Note: This page contains sample records for the topic qtl fine mapping from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

QTL fine mapping with Bayes C(?): a simulation study  

PubMed Central

Background Accurate QTL mapping is a prerequisite in the search for causative mutations. Bayesian genomic selection models that analyse many markers simultaneously should provide more accurate QTL detection results than single-marker models. Our objectives were to (a) evaluate by simulation the influence of heritability, number of QTL and number of records on the accuracy of QTL mapping with Bayes C? and Bayes C; (b) estimate the QTL status (homozygous vs. heterozygous) of the individuals analysed. This study focussed on the ten largest detected QTL, assuming they are candidates for further characterization. Methods Our simulations were based on a true dairy cattle population genotyped for 38 277 phased markers. Some of these markers were considered biallelic QTL and used to generate corresponding phenotypes. Different numbers of records (4387 and 1500), heritability values (0.1, 0.4 and 0.7) and numbers of QTL (10, 100 and 1000) were studied. QTL detection was based on the posterior inclusion probability for individual markers, or on the sum of the posterior inclusion probabilities for consecutive markers, estimated using Bayes C or Bayes C?. The QTL status of the individuals was derived from the contrast between the sums of the SNP allelic effects of their chromosomal segments. Results The proportion of markers with null effect (?) frequently did not reach convergence, leading to poor results for Bayes C? in QTL detection. Fixing ? led to better results. Detection of the largest QTL was most accurate for medium to high heritability, for low to moderate numbers of QTL, and with a large number of records. The QTL status was accurately inferred when the distribution of the contrast between chromosomal segment effects was bimodal. Conclusions QTL detection is feasible with Bayes C. For QTL detection, it is recommended to use a large dataset and to focus on highly heritable traits and on the largest QTL. QTL statuses were inferred based on the distribution of the contrast between chromosomal segment effects.

2013-01-01

2

A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer  

Microsoft Academic Search

Background  High density linkage maps are essential for comparative analysis of synteny, fine mapping of quantitative trait loci (QTL),\\u000a searching for candidate genes and facilitating genome sequence assembly. However, in most foodfish species, marker density\\u000a is still low. We previously reported a first generation linkage map with 240 DNA markers and its application to preliminarily\\u000a map QTL for growth traits in

Chun Ming Wang; Zhi Yi Bai; Xiao Ping He; Grace Lin; Jun Hong Xia; Fei Sun; Loong Chueng Lo; Felicia Feng; Ze Yuan Zhu; Gen Hua Yue

2011-01-01

3

Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis.  

PubMed

Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212-RM302-RM8085-RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning. PMID:21298364

Salunkhe, Arvindkumar Shivaji; Poornima, R; Prince, K Silvas Jebakumar; Kanagaraj, P; Sheeba, J Annie; Amudha, K; Suji, K K; Senthil, A; Babu, R Chandra

2011-09-01

4

Fine-mapping of a QTL influencing pork tenderness on porcine chromosome 2  

PubMed Central

Background In a previous study, a quantitative trait locus (QTL) exhibiting large effects on both Instron shear force and taste panel tenderness was detected within the Illinois Meat Quality Pedigree (IMQP). This QTL mapped to the q arm of porcine chromosome 2 (SSC2q). Comparative analysis of SSC2q indicates that it is orthologous to a segment of human chromosome 5 (HSA5) containing a strong positional candidate gene, calpastatin (CAST). CAST polymorphisms have recently been shown to be associated with meat quality characteristics; however, the possible involvement of other genes and/or molecular variation in this region cannot be excluded, thus requiring fine-mapping of the QTL. Results Recent advances in porcine genome resources, including high-resolution radiation hybrid and bacterial artificial chromosome (BAC) physical maps, were utilized for development of novel informative markers. Marker density in the ~30-Mb region surrounding the most likely QTL position was increased by addition of eighteen new microsatellite markers, including nine publicly-available and nine novel markers. Two newly-developed markers were derived from a porcine BAC clone containing the CAST gene. Refinement of the QTL position was achieved through linkage and haplotype analyses. Within-family linkage analyses revealed at least two families segregating for a highly-significant QTL in strong positional agreement with CAST markers. A combined analysis of these two families yielded QTL intervals of 36 cM and 7 cM for Instron shear force and taste panel tenderness, respectively, while haplotype analyses suggested further refinement to a 1.8 cM interval containing CAST markers. The presence of additional tenderness QTL on SSC2q was also suggested. Conclusion These results reinforce CAST as a strong positional candidate. Further analysis of CAST molecular variation within the IMQP F1 boars should enhance understanding of the molecular basis of pork tenderness, and thus allow for genetic improvement of pork products. Furthermore, additional resources have been generated for the targeted investigation of other putative QTL on SSC2q, which may lead to further advancements in pork quality.

Meyers, Stacey N; Rodriguez-Zas, Sandra L; Beever, Jonathan E

2007-01-01

5

A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer  

PubMed Central

Background High density linkage maps are essential for comparative analysis of synteny, fine mapping of quantitative trait loci (QTL), searching for candidate genes and facilitating genome sequence assembly. However, in most foodfish species, marker density is still low. We previously reported a first generation linkage map with 240 DNA markers and its application to preliminarily map QTL for growth traits in Asian seabass (Lates calcarifer). Here, we report a high-resolution linkage map with 790 microsatellites and SNPs, comparative analysis of synteny, fine-mapping of QTL and the identification of potential candidate genes for growth traits. Results A second generation linkage map of Asian seabass was developed with 790 microsatellite and SNP markers. The map spanned a genetic length of 2411.5 cM, with an average intermarker distance of 3.4 cM or 1.1 Mb. This high density map allowed for comparison of the map with Tetraodon nigroviridis genome, which revealed 16 synteny regions between the two species. Moreover, by employing this map we refined QTL to regions of 1.4 and 0.2 cM (or 400 and 50 kb) in linkage groups 2 and 3 in a population containing 380 progeny; potential candidate genes for growth traits in QTL regions were further identified using comparative genome analysis, whose effects on growth traits were investigated. Interestingly, a QTL cluster at Lca371 underlying growth traits of Asian seabass showed similarity to the cathepsin D gene of human, which is related to cancer and Alzheimer's disease. Conclusions We constructed a high resolution linkage map, carried out comparative mapping, refined the positions of QTL, identified candidate genes for growth traits and analyzed their effects on growth. Our study developed a framework that will be indispensable for further identification of genes and analysis of molecular variation within the refined QTL to enhance understanding of the molecular basis of growth and speed up genetic improvement of growth performance, and it also provides critical resource for future genome sequence assembly and comparative genomics studies on the evolution of fish genomes.

2011-01-01

6

Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco.  

PubMed

Preharvest sprouting (PHS) is a major constraint to white wheat production. Previously, we mapped quantitative trait loci (QTL) for PHS resistance in white wheat by using a recombinant inbred line (RIL) population derived from the cross Rio Blanco/NW97S186. One QTL, QPhs.pseru-3A, showed a major effect on PHS resistance, and three simple sequence repeat (SSR) markers were mapped in the QTL region. To determine the flanking markers for the QTL and narrow down the QTL to a smaller chromosome region, we developed a new fine mapping population of 1,874 secondary segregating F(2) plants by selfing an F6 RIL (RIL25) that was heterozygous in the three SSR marker loci. Segregation of PHS resistance in the population fitted monogenic inheritance. An additive effect of the QTL played a major role on PHS resistance, but a dominant effect was also observed. Fifty-six recombinants among the three SSR markers were identified in the population and selfed to produce homozygous recombinants or QTL near-isogenic lines (NIL). PHS evaluation of the recombinants delineated the QTL in the region close to Xbarc57 flanked by Xbarc321 and Xbarc12. To saturate the QTL region, 11 amplified fragment length polymorphism (AFLP) markers were mapped in the QTL region with 7 AFLP co-segregated with Xbarc57 by using the NIL population. Dissection of the QTL as a Mendelian factor and saturation of the QTL region with additional markers created a solid foundation for positional cloning of the major QTL. PMID:20607209

Liu, Shubing; Bai, Guihua

2010-11-01

7

Advances on methods for mapping QTL in plant  

Microsoft Academic Search

Advances on methods for mapping quantitative trait loci (QTL) are firstly summarized. Then, some new methods, including mapping\\u000a multiple QTL, fine mapping of QTL, and mapping QTL for dynamic traits, are mainly described. Finally, some future prospects\\u000a are proposed, including how to dig novel genes in the germplasm resource, map expression QTL (eQTL) by the use of all markers,\\u000a phenotypes

Yuan-Ming Zhang

2006-01-01

8

Fine mapping of qSTV11(KAS), a major QTL for rice stripe disease resistance.  

PubMed

Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11(KAS), were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11(KAS) was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11(KAS) was carried out using 372 BC(3)F(2:3) recombinants and 399 BC(3)F(3:4) lines selected from 7,018 BC(3)F(2) plants of the cross SL-234/Koshihikari. The qSTV11(KAS) was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11(KAS), and the markers may be used for molecular breeding of RSV resistant rice varieties. PMID:21384112

Zhang, Ying-Xin; Wang, Qi; Jiang, Ling; Liu, Ling-Long; Wang, Bao-Xiang; Shen, Ying-Yue; Cheng, Xia-Nian; Wan, Jian-Min

2011-05-01

9

Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco  

Microsoft Academic Search

Preharvest sprouting (PHS) is a major constraint to white wheat production. Previously, we mapped quantitative trait loci\\u000a (QTL) for PHS resistance in white wheat by using a recombinant inbred line (RIL) population derived from the cross Rio Blanco\\/NW97S186.\\u000a One QTL, QPhs.pseru-3A, showed a major effect on PHS resistance, and three simple sequence repeat (SSR) markers were mapped in the QTL

Shubing Liu; Guihua Bai

2010-01-01

10

Human QTL Linkage Mapping  

PubMed Central

Human quantitative trait locus (QTL) linkage mapping, although based on classical statistical genetic methods that have been around for many years, has been employed for genome-wide screening for only the last 10-15 years. In this time, there have been many success stories, ranging from QTLs that have been replicated in independent studies to those for which one or more genes underlying the linkage peak have been identified to a few with specific functional variants that have been confirmed in in vitro laboratory assays. Despite these successes, there is a general perception that linkage approaches do not work for complex traits, possibly because many human QTL linkage studies have been limited in sample size and have not employed the family configurations that maximize the power to detect linkage. We predict that human QTL linkage studies will continue to be productive for the next several years, particularly in combination with RNA expression level traits that are showing evidence of regulatory QTLs of large effect sizes and in combination with high-density genome-wide SNP panels. These SNP panels are being used to identify QTLs previously localized by linkage and linkage results are being used to place informative priors on genome-wide association studies.

Almasy, Laura; Blangero, John

2009-01-01

11

Fine mapping of qSTV11 KAS , a major QTL for rice stripe disease resistance  

Microsoft Academic Search

Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas.\\u000a In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines\\u000a derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under\\u000a artificial inoculation in the

Ying-Xin ZhangQi; Qi Wang; Ling Jiang; Ling-Long Liu; Bao-Xiang Wang; Ying-Yue Shen; Xia-Nian Cheng; Jian-min Wan

2011-01-01

12

Fine mapping of qSB-11(LE), the QTL that confers partial resistance to rice sheath blight.  

PubMed

Sheath blight (SB), caused by Rhizoctonia solani kühn, is one of the most serious global rice diseases. No major resistance genes to SB have been identified so far. All discovered loci are quantitative resistance to rice SB. The qSB-11(LE) resistance quantitative trait locus (QTL) has been previously reported on chromosome 11 of Lemont (LE). In this study, we report the precise location of qSB-11 (LE) . We developed a near isogenic line, NIL-qSB11(TQ), by marker-assisted selection that contains susceptible allele(s) from Teqing (TQ) at the qSB-11 locus in the LE genetic background. NIL-qSB11(TQ) shows higher susceptibility to SB than LE in both field and greenhouse tests, suggesting that this region of LE contains a QTL contributing to SB resistance. In order to eliminate the genetic background effects and increase the accuracy of phenotypic evaluation, a total of 112 chromosome segment substitution lines (CSSLs) with the substituted segment specific to the qSB-11 (LE) region were produced as the fine mapping population. The genetic backgrounds and morphological characteristics of these CSSLs are similar to those of the recurrent parent LE. The donor TQ chromosomal segments in these CSSL lines contiguously overlap to bridge the qSB-11 (LE) region. Through artificial inoculation, all CSSLs were evaluated for resistance to SB in the field in 2005. For the recombinant lines, their phenotypes were evaluated in the field for another 3 years and during the final year were also evaluated in a controlled greenhouse environment, showing a consistent phenotype in SB resistance across years and conditions. After comparing the genotypic profile of each CSSL with its phenotype, we are able to localize qSB-11 (LE) to the region defined by two cleaved-amplified polymorphic sequence markers, Z22-27C and Z23-33C covering 78.871 kb, based on the rice reference genome. Eleven putative genes were annotated within this region and three of them were considered the most likely candidates. The results of this study will greatly facilitate the cloning of the genes responsible for qSB-11 (LE) and marker-assisted breeding to incorporate qSB-11 (LE) into other rice cultivars. PMID:23423653

Zuo, Shimin; Yin, Yuejun; Pan, Cunhong; Chen, Zongxiang; Zhang, Yafang; Gu, Shiliang; Zhu, Lihuang; Pan, Xuebiao

2013-05-01

13

Identification and fine-mapping of a QTL, qMrdd1, that confers recessive resistance to maize rough dwarf disease  

PubMed Central

Background Maize rough dwarf disease (MRDD) is a devastating viral disease that results in considerable yield losses worldwide. Three major strains of virus cause MRDD, including maize rough dwarf virus in Europe, Mal de Río Cuarto virus in South America, and rice black-streaked dwarf virus in East Asia. These viral pathogens belong to the genus fijivirus in the family Reoviridae. Resistance against MRDD is a complex trait that involves a number of quantitative trait loci (QTL). The primary approach used to minimize yield losses from these viruses is to breed and deploy resistant maize hybrids. Results Of the 50 heterogeneous inbred families (HIFs), 24 showed consistent responses to MRDD across different years and locations, in which 9 were resistant and 15 were susceptible. We performed trait-marker association analysis on the 24 HIFs and found six chromosomal regions which were putatively associated with MRDD resistance. We then conducted QTL analysis and detected a major resistance QTL, qMrdd1, on chromosome 8. By applying recombinant-derived progeny testing to self-pollinated backcrossed families, we fine-mapped the qMrdd1 locus into a 1.2-Mb region flanked by markers M103-4 and M105-3. The qMrdd1 locus acted in a recessive manner to reduce the disease-severity index (DSI) by 24.2–39.3%. The genetic effect of qMrdd1 was validated using another F6 recombinant inbred line (RIL) population in which MRDD resistance was segregating and two genotypes at the qMrdd1 locus differed significantly in DSI values. Conclusions The qMrdd1 locus is a major resistance QTL, acting in a recessive manner to increase maize resistance to MRDD. We mapped qMrdd1 to a 1.2-Mb region, which will enable the introgression of qMrdd1-based resistance into elite maize hybrids and reduce MRDD-related crop losses.

2013-01-01

14

Advances in QTL Mapping in Pigs  

Microsoft Academic Search

Over the past 15 years advances in the porcine genetic linkage map and discovery of useful candidate genes have led to valuable gene and trait information being discovered. Early use of exotic breed crosses and now commercial breed crosses for quantitative trait loci (QTL) scans and candidate gene analyses have led to 110 publications which have identified 1,675 QTL. Additionally,

Max F. Rothschild; Zhi-liang Hu; Zhihua Jiang

2007-01-01

15

Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study.  

PubMed

Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (?VO(2)60), power output (?WORK60), and cardiac output (?Q60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ?VO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ?VO(2)60 at P ? 0.005 and the correlated traits of ?WORK60 and ?Q60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ?VO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ?VO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance. PMID:22170014

Rice, Treva K; Sarzynski, Mark A; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Bouchard, Claude; Rankinen, Tuomo

2012-08-01

16

Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study  

PubMed Central

Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (?VO260), power output (?WORK60), and cardiac output (?Q60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ?VO260 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1–29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ?VO260 at P ? 0.005 and the correlated traits of ?WORK60 and ?Q60 at P < 0.05. Haplotype analyses provided several strong signals (P<1.0 × 10?5) for ?VO260. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ?VO260 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.

Rice, Treva K.; Sarzynski, Mark A.; Sung, Yun Ju; Argyropoulos, George; Stutz, Adrian M.; Teran-Garcia, Margarita; Rao, D. C.; Bouchard, Claude

2014-01-01

17

QTL mapping of egg albumen quality in egg layers  

PubMed Central

Background A fresh, good quality egg has a firm and gelatinous albumen that anchors the yolk and restricts growth of microbiological pathogens. As the egg ages, the gel-like structure collapses, resulting in thin and runny albumen. Occasionally thin albumen is found in a fresh egg, giving the impression of a low quality product. A mapping population consisting of 1599 F2 hens from a cross between White Rock and Rhode Island Red lines was set up, to identify loci controlling albumen quality. The phenotype for albumen quality was evaluated by albumen height and in Haugh units (HU) measured on three consecutive eggs from each F2 hen at the age of 40 weeks. For the fine-mapping analysis, albumen height and HU were used simultaneously to eliminate contribution of the egg size to the phenotype. Results Linkage analysis in a small population of seven half-sib families (668 F2) with 162 microsatellite markers spread across 27 chromosomes revealed two genome-wide significant regions with additive effects for HU on chromosomes 7 and Z. In addition, two putative genome-wide quantitative trait loci (QTL) regions were identified on chromosomes 4 and 26. The QTL effects ranged from 2 to 4% of the phenotypic variance. The genome-wide significant QTL regions on chromosomes 7 and Z were selected for fine-mapping in the full set composed of 16 half-sib families. In addition, their existence was confirmed by an association analysis in an independent commercial Hy-Line pure line. Conclusions We identified four chicken genomic regions that affect albumen quality. Our results also suggest that genes that affect albumen quality act both directly and indirectly through several different mechanisms. For instance, the QTL regions on both fine-mapped chromosomes 7 and Z overlapped with a previously reported QTL for eggshell quality, indicating that eggshell membranes may play a role in albumen quality.

2013-01-01

18

Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench].  

PubMed

Sorghum, a cereal of economic importance ensures food and fodder security for millions of rural families in the semi-arid tropics. The objective of the present study was to identify and validate quantitative trait loci (QTL) for grain yield and other agronomic traits using replicated phenotypic data sets from three post-rainy dry sorghum crop seasons involving a mapping population with 245 F9 recombinant inbred lines derived from a cross of M35-1 × B35. A genetic linkage map was constructed with 237 markers consisting of 174 genomic, 60 genic and 3 morphological markers. The QTL analysis for 11 traits following composite interval mapping identified 91 QTL with 5-12 QTL for each trait. QTL detected in the population individually explained phenotypic variation between 2.5 and 30.3 % for a given trait and six major genomic regions with QTL effect on multiple traits were identified. Stable QTL across seasons were identified. Of the 60 genic markers mapped, 21 were found at QTL peak or tightly linked with QTL. A gene-based marker XnhsbSFCILP67 (Sb03g028240) on SBI-03, encoding indole-3-acetic acid-amido synthetase GH3.5, was found to be involved in QTL for seven traits. The QTL-linked markers identified for 11 agronomic traits may assist in fine mapping, map-based gene isolation and also for improving post-rainy sorghum through marker-assisted breeding. PMID:23649648

Nagaraja Reddy, R; Madhusudhana, R; Murali Mohan, S; Chakravarthi, D V N; Mehtre, S P; Seetharama, N; Patil, J V

2013-08-01

19

QTL MAPPING AND QUANTITATIVE DISEASE RESISTANCE IN PLANTS  

Microsoft Academic Search

Quantitative trait locus (QTL) mapping is a highly effective approach for study- ing genetically complex forms of plant disease resistance. With QTL mapping, the roles of specific resistance loci can be described, race-specificity of partial resistance genes can be assessed, and interactions between resistance genes, plant development, and the environment can be analyzed. Outstanding examples in- clude: quantitative resistance to

N. D. Young

1996-01-01

20

Fine mapping of a major QTL influencing morphine preference in C57BL/6 and DBA/2 mice using congenic strains.  

PubMed

C57BL/6J (B6) and DBA/2J (D2) mice differ in behaviors related to substance abuse, including voluntary morphine consumption and preference in a two-bottle choice paradigm. Two major quantitative trait loci (QTL) for morphine consumption and preference exist between these strains on chromosomes (Chrs.) 6 and 10 when the two-bottle choice involves morphine in saccharin vs quinine in saccharin. Here, we report the refinement of the Chr. 10 QTL in subcongenic strains of D2.B6-Mop2 congenic mice described previously. With these subcongenic mouse strains, we have divided the introgressed region of Chr. 10 containing the QTL gene(s) into two segments, one between the acromere and Stxbp5 (in D2.B6-Mop2-P1 mice) and the other between marker D10Mit211 and marker D10Mit51 (in D2.B6-Mop2-D1 mice). We find that, similar to B6 mice, the D2.B6-Mop2-P1 congenic mice exhibit a strong preference for morphine over quinine, whereas D2.B6-Mop2-D1 congenic mice avoid morphine (similar to D2 mice). We have also created a line of double congenic mice, B6.D2-Mop2.Qui, which contains both Chr. 10 and Chr. 6 QTL. We find that they are intermediate in their morphine preference scores when compared with B6 and D2 animals. Overall, these data suggest that the gene(s) involved in morphine preference in the morphine-quinine two-bottle choice paradigm are contained within the proximal region of Chr. 10 (which harbors Oprm1) between the acromere and Stxbp5, as well as on distal Chr. 6 between marker D6Mit10 and the telomere. PMID:18288093

Doyle, Glenn A; Furlong, Patrick J; Schwebel, Candice L; Smith, George G; Lohoff, Falk W; Buono, Russell J; Berrettini, Wade H; Ferraro, Thomas N

2008-11-01

21

Educational Software for Mapping Quantitative Trait Loci (QTL)  

ERIC Educational Resources Information Center

This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

Helms, T. C.; Doetkott, C.

2007-01-01

22

Mapping dynamic QTL for plant height in triticale  

PubMed Central

Background Plant height is a prime example of a dynamic trait that changes constantly throughout adult development. In this study we utilised a large triticale mapping population, comprising 647 doubled haploid lines derived from 4 families, to phenotype for plant height by a precision phenotyping platform at multiple time points. Results Using multiple-line cross QTL mapping we identified main effect and epistatic QTL for plant height for each of the time points. Interestingly, some QTL were detected at all time points whereas others were specific to particular developmental stages. Furthermore, the contribution of the QTL to the genotypic variance of plant height also varied with time as exemplified by a major QTL identified on chromosome 6A. Conclusions Taken together, our results in the small grain cereal triticale reveal the importance of considering temporal genetic patterns in the regulation of complex traits such as plant height.

2014-01-01

23

A gene frequency model for QTL mapping using Bayesian inference  

PubMed Central

Background Information for mapping of quantitative trait loci (QTL) comes from two sources: linkage disequilibrium (non-random association of allele states) and cosegregation (non-random association of allele origin). Information from LD can be captured by modeling conditional means and variances at the QTL given marker information. Similarly, information from cosegregation can be captured by modeling conditional covariances. Here, we consider a Bayesian model based on gene frequency (BGF) where both conditional means and variances are modeled as a function of the conditional gene frequencies at the QTL. The parameters in this model include these gene frequencies, additive effect of the QTL, its location, and the residual variance. Bayesian methodology was used to estimate these parameters. The priors used were: logit-normal for gene frequencies, normal for the additive effect, uniform for location, and inverse chi-square for the residual variance. Computer simulation was used to compare the power to detect and accuracy to map QTL by this method with those from least squares analysis using a regression model (LSR). Results To simplify the analysis, data from unrelated individuals in a purebred population were simulated, where only LD information contributes to map the QTL. LD was simulated in a chromosomal segment of 1 cM with one QTL by random mating in a population of size 500 for 1000 generations and in a population of size 100 for 50 generations. The comparison was studied under a range of conditions, which included SNP density of 0.1, 0.05 or 0.02 cM, sample size of 500 or 1000, and phenotypic variance explained by QTL of 2 or 5%. Both 1 and 2-SNP models were considered. Power to detect the QTL for the BGF, ranged from 0.4 to 0.99, and close or equal to the power of the regression using least squares (LSR). Precision to map QTL position of BGF, quantified by the mean absolute error, ranged from 0.11 to 0.21 cM for BGF, and was better than the precision of LSR, which ranged from 0.12 to 0.25 cM. Conclusions In conclusion given a high SNP density, the gene frequency model can be used to map QTL with considerable accuracy even within a 1 cM region.

2010-01-01

24

An Introgression Line Population of Lycopersicon pennellii in the Cultivated Tomato Enables the Identification and Fine Mapping of Yield-Associated QTL  

Microsoft Academic Search

Methodologies for mapping of genes underlying quantitative traits have advanced considerably but have not been accompanied by a parallel development of new population structures. We present a novel population consisting of 50 introgression lines (ILs) originating from a cross between the green-fruited species Lycopersicon pennellii and the cultivated tomato (cv M82). Each of the lines contains a single homozygous restriction

Yuval Eshed; Dani Zamir

25

Confidence intervals in QTL mapping by bootstrapping  

Microsoft Academic Search

The determination of empirical confidence intervals for the location of quantitative trait loci (QTLs) was investigated using simulation. Empirical confidence intervals were calculated using a bootstrap resampling method for a backcross population derived from inbred lines. Sample sizes were either 200 or 500 individuals, and the QTL explained 1, 5, or 10% of the phenotypic variance. The method worked well

Peter M. Visscher; Robin Thompson; Chris S. Haley

1996-01-01

26

QTL mapping of grain weight in rice and the validation of the QTL qTGW3.2.  

PubMed

A recombinant inbred line (RIL) population bred from a cross between a javanica type (cv. D50) and an indica type (cv. HB277) rice was used to map seven quantitative trait loci (QTLs) for thousand grain weight (TGW). The loci were distributed on chromosomes 2, 3, 5, 6, 8 and 10. The chromosome 3 QTL qTGW3.2 was stably expressed over two years, and contributed 9-10% of the phenotypic variance. A residual heterozygous line (RHL) was selected from the RIL population and its selfed progeny was used to fine map qTGW3.2. In this "F2" population, the QTL explained about 23% of the variance, rising to nearly 33% in the subsequent "F2:3" generation. The physical location of qTGW3.2 was confined to a ~556 kb region flanked by the microsatellite loci RM16162 and RM16194. The region also contains other factors influencing certain yield-related traits, although it is also possible that qTGW3.2 affects these in a pleiotropic fashion. PMID:23769924

Tang, Shao-qing; Shao, Gao-neng; Wei, Xiang-jin; Chen, Ming-liang; Sheng, Zhong-hua; Luo, Ju; Jiao, Gui-ai; Xie, Li-hong; Hu, Pei-song

2013-09-15

27

[Fine mapping of complex disease susceptibility loci].  

PubMed

Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers have identified more than 3800 susceptibility loci for more than 660 diseases or traits. However, the most significantly associated variants or causative variants in these loci and their biological functions have remained to be clarified. These causative variants can help to elucidate the pathogenesis and discover new biomarkers of complex diseases. One of the main goals in the post-GWAS era is to identify the causative variants and susceptibility genes, and clarify their functional aspects by fine mapping. For common variants, imputation or re-sequencing based strategies were implemented to increase the number of analyzed variants and help to identify the most significantly associated variants. In addition, functional element, expression quantitative trait locus (eQTL) and haplotype analyses were performed to identify functional common variants and susceptibility genes. For rare variants, fine mapping was carried out by re-sequencing, rare haplotype analysis, family-based analysis, burden test, etc.This review summarizes the strategies and problems for fine mapping. PMID:24846913

Song, Qingfeng; Zhang, Hongxing; Ma, Yilong; Zhou, Gangqiao

2014-01-01

28

Fine-Scale Mapping of Quantitative Trait Loci Using Historical Recombinations  

PubMed Central

With increasing popularity of QTL mapping in economically important animals and experimental species, the need for statistical methodology for fine-scale QTL mapping becomes increasingly urgent. The ability to disentangle several linked QTL depends on the number of recombination events. An obvious approach to increase the recombination events is to increase sample size, but this approach is often constrained by resources. Moreover, increasing the sample size beyond a certain point will not further reduce the length of confidence interval for QTL map locations. The alternative approach is to use historical recombinations. We use analytical methods to examine the properties of fine QTL mapping using historical recombinations that are accumulated through repeated intercrossing from an F(2) population. We demonstrate that, using the historical recombinations, both simple and multiple regression models can reduce significantly the lengths of support intervals for estimated QTL map locations and the variances of estimated QTL map locations. We also demonstrate that, while the simple regression model using historical recombinations does not reduce the variances of the estimated additive and dominant effects, the multiple regression model does. We further determine the power and threshold values for both the simple and multiple regression models. In addition, we calculate the Kullback-Leibler distance and Fisher information for the simple regression model, in the hope to further understand the advantages and disadvantages of using historical recombinations relative to F(2) data.

Xiong, M.; Guo, S. W.

1997-01-01

29

Fine mapping and single nucleotide polymorphism effects estimation on pig chromosomes 1, 4, 7, 8, 17 and X  

PubMed Central

Fine mapping of quantitative trait loci (QTL) from previous linkage studies was performed on pig chromosomes 1, 4, 7, 8, 17, and X which were known to harbor QTL. Traits were divided into: growth performance, carcass, internal organs, cut yields, and meat quality. Fifty families were used of a F2 population produced by crossing local Brazilian Piau boars with commercial sows. The linkage map consisted of 237 SNP and 37 microsatellite markers covering 866 centimorgans. QTL were identified by regression interval mapping using GridQTL. Individual marker effects were estimated by Bayesian LASSO regression using R. In total, 32 QTL affecting the evaluated traits were detected along the chromosomes studied. Seven of the QTL were known from previous studies using our F2 population, and 25 novel QTL resulted from the increased marker coverage. Six of the seven QTL that were significant at the 5% genome-wide level had SNPs within their confidence interval whose effects were among the 5% largest effects. The combined use of microsatellites along with SNP markers increased the saturation of the genome map and led to smaller confidence intervals of the QTL. The results showed that the tested models yield similar improvements in QTL mapping accuracy.

Hidalgo, Andre M.; Lopes, Paulo S.; Paixao, Debora M.; Silva, Fabyano F.; Bastiaansen, John W.M.; Paiva, Samuel R.; Faria, Danielle A.; Guimaraes, Simone E.F.

2013-01-01

30

Mapping quantitative trait loci (QTL) in sheep. I. A new male framework linkage map and QTL for growth rate and body weight.  

PubMed

A male sheep linkage map comprising 191 microsatellites was generated from a single family of 510 Awassi-Merino backcross progeny. Except for ovine chromosomes 1, 2, 10 and 17, all other chromosomes yielded a LOD score difference greater than 3.0 between the best and second-best map order. The map is on average 11% longer than the Sheep Linkage Map v4.7 male-specific map. This map was employed in quantitative trait loci (QTL) analyses on body-weight and growth-rate traits between birth and 98 weeks of age. A custom maximum likelihood program was developed to map QTL in half-sib families for non-inbred strains (QTL-MLE) and is freely available on request. The new analysis package offers the advantage of enabling QTL x fixed effect interactions to be included in the model. Fifty-four putative QTL were identified on nine chromosomes. Significant QTL with sex-specific effects (i.e. QTL x sex interaction) in the range of 0.4 to 0.7 SD were found on ovine chromosomes 1, 3, 6, 11, 21, 23, 24 and 26. PMID:19389264

Raadsma, Herman W; Thomson, Peter C; Zenger, Kyall R; Cavanagh, Colin; Lam, Mary K; Jonas, Elisabeth; Jones, Marilyn; Attard, Gina; Palmer, David; Nicholas, Frank W

2009-01-01

31

The analysis of QTL by simultaneous use of the full linkage map  

Microsoft Academic Search

An extension of interval mapping is presented that incorporates all intervals on the linkage map simultaneously. The approach\\u000a uses a working model in which the sizes of putative QTL for all intervals across the genome are random effects. An outlier\\u000a detection method is used to screen for possible QTL. Selected QTL are subsequently fitted as fixed effects. This screening\\u000a and

Ar?nas P. Verbyla; Brian R. Cullis; Robin Thompson

2007-01-01

32

A Model Selection Approach for Expression Quantitative Trait Loci (eQTL) Mapping  

PubMed Central

Identifying the genetic basis of complex traits remains an important and challenging problem with the potential to affect a broad range of biological endeavors. A number of statistical methods are available for mapping quantitative trait loci (QTL), but their application to high-throughput phenotypes has been limited as most require user input and interaction. Recently, methods have been developed specifically for expression QTL (eQTL) mapping, but they too are limited in that they do not allow for interactions and QTL of moderate effect. We here propose an automated model-selection-based approach that identifies multiple eQTL in experimental populations, allowing for eQTL of moderate effect and interactions. Output can be used to identify groups of transcripts that are likely coregulated, as demonstrated in a study of diabetes in mouse.

Wang, Ping; Dawson, John A.; Keller, Mark P.; Yandell, Brian S.; Thornberry, Nancy A.; Zhang, Bei B.; Wang, I-Ming; Schadt, Eric E.; Attie, Alan D.; Kendziorski, C.

2011-01-01

33

A Multiparent Advanced Generation Inter-Cross to fine-map quantitative traits in Arabidopsis thaliana.  

PubMed

Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore alternative resources for the genetic dissection of complex traits continue to be sought. Here we describe one such alternative, the Multiparent Advanced Generation Inter-Cross (MAGIC). This approach is expected to improve the precision with which QTL can be mapped, improving the outlook for QTL cloning. Here, we present the first panel of MAGIC lines developed: a set of 527 recombinant inbred lines (RILs) descended from a heterogeneous stock of 19 intermated accessions of the plant Arabidopsis thaliana. These lines and the 19 founders were genotyped with 1,260 single nucleotide polymorphisms and phenotyped for development-related traits. Analytical methods were developed to fine-map quantitative trait loci (QTL) in the MAGIC lines by reconstructing the genome of each line as a mosaic of the founders. We show by simulation that QTL explaining 10% of the phenotypic variance will be detected in most situations with an average mapping error of about 300 kb, and that if the number of lines were doubled the mapping error would be under 200 kb. We also show how the power to detect a QTL and the mapping accuracy vary, depending on QTL location. We demonstrate the utility of this new mapping population by mapping several known QTL with high precision and by finding novel QTL for germination data and bolting time. Our results provide strong support for similar ongoing efforts to produce MAGIC lines in other organisms. PMID:19593375

Kover, Paula X; Valdar, William; Trakalo, Joseph; Scarcelli, Nora; Ehrenreich, Ian M; Purugganan, Michael D; Durrant, Caroline; Mott, Richard

2009-07-01

34

A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana  

PubMed Central

Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore alternative resources for the genetic dissection of complex traits continue to be sought. Here we describe one such alternative, the Multiparent Advanced Generation Inter-Cross (MAGIC). This approach is expected to improve the precision with which QTL can be mapped, improving the outlook for QTL cloning. Here, we present the first panel of MAGIC lines developed: a set of 527 recombinant inbred lines (RILs) descended from a heterogeneous stock of 19 intermated accessions of the plant Arabidopsis thaliana. These lines and the 19 founders were genotyped with 1,260 single nucleotide polymorphisms and phenotyped for development-related traits. Analytical methods were developed to fine-map quantitative trait loci (QTL) in the MAGIC lines by reconstructing the genome of each line as a mosaic of the founders. We show by simulation that QTL explaining 10% of the phenotypic variance will be detected in most situations with an average mapping error of about 300 kb, and that if the number of lines were doubled the mapping error would be under 200 kb. We also show how the power to detect a QTL and the mapping accuracy vary, depending on QTL location. We demonstrate the utility of this new mapping population by mapping several known QTL with high precision and by finding novel QTL for germination data and bolting time. Our results provide strong support for similar ongoing efforts to produce MAGIC lines in other organisms.

Kover, Paula X.; Valdar, William; Trakalo, Joseph; Scarcelli, Nora; Ehrenreich, Ian M.; Purugganan, Michael D.; Durrant, Caroline; Mott, Richard

2009-01-01

35

QTL Map Meets Population Genomics: An Application to Rice  

PubMed Central

Genes involved in the transition from wild to cultivated crop species should be of great agronomic importance. Population genomic approaches utilizing genome resequencing data have been recently applied for this purpose, although it only reports a large list of candidate genes with no biological information. Here, by resequencing more than 30 genomes altogether of wild rice Oryza rufipogon and cultivated rice O. sativa, we identified a number of regions with clear footprints of selection during the domestication process. We then focused on identifying candidate domestication genes in these regions by utilizing the wealth of QTL information in rice. We were able to identify a number of interesting candidates such as transcription factors that should control key domestication traits such as shattering, awn length, and seed dormancy. Other candidates include those that might have been related to the improvement of grain quality and those that might have been involved in the local adaptation to dry conditions and colder environments. Our study shows that population genomic approaches and QTL mapping information can be used together to identify genes that might be of agronomic importance.

Takuno, Shohei; Yoshida, Kentaro; Sugino, Ryuichi P.; Kosugi, Shunichi; Natsume, Satoshi; Mitsuoka, Chikako; Uemura, Aiko; Takagi, Hiroki; Abe, Akira; Ishii, Takashige; Terauchi, Ryohei; Innan, Hideki

2013-01-01

36

Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks.  

PubMed Central

We describe a method to simultaneously detect and fine map quantitative trait loci (QTL) that is especially suited to the mapping of modifier loci in mouse mutant models. The method exploits the high level of historical recombination present in a heterogeneous stock (HS), an outbred population of mice derived from known founder strains. The experimental design is an F(2) cross between the HS and a genetically distinct line, such as one carrying a knockout or transgene. QTL detection is performed by a standard genome scan with approximately 100 markers and fine mapping by typing the same animals using densely spaced markers over those candidate regions detected by the scan. The analysis uses an extension of the dynamic-programming technique employed previously to fine map QTL in HS mice. We show by simulation that a QTL accounting for 5% of the total variance can be detected and fine mapped with >50% probability to within 3 cM by genotyping approximately 1500 animals.

Mott, Richard; Flint, Jonathan

2002-01-01

37

Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4(+) concentrations in hydroponic conditions.  

PubMed

Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4(+) as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between 'Koshihikari', a japonica variety, and 'Kasalath', an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 microM NH4(+). Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a 'Kasalath' segment of SL-218, which was localized to the long-arm of chromosome 6. The 'Kasalath' allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4(+) concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5-21.1% longer than that of 'Koshihikari' under different NH4(+) concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the 'Nipponbare' genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and 'Koshihikari'. PMID:20390245

Obara, Mitsuhiro; Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

2010-08-01

38

Improving QTL Mapping Resolution Based on Genotypic Sampling—a Case Using a RIL Population  

Microsoft Academic Search

The QTL mapping results were compared with the genotypically selected and random samples of the same size on the base of a RIL population. The results demonstrated that there were no obvious differences in the trait distribution and marker segregation distortion between the genotypically selected and random samples with the same population size. However, a significant increase in QTL detection

Jian-Bing YAN; Ji-Hua TANG; Yi-Jiang MENG; Xi-Qing MA; Wen-Tao TENG; Subhash Chander; Lin LI; Jian-Sheng LI

2006-01-01

39

Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina  

PubMed Central

Background Gray leaf spot (GLS) is a globally important foliar disease of maize. Cercospora zeina, one of the two fungal species that cause the disease, is prevalent in southern Africa, China, Brazil and the eastern corn belt of the USA. Identification of QTL for GLS resistance in subtropical germplasm is important to support breeding programmes in developing countries where C.?zeina limits production of this staple food crop. Results A maize RIL population (F7:S6) from a cross between CML444 and SC Malawi was field-tested under GLS disease pressure at five field sites over three seasons in KwaZulu-Natal, South Africa. Thirty QTL identified from eleven field trials (environments) were consolidated to seven QTL for GLS resistance based on their expression in at least two environments and location in the same core maize bins. Four GLS resistance alleles were derived from the more resistant parent CML444 (bin 1.10, 4.08, 9.04/9.05, 10.06/10.07), whereas the remainder were from SC Malawi (bin 6.06/6.07, 7.02/7.03, 9.06). QTLs in bin 4.08 and bin 6.06/6.07 were also detected as joint QTLs, each explained more than 11% of the phenotypic variation, and were identified in four and seven environments, respectively. Common markers were used to allocate GLS QTL from eleven previous studies to bins on the IBM2005 map, and GLS QTL “hotspots” were noted. Bin 4.08 and 7.02/7.03 GLS QTL from this study overlapped with hotspots, whereas the bin 6.06/6.07 and bin 9.06 QTLs appeared to be unique. QTL for flowering time (bin 1.07, 4.09) in this population did not correspond to QTL for GLS resistance. Conclusions QTL mapping of a RIL population from the subtropical maize parents CML444 and SC Malawi identified seven QTL for resistance to gray leaf spot disease caused by C.?zeina. These QTL together with QTL from eleven studies were allocated to bins on the IBM2005 map to provide a basis for comparison. Hotspots of GLS QTL were identified on chromosomes one, two, four, five and seven, with QTL in the current study overlapping with two of these. Two QTL from this study did not overlap with previously reported QTL.

2014-01-01

40

QTL mapping of flowering and fruiting traits in olive.  

PubMed

One of the challenge fruit growers are facing is to balance between tree production and vegetative growth from year to year. To investigate the existence of genetic determinism for reproductive behaviour in olive tree, we studied an olive segregating population derived from a cross between 'Olivière' and 'Arbequina' cultivars. Our strategy was based on (i) an annual assessment of individual trees yield, and (ii) a decomposition of adult growth units at the crown periphery into quantitative variables related to both flowering and fruiting process in relation to their growth and branching. Genetic models, including the year, genotype effects and their interactions, were built with variance function and correlation structure of residuals when necessary. Among the progeny, trees were either 'ON' or 'OFF' for a given year and patterns of regular vs. irregular bearing were revealed. Genotype effect was significant on yield but not for flowering traits at growth unit (GU) scale, whereas the interaction between genotype and year was significant for both traits. A strong genetic effect was found for all fruiting traits without interaction with the year. Based on the new constructed genetic map, QTLs with small effects were detected, revealing multigenic control of the studied traits. Many were associated to alleles from 'Arbequina'. Genetic correlations were found between Yield and Fruit set at GU scale suggesting a common genetic control, even though QTL co-localisations were in spe`cific years only. Most QTL were associated to flowering traits in specific years, even though reproductive traits at GU scale did not capture the bearing status of the trees in a given year. Results were also interpreted with respect to ontogenetic changes of growth and branching, and an alternative sampling strategy was proposed for capturing tree fruiting behaviour. Regular bearing progenies were identified and could constitute innovative material for selection programs. PMID:23690957

Ben Sadok, Inès; Celton, Jean-Marc; Essalouh, Laila; El Aabidine, Amal Zine; Garcia, Gilbert; Martinez, Sebastien; Grati-Kamoun, Naziha; Rebai, Ahmed; Costes, Evelyne; Khadari, Bouchaib

2013-01-01

41

Mapping of QTL Associated with Waterlogging Tolerance during the Seedling Stage in Maize  

PubMed Central

Background and Aims Soil waterlogging is a major environmental stress that suppresses maize (Zea mays) growth and yield. To identify quantitative trait loci (QTL) associated with waterlogging tolerance at the maize seedling stage, a F2 population consisting of 288 F2:3 lines was created from a cross between two maize genotypes, ‘HZ32’ (waterlogging-tolerant) and ‘K12’ (waterlogging-sensitive). Methods The F2 population was genotyped and a base-map of 1710·5 cM length was constructed with an average marker space of 11·5 cM based on 177 SSR (simple sequence repeat) markers. QTL associated with root length, root dry weight, plant height, shoot dry weight, total dry weight and waterlogging tolerance coefficient were identified via composite interval mapping (CIM) under waterlogging and control conditions in 2004 (EXP.1) and 2005 (EXP.2), respectively. Key Results and Conclusions Twenty-five and thirty-four QTL were detected in EXP.1 and EXP.2, respectively. The effects of each QTL were moderate, ranging from 3·9 to 37·3 %. Several major QTL determining shoot dry weight, root dry weight, total dry weight, plant height and their waterlogging tolerance coefficient each mapped on chromosomes 4 and 9. These QTL were detected consistently in both experiments. Secondary QTL influencing tolerance were also identified and located on chromosomes 1, 2, 3, 6, 7 and 10. These QTL were specific to particular traits or environments. Although the detected regions need to be mapped more precisely, the findings and QTL found in this study may provide useful information for marker-assisted selection (MAS) and further genetic studies on maize waterlogging tolerance.

Qiu, Fazhan; Zheng, Yonglian; Zhang, Zili; Xu, Shangzhong

2007-01-01

42

Fine Mapping of Quantitative Trait Loci Affecting Female Fertility in Dairy Cattle on BTA03 Using a Dense Single-Nucleotide Polymorphism Map  

Microsoft Academic Search

Fertility quantitative trait loci (QTL) are of high interest in dairy cattle since insemination failure has dramatically increased in some breeds such as Holstein. High-throughput SNP analysis and SNP micro- arrays give the opportunity to genotype many animals for hundreds SNPs per chromosome. In this study, due to these techniques a dense SNP marker map was used to fine map

Tom Druet; Sebastien Fritz; Mekki Boussaha; Slim Ben-Jemaa; Franc xois Guillaume; David Derbala; Diana Zelenika; Doris Lechner; Celine Charon; Didier Boichard; Ivo G. Gut; A. Eggen; M. Gautier

2008-01-01

43

Statistical Methods for Expression Quantitative Trait Loci (eQTL) Mapping  

Microsoft Academic Search

Summary. Traditional genetic mapping has largely focused on the identification of loci affecting one, or at most a few, complex traits. Microarrays allow for measurement of thousands of gene expression abundances, themselves complex traits, and a number of recent investigations have considered these measurements as phenotypes in mapping studies. Combining traditional quantitative trait loci (QTL) mapping methods with microarray data

C. M. Kendziorski; M. Chen; M. Yuan; H. Lan; A. D. Attie

2005-01-01

44

Genomic breeding value prediction and QTL mapping of QTLMAS2011 data using Bayesian and GBLUP methods  

PubMed Central

Background The goal of this study was to apply Bayesian and GBLUP methods to predict genomic breeding values (GEBV), map QTL positions and explore the genetic architecture of the trait simulated for the 15th QTL-MAS workshop. Methods Three methods with models considering dominance and epistasis inheritances were used to fit the data: (i) BayesB with a proportion ? = 0.995 of SNPs assumed to have no effect, (ii) BayesC?, where ? is considered as unknown, and (iii) GBLUP, which directly fits animal genetic effects using a genomic relationship matrix. Results BayesB, BayesC? and GBLUP with various fitted models detected 6, 5, and 4 out of 8 simulated QTL, respectively. All five additive QTL were detected by Bayesian methods. When two QTL were in either coupling or repulsion phase, GBLUP only detected one of them and missed the other. In addition, GBLUP yielded more false positives. One imprinted QTL was detected by BayesB and GBLUP despite that only additive gene action was assumed. This QTL was missed by BayesC?. None of the methods found two simulated additive-by-additive epistatic QTL. Variance components estimation correctly detected no evidence for dominance gene-action. Bayesian methods predicted additive genetic merit more accurately than GBLUP, and similar accuracies were observed between BayesB and BayesC?. Conclusions Bayesian methods and GBLUP mapped QTL to similar chromosome regions but Bayesian methods gave fewer false positives. Bayesian methods can be superior to GBLUP in GEBV prediction when genomic architecture is unknown.

2012-01-01

45

Mapping of pigmentation QTL on an anchored genome assembly of the cichlid fish, Metriaclima zebra  

PubMed Central

Background Pigmentation patterns are one of the most recognizable phenotypes across the animal kingdom. They play an important role in camouflage, communication, mate recognition and mate choice. Most progress on understanding the genetics of pigmentation has been achieved via mutational analysis, with relatively little work done to understand variation in natural populations. Pigment patterns vary dramatically among species of cichlid fish from Lake Malawi, and are thought to be important in speciation. In this study, we crossed two species, Metriaclima zebra and M. mbenjii, that differ in several aspects of their body and fin color. We genotyped 798 SNPs in 160 F2 male individuals to construct a linkage map that was used to identify quantitative trait loci (QTL) associated with the pigmentation traits of interest. We also used the linkage map to anchor portions of the M. zebra genome assembly. Results We constructed a linkage map consisting of 834 markers in 22 linkage groups that spanned over 1,933 cM. QTL analysis detected one QTL each for dorsal fin xanthophores, caudal fin xanthophores, and pelvic fin melanophores. Dorsal fin and caudal fin xanthophores share a QTL on LG12, while pelvic fin melanophores have a QTL on LG11. We used the mapped markers to anchor 66.5% of the M. zebra genome assembly. Within each QTL interval we identified several candidate genes that might play a role in pigment cell development. Conclusion This is one of a few studies to identify QTL for natural variation in fish pigmentation. The QTL intervals we identified did not contain any pigmentation genes previously identified by mutagenesis studies in other species. We expect that further work on these intervals will identify new genes involved in pigment cell development in natural populations.

2013-01-01

46

A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.  

PubMed

A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape) was constructed in a late-generation recombinant inbred line (RIL) population, using genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL), cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed. PMID:24386142

Liu, Liezhao; Qu, Cunmin; Wittkop, Benjamin; Yi, Bin; Xiao, Yang; He, Yajun; Snowdon, Rod J; Li, Jiana

2013-01-01

47

Bayesian mixture structural equation modelling in multiple-trait QTL mapping.  

PubMed

Quantitative trait loci (QTLs) mapping often results in data on a number of traits that have well-established causal relationships. Many multi-trait QTL mapping methods that account for correlation among the multiple traits have been developed to improve the statistical power and the precision of QTL parameter estimation. However, none of these methods are capable of incorporating the causal structure among the traits. Consequently, genetic functions of the QTL may not be fully understood. In this paper, we developed a Bayesian multiple QTL mapping method for causally related traits using a mixture structural equation model (SEM), which allows researchers to decompose QTL effects into direct, indirect and total effects. Parameters are estimated based on their marginal posterior distribution. The posterior distributions of parameters are estimated using Markov Chain Monte Carlo methods such as the Gibbs sampler and the Metropolis-Hasting algorithm. The number of QTLs affecting traits is determined by the Bayes factor. The performance of the proposed method is evaluated by simulation study and applied to data from a wheat experiment. Compared with single trait Bayesian analysis, our proposed method not only improved the statistical power of QTL detection, accuracy and precision of parameter estimates but also provided important insight into how genes regulate traits directly and indirectly by fitting a more biologically sensible model. PMID:20667167

Mi, Xiaojuan; Eskridge, Kent; Wang, Dong; Baenziger, P Stephen; Campbell, B Todd; Gill, Kulvinder S; Dweikat, Ismail

2010-06-01

48

QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef.  

PubMed

Tef is a cereal crop of cultural and economic importance in Ethiopia. It is grown primarily for its grain though it is also an important source of fodder. Tef suffers from lodging that reduces both grain yield and quality. As a first step toward executing a marker-assisted breeding program for lodging resistance and grain yield improvement, a linkage map was constructed using 151 F(9) recombinant inbred lines obtained by single-seed-descent from a cross between Eragrostis tef and its wild relative Eragrostis pilosa. The map was primarily based on microsatellite (SSR) markers that were developed from SSR-enriched genomic libraries. The map consisted of 30 linkage groups and spanned a total length of 1,277.4 cM (78.7% of the genome) with an average distance of 5.7 cM between markers. This is the most saturated map for tef to date, and for the first time, all of the markers are PCR-based. Using agronomic data from 11 environments and marker data, it was possible to map quantitative trait loci (QTL) controlling lodging, grain yield and 15 other related traits. The positive effects of the QTL identified from the wild parent were mainly for earliness, reduced culm length and lodging resistance. In this population, it is now possible to combine lodging resistance and grain yield using a marker-assisted selection program targeting the QTL identified for both traits. The newly developed SSR markers will play a key role in germplasm organization, fingerprinting and monitoring the success of the hybridization process in intra-specific crosses lacking distinctive morphological markers. PMID:20706706

Zeid, M; Belay, G; Mulkey, S; Poland, J; Sorrells, M E

2011-01-01

49

Mapping quantitative trait loci (QTL) in sheep. II. Meta-assembly and identification of novel QTL for milk production traits in sheep.  

PubMed

An (Awassi x Merino) x Merino backcross family of 172 ewes was used to map quantitative trait loci (QTL) for different milk production traits on a framework map of 200 loci across all autosomes. From five previously proposed mathematical models describing lactation curves, the Wood model was considered the most appropriate due to its simplicity and its ability to determine ovine lactation curve characteristics. Derived milk traits for milk, fat, protein and lactose yield, as well as percentage composition and somatic cell score were used for single and two-QTL approaches using maximum likelihood estimation and regression analysis. A total of 15 significant (P < 0.01) and additional 25 suggestive (P < 0.05) QTL were detected across both single QTL methods and all traits. In preparation of a meta-analysis, all QTL results were compared with a meta-assembly of QTL for milk production traits in dairy ewes from various public domain sources and can be found on the ReproGen ovine gbrowser http://crcidp.vetsci.usyd.edu.au/cgi-bin/gbrowse/oaries_genome/. Many of the QTL for milk production traits have been reported on chromosomes 1, 3, 6, 16 and 20. Those on chromosomes 3 and 20 are in strong agreement with the results reported here. In addition, novel QTL were found on chromosomes 7, 8, 9, 14, 22 and 24. In a cross-species comparison, we extended the meta-assembly by comparing QTL regions of sheep and cattle, which provided strong evidence for synteny conservation of QTL regions for milk, fat, protein and somatic cell score data between cattle and sheep. PMID:19849860

Raadsma, Herman W; Jonas, Elisabeth; McGill, David; Hobbs, Matthew; Lam, Mary K; Thomson, Peter C

2009-01-01

50

Mapping quantitative trait loci (QTL) in sheep. II. Meta-assembly and identification of novel QTL for milk production traits in sheep  

PubMed Central

An (Awassi × Merino) × Merino backcross family of 172 ewes was used to map quantitative trait loci (QTL) for different milk production traits on a framework map of 200 loci across all autosomes. From five previously proposed mathematical models describing lactation curves, the Wood model was considered the most appropriate due to its simplicity and its ability to determine ovine lactation curve characteristics. Derived milk traits for milk, fat, protein and lactose yield, as well as percentage composition and somatic cell score were used for single and two-QTL approaches using maximum likelihood estimation and regression analysis. A total of 15 significant (P < 0.01) and additional 25 suggestive (P < 0.05) QTL were detected across both single QTL methods and all traits. In preparation of a meta-analysis, all QTL results were compared with a meta-assembly of QTL for milk production traits in dairy ewes from various public domain sources and can be found on the ReproGen ovine gbrowser http://crcidp.vetsci.usyd.edu.au/cgi-bin/gbrowse/oaries_genome/. Many of the QTL for milk production traits have been reported on chromosomes 1, 3, 6, 16 and 20. Those on chromosomes 3 and 20 are in strong agreement with the results reported here. In addition, novel QTL were found on chromosomes 7, 8, 9, 14, 22 and 24. In a cross-species comparison, we extended the meta-assembly by comparing QTL regions of sheep and cattle, which provided strong evidence for synteny conservation of QTL regions for milk, fat, protein and somatic cell score data between cattle and sheep.

2009-01-01

51

Quantitative trait locus (QTL) mapping reveals a role for unstudied genes in Aspergillus virulence.  

PubMed

Infections caused by the fungus Aspergillus are a major cause of morbidity and mortality in immunocompromised populations. To identify genes required for virulence that could be used as targets for novel treatments, we mapped quantitative trait loci (QTL) affecting virulence in the progeny of a cross between two strains of A. nidulans (FGSC strains A4 and A91). We genotyped 61 progeny at 739 single nucleotide polymorphisms (SNP) spread throughout the genome, and constructed a linkage map that was largely consistent with the genomic sequence, with the exception of one potential inversion of ?527 kb on Chromosome V. The estimated genome size was 3705 cM and the average intermarker spacing was 5.0 cM. The average ratio of physical distance to genetic distance was 8.1 kb/cM, which is similar to previous estimates, and variation in recombination rate was significantly positively correlated with GC content, a pattern seen in other taxa. To map QTL affecting virulence, we measured the ability of each progeny strain to kill model hosts, larvae of the wax moth Galleria mellonella. We detected three QTL affecting in vivo virulence that were distinct from QTL affecting in vitro growth, and mapped the virulence QTL to regions containing 7-24 genes, excluding genes with no sequence variation between the parental strains and genes with only synonymous SNPs. None of the genes in our QTL target regions have been previously associated with virulence in Aspergillus, and almost half of these genes are currently annotated as "hypothetical". This study is the first to map QTL affecting the virulence of a fungal pathogen in an animal host, and our results illustrate the power of this approach to identify a short list of unknown genes for further investigation. PMID:21559404

Christians, Julian K; Cheema, Manjinder S; Vergara, Ismael A; Watt, Cortney A; Pinto, Linda J; Chen, Nansheng; Moore, Margo M

2011-01-01

52

Linkage Analysis and QTL Mapping Using SNP Dosage Data in a Tetraploid Potato Mapping Population  

PubMed Central

New sequencing and genotyping technologies have enabled researchers to generate high density SNP genotype data for mapping populations. In polyploid species, SNP data usually contain a new type of information, the allele dosage, which is not used by current methodologies for linkage analysis and QTL mapping. Here we extend existing methodology to use dosage data on SNPs in an autotetraploid mapping population. The SNP dosages are inferred from allele intensity ratios using normal mixture models. The steps of the linkage analysis (testing for distorted segregation, clustering SNPs, calculation of recombination fractions and LOD scores, ordering of SNPs and inference of parental phase) are extended to use the dosage information. For QTL analysis, the probability of each possible offspring genotype is inferred at a grid of locations along the chromosome from the ordered parental genotypes and phases and the offspring dosages. A normal mixture model is then used to relate trait values to the offspring genotypes and to identify the most likely locations for QTLs. These methods are applied to analyse a tetraploid potato mapping population of parents and 190 offspring, genotyped using an Infinium 8300 Potato SNP Array. Linkage maps for each of the 12 chromosomes are constructed. The allele intensity ratios are mapped as quantitative traits to check that their position and phase agrees with that of the corresponding SNP. This analysis confirms most SNP positions, and eliminates some problem SNPs to give high-density maps for each chromosome, with between 74 and 152 SNPs mapped and between 100 and 300 further SNPs allocated to approximate bins. Low numbers of double reduction products were detected. Overall 3839 of the 5378 polymorphic SNPs can be assigned putative genetic locations. This methodology can be applied to construct high-density linkage maps in any autotetraploid species, and could also be extended to higher autopolyploids.

Hackett, Christine A.; McLean, Karen; Bryan, Glenn J.

2013-01-01

53

In silico QTL mapping of basal liver iron levels in inbred mouse strains  

PubMed Central

Both iron deficiency and iron excess are detrimental in many organisms, and previous studies in both mice and humans suggest that genetic variation may influence iron status in mammals. However, these genetic factors are not well defined. To address this issue, we measured basal liver iron levels in 18 inbred strains of mice of both sexes on a defined iron diet and found ?4-fold variation in liver iron in males (lowest 153 ?g/g, highest 661 ?g/g) and ?3-fold variation in females (lowest 222 ?g/g, highest 658 ?g/g). We carried out a genome-wide association mapping to identify haplotypes underlying differences in liver iron and three other related traits (copper and zinc liver levels, and plasma diferric transferrin levels) in a subset of 14 inbred strains for which genotype information was available. We identified two putative quantitative trait loci (QTL) that contain genes with a known role in iron metabolism: Eif2ak1 and Igf2r. We also identified four putative QTL that reside in previously identified iron-related QTL and 22 novel putative QTL. The most promising putative QTL include a 0.22 Mb region on Chromosome 7 and a 0.32 Mb region on Chromosome 11 that both contain only one candidate gene, Adam12 and Gria1, respectively. Identified putative QTL are good candidates for further refinement and subsequent functional studies.

McLachlan, Stela; Lee, Seung-Min; Steele, Teresa M.; Hawthorne, Paula L.; Zapala, Matthew A.; Eskin, Eleazar; Schork, Nicholas J.; Anderson, Gregory J.

2011-01-01

54

Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL  

PubMed Central

An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ? 3), 15 significant (LOD ? 2), and 11 suggestive QTL (1.7 ? LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified. A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21.

2010-01-01

55

Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL.  

PubMed

An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ? 3), 15 significant (LOD ? 2), and 11 suggestive QTL (1.7 ? LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified.A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21. PMID:20846385

Cavanagh, Colin R; Jonas, Elisabeth; Hobbs, Matthew; Thomson, Peter C; Tammen, Imke; Raadsma, Herman W

2010-01-01

56

QTL analysis and map-based cloning of salt tolerance gene in rice.  

PubMed

Most agronomic traits are governed by quantitative trait loci (QTLs) and exhibit continuous distribution in a segregating population. The hereditary characteristics of these traits are more complicated than those of monogenic traits. Detection and isolation of these QTLs can greatly improve crop production throughout the world. In recent times, significant progress has been made toward understanding the molecular basis underlying quantitative traits. Herein, we describe a QTL-mapping protocol for detecting and cloning a major QTL regulating rice shoot K(+) concentration under salt stress conditions. This QTL-mapping approach combined with the marker-assisted selection technique can be applied for the elucidation of complex traits in rice and other cereal crops. PMID:23135845

Gao, Ji-Ping; Lin, Hong-Xuan

2013-01-01

57

QTL mapping reveals the genetic architecture of loci affecting pre- and post-zygotic isolating barriers in Louisiana Iris  

PubMed Central

Background Hybridization among Louisiana Irises has been well established and the genetic architecture of reproductive isolation is known to affect the potential for and the directionality of introgression between taxa. Here we use co-dominant markers to identify regions where QTL are located both within and between backcross maps to compare the genetic architecture of reproductive isolation and fitness traits across treatments and years. Results QTL mapping was used to elucidate the genetic architecture of reproductive isolation between Iris fulva and Iris brevicaulis. Homologous co-dominant EST-SSR markers scored in two backcross populations between I. fulva and I. brevicaulis were used to generate genetic linkage maps. These were used as the framework for mapping QTL associated with variation in 11 phenotypic traits likely responsible for reproductive isolation and fitness. QTL were dispersed throughout the genome, with the exception of one region of a single linkage group (LG) where QTL for flowering time, sterility, and fruit production clustered. In most cases, homologous QTL were not identified in both backcross populations, however, homologous QTL for flowering time, number of growth points per rhizome, number of nodes per inflorescence, and number of flowers per node were identified on several linkage groups. Conclusions Two different traits affecting reproductive isolation, flowering time and sterility, exhibit different genetic architectures, with numerous QTL across the Iris genome controlling flowering time and fewer, less distributed QTL affecting sterility. QTL for traits affecting fitness are largely distributed across the genome with occasional overlap, especially on LG 4, where several QTL increasing fitness and decreasing sterility cluster. Given the distribution and effect direction of QTL affecting reproductive isolation and fitness, we have predicted genomic regions where introgression may be more likely to occur (those regions associated with an increase in fitness and unlinked to loci controlling reproductive isolation) and those that are less likely to exhibit introgression (those regions linked to traits decreasing fitness and reproductive isolation).

2012-01-01

58

Fine Mapping of Quantitative Trait Loci Affecting Female Fertility in Dairy Cattle on BTA03 Using a Dense Single-Nucleotide Polymorphism Map  

PubMed Central

Fertility quantitative trait loci (QTL) are of high interest in dairy cattle since insemination failure has dramatically increased in some breeds such as Holstein. High-throughput SNP analysis and SNP microarrays give the opportunity to genotype many animals for hundreds SNPs per chromosome. In this study, due to these techniques a dense SNP marker map was used to fine map a QTL underlying nonreturn rate measured 90 days after artificial insemination previously detected with a low-density microsatellite marker map. A granddaughter design with 17 Holstein half-sib families (926 offspring) was genotyped for a set of 437 SNPs mapping to BTA3. Linkage analysis was performed by both regression and variance components analysis. An additional analysis combining both linkage analysis and linkage-disequilibrium information was applied. This method first estimated identity-by-descent probabilities among base haplotypes. These probabilities were then used to group the base haplotypes in different clusters. A QTL explaining 14% of the genetic variance was found with high significance (P < 0.001) at position 19 cM with the linkage analysis and four sires were estimated to be heterozygous (P < 0.05). Addition of linkage-disequilibrium information refined the QTL position to a set of narrow peaks. The use of the haplotypes of heterozygous sires offered the possibility to give confidence in some peaks while others could be discarded. Two peaks with high likelihood-ratio test values in the region of which heterozygous sires shared a common haplotype appeared particularly interesting. Despite the fact that the analysis did not fine map the QTL in a unique narrow region, the method proved to be able to handle efficiently and automatically a large amount of information and to refine the QTL position to a small set of narrow intervals. In addition, the QTL identified was confirmed to have a large effect (explaining 13.8% of the genetic variance) on dairy cow fertility as estimated by nonreturn rate at 90 days.

Druet, Tom; Fritz, Sebastien; Boussaha, Mekki; Ben-Jemaa, Slim; Guillaume, Francois; Derbala, David; Zelenika, Diana; Lechner, Doris; Charon, Celine; Boichard, Didier; Gut, Ivo G.; Eggen, Andre; Gautier, Mathieu

2008-01-01

59

QTL Mapping of Domestication-related Traits in Soybean (Glycine max)  

PubMed Central

Background and Aims Understanding the genetic basis underlying domestication-related traits (DRTs) is important in order to use wild germplasm efficiently for improving yield, stress tolerance and quality of crops. This study was conducted to characterize the genetic basis of DRTs in soybean (Glycine max) using quantitative trait locus (QTL) mapping. Methods A population of 96 recombinant inbred lines derived from a cultivated (ssp. max) × wild (ssp. soja) cross was used for mapping and QTL analysis. Nine DRTs were examined in 2004 and 2005. A linkage map was constructed with 282 markers by the Kosambi function, and the QTL was detected by composite interval mapping. Key Results The early flowering and determinate habit derived from the max parent were each controlled by one major QTL, corresponding to the major genes for maturity (e1) and determinate habit (dt1), respectively. There were only one or two significant QTLs for twinning habit, pod dehiscence, seed weight and hard seededness, which each accounted for approx. 20–50 % of the total variance. A comparison with the QTLs detected previously indicated that in pod dehiscence and hard seededness, at least one major QTL was common across different crosses, whereas no such consistent QTL existed for seed weight. Conclusions Most of the DRTs in soybeans were conditioned by one or two major QTLs and a number of genotype-dependent minor QTLs. The common major QTLs identified in pod dehiscence and hard seededness may have been key loci in the domestication of soybean. The evolutionary changes toward larger seed may have occurred through the accumulation of minor changes at many QTLs. Since the major QTLs for DRTs were scattered across only six of the 20 linkage groups, and since the QTLs were not clustered, introgression of useful genes from wild to cultivated soybeans can be carried out without large obstacles.

Liu, Baohui; Fujita, Toshiro; Yan, Ze-Hong; Sakamoto, Shinichi; Xu, Donghe; Abe, Jun

2007-01-01

60

Genetic Analysis and QTL Mapping of Seed Coat Color in Sesame (Sesamum indicum L.)  

PubMed Central

Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P1, P2, F1, BC1, BC2 and F2). Results showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC1, BC2 and F2 populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC1 (5.43%), in BC2 (0.00%) and in F2 (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR, AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1, QTL11-2 and QTL13-1, whose heritability ranged from 59.33%–69.89%, were detected in F3 populations using CIM and MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs mapping and classical genetic analysis among the P1, P2, F1, BC1, BC2 and F2 populations were comparatively consistent. This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on sesame genetics and molecular marker-assisted selection (MAS).

Zhang, Haiyang; Miao, Hongmei; Wei, Libin; Li, Chun; Zhao, Ruihong; Wang, Cuiying

2013-01-01

61

Fine mapping of the Bmgr5 quantitative trait locus for allogeneic bone marrow engraftment in mice.  

PubMed

To identify novel mechanisms regulating allogeneic hematopoietic cell engraftment, we used forward genetics and previously described identification, in mice, of a bone marrow (BM) engraftment quantitative trait locus (QTL), termed Bmgr5. This QTL confers dominant and large allele effects for engraftment susceptibility. It was localized to chromosome 16 by quantitative genetic techniques in a segregating backcross bred from susceptible BALB.K and resistant B10.BR mice. We now report verification of the Bmgr5 QTL using reciprocal chromosome 16 consomic strains. The BM engraftment phenotype in these consomic mice shows that Bmgr5 susceptibility alleles are not only sufficient but also indispensable for conferring permissiveness for allogeneic BM engraftment. Using panels of congenic mice, we resolved the Bmgr5 QTL into two separate subloci, termed Bmgr5a (Chr16:14.6-15.8 Mb) and Bmgr5b (Chr16:15.8-17.6 Mb), each conferring permissiveness for the engraftment phenotype and both fine mapped to an interval amenable to positional cloning. Candidate Bmgr5 genes were then prioritized using whole exome DNA sequencing and microarray gene expression data. Further studies are warranted to elucidate the genetic interaction between the Bmgr5a and Bmgr5b QTL and identify causative genes and underlying gene variants. This may lead to new approaches for overcoming the problem of graft rejection in clinical hematopoietic cell transplantation. PMID:23666360

Wang, Yuanyuan; Chen, Xinjian; Tsai, Schickwann; Thomas, Alun; Shizuru, Judith A; Cao, Thai M

2013-08-01

62

QTL mapping for Mediterranean corn borer resistance in European flint germplasm using recombinant inbred lines  

Microsoft Academic Search

BACKGROUND: Ostrinia nubilalis (ECB) and Sesamia nonagrioides (MCB) are two maize stem borers which cause important losses in temperate maize production, but QTL analyses for corn borer resistance were mostly restricted to ECB resistance and maize materials genetically related (mapping populations derived from B73). Therefore, the objective of this work was to identify and characterize QTLs for MCB resistance and

Bernardo Ordas; Rosa A Malvar; Rogelio Santiago; Ana Butron

2010-01-01

63

Gramene QTL database: development, content and applications  

PubMed Central

Gramene is a comparative information resource for plants that integrates data across diverse data domains. In this article, we describe the development of a quantitative trait loci (QTL) database and illustrate how it can be used to facilitate both the forward and reverse genetics research. The QTL database contains the largest online collection of rice QTL data in the world. Using flanking markers as anchors, QTLs originally reported on individual genetic maps have been systematically aligned to the rice sequence where they can be searched as standard genomic features. Researchers can determine whether a QTL co-localizes with other QTLs detected in independent experiments and can combine data from multiple studies to improve the resolution of a QTL position. Candidate genes falling within a QTL interval can be identified and their relationship to particular phenotypes can be inferred based on functional annotations provided by ontology terms. Mutations identified in functional genomics populations and association mapping panels can be aligned with QTL regions to facilitate fine mapping and validation of gene–phenotype associations. By assembling and integrating diverse types of data and information across species and levels of biological complexity, the QTL database enhances the potential to understand and utilize QTL information in biological research.

Ni, Junjian; Pujar, Anuradha; Youens-Clark, Ken; Yap, Immanuel; Jaiswal, Pankaj; Tecle, Isaak; Tung, Chih-Wei; Ren, Liya; Spooner, William; Wei, Xuehong; Avraham, Shuly; Ware, Doreen; Stein, Lincoln; McCouch, Susan

2009-01-01

64

A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments  

PubMed Central

Background Common wheat (Triticum aestivum L.) is one of the most important food crops worldwide. Wheat varieties that maintain yield (YD) under moderate or even intense nitrogen (N) deficiency can adapt to low input management systems. A detailed genetic map is necessary for both wheat molecular breeding and genomics research. In this study, an F6:7 recombinant inbred line population comprising 188 lines was used to construct a novel genetic map and subsequently to detect quantitative trait loci (QTL) for YD and response to N stress. Results A genetic map consisting of 591 loci distributed across 21 wheat chromosomes was constructed. The map spanned 3930.7 cM, with one marker per 6.7 cM on average. Genomic simple sequence repeat (g-SSR), expressed sequence tag-derived microsatellite (e-SSR), diversity arrays technology (DArT), sequence-tagged sites (STS), sequence-related amplified polymorphism (SRAP), and inter-simple sequence repeat (ISSR) molecular markers were included in the map. The linear relationships between loci found in the present map and in previously compiled physical maps were presented, which were generally in accordance. Information on the genetic and physical positions and allele sizes (when possible) of 17 DArT, 50 e-SSR, 44 SRAP, five ISSR, and two morphological markers is reported here for the first time. Seven segregation distortion regions (SDR) were identified on chromosomes 1B, 3BL, 4AL, 6AS, 6AL, 6BL, and 7B. A total of 22 and 12 QTLs for YD and yield difference between the value (YDDV) under HN and the value under LN were identified, respectively. Of these, QYd-4B-2 and QYddv-4B, two major stable QTL, shared support interval with alleles from KN9204 increasing YD in LN and decreasing YDDV. We probe into the use of these QTLs in wheat breeding programs. Moreover, factors affecting the SDR and total map length are discussed in depth. Conclusions This novel map may facilitate the use of novel markers in wheat molecular breeding programs and genomics research. Moreover, QTLs for YD and YDDV provide useful markers for wheat molecular breeding programs designed to increase yield potential under N stress.

2014-01-01

65

Mapping of Quantitative Trait Loci (QTL) Associated with Plant Freezing Tolerance and Cold Acclimation.  

PubMed

Most agronomic traits are determined by quantitative trait loci (QTL) and exhibit continuous distribution in segregating populations. The genetic architecture and the hereditary characteristics of these traits are much more complicated than those of oligogenic traits and need adapted strategies for deciphering. The model plant Arabidopsis thaliana is widely studied for quantitative traits, especially via the utilization of natural genetic diversity. Here we describe a QTL-mapping protocol for analyzing freezing tolerance after cold acclimation in this species based on its specific genetic tools. Nevertheless, this approach can also be applied for the elucidation of complex traits in other plant species. PMID:24852628

Téoulé, Evelyne; Géry, Carine

2014-01-01

66

Advanced technologies for genomic analysis in farm animals and its application for QTL mapping.  

PubMed

Rapid progress in farm animal breeding has been made in the last few decades. Advanced technologies for genomic analysis in molecular genetics have led to the identification of genes or markers associated with genes that affect economic traits. Molecular markers, large-insert libraries and RH panels have been used to build the genetic linkage maps, physical maps and comparative maps in different farm animals. Moreover, EST sequencing, genome sequencing and SNPs maps are helping us to understand how genomes function in various organisms and further areas will be studied by DNA microarray technologies and proteomics methods. Because most economically important traits in farm animals are controlled by multiple genes and the environment, the main goal of genome research in farm animals is to map and characterize genes determining QTL. There are two main strategies to identify trait loci, candidate gene association tests and genome scan approaches. In recent years, some new concepts, such as RNAi, miRNA and eQTL, have been introduced into farm animal research, especially for QTL mapping and finding QTN. Several genes that influence important traits have already been identified or are close to being identified, and some of them have been applied in farm animal breeding programs by marker-assisted selection. PMID:19093212

Hu, Xiaoxiang; Gao, Yu; Feng, Chungang; Liu, Qiuyue; Wang, Xiaobo; Du, Zhuo; Wang, Qingsong; Li, Ning

2009-06-01

67

Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL  

Microsoft Academic Search

An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior

Colin R Cavanagh; Elisabeth Jonas; Matthew Hobbs; Peter C Thomson; Imke Tammen; Herman W Raadsma

2010-01-01

68

QTL mapping for Mediterranean corn borer resistance in European flint germplasm using recombinant inbred lines  

PubMed Central

Background Ostrinia nubilalis (ECB) and Sesamia nonagrioides (MCB) are two maize stem borers which cause important losses in temperate maize production, but QTL analyses for corn borer resistance were mostly restricted to ECB resistance and maize materials genetically related (mapping populations derived from B73). Therefore, the objective of this work was to identify and characterize QTLs for MCB resistance and agronomic traits in a RILs population derived from European flint inbreds. Results Three QTLs were detected for stalk tunnel length at bins 1.02, 3.05 and 8.05 which explained 7.5% of the RILs genotypic variance. The QTL at bin 3.05 was co-located to a QTL related to plant height and grain humidity and the QTL at bin 8.05 was located near a QTL related to yield. Conclusions Our results, when compared with results from other authors, suggest the presence of genes involved in cell wall biosynthesis or fortification with effects on resistance to different corn borer species and digestibility for dairy cattle. Particularly, we proposed five candidate genes related to cell wall characteristics which could explain the QTL for stalk tunnelling in the region 3.05. However, the small proportion of genotypic variance explained by the QTLs suggest that there are also many other genes of small effect regulating MCB resistance and we conclude that MAS seems not promising for this trait. Two QTLs detected for stalk tunnelling overlap with QTLs for agronomic traits, indicating the presence of pleitropism or linkage between genes affecting resistance and agronomic traits.

2010-01-01

69

Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar  

PubMed Central

Background The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions. Results Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E) interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes. Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL) for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5), the transition from shoot to bud (date1.5), the duration of bud formation (subproc1) and bud maturation (subproc2)) eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs). These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set. Conclusions This study provides a better understanding of the physiological and genetic dissection of bud set in poplar. The putative QTL identified will be tested for associations in P. nigra natural populations. The identified QTL and CGs will also serve as useful targets for poplar breeding.

2012-01-01

70

QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.)  

PubMed Central

A quantitative trait locus (QTL) analysis designed for a multi-parent population was carried out and tested in oil palm (Elaeis guineensis Jacq.), which is a diploid cross-fertilising perennial species. A new extension of the MCQTL package was especially designed for crosses between heterozygous parents. The algorithm, which is now available for any allogamous species, was used to perform and compare two types of QTL search for small size families, within-family analysis and across-family analysis, using data from a 2 × 2 complete factorial mating experiment involving four parents from three selected gene pools. A consensus genetic map of the factorial design was produced using 251 microsatellite loci, the locus of the Sh major gene controlling fruit shell presence, and an AFLP marker of that gene. A set of 76 QTLs involved in 24 quantitative phenotypic traits was identified. A comparison of the QTL detection results showed that the across-family analysis proved to be efficient due to the interconnected families, but the family size issue is just partially solved. The identification of QTL markers for small progeny numbers and for marker-assisted selection strategies is discussed. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1284-y) contains supplementary material, which is available to authorized users.

Jourjon, M. F.; Marseillac, N.; Berger, A.; Flori, A.; Asmady, H.; Adon, B.; Singh, R.; Nouy, B.; Potier, F.; Cheah, S. C.; Rohde, W.; Ritter, E.; Courtois, B.; Charrier, A.; Mangin, B.

2010-01-01

71

A Set of Lotus japonicus Gifu x Lotus burttii Recombinant Inbred Lines Facilitates Map-based Cloning and QTL Mapping  

PubMed Central

Model legumes such as Lotus japonicus have contributed significantly to the understanding of symbiotic nitrogen fixation. This insight is mainly a result of forward genetic screens followed by map-based cloning to identify causal alleles. The L. japonicus ecotype ‘Gifu’ was used as a common parent for inter-accession crosses to produce F2 mapping populations either with other L. japonicus ecotypes, MG-20 and Funakura, or with the related species L. filicaulis. These populations have all been used for genetic studies but segregation distortion, suppression of recombination, low polymorphism levels, and poor viability have also been observed. More recently, the diploid species L. burttii has been identified as a fertile crossing partner of L. japonicus. To assess its qualities in genetic linkage analysis and to enable quantitative trait locus (QTL) mapping for a wider range of traits in Lotus species, we have generated and genotyped a set of 163 Gifu × L. burttii recombinant inbred lines (RILs). By direct comparisons of RIL and F2 population data, we show that L. burttii is a valid alternative to MG-20 as a Gifu mapping partner. In addition, we demonstrate the utility of the Gifu × L. burttii RILs in QTL mapping by identifying an Nfr1-linked QTL for Sinorhizobium fredii nodulation.

Sandal, Niels; Jin, Haojie; Rodriguez-Navarro, Dulce Nombre; Temprano, Francisco; Cvitanich, Cristina; Brachmann, Andreas; Sato, Shusei; Kawaguchi, Masayoshi; Tabata, Satoshi; Parniske, Martin; Ruiz-Sainz, Jose E.; Andersen, Stig U.; Stougaard, Jens

2012-01-01

72

Mapping QTL main and interaction influences on milling quality in elite US rice germplasm  

Microsoft Academic Search

Rice (Oryza sativa L.) head-rice yield (HR) is a key export and domestic quality trait whose genetic control is poorly understood. With the\\u000a goal of identifying genomic regions influencing HR, quantitative-trait-locus (QTL) mapping was carried out for quality-related\\u000a traits in recombinant inbred lines (RILs) derived from crosses of common parent Cypress, a high-HR US japonica cultivar, with RT0034, a low-HR

J. C. Nelson; A. M. McClung; R. G. Fjellstrom; K. A. K. Moldenhauer; E. Boza; F. Jodari; J. H. Oard; S. Linscombe; B. E. Scheffler; K. M. Yeater

2011-01-01

73

QTL and candidate gene mapping for polyphenolic composition in apple fruit  

PubMed Central

Background The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin. Results Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17. Conclusion We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.

2012-01-01

74

Mapping a Quantitative Trait Locus (QTL) conferring pyrethroid resistance in the African malaria vector Anopheles funestus  

Microsoft Academic Search

Background  Pyrethroid resistance inAnopheles funestuspopulations has led to an increase in malaria transmission in southern Africa. Resistance has been attributed to elevated\\u000a activities of cytochrome P450s but the molecular basis underlying this metabolic resistance is unknown. Microsatellite and\\u000a SNP markers were used to construct a linkage map and to detect a quantitative trait locus (QTL) associated with pyrethroid\\u000a resistance in the

Charles S Wondji; John Morgan; Maureen Coetzee; Richard H Hunt; Keith Steen; William C Black; Janet Hemingway; Hilary Ranson

2007-01-01

75

Graph-regularized dual Lasso for robust eQTL mapping  

PubMed Central

Motivation: As a promising tool for dissecting the genetic basis of complex traits, expression quantitative trait loci (eQTL) mapping has attracted increasing research interest. An important issue in eQTL mapping is how to effectively integrate networks representing interactions among genetic markers and genes. Recently, several Lasso-based methods have been proposed to leverage such network information. Despite their success, existing methods have three common limitations: (i) a preprocessing step is usually needed to cluster the networks; (ii) the incompleteness of the networks and the noise in them are not considered; (iii) other available information, such as location of genetic markers and pathway information are not integrated. Results: To address the limitations of the existing methods, we propose Graph-regularized Dual Lasso (GDL), a robust approach for eQTL mapping. GDL integrates the correlation structures among genetic markers and traits simultaneously. It also takes into account the incompleteness of the networks and is robust to the noise. GDL utilizes graph-based regularizers to model the prior networks and does not require an explicit clustering step. Moreover, it enables further refinement of the partial and noisy networks. We further generalize GDL to incorporate the location of genetic makers and gene-pathway information. We perform extensive experimental evaluations using both simulated and real datasets. Experimental results demonstrate that the proposed methods can effectively integrate various available priori knowledge and significantly outperform the state-of-the-art eQTL mapping methods. Availability: Software for both C++ version and Matlab version is available at http://www.cs.unc.edu/?weicheng/. Contact: weiwang@cs.ucla.edu Supplementary information: Supplementary data are available at Bioinformatics online.

Cheng, Wei; Zhang, Xiang; Guo, Zhishan; Shi, Yu; Wang, Wei

2014-01-01

76

Coding Gene SNP Mapping Reveals QTL Linked to Growth and Stress Response in Brook Charr (Salvelinus fontinalis)  

PubMed Central

Growth performance and reduced stress response are traits of major interest in fish production. Growth and stress-related quantitative trait loci (QTL) have been already identified in several salmonid species, but little effort has been devoted to charrs (genus Salvelinus). Moreover, most QTL studies to date focused on one or very few traits, and little investigation has been devoted to QTL identification for gene expression. Here, our objective was to identify QTL for 27 phenotypes related to growth and stress responses in brook charr (Salvelinus fontinalis), which is one of the most economically important freshwater aquaculture species in Canada. Phenotypes included 12 growth parameters, six blood and plasma variables, three hepatic variables, and one plasma hormone level as well as the relative expression measurements of five genes of interest linked to growth regulation. QTL analysis relied on a linkage map recently built from S. fontinalis consisting of both single-nucleotide polymorphism (SNP, n = 266) and microsatellite (n =81) markers in an F2 interstrain hybrid population (n = 171). We identified 63 growth-related QTL and four stress-related QTL across 18 of the 40 linkage groups of the brook charr linkage map. Percent variance explained, confidence interval, and allelic QTL effects also were investigated to provide insight into the genetic architecture of growth- and stress-related QTL. QTL related to growth performance and stress response that were identified could be classified into two groups: (1) a group composed of the numerous, small-effect QTL associated with some traits related to growth (i.e., weight) that may be under the control of a large number of genes or pleiotropic genes, and (2) a group of less numerous QTL associated with growth (i.e., gene expression) and with stress-related QTL that display a larger effect, suggesting that these QTL are under the control of a limited number of genes of major effect. This study represents a first step toward the identification of genes potentially linked to phenotypic variation of growth and stress response in brook charr. The ultimate goal is to provide new tools for developing Molecular Assisted Selection for this species.

Sauvage, Christopher; Vagner, Marie; Derome, Nicolas; Audet, Celine; Bernatchez, Louis

2012-01-01

77

QTL Mapping and Candidate Gene Analysis of Telomere Length Control Factors in Maize (Zea mays L.)  

PubMed Central

Telomere length is a quantitative trait important for many cellular functions. Failure to regulate telomere length contributes to genomic instability, cellular senescence, cancer, and apoptosis in humans, but the functional significance of telomere regulation in plants is much less well understood. To gain a better understanding of telomere biology in plants, we used quantitative trait locus (QTL) mapping to identify genetic elements that control telomere length variation in maize (Zea mays L.). For this purpose, we measured the median and mean telomere lengths from 178 recombinant inbred lines of the IBM mapping population and found multiple regions that collectively accounted for 33–38% of the variation in telomere length. Two-way analysis of variance revealed interaction between the quantitative trait loci at genetic bin positions 2.09 and 5.04. Candidate genes within these and other significant QTL intervals, along with select genes known a priori to regulate telomere length, were tested for correlations between expression levels and telomere length in the IBM population and diverse inbred lines by quantitative real-time PCR. A slight but significant positive correlation between expression levels and telomere length was observed for many of the candidate genes, but Ibp2 was a notable exception, showing instead a negative correlation. A rad51-like protein (TEL-MD_5.04) was strongly supported as a candidate gene by several lines of evidence. Our results highlight the value of QTL mapping plus candidate gene expression analysis in a genetically diverse model system for telomere research.

Brown, Amber N.; Lauter, Nick; Vera, Daniel L.; McLaughlin-Large, Karen A.; Steele, Tace M.; Fredette, Natalie C.; Bass, Hank W.

2011-01-01

78

Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing  

PubMed Central

Understanding how organisms interact with their environments is increasingly important for conservation efforts in many species, especially in light of highly anticipated climate changes. One method for understanding this relationship is to use genetic maps and QTL mapping to detect genomic regions linked to phenotypic traits of importance for adaptation. We used high-throughput genotyping by sequencing (GBS) to both detect and map thousands of SNPs in haploid Chinook salmon (Oncorhynchus tshawytscha). We next applied this map to detect QTL related to temperature tolerance and body size in families of diploid Chinook salmon. Using these techniques, we mapped 3534 SNPs in 34 linkage groups which is consistent with the haploid chromosome number for Chinook salmon. We successfully detected three QTL for temperature tolerance and one QTL for body size at the experiment-wide level, as well as additional QTL significant at the chromosome-wide level. The use of haploids coupled with GBS provides a robust pathway to rapidly develop genomic resources in nonmodel organisms; these QTL represent preliminary progress toward linking traits of conservation interest to regions in the Chinook salmon genome.

Everett, Meredith V; Seeb, James E

2014-01-01

79

QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments  

PubMed Central

Background The genomic architecture of bud phenology and height growth remains poorly known in most forest trees. In non model species, QTL studies have shown limited application because most often QTL data could not be validated from one experiment to another. The aim of our study was to overcome this limitation by basing QTL detection on the construction of genetic maps highly-enriched in gene markers, and by assessing QTLs across pedigrees, years, and environments. Results Four saturated individual linkage maps representing two unrelated mapping populations of 260 and 500 clonally replicated progeny were assembled from 471 to 570 markers, including from 283 to 451 gene SNPs obtained using a multiplexed genotyping assay. Thence, a composite linkage map was assembled with 836 gene markers. For individual linkage maps, a total of 33 distinct quantitative trait loci (QTLs) were observed for bud flush, 52 for bud set, and 52 for height growth. For the composite map, the corresponding numbers of QTL clusters were 11, 13, and 10. About 20% of QTLs were replicated between the two mapping populations and nearly 50% revealed spatial and/or temporal stability. Three to four occurrences of overlapping QTLs between characters were noted, indicating regions with potential pleiotropic effects. Moreover, some of the genes involved in the QTLs were also underlined by recent genome scans or expression profile studies. Overall, the proportion of phenotypic variance explained by each QTL ranged from 3.0 to 16.4% for bud flush, from 2.7 to 22.2% for bud set, and from 2.5 to 10.5% for height growth. Up to 70% of the total character variance could be accounted for by QTLs for bud flush or bud set, and up to 59% for height growth. Conclusions This study provides a basic understanding of the genomic architecture related to bud flush, bud set, and height growth in a conifer species, and a useful indicator to compare with Angiosperms. It will serve as a basic reference to functional and association genetic studies of adaptation and growth in Picea taxa. The putative QTNs identified will be tested for associations in natural populations, with potential applications in molecular breeding and gene conservation programs. QTLs mapping consistently across years and environments could also be the most important targets for breeding, because they represent genomic regions that may be least affected by G × E interactions.

2011-01-01

80

A two-phase procedure for QTL mapping with regression models.  

PubMed

It is typical in QTL mapping experiments that the number of markers under investigation is large. This poses a challenge to commonly used regression models since the number of feature variables is usually much larger than the sample size, especially, when epistasis effects are to be considered. The greedy nature of the conventional stepwise procedures is well known and is even more conspicuous in such cases. In this article, we propose a two-phase procedure based on penalized likelihood techniques and extended Bayes information criterion (EBIC) for QTL mapping. The procedure consists of a screening phase and a selection phase. In the screening phase, the main and interaction features are alternatively screened by a penalized likelihood mechanism. In the selection phase, a low-dimensional approach using EBIC is applied to the features retained in the screening phase to identify QTL. The two-phase procedure has the asymptotic property that its positive detection rate (PDR) and false discovery rate (FDR) converge to 1 and 0, respectively, as sample size goes to infinity. The two-phase procedure is compared with both traditional and recently developed approaches by simulation studies. A real data analysis is presented to demonstrate the application of the two-phase procedure. PMID:20336448

Chen, Zehua; Cui, Wenquan

2010-07-01

81

Mapping QTL influencing gastrointestinal nematode burden in Dutch Holstein-Friesian dairy cattle  

PubMed Central

Background Parasitic gastroenteritis caused by nematodes is only second to mastitis in terms of health costs to dairy farmers in developed countries. Sustainable control strategies complementing anthelmintics are desired, including selective breeding for enhanced resistance. Results and Conclusion To quantify and characterize the genetic contribution to variation in resistance to gastro-intestinal parasites, we measured the heritability of faecal egg and larval counts in the Dutch Holstein-Friesian dairy cattle population. The heritability of faecal egg counts ranged from 7 to 21% and was generally higher than for larval counts. We performed a whole genome scan in 12 paternal half-daughter groups for a total of 768 cows, corresponding to the ~10% most and least infected daughters within each family (selective genotyping). Two genome-wide significant QTL were identified in an across-family analysis, respectively on chromosomes 9 and 19, coinciding with previous findings in orthologous chromosomal regions in sheep. We identified six more suggestive QTL by within-family analysis. An additional 73 informative SNPs were genotyped on chromosome 19 and the ensuing high density map used in a variance component approach to simultaneously exploit linkage and linkage disequilibrium in an initial inconclusive attempt to refine the QTL map position.

Coppieters, Wouter; Mes, Ted HM; Druet, Tom; Farnir, Frederic; Tamma, Nico; Schrooten, Chris; Cornelissen, Albert WCA; Georges, Michel; Ploeger, Harm W

2009-01-01

82

Mapping quantitative trait loci (QTL) in sheep. IV. Analysis of lactation persistency and extended lactation traits in sheep  

PubMed Central

Background In sheep dairy production, total lactation performance, and length of lactation of lactation are of economic significance. A more persistent lactation has been associated with improved udder health. An extended lactation is defined by a longer period of milkability. This study is the first investigation to examine the presence of quantitative trait loci (QTL) for extended lactation and lactation persistency in sheep. Methods An (Awassi × Merino) × Merino single-sire backcross family with 172 ewes was used to map QTL for lactation persistency and extended lactation traits on a framework map of 189 loci across all autosomes. The Wood model was fitted to data from multiple lactations to estimate parameters of ovine lactation curves, and these estimates were used to derive measures of lactation persistency and extended lactation traits of milk, protein, fat, lactose, useful yield, and somatic cell score. These derived traits were subjected to QTL analyses using maximum likelihood estimation and regression analysis. Results Overall, one highly significant (LOD > 3.0), four significant (2.0 < LOD < 3.0) and five suggestive (1.7 < LOD < 2.0) QTL were detected across all traits in common by both mapping methods. One additional suggestive QTL was identified using maximum likelihood estimation, and four suggestive (0.01 < P < 0.05) and two significant (P < 0.01) QTL using the regression approach only. All detected QTL had effect sizes in the range of 0.48 to 0.64 SD, corresponding to QTL heritabilities of 3.1 to 8.9%. The comparison of the detected QTL with results in cattle showed conserved linkage regions. Most of the QTL identified for lactation persistency and extended lactation did not coincide. This suggests that persistency and extended lactation for the same as well as different milk yield and component traits are not controlled by the same genes. Conclusion This study identified ten novel QTL for lactation persistency and extended lactation in sheep, but results suggest that lactation persistency and extended lactation do not have a major gene in common. These results provide a basis for further validation in extended families and other breeds as well as targeting regions for genome-wide association mapping using high-density SNP arrays.

2011-01-01

83

Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL Verification and candidate gene mapping.  

PubMed Central

A long-term series of experiments to map QTL influencing wood property traits in loblolly pine has been completed. These experiments were designed to identify and subsequently verify QTL in multiple genetic backgrounds, environments, and growing seasons. Verification of QTL is necessary to substantiate a biological basis for observed marker-trait associations, to provide precise estimates of the magnitude of QTL effects, and to predict QTL expression at a given age or in a particular environment. Verification was based on the repeated detection of QTL among populations, as well as among multiple growing seasons for each population. Temporal stability of QTL was moderate, with approximately half being detected in multiple seasons. Fewer QTL were common to different populations, but the results are nonetheless encouraging for restricted applications of marker-assisted selection. QTL from larger populations accounted for less phenotypic variation than QTL detected in smaller populations, emphasizing the need for experiments employing much larger families. Additionally, 18 candidate genes related to lignin biosynthesis and cell wall structure were mapped genetically. Several candidate genes colocated with wood property QTL; however, these relationships must be verified in future experiments.

Brown, Garth R; Bassoni, Daniel L; Gill, Geoffrey P; Fontana, Joseph R; Wheeler, Nicholas C; Megraw, Robert A; Davis, Mark F; Sewell, Mitchell M; Tuskan, Gerald A; Neale, David B

2003-01-01

84

Mapping Fusarium wilt race 1 resistance genes in cotton by inheritance, QTL and sequencing composition.  

PubMed

Knowledge of the inheritance of disease resistance and genomic regions housing resistance (R) genes is essential to prevent expanding pathogen threats such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] in cotton (Gossypium spp.). We conducted a comprehensive study combining conventional inheritance, genetic and quantitative trait loci (QTL) mapping, QTL marker-sequence composition, and genome sequencing to examine the distribution, structure and organization of disease R genes to race 1 of FOV in the cotton genome. Molecular markers were applied to F(2) and recombinant inbred line (RIL) interspecific mapping populations from the crosses Pima-S7 (G. barbadense L.) × 'Acala NemX' (G. hirsutum L.) and Upland TM-1 (G. hirsutum) × Pima 3-79 (G. barbadense), respectively. Three greenhouse tests and one field test were used to obtain sequential estimates of severity index (DSI) of leaves, and vascular stem and root staining (VRS). A single resistance gene model was observed for the F(2) population based on inheritance of phenotypes. However, additional inheritance analyses and QTL mapping indicated gene interactions and inheritance from nine cotton chromosomes, with major QTLs detected on five chromosomes [Fov1-C06, Fov1-C08, (Fov1-C11 ( 1 ) and Fov1-C11 ( 2)) , Fov1-C16 and Fov1-C19 loci], explaining 8-31% of the DSI or VRS variation. The Fov1-C16 QTL locus identified in the F(2) and in the RIL populations had a significant role in conferring FOV race 1 resistance in different cotton backgrounds. Identified molecular markers may have important potential for breeding effective FOV race 1 resistance into elite cultivars by marker-assisted selection. Reconciliation between genetic and physical mapping of gene annotations from marker-DNA and new DNA sequences of BAC clones tagged with the resistance-associated QTLs revealed defenses genes induced upon pathogen infection and gene regions rich in disease-response elements, respectively. These offer candidate gene targets for Fusarium wilt resistance response in cotton and other host plants. PMID:21533837

Ulloa, Mauricio; Wang, Congli; Hutmacher, Robert B; Wright, Steven D; Davis, R Michael; Saski, Christopher A; Roberts, Philip A

2011-07-01

85

Fine mapping of quantitative trait loci affecting female fertility in dairy cattle on BTA03 using a dense single-nucleotide polymorphism map.  

PubMed

Fertility quantitative trait loci (QTL) are of high interest in dairy cattle since insemination failure has dramatically increased in some breeds such as Holstein. High-throughput SNP analysis and SNP microarrays give the opportunity to genotype many animals for hundreds SNPs per chromosome. In this study, due to these techniques a dense SNP marker map was used to fine map a QTL underlying nonreturn rate measured 90 days after artificial insemination previously detected with a low-density microsatellite marker map. A granddaughter design with 17 Holstein half-sib families (926 offspring) was genotyped for a set of 437 SNPs mapping to BTA3. Linkage analysis was performed by both regression and variance components analysis. An additional analysis combining both linkage analysis and linkage-disequilibrium information was applied. This method first estimated identity-by-descent probabilities among base haplotypes. These probabilities were then used to group the base haplotypes in different clusters. A QTL explaining 14% of the genetic variance was found with high significance (P < 0.001) at position 19 cM with the linkage analysis and four sires were estimated to be heterozygous (P < 0.05). Addition of linkage-disequilibrium information refined the QTL position to a set of narrow peaks. The use of the haplotypes of heterozygous sires offered the possibility to give confidence in some peaks while others could be discarded. Two peaks with high likelihood-ratio test values in the region of which heterozygous sires shared a common haplotype appeared particularly interesting. Despite the fact that the analysis did not fine map the QTL in a unique narrow region, the method proved to be able to handle efficiently and automatically a large amount of information and to refine the QTL position to a small set of narrow intervals. In addition, the QTL identified was confirmed to have a large effect (explaining 13.8% of the genetic variance) on dairy cow fertility as estimated by nonreturn rate at 90 days. PMID:18430945

Druet, Tom; Fritz, Sébastien; Boussaha, Mekki; Ben-Jemaa, Slim; Guillaume, François; Derbala, David; Zelenika, Diana; Lechner, Doris; Charon, Céline; Boichard, Didier; Gut, Ivo G; Eggen, André; Gautier, Mathieu

2008-04-01

86

An Evaluation of High-Throughput Approaches to QTL Mapping in Saccharomyces cerevisiae  

PubMed Central

Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of >700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in pooled approaches, providing valuable lessons for future designs of complex trait mapping studies.

Wilkening, Stefan; Lin, Gen; Fritsch, Emilie S.; Tekkedil, Manu M.; Anders, Simon; Kuehn, Raquel; Nguyen, Michelle; Aiyar, Raeka S.; Proctor, Michael; Sakhanenko, Nikita A.; Galas, David J.; Gagneur, Julien; Deutschbauer, Adam; Steinmetz, Lars M.

2014-01-01

87

Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex  

PubMed Central

Background The Asteraceae species Cynara cardunculus (2n?=?2x?=?34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. Results A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5?cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. Conclusion The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection.

2012-01-01

88

The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol.  

PubMed

Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies. PMID:21444760

Leduc, Magalie S; Lyons, Malcolm; Darvishi, Katayoon; Walsh, Kenneth; Sheehan, Susan; Amend, Sarah; Cox, Allison; Orho-Melander, Marju; Kathiresan, Sekar; Paigen, Beverly; Korstanje, Ron

2011-06-01

89

Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus  

PubMed Central

Association studies have identified several signals at the LRRK2 locus for Parkinson's disease (PD), Crohn's disease (CD) and leprosy. However, little is known about the molecular mechanisms mediating these effects. To further characterize this locus, we fine-mapped the risk association in 5,802 PD and 5,556 controls using a dense genotyping array (ImmunoChip). Using samples from 134 post-mortem control adult human brains (UK Human Brain Expression Consortium), where up to ten brain regions were available per individual, we studied the regional variation, splicing and regulation of LRRK2. We found convincing evidence for a common variant PD association located outside of the LRRK2 protein coding region (rs117762348, A>G, P?=?2.56×10?8, case/control MAF 0.083/0.074, odds ratio 0.86 for the minor allele with 95% confidence interval [0.80–0.91]). We show that mRNA expression levels are highest in cortical regions and lowest in cerebellum. We find an exon quantitative trait locus (QTL) in brain samples that localizes to exons 32–33 and investigate the molecular basis of this eQTL using RNA-Seq data in n?=?8 brain samples. The genotype underlying this eQTL is in strong linkage disequilibrium with the CD associated non-synonymous SNP rs3761863 (M2397T). We found two additional QTLs in liver and monocyte samples but none of these explained the common variant PD association at rs117762348. Our results characterize the LRRK2 locus, and highlight the importance and difficulties of fine-mapping and integration of multiple datasets to delineate pathogenic variants and thus develop an understanding of disease mechanisms.

Emmett, Warren; Ramasamy, Adaikalavan; Lackner, Karl J.; Zeller, Tanja; Walker, Robert; Smith, Colin; Lewis, Patrick A.; Mamais, Adamantios; de Silva, Rohan; Vandrovcova, Jana; Hernandez, Dena; Nalls, Michael A.; Sharma, Manu; Garnier, Sophie; Lesage, Suzanne; Simon-Sanchez, Javier; Gasser, Thomas; Heutink, Peter; Brice, Alexis; Singleton, Andrew; Cai, Huaibin; Schadt, Eric; Wood, Nicholas W.; Bandopadhyay, Rina; Weale, Michael E.; Hardy, John; Plagnol, Vincent

2013-01-01

90

Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats  

PubMed Central

Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D.

Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

2012-01-01

91

QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep  

PubMed Central

Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male–male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep.

Poissant, J; Davis, C S; Malenfant, R M; Hogg, J T; Coltman, D W

2012-01-01

92

Quantitative Trait Loci Mapping of the Mouse Plasma Proteome (pQTL)  

PubMed Central

A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F2 intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (?5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins.

Holdt, Lesca M.; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

2013-01-01

93

Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.).  

PubMed

Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2–26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL. PMID:23959525

He, Xinyao; Skinnes, Helge; Oliver, Rebekah E; Jackson, Eric W; Bjørnstad, Asmund

2013-10-01

94

Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars.  

PubMed

Genetic map construction and identification of quantitative trait loci (QTLs) for blackleg resistance were performed for four mapping populations derived from five different canola source cultivars. Three of the populations were generated from crosses between single genotypes from the blackleg-resistant cultivars Caiman, Camberra and (AV)Sapphire and the blackleg-susceptible cultivar Westar(10). The fourth population was derived from a cross between genotypes from two blackleg resistant varieties (Rainbow and (AV)Sapphire). Different types of DNA-based markers were designed and characterised from a collection of 20,000 EST sequences generated from multiple Brassica species, including a new set of 445 EST-SSR markers of high value to the international community. Multiple molecular genetic marker systems were used to construct linkage maps with locus numbers varying between 219 and 468, and coverage ranging from 1173 to 1800 cM. The proportion of polymorphic markers assigned to map locations varied from 70 to 89% across the four populations. Publicly available simple sequence repeat markers were used to assign linkage groups to reference nomenclature, and a sub-set of mapped markers were also screened on the Tapidor x Ningyou (T x N) reference population to assist this process. QTL analysis was performed based on percentage survival at low and high disease pressure sites. Multiple QTLs were identified across the four mapping populations, accounting for 13-33% of phenotypic variance (V (p)). QTL-linked marker data are suitable for implementation in breeding for disease resistance in Australian canola cultivars. However, the likelihood of shifts in pathogen race structure across different geographical locations may have implications for the long-term durability of such associations. PMID:19821065

Kaur, S; Cogan, N O I; Ye, G; Baillie, R C; Hand, M L; Ling, A E; McGearey, A K; Kaur, J; Hopkins, C J; Todorovic, M; Mountford, H; Edwards, D; Batley, J; Burton, W; Salisbury, P; Gororo, N; Marcroft, S; Kearney, G; Smith, K F; Forster, J W; Spangenberg, G C

2009-12-01

95

A Haplotype-Based Method for QTL Mapping of F Populations in Outbred Plant Species  

Microsoft Academic Search

detection. Luo (1993), Soller and Genizi (1978), and Wel- ler et al. (1990) have confirmed that very large progeny The integration of quantitative trait loci (QTL) analysis into breed- sizes are needed to detect QTL with good statistical ing strategies rather than being seen as separated processes has been proposed to increase the power and accuracy of QTL detection and

Cuauhtemoc Cervantes-Martinez; J. Steven Brown

2004-01-01

96

Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish (Coregonus clupeaformis).  

PubMed

The evolution of reproductive isolation in an ecological context may involve multiple facets of species divergence on which divergent selection may operate. These include variation in quantitative phenotypic traits, regulation of gene expression, and differential transmission of particular allelic combinations. Thus, an integrative approach to the speciation process involves identifying the genetic basis of these traits, in order to understand how they are affected by divergent selection in nature and how they ultimately contribute to reproductive isolation. In the Lake Whitefish (Coregonus clupeaformis), dwarf and normal species pairs sympatrically occur in several North American postglacial lakes. The limnetic dwarf whitefish distinguishes from its normal benthic relative by numerous life history, behavioural, morphological and gene expression traits, in relation with the exploitation of distinct ecological niches. Here, we have applied the RAD-Sequencing method to a hybrid backcross family to reconstruct a high-density genetic linkage map and perform QTL mapping in the Lake Whitefish. The 3061 cM map encompassed 3438 segregating RAD markers distributed over 40 linkage groups, for an average resolution of 0.89 cM. We mapped phenotypic and expression QTL underlying ecologically important traits as well as transmission ratio distortion QTL, and identified genomic regions harbouring clusters of such QTL. A narrow genomic region strongly associated with sex determination was also evidenced. Positional and functional information revealed in this study will be useful in ongoing population genomic studies to illuminate our understanding of the genomic architecture of reproductive isolation between whitefish species pairs. PMID:23181719

Gagnaire, Pierre-Alexandre; Normandeau, Eric; Pavey, Scott A; Bernatchez, Louis

2013-06-01

97

Variable selection for large p small n regression models with incomplete data: Mapping QTL with epistases  

PubMed Central

Background Identifying quantitative trait loci (QTL) for both additive and epistatic effects raises the statistical issue of selecting variables from a large number of candidates using a small number of observations. Missing trait and/or marker values prevent one from directly applying the classical model selection criteria such as Akaike's information criterion (AIC) and Bayesian information criterion (BIC). Results We propose a two-step Bayesian variable selection method which deals with the sparse parameter space and the small sample size issues. The regression coefficient priors are flexible enough to incorporate the characteristic of "large p small n" data. Specifically, sparseness and possible asymmetry of the significant coefficients are dealt with by developing a Gibbs sampling algorithm to stochastically search through low-dimensional subspaces for significant variables. The superior performance of the approach is demonstrated via simulation study. We also applied it to real QTL mapping datasets. Conclusion The two-step procedure coupled with Bayesian classification offers flexibility in modeling "large p small n" data, especially for the sparse and asymmetric parameter space. This approach can be extended to other settings characterized by high dimension and low sample size.

Zhang, Min; Zhang, Dabao; Wells, Martin T

2008-01-01

98

Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations  

PubMed Central

Background Common bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Host resistance is practically the most effective and environmentally-sound approach to control CBB. Unlike conventional QTL discovery strategies, in which bi-parental populations (F2, RIL, or DH) need to be developed, association mapping-based strategies can use plant breeding populations to synchronize QTL discovery and cultivar development. Results A population of 469 dry bean lines of different market classes representing plant materials routinely developed in a bean breeding program were used. Of them, 395 lines were evaluated for CBB resistance at 14 and 21 DAI (Days After Inoculation) in the summer of 2009 in an artificially inoculated CBB nursery in south-western Ontario. All lines were genotyped using 132 SNPs (Single Nucleotide Polymorphisms) evenly distributed across the genome. Of the 132 SNPs, 26 SNPs had more than 20% missing data, 12 SNPs were monomorphic, and 17 SNPs had a MAF (Minor Allelic Frequency) of less than 0.20, therefore only 75 SNPs were used for association study, based on one SNP per locus. The best possible population structure was to assign 36% and 64% of the lines into Andean and Mesoamerican subgroups, respectively. Kinship analysis also revealed complex familial relationships among all lines, which corresponds with the known pedigree history. MLM (Mixed Linear Model) analysis, including population structure and kinship, was used to discover marker-trait associations. Eighteen and 22 markers were significantly associated with CBB rating at 14 and 21 DAI, respectively. Fourteen markers were significant for both dates and the markers UBC420, SU91, g321, g471, and g796 were highly significant (p ? 0.001). Furthermore, 12 significant SNP markers were co-localized with or close to the CBB-QTLs identified previously in bi-parental QTL mapping studies. Conclusions This study demonstrated that association mapping using a reasonable number of markers, distributed across the genome and with application of plant materials that are routinely developed in a plant breeding program can detect significant QTLs for traits of interest.

2011-01-01

99

Fine-mapping of Obesity-related Quantitative Trait Loci in an F9/10 Advanced Intercross Line  

PubMed Central

Obesity develops in response to a combination of environmental effects and multiple genes of small effect. Although there has been significant progress in characterizing genes in many pathways contributing to metabolic disease, knowledge about the relationships of these genes to each other and their joint effects upon obesity lags behind. The LG, SM advanced intercross line (AIL) model of obesity has been used to characterize over 70 loci involved in fatpad weight, body weight, and organ weights. Each of these quantitative trait loci (QTLs) encompasses large regions of the genome and require fine-mapping to isolate causative sequence changes and possible mechanisms of action as indicated by the genetic architecture. In this study we fine-map QTLs first identified in the F2 and F2/3 populations in the combined F9/10 advanced intercross generations. We observed significantly narrowed QTL confidence regions, identified many single QTL that resolve into multiple QTL peaks, and identified new QTLs that may have been previously masked due to opposite gene effects at closely linked loci. We also present further characterization of the pleiotropic and epistatic interactions underlying these obesity-related traits.

Fawcett, Gloria L.; Jarvis, Joseph P.; Roseman, Charles C.; Wang, Bing; Wolf, Jason B.; Cheverud, James M.

2013-01-01

100

Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum.  

PubMed

Breeding for resistance to Fusarium head blight (FHB) in durum wheat continues to be hindered by the lack of effective resistance sources. Only limited information is available on resistance QTL for FHB in tetraploid wheat. In this study, resistance to FHB of a Triticum dicoccum line in the background of three Austrian T. durum cultivars was genetically characterized. Three populations of BC(1)F(4)-derived RILs were developed from crosses between the resistant donor line T. dicoccum-161 and the Austrian T. durum recipient varieties DS-131621, Floradur and Helidur. About 130 BC(1)F(4)-derived lines per population were evaluated for FHB response using artificial spray inoculation in four field experiments during two seasons. Lines were genetically fingerprinted using SSR and AFLP markers. Genomic regions on chromosomes 3B, 4B, 6A, 6B and 7B were significantly associated with FHB severity. FHB resistance QTL on 6B and 7B were identified in two populations and a resistance QTL on 4B appeared in three populations. The alleles that enhanced FHB resistance were derived from the T. dicoccum parent, except for the QTL on chromosome 3B. All QTL except the QTL on 6A mapped to genomic regions where QTL for FHB have previously been reported in hexaploid wheat. QTL on 3B and 6B coincided with Fhb1 and Fhb2, respectively. This implies that tetraploid and hexaploid wheat share common genomic regions associated with FHB resistance. QTL for FHB resistance on 4B co-located with a major QTL for plant height and mapped at the position of the Rht-B1 gene, while QTL on 7B overlapped with QTL for flowering time. PMID:22926291

Buerstmayr, Maria; Huber, Karin; Heckmann, Johannes; Steiner, Barbara; Nelson, James C; Buerstmayr, Hermann

2012-12-01

101

solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database  

Microsoft Academic Search

BACKGROUND: A common approach to understanding the genetic basis of complex traits is through identification of associated quantitative trait loci (QTL). Fine mapping QTLs requires several generations of backcrosses and analysis of large populations, which is time-consuming and costly effort. Furthermore, as entire genomes are being sequenced and an increasing amount of genetic and expression data are being generated, a

Isaak Y. Tecle; Naama Menda; Robert M. Buels; Esther van der Knaap; Lukas A. Mueller

2010-01-01

102

Development of genetic markers linked to straighthead resistance through fine mapping in rice (Oryza sativa L.).  

PubMed

Straighthead, a physiological disorder characterized by sterile florets and distorted spikelets, causes significant yield losses in rice, and occurs in many countries. The current control method of draining paddies early in the season stresses plants, is costly, and wastes water. Development of resistant cultivar is regarded as the most efficient way for its control. We mapped a QTL for straighthead resistance using two recombinant inbred line (RIL) F(9) populations that were phenotyped over two years using monosodium methanearsonate (MSMA) to induce the symptoms. One population of 170 RILs was genotyped with 136 SSRs and the other population of 91 RILs was genotyped with 159 SSRs. A major QTL qSH-8 was identified in an overlapping region in both populations, and explained 46% of total variation in one and 67% in another population for straighthead resistance. qSH-8 was fine mapped from 1.0 Mbp to 340 kb using 7 SSR markers and further mapped to 290 kb in a population between RM22573 and InDel 27 using 4 InDel markers. SSR AP3858-1 and InDel 11 were within the fine mapped region, and co-segregated with straighthead resistance in both RIL populations, as well as in a collection of diverse global accessions. These results demonstrate that AP3858-1 and InDel 11 can be used for marker-assisted selection (MAS) for straighthead resistant cultivars, which is especially important because there is no effective way to directly evaluate straighthead resistance. PMID:23285082

Pan, Xuhao; Zhang, Qijun; Yan, Wengui; Jia, Melissa; Jackson, Aaron; Li, Xiaobai; Jia, Limeng; Huang, Bihu; Xu, Peizhou; Correa-Victoria, Fernando; Li, Shigui

2012-01-01

103

QTL mapping of agronomic traits in tef [Eragrostis tef (Zucc) Trotter  

PubMed Central

Background Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in Ethiopia. Tef is an allotetraploid with a base chromosome number of 10 (2n = 4× = 40) and a genome size of 730 Mbp. The goal of this study was to identify agronomically important quantitative trait loci (QTL) using recombinant inbred lines (RIL) derived from an inter-specific cross between E. tef and E. pilosa (30-5). Results Twenty-two yield-related and morphological traits were assessed across eight different locations in Ethiopia during the growing seasons of 1999 and 2000. Using composite interval mapping and a linkage map incorporating 192 loci, 99 QTLs were identified on 15 of the 21 linkage groups for 19 traits. Twelve QTLs on nine linkage groups were identified for grain yield. Clusters of more than five QTLs for various traits were identified on seven linkage groups. The largest cluster (10 QTLs) was identified on linkage group 8; eight of these QTLs were for yield or yield components, suggesting linkage or pleotrophic effects of loci. There were 15 two-way interactions of loci to detect potential epistasis identified and 75% of the interactions were derived from yield and shoot biomass. Thirty-one percent of the QTLs were observed in multiple environments; two yield QTLs were consistent across all agro-ecology zones. For 29.3% of the QTLs, the alleles from E. pilosa (30-5) had a beneficial effect. Conclusion The extensive QTL data generated for tef in this study will provide a basis for initiating molecular breeding to improve agronomic traits in this staple food crop for the people of Ethiopia.

Yu, Ju-Kyung; Graznak, Elizabeth; Breseghello, Flavio; Tefera, Hailu; Sorrells, Mark E

2007-01-01

104

Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne.  

PubMed

A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F(1) individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F(1) progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30-38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne. PMID:21344184

Pfender, W F; Saha, M C; Johnson, E A; Slabaugh, M B

2011-05-01

105

A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.)  

PubMed Central

Background Seed weight (SW) and silique length (SL) are important determinants of the yield potential in rapeseed (Brassica napus L.). However, the genetic basis of both traits is poorly understood. The main objectives of this study were to dissect the genetic basis of SW and SL in rapeseed through the preliminary mapping of quantitative trait locus (QTL) by linkage analysis and fine mapping of the target major QTL by regional association analysis. Results Preliminary linkage mapping identified thirteen and nine consensus QTLs for SW and SL, respectively. These QTLs explained 0.7-67.1% and 2.1-54.4% of the phenotypic variance for SW and SL, respectively. Of these QTLs, three pairs of SW and SL QTLs were co-localized and integrated into three unique QTLs. In addition, the significance level and genetic effect of the three co-localized QTLs for both SW and SL showed great variation before and after the conditional analysis. Moreover, the allelic effects of the three QTLs for SW were highly consistent with those for SL. Two of the three co-localized QTLs, uq.A09-1 (mean R2?=?20.1% and 19.0% for SW and SL, respectively) and uq.A09-3 (mean R2?=?13.5% and 13.2% for SW and SL, respectively), were detected in all four environments and showed the opposite additive-effect direction. These QTLs were validated and fine mapped (their confidence intervals were narrowed down from 5.3 cM to 1 cM for uq.A09-1 and 13.2 cM to 2.5 cM for uq.A09-3) by regional association analysis with a panel of 576 inbred lines, which has a relatively rapid linkage disequilibrium decay (0.3 Mb) in the target QTL region. Conclusions A few QTLs with major effects and several QTLs with moderate effects might contribute to the natural variation of SW and SL in rapeseed. The meta-, conditional and allelic effect analyses suggested that pleiotropy, rather than tight linkage, was the genetic basis of the three pairs of co-localized of SW and SL QTLs. Regional association analysis was an effective and highly efficient strategy for the direct fine mapping of target major QTL identified by preliminary linkage mapping.

2014-01-01

106

QTL mapping of seed-quality traits in sunflower recombinant inbred lines under different water regimes.  

PubMed

The objectives of the present research were to determine the effects of water stress on seed-quality traits and to map QTLs controlling the studied traits under two different water treatments in a population of sunflower recombinant inbred lines (RILs). Two experiments were conducted in greenhouse and field conditions, each with well-watered and water-stressed treatments. The experiments consisted of a split-plot design (water treatment and RIL) with three blocks. Analyses of variance showed significant variation among genotypes, and a water treatment x genotype interaction was also observed for most of the traits. Two to 15 QTLs were found, depending on trait and growth conditions, and the percentage of phenotypic variance explained by the QTLs ranged from 5% to 31%. Several QTLs for oil content overlapped with QTLs for palmitic and stearic acid contents in all four conditions. An overlapping region on linkage group 3 (QTLs 2.OC.3.1 and 4.SA.3.1) was linked to an SSR marker (ORS657). A principal component analysis was performed on four fatty acid traits. Two principal components, P1 and P2, were used for QTL analysis. This method improved the ability to identify chromosomal regions affecting the fatty acids. We also detected the principal-component QTLs that did not overlap with the fatty acid QTLs. The results highlight genomic regions of interest in marker-based breeding programmes for increasing oil content in sunflower. PMID:18650950

Ebrahimi, A; Maury, P; Berger, M; Kiani, S Poormohammad; Nabipour, A; Shariati, F; Grieu, P; Sarrafi, A

2008-08-01

107

Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress  

PubMed Central

Background Drought is one of the most important abiotic stresses that cause drastic reduction in rice grain yield (GY) in rainfed environments. The identification and introgression of QTL leading to high GY under drought have been advocated to be the preferred breeding strategy to improve drought tolerance of popular rice varieties. Genetic control of GY under reproductive-stage drought stress (RS) was studied in two BC1F4 mapping populations derived from crosses of Kali Aus, a drought-tolerant aus cultivar, with high-yielding popular varieties MTU1010 and IR64. The aim was to identify QTL for GY under RS that show a large and consistent effect for the trait. Bulk segregant analysis (BSA) was used to identify significant markers putatively linked with high GY under drought. Results QTL analysis revealed major-effect GY QTL: qDTY 1.2 , qDTY 2.2 and qDTY 1.3 , qDTY 2.3 (DTY; Drought grain yield) under drought consistently over two seasons in Kali Aus/2*MTU1010 and Kali Aus/2*IR64 populations, respectively. qDTY 1.2 and qDTY 2.2 explained an additive effect of 288 kg ha?1 and 567 kg ha?1 in Kali Aus/2*MTU1010, whereas qDTY 1.3 and qDTY 2.3 explained an additive effect of 198 kg ha?1 and 147 kg ha?1 in Kali Aus/2*IR64 populations, respectively. Epistatic interaction was observed for DTF (days to flowering) between regions on chromosome 2 flanked by markers RM154–RM324 and RM263–RM573 and major epistatic QTL for GY showing interaction between genomic locations on chromosome 1 at marker interval RM488–RM315 and chromosome 2 at RM324–RM263 in 2012 DS and 2013 DS RS in Kali Aus/2*IR64 mapping populations. Conclusion The QTL, qDTY 1.2 , qDTY 1.3 , qDTY 2.2 , and qDTY 2.3, identified in this study can be used to improve GY of mega varieties MTU1010 and IR64 under different degrees of severity of drought stress through marker-aided backcrossing and provide farmers with improved varieties that effectively combine high yield potential with good yield under drought. The observed epistatic interaction for GY and DTF will contribute to our understanding of the genetic basis of agronomically important traits and enhance predictive ability at an individualized level in agriculture.

2014-01-01

108

Fine Tuning of Stretched-VISSR Image Mapping.  

National Technical Information Service (NTIS)

Stretched-VISSR (Visible and Infrared Spin Scan Radiometer) image mapping error may increase after satellite orbit control (station-keeping maneuver) or satellite attitude control (attitude maneuver). To solve this problem, a fine tuning technique of the ...

S. Kigawa

1993-01-01

109

QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.).  

PubMed

Cold stress at the seedling stage is a major threat to rice production. Cold tolerance is controlled by complex genetic factors. We used an F7 recombinant inbred line (RIL) population of 123 individuals derived from a cross of the cold-tolerant japonica cultivar Jinbu and the cold-susceptible indica cultivar BR29 for QTL mapping. Phenotypic evaluation of the parents and RILs in an 18/8 °C (day/night) cold stress regime revealed continuous variation for cold tolerance. Six QTLs including two on chromosome 1 and one each on chromosomes 2, 4, 10, and 11 for seedling cold tolerance were identified with phenotypic variation (R (2)) ranging from 6.1 to 16.5 %. The QTL combinations (qSCT1 and qSCT11) were detected in all stable cold-tolerant RIL groups, which explained the critical threshold of 27.1 % for the R (2) value determining cold tolerance at the seedling stage. Two QTLs (qSCT1 and qSCT11) on chromosomes 1 and 11, respectively, were fine mapped. The markers In1-c3, derived from the open reading frame (ORF) LOC_Os01g69910 encoding calmodulin-binding transcription activator (CAMTA), and In11-d1, derived from ORF LOC_Os11g37720 (Duf6 gene), co-segregated with seedling cold tolerance. The result may provide useful information on seedling cold tolerance mechanism and provide DNA markers for a marker-assisted breeding program to improve seedling cold tolerance in indica rice varieties. PMID:24464311

Kim, Suk-Man; Suh, Jung-Pil; Lee, Chung-Koon; Lee, Jeong-Heui; Kim, Yeong-Gyu; Jena, Kshirod Kumar

2014-06-01

110

Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping  

PubMed Central

Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype–genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and demonstrates the fundamental importance of subpopulation in interpreting and manipulating the genetics of complex traits in rice.

Famoso, Adam N.; Zhao, Keyan; Clark, Randy T.; Tung, Chih-Wei; Wright, Mark H.; Bustamante, Carlos; Kochian, Leon V.; McCouch, Susan R.

2011-01-01

111

Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat.  

PubMed

A mapping population of 186 recombinant inbred lines developed from a cross between UC1110, an adapted California spring wheat, and PI610750, a synthetic derivative from CIMMYT's Wide Cross Program, was evaluated for its response to current California races of stripe rust (Puccinia striiformis f. sp. tritici) in replicated field trials over four seasons (2007-2010) in the northern Sacramento Valley. A genetic map was constructed consisting of 1,494 polymorphic probes (SSRs, DArTs, and ESTs) mapped to 558 unique loci, and QTL analysis revealed the presence of four stripe rust resistance QTL segregating in this population, two from UC1110 (on chromosomes 3BS and 2BS) and two from PI610750 (5AL and 2AS). The two QTL of largest effects (on 3BS and 5AL) were validated in independent populations and their intervals narrowed to 2.5 and 5.3 cM, respectively. The 3BS QTL was shown, by allelism test and genotype, to carry a gene different from the Yr30/Sr2 complex. Mapped position also suggests that the 3BS QTL is associated with a gene different from either Yrns-B1 or YrRub, two stripe rust resistance genes mapped to this region in other studies. The 5AL QTL carries a previously unreported partial stripe rust resistance gene, designated here as Yr48. This paper discusses the individual contributions to resistance of these four QTL, their epistatic interactions, and their potential in durable resistance breeding strategies based on combinations of partial resistance genes. PMID:21455722

Lowe, Iago; Jankuloski, Ljupcho; Chao, Shiaoman; Chen, Xianming; See, Deven; Dubcovsky, Jorge

2011-06-01

112

Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits  

PubMed Central

Background Integrating QTL results from independent experiments performed on related species helps to survey the genetic diversity of loci/alleles underlying complex traits, and to highlight potential targets for breeding or QTL cloning. Potato (Solanum tuberosum L.) late blight resistance has been thoroughly studied, generating mapping data for many Rpi-genes (R-genes to Phytophthora infestans) and QTLs (quantitative trait loci). Moreover, late blight resistance was often associated with plant maturity. To get insight into the genomic organization of late blight resistance loci as compared to maturity QTLs, a QTL meta-analysis was performed for both traits. Results Nineteen QTL publications for late blight resistance were considered, seven of them reported maturity QTLs. Twenty-one QTL maps and eight reference maps were compiled to construct a 2,141-marker consensus map on which QTLs were projected and clustered into meta-QTLs. The whole-genome QTL meta-analysis reduced by six-fold late blight resistance QTLs (by clustering 144 QTLs into 24 meta-QTLs), by ca. five-fold maturity QTLs (by clustering 42 QTLs into eight meta-QTLs), and by ca. two-fold QTL confidence interval mean. Late blight resistance meta-QTLs were observed on every chromosome and maturity meta-QTLs on only six chromosomes. Conclusions Meta-analysis helped to refine the genomic regions of interest frequently described, and provided the closest flanking markers. Meta-QTLs of late blight resistance and maturity juxtaposed along chromosomes IV, V and VIII, and overlapped on chromosomes VI and XI. The distribution of late blight resistance meta-QTLs is significantly independent from those of Rpi-genes, resistance gene analogs and defence-related loci. The anchorage of meta-QTLs to the potato genome sequence, recently publicly released, will especially improve the candidate gene selection to determine the genes underlying meta-QTLs. All mapping data are available from the Sol Genomics Network (SGN) database.

2011-01-01

113

QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population.  

PubMed

Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper. PMID:24168044

Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K

2014-05-01

114

The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population  

PubMed Central

Background The improvement of fruit aroma is currently one of the most sought-after objectives in peach breeding programs. To better characterize and assess the genetic potential for increasing aroma quality by breeding, a quantity trait locus (QTL) analysis approach was carried out in an F1 population segregating largely for fruit traits. Results Linkage maps were constructed using the IPSC peach 9 K Infinium ® II array, rendering dense genetic maps, except in the case of certain chromosomes, probably due to identity-by-descent of those chromosomes in the parental genotypes. The variability in compounds associated with aroma was analyzed by a metabolomic approach based on GC-MS to profile 81 volatiles across the population from two locations. Quality-related traits were also studied to assess possible pleiotropic effects. Correlation-based analysis of the volatile dataset revealed that the peach volatilome is organized into modules formed by compounds from the same biosynthetic origin or which share similar chemical structures. QTL mapping showed clustering of volatile QTL included in the same volatile modules, indicating that some are subjected to joint genetic control. The monoterpene module is controlled by a unique locus at the top of LG4, a locus previously shown to affect the levels of two terpenoid compounds. At the bottom of LG4, a locus controlling several volatiles but also melting/non-melting and maturity-related traits was found, suggesting putative pleiotropic effects. In addition, two novel loci controlling lactones and esters in linkage groups 5 and 6 were discovered. Conclusions The results presented here give light on the mode of inheritance of the peach volatilome confirming previously loci controlling the aroma of peach but also identifying novel ones.

2014-01-01

115

Quantitative trait loci (QTL) mapping of resistance to strongyles and coccidia in the free-living Soay sheep (Ovis aries).  

PubMed

A genome-wide scan was performed to detect quantitative trait loci (QTL) for resistance to gastrointestinal parasites and ectoparasitic keds segregating in the free-living Soay sheep population on St. Kilda (UK). The mapping panel consisted of a single pedigree of 882 individuals of which 588 were genotyped. The Soay linkage map used for the scans comprised 251 markers covering the whole genome at average spacing of 15cM. The traits here investigated were the strongyle faecal egg count (FEC), the coccidia faecal oocyst count (FOC) and a count of keds (Melophagus ovinus). QTL mapping was performed by means of variance component analysis so that the genetic parameters of the study traits were also estimated and compared with previous studies in Soay and domestic sheep. Strongyle FEC and coccidia FOC showed moderate heritability (h(2)=0.26 and 0.22, respectively) in lambs but low heritability in adults (h(2)<0.10). Ked count appeared to have very low h(2) in both lambs and adults. Genome scans were performed for the traits with moderate heritability and two genomic regions reached the level of suggestive linkage for coccidia FOC in lambs (logarithm of the odds=2.68 and 2.21 on chromosomes 3 and X, respectively). We believe this is the first study to report a QTL search for parasite resistance in a free-living animal population and therefore may represent a useful reference for similar studies aimed at understanding the genetics of host-parasite co-evolution in the wild. PMID:17067607

Beraldi, Dario; McRae, Allan F; Gratten, Jacob; Pilkington, Jill G; Slate, Jon; Visscher, Peter M; Pemberton, Josephine M

2007-01-01

116

Recombinant near-isogenic lines: a resource for the mendelization of heterotic QTL in maize.  

PubMed

Although heterosis is widely exploited in agriculture, a clear understanding of its genetic bases is still elusive. This work describes the development of maize recombinant near-isogenic lines (NILs) for the mendelization of six heterotic QTL previously identified based on a maize (Zea mays L.) RIL population. The efficient and inexpensive strategy adopted to generate sets of NILs starting from QTL-specific residual heterozygous lines (RHLs) is described and validated. In particular, we produced nine pairs of recombinant NILs for all six QTL starting from RHLs F(4:5) originally obtained during the production of the RIL population mentioned above. Whenever possible, two different NIL pairs were generated for each QTL. The efficiency of this procedure was tested by analyzing two segregating populations for two of the selected heterotic QTL for plant height, yield per plant and ears per plant. Both additive and dominant effects were observed, consistently with the presence of the QTL within the introgressed regions. Refinement of QTL detection was consistent with previous observations in terms of effects and position of the considered QTL. The genetic material developed in this work represents the starting point for QTL fine mapping aimed at understanding the genetic bases of hybrid vigor in maize. PMID:19152004

Pea, Giorgio; Paulstephenraj, Paulinesandra; Canè, Maria Angela; Sardaro, Maria Luisa Savo; Landi, Pierangelo; Morgante, Michele; Porceddu, Enrico; Pè, Mario Enrico; Frascaroli, Elisabetta

2009-04-01

117

Identification of quantitative trait locus (QTL) linked to dorsal fin length from preliminary linkage map of molly fish, Poecilia sp.  

PubMed

A preliminary linkage map was constructed by applying backcross and testcross strategy using microsatellite (SSR) markers developed for Xiphophorus and Poecilia reticulata in ornamental fish, molly Poecilia sp. The linkage map having 18 SSR loci consisted of four linkage groups that spanned a map size of 516.1cM. Association between genotypes and phenotypes was tested in a random fashion and QTL for dorsal fin length was found to be linked to locus Msb069 on linkage group 2. Coincidentally, locus Msb069 was also reported as putative homologue primer pairs containing SSRs repeat motif which encoded hSMP-1, a sex determining locus. Dorsal fin length particularly in males of Poecilia latipinna is an important feature during courtship display. Therefore, we speculate that both dorsal fin length and putative hSMP-1 gene formed a close proximity to male sexual characteristics. PMID:24333858

Keong, Bun Poh; Siraj, Siti Shapor; Daud, Siti Khalijah; Panandam, Jothi Malar; Rahman, Arina Nadia Abdul

2014-02-15

118

Molecular Mapping and Validation of a Major QTL Conferring Resistance to a Defoliating Isolate of Verticillium Wilt in Cotton (Gossypium hirsutum L.).  

PubMed

Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2?3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2?3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1-27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW. PMID:24781706

Zhang, Xingju; Yuan, Yanchao; Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

2014-01-01

119

Molecular Mapping and Validation of a Major QTL Conferring Resistance to a Defoliating Isolate of Verticillium Wilt in Cotton (Gossypium hirsutum L.)  

PubMed Central

Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2?3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2?3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1–27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW.

Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

2014-01-01

120

QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines.  

PubMed

Quantitative trait loci (QTL) for metabolic and body composition traits were mapped at 7 and 9 wk, respectively, in an F(2) intercross between high-growth and low-growth chicken lines. These lines also diverged for abdominal fat percentage (AFP) and plasma insulin-like growth factor-I (IGF-I), insulin, and glucose levels. Genotypings were performed with 129 microsatellite markers covering 21 chromosomes. A total of 21 QTL with genomewide level of significance were detected by single-trait analyses for body weight (BW), breast muscle weight (BMW) and percentage (BMP), AF weight (AFW) and percentage (AFP), shank length (ShL) and diameter (ShD), fasting plasma glucose level (Gluc), and body temperature (T(b)). Other suggestive QTL were identified for these parameters and for plasma IGF-I and nonesterified fatty acid levels. QTL controlling adiposity and Gluc were colocalized on GGA3 and GGA5 and QTL for BW, ShL and ShD, adiposity, and T(b) on GGA4. Multitrait analyses revealed two QTL controlling Gluc and AFP on GGA5 and Gluc and T(b) on GGA26. Significant effects of the reciprocal cross were observed on BW, ShD, BMW, and Gluc, which may result from mtDNA and/or maternal effects. Most QTL regions for Gluc and adiposity harbor genes for which alleles have been associated with increased susceptibility to diabetes and/or obesity in humans. Identification of genes responsible for these metabolic QTL will increase our understanding of the constitutive "hyperglycemia" found in chickens. Furthermore, a comparative approach could provide new information on the genetic causes of diabetes and obesity in humans. PMID:19531576

Nadaf, Javad; Pitel, Frédérique; Gilbert, Hélène; Duclos, Michel J; Vignoles, Florence; Beaumont, Catherine; Vignal, Alain; Porter, Tom E; Cogburn, Larry A; Aggrey, Samuel E; Simon, Jean; Le Bihan-Duval, Elisabeth

2009-08-01

121

Fine-mapping natural alleles: quantitative complementation to the rescue.  

PubMed

Mapping the genes responsible for natural variation and divergence is a challenging task. Many studies have mapped genes to genomic regions or generated lists of candidates, but few studies have implicated specific genes with a high standard of evidence. I propose that combining recent advances in genomic engineering with a modified version of the quantitative complementation test will help turn candidate genes into causal genes. By creating loss-of-function mutations in natural strains, and using these mutations to quantitatively fail-to-complement natural alleles, fine mapping should be greatly facilitated. As an example, I propose that the CRISPR/Cas9 system could be combined with the FLP/FRT system to fine-map genes in the numerous systems where inversions have frustrated these efforts. PMID:24628660

Turner, Thomas L

2014-05-01

122

Fine-mapping natural alleles: quantitative complementation to the rescue  

PubMed Central

Mapping the genes responsible for natural variation and divergence is a challenging task. Many studies have mapped genes to genomic regions, or generated lists of candidates, but few studies have implicated specific genes with a high standard of evidence. I propose that combining recent advances in genomic engineering with a modified version of the quantitative complementation test will help turn candidate genes into causal genes. By creating loss-of-function mutations in natural strains, and using these mutations to quantitatively fail-to-complement natural alleles, fine mapping should be greatly facilitated. As an example, I propose that the CRISPR/Cas9 system could be combined with the FLP/FRT system to fine-map genes in the numerous systems where inversions have frustrated these efforts.

Turner, Thomas L.

2014-01-01

123

Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding  

PubMed Central

Background Polyploidy can result in genetic bottlenecks, especially for species of monophyletic origin. Cultivated peanut is an allotetraploid harbouring limited genetic diversity, likely resulting from the combined effects of its single origin and domestication. Peanut wild relatives represent an important source of novel alleles that could be used to broaden the genetic basis of the cultigen. Using an advanced backcross population developed with a synthetic amphidiploid as donor of wild alleles, under two water regimes, we conducted a detailed QTL study for several traits involved in peanut productivity and adaptation as well as domestication. Results A total of 95 QTLs were mapped in the two water treatments. About half of the QTL positive effects were associated with alleles of the wild parent and several QTLs involved in yield components were specific to the water-limited treatment. QTLs detected for the same trait mapped to non-homeologous genomic regions, suggesting differential control in subgenomes as a consequence of polyploidization. The noteworthy clustering of QTLs for traits involved in seed and pod size and in plant and pod morphology suggests, as in many crops, that a small number of loci have contributed to peanut domestication. Conclusion In our study, we have identified QTLs that differentiated cultivated peanut from its wild relatives as well as wild alleles that contributed positive variation to several traits involved in peanut productivity and adaptation. These findings offer novel opportunities for peanut improvement using wild relatives.

2012-01-01

124

QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits  

PubMed Central

Background Asparagus bean (Vigna. unguiculata. ssp sesquipedalis) is a subspecies and special vegetable type of cowpea (Vigna. unguiculata L. Walp.) important in Asia. Genetic basis of horticulturally important traits of asparagus bean is still poorly understood, hindering the utilization of targeted, DNA marker-assisted breeding in this crop. Here we report the identification of quantitative trait loci (QTLs) and epistatic interactions for four horticultural traits, namely, days to first flowering (FLD), nodes to first flower (NFF), leaf senescence (LS) and pod number per plant (PN) using a recombinant inbred line (RIL) population of asparagus bean. Results A similar genetic mode of one major QTL plus a few minor QTLs was found to dominate each of the four traits, with the number of QTLs for individual traits ranging from three to four. These QTLs were distributed on 7 of the 11 chromosomes. Major QTLs for FLD, NFF and LS were co-localized on LG 11, indicative of tight linkage. Genome wide epistasis analysis detected two and one interactive locus pairs that significantly affect FLD and LS, respectively, and the epistatic QTLs for FLD appeared to work in different ways. Synteny based comparison of QTL locations revealed conservation of chromosome regions controlling these traits in related legume crops. Conclusion Major, minor, and epistatic QTLs were found to contribute to the inheritance of the FLD, NFF, LS, and PN. Positions of many of these QTLs are conserved among closely related legume species, indicating common mechanisms they share. To our best knowledge, this is the first QTL mapping report using an asparagus bean × asparagus bean intervarietal population and provides marker-trait associations for marker-assisted approaches to selection.

2013-01-01

125

QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red.  

PubMed

Wide adoption of direct-seeded rice practices has been hindered by poorly leveled fields, heavy rainfall and poor drainage, which cause accumulation of water in the fields shortly after sowing, leading to poor crop establishment. This is due to the inability of most rice varieties to germinate and reach the water surface under complete submergence. Hence, tolerance of anaerobic conditions during germination is an essential trait for direct-seeded rice cultivation in both rainfed and irrigated ecosystems. A QTL study was conducted to unravel the genetic basis of tolerance of anaerobic conditions during germination using a population derived from a cross between IR42, a susceptible variety, and Ma-Zhan Red, a tolerant landrace from China. Phenotypic data was collected based on the survival rates of the seedlings at 21 days after sowing of dry seeds under 10 cm of water. QTL analysis of the mapping population consisting of 175 F2:3 families genotyped with 118 SSR markers identified six significant QTLs on chromosomes 2, 5, 6, and 7, and in all cases the tolerant alleles were contributed by Ma-Zhan Red. The largest QTL on chromosome 7, having a LOD score of 14.5 and an R (2) of 31.7 %, was confirmed using a BC2F3 population. The QTLs detected in this study provide promising targets for further genetic characterization and for use in marker-assisted selection to rapidly develop varieties with improved tolerance to anaerobic condition during germination. Ultimately, this trait can be combined with other abiotic stress tolerance QTLs to provide resilient varieties for direct-seeded systems. PMID:23417074

Septiningsih, Endang M; Ignacio, John Carlos I; Sendon, Pamella M D; Sanchez, Darlene L; Ismail, Abdelbagi M; Mackill, David J

2013-05-01

126

QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat.  

PubMed

Bright yellow color, firmness and low cooking loss are important factors for the production of good-quality pasta products. However, the genetic factors underlying those traits are still poorly understood. To fill this gap we developed a population of 93 recombinant inbred lines (RIL) from the cross between experimental line UC1113 (intermediate pasta quality) with the cultivar Kofa (excellent pasta quality). A total of 269 markers, including 23 SNP markers, were arranged on 14 linkage groups covering a total length of 2,140 cM. Samples from each RIL from five different environments were used for complete pasta quality testing and the results from each year were used for QTL analyses. The combined effect of different loci, environment and their interactions were analyzed using factorial ANOVAs for each trait. We identified major QTLs for pasta color on chromosomes 1B, 4B, 6A, 7A and 7B. The 4B QTL was linked to a polymorphic deletion in the Lpx-B1.1 lipoxygenase locus, suggesting that it was associated with pigment degradation during pasta processing. The 7B QTL for pasta color was linked to the Phytoene synthase 1 (Psy-B1) locus suggesting difference in pigment biosynthesis. QTLs affecting pasta firmness and cooking loss were detected on chromosomes 5A and 7B, and in both cases they were overlapping with QTL for grain protein content and wet gluten content. These last two parameters were highly correlated with pasta firmness (R > 0.71) and inversely correlated to cooking loss (R < -0.37). The location and effect of other QTLs affecting grain size and weight, gluten strength, mixing properties, and ash content are also discussed. PMID:18781292

Zhang, W; Chao, S; Manthey, F; Chicaiza, O; Brevis, J C; Echenique, V; Dubcovsky, J

2008-11-01

127

Plasticity of primary and secondary growth dynamics in Eucalyptus hybrids: a quantitative genetics and QTL mapping perspective  

PubMed Central

Background The genetic basis of growth traits has been widely studied in forest trees. Quantitative trait locus (QTL) studies have highlighted the presence of both stable and unstable genomic regions accounting for biomass production with respect to tree age and genetic background, but results remain scarce regarding the interplay between QTLs and the environment. In this study, our main objective was to dissect the genetic architecture of the growth trajectory with emphasis on genotype x environment interaction by measuring primary and secondary growth covering intervals connected with environmental variations. Results Three different trials with the same family of Eucalyptus urophylla x E. grandis hybrids (with different genotypes) were planted in the Republic of Congo, corresponding to two QTL mapping experiments and one clonal test. Height and radial growths were monitored at regular intervals from the seedling stage to five years old. The correlation between growth increments and an aridity index revealed that growth before two years old (r?=?0.5; 0.69) was more responsive to changes in water availability than late growth (r?=?0.39; 0.42) for both height and circumference. We found a regular increase in heritability with time for cumulative growth for both height [0.06 - 0.33] and circumference [0.06 - 0.38]. Heritabilities for incremental growth were more heterogeneous over time even if ranges of variation were similar (height [0-0.31]; circumference [0.19 to 0.48]). Within the trials, QTL analysis revealed collocations between primary and secondary growth QTLs as well as between early growth increments and final growth QTLs. Between trials, few common QTLs were detected highlighting a strong environmental effect on the genetic architecture of growth, validated by significant QTL x E interactions. Conclusion These results suggest that early growth responses to water availability determine the genetic architecture of total growth at the mature stage and highlight the importance of considering growth as a composite trait (such as yields for annual plants) for a better understanding of its genetic bases.

2013-01-01

128

Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping.  

PubMed

Fire blight, incited by the enterobacterium Erwinia amylovora, is a destructive disease of Rosaceae, particularly of apples and pears. There are reports on the molecular mechanisms underlying E. amylovora pathogenesis and how the host activates its resistance mechanism. The host's resistance mechanism is quantitatively controlled, although some major genes might also be involved. Thus far, quantitative trait loci (QTL) mapping and differential expression studies have been used to elucidate those genes and/or genomic regions underlying quantitative resistance present in the apple genome. In this study, an effort is undertaken to dissect the genetic basis of fire blight resistance in apple using both QTL and genome-wide association mapping. On the basis of an F1 pedigree of 'Coop 16'?×?'Coop 17' and a genome-wide association study (GWAS) mapping population of Malus accessions (species, old and new cultivars and selections), new QTLs and associations have been identified. A total of three QTLs for resistance to fire blight, with above 95% significant logarithm of odds threshold value of 2.5, have been identified on linkage groups (LGs) 02, 06, and 15 of the apple genome with phenotypic variation explained values of 14.7, 20.1 and 17.4, respectively. Although elevated P-values with signals for marker-trait associations are observed for some LGs, these are not found to be significant. However, a total of 34 significant associations, with P-values ?0.02, have been detected including 8 for lesion length at 7?days following inoculation (PL1), 14 for lesion length at 14?days following inoculation (PL2), and 12 for shoot length. PMID:23627651

Khan, M Awais; Zhao, Youfu Frank; Korban, Schuyler S

2013-07-01

129

Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism.  

PubMed

Advancements in genotyping are rapidly decreasing marker costs and increasing marker density. This opens new possibilities for mapping quantitative trait loci (QTL), in particular by combining linkage disequilibrium information and linkage analysis (LDLA). In this study, we compared different approaches to detect QTL for four traits of agronomical importance in two large multi-parental datasets of maize (Zea mays L.) of 895 and 928 testcross progenies composed of 7 and 21 biparental families, respectively, and genotyped with 491 markers. We compared to traditional linkage-based methods two LDLA models relying on the dense genotyping of parental lines with 17,728 SNP: one based on a clustering approach of parental line segments into ancestral alleles and one based on single marker information. The two LDLA models generally identified more QTL (60 and 52 QTL in total) than classical linkage models (49 and 44 QTL in total). However, they performed inconsistently over datasets and traits suggesting that a compromise must be found between the reduction of allele number for increasing statistical power and the adequacy of the model to potentially complex allelic variation. For some QTL, the model exclusively based on linkage analysis, which assumed that each parental line carried a different QTL allele, was able to capture remaining variation not explained by LDLA models. These complementarities between models clearly suggest that the different QTL mapping approaches must be considered to capture the different levels of allelic variation at QTL involved in complex traits. PMID:23975245

Bardol, N; Ventelon, M; Mangin, B; Jasson, S; Loywick, V; Couton, F; Derue, C; Blanchard, P; Charcosset, A; Moreau, Laurence

2013-11-01

130

A Molecular Genetic Linkage Map of Eucommia ulmoides and Quantitative Trait Loci (QTL) Analysis for Growth Traits  

PubMed Central

Eucommia ulmoides is an economically important tree species for both herbal medicine and organic chemical industry. Effort to breed varieties with improved yield and quality is limited by the lack of knowledge on the genetic basis of the traits. A genetic linkage map of E. ulmoides was constructed from a full-sib family using sequence-related amplified polymorphism, amplified fragment length polymorphism, inter-simple sequence repeat and simple sequence repeat markers. In total, 706 markers were mapped in 25 linkage groups covering 2133 cM. The genetic linkage map covered approximately 89% of the estimated E. ulmoides genome with an average of 3.1 cM between adjacent markers. The present genetic linkage map was used to identify quantitative trait loci (QTL) affecting growth-related traits. Eighteen QTLs were found to explain 12.4%–33.3% of the phenotypic variance. This genetic linkage map provides a tool for marker-assisted selection and for studies of genome in E. ulmoides.

Li, Yu; Wang, Dawei; Li, Zhouqi; Wei, Junkun; Jin, Cangfu; Liu, Minhao

2014-01-01

131

Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354.  

PubMed

Meloidogyne incognita (Kofoid and White) Chitwood (Mi) is the most economically damaging species of the root-knot nematode to soybean and other crops in the southern USA. PI 96354 was identified to carry a high level of resistance to galling and Mi egg production. Two Quantitative Trait Locus (QTLs) were found to condition the resistance in PI 96354 including a major QTL and a minor QTL on chromosome 10 and chromosome 18, respectively. To fine map the major QTL on chromosome 10, F5:6 recombinant inbred lines from the cross between PI 96354 and susceptible genotype Bossier were genotyped with Simple Sequence Repeats (SSR) markers to identify recombinational events. Analysis of lines carrying key recombination events placed the Mi-resistant allele on chromosome 10 to a 235-kb region of the 'Williams 82' genome sequence with 30 annotated genes. Candidate gene analysis identified four genes with cell wall modification function that have several mutations in promoter, exon, 5', and 3'UTR regions. qPCR analysis showed significant difference in expression levels of these four genes in Bossier compared to PI 96354 in the presence of Mi. Thirty Mi-resistant soybean lines were found to have same SNPs in these 4 candidate genes as PI 96354 while 12 Mi-susceptible lines possess the 'Bossier' genotype. The mutant SNPs were used to develop KASP assays to detect the resistant allele on chromosome 10. The four candidate genes identified in this study can be used in further studies to investigate the role of cell wall modification genes in conferring Mi resistance in PI 96354. PMID:23568221

Pham, Anh-Tung; McNally, Kaitlin; Abdel-Haleem, Hussein; Roger Boerma, H; Li, Zenglu

2013-07-01

132

Fine mapping of the major Soybean dwarf virus resistance gene Rsdv1 of the soybean cultivar 'Wilis'  

PubMed Central

Soybean dwarf virus (SbDV), a Luteoviridae family member, causes dwarfing, yellowing and sterility of soybean (Glycine max), leading to one of the most serious problems in soybean production in northern Japan. Previous studies revealed that the Indonesian soybean cultivar ‘Wilis’ is resistant to SbDV and that the resistance can be introduced into Japanese cultivars. A major QTL for SbDV resistance has been reported between SSR markers Sat_217 and Satt211 on chromosome 5. In this study, we named this QTL Rsdv1 (resistance to SbDV) and developed near-isogenic lines incorporating Rsdv1 (Rsdv1-NILs) using Sat_217 and Satt211 markers. The Rsdv1-NILs were resistant to SbDV in greenhouse inoculation and field tests, indicating that Rsdv1 alone is sufficient for the resistance phenotype. We fine-mapped Rsdv1 within the 44-kb region between Sat_11 and Sct_13. None of the six genes predicted in this region was closely related to known virus resistance genes in plants. Thus, Rsdv1 may confer resistance by a previously unknown mechanism. We suggest that Rsdv1 may be a useful source for the Japanese soybean breeding program to introduce SbDV resistance.

Yamashita, Yoko; Takeuchi, Toru; Ohnishi, Shizen; Sasaki, Jun; Tazawa, Akiko

2013-01-01

133

Fine mapping of the major Soybean dwarf virus resistance gene Rsdv1 of the soybean cultivar 'Wilis'.  

PubMed

Soybean dwarf virus (SbDV), a Luteoviridae family member, causes dwarfing, yellowing and sterility of soybean (Glycine max), leading to one of the most serious problems in soybean production in northern Japan. Previous studies revealed that the Indonesian soybean cultivar 'Wilis' is resistant to SbDV and that the resistance can be introduced into Japanese cultivars. A major QTL for SbDV resistance has been reported between SSR markers Sat_217 and Satt211 on chromosome 5. In this study, we named this QTL Rsdv1 (resistance to SbDV) and developed near-isogenic lines incorporating Rsdv1 (Rsdv1-NILs) using Sat_217 and Satt211 markers. The Rsdv1-NILs were resistant to SbDV in greenhouse inoculation and field tests, indicating that Rsdv1 alone is sufficient for the resistance phenotype. We fine-mapped Rsdv1 within the 44-kb region between Sat_11 and Sct_13. None of the six genes predicted in this region was closely related to known virus resistance genes in plants. Thus, Rsdv1 may confer resistance by a previously unknown mechanism. We suggest that Rsdv1 may be a useful source for the Japanese soybean breeding program to introduce SbDV resistance. PMID:24399914

Yamashita, Yoko; Takeuchi, Toru; Ohnishi, Shizen; Sasaki, Jun; Tazawa, Akiko

2013-12-01

134

Mapping QTLs and QTL x environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods.  

PubMed

The study of QTL x environment interaction (QEI) is important for understanding genotype x environment interaction (GEI) in many quantitative traits. For modeling GEI and QEI, factorial regression (FR) models form a powerful class of models. In FR models, covariables (contrasts) defined on the levels of the genotypic and/or environmental factor(s) are used to describe main effects and interactions. In FR models for QTL expression, considerable numbers of genotypic covariables can occur as for each putative QTL an additional covariable needs to be introduced. For large numbers of genotypic and/or environmental covariables, least square estimation breaks down and partial least squares (PLS) estimation procedures become an attractive alternative. In this paper we develop methodology for analyzing QEI by FR for estimating effects and locations of QTLs and QEI and interpreting QEI in terms of environmental variables. A randomization test for the main effects of QTLs and QEI is presented. A population of F2 derived F3 families was evaluated in eight environments differing in drought stress and soil nitrogen content and the traits yield and anthesis silking interval (ASI) were measured. For grain yield, chromosomes 1 and 10 showed significant QEI, whereas in chromosomes 3 and 8 only main effect QTLs were observed. For ASI, QTL main effects were observed on chromosomes 1, 2, 6, 8, and 10, whereas QEI was observed only on chromosome 8. The assessment of the QEI at chromosome 1 for grain yield showed that the QTL main effect explained 35.8% of the QTL + QEI variability, while QEI explained 64.2%. Minimum temperature during flowering time explained 77.6% of the QEI. The QEI analysis at chromosome 10 showed that the QTL main effect explained 59.8% of the QTL + QEI variability, while QEI explained 40.2%. Maximum temperature during flowering time explained 23.8% of the QEI. Results of this study show the possibilities of using FR for mapping QTL and for dissecting QEI in terms of environmental variables. PLS regression is efficient in accounting for background noise produced by other QTLs. PMID:16538513

Vargas, Mateo; van Eeuwijk, Fred A; Crossa, Jose; Ribaut, Jean-Marcel

2006-04-01

135

Fine mapping of complex trait genes combining pedigree and linkage disequilibrium information: a Bayesian unified framework.  

PubMed Central

We present a Bayesian method that combines linkage and linkage disequilibrium (LDL) information for quantitative trait locus (QTL) mapping. This method uses jointly all marker information (haplotypes) and all available pedigree information; i.e., it is not restricted to any specific experimental design and it is not required that phases are known. Infinitesimal genetic effects or environmental noise ("fixed") effects can equally be fitted. A diallelic QTL is assumed and both additive and dominant effects can be estimated. We have implemented a combined Gibbs/Metropolis-Hastings sampling to obtain the marginal posterior distributions of the parameters of interest. We have also implemented a Bayesian variant of usual disequilibrium measures like D' and r(2) between QTL and markers. We illustrate the method with simulated data in "simple" (two-generation full-sib families) and "complex" (four-generation) pedigrees. We compared the estimates with and without using linkage disequilibrium information. In general, using LDL resulted in estimates of QTL position that were much better than linkage-only estimates when there was complete disequilibrium between the mutant QTL allele and the marker. This advantage, however, decreased when the association was only partial. In all cases, additive and dominant effects were estimated accurately either with or without disequilibrium information.

Perez-Enciso, Miguel

2003-01-01

136

QTL Mapping in Eggplant Reveals Clusters of Yield-Related Loci and Orthology with the Tomato Genome  

PubMed Central

In spite of its widespread cultivation and nutritional and economic importance, the eggplant (Solanum melongena L.) genome has not been extensively explored. A lack of knowledge of the patterns of inheritance of key agronomic traits has hindered the exploitation of marker technologies to accelerate its genetic improvement. An already established F2 intraspecific population of eggplant bred from the cross ‘305E40’ x ‘67/3’ was phenotyped for 20 agronomically relevant traits at two sites. Up to seven quantitative trait loci (QTL) per trait were identified and the percentage of the phenotypic variance (PV) explained per QTL ranged from 4 to 93%. Not all the QTL were detectable at both sites, but for each trait at least one major QTL (PV explained ?10%) was identified. Although no detectable QTL x environment interaction was found, some QTL identified were location-specific. Many of the fruit-related QTL clustered within specific chromosomal regions, reflecting either linkage and/or pleiotropy. Evidence for putative tomato orthologous QTL/genes was obtained for several of the eggplant QTL. Information regarding the inheritance of key agronomic traits was obtained. Some of the QTL, along with their respective linked markers, may be useful in the context of marker-assisted breeding.

Portis, Ezio; Barchi, Lorenzo; Toppino, Laura; Lanteri, Sergio; Acciarri, Nazzareno; Felicioni, Nazzareno; Fusari, Fabio; Barbierato, Valeria; Cericola, Fabio; Vale, Giampiero; Rotino, Giuseppe Leonardo

2014-01-01

137

QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome.  

PubMed

In spite of its widespread cultivation and nutritional and economic importance, the eggplant (Solanum melongena L.) genome has not been extensively explored. A lack of knowledge of the patterns of inheritance of key agronomic traits has hindered the exploitation of marker technologies to accelerate its genetic improvement. An already established F2 intraspecific population of eggplant bred from the cross '305E40' x '67/3' was phenotyped for 20 agronomically relevant traits at two sites. Up to seven quantitative trait loci (QTL) per trait were identified and the percentage of the phenotypic variance (PV) explained per QTL ranged from 4 to 93%. Not all the QTL were detectable at both sites, but for each trait at least one major QTL (PV explained ? 10%) was identified. Although no detectable QTL x environment interaction was found, some QTL identified were location-specific. Many of the fruit-related QTL clustered within specific chromosomal regions, reflecting either linkage and/or pleiotropy. Evidence for putative tomato orthologous QTL/genes was obtained for several of the eggplant QTL. Information regarding the inheritance of key agronomic traits was obtained. Some of the QTL, along with their respective linked markers, may be useful in the context of marker-assisted breeding. PMID:24586828

Portis, Ezio; Barchi, Lorenzo; Toppino, Laura; Lanteri, Sergio; Acciarri, Nazzareno; Felicioni, Nazzareno; Fusari, Fabio; Barbierato, Valeria; Cericola, Fabio; Valè, Giampiero; Rotino, Giuseppe Leonardo

2014-01-01

138

Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.)  

PubMed Central

Background Yellow mustard (Sinapis alba L.) is an important condiment crop for the spice trade in the world. It has lagged behind oilseed Brassica species in molecular marker development and application. Intron length polymorphism (ILP) markers are highly polymorphic, co-dominant and cost-effective. The cross-species applicability of ILP markers from Brassica species and Arabidopsis makes them possible to be used for genetic linkage mapping and further QTL analysis of agronomic traits in yellow mustard. Results A total of 250 ILP and 14 SSR markers were mapped on 12 linkage groups and designated as Sal01-12 in yellow mustard. The constructed map covered a total genetic length of 890.4 cM with an average marker interval of 3.3 cM. The QTL for erucic content co-localized with the fatty acid elongase 1 (FAE1) gene on Sal03. The self-(in)compatibility gene was assigned to Sal08. The 4-hydroxybenzyl, 3-indolylmethyl and 4-hydroxy-3-indolylmethyl glucosinolate contents were each controlled by one major QTL, all of which were located on Sal02. Two QTLs, accounting for the respective 20.4% and 19.2% of the total variation of 2-hydroxy-3-butenyl glucosinolate content, were identified and mapped to Sal02 and Sal11. Comparative synteny analysis revealed that yellow mustard was phylogenetically related to Arabidopsis thaliana and had undergone extensive chromosomal rearrangements during speciation. Conclusion The linkage map based on ILP and SSR markers was constructed and used for QTL analysis of seed quality traits in yellow mustard. The markers tightly linked with the genes for different glucosinolate components will be used for marker-assisted selection and map-based cloning. The ILP markers and linkage map provide useful molecular tools for yellow mustard breeding.

2013-01-01

139

Detection of QTL controlling metabolism, meat quality, and liver quality traits of the overfed interspecific hybrid mule duck.  

PubMed

The mule duck, an interspecific hybrid obtained by crossing common duck (Anas platyrhynchos) females with Muscovy (Cairina moschata) drakes, is widely used for fatty liver production. The purpose of the present study was to detect and map single and pleiotropic QTL that segregate in the common duck species, and influence the expression of traits in their overfed mule duck offspring. To this end, we generated a common duck backcross (BC) population by crossing Kaiya and heavy Pekin experimental lines, which differ notably in regard to the BW and overfeeding ability of their mule progeny. The BC females were mated to Muscovy drakes and, on average, 4 male mule ducks hatched per BC female (1600 in total) and were measured for growth, metabolism during growth and the overfeeding period, overfeeding ability, and the quality of their breast meat and fatty liver. The phenotypic value of BC females was estimated for each trait by assigning to each female the mean value of the phenotypes of her offspring. Estimations allowed for variance, which depended on the number of male offspring per BC and the heritability of the trait considered. The genetic map used for QTL detection consisted of 91 microsatellite markers aggregated into 16 linkage groups (LG) covering a total of 778 cM. Twenty-two QTL were found to be significant at the 1% chromosome-wide threshold level using the single-trait detection option of the QTLMap software. Most of the QTL detected were related to the quality of breast meat and fatty liver: QTL for meat pH 20 min post mortem were mapped to LG4 (at the 1% genome-wide significance level), and QTL for meat lipid content and cooking losses were mapped to LG2a. The QTL related to fatty liver weight and liver protein and lipid content were for the most part detected on LG2c and LG9. Multitrait analysis highlighted the pleiotropic effects of QTL in these chromosome regions. Apart from the strong QTL for plasma triglyceride content at the end of the overfeeding period mapped to chromosome Z using single-trait analysis, all metabolic trait QTL were detected with the multitrait approach: the QTL mapped to LG14 and LG21 affected the plasma cholesterol and triglyceride contents, whereas the QTL mapped to LG2a seemed to impact glycemia and the basal plasma corticosterone content. A greater density genetic map will be needed to further fine map the QTL. PMID:23148259

Kileh-Wais, M; Elsen, J M; Vignal, A; Feves, K; Vignoles, F; Fernandez, X; Manse, H; Davail, S; André, J M; Bastianelli, D; Bonnal, L; Filangi, O; Baéza, E; Guéméné, D; Genêt, C; Bernadet, M D; Dubos, F; Marie-Etancelin, C

2013-02-01

140

Construction of Chromosome Segment Substitution Lines in Peanut (Arachis hypogaea L.) Using a Wild Synthetic and QTL Mapping for Plant Morphology  

PubMed Central

Chromosome segment substitution lines (CSSLs) are powerful QTL mapping populations that have been used to elucidate the molecular basis of interesting traits of wild species. Cultivated peanut is an allotetraploid with limited genetic diversity. Capturing the genetic diversity from peanut wild relatives is an important objective in many peanut breeding programs. In this study, we used a marker-assisted backcrossing strategy to produce a population of 122 CSSLs from the cross between the wild synthetic allotetraploid (A. ipaënsis×A. duranensis)4x and the cultivated Fleur11 variety. The 122 CSSLs offered a broad coverage of the peanut genome, with target wild chromosome segments averaging 39.2 cM in length. As a demonstration of the utility of these lines, four traits were evaluated in a subset of 80 CSSLs. A total of 28 lines showed significant differences from Fleur11. The line×trait significant associations were assigned to 42 QTLs: 14 for plant growth habit, 15 for height of the main stem, 12 for plant spread and one for flower color. Among the 42 QTLs, 37 were assigned to genomic regions and three QTL positions were considered putative. One important finding arising from this QTL analysis is that peanut growth habit is a complex trait that is governed by several QTLs with different effects. The CSSL population developed in this study has proved efficient for deciphering the molecular basis of trait variations and will be useful to the peanut scientific community for future QTL mapping studies.

Fonceka, Daniel; Tossim, Hodo-Abalo; Rivallan, Ronan; Vignes, Helene; Lacut, Elodie; de Bellis, Fabien; Faye, Issa; Ndoye, Ousmane; Leal-Bertioli, Soraya C. M.; Valls, Jose F. M.; Bertioli, David J.; Glaszmann, Jean-Christophe; Courtois, Brigitte; Rami, Jean-Francois

2012-01-01

141

Detection of QTL for Carcass Quality on Chromosome 6 by Exploiting Linkage and Linkage Disequilibrium in Hanwoo  

PubMed Central

The purpose of this study was to improve mapping power and resolution for the QTL influencing carcass quality in Hanwoo, which was previously detected on the bovine chromosome (BTA) 6. A sample of 427 steers were chosen, which were the progeny from 45 Korean proven sires in the Hanwoo Improvement Center, Seosan, Korea. The samples were genotyped with the set of 2,535 SNPs on BTA6 that were imbedded in the Illumina bovine 50 k chip. A linkage disequilibrium variance component mapping (LDVCM) method, which exploited both linkage between sires and their steers and population-wide linkage disequilibrium, was applied to detect QTL for four carcass quality traits. Fifteen QTL were detected at 0.1% comparison-wise level, for which five, three, five, and two QTL were associated with carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area (LMA), and marbling score (Marb), respectively. The number of QTL was greater compared with our previous results, in which twelve QTL for carcass quality were detected on the BTA6 in the same population by applying other linkage disequilibrium mapping approaches. One QTL for LMA was detected on the distal region (110,285,672 to 110,633,096 bp) with the most significant evidence for linkage (p<10?5). Another QTL that was detected on the proximal region (33,596,515 to 33,897,434 bp) was pleiotrophic, i.e. influencing CWT, BFT, and LMA. Our results suggest that the LDVCM is a good alternative method for QTL fine-mapping in detection and characterization of QTL.

Lee, J.-H.; Li, Y.; Kim, J.-J.

2012-01-01

142

Linkage relationships among multiple QTL for horticultural traits and late blight (P. infestans) resistance on chromosome 5 introgressed from wild tomato Solanum habrochaites.  

PubMed

When the allele of a wild species at a quantitative trait locus (QTL) conferring a desirable trait is introduced into cultivated species, undesirable effects on other traits may occur. These negative phenotypic effects may result from the presence of wild alleles at other closely linked loci that are transferred along with the desired QTL allele (i.e., linkage drag) and/or from pleiotropic effects of the desired allele. Previously, a QTL for resistance to Phytophthora infestans on chromosome 5 of Solanum habrochaites was mapped and introgressed into cultivated tomato (S. lycopersicum). Near-isogenic lines (NILs) were generated and used for fine-mapping of this resistance QTL, which revealed coincident or linked QTL with undesirable effects on yield, maturity, fruit size, and plant architecture traits. Subsequent higher-resolution mapping with chromosome 5 sub-NILs revealed the presence of multiple P. infestans resistance QTL within this 12.3 cM region. In our present study, these sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over the course of two years. Each previously detected single horticultural trait QTL fractionated into two or more QTL. A total of 41 QTL were detected across all traits, with ?30% exhibiting significant QTL × environment interactions. Colocation of QTL for multiple traits suggests either pleiotropy or tightly linked genes control these traits. The complex genetic architecture of horticultural and P. infestans resistance trait QTL within this S. habrochaites region of chromosome 5 presents challenges and opportunities for breeding efforts in cultivated tomato. PMID:24122052

Haggard, J Erron; Johnson, Emily B; St Clair, Dina A

2013-12-01

143

Linkage Relationships Among Multiple QTL for Horticultural Traits and Late Blight (P. infestans) Resistance on Chromosome 5 Introgressed from Wild Tomato Solanum habrochaites  

PubMed Central

When the allele of a wild species at a quantitative trait locus (QTL) conferring a desirable trait is introduced into cultivated species, undesirable effects on other traits may occur. These negative phenotypic effects may result from the presence of wild alleles at other closely linked loci that are transferred along with the desired QTL allele (i.e., linkage drag) and/or from pleiotropic effects of the desired allele. Previously, a QTL for resistance to Phytophthora infestans on chromosome 5 of Solanum habrochaites was mapped and introgressed into cultivated tomato (S. lycopersicum). Near-isogenic lines (NILs) were generated and used for fine-mapping of this resistance QTL, which revealed coincident or linked QTL with undesirable effects on yield, maturity, fruit size, and plant architecture traits. Subsequent higher-resolution mapping with chromosome 5 sub-NILs revealed the presence of multiple P. infestans resistance QTL within this 12.3 cM region. In our present study, these sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over the course of two years. Each previously detected single horticultural trait QTL fractionated into two or more QTL. A total of 41 QTL were detected across all traits, with ?30% exhibiting significant QTL × environment interactions. Colocation of QTL for multiple traits suggests either pleiotropy or tightly linked genes control these traits. The complex genetic architecture of horticultural and P. infestans resistance trait QTL within this S. habrochaites region of chromosome 5 presents challenges and opportunities for breeding efforts in cultivated tomato.

Haggard, J. Erron; Johnson, Emily B.; St. Clair, Dina A.

2013-01-01

144

QTL affecting stress response to crowding in a rainbow trout broodstock population  

PubMed Central

Background Genomic analyses have the potential to impact selective breeding programs by identifying markers that serve as proxies for traits which are expensive or difficult to measure. Also, identifying genes affecting traits of interest enhances our understanding of their underlying biochemical pathways. To this end we conducted genome scans of seven rainbow trout families from a single broodstock population to identify quantitative trait loci (QTL) having an effect on stress response to crowding as measured by plasma cortisol concentration. Our goal was to estimate the number of major genes having large effects on this trait in our broodstock population through the identification of QTL. Results A genome scan including 380 microsatellite markers representing 29 chromosomes resulted in the de novo construction of genetic maps which were in good agreement with the NCCCWA genetic map. Unique sets of QTL were detected for two traits which were defined after observing a low correlation between repeated measurements of plasma cortisol concentration in response to stress. A highly significant QTL was detected in three independent analyses on Omy16, many additional suggestive and significant QTL were also identified. With linkage-based methods of QTL analysis such as half-sib regression interval mapping and a variance component method, we determined that the significant and suggestive QTL explain about 40-43% and 13-27% of the phenotypic trait variation, respectively. Conclusions The cortisol response to crowding stress is a complex trait controlled in a sub-sample of our broodstock population by multiple QTL on at least 8 chromosomes. These QTL are largely different from others previously identified for a similar trait, documenting that population specific genetic variants independently affect cortisol response in ways that may result in different impacts on growth. Also, mapping QTL for multiple traits associated with stress response detected trait specific QTL which indicate the significance of the first plasma cortisol measurement in defining the trait. Fine mapping these QTL can lead towards the identification of genes affecting stress response and may influence approaches to selection for this economically important stress response trait.

2012-01-01

145

Fine mapping of the grain chalkiness QTL qPGWC-7 in rice ( Oryza sativa L.)  

Microsoft Academic Search

s  Chalkiness of rice grain is an important quality component of rice, as it has a profound influence on eating and milling qualities.\\u000a We has determined the inheritance of percentage of grain with chalkiness (PGWC) using a set of chromosome segment substitution\\u000a lines, made from a cross between cv. PA64s and cv. 9311. Two loci controlling PGWC, designated as qPGWC-6 and

Lijun Zhou; Liangming Chen; Ling Jiang; Wenwei Zhang; Linglong Liu; Xi Liu; Zhigang Zhao; Shijia Liu; Lujun Zhang; Jiankang Wang; Jianmin Wan

2009-01-01

146

A Consensus Microsatellite-Based Linkage Map for the Hermaphroditic Bay Scallop (Argopecten irradians) and Its Application in Size-Related QTL Analysis  

PubMed Central

Bay scallop (Argopecten irradians) is one of the most economically important aquaculture species in China. In this study, we constructed a consensus microsatellite-based genetic linkage map with a mapping panel containing two hybrid backcross-like families involving two subspecies of bay scallop, A. i. irradians and A. i. concentricus. One hundred sixty-one microsatellite and one phenotypic (shell color) markers were mapped to 16 linkage groups (LGs), which corresponds to the haploid chromosome number of bay scallop. The sex-specific map was 779.2 cM and 781.6 cM long in female and male, respectively, whereas the sex-averaged map spanned 849.3 cM. The average resolution of integrated map was 5.9 cM/locus and the estimated coverage was 81.3%. The proportion of distorted markers occurred more in the hybrid parents, suggesting that the segregation distortion was possibly resulted from heterospecific interaction between genomes of two subspecies of bay scallop. The overall female-to-male recombination rate was 1.13?1 across all linked markers in common to both parents, and considerable differences in recombination also existed among different parents in both families. Four size-related traits, including shell length (SL), shell height (SH), shell width (SW) and total weight (TW) were measured for quantitative trait loci (QTL) analysis. Three significant and six suggestive QTL were detected on five LGs. Among the three significant QTL, two (qSW-10 and qTW-10, controlling SW and TW, respectively) were mapped on the same region near marker AiAD121 on LG10 and explained 20.5% and 27.7% of the phenotypic variance, while the third (qSH-7, controlling SH) was located on LG7 and accounted for 15.8% of the phenotypic variance. Six suggestive QTL were detected on four different LGs. The linkage map and size-related QTL obtained in this study may facilitate marker-assisted selection (MAS) in bay scallop.

Li, Hongjun; Liu, Xiao; Zhang, Guofan

2012-01-01

147

QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations.  

PubMed

The majority of agronomically important crop traits are quantitative, meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci, QTLs). Mapping and isolation of QTLs is important for efficient crop breeding by marker-assisted selection (MAS) and for a better understanding of the molecular mechanisms underlying the traits. However, since it requires the development and selection of DNA markers for linkage analysis, QTL analysis has been time-consuming and labor-intensive. Here we report the rapid identification of plant QTLs by whole-genome resequencing of DNAs from two populations each composed of 20-50 individuals showing extreme opposite trait values for a given phenotype in a segregating progeny. We propose to name this approach QTL-seq as applied to plant species. We applied QTL-seq to rice recombinant inbred lines and F2 populations and successfully identified QTLs for important agronomic traits, such as partial resistance to the fungal rice blast disease and seedling vigor. Simulation study showed that QTL-seq is able to detect QTLs over wide ranges of experimental variables, and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent artificial or natural selective sweeps. PMID:23289725

Takagi, Hiroki; Abe, Akira; Yoshida, Kentaro; Kosugi, Shunichi; Natsume, Satoshi; Mitsuoka, Chikako; Uemura, Aiko; Utsushi, Hiroe; Tamiru, Muluneh; Takuno, Shohei; Innan, Hideki; Cano, Liliana M; Kamoun, Sophien; Terauchi, Ryohei

2013-04-01

148

Limitation of Number of Strains and Persistence of False Positive Loci in QTL Mapping Using Recombinant Inbred Strains.  

PubMed

While the identification of causal genes of quantitative trait loci (QTL) remains a difficult problem in the post-genome era, the number of QTL continues to accumulate, mainly identified using the recombinant inbred (RI) strains. Over the last decade, hundreds of publications have reported nearly a thousand QTL identified from RI strains. We hypothesized that the inaccuracy of most of these QTL makes it difficult to identify causal genes. Using data from RI strains derived from C57BL/6J (B6) X DBA/2J (D2), we tested the possibility of detection of reliable QTL with different numbers of strains in the same trait in five different traits. Our results indicated that studies using RI strains of less than 30 in general have a higher probability of failing to detect reliable QTL. Errors in many studies could include false positive loci, switches between QTL with small and major effects, and missing the real major loci. The similar data was obtained from a RI strain population derived from a different pair of parents and a RI strain population of rat. Thus, thousands of reported QTL from studies of RI strains may need to be double-checked for accuracy before proceeding to causal gene identification. PMID:25032693

Wang, Lishi; Jiao, Yan; Cao, Yanhong; Liu, Gaifen; Wang, Yongjun; Gu, Weikuan

2014-01-01

149

Limitation of Number of Strains and Persistence of False Positive Loci in QTL Mapping Using Recombinant Inbred Strains  

PubMed Central

While the identification of causal genes of quantitative trait loci (QTL) remains a difficult problem in the post-genome era, the number of QTL continues to accumulate, mainly identified using the recombinant inbred (RI) strains. Over the last decade, hundreds of publications have reported nearly a thousand QTL identified from RI strains. We hypothesized that the inaccuracy of most of these QTL makes it difficult to identify causal genes. Using data from RI strains derived from C57BL/6J (B6) X DBA/2J (D2), we tested the possibility of detection of reliable QTL with different numbers of strains in the same trait in five different traits. Our results indicated that studies using RI strains of less than 30 in general have a higher probability of failing to detect reliable QTL. Errors in many studies could include false positive loci, switches between QTL with small and major effects, and missing the real major loci. The similar data was obtained from a RI strain population derived from a different pair of parents and a RI strain population of rat. Thus, thousands of reported QTL from studies of RI strains may need to be double-checked for accuracy before proceeding to causal gene identification.

Wang, Lishi; Jiao, Yan; Cao, Yanhong; Liu, Gaifen; Wang, Yongjun; Gu, Weikuan

2014-01-01

150

Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits  

Microsoft Academic Search

Genetic maps are useful for detecting quantitative trait loci (QTL) associated with quantitative traits and for marker-assisted\\u000a selection (MAS) in breeding. In this research, we used the wheat × maize method to develop a doubled haploid (DH) population\\u000a derived from the synthetic hexaploid wheat (SHW) line TA4152-60 and the North Dakota hard red spring wheat line ND495. The\\u000a population consisted of 213

C.-G. Chu; S. S. Xu; T. L. Friesen; J. D. Faris

2008-01-01

151

Large-Scale East-Asian eQTL Mapping Reveals Novel Candidate Genes for LD Mapping and the Genomic Landscape of Transcriptional Effects of Sequence Variants  

PubMed Central

Profiles of sequence variants that influence gene transcription are very important for understanding mechanisms that affect phenotypic variation and disease susceptibility. Using genotypes at 1.4 million SNPs and a comprehensive transcriptional profile of 15,454 coding genes and 6,113 lincRNA genes obtained from peripheral blood cells of 298 Japanese individuals, we mapped expression quantitative trait loci (eQTLs). We identified 3,804 cis-eQTLs (within 500 kb from target genes) and 165 trans-eQTLs (>500 kb away or on different chromosomes). Cis-eQTLs were often located in transcribed or adjacent regions of genes; among these regions, 5? untranslated regions and 5? flanking regions had the largest effects. Epigenetic evidence for regulatory potential accumulated in public databases explained the magnitude of the effects of our eQTLs. Cis-eQTLs were often located near the respective target genes, if not within genes. Large effect sizes were observed with eQTLs near target genes, and effect sizes were obviously attenuated as the eQTL distance from the gene increased. Using a very stringent significance threshold, we identified 165 large-effect trans-eQTLs. We used our eQTL map to assess 8,069 disease-associated SNPs identified in 1,436 genome-wide association studies (GWAS). We identified genes that might be truly causative, but GWAS might have failed to identify for 148 out of the GWAS-identified SNPs; for example, TUFM (P?=?3.3E-48) was identified for inflammatory bowel disease (early onset); ZFP90 (P?=?4.4E-34) for ulcerative colitis; and IDUA (P?=?2.2E-11) for Parkinson's disease. We identified four genes (P<2.0E-14) that might be related to three diseases and two hematological traits; each expression is regulated by trans-eQTLs on a different chromosome than the gene.

Narahara, Maiko; Higasa, Koichiro; Nakamura, Seiji; Tabara, Yasuharu; Kawaguchi, Takahisa; Ishii, Miho; Matsubara, Kenichi; Matsuda, Fumihiko; Yamada, Ryo

2014-01-01

152

QTL mapping of growth-related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate.  

PubMed

The rubber tree (Hevea spp.), cultivated in equatorial and tropical countries, is the primary plant used in natural rubber production. Due to genetic and physiological constraints, inbred lines of this species are not available. Therefore, alternative approaches are required for the characterization of this species, such as the genetic mapping of full-sib crosses derived from outbred parents. In the present study, an integrated genetic map was obtained for a full-sib cross family with simple sequence repeats (SSRs) and expressed sequence tag (EST-SSR) markers, which can display different segregation patterns. To study the genetic architecture of the traits related to growth in two different conditions (winter and summer), quantitative trait loci (QTL) mapping was also performed using the integrated map. Traits evaluated were height and girth growth, and the statistical model was based in an extension of composite interval mapping. The obtained molecular genetic map has 284 markers distributed among 23 linkage groups with a total length of 2688.8 cM. A total of 18 QTLs for growth traits during the summer and winter seasons were detected. A comparison between the different seasons was also conducted. For height, QTLs detected during the summer season were different from the ones detected during winter season. This type of difference was also observed for girth. Integrated maps are important for genetics studies in outbred species because they represent more accurately the polymorphisms observed in the genitors. QTL mapping revealed several interesting findings, such as a dominance effect and unique segregation patterns that each QTL could exhibit, which were independent of the flanking markers. The QTLs identified in this study, especially those related to phenotypic variation associated with winter could help studies of marker-assisted selection that are particularly important when the objective of a breeding program is to obtain phenotypes that are adapted to sub-optimal regions. PMID:23620732

Souza, Livia Moura; Gazaffi, Rodrigo; Mantello, Camila Campos; Silva, Carla Cristina; Garcia, Dominique; Le Guen, Vincent; Cardoso, Saulo Emilio Almeida; Garcia, Antonio Augusto Franco; Souza, Anete Pereira

2013-01-01

153

QTL Mapping of Growth-Related Traits in a Full-Sib Family of Rubber Tree (Hevea brasiliensis) Evaluated in a Sub-Tropical Climate  

PubMed Central

The rubber tree (Hevea spp.), cultivated in equatorial and tropical countries, is the primary plant used in natural rubber production. Due to genetic and physiological constraints, inbred lines of this species are not available. Therefore, alternative approaches are required for the characterization of this species, such as the genetic mapping of full-sib crosses derived from outbred parents. In the present study, an integrated genetic map was obtained for a full-sib cross family with simple sequence repeats (SSRs) and expressed sequence tag (EST-SSR) markers, which can display different segregation patterns. To study the genetic architecture of the traits related to growth in two different conditions (winter and summer), quantitative trait loci (QTL) mapping was also performed using the integrated map. Traits evaluated were height and girth growth, and the statistical model was based in an extension of composite interval mapping. The obtained molecular genetic map has 284 markers distributed among 23 linkage groups with a total length of 2688.8 cM. A total of 18 QTLs for growth traits during the summer and winter seasons were detected. A comparison between the different seasons was also conducted. For height, QTLs detected during the summer season were different from the ones detected during winter season. This type of difference was also observed for girth. Integrated maps are important for genetics studies in outbred species because they represent more accurately the polymorphisms observed in the genitors. QTL mapping revealed several interesting findings, such as a dominance effect and unique segregation patterns that each QTL could exhibit, which were independent of the flanking markers. The QTLs identified in this study, especially those related to phenotypic variation associated with winter could help studies of marker-assisted selection that are particularly important when the objective of a breeding program is to obtain phenotypes that are adapted to sub-optimal regions.

Mantello, Camila Campos; Silva, Carla Cristina; Garcia, Dominique; Le Guen, Vincent; Cardoso, Saulo Emilio Almeida; Garcia, Antonio Augusto Franco; Souza, Anete Pereira

2013-01-01

154

Mapping and confirmation of a major left ventricular mass QTL on rat chromosome 1 by contrasting SHRSP and F344 rats.  

PubMed

An abnormal increase in left ventricular (LV) mass, i.e., LV hypertrophy (LVH), represents an important target organ damage in arterial hypertension and has been associated with poor clinical outcome. Genetic factors are contributing to variation in LV mass in addition to blood pressure and other factors such as dietary salt intake. We set out to map quantitative trait loci (QTL) for LV mass by comparing the spontaneously hypertensive stroke-prone (SHRSP) rat with LVH and normotensive Fischer rats (F344) with contrasting low LV mass. To this end we performed a genome-wide QTL mapping analysis in 232 F2 animals derived from SHRSP and F344 exposed to high-salt (4% in chow) intake for 8 wk. We mapped one major QTL for LV mass on rat chromosome 1 (RNO1) that demonstrated strong linkage (peak logarithm of odds score 8.4) to relative LV weight (RLVW) and accounted for ?19% of the variance of this phenotype in F2 rats. We therefore generated a consomic SHRSP-1(F344) strain in which RNO1 from F344 was introgressed into the SHRSP background. Consomic and SHRSP animals showed similar blood pressures during conventional intra-arterial measurements, while RLVW was already significantly lower (-17.7%, P<0.05) in SHRSP-1(F344) in response to a normal-salt diet; a similar significant reduction of LV mass was also observed in consomic rats after high-salt intake (P<0.05 vs. SHRSP). Thus, a major QTL on RNO1 was confirmed with significant impact on LV mass in the hypertensive background of SHRSP. PMID:23901062

Grabowski, Katja; Koplin, Gerold; Aliu, Bujar; Schulte, Leonard; Schulz, Angela; Kreutz, Reinhold

2013-09-16

155

Fine matrix mapping of the macular region in normal subjects.  

PubMed

Using a Humphrey field analyzer and fine matrix mapping, we measured photopic and scotopic thresholds for a blue light stimulus at 100 locations on a 9 degrees by 9 degrees matrix of 1 degree spacing centered at the fovea in 14 normal subjects. Additionally, trial lenses were used to investigate the effect of refractive error. Under photopic conditions the mean sensitivity varied by less than 1 dB over this region. Under scotopic conditions the central values were reduced in sensitivity by 15 dB compared with those at 4 degrees eccentricity. Defocus showed less than 1.2 dB loss with 1.00D of refractive error under photopic condition. The results reflect the properties of rod and cone photoreceptors and the effects of the rod mosaic near the fovea. This technique is a sensitive test of macular visual function. PMID:8745513

Wu, D; Bird, A C; Mcnaught, A; Buckland, M S; Fitzke, F W

1995-07-01

156

QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird.  

PubMed

Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a severe foliar disease of common wheat (Triticum aestivum L.) worldwide. Use of adult-plant resistance (APR) is an efficient approach to provide long-term protection of crops from the disease. The German spring wheat cultivar Naxos showed a high level of APR to stripe rust in the field. To identify the APR genes in this cultivar, a mapping population of 166 recombinant inbred lines (RILs) was developed from a cross between Naxos and Shanghai 3/Catbird (SHA3/CBRD), a moderately susceptible line developed by CIMMYT. The RILs were evaluated for maximum disease severity (MDS) in Sichuan and Gansu in the 2009-2010 and 2010-2011 cropping seasons. Composite interval mapping (CIM) identified four QTL, QYr.caas-1BL.1RS, QYr.caas-1DS, QYr.caas-5BL.3 and QYr.caas-7BL.1, conferring stable resistance to stripe rust across all environments, each explaining 1.9-27.6, 2.1-5.8, 2.5-7.8 and 3.7-9.1 % of the phenotypic variance, respectively. QYr.caas-1DS flanked by molecular markers XUgwm353-Xgdm33b was likely a new QTL for APR to stripe rust. Because the interval between flanking markers for each QTL was less than 6.5 cM, these QTL and their closely linked markers are potentially useful for improving resistance to stripe rust in wheat breeding. PMID:22798057

Ren, Yan; He, Zhonghu; Li, Jia; Lillemo, Morten; Wu, Ling; Bai, Bin; Lu, Qiongxian; Zhu, Huazhong; Zhou, Gang; Du, Jiuyuan; Lu, Qinglin; Xia, Xianchun

2012-10-01

157

QTL analysis and mapping of pre-harvest sprouting resistance in Sorghum  

Microsoft Academic Search

One of the most important agronomic problems in the production of sorghum [Sorghum bicolor (L.) Moench] in humid climates is pre-harvest sprouting (PHS). A molecular linkage map was developed using 112molecular markers\\u000a in an F2 mapping population derived from a cross between IS 9530 (high resistance to PHS) and Redland B2 (susceptible to PHS). Two\\u000a year phenotypic data was obtained.

Diego Lijavetzky; M. Carolina Martínez; Fernando Carrari; H. Esteban Hopp

2000-01-01

158

QTL architecture of reproductive fitness characters in Brassica rapa  

PubMed Central

Background Reproductive output is critical to both agronomists seeking to increase seed yield and to evolutionary biologists interested in understanding natural selection. We examine the genetic architecture of diverse reproductive fitness traits in recombinant inbred lines (RILs) developed from a crop (seed oil)?×?wild-like (rapid cycling) genotype of Brassica rapa in field and greenhouse environments. Results Several fitness traits showed strong correlations and QTL-colocalization across environments (days to bolting, fruit length and seed color). Total fruit number was uncorrelated across environments and most QTL affecting this trait were correspondingly environment-specific. Most fitness components were positively correlated, consistent with life-history theory that genotypic variation in resource acquisition masks tradeoffs. Finally, we detected evidence of transgenerational pleiotropy, that is, maternal days to bolting was negatively correlated with days to offspring germination. A QTL for this transgenerational correlation was mapped to a genomic region harboring one copy of FLOWERING LOCUS C, a genetic locus known to affect both days to flowering as well as germination phenotypes. Conclusions This study characterizes the genetic structure of important fitness/yield traits within and between generations in B. rapa. Several identified QTL are suitable candidates for fine-mapping for the improvement of yield in crop Brassicas. Specifically, brFLC1, warrants further investigation as a potential regulator of phenology between generations.

2014-01-01

159

QTL analysis for some quantitative traits in bread wheat*  

PubMed Central

Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain protein content (GPC) suggested that the major part of genetic variation for this trait is due to environmental interactions. In contrast, pre-harvest sprouting tolerance (PHST) was controlled mainly by main effect QTL (M-QTL) with very little genetic variation due to environmental interactions; a major QTL for PHST was detected on chromosome arm 3AL. For grain weight, one QTL each was detected on chromosome arms 1AS, 2BS and 7AS. QTL for 4 growth related traits taken together detected by different methods ranged from 37 to 40; nine QTL that were detected by single-locus as well as two-locus analyses were all M-QTL. Similarly, single-locus and two-locus QTL analyses for seven yield and yield contributing traits in two populations respectively allowed detection of 25 and 50 QTL by composite interval mapping (CIM), 16 and 25 QTL by multiple-trait composite interval mapping (MCIM) and 38 and 37 QTL by two-locus analyses. These studies should prove useful in QTL cloning and wheat improvement through marker aided selection.

Pushpendra, Kumar Gupta; Harindra, Singh Balyan; Pawan, Laxminarayan Kulwal; Neeraj, Kumar; Ajay, Kumar; Reyazul, Rouf Mir; Amita, Mohan; Jitendra, Kumar

2007-01-01

160

Current approaches to fine mapping of antigen-antibody interactions.  

PubMed

A number of different methods are commonly used to map the fine details of the interaction between an antigen and an antibody. Undoubtedly the method that is now most commonly used to give details at the level of individual amino acids and atoms is X-ray crystallography. The feasibility of undertaking crystallographic studies has increased over recent years through the introduction of automation, miniaturization and high throughput processes. However, this still requires a high level of sophistication and expense and cannot be used when the antigen is not amenable to crystallization. Nuclear magnetic resonance spectroscopy offers a similar level of detail to crystallography but the technical hurdles are even higher such that it is rarely used in this context. Mutagenesis of either antigen or antibody offers the potential to give information at the amino acid level but suffers from the uncertainty of not knowing whether an effect is direct or indirect due to an effect on the folding of a protein. Other methods such as hydrogen deuterium exchange coupled to mass spectrometry and the use of short peptides coupled with ELISA-based approaches tend to give mapping information over a peptide region rather than at the level of individual amino acids. It is quite common to use more than one method because of the limitations and even with a crystal structure it can be useful to use mutagenesis to tease apart the contribution of individual amino acids to binding affinity. PMID:24635566

Abbott, W Mark; Damschroder, Melissa M; Lowe, David C

2014-08-01

161

Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize - Setosphaeria turcica pathosystem  

PubMed Central

Background Studies on host-pathogen interactions in a range of pathosystems have revealed an array of mechanisms by which plants reduce the efficiency of pathogenesis. While R-gene mediated resistance confers highly effective defense responses against pathogen invasion, quantitative resistance is associated with intermediate levels of resistance that reduces disease progress. To test the hypothesis that specific loci affect distinct stages of fungal pathogenesis, a set of maize introgression lines was used for mapping and characterization of quantitative trait loci (QTL) conditioning resistance to Setosphaeria turcica, the causal agent of northern leaf blight (NLB). To better understand the nature of quantitative resistance, the identified QTL were further tested for three secondary hypotheses: (1) that disease QTL differ by host developmental stage; (2) that their performance changes across environments; and (3) that they condition broad-spectrum resistance. Results Among a set of 82 introgression lines, seven lines were confirmed as more resistant or susceptible than B73. Two NLB QTL were validated in BC4F2 segregating populations and advanced introgression lines. These loci, designated qNLB1.02 and qNLB1.06, were investigated in detail by comparing the introgression lines with B73 for a series of macroscopic and microscopic disease components targeting different stages of NLB development. Repeated greenhouse and field trials revealed that qNLB1.06Tx303 (the Tx303 allele at bin 1.06) reduces the efficiency of fungal penetration, while qNLB1.02B73 (the B73 allele at bin 1.02) enhances the accumulation of callose and phenolics surrounding infection sites, reduces hyphal growth into the vascular bundle and impairs the subsequent necrotrophic colonization in the leaves. The QTL were equally effective in both juvenile and adult plants; qNLB1.06Tx303 showed greater effectiveness in the field than in the greenhouse. In addition to NLB resistance, qNLB1.02B73 was associated with resistance to Stewart's wilt and common rust, while qNLB1.06Tx303 conferred resistance to Stewart's wilt. The non-specific resistance may be attributed to pleiotropy or linkage. Conclusions Our research has led to successful identification of two reliably-expressed QTL that can potentially be utilized to protect maize from S. turcica in different environments. This approach to identifying and dissecting quantitative resistance in plants will facilitate the application of quantitative resistance in crop protection.

2010-01-01

162

Verification of QTL for Grain Starch Content and Its Genetic Correlation with Oil Content Using Two Connected RIL Populations in High-Oil Maize  

PubMed Central

Grain oil content is negatively correlated with starch content in maize in general. In this study, 282 and 263 recombinant inbred lines (RIL) developed from two crosses between one high-oil maize inbred and two normal dent maize inbreds were evaluated for grain starch content and its correlation with oil content under four environments. Single-trait QTL for starch content in single-population and joint-population analysis, and multiple-trait QTL for both starch and oil content were detected, and compared with the result obtained in the two related F2?3 populations. Totally, 20 single-population QTL for grain starch content were detected. No QTL was simultaneously detected across all ten cases. QTL at bins 5.03 and 9.03 were all detected in both populations and in 4 and 5 cases, respectively. Only 2 of the 16 joint-population QTL had significant effects in both populations. Three single-population QTL and 8 joint-population QTL at bins 1.03, 1.04–1.05, 3.05, 8.04–8.05, 9.03, and 9.05 could be considered as fine-mapped. Common QTL across F2?3 and RIL generations were observed at bins 5.04, 8.04 and 8.05 in population 1 (Pop.1), and at bin 5.03 in population 2 (Pop.2). QTL at bins 3.02–3.03, 3.05, 8.04–8.05 and 9.03 should be focused in high-starch maize breeding. In multiple-trait QTL analysis, 17 starch-oil QTL were detected, 10 in Pop.1 and 7 in Pop.2. And 22 single-trait QTL failed to show significance in multiple-trait analysis, 13 QTL for starch content and 9 QTL for oil content. However, QTL at bins 1.03, 6.03–6.04 and 8.03–8.04 might increase grain starch content and/or grain oil content without reduction in another trait. Further research should be conducted to validate the effect of these QTL in the simultaneous improvement of grain starch and oil content in maize.

Yang, Guohu; Dong, Yongbin; Li, Yuling; Wang, Qilei; Shi, Qingling; Zhou, Qiang

2013-01-01

163

Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree  

PubMed Central

Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides) cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001) but negatively correlated with skeletonizer damage (P<0.01) in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast-growing forest tree.

DeWoody, Jennifer; Viger, Maud; Lakatos, Ferenc; Tuba, Katalin; Taylor, Gail; Smulders, Marinus J. M.

2013-01-01

164

Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree.  

PubMed

Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides) cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001) but negatively correlated with skeletonizer damage (P<0.01) in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast-growing forest tree. PMID:24260320

DeWoody, Jennifer; Viger, Maud; Lakatos, Ferenc; Tuba, Katalin; Taylor, Gail; Smulders, Marinus J M

2013-01-01

165

QTL MatchMaker: a multi-species quantitative trait loci (QTL) database and query system for annotation of genes and QTL.  

PubMed

Identifying genes that underlie quantitative trait loci (QTL) is a challenging task. Here, we present a new QTL software system, named QTL MatchMaker. The system is designed to integrate and mine QTL information across human, mouse and rat genomes and to annotate functional genomic data. It combines and organizes information from relevant public databases and publications and integrates QTL, physical, genetic and cytogenetic maps across human, mouse and rat. To make this application available to the research community we have developed a website for high-throughput mapping of expressed sequences to QTL and for selection of candidate genes in the physiological genomics context of complex traits. QTL MatchMaker is accessible at http://pmrc.med.mssm.edu:9090/QTL/jsp/qtlhome.jsp. PMID:16381937

Star, Kremena V; Song, Quingbin; Zhu, Andy; Böttinger, Erwin P

2006-01-01

166

Genetic map construction and QTL mapping of resistance to blackleg ( Leptosphaeria maculans ) disease in Australian canola ( Brassica napus L.) cultivars  

Microsoft Academic Search

Genetic map construction and identification of quantitative trait loci (QTLs) for blackleg resistance were performed for four\\u000a mapping populations derived from five different canola source cultivars. Three of the populations were generated from crosses\\u000a between single genotypes from the blackleg-resistant cultivars Caiman, Camberra and AVSapphire and the blackleg-susceptible cultivar Westar10. The fourth population was derived from a cross between genotypes

S. Kaur; N. O. I. Cogan; G. Ye; R. C. Baillie; M. L. Hand; A. E. Ling; A. K. Mcgearey; J. Kaur; C. J. Hopkins; M. Todorovic; H. Mountford; D. Edwards; J. Batley; W. Burton; P. Salisbury; N. Gororo; S. Marcroft; G. Kearney; K. F. Smith; J. W. Forster; G. C. Spangenberg

2009-01-01

167

Fine mapping of the 9q31 Hirschsprung's disease locus  

PubMed Central

Hirschsprung’s disease (HSCR) is a congenital disorder characterised by the absence of ganglia along variable lengths of the intestine. The RET gene is the major HSCR gene. Reduced penetrance of RET mutations and phenotypic variability suggest the involvement of additional modifying genes in the disease. A RET-dependent modifier locus was mapped to 9q31 in families bearing no coding sequence (CDS) RET mutations. Yet, the 9q31 causative locus is to be identified. To fine-map the 9q31 region, we genotyped 301 tag-SNPs spanning 7 Mb on 137 HSCR Dutch trios. This revealed two HSCR-associated regions that were further investigated in 173 Chinese HSCR patients and 436 controls using the genotype data obtained from a genome-wide association study recently conducted. Within one of the two identified regions SVEP1 SNPs were found associated with Dutch HSCR patients in the absence of RET mutations. This ratifies the reported linkage to the 9q31 region in HSCR families with no RET CDS mutations. However, this finding could not be replicated. In Chinese, HSCR was found associated with IKBKAP. In contrast, this association was stronger in patients carrying RET CDS mutations with p = 5.10 × 10?6 [OR = 3.32 (1.99, 5.59)] after replication. The HSCR-association found for IKBKAP in Chinese suggests population specificity and implies that RET mutation carriers may have an additional risk. Our finding is supported by the role of IKBKAP in the development of the nervous system. Electronic supplementary material The online version of this article (doi:10.1007/s00439-010-0813-8) contains supplementary material, which is available to authorized users.

Tang, C. S.; Sribudiani, Y.; Miao, X. P.; de Vries, A. R.; Burzynski, G.; So, M. T.; Leon, Y. Y.; Yip, B. H.; Osinga, J.; Hui, K. J. W. S.; Verheij, J. B. G. M.; Cherny, S. S.; Tam, P. K. H.; Sham, P. C.

2010-01-01

168

Mapping Novel Pathways in Cardiovascular Disease Using eQTL Data: The Past, Present, and Future of Gene Expression Analysis  

PubMed Central

Genome-wide association studies (GWAS) have identified genetic variants associated with numerous cardiovascular and metabolic diseases. Newly identified polymorphisms associated with myocardial infarction, dyslipidemia, hypertension, diabetes, and insulin resistance suggest novel mechanistic pathways that underlie these and other complex diseases. Working out the connections between the polymorphisms identified in GWAS and their biological mechanisms has been especially challenging given the number of non-coding variants identified thus far. In this review, we discuss the utility of expression quantitative trait locus (eQTL) databases in the study of non-coding variants with respect to cardiovascular and metabolic phenotypes. Recent successes in using eQTL data to link variants with functional candidate genes will be reviewed, and the shortcomings of this approach will be outlined. Finally, we discuss the emerging next generation of eQTL studies that take advantage of the ability to generate induced pluripotent stem cell lines from population cohorts.

Gupta, Rajat M.; Musunuru, Kiran

2013-01-01

169

Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities.  

PubMed

Fine-mapping studies on four QTLs, qDTY(2.1), qDTY(2.2), qDTY(9.1) and qDTY(12.1), for grain yield (GY) under drought were conducted using four different backcross-derived populations screened in 16 experiments from 2006 to 2010. Composite and bayesian interval mapping analyses resolved the originally identified qDTY(2.1) region of 42.3 cM into a segment of 1.6 cM, the qDTY(2.2) region of 31.0 cM into a segment of 6.7 cM, the qDTY(9.1) region of 32.1 cM into two segments of 9.4 and 2.4 cM and the qDTY(12.1) region of 10.6 cM into two segments of 3.1 and 0.4 cM. Two of the four QTLs (qDTY(9.1) and qDTY(12.1)) having effects under varying degrees of stress severity showed the presence of more than one region within the original QTL. The study found the presence of a donor allele at RM262 within qDTY(2.1) and RM24334 within qDTY(9.1) showing a negative effect on GY under drought, indicating the necessity of precise fine mapping of QTL regions before using them in marker-assisted selection (MAS). However, the presence of sub-QTLs together in close vicinity to each other provides a unique opportunity to breeders to introgress such regions together as a unit into high-yielding drought-susceptible varieties through MAS. PMID:22361948

Dixit, Shalabh; Swamy, B P Mallikarjuna; Vikram, Prashant; Ahmed, H U; Sta Cruz, M T; Amante, Modesto; Atri, Dinesh; Leung, Hei; Kumar, Arvind

2012-06-01

170

Candidate genes affecting Drosophila life span identified by integrating microarray gene expression analysis and QTL mapping.  

PubMed

The current increase in life expectancy observed in industrialized societies underscores the need to achieve a better understanding of the aging process that could help the development of effective strategies to achieve healthy aging. This will require not only identifying genes involved in the aging process, but also understanding how their effects are modulated by environmental factors, such as dietary intake and life style. Although the human genome has been sequenced, it may be impractical to study humans or other long-lived organisms to gain a mechanistic understanding about the aging process. Thus, short-lived animal models are essential to identifying the mechanisms and genes that affect the rate and quality of aging as a first step towards identifying genetic variants in humans. In this study, we investigated gene expression changes between two strains of Drosophila (Oregon and 2b) for which quantitative trait loci (QTLs) affecting life span were identified previously. We collected males and females from both strains at young and old ages, and assessed whole genome variation in transcript abundance using Affymetrix GeneChips. We observed 8217 probe sets with detectable transcripts. A total of 2371 probe sets, representing 2220 genes, exhibited significant changes in transcript abundance with age; and 839 probe sets were differentially expressed between Oregon and 2b. We focused on the 359 probe sets (representing 354 genes) that exhibited significant changes in gene expression both with age and between strains. We used these genes to integrate the analysis of microarray gene expression data, bioinformatics, and the results of genetic mapping studies reported previously, to identify 49 candidate genes and four pathways that could potentially be responsible for regulating life span and involved in the process of aging in Drosophila and humans. PMID:17196240

Lai, Chao-Qiang; Parnell, Laurence D; Lyman, Richard F; Ordovas, Jose M; Mackay, Trudy F C

2007-03-01

171

Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10.  

PubMed

Flowering time is a major adaptive trait in plants and an important selection criterion for crop species. In maize, however, little is known about its molecular basis. In this study, we report the fine mapping and characterization of a major quantitative trait locus located on maize chromosome 10, which regulates flowering time through photoperiod sensitivity. This study was performed in near-isogenic material derived from a cross between the day-neutral European flint inbred line FV286 and the tropical short-day inbred line FV331. Recombinant individuals were identified among a large segregating population and their progenies were scored for flowering time. Combined genotypic characterization led to delimit the QTL to an interval of 170 kb and highlighted an unbalanced recombination pattern. Two bacterial artificial chromosomes (BACs) covering the region were analyzed to identify putative candidate genes, and synteny with rice, sorghum, and brachypodium was investigated. A gene encoding a CCT domain protein homologous to the rice Ghd7 heading date regulator was identified, but its causative role was not demonstrated and deserves further analyses. Finally, an association study showed a strong level of linkage disequilibrium over the region and highlighted haplotypes that could provide useful information for the exploitation of genetic resources and marker-assisted selection in maize. PMID:19822732

Ducrocq, Sébastien; Giauffret, Catherine; Madur, Delphine; Combes, Valérie; Dumas, Fabrice; Jouanne, Sophie; Coubriche, Denis; Jamin, Philippe; Moreau, Laurence; Charcosset, Alain

2009-12-01

172

Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures.  

PubMed Central

Quantitative trait locus (QTL) mapping has detected two linked QTL in the 8L chromosome arm segment introgressed from Gaspé Flint (a Northern Flint open-pollinated population) into the background of N28 (a Corn Belt Dent inbred line). Homozygous recombinant lines, with a variable length of the introgressed segment, confirmed the presence of the two previously identified, linked QTL. In the N28 background, Gaspé Flint QTL alleles at both loci induce a reduction in node number, height, and days to anthesis (pollen shed). Given the determinate growth pattern of maize, the phenotypic effects indicate that the two QTL are involved in the transition of the apical meristem from vegetative to generative structures. Relative to the effects of the two QTL in the background of N28, we distinguish two general developmental factors affecting the timing of pollen shed. The primary factor is the timing of the transition of the apical meristem. The second, derivative factor is the global extent of internode elongation. Having separated the two linked QTL, we have laid the foundation for the positional cloning of the QTL with a larger effect.

Vladutu, C; McLaughlin, J; Phillips, R L

1999-01-01

173

Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth  

Microsoft Academic Search

Quantitative trait loci (QTL) controlling germination, seed vigour and longevity, and early seedling growth were identified\\u000a using a set of common wheat lines carrying known D genome introgression segments. Seed germination (capacity, timing, rate\\u000a and synchronicity) was characterized by a standard germination test, based either on the 1 mm root protrusion (germination\\u000a sensu stricto) or the development of normal seedlings. To

S. Landjeva; U. Lohwasser; A. Börner

2010-01-01

174

Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr × Holstein F2 population.  

PubMed

Now a days, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr × Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable. PMID:22215960

Silva, Fabyano Fonseca; Tunin, Karen P; Rosa, Guilherme J M; da Silva, Marcos V B; Azevedo, Ana Luisa Souza; da Silva Verneque, Rui; Machado, Marco Antonio; Packer, Irineu Umberto

2011-10-01

175

The age related markers lipofuscin and apoptosis show different genetic architecture by QTL mapping in short-lived Nothobranchius fish  

PubMed Central

Annual fish of the genus Nothobranchius show large variations in lifespan and expression of age-related phenotypes between closely related populations. We studied N. kadleci and its sister species N. furzeri GRZ strain, and found that N.kadleci is longer-lived than the N. furzeri. Lipofuscin and apoptosis measured in the liver increased with age in N. kadleci with different profiles: lipofuscin increased linearly, while apoptosis declined in the oldest animals. More lipofuscin (P < 0.001) and apoptosis (P < 0.001) was observed in N. furzeri than in N. kadleci at 16w age. Lipofuscin and apoptotic cells were then quantified in hybrids from the mating of N. furzeri to N. kadleci. F1 individuals showed heterosis for lipofuscin but additive effects for apoptosis. These two age-related phenotypes were not correlated in F2 hybrids. Quantitative trait loci analysis of 287 F2 fish using 237 markers identified two QTL accounting for 10% of lipofuscin variance (P < 0.001) with overdominance effect. Apoptotic cells revealed three significant- and two suggestive QTL explaining 19% of variance (P < 0.001), showing additive and dominance effects, and two interacting loci. Our results show that lipofuscin and apoptosis are markers of different age-dependent biological processes controlled by different genetic mechanisms.

Ng'oma, Enoch; Reichwald, Kathrin; Dorn, Alexander; Wittig, Michael; Balschun, Tobias; Franke, Andre; Platzer, Matthias; Cellerino, Allesandro

2014-01-01

176

Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes  

Microsoft Academic Search

A meta-analysis of quantitative trait loci (QTL) associated with plant digestibility and cell wall composition in maize was\\u000a carried out using results from 11 different mapping experiments. Statistical methods implemented in “MetaQTL” software were\\u000a used to build a consensus map, project QTL positions and perform meta-analysis. Fifty-nine QTL for traits associated with\\u000a digestibility and 150 QTL for traits associated with

M. Truntzler; Y. Barrière; M. C. Sawkins; D. Lespinasse; J. Betran; A. Charcosset; L. Moreau

2010-01-01

177

Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses  

PubMed Central

Background Understanding the basis for volatile organic compound (VOC) biosynthesis and regulation is of great importance for the genetic improvement of fruit flavor. Lactones constitute an essential group of fatty acid-derived VOCs conferring peach-like aroma to a number of fruits including peach, plum, pineapple and strawberry. Early studies on lactone biosynthesis suggest that several enzymatic pathways could be responsible for the diversity of lactones, but detailed information on them remained elusive. In this study, we have integrated genetic mapping and genome-wide transcriptome analysis to investigate the molecular basis of natural variation in ?-decalactone content in strawberry fruit. Results As a result, the fatty acid desaturase FaFAD1 was identified as the gene underlying the locus at LGIII-2 that controls ?-decalactone production in ripening fruit. The FaFAD1 gene is specifically expressed in ripe fruits and its expression fully correlates with the presence of ?-decalactone in all 95 individuals of the mapping population. In addition, we show that the level of expression of FaFAH1, with similarity to cytochrome p450 hydroxylases, significantly correlates with the content of ?-decalactone in the mapping population. The analysis of expression quantitative trait loci (eQTL) suggests that the product of this gene also has a regulatory role in the biosynthetic pathway of lactones. Conclusions Altogether, this study provides mechanistic information of how the production of ?-decalactone is naturally controlled in strawberry, and proposes enzymatic activities necessary for the formation of this VOC in plants.

2014-01-01

178

Fine mapping of a resistance gene to bacterial leaf pustule in soybean  

Microsoft Academic Search

Soybean bacterial leaf pustule (BLP) is a prevalent disease caused by Xanthomonas axonopodis pv. glycines. Fine mapping of the BLP resistant gene, rxp, is needed to select BLP resistant soybean cultivars by marker-assisted selection (MAS). We used a total of 227 recombinant\\u000a inbred lines (RILs) derived from a cross between ‘Taekwangkong’ (BLP susceptible) and ‘Danbaekkong’ (BLP resistant) for rxp fine

Dong Hyun Kim; Kil Hyun Kim; Kyujung Van; Moon Young Kim; Suk-Ha Lee

2010-01-01

179

Concordance analysis for QTL detection in dairy cattle: a case study of leg morphology  

PubMed Central

Background The present availability of sequence data gives new opportunities to narrow down from QTL (quantitative trait locus) regions to causative mutations. Our objective was to decrease the number of candidate causative mutations in a QTL region. For this, a concordance analysis was applied for a leg conformation trait in dairy cattle. Several QTL were detected for which the QTL status (homozygous or heterozygous for the QTL) was inferred for each individual. Subsequently, the inferred QTL status was used in a concordance analysis to reduce the number of candidate mutations. Methods Twenty QTL for rear leg set side view were mapped using Bayes C. Marker effects estimated during QTL mapping were used to infer the QTL status for each individual. Subsequently, polymorphisms present in the QTL regions were extracted from the whole-genome sequences of 71 Holstein bulls. Only polymorphisms for which the status was concordant with the QTL status were kept as candidate causative mutations. Results QTL status could be inferred for 15 of the 20 QTL. The number of concordant polymorphisms differed between QTL and depended on the number of QTL statuses that could be inferred and the linkage disequilibrium in the QTL region. For some QTL, the concordance analysis was efficient and narrowed down to a limited number of candidate mutations located in one or two genes, while for other QTL a large number of genes contained concordant polymorphisms. Conclusions For regions for which the concordance analysis could be performed, we were able to reduce the number of candidate mutations. For part of the QTL, the concordant analyses narrowed QTL regions down to a limited number of genes, of which some are known for their role in limb or skeletal development in humans and mice. Mutations in these genes are good candidates for QTN (quantitative trait nucleotides) influencing rear leg set side view.

2014-01-01

180

Fine scale mapping of a genetic locus for conditioned fear  

Microsoft Academic Search

  Abstract\\u000a \\u000a Fear conditioning is one of a number of models for investigating the genetic basis of individual variation in emotion and\\u000a learning. Genetic mapping using crosses between strains of laboratory mice has identified a locus on chromosome one that appears\\u000a to influence not only variation in conditioned fear, but also in other validated tests of fear-related behaviour, (including\\u000a the open-field

Christopher J. Talbot; Richard A. Radcliffe; Jan Fullerton; Robert Hitzemann; Jeanne M. Wehner; Jonathan Flint

2003-01-01

181

Fine mapping of a replication origin of human DNA.  

PubMed Central

A highly sensitive procedure was developed for the identification of the origin of bidirectional DNA synthesis in single-copy replicons of mammalian cells. The method, which does not require cell synchronization or permeabilization, entails the absolute quantification, by a competitive PCR procedure in newly synthesized DNA samples, of the abundance of neighboring DNA fragments distributed along a given genomic region. This procedure was utilized for mapping the start site of DNA replication in a 13.7-kb region of human chromosome 19 coding for lamin B2, which is replicated immediately after the onset of S phase in HL-60 cells. Within this region, DNA replication initiates in a 474-bp area corresponding to the 3' noncoding end of the lamin B2 gene and the nontranscribed spacer between this gene and the 5' end of another highly transcribed one. This localization was obtained both in aphidicolin-synchronized and in exponentially growing HL-60 cells. Images

Giacca, M; Zentilin, L; Norio, P; Diviacco, S; Dimitrova, D; Contreas, G; Biamonti, G; Perini, G; Weighardt, F; Riva, S

1994-01-01

182

Identification of X-linked quantitative trait loci affecting cold tolerance in Drosophila melanogaster and fine mapping by selective sweep analysis  

PubMed Central

Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5–14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified.

SVETEC, NICOLAS; WERZNER, ANNEGRET; WILCHES, RICARDO; PAVLIDIS, PAVLOS; ALVAREZ-CASTRO, JOSE M.; BROMAN, KARL W.; METZLER, DIRK; STEPHAN, WOLFGANG

2013-01-01

183

Fine-Scale Mapping of Disease Loci via Shattered Coalescent Modeling of Genealogies  

Microsoft Academic Search

We present a Bayesian, Markov-chain Monte Carlo method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. The method explicitly models the genealogy underlying a sample of case chro- mosomes in the vicinity of a putative disease locus, in contrast with the assumption of a star-shaped tree made by many existing multipoint methods. Within this modeling framework, we can allow

A. P. Morris; J. C. Whittaker; D. J. Balding

2002-01-01

184

Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance.  

PubMed

The cultivar Ajaya (IET 8585) exhibits durable broad-spectrum resistance to bacterial blight (BB) disease of rice and is widely used as a resistance donor. The present study was carried out to decipher the genetics of BB resistance in Ajaya and map the gene(s) conferring resistance. Genetic analysis in the F2 indicated a quantitative/additive nature of resistance governed by two loci with equal effects. Linked marker analysis and allelic tests revealed that one of the resistance genes is xa5. Sequence analysis of a 244 bp region of the second exon of the gene-encoding Transcription factor IIA? (the candidate gene for xa5) confirmed the presence of xa5. Bulked-segregant analysis (BSA) revealed the putative location of the two quantitative trait loci (QTLs)/genes associated with resistance on chromosomes 5 and 8. Composite interval mapping located the first locus on Chr. 5S exactly in the genomic region spanned by xa5 and the second locus (qtl BBR 8.1) on Chr. 8L. Owing to its differential disease reaction with a set of seven hyper-virulent isolates of Xanthomonas oryzae, a map location on Chr. 8L, which was distinct from xa13 and data from allelism tests, the second resistance locus in Ajaya was determined to be novel and was designated as xaAj. A contig map spanning xaAj was constructed in silico and the genomic region was delimited to a 13.5 kb physical interval. In silico analysis of the genomic region spanning xaAj identified four putatively expressed candidate genes, one of which could be involved in imparting BB resistance in Ajaya along with xa5. PMID:22189605

Sujatha, K; Natarajkumar, P; Laha, G S; Mishra, B; Rao, K Srinivasa; Viraktamath, B C; Kirti, P B; Hari, Y; Balachandran, S M; Rajendrakumar, P; Ram, T; Hajira, S K; Madhav, M Sheshu; Neeraja, C N; Sundaram, R M

2011-12-01

185

Fine mapping and marker-assisted selection (MAS) of a low glutelin content gene in rice  

Microsoft Academic Search

Rice with low glutelin content is suitable as functional food for patients affected with diabetes and kidney failure. The fine mapping of the gene(s) responsible for low glutelin content will provide information regarding the distribution of glutelin related genes in rice genome and will generate markers for the selection of low glutelin rice varieties. Following an SDS-PAGE screen of rice

Yi Hua WANG; Shi Jia LIU; Su Lan JI; Wen Wei ZHANG; Chun Ming WANG; Ling JIANG; Jian Min WAN

2005-01-01

186

Fine Mapping of the NRG1 Hirschsprung's Disease Locus  

PubMed Central

The primary pathology of Hirschsprung's disease (HSCR, colon aganglionosis) is the absence of ganglia in variable lengths of the hindgut, resulting in functional obstruction. HSCR is attributed to a failure of migration of the enteric ganglion precursors along the developing gut. RET is a key regulator of the development of the enteric nervous system (ENS) and the major HSCR-causing gene. Yet the reduced penetrance of RET DNA HSCR-associated variants together with the phenotypic variability suggest the involvement of additional genes in the disease. Through a genome-wide association study, we uncovered a ?350 kb HSCR-associated region encompassing part of the neuregulin-1 gene (NRG1). To identify the causal NRG1 variants contributing to HSCR, we genotyped 243 SNPs variants on 343 ethnic Chinese HSCR patients and 359 controls. Genotype analysis coupled with imputation narrowed down the HSCR-associated region to 21 kb, with four of the most associated SNPs (rs10088313, rs10094655, rs4624987, and rs3884552) mapping to the NRG1 promoter. We investigated whether there was correlation between the genotype at the rs10088313 locus and the amount of NRG1 expressed in human gut tissues (40 patients and 21 controls) and found differences in expression as a function of genotype. We also found significant differences in NRG1 expression levels between diseased and control individuals bearing the same rs10088313 risk genotype. This indicates that the effects of NRG1 common variants are likely to depend on other alleles or epigenetic factors present in the patients and would account for the variability in the genetic predisposition to HSCR.

Miao, Xiao-Ping; Leung, Brian Man-Chun; Yip, Benjamin Hon-Kei; Leon, Thomas Yuk-Yu; Ngan, Elly Sau-Wai; Lui, Vincent Chi-Hang; Chen, Yan; Chan, Ivy Hau-Yee; Chung, Patrick Ho-Yu; Liu, Xue-Lai; Wu, Xuan-Zhao; Wong, Kenneth Kak-Yuen; Sham, Pak-Chung; Cherny, Stacey S.; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Merce

2011-01-01

187

Fine mapping of the NRG1 Hirschsprung's disease locus.  

PubMed

The primary pathology of Hirschsprung's disease (HSCR, colon aganglionosis) is the absence of ganglia in variable lengths of the hindgut, resulting in functional obstruction. HSCR is attributed to a failure of migration of the enteric ganglion precursors along the developing gut. RET is a key regulator of the development of the enteric nervous system (ENS) and the major HSCR-causing gene. Yet the reduced penetrance of RET DNA HSCR-associated variants together with the phenotypic variability suggest the involvement of additional genes in the disease. Through a genome-wide association study, we uncovered a ?350 kb HSCR-associated region encompassing part of the neuregulin-1 gene (NRG1). To identify the causal NRG1 variants contributing to HSCR, we genotyped 243 SNPs variants on 343 ethnic Chinese HSCR patients and 359 controls. Genotype analysis coupled with imputation narrowed down the HSCR-associated region to 21 kb, with four of the most associated SNPs (rs10088313, rs10094655, rs4624987, and rs3884552) mapping to the NRG1 promoter. We investigated whether there was correlation between the genotype at the rs10088313 locus and the amount of NRG1 expressed in human gut tissues (40 patients and 21 controls) and found differences in expression as a function of genotype. We also found significant differences in NRG1 expression levels between diseased and control individuals bearing the same rs10088313 risk genotype. This indicates that the effects of NRG1 common variants are likely to depend on other alleles or epigenetic factors present in the patients and would account for the variability in the genetic predisposition to HSCR. PMID:21283760

Tang, Clara Sze-Man; Tang, Wai-Kiu; So, Man-Ting; Miao, Xiao-Ping; Leung, Brian Man-Chun; Yip, Benjamin Hon-Kei; Leon, Thomas Yuk-Yu; Ngan, Elly Sau-Wai; Lui, Vincent Chi-Hang; Chen, Yan; Chan, Ivy Hau-Yee; Chung, Patrick Ho-Yu; Liu, Xue-Lai; Wu, Xuan-Zhao; Wong, Kenneth Kak-Yuen; Sham, Pak-Chung; Cherny, Stacey S; Tam, Paul Kwong-Hang; Garcia-Barceló, Maria-Mercè

2011-01-01

188

Fine specificity of autoantibodies to calreticulin: epitope mapping and characterization  

PubMed Central

Extracellular calreticulin (CRT) as well as anti-CRT antibodies have been reported in patients with various autoimmune disorders and CRT has been implicated in ‘epitope spreading’ to other autoantigens such as the Ro/SS-A complex. In addition, antibodies against parasite forms of the endoplasmic reticulum chaperone, CRT, have been found in patients suffering from onchocerciasis and schistosomiasis. In this study, we screened sera for anti-CRT antibodies from patients with active and inactive systemic lupus ertythematosus (SLE) and primary or secondary Sjögren's syndrome. Approximately 40% of all SLE patients were positive for anti-CRT antibodies. The antigenic regions of CRT were determined using full length CRT and fragments of CRT prepared in yeast and Escherichia coli, respectively. Synthetic 15mer peptides corresponding to the major autoantigenic region of CRT (amino acids 1–289), each one overlapping by 12 amino acids, were used to map the B cell epitopes on the CRT protein recognized by autoimmune sera. Major antigenic epitopes were found to be associated with the N-terminal half of the protein in 69% of the SLE sera from active disease patients, while the C-domain was not antigenic. Major epitopes were found to be reactive with antibodies in sera from SLE patients with both active and inactive disease, spanning different regions of the N and P-domains. Sera from both healthy and disease controls and primary Sjögren's syndrome patients were non-reactive to these sequences. Limited proteolysis of CRT with two major leucocyte serine proteases, elastase and cathepsin G, demonstrated that an N-terminal region of CRT is resistant to digestion. Interestingly, some of the epitopes with the highest reactivity belong to the fragments of the protein which bind to C1q and inhibit complement activation. Whether C1q association with CRT is a pathological or protective interaction between these two proteins is currently under investigation.

Eggleton, P; Ward, F J; Johnson, S; Khamashta, M A; Hughes, G R V; Hajela, V A; Michalak, M; Corbett, E F; Staines, N A; Reid, K B M

2000-01-01

189

Identification of informative strains and provisional QTL mapping of amphetamine (AMPH)-induced locomotion in recombinant congenic strains (RCS) of mice.  

PubMed

Amphetamine (AMPH)-induced locomotor activity is a rodent behavioral trait that reflects mesolimbic dopaminergic activity. To identify potential quantitative trait loci (QTL) associated with this behavior, we used 34 recombinant congenic strains (RCSs) of mice derived from A/J (A strains) and C57BL/6J (B strains) and measured AMPH-induced total distance traveled (AMPH-TDIST). Two strains in the A panel (A52 and A63) showed significantly elevated AMPH-TDIST compared to the parental A/J strain and behaved similarly to C57BL/6J. Simple sequence length polymorphism (SSLP) markers on chromosomes 1, 2, 3, 5, 6, 8, 9, 10 and 20 were significantly associated with AMPH-TDIST in the A strains. Within the B panel, two strains (B81 and B74) had significantly higher and two strains (B69 and B75) had significantly lower AMPH-TDIST than C57BL/6J. Markers associated with AMPH-TDIST in the B strains appeared on chromosomes 5, 17 and 20. Combining data from this approach and other genetic (mapping data in humans) and functional (cDNA expression) sources may help to identify suitable candidate genes relevant to human disorders where mesolimbic dopamine dysregulation has been postulated. PMID:16710777

Torkamanzehi, Adam; Boksa, Patricia; Ayoubi, Mouhssine; Fortier, Marie-Eve; Ng Ying Kin, N M K; Skamene, Emile; Rouleau, Guy; Joober, Ridha

2006-11-01

190

Fine mapping of complex traits in non-model species: using next generation sequencing and advanced intercross lines in Japanese quail  

PubMed Central

Background As for other non-model species, genetic analyses in quail will benefit greatly from a higher marker density, now attainable thanks to the evolution of sequencing and genotyping technologies. Our objective was to obtain the first genome wide panel of Japanese quail SNP (Single Nucleotide Polymorphism) and to use it for the fine mapping of a QTL for a fear-related behaviour, namely tonic immobility, previously localized on Coturnix japonica chromosome 1. To this aim, two reduced representations of the genome were analysed through high-throughput 454 sequencing: AFLP (Amplified Fragment Length Polymorphism) fragments as representatives of genomic DNA, and EST (Expressed Sequence Tag) as representatives of the transcriptome. Results The sequencing runs produced 399,189 and 1,106,762 sequence reads from cDNA and genomic fragments, respectively. They covered over 434 Mb of sequence in total and allowed us to detect 17,433 putative SNP. Among them, 384 were used to genotype two Advanced Intercross Lines (AIL) obtained from three quail lines differing for duration of tonic immobility. Despite the absence of genotyping for founder individuals in the analysis, the previously identified candidate region on chromosome 1 was refined and led to the identification of a candidate gene. Conclusions These data confirm the efficiency of transcript and AFLP-sequencing for SNP discovery in a non-model species, and its application to the fine mapping of a complex trait. Our results reveal a significant association of duration of tonic immobility with a genomic region comprising the DMD (dystrophin) gene. Further characterization of this candidate gene is needed to decipher its putative role in tonic immobility in Coturnix.

2012-01-01

191

QTL mapping of genetic determinants of lipoprotein metabolism in mice: Mutations of the apolipoprotein A-II gene affecting lipoprotein turnover  

SciTech Connect

Cholesterol and lipoproteins represent important risk factors for atherosclerosis. In order to better understand the genes involved in determining lipoprotein levels, quantitative trait locus (QTL) mapping was performed using a cross between NZB and SM/J mice. Significant LOD scores for loci determining total cholesterol, HDL cholesterol, LDL and VLDL cholesterol, triglycerides, free fatty acids, and apolipoprotein A-II (apoA-II) were obtained. NZB mice have a 7-10 fold higher apoA-II level SM/J. LOD scores of 19.6 (chow) and 10.3 (high fat) were obtained at the apoA-II gene locus. Comparison of apoA-II levels by apoA-II genotype reveals that {approximately}30% of the variance in apoA-II levels can be accounted for by differences within the apoA-II gene. Northern analysis of mRNA from NZB and SM/J mice fed a high fat diet failed to show any significant differences in mRNA levels. The rates of apoA-II protein synthesis relative to total protein synthesis between the two strains were similar, with a rate of 0.16% for NZB and 0.18% for SM/J. Sequencing of NZB and SM/J apoA-II cDNAs revealed a pro5 to gln5 substitution in SM/J. Therefore, differences in the apoA-II levels between NZB and SM/J may be partly due to a structural difference in apoA-II resulting in an increased rate of apoA-II clearance in SM/J. A coincident QTL for HDL at the same chromosome 1 locus suggests that a structural difference in apoA-II may be affecting the rate of HDL clearance. It is of interest to note that the pro5 to gln5 substitution leads to apoA-II amyloid deposition in the SAM mouse.

Weinreb, A.; Purcell-Huynh, D.A.; Castellani, L.W. [UCLA, Los Angeles, CA (United States)] [and others

1994-09-01

192

QTL analysis as an aid to tagging genes that control heading time in rice  

Microsoft Academic Search

Quantitative trait locus (QTL) analysis has been carried out to identify genes that control heading time in rice. One hundred and eighty-six F 2 plants derived from a cross between japonica variety Nipponbare and indica variety Kasalath were used as a primary population for QTL mapping of heading time and more than 850 markers were employed to identify QTLs. QTL

M. Yano; H. Yoshiaki; Y. Kuboki; S. Y. Lin; Y. Nagamura; N. Kurata; T. Sasaki; Y. Minobe

193

Using transcriptome profiling to characterize QTL regions on chicken chromosome 5  

Microsoft Academic Search

BACKGROUND: Although many QTL for various traits have been mapped in livestock, location confidence intervals remain wide that makes difficult the identification of causative mutations. The aim of this study was to test the contribution of microarray data to QTL detection in livestock species. Three different but complementary approaches are proposed to improve characterization of a chicken QTL region for

Guillaume Le Mignon; Colette Désert; Frédérique Pitel; Sophie Leroux; Olivier Demeure; Gregory Guernec; Behnam Abasht; Madeleine Douaire; Pascale Le Roy; Sandrine Lagarrigue

2009-01-01

194

Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L.  

PubMed

A recessive genic male sterility (RGMS) system, S45 AB, has been developed from spontaneous mutation in Brassica napus canola variety Oro, and is being used for hybrid cultivar development in China. The male sterility of S45 was controlled by two duplicated recessive genes, named as Bnms1 and Bnms2. In this study, a NIL (near-isogenic line) population from the sib-mating of S45 AB was developed and used for the fine mapping of the Bnms1 gene, in which the recessive allele was homozygous at the second locus. AFLP technology combined with BSA (bulked segregant analysis) was used. From a survey of 2,560 primer combinations (+3/+3 selective bases), seven AFLP markers linked closely to the target gene were identified, of which four were successfully converted to sequence characterized amplified region (SCAR) markers. For further analysis, a population of 1,974 individuals was used to map the Bnms1 gene. On the fine map, Bnms1 gene was flanked by two SCAR markers, SC1 and SC7, with genetic distance of 0.1 cM and 0.3 cM, respectively. SC1 was subsequently mapped on linkage group N7 using doubled-haploid mapping populations derived from the crosses Tapidor x Ningyou7 and DH 821 x DHBao 604, available at IMSORB, UK, and our laboratory, respectively. Linkage of an SSR marker, Na12A02, with the Bnms1 gene further confirmed its location on linkage group N7. Na12A02, 2.6 cM away from Bnms1, was a co-dominant marker. These molecular markers developed from this research will facilitate the marker-assisted selection of male sterile lines and the fine map lays a solid foundation for map-based cloning of the Bnms1 gene. PMID:16804725

Yi, Bin; Chen, Yuning; Lei, Shaolin; Tu, Jinxing; Fu, Tingdong

2006-08-01

195

Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods  

Microsoft Academic Search

The study of QTL × environment interaction (QEI) is important for understanding genotype × environment interaction (GEI) in\\u000a many quantitative traits. For modeling GEI and QEI, factorial regression (FR) models form a powerful class of models. In FR\\u000a models, covariables (contrasts) defined on the levels of the genotypic and\\/or environmental factor(s) are used to describe\\u000a main effects and interactions. In FR models for QTL

Mateo Vargas; Fred A. van Eeuwijk; Jose Crossa; Jean-Marcel Ribaut

2006-01-01

196

Fine-Scale Mapping of Natural Variation in Fly Fecundity Identifies Neuronal Domain of Expression and Function of an Aquaporin  

PubMed Central

To gain insight into the molecular genetic basis of standing variation in fitness related traits, we identify a novel factor that regulates the molecular and physiological basis of natural variation in female Drosophila melanogaster fecundity. Genetic variation in female fecundity in flies derived from a wild orchard population is heritable and largely independent of other measured life history traits. We map a portion of this variation to a single QTL and then use deficiency mapping to further refine this QTL to 5 candidate genes. Ubiquitous expression of RNAi against only one of these genes, an aquaporin encoded by Drip, reduces fecundity. Within our mapping population Drip mRNA level in the head, but not other tissues, is positively correlated with fecundity. We localize Drip expression to a small population of corazonin producing neurons located in the dorsolateral posterior compartments of the protocerebrum. Expression of Drip–RNAi using both the pan-neuronal ELAV-Gal4 and the Crz-Gal4 drivers reduces fecundity. Low-fecundity RILs have decreased Crz expression and increased expression of pale, the enzyme encoding the rate-limiting step in the production of dopamine, a modulator of insect life histories. Taken together these data suggest that natural variation in Drip expression in the corazonin producing neurons contributes to standing variation in fitness by altering the concentration of two neurohormones.

Bergland, Alan O.; Chae, Hyo-seok; Kim, Young-Joon; Tatar, Marc

2012-01-01

197

Fine mapping of the association with obesity at the FTO locus in African-derived populations  

PubMed Central

Genome-wide association studies have identified many common genetic variants that are associated with polygenic traits, and have typically been performed with individuals of recent European ancestry. In these populations, many common variants are tightly correlated, with the perfect or near-perfect proxies for the functional or true variant showing equivalent evidence of association, considerably limiting the resolution of fine mapping. Populations with recent African ancestry often have less extensive and/or different patterns of linkage disequilibrium (LD), and have been proposed to be useful in fine-mapping studies. Here, we strongly replicate and fine map in populations of predominantly African ancestry the association between variation at the FTO locus and body mass index (BMI) that is well established in populations of European ancestry. We genotyped single nucleotide polymorphisms that are correlated with the signal of association in individuals of European ancestry but that have varying degrees of correlation in African-derived individuals. Most of the variants, including one previously proposed as functionally important, have no significant association with BMI, but two variants, rs3751812 and rs9941349, show strong evidence of association (P = 2.58 × 10?6 and 3.61 × 10?6 in a meta-analysis of 9881 individuals). Thus, we have both strongly replicated this association in African-ancestry populations and narrowed the list of potentially causal variants to those that are correlated with rs3751812 and rs9941349 in African-derived populations. This study illustrates the potential of using populations with different LD patterns to fine map associations and helps pave the way for genetically guided functional studies at the FTO locus.

Hassanein, Mohamed T.; Lyon, Helen N.; Nguyen, Thutrang T.; Akylbekova, Ermeg L.; Waters, Kevin; Lettre, Guillaume; Tayo, Bamidele; Forrester, Terrence; Sarpong, Daniel F.; Stram, Dan O.; Butler, Johannah L.; Wilks, Rainford; Liu, Jiankang; Le Marchand, Loic; Kolonel, Laurence N.; Zhu, Xiaofeng; Henderson, Brian; Cooper, Richard; McKenzie, Colin; Taylor, Herman A.; Haiman, Christopher A.; Hirschhorn, Joel N.

2010-01-01

198

Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice ( Oryza sativa L.)  

Microsoft Academic Search

Purple rice is a type of rice with anthocyanins deposited in its grain pericarp. The rice Pb gene controlling purple pericarp character is known to be on chromosome 4, and the purple color is dominant over white color.\\u000a In this study, we fine mapped the Pb gene using two F2 segregating populations, i.e. Pei’ai 64S (white) ? Yunanheixiannuo (purple) and

Caixia Wang; Qingyao Shu

2007-01-01

199

Genetic mapping and QTL analysis of horticultural traits in cucumber ( Cucumis sativus L.) using recombinant inbred lines  

Microsoft Academic Search

A set of 171 recombinant inbred lines (RIL) were developed from a narrow cross in cucumber ( Cucumis sativus L.; 2n = 2 x = 14) using the determinate ( de), gynoecious ( F), standard-sized leaf line G421 and the indeterminate, monoecious, little-leaf ( ll) line H-19. A 131-point genetic map was constructed using these RILs and 216 F 2

G. Fazio; J. E. Staub; M. R. Stevens

2003-01-01

200

Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1)  

PubMed Central

The number of vertebrae in pigs varies and is associated with meat productivity. Wild boars, which are ancestors of domestic pigs, have 19 vertebrae. In comparison, European commercial breeds have 21–23 vertebrae, probably owing to selective breeding for enlargement of body size. We previously identified two quantitative trait loci (QTL) for the number of vertebrae on Sus scrofa chromosomes (SSC) 1 and 7. These QTL explained an increase of more than two vertebrae. Here, we performed a map-based study to define the QTL region on SSC1. By using three F2 experimental families, we performed interval mapping and recombination analyses and defined the QTL within a 1.9-cM interval. Then we analyzed the linkage disequilibrium of microsatellite markers in this interval and found that 10 adjacent markers in a 300-kb region were almost fixed in European commercial breeds. Genetic variation of the markers was observed in Asian local breeds or wild boars. This region encoded an orphan nuclear receptor, germ cell nuclear factor (NR6A1, formerly known as GCNF), which contained an amino acid substitution (Pro192Leu) coincident with the QTL. This substitution altered the binding activity of NR6A1 to its corepressors, nuclear receptor-associated protein 80 (RAP80) and nuclear receptor corepressor 1 (NCOR1). In addition, somites of mouse embryos demonstrated expression of NR6A1 protein. Together, these results suggest that NR6A1 is a strong candidate for one of the QTL that influence number of vertebrae in pigs.

Mikawa, Satoshi; Morozumi, Takeya; Shimanuki, Shin-Ichi; Hayashi, Takeshi; Uenishi, Hirohide; Domukai, Michiko; Okumura, Naohiko; Awata, Takashi

2007-01-01

201

QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments.  

PubMed

To genetically dissect drought resistance associated with japonica upland rice, we evaluated a doubled haploid (DH) population from a cross between two japonica cultivars for seven root traits under three different growing conditions (upland, lowland and upland in PVC pipe). The traits included basal root thickness (BRT), total root number (RN), maximum root length (MRL), root fresh weight (RFW), root dry weight (RDW), ratio of root fresh weight to shoot fresh weight (RFW/SFW) and ratio of root dry weight to shoot dry weight (RDW/SDW). The BRT was significantly correlated with the index of drought resistance, which was defined as the ratio of yield under the stress of the upland condition to that under the normal lowland condition. A complete genetic linkage map with 165 molecular markers covering 1,535 cM was constructed. Seven additive quantitative trait loci (QTLs) and 15 pairs of epistatic loci for BRT and RN were identified under upland and lowland conditions, and 12 additive QTLs and 17 pairs of epistatic QTLs for BRT, RN, MRL, RFW, RFW/SFW and RDW/SDW were identified under the PVC pipe condition. Four additive QTLs and one pair of epistatic QTLs controlling IDR were also found. These QTLs individually explained up to 25.6% of the phenotypic variance. QTL x environment (Q x E) interactions were detected for all root traits, and the contributions of these interactions ranged from 1.1% to 19.9%. Five co-localized QTLs controlling RFW and RDW, RFW/SFW, RDW/SDW and IDR, BRT and RN, RN, MRL and IDR were found. Four types of QTLs governing BRT and RN were classified by their detection in the upland and lowland conditions. Some common QTLs for root traits across different backgrounds were also revealed. These co-localized QTLs and common QTLs will facilitate marker-assisted selection for root traits in rice breeding programs. PMID:15765223

Li, Zichao; Mu, Ping; Li, Chunping; Zhang, Hongliang; Li, Zhikang; Gao, Yongming; Wang, Xiangkun

2005-05-01

202

Short-term selective breeding for High and Low prepulse inhibition of the acoustic startle response; pharmacological characterization and QTL mapping in the selected lines  

PubMed Central

Selective breeding offers several important advantages over using inbred strain panels in detecting genetically correlated traits to the selection phenotype. The purpose of the current study was to selectively breed for prepulse inhibition (PPI) of the acoustic startle response (ASR), to pharmacologically and behaviorally characterize the selected lines and to use the lines for quantitative trait loci (QTL) mapping. Starting with heterogeneous stock mice formed by crossing the C57BL/6J, DBA/2J, BALB/cJ and LP/J inbred strains and using a short term selective breeding strategy, animals were selected for High and Low PPI. The selection phenotype was the 80 dB prepulse tone (15 dB above the background noise). After five generations of selection, the High and Low lines differed significantly (78.1±3.1 vs. 45.2±3.9 [percent inhibition], p<0.00001). The effects of haloperidol and MK-801 on PPI were not different between the High and Low lines. However, at the highest dose tested (10 mg/kg), the High line was more sensitive than the Low line to the disruptive PPI effects of methamphetamine. The lines did not differ in terms of basal activity or methamphetamine-induced changes in locomotor activity. The High and Low lines were genotyped using a panel of 768 SNPs. Significant QTLs (LOD > 10) were detected on chromosomes 11 and 16 that appeared similar to those detected previously (Hitzemann et al. 2001; Petryshen et al. 2005). Overall, the current study illustrates that the heritability of PPI is sufficient for short term selective breeding and that the lines which are developed can be used to characterize the factors associated with the regulation of PPI.

Hitzemann, Robert; Malmanger, Barry; Belknap, John; Darakjian, Priscila; McWeeney, Shannon

2008-01-01

203

Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: Type I resistance  

Microsoft Academic Search

Fusarium head blight (FHB) is a serious disease in wheat and barley affecting both yield and quality. To identify genes for\\u000a resistance to infection, the RIL population derived from ‘Nanda2419’ × ‘Wangshuibai’ and the parents were evaluated for percentage\\u000a of infected spikes (PIS) in four different environments. Using a 2,960 cM marker framework map constructed for this population,\\u000a ten chromosome regions were detected

F. Lin; S. L. Xue; Z. Z. Zhang; C. Q. Zhang; Z. X. Kong; G. Q. Yao; D. G. Tian; H. L. Zhu; C. J. Li; Y. Cao; J. B. Wei; Q. Y. Luo; Z. Q. Ma

2006-01-01

204

QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue ( Festuca pratensis Huds.)  

Microsoft Academic Search

Quantitative trait loci (QTLs) for frost and drought tolerance, and winter survival in the field, were mapped in meadow fescue\\u000a (Festuca pratensis Huds.) and compared with corresponding traits in Triticeae and rice to study co-location with putatively orthologous QTLs and known abiotic stress tolerance genes. The genomes of grass\\u000a species are highly macrosyntenic; however, the Festuca\\/Lolium and Triticeae homoeologous chromosomes

Vibeke Alm; Carlos S. Busso; Åshild Ergon; Heidi Rudi; Arild Larsen; Michael W. Humphreys; Odd Arne Rognli

205

QTL analysis of floral traits in Louisiana iris hybrids.  

PubMed

The formation of hybrid zones between nascent species is a widespread phenomenon. The evolutionary consequences of hybridization are influenced by numerous factors, including the action of natural selection on quantitative trait variation. Here we examine how the genetic basis of floral traits of two species of Louisiana Irises affects the extent of quantitative trait variation in their hybrids. Quantitative trait locus (QTL) mapping was used to assess the size (magnitude) of phenotypic effects of individual QTL, the degree to which QTL for different floral traits are colocalized, and the occurrence of mixed QTL effects. These aspects of quantitative genetic variation would be expected to influence (1) the number of genetic steps (in terms of QTL substitutions) separating the parental species phenotypes; (2) trait correlations; and (3) the potential for transgressive segregation in hybrid populations. Results indicate that some Louisiana Iris floral trait QTL have large effects and QTL for different traits tend to colocalize. Transgressive variation was observed for six of nine traits, despite the fact that mixed QTL effects influence few traits. Overall, our QTL results imply that the genetic basis of floral morphology and color traits might facilitate the maintenance of phenotypic divergence between Iris fulva and Iris brevicaulis, although a great deal of phenotypic variation was observed among hybrids. PMID:17725637

Bouck, Amy; Wessler, Susan R; Arnold, Michael L

2007-10-01

206

Detection of growth-related QTL in turbot (Scophthalmus maximus)  

PubMed Central

Background The turbot (Scophthalmus maximus) is a highly appreciated European aquaculture species. Growth related traits constitute the main goal of the ongoing genetic breeding programs of this species. The recent construction of a consensus linkage map in this species has allowed the selection of a panel of 100 homogeneously distributed markers covering the 26 linkage groups (LG) suitable for QTL search. In this study we addressed the detection of QTL with effect on body weight, length and Fulton's condition factor. Results Eight families from two genetic breeding programs comprising 814 individuals were used to search for growth related QTL using the panel of microsatellites available for QTL screening. Two different approaches, maximum likelihood and regression interval mapping, were used in order to search for QTL. Up to eleven significant QTL were detected with both methods in at least one family: four for weight on LGs 5, 14, 15 and 16; five for length on LGs 5, 6, 12, 14 and 15; and two for Fulton's condition factor on LGs 3 and 16. In these LGs an association analysis was performed to ascertain the microsatellite marker with the highest apparent effect on the trait, in order to test the possibility of using them for marker assisted selection. Conclusions The use of regression interval mapping and maximum likelihood methods for QTL detection provided consistent results in many cases, although the high variation observed for traits mean among families made it difficult to evaluate QTL effects. Finer mapping of detected QTL, looking for tightly linked markers to the causative mutation, and comparative genomics are suggested to deepen in the analysis of QTL in turbot so they can be applied in marker assisted selection programs.

2011-01-01

207

QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers  

Microsoft Academic Search

A set of 184 recombinant inbred lines (RILs) derived from soybean vars. Kefeng No.1 × Nannong 1138-2 was used to construct a genetic linkage map. The two parents exhibit contrasting characteristics for most of the traits that were mapped. Using restricted fragment length polymorphisms (RFLPs), simple sequence repeats (SSRs) and expressed sequence tags (ESTs), we mapped 452 markers onto 21 linkage groups

W.-K. Zhang; Y.-J. Wang; G.-Z. Luo; J.-S. Zhang; C.-Y. He; X.-L. Wu; J.-Y. Gai; S.-Y. Chen

2004-01-01

208

High-resolution velocity-map-imaging photoelectron spectroscopy of the O- photodetachment fine-structure transitions  

NASA Astrophysics Data System (ADS)

A high-resolution photoelectron velocity-map-imaging study is reported for the photodetachment of the atomic oxygen anion at 532nm , where five of the six possible spin-orbit fine-structure transitions have been resolved. A resolution of ?E/E=0.38% was achieved. Within the experimental uncertainty, each of the fine-structure transitions has the same anisotropy, the averaged ?=-0.89(1) consistent with previous, fine-structure-unresolved, experimental and theoretical determinations.

Cavanagh, S. J.; Gibson, S. T.; Gale, M. N.; Dedman, C. J.; Roberts, E. H.; Lewis, B. R.

2007-11-01

209

Detection of QTL in Rainbow Trout Affecting Survival When Challenged with Flavobacterium psychrophilum.  

PubMed

Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation in survival following challenge with Flavobacterium psychrophilum (Fp), the causative agent of BCWD in rainbow trout (Oncorhynchus mykiss). A family-based selection program to improve resistance was initiated in 2005 at the USDA National Center for Cool and Cold Water Aquaculture. Select crosses were made in 2007 and 2009 to evaluate family-based disease survival using Fp injection challenges. From each putative F2/BC1 family generated in 2009, 200-260 fish were challenged in 4-7 replicates per family. Whole genome QTL scans of three F2/BC1 families were conducted with about 270 informative microsatellite loci per family spaced at an average interval size of 6 cM throughout the rainbow trout genome. Markers on chromosomes containing QTL were further evaluated in three additional F2/BC1 families. The additional F2/BC1 families were sire or dam half-sibs (HS) of the initially genome scanned families. Overall, we identified nine major QTL on seven chromosomes that were significant or highly significant with moderate to large effects of at least 13 % of the total phenotypic variance. The largest effect QTL for BCWD resistance explaining up to 40 % of the phenotypic variance was detected on chromosome OMY8 in family 2009070 and in the combined dam HS family 2009069-070. The nine major QTL identified in this study are candidates for fine mapping to identify new markers that are tightly linked to disease resistance loci for using in marker assisted selection strategies. PMID:24241385

Vallejo, Roger L; Palti, Yniv; Liu, Sixin; Evenhuis, Jason P; Gao, Guangtu; Rexroad, Caird E; Wiens, Gregory D

2014-06-01

210

Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean.  

PubMed

Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2(UC)) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning. PMID:23832048

Oblessuc, Paula Rodrigues; Cardoso Perseguini, Juliana Morini Kupper; Baroni, Renata Moro; Chiorato, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Mondego, Jorge Mauricio Costa; Vidal, Ramon Oliveira; Camargo, Luis Eduardo Aranha; Benchimol-Reis, Luciana Lasry

2013-10-01

211

Characterization and mapping of very fine particles in an engine machining and assembly facility.  

PubMed

Very fine particle number and mass concentrations were mapped in an engine machining and assembly facility in the winter and summer. A condensation particle counter (CPC) was used to measure particle number concentrations in the 0.01 microm to 1 microm range, and an optical particle counter (OPC) was used to measure particle number concentrations in 15 channels between 0.3 microm and 20 microm. The OPC measurements were used to estimate the respirable mass concentration. Very fine particle number concentrations were estimated by subtracting the OPC particle number concentrations from 0.3 microm to 1 microm from the CPC number concentrations. At specific locations during the summer visit, an electrical low pressure impactor was used to measure particle size distribution from 0.07 microm to 10 microm in 12 channels. The geometric mean ratio of respirable mass concentration estimated from the OPC to the gravimetrically measured mass concentration was 0.66 with a geometric standard deviation of 1.5. Very fine particle number concentrations in winter were substantially greater where direct-fire natural gas heaters were operated (7.5 x 10(5) particles/cm(3)) than where steam was used for heat (3 x 10(5) particles/cm(3)). During summer when heaters were off, the very fine particle number concentrations were below 10(5) particles/cm(3), regardless of location. Elevated very fine particle number concentrations were associated with machining operations with poor enclosures. Whereas respirable mass concentrations did not vary noticeably with season, they were greater in areas with poorly fitting enclosures (0.12 mg/m(3)) than in areas where state-of-the-art enclosures were used (0.03 mg/m(3)). These differences were attributed to metalworking fluid mist that escaped from poorly fitting enclosures. Particles generated from direct-fire natural gas heater operation were very small, with a number size distribution modal diameter of less than 0.023 microm. Aerosols generated by machining operations had number size distributions modes in the 0.023 microm to 0.1 microm range. However, multiple modes in the mass size distributions estimated from OPC measurements occurred in the 2-20 microm range. Although elevated, very fine particle concentrations and respirable mass concentrations were both associated with poorly enclosed machining operations; the operation of the direct-fire natural gas heaters resulted in the greatest very fine particle concentrations without elevating the respirable mass concentration. These results suggest that respirable mass concentration may not be an adequate indicator for very fine particle exposure. PMID:17454502

Heitbrink, William A; Evans, Douglas E; Peters, Thomas M; Slavin, Thomas J

2007-05-01

212

Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to whitebacked planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.)  

PubMed Central

Background The whitebacked planthopper (WBPH), Sogatella furcifera Horváth, is a serious rice pest in Asia. Ovicidal resistance is a natural rice defense mechanism against WBPH and is characterized by the formation of watery lesions (WLs) and increased egg mortality (EM) at the WBPH oviposition sites. Results This study aimed to understand the genetic and molecular basis of rice ovicidal resistance to WBPH by combining genetic and genomic analyses. First, the ovicidal trait in doubled haploid rice lines derived from a WBPH-resistant cultivar (CJ06) and a WBPH-susceptible cultivar (TN1) were phenotyped based on the necrotic symptoms of the leaf sheaths and EM. Using a constructed molecular linkage map, 19 quantitative trait loci (QTLs) associated with WLs and EM were identified on eight chromosomes. Of them, qWL6 was determined to be a major QTL for WL. Based on chromosome segment substitution lines and a residual heterozygous population, a high-resolution linkage analysis further defined the qWL6 locus to a 122-kb region on chromosome 6, which was annotated to encode 20 candidate genes. We then conducted an Affymetrix microarray analysis to determine the transcript abundance in the CJ06 and TN1 plants. Upon WBPH infestation, 432 genes in CJ06 and 257 genes in TN1 were significantly up-regulated, while 802 genes in CJ06 and 398 genes in TN1 were significantly down-regulated. This suggests that remarkable global changes in gene expression contribute to the ovicidal resistance of rice. Notably, four genes in the 122-kb region of the qWL6 locus were differentially regulated between CJ06 and TN1 in response to the WBPH infestation, suggesting they may be candidate resistance genes. Conclusions The information obtained from the fine mapping of qWL6 and the microarray analyses will facilitate the isolation of this important resistance gene and its use in breeding WBPH-resistant rice.

2014-01-01

213

Fine Mapping of qRC10-2, a Quantitative Trait Locus for Cold Tolerance of Rice Roots at Seedling and Mature Stages  

PubMed Central

Cold stress causes various injuries to rice seedlings in low-temperature and high-altitude areas and is therefore an important factor affecting rice production in such areas. In this study, root conductivity (RC) was used as an indicator to map quantitative trait loci (QTLs) of cold tolerance in Oryza rufipogon Griff., Dongxiang wild rice (DX), at its two-leaf stage. The correlation coefficients between RC and the plant survival rate (PSR) at the seedling and maturity stages were –0.85 and –0.9 (P?=?0.01), respectively, indicating that RC is a reliable index for evaluating cold tolerance of rice. A preliminary mapping group was constructed from 151 BC2F1 plants using DX as a cold-tolerant donor and the indica variety Nanjing 11 (NJ) as a recurrent parent. A total of 113 codominant simple-sequence repeat (SSR) markers were developed, with a parental polymorphism of 17.3%. Two cold-tolerant QTLs, named qRC10-1 and qRC10-2 were detected on chromosome 10 by composite interval mapping. qRC10-1 (LOD?=?3.1, RM171-RM1108) was mapped at 148.3 cM, and qRC10-2 (LOD?=?6.1, RM25570-RM304) was mapped at 163.3 cM, which accounted for 9.4% and 32.1% of phenotypic variances, respectively. To fine map the major locus qRC10-2, NJ was crossed with a BC4F2 plant (L188-3), which only carried the QTL qRC10-2, to construct a large BC5F2 fine-mapping population with 13,324 progenies. Forty-five molecular markers were designed to evenly cover qRC10-2, and 10 markers showed polymorphisms between DX and NJ. As a result, qRC10-2 was delimited to a 48.5-kb region between markers qc45 and qc48. In this region, Os10g0489500 and Os10g0490100 exhibited different expression patterns between DX and NJ. Our results provide a basis for identifying the gene(s) underlying qRC10-2, and the markers developed here may be used to improve low-temperature tolerance of rice seedling and maturity stages via marker-assisted selection (MAS). Key Message With root electrical conductivity used as a cold-tolerance index, the quantitative trait locus qRC10-2 was fine mapped to a 48.5-kb candidate region, and Os10g0489500 and Os10g0490100 were identified as differently expressed genes for qRC10-2.

Zhang, Xiao-xiang; Gao, Yong; Li, Ai-hong; Dai, Yi; Yu, Ling; Liu, Guang-qing; Pan, Cun-hong; Li, Yu-hong; Dai, Zheng-yuan; Chen, Jian-min

2014-01-01

214

Identification of Candidate Genes Associated with Beef Marbling Using QTL and Pathway Analysis in Hanwoo (Korean Cattle)  

PubMed Central

Marbling from intramuscular fat is an important trait of meat quality and has an economic benefit for the beef industry. Quantitative trait loci (QTL) fine mapping was performed to identify the marbling trait in 266 Hanwoo steers using a 10K single nucleotide polymorphism panel with the combined linkage and linkage disequilibrium method. As a result, we found nine putative QTL regions for marbling: three on BTA6, two on BTA17, two on BTA22, and two on BTA29. We detected candidate genes for marbling within 1 cM of either side of the putative QTL regions. Additionally, to understand the functions of these candidate genes at the molecular level, we conducted a functional categorization using gene ontology and pathway analyses for those genes involved in lipid metabolism or fat deposition. In these putative QTL regions, we found 95 candidate genes for marbling. Using these candidate genes, we found five genes that had a direct interaction with the candidate genes. We also found SCARB1 as a putative candidate gene for marbling that involves fat deposition related to cholesterol transport.

Park, Hyesun; Seo, Seongwon; Cho, Yong Min; Oh, Sung Jong; Seong, Hwan-Hoo; Lee, Seung Hwan; Lim, Dajeong

2012-01-01

215

Fine-resolution mapping of micro-meteorological features in regions with heterogeneous landscapes  

NASA Astrophysics Data System (ADS)

Human socioeconomic activity and wild life conservation tasks frequently require meteorological information at fine (about 100 m) spatial resolution. For instance, this information is needed for assessment of wind load, wind gustiness, air quality and urban comfort in high latitudes where the atmospheric convection is limited. Neither sparse observational network nor operational meteorological models are able to directly provide this information to end-users. Methods of geo-statistical weighted interpolation (kriging) have been already successfully applied to reconstruct fine-resolution maps in geophysics. In this study, we applied a kriging with external drive to micro-meteorological reconstructions. As kriging is a statistical interpolation method, its application requires information from a more or less uniformly distributed network of observational stations. This condition is rarely satisfied. We propose use of a turbulence-resolving large-eddy simulation model (LES) to: (i) obtain variograms for each station; (ii) correct extrapolation of the data outside the domain covered with observations. The proposed fine-resolution method with external drive from the LES is demonstrated for the surface air temperature distribution (resolution 50 m) in the central valley of Bergen.

Esau, Igor; Varentsov, Mikhail

2014-05-01

216

Conditional QTL underlying resistance to late blight in a diploid potato population.  

PubMed

A large number of quantitative trait loci (QTL) for resistance to late blight of potato have been reported with a "conventional" method in which each phenotypic trait reflects the cumulative genetic effects for the duration of the disease process. However, as genes controlling response to disease may have unique contributions with specific temporal features, it is important to consider the phenotype as dynamic. Here, using the net genetic effects evidenced at consecutive time points during disease development, we report the first conditional mapping of QTL underlying late blight resistance in potato under five environments in Peru. Six conditional QTL were mapped, one each on chromosome 2, 7 and 12 and three on chromosome 9. These QTL represent distinct contributions to the phenotypic variation at different stages of disease development. By comparison, when conventional mapping was conducted, only one QTL was detected on chromosome 9. This QTL was the same as one of the conditional QTL. The results imply that conditional QTL reflect genes that function at particular stages during the host-pathogen interaction. The dynamics revealed by conditional QTL mapping could contribute to the understanding of the molecular mechanism of late blight resistance and these QTL could be used to target genes for marker development or manipulation to improve resistance. PMID:22274766

Li, Jingcai; Lindqvist-Kreuze, Hannele; Tian, Zhendong; Liu, Jun; Song, Botao; Landeo, Juan; Portal, Leticia; Gastelo, Manuel; Frisancho, Julio; Sanchez, Laura; Meijer, Dennis; Xie, Conghua; Bonierbale, Merideth

2012-05-01

217

Transferability and Fine Mapping of genome-wide associated loci for lipids in African Americans  

PubMed Central

Background A recent, large genome-wide association study (GWAS) of European ancestry individuals has identified multiple genetic variants influencing serum lipids. Studies of the transferability of these associations to African Americans remain few, an important limitation given interethnic differences in serum lipids and the disproportionate burden of lipid-associated metabolic diseases among African Americans. Methods We attempted to evaluate the transferability of 95 lipid-associated loci recently identified in European ancestry individuals to 887 non-diabetic, unrelated African Americans from a population-based sample in the Washington, DC area. Additionally, we took advantage of the generally reduced linkage disequilibrium among African ancestry populations in comparison to European ancestry populations to fine-map replicated GWAS signals. Results We successfully replicated reported associations for 10 loci (CILP2/SF4, STARD3, LPL, CYP7A1, DOCK7/ANGPTL3, APOE, SORT1, IRS1, CETP, and UBASH3B). Through trans-ethnic fine-mapping, we were able to reduce associated regions around 75% of the loci that replicated. Conclusions Between this study and previous work in African Americans, 40 of the 95 loci reported in a large GWAS of European ancestry individuals also influence lipid levels in African Americans. While there is now evidence that the lipid-influencing role of a number of genetic variants is observed in both European and African ancestry populations, the still considerable lack of concordance highlights the importance of continued ancestry-specific studies to elucidate the genetic underpinnings of these traits.

2012-01-01

218

Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans  

PubMed Central

Genome-wide association studies (GWAS) have revealed 19 common genetic variants that are associated with breast cancer risk. Testing of the index signals found through GWAS and fine-mapping of each locus in diverse populations will be necessary for characterizing the role of these risk regions in contributing to inherited susceptibility. In this large study of breast cancer in African-American women (3016 cases and 2745 controls), we tested the 19 known risk variants identified by GWAS and replicated associations (P < 0.05) with only 4 variants. Through fine-mapping, we identified markers in four regions that better capture the association with breast cancer risk in African Americans as defined by the index signal (2q35, 5q11, 10q26 and 19p13). We also identified statistically significant associations with markers in four separate regions (8q24, 10q22, 11q13 and 16q12) that are independent of the index signals and may represent putative novel risk variants. In aggregate, the more informative markers found in the study enhance the association of these risk regions with breast cancer in African Americans [per allele odds ratio (OR) = 1.18, P = 2.8 × 10?24 versus OR = 1.04, P = 6.1 × 10?5]. In this detailed analysis of the known breast cancer risk loci, we have validated and improved upon markers of risk that better characterize their association with breast cancer in women of African ancestry.

Chen, Fang; Chen, Gary K.; Millikan, Robert C.; John, Esther M.; Ambrosone, Christine B.; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J.; Ziegler, Regina G.; Deming, Sandra L.; Bandera, Elisa V.; Nyante, Sarah; Palmer, Julie R.; Rebbeck, Timothy R.; Ingles, Sue A.; Press, Michael F.; Rodriguez-Gil, Jorge L.; Chanock, Stephen J.; Le Marchand, Loic; Kolonel, Laurence N.; Henderson, Brian E.; Stram, Daniel O.; Haiman, Christopher A.

2011-01-01

219

Comparative genetic analysis of a wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling.  

PubMed

Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping. PMID:21468744

Somyong, Suthasinee; Munkvold, Jesse D; Tanaka, James; Benscher, David; Sorrells, Mark E

2011-09-01

220

Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 × Mo17 (IBM) population of maize  

Microsoft Academic Search

The Mediterranean corn borer or pink stem borer (MCB, Sesamia nonagrioides Lefebvre) causes important yield losses as a consequence of stalk tunneling and direct kernel damage. B73 and Mo17 are the\\u000a source of the most commercial valuable maize inbred lines in temperate zones, while the intermated B73 × Mo17 (IBM) population\\u000a is an invaluable source for QTL identification. However, no or few

Bernardo Ordas; Rosa A. Malvar; Rogelio Santiago; German Sandoya; Maria C. Romay; Ana Butron

2009-01-01

221

Identification of Major and Minor QTL for Ecologically Important Morphological Traits in Three-Spined Sticklebacks (Gasterosteus aculeatus)  

PubMed Central

Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ?15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks.

Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, Jose Manuel; Li, Meng-Hua; Merila, Juha

2014-01-01

222

QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum  ×  Gossypium barbadense  

Microsoft Academic Search

A high-density molecular marker linkage map of cotton based entirely on polymerase chain reaction-based markers is useful\\u000a for a marker-assisted breeding program. Four kinds of markers—simple sequence repeats (SSRs), sequence-related amplified polymorphism\\u000a (SRAP), random amplified polymorphic DNA (RAPD), and retrotransposon-microsatellite amplified polymorphism (REMAP)—were used\\u000a to assay an F2 population from a cross between “Handan208” (Gossypium hirsutum) and “Pima90” (Gossypium barbadense).

Dao-Hua He; Zhong-Xu Lin; Xian-Long Zhang; Yi-Chun Nie; Xiao-Ping Guo; Yan-Xin Zhang; Wu Li

2007-01-01

223

Comparison of the analyses of the XVth QTLMAS common dataset II: QTL analysis  

PubMed Central

Background The QTLMAS XVth dataset consisted of the pedigrees, marker genotypes and quantitative trait performances of 2,000 phenotyped animals with a half-sib family structure. The trait was regulated by 8 QTL which display additive, imprinting or epistatic effects. This paper aims at comparing the QTL mapping results obtained by six participants of the workshop. Methods Different regression, GBLUP, LASSO and Bayesian methods were applied for QTL detection. The results of these methods are compared based on the number of correctly mapped QTL, the number of false positives, the accuracy of the QTL location and the estimation of the QTL effect. Results All the simulated QTL, except the interacting QTL on Chr5, were identified by the participants. Depending on the method, 3 to 7 out of the 8 QTL were identified. The distance to the real location and the accuracy of the QTL effect varied to a large extent depending on the methods and complexity of the simulated QTL. Conclusions While all methods were fairly efficient in detecting QTL with additive effects, it was clear that for non-additive situations, such as parent-of-origin effects or interactions, the BayesC method gave the best results by detecting 7 out of the 8 simulated QTL, with only two false positives and a good precision (less than 1 cM away on average). Indeed, if LASSO could detect QTL even in complex situations, it was associated with too many false positive results to allow for efficient GWAS. GENMIX, a method based on the phylogenies of local haplotypes, also appeared as a promising approach, which however showed a few more false positives when compared with the BayesC method.

2012-01-01

224

Vibrational fine structure of C5 via anion slow photoelectron velocity-map imaging  

NASA Astrophysics Data System (ADS)

High-resolution anion photoelectron spectra of cryogenically cooled C5- clusters are reported using slow photoelectron velocity-map imaging spectroscopy. We resolve vibronic transitions to the ?2 stretching mode and multiply excited ?5, ?6, and ?7 bending modes of neutral C5 with significantly higher accuracy than previous experiments. Weak transitions to Franck-Condon (FC) forbidden singly excited bending modes are made possible by Herzberg-Teller coupling between electronic states of the neutral cluster. In addition, we resolve vibrational fine structure corresponding to different angular momentum states of multiply excited bending modes. The observation of this multiplet structure, some of which is FC forbidden, is attributed to Renner-Teller coupling between vibrational levels in the C5- ground electronic state.

Weichman, Marissa L.; Kim, Jongjin B.; Neumark, Daniel M.

2013-10-01

225

Developing Methods for Mapping Soil Moisture in Nash Draw, NM Using RADARSAT 1 SAR Fine Imagery  

NASA Astrophysics Data System (ADS)

Nash Draw, in southeastern NM, is a karst valley that developed in response to subsurface dissolution of evaporites, including halite and sulfate rocks. The hydrologic system within Nash Draw is poorly understood. This study focuses on identifying the distribution and amount of recharge in Nash Draw to assist in understanding the existing processes modifying Nash Draw by solution. We hypothesize that 1) soil moisture contents will be higher in the areas where potential recharge occurs and 2) these areas can be identified using remote sensing. To test the second part of this hypothesis, this study has been designed to determine the spatial and temporal distribution of soil moisture in the study site using microwave data. An area of 225 sq. km in Nash Draw has been selected as the study site. Imagery was acquired from the Alaska SAR Facility (ASF) for 8 scenes of RADARDSAT 1 SAR Fine Beam imagery with different incidence angles (40° and 48°) and imaging modes (ascending and descending). We use RADARDSAT 1 SAR Fine Beam imagery acquired on August 1, 2006 and August 2, 2006 and near real-time ground truth data to develop suitable model to map the spatial distribution of soil moisture in the study site. During the image acquisitions on August 1 and 2, 80 soil samples were collected to determine the near real- time volumetric soil moisture in the study site. Soil samples were collected using a stratified sampling method, and locations of the samples were recorded using GPS. Soil water is compared, using linear regression, to radar backscatter to develop an empirical model of the relationship. The radar backscatter used in this model was acquired at different incidence angles. This study also provides an opportunity to investigate the impact of variable incidence angles on the potential of space-borne active microwave data for soil moisture mapping in semi-arid region like Nash Draw.

Hossain, A. A.; Easson, G.; Powers, D. W.; Holt, R. M.

2006-12-01

226

Discovery and fine mapping of serum protein loci through transethnic meta-analysis.  

PubMed

Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease. PMID:23022100

Franceschini, Nora; van Rooij, Frank J A; Prins, Bram P; Feitosa, Mary F; Karakas, Mahir; Eckfeldt, John H; Folsom, Aaron R; Kopp, Jeffrey; Vaez, Ahmad; Andrews, Jeanette S; Baumert, Jens; Boraska, Vesna; Broer, Linda; Hayward, Caroline; Ngwa, Julius S; Okada, Yukinori; Polasek, Ozren; Westra, Harm-Jan; Wang, Ying A; Del Greco M, Fabiola; Glazer, Nicole L; Kapur, Karen; Kema, Ido P; Lopez, Lorna M; Schillert, Arne; Smith, Albert V; Winkler, Cheryl A; Zgaga, Lina; Bandinelli, Stefania; Bergmann, Sven; Boban, Mladen; Bochud, Murielle; Chen, Y D; Davies, Gail; Dehghan, Abbas; Ding, Jingzhong; Doering, Angela; Durda, J Peter; Ferrucci, Luigi; Franco, Oscar H; Franke, Lude; Gunjaca, Grog; Hofman, Albert; Hsu, Fang-Chi; Kolcic, Ivana; Kraja, Aldi; Kubo, Michiaki; Lackner, Karl J; Launer, Lenore; Loehr, Laura R; Li, Guo; Meisinger, Christa; Nakamura, Yusuke; Schwienbacher, Christine; Starr, John M; Takahashi, Atsushi; Torlak, Vesela; Uitterlinden, André G; Vitart, Veronique; Waldenberger, Melanie; Wild, Philipp S; Kirin, Mirna; Zeller, Tanja; Zemunik, Tatijana; Zhang, Qunyuan; Ziegler, Andreas; Blankenberg, Stefan; Boerwinkle, Eric; Borecki, Ingrid B; Campbell, Harry; Deary, Ian J; Frayling, Timothy M; Gieger, Christian; Harris, Tamara B; Hicks, Andrew A; Koenig, Wolfgang; O' Donnell, Christopher J; Fox, Caroline S; Pramstaller, Peter P; Psaty, Bruce M; Reiner, Alex P; Rotter, Jerome I; Rudan, Igor; Snieder, Harold; Tanaka, Toshihiro; van Duijn, Cornelia M; Vollenweider, Peter; Waeber, Gerard; Wilson, James F; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wright, Alan F; Wu, Qingyu; Liu, Yongmei; Jenny, Nancy S; North, Kari E; Felix, Janine F; Alizadeh, Behrooz Z; Cupples, L Adrienne; Perry, John R B; Morris, Andrew P

2012-10-01

227

Multiple Interval Mapping for Quantitative Trait Loci  

Microsoft Academic Search

A new statistical method for mapping quantitative trait loci (QTL), called multiple interval mapping (MIM), is presented. It uses multiple marker intervals simultaneously to fit multiple putative QTL directly in the model for mapping QTL. The MIM model is based on Cockerham's model for interpreting genetic parameters and the method of maximum likelihood for estimating genetic parameters. With the MIM

Chen-Hung Kao; Zhao-Bang Zeng; Robert D. Teasdale

228

Empirical threshold values for quantitative trait mapping  

Microsoft Academic Search

The detection of genes that control quantitative characters is a problem of great interest to the genetic mapping community. Methods for locating these quantitative trait loci (QTL) relative to maps of genetic markers are now widely used. This paper addresses an issue common to all QTL mapping methods, that of determining an appropriate threshold value for declaring significant QTL effects.

G. A. Churchill; R. W. Doerge

1994-01-01

229

A High-Density SNP Map of Sunflower Derived from RAD-Sequencing Facilitating Fine-Mapping of the Rust Resistance Gene R12  

PubMed Central

A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman's rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping.

Talukder, Zahirul I.; Gong, Li; Hulke, Brent S.; Pegadaraju, Venkatramana; Song, Qijian; Schultz, Quentin; Qi, Lili

2014-01-01

230

Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis  

PubMed Central

Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible (‘Sloan’) genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae.

2012-01-01

231

Quantitative Trait Loci (QTL) Detection in Multicross Inbred Designs  

PubMed Central

Mapping quantitative trait loci in plants is usually conducted using a population derived from a cross between two inbred lines. The power of such QTL detection and the parameter estimates depend largely on the choice of the two parental lines. Thus, the QTL detected in such populations represent only a small part of the genetic architecture of the trait. In addition, the effects of only two alleles are characterized, which is of limited interest to the breeder, while common pedigree breeding material remains unexploited for QTL mapping. In this study, we extend QTL mapping methodology to a generalized framework, based on a two-step IBD variance component approach, applicable to any type of breeding population obtained from inbred parents. We then investigate with simulated data mimicking conventional breeding programs the influence of different estimates of the IBD values on the power of QTL detection. The proposed method would provide an alternative to the development of specifically designed recombinant populations, by utilizing the genetic variation actually managed by plant breeders. The use of these detected QTL in assisting breeding would thus be facilitated.

Crepieux, Sebastien; Lebreton, Claude; Servin, Bertrand; Charmet, Gilles

2004-01-01

232

Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor.  

PubMed

Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock. PMID:22393513

Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F A; Kraus, F B

2011-12-01

233

Fine mapping of the rice bacterial blight resistance gene Xa-4 and its co-segregation marker  

Microsoft Academic Search

An F2 population developed from theXa-4 near isogenic lines, IR24 and IRBB4, was used for fine mapping of the rice bacterial blight resistance gene,Xa-4. Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al. and\\u000a the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct

Wenming Wang; Yongli Zhou; Guanhuai Jiang; Bojun Ma; Xuewei Chen; Qi Zhang; Lihuang Zhu; Wenxue Zhai

2000-01-01

234

Fine mapping of the celiac disease-associated LPP locus reveals a potential functional variant  

PubMed Central

Using the Immunochip for genotyping, we identified 39 non-human leukocyte antigen (non-HLA) loci associated to celiac disease (CeD), an immune-mediated disease with a worldwide frequency of ?1%. The most significant non-HLA signal mapped to the intronic region of 70 kb in the LPP gene. Our aim was to fine map and identify possible functional variants in the LPP locus. We performed a meta-analysis in a cohort of 25 169 individuals from six different populations previously genotyped using Immunochip. Imputation using data from the Genome of the Netherlands and 1000 Genomes projects, followed by meta-analysis, confirmed the strong association signal on the LPP locus (rs2030519, P = 1.79 × 10?49), without any novel associations. The conditional analysis on this top SNP-indicated association to a single common haplotype. By performing haplotype analyses in each population separately, as well as in a combined group of the four populations that reach the significant threshold after correction (P < 0.008), we narrowed down the CeD-associated region from 70 to 2.8 kb (P = 1.35 × 10?44). By intersecting regulatory data from the ENCODE project, we found a functional SNP, rs4686484 (P = 3.12 × 10?49), that maps to several B-cell enhancer elements and a highly conserved region. This SNP was also predicted to change the binding motif of the transcription factors IRF4, IRF11, Nkx2.7 and Nkx2.9, suggesting its role in transcriptional regulation. We later found significantly low levels of LPP mRNA in CeD biopsies compared with controls, thus our results suggest that rs4686484 is the functional variant in this locus, while LPP expression is decreased in CeD.

Almeida, Rodrigo; Ricano-Ponce, Isis; Kumar, Vinod; Deelen, Patrick; Szperl, Agata; Trynka, Gosia; Gutierrez-Achury, Javier; Kanterakis, Alexandros; Westra, Harm-Jan; Franke, Lude; Swertz, Morris A.; Platteel, Mathieu; Bilbao, Jose Ramon; Barisani, Donatella; Greco, Luigi; Mearin, Luisa; Wolters, Victorien M.; Mulder, Chris; Mazzilli, Maria Cristina; Sood, Ajit; Cukrowska, Bozena; Nunez, Concepcion; Pratesi, Riccardo; Withoff, Sebo; Wijmenga, Cisca

2014-01-01

235

Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens  

PubMed Central

Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r2?0.3) in both traditional and village chickens at pairwise marker distances of ?10?Kb; while haplotype block analysis indicates a median block size of 11–12?Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55–38.89?Mb) and rose comb (Gga 7:18.41–22.09?Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25–67.28?Mb, Gga 1:67.28–67.32?Mb) totalling ?75?Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions.

Wragg, D; Mwacharo, J M; Alcalde, J A; Hocking, P M; Hanotte, O

2012-01-01

236

Identification and fine mapping of qCTH4, a quantitative trait loci controlling the chlorophyll content from tillering to heading in rice (Oryza sativa L.).  

PubMed

The chlorophyll content is one of the most important traits selected by breeders, and it is controlled by quantitative trait loci (QTLs) derived from natural variations in rice. We analyzed the QTL controlling chlorophyll content by using 94 RILs derived from a cross between 2 japonica rice cultivars, Lijiangxintuanheigu (LTH) and Shennong265 (SN265). Twenty-two QTLs controlling chlorophyll content at tillering stage, heading stage, and maturity stage were detected, respectively. Among them, Rice cv. LTH had a positive allele only at 1 locus (qCTH4) on chromosome 4. Further analysis indicated that the genetic effect of qCTH4 was the net effects within the period from tillering to heading. The QTL qCTH4 controlling chlorophyll content from tillering to heading locates between RM255 and RM349 on chromosome 4 with a LOD score 19.41, and the QTL qCTH4 explains 61.42% of phenotypic variation. In order to eliminate the influence of other QTLs, 1 single residual heterozygous plant, RH-qCTH4, was selected based on the genotypes of 114 Simple Sequence Repeat (SSR) markers. Using the segregating population derived from RH-qCTH4 by self-crossing, this region was narrowed down to an interval between RM3276 and RM17494 in an approximately 771kb target region. These results are useful for map-based cloning of qCTH4 and for marker-assisted selection of high photosynthetic efficiency variety. PMID:22851681

Jiang, Shukun; Zhang, Xijuan; Zhang, Fengming; Xu, Zhengjin; Chen, Wenfu; Li, Yuhua

2012-01-01

237

Confirmation and fine mapping of the chromosome 1 alcohol dependence risk locus.  

PubMed

Two previous large genetic linkage studies in the US population have implicated an area in chromosome 1p to contain a susceptibility gene for alcohol dependence. The 1-LOD support interval of the linkage signal spans about 30 cM and contains >30000000 DNA base pairs (bp) and 700 predicted genes. In order to reduce the size of the candidate area and potentially identify novel candidate genes within this region, we fine-mapped this area using closely spaced short tandem repeat (STR) markers and the transmission disequilibrium test (TDT) in small nuclear families. The subjects were 87 European-American families including one or more alcohol-dependent offspring (93 children and 174 parents). The initial marker set consisted of 30 STR markers, spanning the Marshfield map interval between 101.48 and 130.73 cM. Using the TDTPHASE program, we identified three markers in the distal part of this region (125-126 cM), which showed evidence of transmission disequilibrium. On the basis of this result, an additional 12 STR markers were genotyped in this region; some of these markers provided additional evidence for linkage disequilibrium. The strongest evidence for transmission disequilibrium was obtained at the marker D1S406 (P=0.005, 126.16 cM), with supporting evidence from three neighboring STR markers D1S424 (126.16 cM, P=0.01), D1S2804 (126.16 cM, P=0.04), and D1S2776 (126.16 cM, P=0.02), which are all located within a <350000 bp interval. These findings suggest that a gene (or genes) causing susceptibility to alcohol dependence resides near location 126.16 cM on chromosome 1. In addition, these results provide independent confirmation of the linkage finding regarding the identification of at least one gene in this region increasing the risk for alcohol dependence. PMID:15094791

Lappalainen, J; Kranzler, H R; Petrakis, I; Somberg, L K; Page, G; Krystal, J H; Gelernter, J

2004-03-01

238

Fine mapping of pss1, a pollen semi-sterile gene in rice (Oryza sativa L.).  

PubMed

During routine seed increase procedures in rice, semi-sterile plants are common; however, such semi-sterility mutants in rice varieties have been only rarely analyzed genetically. W207-2 is a semi-sterile selection from the japonica rice variety Nipponbare. In this report, we found the female gamete of W207-2 was normal, and its semi-sterility was unaffected by growth duration but was conditioned by a recessive nuclear gene whose action leads to pollen semi-sterility and anther indehiscence, and the gene was named as pss1 (pollen semi-sterile). Using an F(2) population derived from the two parents W207-2 and Dular and a pooled DNA strategy, pss1 was mapped to an interval on chromosome 8 defined by the two SSR loci RM6356 and RS41. The position of pss1 was confirmed in another F(2) population derived from the cross W207-2 x Nipponbare. Over 2,000 homozygous pss1 segregants from the large W207-2 x Dular F(2) population were used to fine map pss1 to a 0.04 cM segment flanked by a CAPs marker L2 and a dCAPs L3 marker. Sequences for both markers are present on a single PAC clone, and the physical distance between them is about 28 kb. Analysis of the PAC sequence predicts the presence of five open reading frames, they are as follows: putative ribonuclease PH, putative avr9 elicitor response protein, kinesin1-like protein, putative protein RNP-D precursor and putative 40S ribosomal protein S13. This result would be helpful in cloning the pss1 gene. PMID:17279367

Li, Wanchang; Jiang, Ling; Zhou, Shirong; Wang, Chunming; Liu, Linglong; Chen, Liangming; Ikehashi, Hiroshi; Wan, Jianmin

2007-03-01

239

Fine mapping of genes within the IDDM8 region in rheumatoid arthritis  

PubMed Central

The IDDM8 region on chromosome 6q27, first identified as a susceptibility locus for type 1 diabetes, has previously been linked and associated with rheumatoid arthritis (RA). The region contains a number of potential candidate genes, including programmed cell death 2 (PDCD2), the proteosome subunit beta type 1 (PSMB1), delta-like ligand 1 (DLL-1) and TATA box-binding protein (TBP) amongst others. The aim of this study was to fine map the IDDM8 region on chromosome 6q27, focusing on the genes in the region, to identify polymorphisms that may contribute to susceptibility to RA and potentially to other autoimmune diseases. Validated single nucleotide polymorphisms (SNPs; n = 65) were selected from public databases from the 330 kb region of IDDM8. These were genotyped using Sequenom MassArray genotyping technology in two datasets; the test dataset comprised 180 RA cases and 180 controls. We tested 50 SNPs for association with RA and any significant associations were genotyped in a second dataset of 174 RA cases and 192 controls, and the datasets were combined before analysis. Association analysis was performed by chi-square test implemented in Stata software and linkage disequilibrium and haplotype analysis was performed using Helix tree version 4.1. There was initial weak evidence of association, with RA, of a number of SNPs around the loc154449 putative gene and within the KIAA1838 gene; however, these associations were not significant in the combined dataset. Our study has failed to detect evidence of association with any of the known genes mapping to the IDDM8 locus with RA.

Hinks, Anne; Barton, Anne; John, Sally; Shephard, Neil; Worthington, Jane

2006-01-01

240

Replication and fine mapping of asthma-associated loci in individuals of African ancestry.  

PubMed

Asthma originates from genetic and environmental factors with about half the risk of disease attributable to heritable causes. Genome-wide association studies, mostly in populations of European ancestry, have identified numerous asthma-associated single nucleotide polymorphisms (SNPs). Studies in populations with diverse ancestries allow both for identification of robust associations that replicate across ethnic groups and for improved resolution of associated loci due to different patterns of linkage disequilibrium between ethnic groups. Here we report on an analysis of 745 African-American subjects with asthma and 3,238 African-American control subjects from the Candidate Gene Association Resource (CARe) Consortium, including analysis of SNPs imputed using 1,000 Genomes reference panels and adjustment for local ancestry. We show strong evidence that variation near RAD50/IL13, implicated in studies of European ancestry individuals, replicates in individuals largely of African ancestry. Fine mapping in African ancestry populations also refined the variants of interest for this association. We also provide strong or nominal evidence of replication at loci near ORMDL3/GSDMB, IL1RL1/IL18R1, and 10p14, all previously associated with asthma in European or Japanese populations, but not at the PYHIN1 locus previously reported in studies of African-American samples. These results improve the understanding of asthma genetics and further demonstrate the utility of genetic studies in populations other than those of largely European ancestry. PMID:23666277

Kantor, David B; Palmer, Cameron D; Young, Taylor R; Meng, Yan; Gajdos, Zofia K; Lyon, Helen; Price, Alkes L; Pollack, Samuela; London, Stephanie J; Loehr, Laura R; Smith, Lewis J; Kumar, Rajesh; Jacobs, David R; Petrini, Marcy F; O'Connor, George T; White, Wendy B; Papanicolaou, George; Burkart, Kristin M; Heckbert, Susan R; Barr, R Graham; Hirschhorn, Joel N

2013-09-01

241

Fine scale mapping of the breast cancer 16q12 locus  

PubMed Central

Recent genome-wide association studies have identified a breast cancer susceptibility locus on 16q12 with an unknown biological basis. We used a set of single nucleotide polymorphism (SNP) markers to generate a fine-scale map and narrowed the region of association to a 133 kb DNA segment containing the largely uncharacterized hypothetical gene LOC643714, a short intergenic region and the 5? end of TOX3. Re-sequencing this segment in European subjects identified 293 common polymorphisms, including a set of 26 highly correlated candidate causal variants. By evaluation of these SNPs in five breast cancer case–control studies involving more than 23 000 subjects from populations of European and Southeast Asian ancestry, all but 14 variants could be excluded at odds of <1:100. Most of the remaining variants lie in the intergenic region, which exhibits evolutionary conservation and open chromatin conformation, consistent with a regulatory function. African-American case–control studies exhibit a different pattern of association suggestive of an additional causative variant.

Udler, Miriam S.; Ahmed, Shahana; Healey, Catherine S.; Meyer, Kerstin; Struewing, Jeffrey; Maranian, Melanie; Kwon, Erika M.; Zhang, Jinghui; Tyrer, Jonathan; Karlins, Eric; Platte, Radka; Kalmyrzaev, Bolot; Dicks, Ed; Field, Helen; Maia, Ana-Teresa; Prathalingam, Radhika; Teschendorff, Andrew; McArthur, Stewart; Doody, David R.; Luben, Robert; Caldas, Carlos; Bernstein, Leslie; Kolonel, Laurence K.; Henderson, Brian E.; Wu, Anna H.; Le Marchand, Loic; Ursin, Giske; Press, Michael F.; Lindblom, Annika; Margolin, Sara; Shen, Chen-Yang; Yang, Show-Lin; Hsiung, Chia-Ni; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Malone, Kathleen E.; Haiman, Christopher A.; Pharoah, Paul D.; Ponder, Bruce A.J.; Ostrander, Elaine A.; Easton, Douglas F.; Dunning, Alison M.

2010-01-01

242

Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis.  

PubMed

We genotyped 2,861 cases of primary biliary cirrhosis (PBC) from the UK PBC Consortium and 8,514 UK population controls across 196,524 variants within 186 known autoimmune risk loci. We identified 3 loci newly associated with PBC (at P<5×10(-8)), increasing the number of known susceptibility loci to 25. The most associated variant at 19p12 is a low-frequency nonsynonymous SNP in TYK2, further implicating JAK-STAT and cytokine signaling in disease pathogenesis. An additional five loci contained nonsynonymous variants in high linkage disequilibrium (LD; r2>0.8) with the most associated variant at the locus. We found multiple independent common, low-frequency and rare variant association signals at five loci. Of the 26 independent non-human leukocyte antigen (HLA) signals tagged on the Immunochip, 15 have SNPs in B-lymphoblastoid open chromatin regions in high LD (r2>0.8) with the most associated variant. This study shows how data from dense fine-mapping arrays coupled with functional genomic data can be used to identify candidate causal variants for functional follow-up. PMID:22961000

Liu, Jimmy Z; Almarri, Mohamed A; Gaffney, Daniel J; Mells, George F; Jostins, Luke; Cordell, Heather J; Ducker, Samantha J; Day, Darren B; Heneghan, Michael A; Neuberger, James M; Donaldson, Peter T; Bathgate, Andrew J; Burroughs, Andrew; Davies, Mervyn H; Jones, David E; Alexander, Graeme J; Barrett, Jeffrey C; Sandford, Richard N; Anderson, Carl A

2012-10-01

243

Fine mapping and isolation of Bc7(t), allelic to OsCesA4.  

PubMed

Several brittle culm mutants of rice were identified and characterized. In this study, we characterized a brittle mutant (bc7(t)) identified from japonica variety Zhonghua 11 by means of 60Co-gamma radiation. This mutant displays normal phenotype similar to its wild type plants except for the fragility of all plant body, with approximately 10% decrease in the cellulose content. The genetic analysis and gene fine mapping showed that the bc7(t) mutant was controlled by a recessive gene, residing on an 8.4 kb region of the long arm of chromosome 1. The gene annotation indicated that there was only one putative gene encoding cellulose synthase catalytic subunit (CesA) in this region, which was allelic to OsCesA4. Furthermore, the sequence analysis was carried out and 7 bases deletion in the junction of exon 10 and intron 10 was done in bc7(t) mutant, resulting in the change of reading frame and the consequent failure to generate functional protein. In addition, the result of RNA interference experiment showed that when the Bc7(t) was knocked down, the transplants exhibited fragility, similar to bc7(t) mutant. The finding of novel allele of OsCesA4 locus will facilitate the understanding of the mechanism of cell wall biosynthesis. The potential utilization of the bc7(t) mutant in animal food was discussed as well. PMID:18037139

Yan, Changjie; Yan, Song; Zeng, Xiuhong; Zhang, Zhengqiu; Gu, Minghong

2007-11-01

244

Fine mapping and family-based association analyses of prostate cancer risk variants at Xp11  

PubMed Central

Two SNPs (rs5945572 and rs5945619) at Xp11 were recently implicated in two genome-wide association studies (GWAS) of prostate cancer. Using a family-based association test for these two SNPs in 168 prostate cancer families, we showed in this study that the risk alleles of the two reported SNPs were over-transmitted to affected offspring, P = 0.009 for rs5945372 and P = 0.03 for rs5945619, which suggested the observed association in case-control studies were not driven by potential population stratification. We also performed a fine mapping study in ~800 kb region at Xp11 among two independent case-control studies, including 1,527 cases and 482 controls from Johns Hopkins Hospital and 1,172 cases and 1,157 controls from the Prostate, Lung, Colon and Ovarian (PLCO) Cancer Screening Trial. The strongest association was found with SNPs in the haplotype block where the two initial reported SNPs were located, although many SNPs in ~140 kb region were highly significant in the combined allelic tests (P = 10?5?10?6). The second strongest association was observed with SNPs in ~286 kb region at another haplotype block (P = 10?4?10?5), ~94 kb centromeric to the first region. The significance of SNPs in the second region decreased considerably after adjusting for SNPs at the first region, although P remained < 0.05. Additional studies are warranted to test independent prostate cancer associations at these two regions.

Lu, Lingyi; Sun, Jielin; Isaacs, Sarah D.; Wiley, Kathleen E.; Smith, Shelly; Pruett, Kristen; Zhu, Yi; Zhang, Zheng; Wiklund, Fredrik; Gronberg, Henrik; Walsh, Patrick C.; Chang, Bao-Li; Zheng, S. Lilly; Isaacs, William B.; Xu, Jianfeng

2009-01-01

245

Fine-Scale Mapping of Disease Genes with Multiple Mutations via Spatial Clustering Techniques  

PubMed Central

We present a method to perform fine mapping by placing haplotypes into clusters on the basis of risk. Each cluster has a haplotype “center.” Cluster allocation is defined according to haplotype centers, with each haplotype assigned to the cluster with the “closest” center. The closeness of two haplotypes is determined by a similarity metric that measures the length of the shared segment around the location of a putative functional mutation for the particular cluster. Our method allows for missing marker information but still estimates the risks of complete haplotypes without resorting to a one-marker-at-a-time analysis. The dimensionality issues that can occur in haplotype analyses are removed by sampling over the haplotype space, allowing for estimation of haplotype risks without explicitly assigning a parameter to each haplotype to be estimated. In this way, we are able to handle haplotypes of arbitrary size. Furthermore, our clustering approach has the potential to allow us to detect the presence of multiple functional mutations.

Molitor, John; Marjoram, Paul; Thomas, Duncan

2003-01-01

246

Fine mapping of the diabetes-susceptibility locus, IDDM4, on chromosome 11q13.  

PubMed Central

Genomewide linkage studies of type 1 diabetes (or insulin-dependent diabetes mellitus [IDDM]) indicate that several unlinked susceptibility loci can explain the clustering of the disease in families. One such locus has been mapped to chromosome 11q13 (IDDM4). In the present report we have analyzed 707 affected sib pairs, obtaining a peak multipoint maximum LOD score (MLS) of 2.7 (lambda(s)=1.09) with linkage (MLS>=0.7) extending over a 15-cM region. The problem is, therefore, to fine map the locus to permit structural analysis of positional candidate genes. In a two-stage approach, we first scanned the 15-cM linked region for increased or decreased transmission, from heterozygous parents to affected siblings in 340 families, of the three most common alleles of each of 12 microsatellite loci. One of the 36 alleles showed decreased transmission (50% expected, 45.1% observed [P=.02, corrected P=.72]) at marker D11S1917. Analysis of an additional 1,702 families provided further support for negative transmission (48%) of D11S1917 allele 3 to affected offspring and positive transmission (55%) to unaffected siblings (test of heterogeneity P=3x10-4, corrected P=. 01]). A second polymorphic marker, H0570polyA, was isolated from a cosmid clone containing D11S1917, and genotyping of 2,042 families revealed strong linkage disequilibrium between the two markers (15 kb apart), with a specific haplotype, D11S1917*03-H0570polyA*02, showing decreased transmission (46.4%) to affected offspring and increased transmission (56.6%) to unaffected siblings (test of heterogeneity P=1.5x10-6, corrected P=4.3x10-4). These results not only provide sufficient justification for analysis of the gene content of the D11S1917 region for positional candidates but also show that, in the mapping of genes for common multifactorial diseases, analysis of both affected and unaffected siblings is of value and that both predisposing and nonpredisposing alleles should be anticipated.

Nakagawa, Y; Kawaguchi, Y; Twells, R C; Muxworthy, C; Hunter, K M; Wilson, A; Merriman, M E; Cox, R D; Merriman, T; Cucca, F; McKinney, P A; Shield, J P; Tuomilehto, J; Tuomilehto-Wolf, E; Ionesco-Tirgoviste, C; Nistico, L; Buzzetti, R; Pozzilli, P; Joner, G; Thorsby, E; Undlien, D E; Pociot, F; Nerup, J; Ronningen, K S; Bain, S C; Todd, J A

1998-01-01

247

Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.)  

PubMed Central

Background Grain yield in wheat is a polygenic trait that is influenced by environmental and genetic interactions at all stages of the plant’s growth. Yield is usually broken down into three components; number of spikes per area, grain number per spike, and grain weight (TGW). In polyploid wheat, studies have identified quantitative trait loci (QTL) which affect TGW, yet few have been validated and fine-mapped using independent germplasm, thereby having limited impact in breeding. Results In this study we identified a major QTL for TGW, yield and green canopy duration on wheat chromosome 6A of the Spark x Rialto population, across 12 North European environments. Using independent germplasm in the form of BC2 and BC4 near isogenic lines (NILs), we validated the three QTL effects across environments. In four of the five experiments the Rialto 6A introgression gave significant improvements in yield (5.5%) and TGW (5.1%), with morphometric measurements showing that the increased grain weight was a result of wider grains. The extended green canopy duration associated with the high yielding/TGW Rialto allele was comprised of two independent effects; earlier flowering and delayed final maturity, and was expressed stably across the five environments. The wheat homologue (TaGW2) of a rice gene associated with increased TGW and grain width was mapped within the QTL interval. However, no polymorphisms were identified in the coding sequence between the parents. Conclusion The discovery and validation through near-isogenic lines of robust QTL which affect yield, green canopy duration, thousand grain weight, and grain width on chromosome 6A of hexaploid wheat provide an important first step to advance our understanding of the genetic mechanisms regulating the complex processes governing grain size and yield in polyploid wheat.

2014-01-01

248

A High-Density SNP Map of Sunflower Derived from RAD-Sequencing Facilitating Fine-Mapping of the Rust Resistance Gene R12.  

PubMed

A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman's rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping. PMID:25014030

Talukder, Zahirul I; Gong, Li; Hulke, Brent S; Pegadaraju, Venkatramana; Song, Qijian; Schultz, Quentin; Qi, Lili

2014-01-01

249

A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice.  

PubMed

A thorough understanding of the genetic basis of rice grain traits is critical for the improvement of rice (Oryza sativa L.) varieties. In this study, we generated an F? population by crossing the large-grain japonica cultivar CW23 with Peiai 64 (PA64), an elite indica small-grain cultivar. Using QTL analysis, 17 QTLs for five grain traits were detected on four different chromosomes. Eight of the QTLs were newly-identified in this study. In particular, qGL3-1, a newly-identified grain length QTL with the highest LOD value and largest phenotypic variation, was fine-mapped to the 17 kb region of chromosome 3. A serine/threonine protein phosphatase gene encoding a repeat domain containing two Kelch motifs was identified as the unique candidate gene corresponding to this QTL. A comparison of PA64 and CW23 sequences revealed a single nucleotide substitution (C?A) at position 1092 in exon 10, resulting in replacement of Asp (D) in PA64 with Glu (E) in CW23 for the 364(th) amino acid. This variation is located at the D position of the conserved sequence motif AVLDT of the Kelch repeat. Genetic analysis of a near-isogenic line (NIL) for qGL3-1 revealed that the allele qGL3-1 from CW23 has an additive or partly dominant effect, and is suitable for use in molecular marker-assisted selection. PMID:23137285

Hu, Zejun; He, Haohua; Zhang, Shiyong; Sun, Fan; Xin, Xiaoyun; Wang, Wenxiang; Qian, Xi; Yang, Jingshui; Luo, Xiaojin

2012-12-01

250

Fractionation, Stability, and Isolate-Specificity of QTL for Resistance to Phytophthora infestans in Cultivated Tomato (Solanum lycopersicum)  

PubMed Central

Cultivated tomato (Solanum lycopersicum) is susceptible to late blight, a major disease caused by Phytophthora infestans, but quantitative resistance exists in the wild tomato species S. habrochaites. Previously, we mapped several quantitative trait loci (QTL) from S. habrochaites and then introgressed each individually into S. lycopersicum. Near-isogenic lines (NILs) were developed, each containing a single introgressed QTL on chromosome 5 or 11. NILs were used to create two recombinant sub-NIL populations, one for each target chromosome region, for higher-resolution mapping. The sub-NIL populations were evaluated for foliar and stem resistance to P. infestans in replicated field experiments over two years, and in replicated growth chamber experiments for resistance to three California isolates. Each of the original single QTL on chromosomes 5 and 11 fractionated into between two and six QTL for both foliar and stem resistance, indicating a complex genetic architecture. The majority of QTL from the field experiments were detected in multiple locations or years, and two of the seven QTL detected in growth chambers were co-located with QTL detected in field experiments, indicating stability of some QTL across environments. QTL that confer foliar and stem resistance frequently co-localized, suggesting that pleiotropy and/or tightly linked genes control the trait phenotypes. Other QTL exhibited isolate-specificity and QTL × environment interactions. Map-based comparisons between QTL mapped in this study and Solanaceae resistance genes/QTL detected in other published studies revealed multiple cases of co-location, suggesting conservation of gene function.

Johnson, Emily B.; Haggard, J. Erron; St.Clair, Dina A.

2012-01-01

251

Fractionation, stability, and isolate-specificity of QTL for resistance to Phytophthora infestans in cultivated tomato (Solanum lycopersicum).  

PubMed

Cultivated tomato (Solanum lycopersicum) is susceptible to late blight, a major disease caused by Phytophthora infestans, but quantitative resistance exists in the wild tomato species S. habrochaites. Previously, we mapped several quantitative trait loci (QTL) from S. habrochaites and then introgressed each individually into S. lycopersicum. Near-isogenic lines (NILs) were developed, each containing a single introgressed QTL on chromosome 5 or 11. NILs were used to create two recombinant sub-NIL populations, one for each target chromosome region, for higher-resolution mapping. The sub-NIL populations were evaluated for foliar and stem resistance to P. infestans in replicated field experiments over two years, and in replicated growth chamber experiments for resistance to three California isolates. Each of the original single QTL on chromosomes 5 and 11 fractionated into between two and six QTL for both foliar and stem resistance, indicating a complex genetic architecture. The majority of QTL from the field experiments were detected in multiple locations or years, and two of the seven QTL detected in growth chambers were co-located with QTL detected in field experiments, indicating stability of some QTL across environments. QTL that confer foliar and stem resistance frequently co-localized, suggesting that pleiotropy and/or tightly linked genes control the trait phenotypes. Other QTL exhibited isolate-specificity and QTL × environment interactions. Map-based comparisons between QTL mapped in this study and Solanaceae resistance genes/QTL detected in other published studies revealed multiple cases of co-location, suggesting conservation of gene function. PMID:23050225

Johnson, Emily B; Haggard, J Erron; St Clair, Dina A

2012-10-01

252

Fine-Mapping an Association of FSHR with Preterm Birth in a Finnish Population  

PubMed Central

Preterm birth is a complex disorder defined by gestations of less than 37 weeks. While preterm birth is estimated to have a significant genetic component, relative few genes have been associated with preterm birth. Polymorphism in one such gene, follicle-stimulating hormone receptor (FSHR), has been associated with preterm birth in Finnish and African American mothers but not other populations. To refine the genetic association of FSHR with preterm birth we conducted a fine-mapping study at the FSHR locus in a Finnish cohort. We sequenced a total of 44 kb, including protein-coding and conserved non-coding regions, in 127 preterm and 135 term mothers. Overall, we identified 288 single nucleotide variants and 65 insertion/deletions of 1–2 bp across all subjects. While no common SNPs in protein-coding regions were associated with preterm birth, including one previously associated with timing of fertilization, multiple SNPs spanning the first and second intron showed the strongest associations. Analysis of the associated SNPs revealed that they form both a protective (OR?=?0.50, 95% CI?=?0.25–0.93) as well as a risk (OR?=?1.89, 95% CI?=?1.08–3.39) haplotype with independent effects. In these haplotypes, two SNPs, rs12052281 and rs72822025, were predicted to disrupt ZEB1 and ELF3 transcription factor binding sites, respectively. Our results show that multiple haplotypes at FSHR are associated with preterm birth and we discuss the frequency and structure of these haplotypes outside of the Finnish population as a potential explanation for the absence of FSHR associations in some populations.

Chun, Sung; Plunkett, Jevon; Teramo, Kari; Muglia, Louis J.; Fay, Justin C.

2013-01-01

253

Fine-mapping an association of FSHR with preterm birth in a Finnish population.  

PubMed

Preterm birth is a complex disorder defined by gestations of less than 37 weeks. While preterm birth is estimated to have a significant genetic component, relative few genes have been associated with preterm birth. Polymorphism in one such gene, follicle-stimulating hormone receptor (FSHR), has been associated with preterm birth in Finnish and African American mothers but not other populations. To refine the genetic association of FSHR with preterm birth we conducted a fine-mapping study at the FSHR locus in a Finnish cohort. We sequenced a total of 44 kb, including protein-coding and conserved non-coding regions, in 127 preterm and 135 term mothers. Overall, we identified 288 single nucleotide variants and 65 insertion/deletions of 1-2 bp across all subjects. While no common SNPs in protein-coding regions were associated with preterm birth, including one previously associated with timing of fertilization, multiple SNPs spanning the first and second intron showed the strongest associations. Analysis of the associated SNPs revealed that they form both a protective (OR?=?0.50, 95% CI?=?0.25-0.93) as well as a risk (OR?=?1.89, 95% CI?=?1.08-3.39) haplotype with independent effects. In these haplotypes, two SNPs, rs12052281 and rs72822025, were predicted to disrupt ZEB1 and ELF3 transcription factor binding sites, respectively. Our results show that multiple haplotypes at FSHR are associated with preterm birth and we discuss the frequency and structure of these haplotypes outside of the Finnish population as a potential explanation for the absence of FSHR associations in some populations. PMID:24205076

Chun, Sung; Plunkett, Jevon; Teramo, Kari; Muglia, Louis J; Fay, Justin C

2013-01-01

254

Large-scale fine mapping of the HNF1B locus and prostate cancer risk  

PubMed Central

Previous genome-wide association studies have identified two independent variants in HNF1B as susceptibility loci for prostate cancer risk. To fine-map common genetic variation in this region, we genotyped 79 single nucleotide polymorphisms (SNPs) in the 17q12 region harboring HNF1B in 10 272 prostate cancer cases and 9123 controls of European ancestry from 10 case–control studies as part of the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. Ten SNPs were significantly related to prostate cancer risk at a genome-wide significance level of P < 5 × 10?8 with the most significant association with rs4430796 (P = 1.62 × 10?24). However, risk within this first locus was not entirely explained by rs4430796. Although modestly correlated (r2= 0.64), rs7405696 was also associated with risk (P = 9.35 × 10?23) even after adjustment for rs4430769 (P = 0.007). As expected, rs11649743 was related to prostate cancer risk (P = 3.54 × 10?8); however, the association within this second locus was stronger for rs4794758 (P = 4.95 × 10?10), which explained all of the risk observed with rs11649743 when both SNPs were included in the same model (P = 0.32 for rs11649743; P = 0.002 for rs4794758). Sequential conditional analyses indicated that five SNPs (rs4430796, rs7405696, rs4794758, rs1016990 and rs3094509) together comprise the best model for risk in this region. This study demonstrates a complex relationship between variants in the HNF1B region and prostate cancer risk. Further studies are needed to investigate the biological basis of the association of variants in 17q12 with prostate cancer.

Berndt, Sonja I.; Sampson, Joshua; Yeager, Meredith; Jacobs, Kevin B.; Wang, Zhaoming; Hutchinson, Amy; Chung, Charles; Orr, Nick; Wacholder, Sholom; Chatterjee, Nilanjan; Yu, Kai; Kraft, Peter; Feigelson, Heather Spencer; Thun, Michael J.; Diver, W. Ryan; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Schumacher, Fredrick R.; Cancel-Tassin, Geraldine; Cussenot, Olivier; Valeri, Antoine; Andriole, Gerald L.; Crawford, E. David; Haiman, Christopher; Henderson, Brian; Kolonel, Laurence; Le Marchand, Loic; Siddiq, Afshan; Riboli, Elio; Travis, Ruth C.; Kaaks, Rudolf; Isaacs, William; Isaacs, Sarah; Wiley, Kathleen E.; Gronberg, Henrik; Wiklund, Fredrik; Stattin, Par; Xu, Jianfeng; Zheng, S. Lilly; Sun, Jielin; Vatten, Lars J.; Hveem, Kristian; Nj?lstad, Inger; Gerhard, Daniela S.; Tucker, Margaret; Hayes, Richard B.; Hoover, Robert N.; Fraumeni, Joseph F.; Hunter, David J.; Thomas, Gilles; Chanock, Stephen J.

2011-01-01

255

Transferability and Fine Mapping of Type 2 Diabetes Loci in African Americans  

PubMed Central

Type 2 diabetes (T2D) disproportionally affects African Americans (AfA) but, to date, genetic variants identified from genome-wide association studies (GWAS) are primarily from European and Asian populations. We examined the single nucleotide polymorphism (SNP) and locus transferability of 40 reported T2D loci in six AfA GWAS consisting of 2,806 T2D case subjects with or without end-stage renal disease and 4,265 control subjects from the Candidate Gene Association Resource Plus Study. Our results revealed that seven index SNPs at the TCF7L2, KLF14, KCNQ1, ADCY5, CDKAL1, JAZF1, and GCKR loci were significantly associated with T2D (P < 0.05). The strongest association was observed at TCF7L2 rs7903146 (odds ratio [OR] 1.30; P = 6.86 × 10?8). Locus-wide analysis demonstrated significant associations (Pemp < 0.05) at regional best SNPs in the TCF7L2, KLF14, and HMGA2 loci as well as suggestive signals in KCNQ1 after correction for the effective number of SNPs at each locus. Of these loci, the regional best SNPs were in differential linkage disequilibrium (LD) with the index and adjacent SNPs. Our findings suggest that some loci discovered in prior reports affect T2D susceptibility in AfA with similar effect sizes. The reduced and differential LD pattern in AfA compared with European and Asian populations may facilitate fine mapping of causal variants at loci shared across populations.

Ng, Maggie C.Y.; Saxena, Richa; Li, Jiang; Palmer, Nicholette D.; Dimitrov, Latchezar; Xu, Jianzhao; Rasmussen-Torvik, Laura J.; Zmuda, Joseph M.; Siscovick, David S.; Patel, Sanjay R.; Crook, Errol D.; Sims, Mario; Chen, Yii-Der I.; Bertoni, Alain G.; Li, Mingyao; Grant, Struan F.A.; Dupuis, Josee; Meigs, James B.; Psaty, Bruce M.; Pankow, James S.; Langefeld, Carl D.; Freedman, Barry I.; Rotter, Jerome I.; Wilson, James G.; Bowden, Donald W.

2013-01-01

256

Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.  

PubMed

Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date, deciphering the mouse brain functional connectivity (MBFC) with rsfMRI remains a largely underexplored research area, despite the plethora of human brain disorders that can be modeled in this specie. To pave the way from pre-clinical to clinical investigations we characterized here the intrinsic architecture of mouse brain functional circuitry, based on rsfMRI data acquired at 7T using the Cryoprobe technology. High-dimensional spatial group independent component analysis demonstrated fine-grained segregation of cortical and subcortical networks into functional clusters, overlapping with high specificity onto anatomical structures, down to single gray matter nuclei. These clusters, showing a high level of stability and reliability in their patterning, formed the input elements for computing the MBFC network using partial correlation and graph theory. Its topological architecture conserved the fundamental characteristics described for the human and rat brain, such as small-worldness and partitioning into functional modules. Our results additionally showed inter-modular interactions via "network hubs". Each major functional system (motor, somatosensory, limbic, visual, autonomic) was found to have representative hubs that might play an important input/output role and form a functional core for information integration. Moreover, the rostro-dorsal hippocampus formed the highest number of relevant connections with other brain areas, highlighting its importance as core structure for MBFC. PMID:24718287

Mechling, Anna E; Hübner, Neele S; Lee, Hsu-Lei; Hennig, Jürgen; von Elverfeldt, Dominik; Harsan, Laura-Adela

2014-08-01

257

Genome-wide association and fine mapping of genetic loci predisposing to colon carcinogenesis in mice.  

PubMed

To identify the genetic determinants of colon tumorigenesis, 268 male mice from 33 inbred strains derived from different genealogies were treated with azoxymethane (AOM; 10 mg/kg) once a week for six weeks to induce colon tumors. Tumors were localized exclusively within the distal colon in each of the strains examined. Inbred mouse strains exhibit a large variability in genetic susceptibility to AOM-induced colon tumorigenesis. The mean colon tumor multiplicity ranged from 0 to 38.6 (mean = 6.5 ± 8.6) and tumor volume ranged from 0 to 706.5 mm(3) (mean = 87.4 ± 181.9) at 24 weeks after the first dose of AOM. AOM-induced colon tumor phenotypes are highly heritable in inbred mice, and 68.8% and 71.3% of total phenotypic variation in colon tumor multiplicity and tumor volume, respectively, are attributable to strain-dependent genetic background. Using 97,854 single-nucleotide polymorphisms, we carried out a genome-wide association study (GWAS) of AOM-induced colon tumorigenesis and identified a novel susceptibility locus on chromosome 15 (rs32359607, P = 6.31 × 10(-6)). Subsequent fine mapping confirmed five (Scc3, Scc2, Scc12, Scc8, and Ccs1) of 16 linkage regions previously found to be associated with colon tumor susceptibility. These five loci were refined to less than 1 Mb genomic regions of interest. Major candidates in these loci are Sema5a, Fmn2, Grem2, Fap, Gsg1l, Xpo6, Rabep2, Eif3c, Unc5d, and Gpr65. In particular, the refined Scc3 locus shows high concordance with the human GWAS locus that underlies hereditary mixed polyposis syndrome. These findings increase our understanding of the complex genetics of colon tumorigenesis, and provide important insights into the pathways of colorectal cancer development and might ultimately lead to more effective individually targeted cancer prevention strategies. PMID:22127497

Liu, Pengyuan; Lu, Yan; Liu, Hongbo; Wen, Weidong; Jia, Dongmei; Wang, Yian; You, Ming

2012-01-01

258

Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley  

Microsoft Academic Search

Moderate seed dormancy is desirable in barley ( Hordeum vulgare L.). It is difficult for breeders to manipulate seed dormancy in practical breeding programs because of complex inheritance and large environmental effects. Quantitative trait locus (QTL) mapping opens a way for breeders to manipulate quantitative trait genes. A seed dormancy QTL, SD2, was mapped previously in an 8-cM interval near

W. Gao; J. A. Clancy; F. Han; D. Prada; A. Kleinhofs; S. E. Ullrich

2003-01-01

259

Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice  

Microsoft Academic Search

Three major genes (Pi1, Piz-5 and Pita) for blast resistance on chromosomes 11, 6 and 12, respectively, were fine-mapped and closely linked RFLP markers identified.\\u000a New markers for Pi1 and Pita were found that were flanking the genes. The three genes were pyramided using RFLP markers. A PCR-based SAP (sequence amplified\\u000a polymorphism) marker was used to identify Piz-5 in the

S. Hittalmani; A. Parco; T. V. Mew; R. S. Zeigler; N. Huang

2000-01-01

260

Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa).  

PubMed

A novel rice mutant, lesion mimic and early senescence 1 (lmes1), was induced from the rice 93-11 cultivar in a ?-ray field. This mutant exhibited spontaneous disease-like lesions in the absence of pathogen attack at the beginning of the tillering stage. Moreover, at the booting stage, lmes1 mutants exhibited a significantly increased MDA but decreased chlorophyll content, soluble protein content and photosynthetic rate in the leaves, which are indicative of an early senescence phenotype. The lmes1 mutant was significantly more resistant than 93-11 against rice bacterial blight infection, which was consistent with a marked increase in the expression of three resistance-related genes. Here, we employed a map-based cloning approach to finely map the lmes1 gene. In an initial mapping with 94 F2 individuals derived from a cross between the lmes1 mutant and Nipponbare, the lmes1 gene was located in a 10.6-cM region on the telomere of the long arm of chromosome 7 using simple sequence repeat (SSR) markers. To finely map lmes1, we derived two F2 populations with 940 individuals from two crosses between the lmes1 mutant and two japonica rice varieties, Nipponbare and 02428. Finally, the lmes1 gene was mapped to an 88-kb region between two newly developed inDel markers, Zl-3 and Zl-22, which harbored 15 ORFs. PMID:24832615

Li, Zhi; Zhang, Yingxin; Liu, Lin; Liu, Qunen; Bi, Zhenzhen; Yu, Ning; Cheng, Shihua; Cao, Liyong

2014-07-01

261

A Fine-Resolution Radar for Mapping Near-Surface Isochronous Layers  

NASA Astrophysics Data System (ADS)

Information on the spatial and temporal variation of snow accumulation is required for interpreting satellite-based radar and laser surface elevation measurements made by CryoSAT and ICESAT altimeters. Current methods of using ice cores and analyzing snow pit stratigraphy is time consuming and prone to errors in spatial representation due to the sparse sampling. Remote sensing methods that can map near-surface internal layers for estimating spatial and temporal variation are required. To accomplish this, we developed a 12-18 GHz FMCW radar to map near-surface layers with 3 cm vertical resolution to a depth of about 10 m. We developed the system to be mobile and self-contained so that spatial variability of the accumulation over a large area can be characterized. The fine resolution of this radar is achieved by its wide bandwidth and by illuminating the target area with a plane-wave, which is implemented using an offset-fed parabolic reflector. Traditional wide-beamwidth antennas are susceptible to spherical wave scattering from off-vertical targets that can potentially mask weaker reflections from internal layers. The radar features a fast transmit waveform synthesizer implemented using a voltage controlled oscillator (VCO) and a phase-locked loop (PLL) using a linear chirp as the reference. The highly linear reference chirp was generated by a direct digital synthesis (DDS) waveform generator and compared against the instantaneous output of the VCO to create a highly linear 12 to 18 GHz transmit chirp. The waveform synthesizer can be swept from 12 to 18 GHz in 500 microseconds. The antenna was mounted on a sled and the radar system was integrated with the antenna feed. We designed and built the sled with a gimbaled antenna mount and sensing control system to ensure that the antenna points at nadir. The radar system was successfully tested at the Summit camp, Greenland, in July 2005. We collected a large amount of data from various locations around Summit camp. The locations include areas adjacent to bamboo stakes measured either weekly or monthly throughout the year to track snow accumulation. Additionally, three snow pits were dug to compare radar data with actual stratigraphy and density. More than 200 sample traces were collected to compare with our snow pit observations. Each sample trace uses 10 sweeps, which are coherently integrated to improve signal-to-noise ratio (SNR). The average snow density was used to determine the dielectric constant, which enables the estimation of the propagation velocity in firn. Our initial results show a high correlation between the snow pit stratigraphy and reflecting layers mapped with the radar. We observed echoes from layers with the radar operated at a single spot, and with the radar traveling at a nearly constant speed along a line over a distance in excess of 4 km. In our presentation we will cover the design and construction of the radar, as well as provide sample results from field experiments at Summit, Greenland. A comparison of experimental data with simulations obtained using density and stratigraphy data will also be shown. Future plans for this system will also be discussed, including plans for measurements at the WAIS divide deep core site in Antarctica during the 2005-2006 field season.

Rink, T. P.; Kanagaratnam, P.; Braaten, D.; Zimmerman, K.; Akins, T.; Gogineni, S.

2005-12-01

262

Fine mapping of chromosome 15q25.1 lung cancer susceptibility in African-Americans  

PubMed Central

Several genome-wide association studies identified the chr15q25.1 region, which includes three nicotinic cholinergic receptor genes (CHRNA5-B4) and the cell proliferation gene (PSMA4), for its association with lung cancer risk in Caucasians. A haplotype and its tagging single nucleotide polymorphisms (SNPs) encompassing six genes from IREB2 to CHRNB4 were most strongly associated with lung cancer risk (OR = 1.3; P < 10?20). In order to narrow the region of association and identify potential causal variations, we performed a fine-mapping study using 77 SNPs in a 194 kb segment of the 15q25.1 region in a sample of 448 African-American lung cancer cases and 611 controls. Four regions, two SNPs and two distinct haplotypes from sliding window analyses, were associated with lung cancer. CHRNA5 rs17486278 G had OR = 1.28, 95% CI 1.07–1.54 and P = 0.008, whereas CHRNB4 rs7178270 G had OR = 0.78, 95% CI 0.66–0.94 and P = 0.008 for lung cancer risk. Lung cancer associations remained significant after pack-year adjustment. Rs7178270 decreased lung cancer risk in women but not in men; gender interaction P = 0.009. For two SNPs (rs7168796 A/G and rs7164594 A/G) upstream of PSMA4, lung cancer risks for people with haplotypes GG and AA were reduced compared with those with AG (OR = 0.56, 95% CI 0.38–0.82; P = 0.003 and OR = 0.73, 95% CI 0.59–0.90, P = 0.004, respectively). A four-SNP haplotype spanning CHRNA5 (rs11637635 C, rs17408276 T, rs16969968 G) and CHRNA3 (rs578776 G) was associated with increased lung cancer risk (P = 0.002). The identified regions contain SNPs predicted to affect gene regulation. There are multiple lung cancer risk loci in the 15q25.1 region in African-Americans.

Hansen, Helen M.; Xiao, Yuanyuan; Rice, Terri; Bracci, Paige M.; Wrensch, Margaret R.; Sison, Jennette D.; Chang, Jeffery S.; Smirnov, Ivan V.; Patoka, Joseph; Seldin, Michael F.; Quesenberry, Charles P.; Kelsey, Karl T.; Wiencke, John K.

2010-01-01

263

Fine Mapping of qHD8-1 , a QTL Controlling the Heading Date, to a 26-kb DNA Fragment in Rice ( Oryza sativa L.)  

Microsoft Academic Search

Heading date is one of the importance agronomic traits. A library consisting of 1,123 single segment substitution lines (SSSLs)\\u000a in the same genetic background of an elite rice variety Huajingxian 74 (HJX74) was evaluated for heading date (HD). From this\\u000a library, the SSSL W06-26-35-1-5-2 with the substituted interval of PSM152–PSM154–PSM155–RM25–RM547–RM72–RM404 was found having\\u000a a gene, which performed stable and late

Chengguo Pei; Xu Liu; Wenying Wang; Hanfeng Ding; Mingsong Jiang; Guangxian Li; Changxiang Zhu; Fujiang Wen; Fangyin Yao

2011-01-01

264

High-resolution mapping of quantitative trait loci in outbred mice.  

PubMed

Screening the whole genome of a cross between two inbred animal strains has proved to be a powerful method for detecting genetic loci underlying quantitative behavioural traits, but the level of resolution offered by quantitative trait loci (QTL) mapping is still too coarse to permit molecular cloning of the genetic determinants. To achieve high-resolution mapping, we used an outbred stock of mice for which the entire genealogy is known. The heterogeneous stock (HS) was established 30 years ago from an eight-way cross of C57BL/6, BALB/c, RIII, AKR, DBA/2, I, A/J and C3H inbred mouse strains. At the time of the experiment reported here, the HS mice were at generation 58, theoretically offering at least a 30-fold increase in resolution for QTL mapping compared with a backcross or an F2 intercross. Using the HS mice we have mapped a QTL influencing a psychological trait in mice to a 0.8-cM interval on chromosome 1. This method allows simultaneous fine mapping of multiple QTLs, as shown by our report of a second QTL on chromosome 12. The high resolution possible with this approach makes QTLs accessible to positional cloning. PMID:10080185

Talbot, C J; Nicod, A; Cherny, S S; Fulker, D W; Collins, A C; Flint, J

1999-03-01

265

An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat  

Microsoft Academic Search

We made an update of the intervarietal molecular marker linkage map of the wheat genome developed using a doubled-haploid (DH) population derived from the cross between the cultivars 'Courtot' and 'Chinese Spring'. This map was constructed using 187 DH lines and 659 markers. The genome was well covered (more than 95%) except for chromosomes from homoeologous group 4 and chromosomes

P. Sourdille; T. Cadalen; H. Guyomarc'h; J. Snape; M. Perretant; G. Charmet; C. Boeuf; S. Bernard; M. Bernard

2003-01-01

266

Analysis of digenic epistatic effects and QE interaction effects QTL controlling grain weight in rice  

Microsoft Academic Search

Immortalized F2 population of rice (Oryza sativa L.) was developed by randomly mating F1 among recombinant inbred (RI) lines derived from (Zhenshan 97B × Minghui 63), which allowed replications within and across environments. QTL (quantitative trait loci) mapping analysis on kilo-grain weight of immortalized F2 population was performed by using newly developed software for QTL mapping, QTLMapper 2.0. Eleven distinctly

GAO Yong-ming; ZHU Jun; SONG You-shen; SHI Chun-hai; XING Yong-zhong

267

Locating QTL for osmotic adjustment and dehydration tolerance in rice  

Microsoft Academic Search

Research was conducted to identify and map quantit- ative trait loci (QTL) associated with dehydration tolerance and osmotic adjustment of rice. Osmotic adjustment capacity and lethal osmotic potential were determined for 52 recombinant inbred lines grown in a controlled environment under conditions of a slowly developed stress. The lines were from a cross between an Indica cultivar, Co39, of lowland

J. M. Lilley; M. M. Ludlow; S. R. McCouch; J. C. O'Toole

1996-01-01

268

Two-dimensional mapping of fine structures in the Kuroshio Current using seismic reflection data  

NASA Astrophysics Data System (ADS)

Multi-channel seismic reflection data acquired in the Pacific Ocean off the Muroto peninsula of Shikoku Island, Japan reveal the two-dimensional distribution of fine structures in the Kuroshio Current. Eighty-one seismic sections, each extending 80 km perpendicular to the current and separated by 100 m, were acquired from 20 June to 15 August 1999 (57 days). The seismic data clearly show that fine structures extend over 40 km perpendicular to the current in almost all of the profiles. A simulation study using acoustic model from CTD data demonstrates that fine structure of temperature and salinity identified in CTD data acquired from the Kuroshio Current off the Ashizuri peninsula yield a synthetic seismic profile with characteristics similar to the Muroto transect profiles.

Tsuji, Takeshi; Noguchi, Takashi; Niino, Hiroshi; Matsuoka, Toshifumi; Nakamura, Yasuyuki; Tokuyama, Hidekazu; Kuramoto, Shin'ichi; Bangs, Nathan

2005-07-01

269

Concomitant reiterative BAC walking and fine genetic mapping enable physical map development for the broad-spectrum late blight resistance region, RB.  

PubMed

The wild potato species Solanum bulbocastanum is a source of genes for potent late blight resistance. We previously mapped resistance to a single region of the S. bulbocastanum chromosome 8 and named the region RB (for "Resistance from S. Bulbocastanum"). We now report physical mapping and contig construction for the RB region via a novel reiterative method of BAC walking and concomitant fine genetic mapping. BAC walking was initiated using RFLP markers previously shown to be associated with late blight resistance. Subcontig extension was accomplished using new probes developed from BAC ends. Significantly, BAC end and partial BAC sequences were also used to develop PCR-based markers to enhance map resolution in the RB region. As they were developed from BAC clones of known position relative to RB, our PCR-based markers are known a priori to be physically closer to the resistance region. These markers allowed the efficient screening of large numbers of segregating progeny at the cotyledon stage, and permitted us to assign the resistance phenotype to a region of approximately 55 kb. Our markers also directed BAC walking efforts away from regions distantly related to RB in favor of the 55-kb region. Because the S. bulbocastanum genotype used in BAC library construction is heterozygous for RB (RB/rb), codominant PCR-based markers, originally developed for fine-scale mapping, were also used to determine homolog origins for individual BAC clones. Ultimately, BAC contigs were constructed for the RB region from both resistant (RB) and susceptible (rb) homologs. PMID:12827499

Bradeen, J M; Naess, S K; Song, J; Haberlach, G T; Wielgus, S M; Buell, C R; Jiang, J; Helgeson, J P

2003-08-01

270

Fine Mapping of Wheat Stripe Rust Resistance Gene Yr26 Based on Collinearity of Wheat with Brachypodium distachyon and Rice  

PubMed Central

The Yr26 gene, conferring resistance to all currently important races of Puccinia striiformis f. sp. tritici (Pst) in China, was previously mapped to wheat chromosome deletion bin C-1BL-6-0.32 with low-density markers. In this study, collinearity of wheat to Brachypodium distachyon and rice was used to develop markers to saturate the chromosomal region containing the Yr26 locus, and a total of 2,341 F2 plants and 551 F2?3 progenies derived from Avocet S×92R137 were used to develop a fine map of Yr26. Wheat expressed sequence tags (ESTs) located in deletion bin C-1BL-6-0.32 were used to develop sequence tagged site (STS) markers. The EST-STS markers flanking Yr26 were used to identify collinear regions of the rice and B. distachyon genomes. Wheat ESTs with significant similarities in the two collinear regions were selected to develop conserved markers for fine mapping of Yr26. Thirty-one markers were mapped to the Yr26 region, and six of them cosegregated with the resistance gene. Marker orders were highly conserved between rice and B. distachyon, but some rearrangements were observed between rice and wheat. Two flanking markers (CON-4 and CON-12) further narrowed the genomic region containing Yr26 to a 1.92 Mb region in B. distachyon chromosome 3 and a 1.17 Mb region in rice chromosome 10, and two putative resistance gene analogs were identified in the collinear region of B. distachyon. The markers developed in this study provide a potential target site for further map-based cloning of Yr26 and should be useful in marker assisted selection for pyramiding the gene with other resistance genes.

Zeng, Qingdong; Duan, Yinghui; Yuan, Fengping; Shi, Jingdong; Wang, Qilin; Wu, Jianhui; Huang, Lili; Kang, Zhensheng

2013-01-01

271

Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene bph19(t).  

PubMed

Genetic analysis and fine mapping of a resistance gene against brown planthopper (BPH) biotype 2 in rice was performed using two F(2) populations derived from two crosses between a resistant indica cultivar (cv.), AS20-1, and two susceptible japonica cvs., Aichi Asahi and Lijiangxintuanheigu. Insect resistance was evaluated using F(1) plants and the two F(2) populations. The results showed that a single recessive gene, tentatively designated as bph19(t), conditioned the resistance in AS20-1. A linkage analysis, mainly employing microsatellite markers, was carried out in the two F(2) populations through bulked segregant analysis and recessive class analysis (RCA), in combination with bioinformatics analysis (BIA). The resistance gene locus bph19(t) was finely mapped to a region of about 1.0 cM on the short arm of chromosome 3, flanked by markers RM6308 and RM3134, where one known marker RM1022, and four new markers, b1, b2, b3 and b4, developed in the present study were co-segregating with the locus. To physically map this locus, the bph19(t)-linked markers were landed on bacterial artificial chromosome or P1 artificial chromosome clones of the reference cv., Nipponbare, released by the International Rice Genome Sequencing Project. Sequence information of these clones was used to construct a physical map of the bph19(t) locus, in silico, by BIA. The bph19(t) locus was physically defined to an interval of about 60 kb. The detailed genetic and physical maps of the bph19(t) locus will facilitate marker-assisted gene pyramiding and cloning. PMID:16395578

Chen, J W; Wang, L; Pang, X F; Pan, Q H

2006-04-01

272

Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice.  

PubMed

The Yr26 gene, conferring resistance to all currently important races of Puccinia striiformis f. sp. tritici (Pst) in China, was previously mapped to wheat chromosome deletion bin C-1BL-6-0.32 with low-density markers. In this study, collinearity of wheat to Brachypodium distachyon and rice was used to develop markers to saturate the chromosomal region containing the Yr26 locus, and a total of 2,341 F2 plants and 551 F2?3 progenies derived from Avocet S×92R137 were used to develop a fine map of Yr26. Wheat expressed sequence tags (ESTs) located in deletion bin C-1BL-6-0.32 were used to develop sequence tagged site (STS) markers. The EST-STS markers flanking Yr26 were used to identify collinear regions of the rice and B. distachyon genomes. Wheat ESTs with significant similarities in the two collinear regions were selected to develop conserved markers for fine mapping of Yr26. Thirty-one markers were mapped to the Yr26 region, and six of them cosegregated with the resistance gene. Marker orders were highly conserved between rice and B. distachyon, but some rearrangements were observed between rice and wheat. Two flanking markers (CON-4 and CON-12) further narrowed the genomic region containing Yr26 to a 1.92 Mb region in B. distachyon chromosome 3 and a 1.17 Mb region in rice chromosome 10, and two putative resistance gene analogs were identified in the collinear region of B. distachyon. The markers developed in this study provide a potential target site for further map-based cloning of Yr26 and should be useful in marker assisted selection for pyramiding the gene with other resistance genes. PMID:23526955

Zhang, Xiaojuan; Han, Dejun; Zeng, Qingdong; Duan, Yinghui; Yuan, Fengping; Shi, Jingdong; Wang, Qilin; Wu, Jianhui; Huang, Lili; Kang, Zhensheng

2013-01-01

273

Fine-mapping of IL16 gene and prostate cancer risk in African Americans  

PubMed Central

Background Prostate cancer (Pca) is the most common type of cancer among men in the United States, and its incidence and mortality rates are disproportionate among ethnic groups. While genome-wide association studies of European descents have identified candidate loci associated with Pca risk, including a variant in IL16, replication studies in African Americans (AAs) have been inconsistent. Here we explore SNP variation in IL16 in AAs and test for association with Pca. Methods Association tests were performed for 2,257 genotyped and imputed SNPs spanning IL16 in 605 AA Pca cases and controls from Washington, DC. Eleven of them were also genotyped in a replication population of 1,093 AAs from Chicago. We tested for allelic association adjusting for age, global and local West African ancestry. Results Analyses of genotyped and imputed SNPs revealed that a cluster of IL16 SNPs were significantly associated with Pca risk. The strongest association was found at rs7175701 (P=9.8 × 10?8). In the Chicago population, another SNP (rs11556218) was associated with Pca risk (P=0.01). In the pooled analysis, we identified three independent loci within IL16 that were associated with Pca risk. SNP eQTL analyses revealed that rs7175701 is predicted to influence the expression of IL16 and other cancer related genes. Conclusion Our study provides evidence that IL16 polymorphisms play a role in Pca susceptibility among AAs. Impact Our findings are significant given that there has been limited focus on the role of IL16 genetic polymorphisms on Pca risk in AAs.

Batai, Ken; Shah, Ebony; Murphy, Adam B.; Newsome, Jennifer; Ruden, Maria; Ahaghotu, Chiledum; Kittles, Rick A.

2012-01-01

274

Fine Mapping of the Bsr1 Barley Stripe Mosaic Virus Resistance Gene in the Model Grass Brachypodium distachyon  

PubMed Central

The ND18 strain of Barley stripe mosaic virus (BSMV) infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25°C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F6?7 recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21 and used the RILs, and an F2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1). We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.

Cui, Yu; Lee, Mi Yeon; Huo, Naxin; Bragg, Jennifer; Yan, Lijie; Yuan, Cheng; Li, Cui; Holditch, Sara J.; Xie, Jingzhong; Luo, Ming-Cheng; Li, Dawei; Yu, Jialin; Martin, Joel; Schackwitz, Wendy; Gu, Yong Qiang; Vogel, John P.; Jackson, Andrew O.; Liu, Zhiyong; Garvin, David F.

2012-01-01

275

Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar  

NASA Technical Reports Server (NTRS)

The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

2003-01-01

276

Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar  

NASA Technical Reports Server (NTRS)

The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

Madsen, S. N.; Carsey, F. D.; Turtle, E. P.

2003-01-01

277

Effect of family relatedness on characteristics of estimated IBD probabilities in relation to precision of QTL estimates  

PubMed Central

Background A random QTL effects model uses a function of probabilities that two alleles in the same or in different animals at a particular genomic position are identical by descent (IBD). Estimates of such IBD probabilities and therefore, modeling and estimating QTL variances, depend on marker polymorphism, strength of linkage and linkage disequilibrium of markers and QTL, and the relatedness of animals in the pedigree. The effect of relatedness of animals in a pedigree on IBD probabilities and their characteristics was examined in a simulation study. Results The study based on nine multi-generational family structures, similar to a pedigree structure of a real dairy population, distinguished by an increased level of inbreeding from zero to 28% across the studied population. Highest inbreeding level in the pedigree, connected with highest relatedness, was accompanied by highest IBD probabilities of two alleles at the same locus, and by lower relative variation coefficients. Profiles of correlation coefficients of IBD probabilities along the marked chromosomal segment with those at the true QTL position were steepest when the inbreeding coefficient in the pedigree was highest. Precision of estimated QTL location increased with increasing inbreeding and pedigree relatedness. A method to assess the optimum level of inbreeding for QTL detection is proposed, depending on population parameters. Conclusions An increased overall relationship in a QTL mapping design has positive effects on precision of QTL position estimates. But the relationship of inbreeding level and the capacity for QTL detection depending on the recombination rate of QTL and adjacent informative marker is not linear.

2010-01-01

278

Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber ( Cucumis sativus L.) using random-amplified polymorphic DNA markers  

Microsoft Academic Search

An 80-point genetic map [77 random-amplified polymorphic DNAs (RAPD), F (female sex expression), de (determinate), and ll (little leaf)] was constructed from a narrow cross in cucumber using the determinate, gynoecious, standard-sized leaf line G421 and the indeterminate, monoecious, little leaf line H-19. The map defined nine linkage groups and spanned ca. 600 cM with an average distance between markers

Felix C. Serquen; J Bacher; JE Staub

1997-01-01

279

Fine mapping of Ekp-1, a locus associated with silkworm (Bombyx mori) proleg development  

Microsoft Academic Search

The silkworm homeotic mutant Ekp has a pair of rudimentary abdominal legs, called prolegs, in its A2 segment. This phenotype is caused by a single dominant mutation at the Ekp-1 locus, which was previously mapped to chromosome 6. To explore the possible association of Hox genes with proleg development in the silkworm, a map-based cloning strategy was used to isolate

H Xiang; M Li; F Yang; Q Guo; S Zhan; H Lin; X Miao; Y Huang

2008-01-01

280

Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns  

Microsoft Academic Search

Maps of fire frequency, severity, size, and pattern are useful for strategically planning fire and natural resource management, assessing risk and ecological conditions, illustrating change in disturbance regimes through time, identifying knowledge gaps, and learning how climate, topography, vegetation, and land use influence fire regimes. We review and compare alternative data sources and approaches for mapping fire regimes at national,

Penelope MorganA; Colin C. HardyB; Thomas W. SwetnamC; Matthew G. RollinsB; Donald G. LongB

281

Searching QTL by gene expression: analysis of diabesity  

PubMed Central

Background Recent developments in sequence databases provide the opportunity to relate the expression pattern of genes to their genomic position, thus creating a transcriptome map. Quantitative trait loci (QTL) are phenotypically-defined chromosomal regions that contribute to allelically variant biological traits, and by overlaying QTL on the transcriptome, the search for candidate genes becomes extremely focused. Results We used our novel data mining tool, ExQuest, to select genes within known diabesity QTL showing enriched expression in primary diabesity affected tissues. We then quantified transcripts in adipose, pancreas, and liver tissue from Tally Ho mice, a multigenic model for Type II diabetes (T2D), and from diabesity-resistant C57BL/6J controls. Analysis of the resulting quantitative PCR data using the Global Pattern Recognition analytical algorithm identified a number of genes whose expression is altered, and thus are novel candidates for diabesity QTL and/or pathways associated with diabesity. Conclusion Transcription-based data mining of genes in QTL-limited intervals followed by efficient quantitative PCR methods is an effective strategy for identifying genes that may contribute to complex pathophysiological processes.

Brown, Aaron C; Olver, William I; Donnelly, Charles J; May, Marjorie E; Naggert, Jurgen K; Shaffer, Daniel J; Roopenian, Derry C

2005-01-01

282

High-Resolution Mapping of a Fruit Firmness-Related Quantitative Trait Locus in Tomato Reveals Epistatic Interactions Associated with a Complex Combinatorial Locus1[W][OA  

PubMed Central

Fruit firmness in tomato (Solanum lycopersicum) is determined by a number of factors including cell wall structure, turgor, and cuticle properties. Firmness is a complex polygenic trait involving the coregulation of many genes and has proved especially challenging to unravel. In this study, a quantitative trait locus (QTL) for fruit firmness was mapped to tomato chromosome 2 using the Zamir Solanum pennellii interspecific introgression lines (ILs) and fine-mapped in a population consisting of 7,500 F2 and F3 lines from IL 2-3 and IL 2-4. This firmness QTL contained five distinct subpeaks, Firs.p.QTL2.1 to Firs.p.QTL2.5, and an effect on a distal region of IL 2-4 that was nonoverlapping with IL 2-3. All these effects were located within an 8.6-Mb region. Using genetic markers, each subpeak within this combinatorial locus was mapped to a physical location within the genome, and an ethylene response factor (ERF) underlying Firs.p.QTL2.2 and a region containing three pectin methylesterase (PME) genes underlying Firs.p.QTL2.5 were nominated as QTL candidate genes. Statistical models used to explain the observed variability between lines indicated that these candidates and the nonoverlapping portion of IL 2-4 were sufficient to account for the majority of the fruit firmness effects. Quantitative reverse transcription-polymerase chain reaction was used to quantify the expression of each candidate gene. ERF showed increased expression associated with soft fruit texture in the mapping population. In contrast, PME expression was tightly linked with firm fruit texture. Analysis of a range of recombinant lines revealed evidence for an epistatic interaction that was associated with this combinatorial locus.

Chapman, Natalie H.; Bonnet, Julien; Grivet, Laurent; Lynn, James; Graham, Neil; Smith, Rebecca; Sun, Guiping; Walley, Peter G.; Poole, Mervin; Causse, Mathilde; King, Graham J.; Baxter, Charles; Seymour, Graham B.

2012-01-01

283

Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement.  

PubMed

A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies. PMID:21484332

Mace, E S; Jordan, D R

2011-06-01

284

QTL for microstructural and biophysical muscle properties and body composition in pigs  

PubMed Central

Background The proportion of muscle fibre types and their size affect muscularity as well as functional properties of the musculature and meat quality. We aimed to identify QTL for microstructural muscle properties including muscle fibre size, their numbers and fibre type proportions as well as biophysical parameters of meat quality and traits related to body composition, i.e. pH, conductivity, area of M. longissimus dorsi and lean meat content. A QTL scan was conducted in a porcine experimental population that is based on Duroc and Berlin Miniature Pig. Results Least square regression interval mapping revealed five significant and 42 suggestive QTL for traits related to muscle fibre composition under the line-cross model as well as eight significant and 40 suggestive QTL under the half-sib model. For traits related to body composition and biophysical parameters of meat quality five and twelve significant plus nine and 22 suggestive QTL were found under the line-cross and half-sib model, respectively. Regions with either significant QTL for muscle fibre traits or significant QTL for meat quality and muscularity or both were detected on SSC1, 2, 3, 4, 5, 13, 14, 15, and 16. QTL for microstructural properties explained a larger proportion of variance than did QTL for meat quality and body composition. Conclusion Microstructural properties of pig muscle and meat quality are governed by genetic variation at many loci distributed throughout the genome. QTL analysis under both, the line-cross and half-sib model, allows detecting QTL in case of fixation or segregation of the QTL alleles among the founder populations and thus provide comprehensive insight into the genetic variation of the traits under investigation. Genomic regions affecting complex traits of muscularity and meat quality as well as microstructural properties might point to QTL that in first instance affect muscle fibre traits and by this in second instance meat quality. Disentangling complex traits in their constituent phenotypes might facilitate the identification of QTL and the elucidation of the pleiotropic nature of QTL effects.

Wimmers, Klaus; Fiedler, Ilse; Hardge, Torsten; Murani, Eduard; Schellander, Karl; Ponsuksili, Siriluck

2006-01-01

285

Yeast Growth Plasticity Is Regulated by Environment-Specific Multi-QTL Interactions  

PubMed Central

For a unicellular, non-motile organism like Saccharomyces cerevisiae, carbon sources act both as nutrients and as signaling molecules and consequently affect various fitness parameters including growth. It is therefore advantageous for yeast strains to adapt their growth to carbon source variation. The ability of a given genotype to manifest different phenotypes in varying environments is known as phenotypic plasticity. To identify quantitative trait loci (QTL) that drive plasticity in growth, two growth parameters (growth rate and biomass) were measured in a published dataset from meiotic recombinants of two genetically divergent yeast strains grown in different carbon sources. To identify QTL contributing to plasticity across pairs of environments, gene–environment interaction mapping was performed, which identified several QTL that have a differential effect across environments, some of which act antagonistically across pairs of environments. Multi-QTL analysis identified loci interacting with previously known growth affecting QTL as well as novel two-QTL interactions that affect growth. A QTL that had no significant independent effect was found to alter growth rate and biomass for several carbon sources through two-QTL interactions. Our study demonstrates that environment-specific epistatic interactions contribute to the growth plasticity in yeast. We propose that a targeted scan for epistatic interactions, such as the one described here, can help unravel mechanisms regulating phenotypic plasticity.

Bhatia, Aatish; Yadav, Anupama; Zhu, Chenchen; Gagneur, Julien; Radhakrishnan, Aparna; Steinmetz, Lars M.; Bhanot, Gyan; Sinha, Himanshu

2014-01-01

286

Precision mapping of quantitative trait loci  

Microsoft Academic Search

Adequate separation of effects of possible multiple linked quantitative trait loci (QTLs) on mapping QTLs is the key to increasing the precision of QTL mapping. A new method of QTL mapping is proposed and analyzed in this paper by combining interval mapping with multiple regression. The basis of the proposed method is an interval test in which the test statistic

Zhao-Bang Zeng

1994-01-01

287

QTLs Associated with Resistance to Soybean Cyst Nematode in Soybean Meta-Analysis of QTL Locations—Retraction  

Microsoft Academic Search

Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is the most important pest of soybean (Glycine max (L.) Merr.) in the world. A total of 17 quantitative trait locus (QTL) mapping papers and 62 marker-QTL associations have been reported for resistance to soybean cyst nematode in soybean. Conflicting results often oc- curred. The objectives of this study were to: (i) evaluate

B. Guo; D. A. Sleper; P. Lu; J. G. Shannon; H. T. Nguyen; P. R. Arelli

2006-01-01

288

Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae  

Microsoft Academic Search

In this study, the advanced backcross QTL (AB-QTL) mapping strategy was used to identify loci for yield, processing and fruit quality traits in a population derived from the interspecific cross Lycopersicon esculentum E6203 × Lycopersicon pennellii accession LA1657. A total of 175 BC 2 plants were genotyped with 150 molecular markers and BC 2F 1 plots were grown and phenotyped

A. Frary; T. M. Fulton; D. Zamir; S. D. Tanksley

2004-01-01

289

Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.).  

PubMed

9012AB, a recessive genic male sterility (RGMS) line derived from spontaneous mutation in Brassica napus, has been playing an important role in rapeseed hybrid production in China. The male sterility of 9012AB is controlled by two recessive genes (ms3 and ms4) interacting with one recessive epistatic suppressor gene (esp). The objective of this study was to develop PCR-based markers tightly linked to the esp gene and construct a high-resolution map surrounding the esp gene. From the survey of 512 AFLP primer combinations, 3 tightly linked AFLP markers were obtained and successfully converted to codominant or dominant SCAR markers. Furthermore, a codominant SSR marker (Ra2G08) associated with the esp gene was identified through genetic map integration. For fine mapping of the esp gene, these PCR-based markers were analyzed in a large BC1 population of 2545 plants. The esp gene was then genetically restricted to a region of 1.03 cM, 0.35 cM from SSR marker Ra2G08 and 0.68 cM from SCAR marker WSC6. The SCAR marker WSC5 co-segregated with the target gene. These results lay a solid foundation for map-based cloning of esp and will facilitate the selection of RGMS lines and their temporary maintainers. PMID:19935923

Xu, Zhenghua; Xie, Yanzhou; Hong, Dengfeng; Liu, Pingwu; Yang, Guangsheng

2009-09-01

290

A fine structure genomic map of the region of 12q13 containing SAS and CDK4  

SciTech Connect

We have recently adapted a method, originally described by Rackwitz, to the rapid restriction mapping of multiple cosmid DNA samples. Linearization of the cosmids at the lambda cohesive site using lambda terminase is followed by partial digestion with selected restriction enzymes and hybridization to oligonucleotides specific for the right or left hand termini. Partial digestions are performed in a microtiter plate thus allowing up to 12 cosmid clones to be digested with one restriction enzyme. We have applied this rapid restriction mapping method to cosmids derived from a region of chromosome 12q13 that has recently been shown to be amplified in a variety of cancers including malignant fibrous histiocytoma, fibrosarcoma, liposarcoma, osteosarcoma and brain tumors. A small segment of this amplification unit containing three genes, SAS (a membrane protein), CDK4 (a cyclin dependent kinase) and OS-9 (a recently described cDNA) has been analyzed with the system described above. This fine structure genomic map will be useful for completing the expression map of this region as well as characterizing its pattern of amplification in tumor specimens.

Linder, C.Y.; Elkahloun, A.G.; Su, Y.A. [National Center for Human Genome Research, Bethesda, MD (United States)] [and others

1994-09-01

291

Fine mapping of the EDA gene: A translocation breakpoint is associated with a CpG island that is transcribed  

SciTech Connect

In order to identify the gene for human X-linked anhidrotic ectodermal dysplasia (EDA), a translocation breakpoint in a female with t(X;1)(q13.1;p36.3) and EDA (patient AK) was finely mapped. The EDA region contains five groups of rare-cutter restriction sites that define CpG islands. The two more centromeric of these islands are associated with transcripts of 3.5 kb and 1.8 kb. The third CpG island maps within <1 kb of the translocation breakpoint in patient AK, as indicated by a genomic rearrangement, and {approximately}100 kb centromeric from another previously mapped translocation breakpoint (patient AnLy). Northern analysis with a probe from this CpG island detected an {approximately}6-kb mRNA in several fetal tissues tested. An extended YAC contig of 1,200 kb with an average of fivefold coverage was constructed. The two most telomeric CpG islands map 350 kb telomeric of the two translocations. Taken together, the results suggest that the CpG island just proximal of the AK translocation breakpoint lies at the 5{prime} end of a candidate gene for EDA. 26 refs., 4 figs., 1 tab.

Srivastava, A.K.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); Montonen, O. [Univ. of Helsinki (Finland)] [and others

1996-01-01

292

Fine mapping and candidate gene analysis of the nuclear restorer gene Rfp for pol CMS in rapeseed (Brassica napus L.).  

PubMed

The Polima (pol) system of cytoplasmic male sterility (CMS) in rapeseed is widely used in China for commercial hybrid seed production. Genetic studies have shown that its fertility restorer gene (Rfp) is monogenic dominant. For fine mapping of the Rfp gene, a near isogenic line comprising 3,662 individuals of BC(14)F(1) generation segregating for the Rfp gene was created. Based on the sequences of two SCAR markers, SCAP0612ST and SCAP0612EM2, developed by Zhao et al. (Genes Genom 30(3):191-196, 2008) and the synteny region of Brassica napus and other Brassica species, 13 markers strongly linked with the Rfp gene were identified. By integrating three of these markers to the published linkage map, the Rfp gene was mapped on linkage group N9 of B. napus. Using these markers, the Rfp locus was narrowed down to a 29.2-kb genomic region of Brassica rapa. Seven open reading frames (ORFs) were predicted in the target region, of these, ORF2, encoding a PPR protein, was the most likely candidate gene of Rfp. These results lay a solid foundation for map-based cloning of the Rfp gene and will be helpful for marker-assisted selection of elite CMS restorer lines. PMID:22614178

Liu, Zhi; Liu, Pingwu; Long, Furong; Hong, Dengfeng; He, Qingbiao; Yang, Guangsheng

2012-08-01

293

Long-Range Regulatory Polymorphisms Affecting a GABA Receptor Constitute a Quantitative Trait Locus (QTL) for Social Behavior in Caenorhabditis elegans  

PubMed Central

Aggregation is a social behavior that varies between and within species, providing a model to study the genetic basis of behavioral diversity. In the nematode Caenorhabditis elegans, aggregation is regulated by environmental context and by two neuromodulatory pathways, one dependent on the neuropeptide receptor NPR-1 and one dependent on the TGF-? family protein DAF-7. To gain further insight into the genetic regulation of aggregation, we characterize natural variation underlying behavioral differences between two wild-type C. elegans strains, N2 and CB4856. Using quantitative genetic techniques, including a survey of chromosome substitution strains and QTL analysis of recombinant inbred lines, we identify three new QTLs affecting aggregation in addition to the two known N2 mutations in npr-1 and glb-5. Fine-mapping with near-isogenic lines localized one QTL, accounting for 5%–8% of the behavioral variance between N2 and CB4856, 3? to the transcript of the GABA neurotransmitter receptor gene exp-1. Quantitative complementation tests demonstrated that this QTL affects exp-1, identifying exp-1 and GABA signaling as new regulators of aggregation. exp-1 interacts genetically with the daf-7 TGF-? pathway, which integrates food availability and population density, and exp-1 mutations affect the level of daf-7 expression. Our results add to growing evidence that genetic variation affecting neurotransmitter receptor genes is a source of natural behavioral variation.

Bendesky, Andres; Pitts, Jason; Rockman, Matthew V.; Chen, William C.; Tan, Man-Wah; Kruglyak, Leonid; Bargmann, Cornelia I.

2012-01-01

294

A mixed model QTL analysis for sugarcane multiple-harvest-location trial data.  

PubMed

Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane. PMID:22159754

Pastina, M M; Malosetti, M; Gazaffi, R; Mollinari, M; Margarido, G R A; Oliveira, K M; Pinto, L R; Souza, A P; van Eeuwijk, F A; Garcia, A A F

2012-03-01

295

Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits  

PubMed Central

The radish displays great morphological variation but the genetic factors underlying this variability are mostly unknown. To identify quantitative trait loci (QTLs) controlling radish morphological traits, we cultivated 94 F4 and F5 recombinant inbred lines derived from a cross between the rat-tail radish and the Japanese radish cultivar ‘Harufuku’ inbred lines. Eight morphological traits (ovule and seed numbers per silique, plant shape, pubescence and root formation) were measured for investigation. We constructed a map composed of 322 markers with a total length of 673.6 cM. The linkage groups were assigned to the radish chromosomes using disomic rape-radish chromosome-addition lines. On the map, eight and 10 QTLs were identified in 2008 and 2009, respectively. The chromosome-linkage group correspondence, the sequence-specific markers and the QTLs detected here will provide useful information for further genetic studies and for selection during radish breeding programs.

Hashida, Tomoko; Nakatsuji, Ryoichi; Budahn, Holger; Schrader, Otto; Peterka, Herbert; Fujimura, Tatsuhito; Kubo, Nakao; Hirai, Masashi

2013-01-01

296

Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription  

PubMed Central

Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation.

Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

2013-01-01

297

Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene  

Microsoft Academic Search

BACKGROUND: DIPLOSPOROUS (DIP) is the locus for diplospory in Taraxacum, associated to unreduced female gamete formation in apomicts. Apomicts reproduce clonally through seeds, including apomeiosis, parthenogenesis, and autonomous or pseudogamous endosperm formation. In Taraxacum, diplospory results in first division restitution (FDR) nuclei, and inherits as a dominant, monogenic trait, independent from the other apomixis elements. A preliminary genetic linkage map

Kitty Vijverberg; Slavica Milanovic-Ivanovic; Tanja Bakx-Schotman; Peter J van Dijk

2010-01-01

298

Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat.  

PubMed

The genome sequences of rice (Oryza sativa L.) and Brachypodium distachyon and the comprehensive Triticeae EST (Expressed Sequence Tag) resources provide invaluable information for comparative genomics analysis. The powdery mildew resistance gene, Pm6, which was introgressed into common wheat from Triticum timopheevii, was previously mapped to the wheat chromosome bin of 2BL [fraction length (FL) 0.50-1.00] with limited DNA markers. In this study, we saturated the Pm6 locus in wheat using the collinearity-based markers by extensively exploiting these genomic resources. All wheat ESTs located in the bin 2BL FL 0.50-1.00 and their corresponding orthologous genes on rice chromosome 4 were firstly used to develop STS (Sequence Tagged Site) markers. Those identified markers that flanked the Pm6 locus were then used to identify the collinear regions in the genomes of rice and Brachypodium. Triticeae ESTs with orthologous genes in these collinear regions were further used to develop new conserved markers for the fine mapping of Pm6. Using two F(2) populations derived from crosses of IGVI-465 × Prins and IGVI-466 × Prins, we mapped a total of 29 markers to the Pm6 locus. Among them, 14 markers were co-segregated with Pm6 in the IGVI-466/Prins population. Comparative genome analysis showed that the collinear region of the 29 linked markers covers a ~5.6-Mb region in chromosome 5L of Brachypodium and a ~6.0-Mb region in chromosome 4L of rice. The marker order is conserved between rice and Brachypodium, but re-arrangements are present in wheat. Comparative mapping in the two populations showed that two conserved markers (CINAU123 and CINAU127) flanked the Pm6 locus, and an LRR-receptor-like protein kinase cluster was identified in the collinear regions of Brachypodium and rice. This putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm6. Moreover, the newly developed conserved markers closely linked to Pm6 can be used for the marker-assisted selection (MAS) of Pm6 in wheat breeding programs. PMID:21468676

Qin, Bi; Cao, Aizhong; Wang, Haiyan; Chen, Tingting; You, Frank M; Liu, Yangyang; Ji, Jianhui; Liu, Dajun; Chen, Peidu; Wang, Xiu-e

2011-07-01

299

Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley  

PubMed Central

Background The barley-Puccinia hordei (barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, Rphq2 and Rphq3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown. Results An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with Puccinia hordei. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at Rphq2 and Rphq3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (HvERF4) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that Rphq2 or Rphq3 contains a trans-eQTL that modulates expression of HvERF4. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within Rphq2 or Rphq3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of Ph-responsive genes and that hormone-related signalling pathways are actively involved in response to Puccinia hordei. Conclusions Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover trans-eQTL mediated regulatory relays initiated from genes within the QTL regions.

2010-01-01

300

Mapping genetic loci that interact with myostatin to affect growth traits  

PubMed Central

Myostatin, or GDF8, is an inhibitor of skeletal muscle growth. A non-functional myostatin mutation leads to a double muscling phenotype in some species, for example, mice, cattle and humans. Previous studies have indicated that there are loci in the genome that interact with myostatin to control backfat depth and other complex traits. We now report a quantitative trait loci (QTL) mapping study designed to identify loci that interact with myostatin to impact growth traits in mice. Body weight and average daily gain traits were collected on F2 progeny derived from a myostatin-null C57BL/6 strain by M16i cross. In all, 44 main effect QTL were detected above a 5% genome-wide significance threshold when an interval mapping method was used. An additional 37 QTL were identified to significantly interact with myostatin, sex or reciprocal cross. A total of 12 of these QTL interacted with myostatin genotype. These results provide a foundation for the further fine mapping of genome regions that harbor loci that interact with myostatin.

Cheng, Y; Rachagani, S; Dekkers, J C M; Mayes, M S; Tait, R; Reecy, J M

2011-01-01

301

Fine mapping of the Darier's disease locus on chromosome 12q.  

PubMed

Darier's disease (DD) is an autosomal dominant genodermatosis characterized by epidermal acantholysis and dyskeratosis. We have performed genetic linkage studies in 10 families with DD (34 affected) by analyzing 14 polymorphic microsatellite markers. Our results confirm recent reports mapping the DD gene to chromosome 12q23-q24.1. Haplotype analysis of recombinant chromosomes in our families, along with previously reported data, narrow the location of the DD gene to a 5 cM interval flanked by the loci D12S354 and D12S84/D12S105. This localization allowed exclusion of two known genes, PLA2A and PAH, as candidate loci for DD. Three other gene loci (PPP1C, PMCH, PMCA1), mapping in 12q21-q24, remain potential candidates. PMID:7963653

Richard, G; Wright, A R; Harris, S; Doyle, S Z; Korge, B; Mazzanti, C; Tanaka, T; Harth, W; McBride, O W; Compton, J G; Bale, S J; DiGiovanna, J J

1994-11-01

302

Fine mapping of the clubroot resistance gene, Crr3 , in Brassica rapa  

Microsoft Academic Search

A linkage map of Chinese cabbage (Brassica rapa) was constructed to localize the clubroot resistance (CR) gene, Crr3. Quantitative trait loci analysis using an F3 population revealed a sharp peak in the logarithm of odds score around the sequence-tagged site (STS) marker, OPC11-2S. Therefore, this region contained Crr3. Nucleotide sequences of OPC11-2S and its proximal markers showed homology to sequences

M. Saito; N. Kubo; S. Matsumoto; K. Suwabe; M. Tsukada; M. Hirai

2006-01-01

303

Genetic and physical fine mapping of Scmv2 , a potyvirus resistance gene in maize  

Microsoft Academic Search

Sugarcane mosaic virus (SCMV) is an important virus pathogen both in European and Chinese maize production, causing serious\\u000a losses in grain and forage yield in susceptible cultivars. Two major resistance loci confer resistance to SCMV, one located\\u000a on chromosome 3 (Scmv2) and one on chromosome 6 (Scmv1). We developed a large isogenic mapping population segregating in the Scmv2, but not

Christina Roenn Ingvardsen; Yongzhong Xing; Ursula Karoline Frei; Thomas Lübberstedt

2010-01-01

304

The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility.  

PubMed

Aerosol mapping was used to assess particle number and mass concentration in an engine machining and assembly facility in the winter and spring. Number and mass concentration maps were constructed from data collected with two mobile sampling carts, each equipped with a condensation particle counter (10 nm < diameter < 1 microm) and an optical particle counter (300 nm < diameter < 20 microm). Number concentrations inside the facility ranged from 15 to 150 times greater than that outside the facility and were highly dependent on season. The greatest number concentration (>1,000,000 particles cm(-3)) occurred in winter in an area where mass concentration was low (<0.10 mg m(-3)). The increased number of particles was attributed to the exhaust of direct-fire, natural-gas burners used to heat the supply air. The greatest mass concentrations were found around metalworking operations that were poorly enclosed. The larger particles that dominated particle mass in this area were accompanied by ultrafine particles, probably generated through evaporation and subsequent condensation of metalworking fluid components. Repeat mapping events demonstrated that these ultrafine particles persist in workplace air over long time periods. PMID:16361396

Peters, Thomas M; Heitbrink, William A; Evans, Douglas E; Slavin, Thomas J; Maynard, Andrew D

2006-04-01

305

High resolution mapping of trypanosomosis resistance loci Tir2 and Tir3 using F12 advanced intercross lines with major locus Tir1 fixed for the susceptible allele  

PubMed Central

Background Trypanosomosis is the most economically important disease constraint to livestock productivity in Africa. A number of trypanotolerant cattle breeds are found in West Africa, and identification of the genes conferring trypanotolerance could lead to effective means of genetic selection for trypanotolerance. In this context, high resolution mapping in mouse models are a promising approach to identifying the genes associated with trypanotolerance. In previous studies, using F2 C57BL/6J × A/J and C57BL/6J × BALB/cJ mouse resource populations, trypanotolerance QTL were mapped within a large genomic intervals of 20-40 cM to chromosomes MMU17, 5 and 1, and denoted Tir1, Tir2 and Tir3 respectively. Subsequently, using F6 C57BL/6J × A/J and C57BL/6J × BALB/cJ F6 advanced intercross lines (AIL), Tir1 was fine mapped to a confidence interval (CI) of less than 1 cM, while Tir2 and Tir3, were mapped within 5-12 cM. Tir1 represents the major trypanotolerance QTL. Results In order to improve map resolutions of Tir2 and Tir3, an F12 C57BL/6J × A/J AIL population fixed for the susceptible alleles at Tir1 QTL was generated. An F12 C57BL/6J × A/J AIL population, fixed for the resistant alleles at Tir1 QTL was also generated to provide an additional estimate of the gene effect of Tir1. The AIL populations homozygous for the resistant and susceptible Tir1 alleles and the parental controls were challenged with T. congolense and followed for survival times over 180 days. Mice from the two survival extremes of the F12 AIL population fixed for the susceptible alleles at Tir1 were genotyped with a dense panel of microsatellite markers spanning the Tir2 and Tir3 genomic regions and QTL mapping was performed. Tir2 was fine mapped to less than 1 cM CI while Tir3 was mapped to three intervals named Tir3a, Tir3b and Tir3c with 95% confidence intervals (CI) of 6, 7.2 and 2.2 cM, respectively. Conclusions The mapped QTL regions encompass genes that are vital to innate immune response and can be potential candidate genes for the underlying QTL.

2010-01-01

306

Fine time course expression analysis identifies cascades of activation and repression and maps a putative regulator of mammalian sex determination.  

PubMed

In vertebrates, primary sex determination refers to the decision within a bipotential organ precursor to differentiate as a testis or ovary. Bifurcation of organ fate begins between embryonic day (E) 11.0-E12.0 in mice and likely involves a dynamic transcription network that is poorly understood. To elucidate the first steps of sexual fate specification, we profiled the XX and XY gonad transcriptomes at fine granularity during this period and resolved cascades of gene activation and repression. C57BL/6J (B6) XY gonads showed a consistent ~5-hour delay in the activation of most male pathway genes and repression of female pathway genes relative to 129S1/SvImJ, which likely explains the sensitivity of the B6 strain to male-to-female sex reversal. Using this fine time course data, we predicted novel regulatory genes underlying expression QTLs (eQTLs) mapped in a previous study. To test predictions, we developed an in vitro gonad primary cell assay and optimized a lentivirus-based shRNA delivery method to silence candidate genes and quantify effects on putative targets. We provide strong evidence that Lmo4 (Lim-domain only 4) is a novel regulator of sex determination upstream of SF1 (Nr5a1), Sox9, Fgf9, and Col9a3. This approach can be readily applied to identify regulatory interactions in other systems. PMID:23874228

Munger, Steven C; Natarajan, Anirudh; Looger, Loren L; Ohler, Uwe; Capel, Blanche

2013-01-01

307

Fine mapping of breast cancer genome-wide association studies loci in women of African ancestry identifies novel susceptibility markers  

PubMed Central

Numerous single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility have been identified by genome-wide association studies (GWAS). However, these SNPs were primarily discovered and validated in women of European and Asian ancestry. Because linkage disequilibrium is ancestry-dependent and heterogeneous among racial/ethnic populations, we evaluated common genetic variants at 22 GWAS-identified breast cancer susceptibility loci in a pooled sample of 1502 breast cancer cases and 1378 controls of African ancestry. None of the 22 GWAS index SNPs could be validated, challenging the direct generalizability of breast cancer risk variants identified in Caucasians or Asians to other populations. Novel breast cancer risk variants for women of African ancestry were identified in regions including 5p12 (odds ratio [OR] = 1.40, 95% confidence interval [CI] = 1.11–1.76; P = 0.004), 5q11.2 (OR = 1.22, 95% CI = 1.09–1.36; P = 0.00053) and 10p15.1 (OR = 1.22, 95% CI = 1.08–1.38; P = 0.0015). We also found positive association signals in three regions (6q25.1, 10q26.13 and 16q12.1–q12.2) previously confirmed by fine mapping in women of African ancestry. In addition, polygenic model indicated that eight best markers in this study, compared with 22 GWAS-identified SNPs, could better predict breast cancer risk in women of African ancestry (per-allele OR = 1.21, 95% CI = 1.16–1.27; P = 9.7 × 10–16). Our results demonstrate that fine mapping is a powerful approach to better characterize the breast cancer risk alleles in diverse populations. Future studies and new GWAS in women of African ancestry hold promise to discover additional variants for breast cancer susceptibility with clinical implications throughout the African diaspora.

Huo, Dezheng

2013-01-01

308

Fine-mapping and phenotypic analysis of the Ity3 Salmonella susceptibility locus identify a complex genetic structure.  

PubMed

Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimurium locus 3) as a locus contributing to the early susceptibility of MOLF/Ei mice to infection with Salmonella Typhimurium. We have also established a congenic strain (B6.MOLF-Ity/Ity3) with the MOLF/Ei Ity3 donor segment on a C57BL/6J background. The current study was designed to fine map and characterize functionally the Ity3 locus. We generated 12 recombinant sub-congenic strains that were characterized for susceptibility to infection, bacterial load in target organs, cytokine profile and anti-microbial mechanisms. These analyses showed that the impact of the Ity3 locus on survival and bacterial burden was stronger in male mice compared to female mice. Fine mapping of Ity3 indicated that two subloci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. The Ity3.1 sublocus controls NADPH oxidase activity and is characterized by decreased ROS production, reduced inflammatory cytokine response and increased bacterial burden, thereby supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying this sublocus. The Ity3.2 sub-locus is characterized by a hyperresponsive inflammatory cytokine phenotype after exposure to Salmonella. Overall, this research provides support to the combined action of hormonal influences and complex genetic factors within the Ity3 locus in the innate immune response to Salmonella infection in wild-derived MOLF/Ei mice. PMID:24505352

Khan, Rabia T; Yuki, Kyoko E; Malo, Danielle

2014-01-01

309

Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure  

PubMed Central

Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimurium locus 3) as a locus contributing to the early susceptibility of MOLF/Ei mice to infection with Salmonella Typhimurium. We have also established a congenic strain (B6.MOLF-Ity/Ity3) with the MOLF/Ei Ity3 donor segment on a C57BL/6J background. The current study was designed to fine map and characterize functionally the Ity3 locus. We generated 12 recombinant sub-congenic strains that were characterized for susceptibility to infection, bacterial load in target organs, cytokine profile and anti-microbial mechanisms. These analyses showed that the impact of the Ity3 locus on survival and bacterial burden was stronger in male mice compared to female mice. Fine mapping of Ity3 indicated that two subloci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. The Ity3.1 sublocus controls NADPH oxidase activity and is characterized by decreased ROS production, reduced inflammatory cytokine response and increased bacterial burden, thereby supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying this sublocus. The Ity3.2 sub-locus is characterized by a hyperresponsive inflammatory cytokine phenotype after exposure to Salmonella. Overall, this research provides support to the combined action of hormonal influences and complex genetic factors within the Ity3 locus in the innate immune response to Salmonella infection in wild-derived MOLF/Ei mice.

Khan, Rabia T.; Yuki, Kyoko E.; Malo, Danielle

2014-01-01

310

Fine-mapping of genome-wide association study-identified risk loci for colorectal cancer in African Americans.  

PubMed

Genome-wide association studies of colorectal cancer (CRC) in Europeans and Asians have identified 21 risk susceptibility regions [29 index single-nucleotide polymorphisms (SNPs)]. Characterizing these risk regions in diverse racial groups with different linkage disequilibrium (LD) structure can help localize causal variants. We examined associations between CRC and all 29 index SNPs in 6597 African Americans (1894 cases and 4703 controls). Nine SNPs in eight regions (5q31.1, 6q26-q27, 8q23.3, 8q24.21, 11q13.4, 15q13.3, 18q21.1 and 20p12.3) formally replicated in our data with one-sided P-values <0.05 and the same risk directions as reported previously. We performed fine-mapping of the 21 risk regions (including 250 kb on both sides of the index SNPs) using genotyped and imputed markers at the density of the 1000 Genomes Project to search for additional or more predictive risk markers. Among the SNPs correlated with the index variants, two markers, rs12759486 (or rs7547751, a putative functional variant in perfect LD with it) in 1q41 and rs7252505 in 19q13.1, were more strongly and statistically significantly associated with CRC (P < 0.0006). The average per allele risk was improved using the replicated index variants and the two new markers (odds ratio = 1.14, P = 6.5 × 10(-16)) in African Americans, compared with using all index SNPs (odds ratio = 1.07, P = 3.4 × 10(-10)). The contribution of the two new risk SNPs to CRC heritability was estimated to be 1.5% in African Americans. This study highlights the importance of fine-mapping in diverse populations. PMID:23851122

Wang, Hansong; Haiman, Christopher A; Burnett, Terrilea; Fortini, Barbara K; Kolonel, Laurence N; Henderson, Brian E; Signorello, Lisa B; Blot, William J; Keku, Temitope O; Berndt, Sonja I; Newcomb, Polly A; Pande, Mala; Amos, Christopher I; West, Dee W; Casey, Graham; Sandler, Robert S; Haile, Robert; Stram, Daniel O; Le Marchand, Loïc

2013-12-15

311

Fine Physical and Genetic Mapping of Powdery Mildew Resistance Gene MlIW172 Originating from Wild Emmer (Triticum dicoccoides)  

PubMed Central

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.

Han, Jun; Zhao, Xiaojie; Cui, Yu; Song, Wei; Huo, Naxin; Liang, Yong; Xie, Jingzhong; Wang, Zhenzhong; Wu, Qiuhong; Chen, Yong-Xing; Lu, Ping; Zhang, De-Yun; Wang, Lili; Sun, Hua; Yang, Tsomin; Keeble-Gagnere, Gabriel; Appels, Rudi; Dolezel, Jaroslav; Ling, Hong-Qing; Luo, Mingcheng; Gu, Yongqiang; Sun, Qixin; Liu, Zhiyong

2014-01-01

312

Fine-mapping the POLL locus in Brahman cattle yields the diagnostic marker CSAFG29.  

PubMed

The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine-indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure-bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303-bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303-bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine-zebu breeds. The association between the 303-bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele. PMID:22497221

Mariasegaram, Maxy; Harrison, Blair E; Bolton, Jennifer A; Tier, Bruce; Henshall, John M; Barendse, William; Prayaga, Kishore C

2012-12-01

313

Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar.  

PubMed

Phytophthora root rot (PRR), caused by Phytophthora sojae Kaufmann & Gerdemann, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.]. Deployment of resistance genes is the most economical and effective way of controlling the disease. The soybean cultivar 'Yudou 29' is resistant to many P. sojae isolates in China. The genetic basis of the resistance in 'Yudou 29' was elucidated through an inheritance study and molecular mapping. In response to 25 P. sojae isolates, 'Yudou 29' displayed a new resistance reaction pattern distinct from those of differentials carrying known Rps genes. A population of 214 F2:3 families from a cross between 'Jikedou 2' (PRR susceptible) and 'Yudou 29' was used for Rps gene mapping. The segregation fit a ratio of 1:2:1 for resistance:segregation:susceptibility within this population, indicating that resistance in 'Yudou 29' is controlled by a single dominant gene. This gene was temporarily named RpsYD29 and mapped on soybean chromosome 03 (molecular linkage group N; MLG N) flanked by SSR markers SattWM82-50 and Satt1k4b at a genetic distance of 0.5 and 0.2 cM, respectively. Two nucleotide binding site-leucine rich repeat (NBS-LRR) type genes were detected in the 204.8 kb region between SattWM82-50 and Satt1k4b. These two genes showed high similarity to Rps1k in amino acid sequence and could be candidate genes for PRR resistance. Based on the phenotype reactions and the physical position on soybean chromosome 03, RpsYD29 might be a novel allele at, or a novel gene tightly linked to, the Rps1 locus. PMID:23467992

Zhang, Jiqing; Xia, Changjian; Wang, Xiaoming; Duan, Canxing; Sun, Suli; Wu, Xiaofei; Zhu, Zhendong

2013-06-01

314

Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat.  

PubMed

Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene. PMID:24213553

Kippes, Nestor; Zhu, Jie; Chen, Andrew; Vanzetti, Leonardo; Lukaszewski, Adam; Nishida, Hidetaka; Kato, Kenji; Dvorak, Jan; Dubcovsky, Jorge

2014-02-01

315

Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L.  

PubMed

The Brassica napus oilseed rape line, 7-7365AB, is a recessive epistatic genic male sterile (RGMS) two-type line system. The sterility is controlled by two pairs of recessive duplicate genes (Bnms3 and Bnms4) and one pair of recessive epistatic inhibitor gene (Bnrf). Homozygosity at the Bnrf locus (Bnrfrf) inhibits the expression of the two recessive male sterility genes in homozygous Bnms3ms3ms4ms4 plants and produces a male fertile phenotype. This line has a good potential for heterosis utilization but it is difficult to breed heterotic hybrids without molecular markers. To develop markers linked to the BnMs3 gene, amplified fragment length polymorphism (AFLP) technology was applied to screen the bulks of sterile and fertile individuals selected randomly from a population of near-isogenic lines (NIL) consisting of 2,000 plants. From a survey of 1,024 primer combinations, we identified 17 AFLP markers linked to the BnMs3 gene. By integrating the previous markers linked to the BnMs3 gene into the genetic map of the NIL population, two markers, EA01MC12 and EA09P06, were located on either side of the BnMs3 gene at a distance of 0.1 and 0.3 cM, respectively. In order to use the markers for male sterile line breeding, five AFLP markers, P05MG05, P03MG04, P11MG02, P05MC11(250), and EA09P06, were successfully converted into sequence characterized amplified region (SCAR) markers. Two of these, P06MG04 and sR12384, were subsequently mapped on to linkage group N19 using two doubled-haploid mapping populations available at our laboratory derived from the crosses Tapidor x Ningyou7 and Quantum x No2127-17. The markers found in the present study should improve our knowledge of recessive genic male sterility (RGMS), and accelerate the development of male sterile line breeding and map-based cloning. PMID:17479242

Huang, Zhen; Chen, Yufeng; Yi, Bin; Xiao, Lu; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

2007-06-01

316

Fine Mapping of "Mini-Muscle," a Recessive Mutation Causing Reduced Hindlimb Muscle Mass in Mice  

PubMed Central

Prolonged selective breeding of Hsd:ICR mice for high levels of voluntary wheel running has favored an unusual phenotype (mini-muscle [MM]), apparently caused by a single Mendelian recessive allele, in which hindlimb muscle mass is reduced by almost 50%. We recently described the creation and phenotypic characterization of a population suitable for mapping the genomic location of the MM gene. Specifically, we crossed females from a high-runner line fixed for the MM allele with male C57BL/6J. F1 males were then backcrossed to the MM parent females. Backcross (BC) mice exhibited a 50:50 ratio of normal to MM phenotypes. Here, we report on linkage mapping of MM in this BC population to a 2.6335-Mb interval on MMU11. This region harbors ?100 expressed or predicted genes, many of which have known roles in muscle development and/or function. Identification of the genetic variation that underlies MM could potentially be very important in understanding both normal muscle function and disregulation of muscle physiology leading to disease.

Hartmann, John; Garland, Theodore; Hannon, Robert M.; Kelly, Scott A.; Munoz, Gloria

2008-01-01

317

Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato.  

PubMed

Late blight, caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary, is a devastating disease for tomato and potato crops. In the past decades, many late blight resistance (R) genes have been characterized in potato. In contrast, less work has been conducted on tomato. The Ph-3 gene from Solanum pimpinellifolium was introgressed into cultivated tomatoes and conferred broad-spectrum resistance to P. infestans. It was previously assigned to the long arm of chromosome 9. In this study, a high-resolution genetic map covering the Ph-3 locus was constructed using an F2 population of a cross between Solanum lycopersicum CLN2037B (containing Ph-3) and S. lycopersicum LA4084. Ph-3 was mapped in a 0.5 cM interval between two markers, Indel_3 and P55. Eight putative genes were found in the corresponding 74 kb region of the tomato Heinz1706 reference genome. Four of these genes are resistance gene analogs (RGAs) with a typical nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 domain. Each RGA showed high homology to the late blight R gene Rpi-vnt1.1 from Solanum venturii. Transient gene silencing indicated that a member of this RGA family is required for Ph-3-mediated resistance to late blight in tomato. Furthermore, this RGA family was also found in the potato genome, but the number of the RGAs was higher than in tomato. PMID:23921955

Zhang, Chunzhi; Liu, Lei; Zheng, Zheng; Sun, Yuyan; Zhou, Longxi; Yang, Yuhong; Cheng, Feng; Zhang, Zhonghua; Wang, Xiaowu; Huang, Sanwen; Xie, Bingyan; Du, Yongchen; Bai, Yuling; Li, Junming

2013-10-01

318

Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae.  

PubMed

Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F(2) population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F(2) population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita(2) locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of approximately 37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. PMID:17576597

Liu, Xinqiong; Yang, Qinzhong; Lin, Fei; Hua, Lixia; Wang, Chuntai; Wang, Ling; Pan, Qinghua

2007-10-01

319

Mapping of Mcs30, a New Mammary Carcinoma Susceptibility Quantitative Trait Locus (QTL30) on Rat Chromosome 12: Identification of Fry as a Candidate Mcs Gene  

PubMed Central

Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop) and susceptible Fischer 344 (F344) strains, we mapped a novel mammary carcinoma susceptibility (Mcs30) locus to the centromeric region on chromosome 12 (LOD score of ?8.6 at the D12Rat59 marker). The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs), one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.

Ren, Xuefeng; Graham, Jessica C.; Jing, Lichen; Mikheev, Andrei M.; Gao, Yuan; Lew, Jenny Pan; Xie, Hong; Kim, Andrea S.; Shang, Xiuling; Friedman, Cynthia; Vail, Graham; Fang, Ming Zhu; Bromberg, Yana; Zarbl, Helmut

2013-01-01

320

Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice.  

PubMed

A dwarf mutant of rice (Oryza sativa L.) by mutagenesis of ethylene methylsulfonate (EMS) treatment from Nipponbare was identified. The mutant exhibited phenotypes of dwarfism and withered leaf tip (dwl1). Based on the internode length of dwl1, this mutant belongs to the dm type of dwarfing. Analysis of elongation of the second sheath and alpha-amylase activity in endosperm showed that the phenotype caused by dwl1 was insensitive to gibberellin acid treatment. Using a large F2 population derived from a cross between the dwl1 and an indica rice variety, TN1, the DWL1 gene was mapped to the terminal region of the long arm of chromosome 3. Fine-mapping delimited it into a 46 kb physical distance between two STS markers, HL921 and HL944, where 6 open reading frames were predicted. Cloning of DWL1 will contribute to dissecting molecular mechanism that regulates plant height in rice, which will be beneficial to molecular assisted selection of this important trait. PMID:19103426

Jiang, Liang; Guo, Longbiao; Jiang, Hua; Zeng, Dali; Hu, Jiang; Wu, Liwen; Liu, Jian; Gao, Zhenyu; Qian, Qian

2008-12-01

321

Fine mapping of ui6.1, a gametophytic factor controlling pollen-side unilateral incompatibility in interspecific solanum hybrids.  

PubMed

Unilateral incompatibility (UI) is a prezygotic reproductive barrier in plants that prevents fertilization by foreign (interspecific) pollen through the inhibition of pollen tube growth. Incompatibility occurs in one direction only, most often when the female is a self-incompatible species and the male is self-compatible (the "SI x SC rule"). Pistils of the wild tomato relative Solanum lycopersicoides (SI) reject pollen of cultivated tomato (S. lycopersicum, SC), but accept pollen of S. pennellii (SC accession). Expression of pistil-side UI is weakened in S. lycopersicum x S. lycopersicoides hybrids, as pollen tube rejection occurs lower in the style. Two gametophytic factors are sufficient for pollen compatibility on allotriploid hybrids: ui1.1 on chromosome 1 (near the S locus), and ui6.1 on chromosome 6. We report herein a fine-scale map of the ui6.1 region. Recombination around ui6.1 was suppressed in lines containing a short S. pennellii introgression, but less so in lines containing a longer introgression. More recombinants were obtained from female than male meioses. A high-resolution genetic map of this region delineated the location of ui6.1 to approximately 0.128 MU, or 160 kb. Identification of the underlying gene should elucidate the mechanism of interspecific pollen rejection and its relationship to self-incompatibility. PMID:20439771

Li, Wentao; Royer, Suzanne; Chetelat, Roger T

2010-07-01

322

Fine-structure genetic map of the cysB locus in Salmonella typhimurium.  

PubMed Central

A genetic map of the cysB region of the Salmonella typhimurium chromosome was constructed using bacteriophage P22-mediated transduction. Strains bearing delta (supX cysB) mutations were employed to divide this regulatory locus into 12 segments containing a total of 39 single-site mutations. Twenty-five of these single-site mutations were further ordered by reciprocal three-point crosses. The results do not support the concept of multiple cistrons at cysB and suggest that the abortive transductants previously observed in crosses between certain cysB mutants were due to intracistronic complementation. The prototrophic cys-1352 mutation, which causes the constitutive expression of the cysteine biosynthetic enzymes, was found to lie within the cysB region itself. It is bracketed by mutations, which lead to an inability to derepress for these enzymes and result in auxotrophy for cysteine.

Cheney, R W; Kredich, N M

1975-01-01

323

Three-dimensional mapping of fine structure in the solar atmosphere  

NASA Astrophysics Data System (ADS)

The effects on image formation through a tilted interference filter in a converging beam are investigated and an adequate compensation procedure is established. A method that compensates for small-scale seeing distortions is also developed with the aim of co-aligning non-simultaneous solar images from different passbands. These techniques are applied to data acquired with a narrow tiltable filter at the Swedish 1-meter Solar Telescope. Tilting provides a way to scan the wing of the Ca II H line. The resulting images are used to map the temperature stratification and vertical temperature gradients in a solar active region containing a sunspot at a resolution approaching 0''10. The data are compared with hydro-dynamical quiet sun models and magneto-hydrodynamic models of plage. The comparison gives credence to the observational techniques, the analysis methods, and the simulations. Vertical temperature gradients are lower in magnetic structures than in non-magnetic. Line-of-sight velocities and magnetic field properties in the penumbra of the same sunspot are estimated using the CRISP imaging spectropolarimeter and straylight compensation adequate for the data. These reveal a pattern of upflows and downflows throughout the entire penumbra including the interior penumbra. A correlation with intensity positively identifies these flows as convective in origin. The vertical convective signatures are observed everywhere, but the horizontal Evershed flow is observed to be confined to areas of nearly horizontal magnetic field. The relation between temperature gradient and total circular polarization in magnetically sensitive lines is investigated in different structures of the penumbra. Penumbral dark cores are prominent in total circular polarization and temperature gradient maps. These become longer and more contiguous with increasing height. Dark fibril structures over bright regions are observed in the Ca II H line core, above both the umbra and penumbra.

Henriques, Vasco M. J.

2013-04-01

324

Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley.  

PubMed

The barley mutant allele sdw3 confers a gibberellin-insensitive, semi-dwarf phenotype with potential for breeding of new semi-dwarfed barley cultivars. Towards map-based cloning, sdw3 was delimited by high-resolution genetic mapping to a 0.04 cM interval in a "cold spot" of recombination of the proximal region of the short arm of barley chromosome 2H. Extensive synteny between the barley Sdw3 locus (Hvu_sdw3) and the orthologous regions (Osa_sdw3, Sbi_sdw3, Bsy_sdw3) of three other grass species (Oryza sativa, Sorghum bicolor, Brachypodium sylvaticum) allowed for efficient synteny-based marker saturation in the target interval. Comparative sequence analysis revealed colinearity for 23 out of the 38, 35, and 29 genes identified in Brachypodium, rice, and Sorghum, respectively. Markers co-segregating with Hvu_sdw3 were generated from two of these genes. Initial attempts at chromosome walking in barley were performed with seven orthologous gene probes which were delimiting physical distances of 223, 123, and 127 kb in Brachypodium, rice, and Sorghum, respectively. Six non-overlapping small bacterial artificial chromosome (BAC) clone contigs (cumulative length of 670 kb) were obtained, which indicated a considerably larger physical size of Hvu_sdw3. Low-pass sequencing of selected BAC clones from these barley contigs exhibited a substantially lower gene frequency per physical distance and the presence of additional non-colinear genes. Four candidate genes for sdw3 were identified within barley BAC sequences that either co-segregated with the gene sdw3 or were located adjacent to these co-segregating genes. Identification of genic sequences in the sdw3 context provides tools for marker-assisted selection. Eventual identification of the actual gene will contribute new information for a basic understanding of the mechanisms underlying growth regulation in barley. PMID:20464438

Vu, Giang T H; Wicker, Thomas; Buchmann, Jan P; Chandler, Peter M; Matsumoto, Takashi; Graner, Andreas; Stein, Nils

2010-11-01

325

Fine Mapping of Posttranslational Modifications of the Linker Histone H1 from Drosophila melanogaster  

PubMed Central

The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs), including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear. This is in part due to the fact that most of the studies have been performed in organisms that have several H1 variants, which complicates the analyses. We have chosen Drosophila melanogaster, a model organism, which has a single H1 variant, to approach the study of the role of H1 PTMs during embryonic development. Mass spectrometry mapping of the entire sequence of the protein showed phosphorylation only in the ten N-terminal amino acids, mostly at S10. For the first time, changes in the PTMs of a linker H1 during the development of a multicellular organism are reported. The abundance of H1 monophosphorylated at S10 decreases as the embryos age, which suggests that this PTM is related to cell cycle progression and/or cell differentiation. Additionally, we have found a polymorphism in the protein sequence that can be mistaken with lysine methylation if the analysis is not rigorous.

Villar-Garea, Ana; Imhof, Axel

2008-01-01

326

Fine mapping of qPAA8, a gene controlling panicle apical development in rice.  

PubMed

In rice, one detrimental factor influencing single panicle yield is the frequent occurrence of panicle apical abortion (PAA) under unfavorable climatic conditions. Until now, no detailed genetic information has been available to avoid PAA in rice breeding. Here, we show that the occurrence of PAA is associated with the accumulation of excess hydrogen peroxide. Quantitative trait loci (QTLs) mapping for PAA in an F(2) population derived from the cross of L-05261 (PAA line) × IRAT129 (non-PAA variety) identified seven QTLs over a logarithm of the odd (LOD) threshold of 2.5, explaining approximately 50.1% of phenotypic variance for PAA in total. Five of the QTLs with an increased effect from L-05261, were designated as qPAA3-1, qPAA3-2, qPAA4, qPAA5 and qPAA8, and accounted for 6.8%, 5.9%, 4.2%, 13.0% and 12.2% of phenotypic variance, respectively. We found that the PAA in the early heading plants was mainly controlled by qPAA8. Subsequently, using the sub-populations specific for qPAA8 based on marker-assisted selection, we further narrowed qPAA8 to a 37.6-kb interval delimited by markers RM22475 and 8-In112. These results are beneficial for PAA gene clone. PMID:21605340

Cheng, Zhi-Jun; Mao, Bi-Gang; Gao, Su-Wei; Zhang, Ling; Wang, Jiu-Lin; Lei, Cai-Lin; Zhang, Xin; Wu, Fu-Qing; Guo, Xiu-Ping; Wan, Jianmin

2011-09-01

327

Little Loss of Information Due to Unknown Phase for Fine-Scale Linkage-Disequilibrium Mapping with Single-Nucleotide–Polymorphism Genotype Data  

Microsoft Academic Search

We present the results of a simulation study that indicate that true haplotypes at multiple, tightly linked loci often provide little extra information for linkage-disequilibrium fine mapping, compared with the information provided by corresponding genotypes, provided that an appropriate statistical analysis method is used. In contrast, a two- stage approach to analyzing genotype data, in which haplotypes are inferred and

A. P. Morris; J. C. Whittaker; D. J. Balding

2004-01-01

328

Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean.  

PubMed

Water soluble protein content (SPC) plays an important role in the functional efficacy of protein in food products. Therefore, for the identification of quantitative trait loci (QTL) associated with SPC, 212 F(2:9) lines of the recombinant inbred line (RIL) population derived from the cross of ZDD09454 × Yudou12 were grown along with the parents, in six different environments (location × year) to determine inheritance and map solubility-related genes. A linkage map comprising of 301 SSR markers covering 3,576.81 cM was constructed in the RIL population. Seed SPC was quantified with a macro-Kjeldahl procedure in samples collected over multiple years from three locations (Nantong in 2007 and 2008, Zhengzhou in 2007 and 2008, and Xinxiang in 2008 and 2009). SPC demonstrated transgressive segregation, indicating a complementary genetic structure between the parents. Eleven putative QTL were associated with SPC explaining 4.5-18.2 % of the observed phenotypic variation across the 6 year/location environments. Among these, two QTL (qsp8-4, qsp8-5) near GMENOD2B and Sat_215 showed an association with SPC in multiple environments, suggesting that they were key QTL related to protein solubility. The QTL × environment interaction demonstrated the complex genetic mechanism of SPC. These SPC-associated QTL and linked markers in soybean will provide important information that can be utilized by breeders to improve the functional quality of soybean varieties. PMID:23052024

Lu, Weiguo; Wen, Zixiang; Li, Haichao; Yuan, Daohua; Li, Jinying; Zhang, Hui; Huang, Zhongwen; Cui, Shiyou; Du, Weiijun

2013-02-01

329

Approximate analysis of QTL-environment interaction with no limits on the number of environments.  

PubMed Central

An approach is presented here for quantitative trait loci (QTL) mapping analysis that allows for QTL x environment (E) interaction across multiple environments, without necessarily increasing the number of parameters. The main distinction of the proposed model is in the chosen way of approximation of the dependence of putative QTL effects on environmental states. We hypothesize that environmental dependence of a putative QTL effect can be represented as a function of environmental mean value of the trait. Such a description can be applied to take into account the effects of any cosegregating QTLs from other genomic regions that also may vary across environments. The conducted Monte-Carlo simulations and the example of barley multiple environments experiment demonstrate a high potential of the proposed approach for analyzing QTL x E interaction, although the results are only approximated by definition. However, this drawback is compensated by the possibility to utilize information from a potentially unlimited number of environments with a remarkable reduction in the number of parameters, as compared to previously proposed mapping models with QTL x E interactions.

Korol, A B; Ronin, Y I; Nevo, E

1998-01-01

330

High-Resolution Association Mapping of Atherosclerosis Loci in Mice  

PubMed Central

Objective To fine map previously identified quantitative trait loci (QTL) affecting atherosclerosis in mice using association analysis. Methods and Results We recently showed that high-resolution association analysis using common inbred strains of mice is feasible if corrected for population structure. To utilize this approach for atherosclerosis, which requires a sensitizing mutation, we bred human apoB100 transgenic mice with 22 different inbred strains to produce F1 heterozygotes. Mice carrying the dominant transgene were tested for association with high-density SNP maps. Here we focus on high-resolution mapping of the previously described Ath30 locus on Chr 1. As compared to the previous linkage analysis, association improved the resolution of the Ath30 locus by more than an order of magnitude. Using expression quantitative trait locus analysis, we identified one of the genes in the region, Des, as a strong candidate. Conclusions Our high-resolution mapping approach accurately identifies and fine maps known atherosclerosis QTL. These results suggest that high-resolution genome-wide association analysis for atherosclerosis is feasible in mice.

Bennett, Brian J.; Orozco, Luz; Kostem, Emrah; Erbilgin, Ayca; Dallinga, Marchien; Neuhaus, Isaac; Guan, Bo; Wang, Xuping; Eskin, Eleazar; Lusis, Aldons J.

2012-01-01

331

Fine Specificity Mapping of Autoantigens Targeted by Anti-Centromere Autoantibodies  

PubMed Central

Summary Autoantibodies to centromeric proteins are commonly found in sera of limited scleroderma and other rheumatic disease patients. To better understand the inciting events and possible pathogenic mechanisms of these autoimmune responses, this study identified the common antigenic targets of CENP-A in scleroderma patient sera. Utilizing samples from 263 anti-centromere immunofluorescence positive patients, 93.5% were found to have anti-CENP-A reactivity and 95.4% had anti-CENP-B reactivity by ELISA. Very few patient samples exclusively targeted CENP-A (2.7%) or CENP-B (4.2%). Select patient sera were tested for reactivity with solid phase overlapping decapeptides of CENP-A. Four distinct epitopes of CENP-A were identified. Epitopes 2 and 3 were confirmed by additional testing of 263 patient sera by ELISA for reactivity with these sequences constructed as multiple antigenic peptides. Inhibition CENP-A Western blots also confirmed the specificity of these humoral peptide immune responses in a subset of patient sera. The first three arginine residues (aa 4-6) of CENP-A appear essential for antibody recognition, as replacing these arginines with glycine residues reduced antibody binding to the expressed CENP-A protein by an average of 93.2% (range 80-100%). In selected patients with serial samples spanning nearly a decade, humoral epitope binding patterns were quite stable and showed no epitope spreading over time. This epitope mapping study identifies key antigenic targets of the anti-centromere response and establishes that the majority of the responses depend on key amino-terminal residues.

Akbarali, Yasmin; Matousek-Ronck, Jennifer; Hunt, Laura; Staudt, Leslie; Reichlin, Morris; Guthridge, Joel M.; James, Judith A

2007-01-01

332

Fine mapping of the amyloid ?-protein binding site on myelin basic protein  

PubMed Central

The assembly and deposition of amyloid ?-protein (A?) in brain is a key pathological feature of Alzheimer’s disease and related disorders. Factors have been identified that can either promote or inhibit A? assembly in brain. We previously reported that myelin basic protein (MBP) is a potent inhibitor of A? fibrillar assembly [Hoos et al. 2007 J. Biol. Chem. 282:9952–9961; Hoos et al. 2009 Biochemistry 48:4720–4727]. Moreover, the region on MBP responsible for this activity was localized to the N-terminal 64 amino acids (MBP1-64) [Liao et al. 2010 J. Biol. Chem. 285:35590–35598]. In the present study we sought to further define the site on MBP1-64 involved in this activity. Deletion mapping studies showed that the C-terminal region (residues 54–64) is required for the ability of MBP1-64 to bind A? and inhibit fibril assembly. Alanine scanning mutagenesis revealed that amino acids K54, R55, G56 and K59 within MBP1-64 are important for both A? binding and inhibition of fibril assembly as assessed by solid phase binding, thioflavin T binding and fluorescence, and transmission electron microscopy studies. Strong spectral shifts are observed by solution NMR spectroscopy of specific N-terminal residues (E3, R5, D7, E11 and Q15) of A?42 upon the interaction with MBP1-64. Although the C-terminal region of MBP1-64 is required for interactions with A?, a synthetic MBP50-64 peptide was itself devoid of activity. These studies identify key residues in MBP and A? involved in their interactions and provide structural insight into how MBP regulates A? fibrillar assembly.

Kotarba, AnnMarie E.; Aucoin, Darryl; Hoos, Michael D.; Smith, Steven O.; Van Nostrand, William E.

2013-01-01

333

Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus.  

PubMed

In the present study, we have obtained one dwarf mutant (bnaC.dwf) from the Brassica napus inbred line T6 through chemical mutagen ethyl methanesulfonate (EMS). We have determined the phenotypic effects and genetic characteristics of dwarf mutant (bnaC.dwf). The dwarf mutant was insensitive to exogenous GA(3) for plant height, suggesting that it is significantly playing a crucial role in the gibberellins response pathway. Genetic analysis revealed that one recessive gene is responsible for controlling the phenotypic expression of dwarf mutant. Amplified Fragment Length Polymorphism (AFLP) technique was applied for selecting markers linked to the BnaC.DWF gene which assisted in screening of dwarf and normal individuals in the BC(4) population. We have screened 1,024 primer combinations and then identified nine AFLP markers linked to the BnaC.DWF gene. Identification and linkage of the markers were carried out by analysing 2,000 individuals from a larger population of the BC(4). Two markers EA10MC09 and EA12MC02 were located on the flanking region of the BnaC.DWF gene at a distance of 0.2 and 0.05 cM, respectively. Four AFLP markers EA09MG05, EA02MC07, EA01MC01 and EC04MC07 were successfully converted into Sequence Characterised Amplified Region markers namely SCA9G5, SCA2C7, SCA1C1 and SCC4C7. We further integrated BnaC.DWF linked Simple Sequence Repeat markers into two populations (Piquemal et al. Theor Appl Genet 111:1514-1523, 2005; Cheng et al. Theor Appl Genet 118:1121-1131, 2009). BnaC.DWF was mapped to the linkage region N18. The molecular markers developed from these investigations will greatly accelerate the selection process for developing dwarf varieties in B. napus by Marker Assisted Selection and genetic engineering. PMID:20878141

Zeng, Xinhua; Zhu, Lixia; Chen, Yanli; Qi, Liping; Pu, Yuanyuan; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

2011-02-01

334

QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea  

PubMed Central

Background Development of durable plant genetic resistance to pathogens through strategies of QTL pyramiding and diversification requires in depth knowledge of polygenic resistance within the available germplasm. Polygenic partial resistance to Aphanomyces root rot, caused by Aphanomyces euteiches, one of the most damaging pathogens of pea worldwide, was previously dissected in individual mapping populations. However, there are no data available regarding the diversity of the resistance QTL across a broader collection of pea germplasm. In this study, we performed a meta-analysis of Aphanomyces root rot resistance QTL in the four main sources of resistance in pea and compared their genomic localization with genes/QTL controlling morphological or phenological traits and with putative candidate genes. Results Meta-analysis, conducted using 244 individual QTL reported previously in three mapping populations (Puget x 90–2079, Baccara x PI180693 and Baccara x 552) and in a fourth mapping population in this study (DSP x 90–2131), resulted in the identification of 27 meta-QTL for resistance to A. euteiches. Confidence intervals of meta-QTL were, on average, reduced four-fold compared to mean confidence intervals of individual QTL. Eleven consistent meta-QTL, which highlight seven highly consistent genomic regions, were identified. Few meta-QTL specificities were observed among mapping populations, suggesting that sources of resistance are not independent. Seven resistance meta-QTL, including six of the highly consistent genomic regions, co-localized with six of the meta-QTL identified in this study for earliness and plant height and with three morphological genes (Af, A, R). Alleles contributing to the resistance were often associated with undesirable alleles for dry pea breeding. Candidate genes underlying six main meta-QTL regions were identified using colinearity between the pea and Medicago truncatula genomes. Conclusions QTL meta-analysis provided an overview of the moderately low diversity of loci controlling partial resistance to A. euteiches in four main sources of resistance in pea. Seven highly consistent genomic regions with potential use in marker-assisted-selection were identified. Confidence intervals at several main QTL regions were reduced and co-segregation among resistance and morphological/phenological alleles was identified. Further work will be required to identify the best combinations of QTL for durably increasing partial resistance to A. euteiches.

2013-01-01

335

Female site-specific transposase-induced recombination: a high-efficiency method for fine mapping mutations on the X chromosome in Drosophila.  

PubMed Central

P-element transposons in the Drosophila germline mobilize only in the presence of the appropriate transposase enzyme. Sometimes, instead of mobilizing completely, P elements will undergo site-specific recombination with the homologous chromosome. Site-specific recombination is the basis for male recombination mapping, since the male germline does not normally undergo recombination. Site-specific recombination also takes place in females, but this has been difficult to study because of the obscuring effects of meiotic recombination. Using map functions, I demonstrate that it is possible to employ female site-specific transposase-induced recombination (FaSSTIR) to map loci on the X chromosome and predict that FaSSTIR mapping should be more efficient than meiotic mapping over short genetic intervals. Both FaSSTIR mapping and meiotic mapping were used to fine map the crossveinless locus on the X chromosome. Both techniques identified the same 10-kb interval as the probable location of the crossveinless mutation. Over short intervals (< approximately 7.6 cM), FaSSTIR produces more informative recombination events than does meiotic recombination. Over longer intervals, FaSSTIR is not always more efficient than meiotic mapping, but it produces the correct gene order. FaSSTIR matches the expectations suggested by the map functions and promises to be a useful technique, particularly for mapping X-linked loci.

Marcus, Jeffrey M

2003-01-01

336

Detection of QTL with effects on osmoregulation capacities in the rainbow trout (Oncorhynchus mykiss)  

PubMed Central

Background There is increasing evidence that the ability to adapt to seawater in teleost fish is modulated by genetic factors. Most studies have involved the comparison of species or strains and little is known about the genetic architecture of the trait. To address this question, we searched for QTL affecting osmoregulation capacities after transfer to saline water in a nonmigratory captive-bred population of rainbow trout. Results A QTL design (5 full-sib families, about 200 F2 progeny each) was produced from a cross between F0 grand-parents previously selected during two generations for a high or a low cortisol response after a standardized confinement stress. When fish were about 18 months old (near 204 g body weight), individual progeny were submitted to two successive hyper-osmotic challenges (30 ppt salinity) 14 days apart. Plasma chloride and sodium concentrations were recorded 24 h after each transfer. After the second challenge, fish were sacrificed and a gill index (weight of total gill arches corrected for body weight) was recorded. The genome scan was performed with 196 microsatellites and 85 SNP markers. Unitrait and multiple-trait QTL analyses were carried out on the whole dataset (5 families) through interval mapping methods with the QTLMap software. For post-challenge plasma ion concentrations, significant QTL (P < 0.05) were found on six different linkage groups and highly suggestive ones (P < 0.10) on two additional linkage groups. Most QTL affected concentrations of both chloride and sodium during both challenges, but some were specific to either chloride (2 QTL) or sodium (1 QTL) concentrations. Six QTL (4 significant, 2 suggestive) affecting gill index were discovered. Two were specific to the trait, while the others were also identified as QTL for post-challenge ion concentrations. Altogether, allelic effects were consistent for QTL affecting chloride and sodium concentrations but inconsistent for QTL affecting ion concentrations and gill morphology. There was no systematic lineage effect (grand-parental origin of QTL alleles) on the recorded traits. Conclusions For the first time, genomic loci associated with effects on major physiological components of osmotic adaptation to seawater in a nonmigratory fish were revealed. The results pave the way for further deciphering of the complex regulatory mechanisms underlying seawater adaptation and genes involved in osmoregulatory physiology in rainbow trout and other euryhaline fishes.

2011-01-01

337

FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation  

PubMed Central

Genome-wide association studies have identified FGFR2 as a breast cancer (BC) susceptibility gene in populations of European and Asian descent, but a causative variant has not yet been conclusively identified. We hypothesized that the weaker linkage disequilibrium across this associated region in populations of African ancestry might help refine the set of candidate-causal single nucleotide polymorphisms (SNPs) previously identified by our group. Eight candidate-causal SNPs were evaluated in 1253 African American invasive BC cases and 1245 controls. A significant association with BC risk was found with SNP rs2981578 (unadjusted per-allele odds ratio = 1.20, 95% confidence interval 1.03–1.41, Ptrend = 0.02), with the odds ratio estimate similar to that reported in European and Asian subjects. To extend the fine-mapping, genotype data from the African American studies were analyzed jointly with data from European (n = 7196 cases, 7275 controls) and Asian (n = 3901 cases, 3205 controls) studies. In the combined analysis, SNP rs2981578 was the most strongly associated. Five other SNPs were too strongly correlated to be excluded at a likelihood ratio of < 1/100 relative to rs2981578. Analysis of DNase I hypersensitive sites indicated that only two of these map to highly accessible chromatin, one of which, SNP rs2981578, has previously been implicated in up-regulating FGFR2 expression. Our results demonstrate that the association of SNPs in FGFR2 with BC risk extends to women of African American ethnicity, and illustrate the utility of combining association analysis in datasets of diverse ethnic groups with functional experiments to identify disease susceptibility variants.

Udler, Miriam S.; Meyer, Kerstin B.; Pooley, Karen A.; Karlins, Eric; Struewing, Jeffery P.; Zhang, Jinghui; Doody, David R.; MacArthur, Stewart; Tyrer, Jonathan; Pharoah, Paul D.; Luben, Robert; Bernstein, Leslie; Kolonel, Laurence N.; Henderson, Brian E.; Le Marchand, Loic; Ursin, Giske; Press, Michael F.; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Ponder, Bruce A.J.; Haiman, Christopher A.; Malone, Kathleen E.; Dunning, Alison M.; Ostrander, Elaine A.; Easton, Douglas F.

2009-01-01

338

Fine-mapping angiotensin-converting enzyme gene: separate QTLs identified for hypertension and for ACE activity.  

PubMed

Angiotensin-converting enzyme (ACE) has been implicated in multiple biological system, particularly cardiovascular diseases. However, findings associating ACE insertion/deletion polymorphism with hypertension or other related traits are inconsistent. Therefore, in a two-stage approach, we aimed to fine-map ACE in order to narrow-down the function-specific locations. We genotyped 31 single nucleotide polymorphisms (SNPs) of ACE from 1168 individuals from 305 young-onset (age ?40) hypertension pedigrees, and found four linkage disequilibrium (LD) blocks. A tag-SNP, rs1800764 on LD block 2, upstream of and near the ACE promoter, was significantly associated with young-onset hypertension (p?=?0.04). Tag-SNPs on all LD blocks were significantly associated with ACE activity (p-value: 10(-16) to <10(-33)). The two regions most associated with ACE activity were found between exon13 and intron18 and between intron 20 and 3'UTR, as revealed by measured haplotype analysis. These two major QTLs of ACE activity and the moderate effect variant upstream of ACE promoter for young-onset hypertension were replicated by another independent association study with 842 subjects. PMID:23469169

Chung, Chia-Min; Wang, Ruey-Yun; Fann, Cathy S J; Chen, Jaw-Wen; Jong, Yuh-Shiun; Jou, Yuh-Shan; Yang, Hsin-Chou; Kang, Chih-Sen; Chen, Chien-Chung; Chang, Huan-Cheng; Pan, Wen-Harn

2013-01-01

339

Identification, Replication, and Fine-Mapping of Loci Associated with Adult Height in Individuals of African Ancestry  

PubMed Central

Adult height is a classic polygenic trait of high heritability (h2 ?0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ?10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P?=?3.4×10?12 and 2p14-rs4315565, P?=?1.2×10?8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P?=?1.7×10?4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.

Ge, Bing; Tayo, Bamidele; Mathias, Rasika A.; Ding, Jingzhong; Nalls, Michael A.; Adeyemo, Adebowale; Adoue, Veronique; Ambrosone, Christine B.; Atwood, Larry; Bandera, Elisa V.; Becker, Lewis C.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Boerwinkle, Eric; Britton, Angela; Casey, Graham; Chanock, Stephen J.; Demerath, Ellen; Deming, Sandra L.; Diver, W. Ryan; Fox, Caroline; Harris, Tamara B.; Hernandez, Dena G.; Hu, Jennifer J.; Ingles, Sue A.; John, Esther M.; Johnson, Craig; Keating, Brendan; Kittles, Rick A.; Kolonel, Laurence N.; Kritchevsky, Stephen B.; Le Marchand, Loic; Lohman, Kurt; Liu, Jiankang; Millikan, Robert C.; Murphy, Adam; Musani, Solomon; Neslund-Dudas, Christine; North, Kari E.; Nyante, Sarah; Ogunniyi, Adesola; Ostrander, Elaine A.; Papanicolaou, George; Patel, Sanjay; Pettaway, Curtis A.; Press, Michael F.; Redline, Susan; Rodriguez-Gil, Jorge L.; Rotimi, Charles; Rybicki, Benjamin A.; Salako, Babatunde; Schreiner, Pamela J.; Signorello, Lisa B.; Singleton, Andrew B.; Stanford, Janet L.; Stram, Alex H.; Stram, Daniel O.; Strom, Sara S.; Suktitipat, Bhoom; Thun, Michael J.; Witte, John S.; Yanek, Lisa R.; Ziegler, Regina G.; Zheng, Wei; Zhu, Xiaofeng; Zmuda, Joseph M.; Zonderman, Alan B.; Evans, Michele K.; Liu, Yongmei; Becker, Diane M.; Cooper, Richard S.; Pastinen, Tomi; Henderson, Brian E.; Hirschhorn, Joel N.; Lettre, Guillaume; Haiman, Christopher A.

2011-01-01

340

The Flowering Repressor SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic Background  

PubMed Central

The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1). We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP). Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time.

Mendez-Vigo, Belen; Martinez-Zapater, Jose M.; Alonso-Blanco, Carlos

2013-01-01

341

Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean  

PubMed Central

Background The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. Results A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix® Soy GeneChip and high-throughput Illumina® whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. Conclusions This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome.

2010-01-01

342

Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach  

PubMed Central

Background Maturity date (MD) is a crucial factor for marketing of fresh fruit, especially those with limited shelf-life such as peach (Prunus persica L. Batsch): selection of several cultivars with differing MD would be advantageous to cover and extend the marketing season. Aims of this work were the fine mapping and identification of candidate genes for the major maturity date locus previously identified on peach linkage group 4. To improve genetic resolution of the target locus two F2 populations derived from the crosses Contender x Ambra (CxA, 306 individuals) and PI91459 (NJ Weeping) x Bounty (WxBy, 103 individuals) were genotyped with the Sequenom and 9K Illumina Peach Chip SNP platforms, respectively. Results Recombinant individuals from the WxBy F2 population allowed the localisation of maturity date locus to a 220 kb region of the peach genome. Among the 25 annotated genes within this interval, functional classification identified ppa007577m and ppa008301m as the most likely candidates, both encoding transcription factors of the NAC (NAM/ATAF1, 2/CUC2) family. Re-sequencing of the four parents and comparison with the reference genome sequence uncovered a deletion of 232 bp in the upstream region of ppa007577m that is homozygous in NJ Weeping and heterozygous in Ambra, Bounty and the WxBy F1 parent. However, this variation did not segregate in the CxA F2 population being the CxA F1 parent homozygous for the reference allele. The second gene was thus examined as a candidate for maturity date. Re-sequencing of ppa008301m, showed an in-frame insertion of 9 bp in the last exon that co-segregated with the maturity date locus in both CxA and WxBy F2 populations. Conclusions Using two different segregating populations, the map position of the maturity date locus was refined from 3.56 Mb to 220 kb. A sequence variant in the NAC gene ppa008301m was shown to co-segregate with the maturity date locus, suggesting this gene as a candidate controlling ripening time in peach. If confirmed on other genetic materials, this variant may be used for marker-assisted breeding of new cultivars with differing maturity date.

2013-01-01

343

Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5  

PubMed Central

Background Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas). Results We identified four genes with SNPs that showed the strongest and most consistent associations with LDL-C and CAD: EBF1, PPP2R2B, SPOCK1, and PRELID2. The most significant results for association of SNPs with LDL-C were: EBF1, rs6865969, p = 0.01; PPP2R2B, rs2125443, p = 0.005; SPOCK1, rs17600115, p = 0.003; and PRELID2, rs10074645, p = 0.0002). The most significant results for CAD were EBF1, rs6865969, p = 0.007; PPP2R2B, rs7736604, p = 0.0003; SPOCK1, rs17170899, p = 0.004; and PRELID2, rs7713855, p = 0.003. Conclusion Using an intermediate disease-related quantitative trait of LDL-C we have identified four novel CAD genes, EBF1, PRELID2, SPOCK1, and PPP2R2B. These four genes should be further examined in future functional studies as candidate susceptibility loci for cardiovascular disease mediated through LDL-cholesterol pathways.

2012-01-01

344

Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity.  

PubMed

Nonobese diabetic (NOD) mice congenic for C57BL/10 (B10)-derived genes in the Idd9 region of chromosome 4 are highly protected from type 1 diabetes (T1D). Idd9 has been divided into three protective subregions (Idd9.1, 9.2, and 9.3), each of which partially prevents disease. In this study we have fine-mapped the Idd9.1 and Idd9.2 regions, revealing further genetic complexity with at least two additional subregions contributing to protection from T1D. Using the NOD sequence from bacterial artificial chromosome clones of the Idd9.1 and Idd9.2 regions as well as whole-genome sequence data recently made available, sequence polymorphisms within the regions highlight a high degree of polymorphism between the NOD and B10 strains in the Idd9 regions. Among numerous candidate genes are several with immunological importance. The Idd9.1 region has been separated into Idd9.1 and Idd9.4, with Lck remaining a candidate gene within Idd9.1. One of the Idd9.2 regions contains the candidate genes Masp2 (encoding mannan-binding lectin serine peptidase 2) and Mtor (encoding mammalian target of rapamycin). From mRNA expression analyses, we have also identified several other differentially expressed candidate genes within the Idd9.1 and Idd9.2 regions. These findings highlight that multiple, relatively small genetic effects combine and interact to produce significant changes in immune tolerance and diabetes onset. PMID:23934554

Hamilton-Williams, Emma E; Rainbow, Daniel B; Cheung, Jocelyn; Christensen, Mikkel; Lyons, Paul A; Peterson, Laurence B; Steward, Charles A; Sherman, Linda A; Wicker, Linda S

2013-10-01