in murine Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled them to sift through multiple genes in the 5q3 asthma QTL without prior consideration of assumed individual gene function and identify genes that influence the QTL phenotype in vivo.

Symula, Derek J.; Frazer, Kelly A.; Ueda, Yukihiko; Denefle, Patrice; Stevens, Mary E.; Wang, Zhi-En; Locksley, Richard; Rubin, Edward M.

1999-07-02

318

ORIGINAL ARTICLE Thyroid hormone responsive QTL and the evolution  

E-print Network

ORIGINAL ARTICLE Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders SR thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified.41; published online 1 August 2012 Keywords: Ambystoma; paedomorphosis; evolution; QTL; thyroid hormone

Shaffer, H. Bradley

319

Fine mapping of a region on chromosome 21q21.11-q22.3 showing linkage to type 1 diabetes  

PubMed Central

Background: Results of a Scandinavian genome scan in type 1 diabetes mellitus (T1D) have recently been reported. Among the novel, not previously reported chromosomal regions showing linkage to T1D was a region on chromosome 21. Objective: To fine map this region on chromosome 21. Methods and results: The linked region was initially narrowed by linkage analysis typing microsatellite markers. Linkage was significantly increased, with a peak NPL score of 3.61 (p = 0.0002), suggesting the presence of one or several T1D linked genes in the region. The support interval for linkage of 6.3 Mb was then studied by linkage disequilibrium (LD) mapping with gene based single nucleotide polymorphisms (SNPs). Thirty two candidate genes were identified in this narrowed region, and LD mapping was carried out with SNPs in coding regions (cSNPs) of all these genes. However, none of the SNPs showed association to T1D in the complete material, whereas some evidence for association to T1D of variants of the TTC3, OLIG2, KCNE1, and CBR1 genes was observed in conditioned analyses. The disease related LD was further assessed by a haplotype based association study, in which several haplotypes showed distorted transmission to diabetic offspring, substantiating a possible T1D association of the region. Conclusions: Although a single gene variant responsible for the observed linkage could not be identified, there was evidence for several combinations of markers, and for association of markers in conditioned analyses, supporting the existence of T1D susceptibility genes in the region. PMID:15635070

Bergholdt, R; Nerup, J; Pociot, F

2005-01-01

320

Fine mapping of a gene responsible for regulating dietary cholesterol absorption; founder effects underlie cases of phytosterolaemia in multiple communities  

PubMed Central

Sitosterolaemia (also known as phytosterolaemia, MIM 210250) is a rare recessive autosomal inherited disorder, characterised by the presence of tendon and tuberous xanthomas, accelerated atherosclerosis and premature coronary artery disease. The defective gene is hypothesised to play an important role in regulating dietary sterol absorption and biliary secretion, thus defining a molecular mechanism whereby this physiological process is carried out. The disease locus was localised previously to chromosome 2p21, in a 15 cM interval between microsatellite markers D2S1788 and D2S1352 (based upon 10 families, maximum lodscore 4.49). In this study, we have extended these studies to include 30 families assembled from around the world. A maximum multipoint lodscore of 11.49 was obtained for marker D2S2998. Homozygosity and haplotype sharing was identified in probands from non-consanguineous marriages from a number of families, strongly supporting the existence of a founder effect among various populations. Additionally, based upon both genealogies, as well as genotyping, two Amish/Mennonite families, that were previously thought not to be related, appear to indicate a founder effect in this population as well. Using both homozygosity mapping, as well as informative recombination events, the sitosterolaemia gene is located at a region defined by markers D2S2294 and Afm210xe9, a distance of less than 2 cM. PMID:11378826

Lee, Mi-Hye; Gordon, Derek; Ott, Jurg; Lu, Kangmo; Ose, Leiv; Miettinen, Tatu; Gylling, Helena; Stalenhoef, Anton F; Pandya, Arti; Hidaka, Hideki; Brewer, Bryan; Kojima, Hideto; Sakuma, Nagahiko; Pegoraro, Rosemary; Salen, Gerald; Patel, Shailendra B

2005-01-01

321

Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa  

PubMed Central

In Chinese cabbage (Brassica rapa), the clubroot resistance (CR) gene CRb is effective against Plasmodiophora brassicae isolate No. 14, which is classified as pathotype group 3. Although markers linked to CRb have been reported, an accurate position in the genome and the gene structure are unknown. To determine the genomic location and estimate the structure of CRb, we developed 28 markers (average distance, 20.4 kb) around CRb and constructed a high-density partial map. The precise position of CRb was determined by using a population of 2,032 F2 plants generated by selfing B. rapa ‘CR Shinki.’ We determined that CRb is located in the 140-kb genomic region between markers KB59N07 and B1005 and found candidate resistance genes. Among other CR genes on chromosome R3, a genotype of CRa closest marker clearly matched those of CRb and Crr3 did not confer resistance to isolate No. 14. Based on the genotypes of 11 markers developed near CRb and resistance to isolate No. 14, 82 of 108 cultivars showed a strong correlation between genotypes and phenotypes. The results of this study will be useful for isolating CRb and breeding cultivars with resistance to pathotype group 3 by introducing CRb into susceptible cultivars through marker-assisted selection. PMID:23641188

Kato, Takeyuki; Hatakeyama, Katsunori; Fukino, Nobuko; Matsumoto, Satoru

2013-01-01

322

Fine mapping of ZNF804A and genome wide significant evidence for its involvement in schizophrenia and bipolar disorder  

PubMed Central

A recent genome wide association study reported evidence for association between rs1344706 within ZNF804A (encoding zinc finger protein 804A) and schizophrenia (P=1.61 ×10?7), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 ×10?9). Here we provide additional evidence for association through meta-analysis of a larger dataset (schizophrenia/schizoaffective disorder N = 18945, schizophrenia plus bipolar disorder N =21274, controls N =38675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high density LD mapping. Meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 ×10?11, OR=1.10, 95% CI 1.07–1.14) and schizophrenia and bipolar disorder combined (P=4.1 ×10?13, OR=1.11, 95% CI 1.07–1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder. PMID:20368704

Williams, Hywel J; Norton, Nadine; Dwyer, Sarah; Moskvina, Valentina; Nikolov, Ivan; Carroll, Liam; Georgieva, Lyudmila; Williams, Nigel M; Morris, Derek W; Quinn, Emma M; Giegling, Ina; Ikeda, Masashi; Wood, Joel; Lencz, Todd; Hultman, Christina; Lichtenstein, Paul; Thiselton, Dawn; Maher, Brion S; Malhotra, Anil K; Riley, Brien; Kendler, Kenneth S; Gill, Michael; Sullivan, Patrick; Sklar, Pamela; Purcell, Shaun; Nimgaonkar, Vishwajit L; Kirov, George; Holmans, Peter; Corvin, Aiden; Rujescu, Dan; Craddock, Nicholas; Owen, Michael J; O'Donovan, Michael C

2013-01-01

323

Mixture Generalized Linear Models for Multiple Interval Mapping of Quantitative Trait Loci  

E-print Network

;1 Introduction The variation of many quantitative traits, continuous or discrete, in plants, animals and human). Mapping QTL on the genome is of great scientific importance and economical values for plant and animal the effects of other QTL are ignored. A hybrid method combining the single interval mapping approach

Chen, Zehua

324

A fine-scale recombination map of the human-chimpanzee ancestor reveals faster change in humans than in chimpanzees and a strong impact of GC-biased gene conversion  

PubMed Central

Recombination is a major determinant of adaptive and nonadaptive evolution. Understanding how the recombination landscape has evolved in humans is thus key to the interpretation of human genomic evolution. Comparison of fine-scale recombination maps of human and chimpanzee has revealed large changes at fine genomic scales and conservation over large scales. Here we demonstrate how a fine-scale recombination map can be derived for the ancestor of human and chimpanzee, allowing us to study the changes that have occurred in human and chimpanzee since these species diverged. The map is produced from more than one million accurately determined recombination events. We find that this new recombination map is intermediate to the maps of human and chimpanzee but that the recombination landscape has evolved more rapidly in the human lineage than in the chimpanzee lineage. We use the map to show that recombination rate, through the effect of GC-biased gene conversion, is an even stronger determinant of base composition evolution than previously reported. PMID:24190946

Munch, Kasper; Mailund, Thomas; Dutheil, Julien Y.; Schierup, Mikkel Heide

2014-01-01

325

MAPS  

NSDL National Science Digital Library

These are a list of links about maps. ACTIVITIES I like to start off with Cardinal Directions Acitivity and Using a Map Grid with grades K-2. I even show the grid activity to the older students for a second so that they can remember what to do with them. I use ...

B, Miss

2011-10-31

326

Maps  

NSDL National Science Digital Library

This collection presents maps of blast and fire damage to Hiroshima and Nagasaki, Japan, and the radioactive fallout levels from the Trinity and BRAVO tests. The collection also includes maps of Manhattan Project Era Sites (Hanford, Washington, Oak Ridge, Tennessee, and Los Alamos, New Mexico).

Griffith, Christopher

327

QTL validation and stability for volatile organic compounds (VOCs) in apple.  

PubMed

The aroma trait in apple is a key factor for fruit quality strongly affecting the consumer appreciation, and its detection and analysis is often an extremely laborious and time consuming procedure. Molecular markers associated to this trait can to date represent a valuable selection tool to overcome these limitations. QTL mapping is the first step in the process of targeting valuable molecular markers to be employed in marker-assisted breeding programmes (MAB). However, a validation step is usually required before a newly identified molecular marker can be implemented in marker-assisted selection. In this work the position of a set of QTLs associated to volatile organic compounds (VOCs) was confirmed and validated in three different environments in Switzerland, namely Wädenswil, Conthey and Cadenazzo, where the progeny 'Fiesta×Discovery' was replicated. For both QTL identification and validation, the phenotypic data were represented by VOCs produced by mature apple fruit and assessed with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) instrument. The QTL-VOC combined analysis performed among these three locations validated the presence of important QTLs in three specific genomic regions, two located in the linkage group 2 and one in linkage group 15, respectively, for compounds related to esters (m/z 43, 61 and 131) and to the hormone ethylene (m/z 28). The QTL set presented here confirmed that in apple some compounds are highly genetically regulated and stable across environments. PMID:23987805

Costa, Fabrizio; Cappellin, Luca; Zini, Elena; Patocchi, Andrea; Kellerhals, Markus; Komjanc, Matteo; Gessler, Cesare; Biasioli, Franco

2013-10-01

328

QTL analysis for sugar-regulated leaf senescence supports flowering-dependent and -independent senescence pathways.  

PubMed

*The aim of this work was to determine the genetic basis of sugar-regulated senescence and to explore the relationship with other traits, including flowering and nitrogen-use efficiency. *Quantitative trait loci (QTLs) for senescence were mapped in the Arabidopsis Bay-0 x Shahdara recombinant-inbred line (RIL) population after growth on glucose-containing medium, which accelerates senescence. The extent of whole-rosette senescence was determined by imaging the maximum quantum yield of photosystem II (F(v)/F(m)). *A major QTL on the top of chromosome 4 colocalized with FRI, a major determinant of flowering. This QTL interacted epistatically with a QTL on chromosome 5, where the floral repressor FLC localizes. Vernalization accelerated senescence in late-flowering lines with functional FRI and FLC alleles. Comparison with previous results using the Bay-0 x Shahdara population showed that rapid rosette senescence on glucose-containing medium was correlated with early flowering and high sugar content in compost-grown plants. In addition, correlation was found between the expression of flowering and senescence-associated genes in Arabidopsis accessions. However, an additional QTL on chromosome 3 was not linked to flowering, but to nitrogen-use efficiency. *The results show that whole-rosette senescence is genetically linked to the vernalization-dependent control of flowering, but is also controlled by flowering-independent pathways. PMID:19878465

Wingler, Astrid; Purdy, Sarah Jane; Edwards, Sally-Anne; Chardon, Fabien; Masclaux-Daubresse, Céline

2010-01-01

329

QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.).  

PubMed

Legumes provide essential micronutrients that are found only in low amounts in the cereals or root crops. An ongoing project at CIAT has shown that the legume common bean is variable in the amount of seed minerals (iron, zinc, and other elements), vitamins, and sulfur amino acids that they contain and that these traits are likely to be inherited quantitatively. In this study we analyzed iron and zinc concentrations in an Andean recombinant inbred line (RIL) population of 100 lines derived from a cross between G21242, a Colombian cream-mottled climbing bean with high seed iron/zinc and G21078, an Argentinean cream seeded climbing bean with low seed iron/zinc. The population was planted across three environments; seed from each genotype was analyzed with two analytical methods, and quantitative trait loci (QTL) were detected using composite interval mapping and single-point analyses. A complete genetic map was created for the cross using a total of 74 microsatellite markers to anchor the map to previously published reference maps and 42 RAPD markers. In total, nine seed mineral QTL were identified on five linkage groups (LGs) with the most important being new loci on b02 and other QTL on b06, b08, and b07 near phaseolin. Seed weight QTL were associated with these on b02 and b08. These Andean-derived QTL are candidates for marker-assisted selection either in combination with QTL from the Mesoamerican genepool or with other QTL found in inter and intra-genepool crosses, and the genetic map can be used to anchor other intra-genepool studies. PMID:21113704

Blair, Matthew W; Astudillo, Carohna; Rengifo, Judith; Beebe, Steve E; Graham, Robin

2011-02-01

330

Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry.  

PubMed

Raspberry (Rubus idaeus) fruit colour was assessed in the Latham x Glen Moy mapping population using a colour meter and visual scores over three seasons and three environments. The colour measurements were found to be significantly associated with pigment content, have high heritability, and stable QTL were identified across environments and seasons. Anthocyanin content has previously been shown to be the major contributor to fruit colour in red raspberry. Major structural genes (F3'H, FLS, DFR, IFR, OMT and GST) and transcription factors (bZIP, bHLH and MYB) influencing flavonoid biosynthesis have been identified, mapped and shown to underlie QTL for quantitative and qualitative anthocyanin composition. Favourable alleles for the selected traits were identified for the aspects of fruit colour and partitioning of individual pigments. PMID:20419285

McCallum, Susan; Woodhead, Mary; Hackett, Christine A; Kassim, Angzzas; Paterson, Alistair; Graham, Julie

2010-08-01

331

Genetic Dissection of a Major Anthocyanin QTL Contributing to Pollinator-Mediated Reproductive Isolation Between Sister Species of Mimulus  

PubMed Central

Prezygotic barriers play a major role in the evolution of reproductive isolation, which is a prerequisite for speciation. However, despite considerable progress in identifying genes and mutations responsible for postzygotic isolation, little is known about the genetic and molecular basis underlying prezygotic barriers. The bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated M. cardinalis represent a classic example of pollinator-mediated prezygotic isolation between two sister species in sympatry. Flower color differences resulting from both carotenoid and anthocyanin pigments contribute to pollinator discrimination between the two species in nature. Through fine-scale genetic mapping, site-directed mutagenesis, and transgenic experiments, we demonstrate that a single-repeat R3 MYB repressor, ROSE INTENSITY1 (ROI1), is the causal gene underlying a major quantitative trait locus (QTL) with the largest effect on anthocyanin concentration and that cis-regulatory change rather than coding DNA mutations cause the allelic difference between M. lewisii and M. cardinalis. Together with the genomic resources and stable transgenic tools developed here, these results suggest that Mimulus is an excellent platform for studying the genetics of pollinator-mediated reproductive isolation and the molecular basis of morphological evolution at the most fundamental level—gene by gene, mutation by mutation. PMID:23335333

Yuan, Yao-Wu; Sagawa, Janelle M.; Young, Riane C.; Christensen, Brian J.; Bradshaw, Harvey D.

2013-01-01

332

Genetic dissection of a major anthocyanin QTL contributing to pollinator-mediated reproductive isolation between sister species of Mimulus.  

PubMed

Prezygotic barriers play a major role in the evolution of reproductive isolation, which is a prerequisite for speciation. However, despite considerable progress in identifying genes and mutations responsible for postzygotic isolation, little is known about the genetic and molecular basis underlying prezygotic barriers. The bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated M. cardinalis represent a classic example of pollinator-mediated prezygotic isolation between two sister species in sympatry. Flower color differences resulting from both carotenoid and anthocyanin pigments contribute to pollinator discrimination between the two species in nature. Through fine-scale genetic mapping, site-directed mutagenesis, and transgenic experiments, we demonstrate that a single-repeat R3 MYB repressor, ROSE INTENSITY1 (ROI1), is the causal gene underlying a major quantitative trait locus (QTL) with the largest effect on anthocyanin concentration and that cis-regulatory change rather than coding DNA mutations cause the allelic difference between M. lewisii and M. cardinalis. Together with the genomic resources and stable transgenic tools developed here, these results suggest that Mimulus is an excellent platform for studying the genetics of pollinator-mediated reproductive isolation and the molecular basis of morphological evolution at the most fundamental level-gene by gene, mutation by mutation. PMID:23335333

Yuan, Yao-Wu; Sagawa, Janelle M; Young, Riane C; Christensen, Brian J; Bradshaw, Harvey D

2013-05-01

333

High congruency of QTL positions for heterosis of grain yield in three crosses of maize  

Microsoft Academic Search

The genetic basis of heterosis in maize has been investigated in a number of studies but results have not been conclusive.\\u000a Here, we compare quantitative trait loci (QTL) mapping results for grain yield, grain moisture, and plant height from three\\u000a populations derived from crosses of the heterotic pattern Iowa Stiff Stalk Synthetic × Lancaster Sure Crop, investigated with\\u000a the Design III, and

Chris C. Schön; Baldev S. Dhillon; H. Friedrich Utz; Albrecht E. Melchinger

2010-01-01

334

A Simple Regression-Based Method to Map Quantitative Trait Loci Underlying Function-Valued Phenotypes  

PubMed Central

Most statistical methods for quantitative trait loci (QTL) mapping focus on a single phenotype. However, multiple phenotypes are commonly measured, and recent technological advances have greatly simplified the automated acquisition of numerous phenotypes, including function-valued phenotypes, such as growth measured over time. While methods exist for QTL mapping with function-valued phenotypes, they are generally computationally intensive and focus on single-QTL models. We propose two simple, fast methods that maintain high power and precision and are amenable to extensions with multiple-QTL models using a penalized likelihood approach. After identifying multiple QTL by these approaches, we can view the function-valued QTL effects to provide a deeper understanding of the underlying processes. Our methods have been implemented as a package for R, funqtl. PMID:24931408

Kwak, Il-Youp; Moore, Candace R.; Spalding, Edgar P.; Broman, Karl W.

2014-01-01

335

Fine Mapping of a cis-Acting Sequence Element in Yellow Fever Virus RNA That Is Required for RNA Replication and Cyclization  

PubMed Central

We present fine mapping of a cis-acting nucleotide sequence found in the 5? region of yellow fever virus genomic RNA that is required for RNA replication. There is evidence that this sequence interacts with a complementary sequence in the 3? region of the genome to cyclize the RNA. Replicons were constructed that had various deletions in the 5? region encoding the capsid protein and were tested for their ability to replicate. We found that a sequence of 18 nucleotides (residues 146 to 163 of the yellow fever virus genome, which encode amino acids 9 to 14 of the capsid protein) is essential for replication of the yellow fever virus replicon and that a slightly longer sequence of 21 nucleotides (residues 146 to 166, encoding amino acids 9 to 15) is required for full replication. This region is larger than the core sequence of 8 nucleotides conserved among all mosquito-borne flaviviruses and contains instead the entire sequence previously proposed to be involved in cyclization of yellow fever virus RNA. PMID:12525663

Corver, Jeroen; Lenches, Edith; Smith, Kayla; Robison, R. Aaron; Sando, Trisha; Strauss, Ellen G.; Strauss, James H.

2003-01-01

336

Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization.  

PubMed

We present fine mapping of a cis-acting nucleotide sequence found in the 5' region of yellow fever virus genomic RNA that is required for RNA replication. There is evidence that this sequence interacts with a complementary sequence in the 3' region of the genome to cyclize the RNA. Replicons were constructed that had various deletions in the 5' region encoding the capsid protein and were tested for their ability to replicate. We found that a sequence of 18 nucleotides (residues 146 to 163 of the yellow fever virus genome, which encode amino acids 9 to 14 of the capsid protein) is essential for replication of the yellow fever virus replicon and that a slightly longer sequence of 21 nucleotides (residues 146 to 166, encoding amino acids 9 to 15) is required for full replication. This region is larger than the core sequence of 8 nucleotides conserved among all mosquito-borne flaviviruses and contains instead the entire sequence previously proposed to be involved in cyclization of yellow fever virus RNA. PMID:12525663

Corver, Jeroen; Lenches, Edith; Smith, Kayla; Robison, R Aaron; Sando, Trisha; Strauss, Ellen G; Strauss, James H

2003-02-01

337

Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer  

PubMed Central

The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P?=?2.62×10?14). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility. PMID:24550738

Saunders, Edward J.; Dadaev, Tokhir; Leongamornlert, Daniel A.; Jugurnauth-Little, Sarah; Tymrakiewicz, Malgorzata; Wiklund, Fredrik; Al Olama, Ali Amin; Benlloch, Sara; Xu, Jianfeng; Mikropoulos, Christos; Goh, Chee; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A.; Sawyer, Emma J.; Morgan, Angela; Easton, Douglas F.; Muir, Ken; Eeles, Rosalind A.; Kote-Jarai, Zsofia

2014-01-01

338

Fine-mapping the HOXB region detects common variants tagging a rare coding allele: evidence for synthetic association in prostate cancer.  

PubMed

The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P?=?2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility. PMID:24550738

Saunders, Edward J; Dadaev, Tokhir; Leongamornlert, Daniel A; Jugurnauth-Little, Sarah; Tymrakiewicz, Malgorzata; Wiklund, Fredrik; Al Olama, Ali Amin; Benlloch, Sara; Neal, David E; Hamdy, Freddie C; Donovan, Jenny L; Giles, Graham G; Severi, Gianluca; Gronberg, Henrik; Aly, Markus; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Lindstrom, Sara; Kraft, Peter; Hunter, David J; Gapstur, Susan; Chanock, Stephen; Berndt, Sonja I; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Nordestgaard, Børge G; Canzian, Federico; Campa, Daniele; Riboli, Elio; Key, Tim J; Travis, Ruth C; Ingles, Sue A; John, Esther M; Hayes, Richard B; Pharoah, Paul; Khaw, Kay-Tee; Stanford, Janet L; Ostrander, Elaine A; Signorello, Lisa B; Thibodeau, Stephen N; Schaid, Daniel; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong Y; Kaneva, Radka; Batra, Jyotsna; Clements, Judith A; Teixeira, Manuel R; Xu, Jianfeng; Mikropoulos, Christos; Goh, Chee; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A; Sawyer, Emma J; Morgan, Angela; Easton, Douglas F; Muir, Ken; Eeles, Rosalind A; Kote-Jarai, Zsofia

2014-02-01

339

Evaluation of potential models for imprinted and nonimprinted components of human chromosome 15q11-q13 syndromes by fine-structure homology mapping in the mouse  

SciTech Connect

Prader-Willi and Angelman syndromes are complex neurobehavioral contiguous gene syndromes whose expression depends on the unmasking of genomic imprinting for different genetic loci in human chromosome 15q11-q13. The homologous chromosomal region in the mouse genome has been fine-mapped by using interspecific (Mus spretus) crosses and overlapping, radiation-induced deletions to evaluate potential animal models for both imprinted and nonimprinted components of these syndromes. Four evolutionarily conserved sequences from human 15q11-q13, including two cDNAs from fetal brain (DN10, D15S12h; DN34, D15S9h-1), a microdissected clone (MN7; D15F37S1h) expressed in mouse brain, and the gene for the [beta]3 subunit of the [gamma]-aminobutyric acid type A receptor (Gabrb3), were mapped in mouse chromosome 7 by analysis of deletions at the pink-eyed dilution (p) locus. Three of these loci are deleted in pre- and postnatally lethal p-locus mutations, which extend up to 5.5 [plus minus] 1.7 centimorgans (cM) proximal to p; D15S9h-1, which maps 1.1 [plus minus] 0.8 cM distal to p and is the mouse homolog of the human gene D15S9 (which shows a DNA methylation imprint), is not deleted in any of the p-locus deletion series. A transcript from the Gabrb3 gene, but not the transcript detected by MN7 at the D15F37S1h locus, is expressed in mice homozygous for the p[sup 6H] deletion, which have an abnormal neurological phenotype. Furthermore, the Gabrb3 transcript is expressed equally well from the maternal or paternal chromosome 7 and, therefore, its expression is not imprinted in mouse brain. Deletions, at the mouse p locus should serve as intermediate genetic reagents and models with which to analyze the genetics and etiology of individual components of human 15q11-q13 disorders. 32 refs., 5 figs.

Nicholls, R.D.; Gottlieb, W.; Davda, M. (Univ. of Florida, Gainesville (United States)); Russell, L.B.; Rinchik, E.M. (Oak Ridge National Lab., TN (United States)); Horsthemke, B. (Universitatsklinikum Essen, Hufelandstrasse (Germany))

1993-03-01

340

Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses  

Microsoft Academic Search

The advent of saturated molecular maps promised rapid progress towards the improvement of crops for genetically complex traits like drought resistance via analysis of quantitative trait loci (QTL). Progress with the identification of QTLs for drought resistance- related traits in rice is summarized here with the emphasis on a mapping population of a cross between drought-resistant varieties Azucena and Bala.

Adam H. Price; Jill E. Cairns; Peter Horton; Hamlyn G. Jones; Howard Griffiths

2002-01-01

341

QTL Conferring Fusarium Crown Rot Resistance in the Elite Bread Wheat Variety EGA Wylie  

PubMed Central

Fusarium crown rot (FCR) is one of the most damaging cereal diseases in semi-arid regions worldwide. The genetics of FCR resistance in the bread wheat (Triticum eastivum L.) variety EGA Wylie, the most resistant commercial variety available, was studied by QTL mapping. Three populations of recombinant inbred lines were developed with this elite variety as the resistant parent. Four QTL conferring FCR resistance were detected and resistance alleles of all of them were derived from the resistant parent EGA Wylie. One of these loci was located on the short arm of chromosome 5D (designated as Qcrs.cpi-5D). This QTL explains up to 31.1% of the phenotypic variance with an LOD value of 9.6. The second locus was located on the long arm of chromosome 2D (designated as Qcrs.cpi-2D) and explained up to 20.2% of the phenotypic variance with an LOD value of 4.5. Significant effects of both Qcrs.cpi-5D and Qcrs.cpi-2D were detected in each of the three populations assessed. Another two QTL (designated as Qcrs.cpi-4B.1 and Qcrs.cpi-4B.2, respectively) were located on the short arm of chromosome 4B. These two QTL explained up to 16.9% and 18.8% of phenotypic variance, respectively. However, significant effects of Qcrs.cpi-4B.1 and Qcrs.cpi-4B.2 were not detected when the effects of plant height was accounted for by covariance analysis. The elite characteristics of this commercial variety should facilitate the incorporation of the resistance loci it contains into breeding programs. PMID:24776887

Zheng, Zhi; Kilian, Andrzej; Yan, Guijun; Liu, Chunji

2014-01-01

342

Structured association analysis leads to insight into Saccharomyces cerevisiae gene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules  

PubMed Central

Background Association analysis using genome-wide expression quantitative trait locus (eQTL) data investigates the effect that genetic variation has on cellular pathways and leads to the discovery of candidate regulators. Traditional analysis of eQTL data via pairwise statistical significance tests or linear regression does not leverage the availability of the structural information of the transcriptome, such as presence of gene networks that reveal correlation and potentially regulatory relationships among the study genes. We employ a new eQTL mapping algorithm, GFlasso, which we have previously developed for sparse structured regression, to reanalyze a genome-wide yeast dataset. GFlasso fully takes into account the dependencies among expression traits to suppress false positives and to enhance the signal/noise ratio. Thus, GFlasso leverages the gene-interaction network to discover the pleiotropic effects of genetic loci that perturb the expression level of multiple (rather than individual) genes, which enables us to gain more power in detecting previously neglected signals that are marginally weak but pleiotropically significant. Results While eQTL hotspots in yeast have been reported previously as genomic regions controlling multiple genes, our analysis reveals additional novel eQTL hotspots and, more interestingly, uncovers groups of multiple contributing eQTL hotspots that affect the expression level of functional gene modules. To our knowledge, our study is the first to report this type of gene regulation stemming from multiple eQTL hotspots. Additionally, we report the results from in-depth bioinformatics analysis for three groups of these eQTL hotspots: ribosome biogenesis, telomere silencing, and retrotransposon biology. We suggest candidate regulators for the functional gene modules that map to each group of hotspots. Not only do we find that many of these candidate regulators contain mutations in the promoter and coding regions of the genes, in the case of the Ribi group, we provide experimental evidence suggesting that the identified candidates do regulate the target genes predicted by GFlasso. Conclusions Thus, this structured association analysis of a yeast eQTL dataset via GFlasso, coupled with extensive bioinformatics analysis, discovers a novel regulation pattern between multiple eQTL hotspots and functional gene modules. Furthermore, this analysis demonstrates the potential of GFlasso as a powerful computational tool for eQTL studies that exploit the rich structural information among expression traits due to correlation, regulation, or other forms of biological dependencies. PMID:23514438

2013-01-01

343

Mapping the Epistatic Network Underlying Murine Reproductive Fatpad Variation  

PubMed Central

Genome-wide mapping analyses are now commonplace in many species and several networks of interacting loci have been reported. However, relatively few details regarding epistatic interactions and their contribution to complex trait variation in multicellular organisms are available and the identification of positional candidate loci for epistatic QTL (epiQTL) is hampered, especially in mammals, by the limited genetic resolution inherent in most study designs. Here we further investigate the genetic architecture of reproductive fatpad weight in mice using the F10 generation of the LG,SM advanced intercross (AI) line. We apply multiple mapping techniques including a single-locus model, locus-specific composite interval mapping (CIM), and tests for multiple QTL per chromosome to the 12 chromosomes known to harbor single-locus QTL (slQTL) affecting obesity in this cross. We also perform a genome-wide scan for pairwise epistasis. Using this combination of approaches we detect 199 peaks spread over all 19 autosomes, which potentially contribute to trait variation including all eight original F2 loci (Adip1-8), novel slQTL peaks on chromosomes 7 and 9, and several novel epistatic loci. Extensive epistasis is confirmed involving both slQTL confidence intervals (C.I.) as well as regions that show no significant additive or dominance effects. These results provide important new insights into mapping complex genetic architectures and the role of epistasis in complex trait variation. PMID:21115969

Jarvis, Joseph P.; Cheverud, James M.

2011-01-01

344

High-precision genetic mapping of behavioral traits in the diversity outbred mouse population  

PubMed Central

Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine-mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild-derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open-field, light–dark box, tail-suspension and visual-cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety- and activity-related traits. Half of the QTLs are associated with wild-derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild-alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high-precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics PMID:23433259

Logan, R W; Robledo, R F; Recla, J M; Philip, V M; Bubier, J A; Jay, J J; Harwood, C; Wilcox, T; Gatti, D M; Bult, C J; Churchill, G A; Chesler, E J

2013-01-01

345

Trans-Ethnic Fine-Mapping of Lipid Loci Identifies Population-Specific Signals and Allelic Heterogeneity That Increases the Trait Variance Explained  

PubMed Central

Genome-wide association studies (GWAS) have identified ?100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n?=?6,832), East Asian (n?=?9,449), and European (n?=?10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1×10?4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies. PMID:23555291

Wu, Ying; Waite, Lindsay L.; Jackson, Anne U.; Sheu, Wayne H-H.; Buyske, Steven; Absher, Devin; Arnett, Donna K.; Boerwinkle, Eric; Bonnycastle, Lori L.; Carty, Cara L.; Cheng, Iona; Cochran, Barbara; Croteau-Chonka, Damien C.; Dumitrescu, Logan; Eaton, Charles B.; Franceschini, Nora; Guo, Xiuqing; Henderson, Brian E.; Hindorff, Lucia A.; Kim, Eric; Kinnunen, Leena; Komulainen, Pirjo; Lee, Wen-Jane; Le Marchand, Loic; Lin, Yi; Lindstrom, Jaana; Lingaas-Holmen, Oddgeir; Mitchell, Sabrina L.; Narisu, Narisu; Robinson, Jennifer G.; Schumacher, Fred; Stancakova, Alena; Sundvall, Jouko; Sung, Yun-Ju; Swift, Amy J.; Wang, Wen-Chang; Wilkens, Lynne; Wilsgaard, Tom; Young, Alicia M.; Adair, Linda S.; Ballantyne, Christie M.; Buzkova, Petra; Chakravarti, Aravinda; Collins, Francis S.; Duggan, David; Feranil, Alan B.; Ho, Low-Tone; Hung, Yi-Jen; Hunt, Steven C.; Hveem, Kristian; Juang, Jyh-Ming J.; Kesaniemi, Antero Y.; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lee, I-Te; Leppert, Mark F.; Matise, Tara C.; Moilanen, Leena; Nj?lstad, Inger; Peters, Ulrike; Quertermous, Thomas; Rauramaa, Rainer; Rotter, Jerome I.; Saramies, Jouko; Tuomilehto, Jaakko; Uusitupa, Matti; Wang, Tzung-Dau; Mohlke, Karen L.

2013-01-01

346

Molecular and phenotypic characterization of near isogenic lines at QTL for quantitative resistance to Leptosphaeria maculans in oilseed rape (Brassica napus L.).  

PubMed

The most common and effective way to control phoma stem canker (blackleg) caused by Leptosphaeria maculans in oilseed rape (Brassica napus) is by breeding resistant cultivars. Specific resistance genes have been identified in B. napus and related species but in some B. napus cultivars resistance is polygenic [mediated by quantitative trait loci (QTL)], postulated to be race non-specific and durable. The genetic basis of quantitative resistance in the French winter oilseed rape 'Darmor', which was derived from 'Jet Neuf', was previously examined in two genetic backgrounds. Stable QTL involved in blackleg resistance across year and genetic backgrounds were identified. In this study, near isogenic lines (NILs) were produced in the susceptible background 'Yudal' for four of these QTL using marker-assisted selection. Various strategies were used to develop new molecular markers, which were mapped in these QTL regions. These were used to characterize the length and homozygosity of the 'Darmor-bzh' introgressed segment in the NILs. Individuals from each NIL were evaluated in blackleg disease field trials and assessed for their level of stem canker in comparison to the recurrent line 'Yudal'. The effect of QTL LmA2 was clearly validated and to a lesser extent, QTL LmA9 also showed an effect on the disease level. This work provides valuable material that can be used to study the mode of action of genetic factors involved in L. maculans quantitative resistance. PMID:18696043

Delourme, R; Piel, N; Horvais, R; Pouilly, N; Domin, C; Vallée, P; Falentin, C; Manzanares-Dauleux, M J; Renard, M

2008-11-01

347

Mapping quantitative trait loci using molecular marker linkage maps  

Microsoft Academic Search

High-density restriction fragment length polymorphism (RFLP) and allozyme linkage maps have been developed in several plant species. These maps make it technically feasible to map quantitative trait loci (QTL) using methods based on flanking marker genetic models. In this paper, we describe flanking marker models for doubled haploid (DH), recombinant inbred (RI), backcross (BC), F1 testcross (F1TC), DH testcross (DHTC),

S. J. Knapp; W. C. Bridges; D. Birkes

1990-01-01

348

Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.)  

PubMed Central

Background In crop species, QTL analysis is commonly used for identification of factors contributing to variation of agronomically important traits. As an important pasture species, a large number of QTLs have been reported for perennial ryegrass based on analysis of biparental mapping populations. Further characterisation of those QTLs is, however, essential for utilisation in varietal improvement programs. Results A bibliographic survey of perennial ryegrass trait-dissection studies identified a total of 560 QTLs from previously published papers, of which 189, 270 and 101 were classified as morphology-, physiology- and resistance/tolerance-related loci, respectively. The collected dataset permitted a subsequent meta-QTL study and implementation of a cross-species candidate gene identification approach. A meta-QTL analysis based on use of the BioMercator software was performed to identify two consensus regions for pathogen resistance traits. Genes that are candidates for causal polymorphism underpinning perennial ryegrass QTLs were identified through in silico comparative mapping using rice databases, and 7 genes were assigned to the p150/112 reference map. Markers linked to the LpDGL1, LpPh1 and LpPIPK1 genes were located close to plant size, leaf extension time and heading date-related QTLs, respectively, suggesting that these genes may be functionally associated with important agronomic traits in perennial ryegrass. Conclusions Functional markers are valuable for QTL meta-analysis and comparative genomics. Enrichment of such genetic markers may permit further detailed characterisation of QTLs. The outcomes of QTL meta-analysis and comparative genomics studies may be useful for accelerated development of novel perennial ryegrass cultivars with desirable traits. PMID:23137269

2012-01-01

349

RNA-Seq optimization with eQTL gold standards  

PubMed Central

Background RNA-Sequencing (RNA-Seq) experiments have been optimized for library preparation, mapping, and gene expression estimation. These methods, however, have revealed weaknesses in the next stages of analysis of differential expression, with results sensitive to systematic sample stratification or, in more extreme cases, to outliers. Further, a method to assess normalization and adjustment measures imposed on the data is lacking. Results To address these issues, we utilize previously published eQTLs as a novel gold standard at the center of a framework that integrates DNA genotypes and RNA-Seq data to optimize analysis and aid in the understanding of genetic variation and gene expression. After detecting sample contamination and sequencing outliers in RNA-Seq data, a set of previously published brain eQTLs was used to determine if sample outlier removal was appropriate. Improved replication of known eQTLs supported removal of these samples in downstream analyses. eQTL replication was further employed to assess normalization methods, covariate inclusion, and gene annotation. This method was validated in an independent RNA-Seq blood data set from the GTEx project and a tissue-appropriate set of eQTLs. eQTL replication in both data sets highlights the necessity of accounting for unknown covariates in RNA-Seq data analysis. Conclusion As each RNA-Seq experiment is unique with its own experiment-specific limitations, we offer an easily-implementable method that uses the replication of known eQTLs to guide each step in one’s data analysis pipeline. In the two data sets presented herein, we highlight not only the necessity of careful outlier detection but also the need to account for unknown covariates in RNA-Seq experiments. PMID:24341889

2013-01-01

350

Haplotyping a Quantitative Trait with a High-Density Map in Experimental Crosses  

E-print Network

by the new model will facilitate the molecular cloning of a QTL. Our model is founded on population genetic of America Background. The ultimate goal of genetic mapping of quantitative trait loci (QTL) is the positional cloning of genes involved in any agriculturally or medically important phenotype. However, only

Cheverud, James M.

351

Genetic mapping of three quantitative trait loci for soybean aphid resistance in PI 567324  

PubMed Central

Host-plant resistance is an effective method for controlling soybean aphid (Aphis glycines Matsumura), the most damaging insect pest of soybean (Glycine max (L.) Merr.) in North America. Recently, resistant soybean lines have been discovered and at least four aphid resistance genes (Rag1, Rag2, Rag3 and rag4) have been mapped on different soybean chromosomes. However, the evolution of new soybean aphid biotypes capable of defeating host-plant resistance conferred by most single genes demonstrates the need for finding germplasm with multigenic resistance to the aphid. This study was conducted to map quantitative trait loci (QTL) for aphid resistance in PI 567324. We identified two major QTL (QTL_13_1 and QTL_13_2) for aphid resistance on soybean chromosome 13 using 184 recombinant inbred lines from a ‘Wyandot' × PI 567324 cross. QTL_13_1 was located close to the previously reported Rag2 gene locus, and QTL_13_2 was close to the rag4 locus. A minor QTL (QTL_6_1) was also detected on chromosome 6, where no gene for soybean aphid resistance has been reported so far. These results indicate that PI 567324 possesses oligogenic resistance to the soybean aphid. The molecular markers closely linked to the QTL reported here will be useful for development of cultivars with oligogenic resistance that are expected to provide broader and more durable resistance against soybean aphids compared with cultivars with monogenic resistance. PMID:23486080

Jun, T-H; Rouf Mian, M A; Michel, A P

2013-01-01

352

Reconstruction of linkage maps in the distorted segregation populations of backcross, doubled haploid and recombinant inbred lines  

Microsoft Academic Search

Non-Mendelian segregation of markers, known as distorted segregation, is a common biological phenomenon. Although segregation\\u000a distortion affects the estimation of map distances and the results of quantitative trait loci (QTL) mapping, the effects of\\u000a distorted markers are often ignored in the construction of linkage maps and in QTL mapping. Recently, we have developed a\\u000a multipoint method via a Hidden Markov

ChengSong Zhu; FuHua Wang; JianFei Wang; GuangJun Li; HongSheng Zhang; YuanMing Zhang

2007-01-01

353

A consensus map of QTLs controlling the root length of maize  

Microsoft Academic Search

Traits related to the root length of maize (Zea mays L.), reported by 15 QTL studies of nine mapping populations, were subjected to a QTL meta-analysis. Traits were grouped according\\u000a to ontology, and we propose a system of abbreviations to unambiguously identify the different root types and branching orders.\\u000a The nine maps were merged into a consensus map, and the

Andreas Hund; Regina Reimer; Rainer Messmer

2011-01-01

354

High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers.  

PubMed

Pear (Pyrus spp) is an important fruit crop, grown in all temperate regions of the world, with global production ranked after grape and apples among deciduous tree crops. A high-density linkage map is a valuable tool for fine mapping quantitative trait loci (QTL) and map-based gene cloning. In this study, we firstly constructed a high-density linkage map of pear using SNPs integrated with SSRs, developed by the rapid and robust technology of restriction-associated DNA sequencing (RADseq). The linkage map consists of 3143 SNP markers and 98 SSRs, 3241 markers in total, spanning 2243.4 cM, with an average marker distance of 0.70 cM. Anchoring SSRs were able to anchor seventeen linkage groups to their corresponding chromosomes. Based on this high-density integrated pear linkage map and two years of fruit phenotyping, a total of 32 potential QTLs for 11 traits, including length of pedicel (LFP), single fruit weight (SFW), soluble solid content (SSC), transverse diameter (TD), vertical diameter (VD), calyx status (CS), flesh colour (FC), juice content (JC), number of seeds (NS), skin colour (SC), and skin smooth (SS), were identified and positioned on the genetic map. Among them, some important fruit-related traits have for the first time been identified, such as calyx status, length of pedicel, and flesh colour, and reliable localization of QTLs were verified repeatable. This high-density linkage map of pear is a worthy reference for mapping important fruit traits, QTL identification, and comparison and combination of different genetic maps. PMID:25129128

Wu, Jun; Li, Lei-Ting; Li, Meng; Khan, M Awais; Li, Xiu-Gen; Chen, Hui; Yin, Hao; Zhang, Shao-Ling

2014-11-01

355

High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers  

PubMed Central

Pear (Pyrus spp) is an important fruit crop, grown in all temperate regions of the world, with global production ranked after grape and apples among deciduous tree crops. A high-density linkage map is a valuable tool for fine mapping quantitative trait loci (QTL) and map-based gene cloning. In this study, we firstly constructed a high-density linkage map of pear using SNPs integrated with SSRs, developed by the rapid and robust technology of restriction-associated DNA sequencing (RADseq). The linkage map consists of 3143 SNP markers and 98 SSRs, 3241 markers in total, spanning 2243.4 cM, with an average marker distance of 0.70 cM. Anchoring SSRs were able to anchor seventeen linkage groups to their corresponding chromosomes. Based on this high-density integrated pear linkage map and two years of fruit phenotyping, a total of 32 potential QTLs for 11 traits, including length of pedicel (LFP), single fruit weight (SFW), soluble solid content (SSC), transverse diameter (TD), vertical diameter (VD), calyx status (CS), flesh colour (FC), juice content (JC), number of seeds (NS), skin colour (SC), and skin smooth (SS), were identified and positioned on the genetic map. Among them, some important fruit-related traits have for the first time been identified, such as calyx status, length of pedicel, and flesh colour, and reliable localization of QTLs were verified repeatable. This high-density linkage map of pear is a worthy reference for mapping important fruit traits, QTL identification, and comparison and combination of different genetic maps. PMID:25129128

Wu, Jun; Li, Lei-Ting; Li, Meng; Khan, M. Awais; Li, Xiu-Gen; Chen, Hui; Yin, Hao; Zhang, Shao-Ling

2014-01-01

356

Probability genotype imputation method and integrated weighted lasso for QTL identification  

PubMed Central

Background Many QTL studies have two common features: (1) often there is missing marker information, (2) among many markers involved in the biological process only a few are causal. In statistics, the second issue falls under the headings “sparsity” and “causal inference”. The goal of this work is to develop a two-step statistical methodology for QTL mapping for markers with binary genotypes. The first step introduces a novel imputation method for missing genotypes. Outcomes of the proposed imputation method are probabilities which serve as weights to the second step, namely in weighted lasso. The sparse phenotype inference is employed to select a set of predictive markers for the trait of interest. Results Simulation studies validate the proposed methodology under a wide range of realistic settings. Furthermore, the methodology outperforms alternative imputation and variable selection methods in such studies. The methodology was applied to an Arabidopsis experiment, containing 69 markers for 165 recombinant inbred lines of a F8 generation. The results confirm previously identified regions, however several new markers are also found. On the basis of the inferred ROC behavior these markers show good potential for being real, especially for the germination trait Gmax. Conclusions Our imputation method shows higher accuracy in terms of sensitivity and specificity compared to alternative imputation method. Also, the proposed weighted lasso outperforms commonly practiced multiple regression as well as the traditional lasso and adaptive lasso with three weighting schemes. This means that under realistic missing data settings this methodology can be used for QTL identification. PMID:24378210

2013-01-01

357

Influence of epistasis and QTL x environment interaction on heading date of rice (Oryza sativa L.).  

PubMed

QTLs for heading date of rice (Oryza sativa L.) with additive, epistatic, and QTL x environment (QE) interaction effects were studied using a mixed-model-based composite interval mapping (MCIM) method and a double haploid (DH) population derived from IR64/Azucena in two crop seasons. Fourteen QTLs conferring heading date in rice, which were distributed on ten chromosomes except for chromosomes 5 and 9, were detected. Among these QTLs, eight had single-locus effects, five pairs had double-locus interaction effects, and two single-loci and one pair of double-loci showed QTL x environment interaction effects. All predicted values of QTL effects varied from 1.179 days to 2.549 days, with corresponding contribution ratios of 1.04%-4.84%. On the basis of the effects of the QTLs, the total genetic effects on rice heading date for the two parents and the two superior lines were predicted, and the putative reasons for discrepancies between predicted values and observed values, and the genetic potentiality in the DH population for improvement of heading date were discussed. These results are in agreement with previous results for heading date in rice, and the results provide further information, which indicate that both epistasis and QE interaction are important genetic basis for determining heading date in rice. PMID:17643946

Liu, Guifu; Yang, Jian; Xu, Haiming; Zhu, Jun

2007-07-01

358

Molecular mapping and improvement of leaf rust resistance in wheat breeding lines.  

PubMed

Leaf rust, caused by Puccinia triticina, is the most common and widespread disease of wheat (Triticum aestivum) worldwide. Deployment of host-plant resistance is one of the strategies to reduce losses due to leaf rust disease. The objective of this study was to map genes for adult-plant resistance to leaf rust in a recombinant inbred line (RIL) population originating from MN98550-5/MN99394-1. The mapping population of 139 RILs and five checks were evaluated in 2005, 2009, and 2010 in five environments. Natural infection occurred in the 2005 trials and trials in 2009 and 2010 were inoculated with leaf rust. Four quantitative trait loci (QTL) on chromosomes 2BS, 2DS, 7AL, and 7DS were detected. The QTL on 2BS explained up to 33.6% of the phenotypic variation in leaf rust response, whereas the QTL on 2DS, 7AL, and 7DS explained up to 15.7, 8.1, and 34.2%, respectively. Seedling infection type tests conducted with P. triticina races BBBD and SBDG confirmed that the QTL on 2BS and 2DS were Lr16 and Lr2a, respectively, and these genes were expressed in the seedling and field plot tests. The Lr2a gene mapped at the same location as Sr6. The QTL on 7DS was Lr34. The QTL on 7AL is a new QTL for leaf rust resistance. The joint effects of all four QTL explained 74% of the total phenotypic variation in leaf rust severity. Analysis of different combinations of QTL showed that the RILs containing all four or three of the QTL had the lowest average leaf rust severity in all five environments. Deployment of these QTL in combination or with other effective genes will lead to successful control of leaf rust. PMID:24521485

Tsilo, Toi J; Kolmer, James A; Anderson, James A

2014-08-01

359

Mapping Temporally Varying Quantitative Trait Loci in Time-to-Failure Experiments  

PubMed Central

Existing methods for mapping quantitative trait loci (QTL) in time-to-failure experiments assume that the QTL effect is constant over the course of the study. This assumption may be violated when the gene(s) underlying the QTL are up- or downregulated on a biologically meaningful timescale. In such situations, models that assume a constant effect can fail to detect QTL in a whole-genome scan. To investigate this possibility, we utilize an extension of the Cox model (EC model) within an interval-mapping framework. In its simplest form, this model assumes that the QTL effect changes at some time point t0 and follows a linear function before and after this change point. The approximate time point at which this change occurs is estimated. Using simulated and real data, we compare the mapping performance of the EC model to the Cox proportional hazards (CPH) model, which explicitly assumes a constant effect. The results show that the EC model detects time-dependent QTL, which the CPH model fails to detect. At the same time, the EC model recovers all of the QTL the CPH model detects. We conclude that potentially important QTL may be missed if their time-dependent effects are not accounted for. PMID:17151261

Johannes, Frank

2007-01-01

360

A Missense Mutation in PPARD Causes a Major QTL Effect on Ear Size in Pigs  

PubMed Central

Chinese Erhualian is the most prolific pig breed in the world. The breed exhibits exceptionally large and floppy ears. To identify genes underlying this typical feature, we previously performed a genome scan in a large scale White Duroc × Erhualian cross and mapped a major QTL for ear size to a 2-cM region on chromosome 7. We herein performed an identical-by-descent analysis that defined the QTL within a 750-kb region. Historically, the large-ear feature has been selected for the ancient sacrificial culture in Erhualian pigs. By using a selective sweep analysis, we then refined the critical region to a 630-kb interval containing 9 annotated genes. Four of the 9 genes are expressed in ear tissues of piglets. Of the 4 genes, PPARD stood out as the strongest candidate gene for its established role in skin homeostasis, cartilage development, and fat metabolism. No differential expression of PPARD was found in ear tissues at different growth stages between large-eared Erhualian and small-eared Duroc pigs. We further screened coding sequence variants in the PPARD gene and identified only one missense mutation (G32E) in a conserved functionally important domain. The protein-altering mutation showed perfect concordance (100%) with the QTL genotypes of all 19 founder animals segregating in the White Duroc × Erhualian cross and occurred at high frequencies exclusively in Chinese large-eared breeds. Moreover, the mutation is of functional significance; it mediates down-regulation of ?-catenin and its target gene expression that is crucial for fat deposition in skin. Furthermore, the mutation was significantly associated with ear size across the experimental cross and diverse outbred populations. A worldwide survey of haplotype diversity revealed that the mutation event is of Chinese origin, likely after domestication. Taken together, we provide evidence that PPARD G32E is the variation underlying this major QTL. PMID:21573137

Ren, Jun; Duan, Yanyu; Qiao, Ruimin; Yao, Fei; Zhang, Zhiyan; Yang, Bin; Guo, Yuanmei; Xiao, Shijun; Wei, Rongxin; Ouyang, Zixuan; Ding, Nengshui; Ai, Huashui; Huang, Lusheng

2011-01-01