Discounted linear exponential quadratic Gaussian control
L. P. Hansen; T. J. Sargent
1995-01-01
In this note, we describe a recursive formulation of discounted costs for a linear quadratic exponential Gaussian linear regulator problem which implies time-invariant linear decision rules in the infinite horizon case. Time invariance in the discounted case is attained by surrendering state-separability of the risk-adjusted costs
Adaptive continuous-time linear quadratic Gaussian control
Duncan, Tyrone E.; Guo, L.; Pasik-Duncan, Bozenna
1999-09-01
The adaptive linear quadratic Gaussian control problem, where the linear transformation of the state A and the linear transformation of the control B are unknown, is solved assuming only that (A, B) is controllable and (A, Q(1)(1/2)) is observable...
Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory
NASA Technical Reports Server (NTRS)
Koppang, Paul; Leland, Robert
1996-01-01
Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Frequency locking of an optical cavity using linear-quadratic Gaussian integral control
NASA Astrophysics Data System (ADS)
Sayed Hassen, S. Z.; Heurs, M.; Huntington, E. H.; Petersen, I. R.; James, M. R.
2009-09-01
We show that a systematic modern control technique such as linear-quadratic Gaussian (LQG) control can be applied to a problem in experimental quantum optics which has previously been addressed using traditional approaches to controller design. An LQG controller which includes integral action is synthesized to stabilize the frequency of the cavity to the laser frequency and to reject low frequency noise. The controller is successfully implemented in the laboratory using a dSpace digital signal processing board. One important advantage of the LQG technique is that it can be extended in a straightforward way to control systems with multiple measurements and multiple feedback loops. This work is expected to pave the way for extremely stable lasers with fluctuations approaching the quantum noise limit and which could be potentially used in a wide range of applications.
Feasibility of Decentralized Linear-Quadratic-Gaussian Control of Autonomous Distributed Spacecraft
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
1999-01-01
A distributed satellite formation, modeled as an arbitrary number of fully connected nodes in a network, could be controlled using a decentralized controller framework that distributes operations in parallel over the network. For such problems, a solution that minimizes data transmission requirements, in the context of linear-quadratic-Gaussian (LQG) control theory, was given by Speyer. This approach is advantageous because it is non-hierarchical, detected failures gracefully degrade system performance, fewer local computations are required than for a centralized controller, and it is optimal with respect to the standard LQG cost function. Disadvantages of the approach are the need for a fully connected communications network, the total operations performed over all the nodes are greater than for a centralized controller, and the approach is formulated for linear time-invariant systems. To investigate the feasibility of the decentralized approach to satellite formation flying, a simple centralized LQG design for a spacecraft orbit control problem is adapted to the decentralized framework. The simple design uses a fixed reference trajectory (an equatorial, Keplerian, circular orbit), and by appropriate choice of coordinates and measurements is formulated as a linear time-invariant system.
NASA Technical Reports Server (NTRS)
Gawronski, W.
2004-01-01
Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
NASA Technical Reports Server (NTRS)
Gangsaas, D.; Ly, U.; Norman, D. C.
1981-01-01
A modified linear quadratic Gaussian (LQG) synthesis procedure has been used to design low-order robust multiloop controllers for a flexible airplane. The introduction of properly constructed fictitious Gauss-Markov processes in the control loops allowed meeting classical frequency-domain stability criteria using the direct synthesis procedures of modern time-domain control theory. Model reduction was used to simplify the control laws to the point where they could be easily implemented on onboard flight computers. These control laws provided excellent gust load and flutter mode control with good stability margins and compared very favorably to other control laws synthesized by the classical root-locus technique.
NASA Technical Reports Server (NTRS)
Athans, M.; Kapasouris, P.; Kappos, E.; Spang, H. A., III
1984-01-01
The design of a multivariable feedback control system for the Pratt and Whitney F-100 turbofan jet engine is a challenging task for control engineers. This paper employs a linearized model of the F-100 engine to demonstrate the use of the newly developed Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) design methodology, which adopts an integrated frequency-domain and time-domain approach to multivariable feedback control synthesis so as to meet stability-robustness, command-following, and disturbance-rejection specifications.
The role and use of the stochastic linear-quadratic-Gaussian problem in control system design.
NASA Technical Reports Server (NTRS)
Athans, M.
1971-01-01
The role of the linear-quadratic stochastic control problem in engineering design is reviewed in tutorial fashion. The design approach is motivated by considering the control of a nonlinear uncertain plant about a desired input-output response. It is demonstrated how a design philosophy based on (1) deterministic perturbation control, (2) stochastic state estimation, and (3) linearized stochastic control leads to an overall closed-loop control system. The emphasis of the paper is on the philosophy of the design process, the modeling issue, and the formulation of the problem; the results are given for the sake of completeness, but no proofs are included. The systematic off-line nature of the design process is stressed throughout.
Habibullah, H. Pota, H. R. Petersen, I. R.
2014-03-15
This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM’s piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method.
NASA Astrophysics Data System (ADS)
Habibullah, H.; Pota, H. R.; Petersen, I. R.
2014-03-01
This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM's piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method.
Habibullah, H; Pota, H R; Petersen, I R
2014-03-01
This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM's piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method. PMID:24689591
Generalized Linear Quadratic Control
Gattami, Ather Said
We consider the problem of stochastic finite- and infinite-horizon linear quadratic control under power constraints. The calculations of the optimal control law can be done off-line as in the classical linear quadratic ...
Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2002-01-01
Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.
NASA Technical Reports Server (NTRS)
Folta, David C.; Carpenter, J. Russell
1999-01-01
A decentralized control is investigated for applicability to the autonomous formation flying control algorithm developed by GSFC for the New Millenium Program Earth Observer-1 (EO-1) mission. This decentralized framework has the following characteristics: The approach is non-hierarchical, and coordination by a central supervisor is not required; Detected failures degrade the system performance gracefully; Each node in the decentralized network processes only its own measurement data, in parallel with the other nodes; Although the total computational burden over the entire network is greater than it would be for a single, centralized controller, fewer computations are required locally at each node; Requirements for data transmission between nodes are limited to only the dimension of the control vector, at the cost of maintaining a local additional data vector. The data vector compresses all past measurement history from all the nodes into a single vector of the dimension of the state; and The approach is optimal with respect to standard cost functions. The current approach is valid for linear time-invariant systems only. Similar to the GSFC formation flying algorithm, the extension to linear LQG time-varying systems requires that each node propagate its filter covariance forward (navigation) and controller Riccati matrix backward (guidance) at each time step. Extension of the GSFC algorithm to non-linear systems can also be accomplished via linearization about a reference trajectory in the standard fashion, or linearization about the current state estimate as with the extended Kalman filter. To investigate the feasibility of the decentralized integration with the GSFC algorithm, an existing centralized LQG design for a single spacecraft orbit control problem is adapted to the decentralized framework while using the GSFC algorithm's state transition matrices and framework. The existing GSFC design uses both reference trajectories of each spacecraft in formation and by appropriate choice of coordinates and simplified measurement modeling is formulated as a linear time-invariant system. Results for improvements to the GSFC algorithm and a multiple satellite formation will be addressed. The goal of this investigation is to progressively relax the assumptions that result in linear time-invariance, ultimately to the point of linearization of the non-linear dynamics about the current state estimate as in the extended Kalman filter. An assessment will then be made about the feasibility of the decentralized approach to the realistic formation flying application of the EO-1/Landsat 7 formation flying experiment.
Quadratic Time, Linear Space Algorithms for Gram-Schmidt Orthogonalization and Gaussian
International Association for Cryptologic Research (IACR)
Quadratic Time, Linear Space Algorithms for Gram-Schmidt Orthogonalization and Gaussian Sampling most time-efficient (quadratic-time) variant requires the storage of the Gram- Schmidt basis applications. At the core of our improvements is a new, faster algorithm for computing the Gram
Linear quadratic optimal control for symmetric systems
NASA Technical Reports Server (NTRS)
Lewis, J. H.; Martin, C. F.
1983-01-01
Special symmetries are present in many control problems. This paper addresses the problem of determining linear-quadratic optimal control problems whose solutions preserve the symmetry of the initial linear control system.
Xijia Miao
2007-10-12
The paper first discusses theoretically the off-resonance selective excitation method that is dependent on the atomic internal states and used to generate approximately a standard coherent state of harmonic oscillator. The coherent average method then is proposed to construct the state-selective trigger pulse. A state-selective trigger pulse can keep Gaussian shape unchanged but change in an internal-state-dependent form the center-of-mass position and/or momentum of an atomic Gaussian wave-packet motional state. A Gaussian wave-packet state is one of the simplest wave-packet states that can be easily manipulated and controlled in time and space. The paper also investigates how to manipulate in time and space an atomic Gaussian wave-packet motional state by a generalized quadratic potential field. A general quadratic Hamiltonian can affect not only the center-of-mass position and momentum but also the complex linewidth of a Gaussian wave-packet motional state while keep Gaussian shape of the motional state unchanged. It is shown that generally quadratic terms of a quadratic Hamiltonian can control directly the complex linewidth, while linear terms of a quadratic Hamiltonian can affect only the center-of-mass position and momentum of a Gaussian wave-packet motional state.
Quasi-Deterministic Properties of Random Gaussian Fields Constrained by a Large Quadratic Form
NASA Astrophysics Data System (ADS)
Mounaix, Philippe
2015-08-01
Completing the study initiated by Mounaix and Collet (J Stat Phys 143:139-147, 2011), we investigate the realizations of a Gaussian random field in the limit where a given (general) quadratic form of the field is large. Concentration in and in probability is proved under mild conditions and the resulting quasi-deterministic behavior of the field is given. Applications to a large local quadratic form are considered in two specific cases. In particular, the quasi-deterministic structure of a Gaussian random flow with a large local helicity at some given point is determined explicitly.
NSDL National Science Digital Library
Shows how the roots of a quadratic change as the b term in the equation changes. The equation was chosen to illustrate the fact that only real roots are seen as points where the curve crosses the x-axis. This can lead to a useful discussion of what is meant by a physically meaningful solution.
Nonlinear Quadratic Pricing for Concavifiable Utilities in Network Rate Control
Boutaba, Raouf
Nonlinear Quadratic Pricing for Concavifiable Utilities in Network Rate Control Quanyan Zhu of Waterloo Email: rboutaba@uwaterloo.ca Abstract--This paper deals with a category of concavifiable functions within an interval of interest using a quadratic pricing term so that we obtain as a result a concave
Nesic, Dragan
Quadratic Stabilization of Linear Networked Control Systems via Simultaneous Protocol: Networked control systems, Quadratic stability, Protocol design, Partial state feedback stabilization 1 and dy- namic protocols. In a static protocol, such as round robin (RR), the network transmissions
Controlling the disorder properties of quadratic nonlinear photonic crystals
Arie, Ady
Controlling the disorder properties of quadratic nonlinear photonic crystals Idith Varon,* Gil demonstrate a modulation scheme for disordered nonlinear crystals that combines periodic modulation and disordered sections. The crystal is divided into a set of identical periodically poled building blocks
NASA Technical Reports Server (NTRS)
Chen, George T.
1987-01-01
An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.
NONLINEAR MODEL PREDICTIVE CONTROL VIA FEASIBILITYPERTURBED SEQUENTIAL QUADRATIC
Wright, Steve
NONLINEAR MODEL PREDICTIVE CONTROL VIA FEASIBILITYPERTURBED SEQUENTIAL QUADRATIC PROGRAMMING REPORT TWMCC200202 Abstract. Model predictive control requires the solution of a sequence of continuous panion report), then discuss its adaptation to the problems arising in nonlinear model predictive control
INERTIA-CONTROLLING METHODS FOR GENERAL QUADRATIC PROGRAMMING
Gill, Philip E.
INERTIA-CONTROLLING METHODS FOR GENERAL QUADRATIC PROGRAMMING PHILIP E. GILL, WALTER MURRAY the inertia of the reduced Hessian, which is never permitted to have more than one nonpositive eigenvalue. (We call such methods inertia-controlling.) This paper presents an overview of a generic inertia
Nonlinear Predictive Control with a Gaussian Process Model
Murray-Smith, Roderick
Nonlinear Predictive Control with a Gaussian Process Model Jus Kocijan1,2 and Roderick Murray application of Gaussian process models within model predictive control. The extra information provided by the Gaussian process model is used in predictive control, where optimization of the control signal takes
Kunkel, Peter
The linear quadratic optimal control problem for linear descriptor systems with variable coefficients Peter Kunkel 3 Volker Mehrmann y 17.01.97 Abstract We study linear quadratic optimal control, 93B11, 93B40 1 Introduction In this paper we study the linearÂquadratic optimal control problem
Bobrow, James E.
A Fast Sequential Linear Quadratic Algorithm for Solving Unconstrained Nonlinear Optimal Control control problem using sequence of linear quadratic subproblems. Each subproblem is solved efficiently an efficient algorithm for its solution. This algorithm is the well-known Linear Quadratic optimal control
A decentralized linear quadratic control design method for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1990-01-01
A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties.
Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems
Gajic, Zoran
Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 we will present results only for the modern optimal linear control theory due to Kalman. It is worth on linear matrix inequalities (Boyd et al., 1994). In the context of the modern optimal linear control
Human-Inspired Control of Bipedal Robots via Control Lyapunov Functions and Quadratic Programs
Ames, Aaron
Human-Inspired Control of Bipedal Robots via Control Lyapunov Functions and Quadratic Programs walking through controller synthesis inspired by human locomotion. Motivated by the hierarchical con- trol present in humans, we begin by viewing the human as a "black box" and describe outputs, or virtual
Quadratic Optimization in the Problems of Active Control of Sound
NASA Technical Reports Server (NTRS)
Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning. PMID:25720009
Controllable Gaussian-qubit interface for extremal quantum state engineering
G. Adesso; S. Campbell; F. Illuminati; M. Paternostro
2010-07-02
We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.
O. Hegrenas; Jan Tommy Gravdahl; P. Tondel
2005-01-01
Explicit solutions to constrained linear MPC problems can be computed by solving multi-parametric quadratic programs (mpQP), where the parameters are the components of the state vector. The solution to the mpQP is a piecewise affine (PWA) function, which can be evaluated at each sample to obtain the optimal control law. The online computation effort is restricted to a table-lookup, and
Øyvind Hegrenæs; Jan Tommy Gravdahl; Petter Tøndel
Explicit solutions to constrained linear MPC problems can be computed by solving multi-parametric quadratic programs (mpQP), where the parameters are the components of the state vector. The solution to the mpQP is a piecewise affine (PWA) function, which can be evaluated at each sample to obtain the optimal control law. The on- line computation effort is restricted to a table-lookup,
Linear-quadratic model predictive control for urban traffic , Hai L. Vu a
Nazarathy, Yoni
Linear-quadratic model predictive control for urban traffic networks q Tung Le a, , Hai L. Vu Accepted 30 June 2013 Keywords: Model predictive control Intelligent transport system Congestion control traffic networks. This paper presents a general model predictive control framework for both centralized
Central Control, Sewers and (0,1) quadratic programming
NASA Astrophysics Data System (ADS)
Kolechkina, Alla; van Nooijen, Ronald
2013-04-01
We consider small sewer systems that combine foul water and storm water sewer functions in flat terrain. These systems are a combination of local gravity flow networks connected by pumps. The pumps are usually fixed speed, so they are on or off. We formulate a (0,1) quadratic programming problem, provide an overview of known solution methods and examine the relative speed of different solution methods.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Bayesian Nonparametric Adaptive Control Using Gaussian Processes
Chowdhary, Girish
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of ...
NASA Astrophysics Data System (ADS)
Yamada, Katsuhiko; Jikuya, Ichiro
2014-09-01
Singularity analysis and the steering logic of pyramid-type single gimbal control moment gyros are studied. First, a new concept of directional passability in a specified direction is introduced to investigate the structure of an elliptic singular surface. The differences between passability and directional passability are discussed in detail and are visualized for 0H, 2H, and 4H singular surfaces. Second, quadratic steering logic (QSL), a new steering logic for passing the singular surface, is investigated. The algorithm is based on the quadratic constrained quadratic optimization problem and is reduced to the Newton method by using Gröbner bases. The proposed steering logic is demonstrated through numerical simulations for both constant torque maneuvering examples and attitude control examples.
Linear Quadratic and Tumour Control Probability Modelling in External Beam Radiotherapy
Hillen, Thomas
Linear Quadratic and Tumour Control Probability Modelling in External Beam Radiotherapy SFC O radiotherapy is reviewed with particular emphasis on studying how different schedules of radiation treatment is to review recent con- tributions in radiobiological modelling applied to external beam radiotherapy which
The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter
NASA Technical Reports Server (NTRS)
Townsend, Barbara K.
1986-01-01
A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.
Heinkenschloss, Matthias (Rice University, Houston, TX); Bartlett, Roscoe Ainsworth; Van Bloeman Waanders, Paul; Ridzal, Denis (Rice University, Houston, TX)
2005-04-01
We present an optimization-level domain decomposition (DD) preconditioner for the solution of advection dominated elliptic linear-quadratic optimal control problems. The DD preconditioner is based on a decomposition of the optimality conditions for the elliptic linear-quadratic optimal control problem into smaller subdomain optimality conditions with Dirichlet boundary conditions for the states and the adjoints on the subdomain interfaces. These subdomain optimality conditions are coupled through Robin transmission conditions for the states and the adjoints. The parameters in the Robin transmission condition depend on the advection. This decomposition leads to a Schur complement system in which the unknowns are the state and adjoint variables on the subdomain interfaces. The Schur complement operator is the sum of subdomain Schur complement operators, the application of which is shown to correspond to the solution of subdomain optimal control problems, which are essentially smaller copies of the original optimal control problem. We show that, under suitable conditions, the application of the inverse of the subdomain Schur complement operators requires the solution of a subdomain elliptic linear-quadratic optimal control problem with Robin boundary conditions for the state. Numerical tests for problems with distributed and with boundary control show that the dependence of the preconditioners on mesh size and subdomain size is comparable to its counterpart applied to a single advection dominated equation. These tests also show that the preconditioners are insensitive to the size of the control regularization parameter.
Linear quadratic servo control of a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1991-01-01
A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.
Robustness in linear quadratic feedback design with application to an aircraft control problem
NASA Technical Reports Server (NTRS)
Patel, R. V.; Sridhar, B.; Toda, M.
1977-01-01
Some new results concerning robustness and asymptotic properties of error bounds of a linear quadratic feedback design are applied to an aircraft control problem. An autopilot for the flare control of the Augmentor Wing Jet STOL Research Aircraft (AWJSRA) is designed based on Linear Quadratic (LQ) theory and the results developed in this paper. The variation of the error bounds to changes in the weighting matrices in the LQ design is studied by computer simulations, and appropriate weighting matrices are chosen to obtain a reasonable error bound for variations in the system matrix and at the same time meet the practical constraints for the flare maneuver of the AWJSRA. Results from the computer simulation of a satisfactory autopilot design for the flare control of the AWJSRA are presented.
Trentelman, Harry L.
Systems Using Quadratic Differential Forms: Part I Jan C. Willems, Fellow, IEEE, and H. L. Trentelman, and the performance is specified through a quadratic differential form. We view control as interconnection- ential forms, storage functions. I. INTRODUCTION THE subject of this paper is shaping the behavior
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Young, J. W.; Hamer, H. A.; Johnson, K. G.
1984-01-01
A decoupled-control analysis was performed for a large flexible space antenna. Control involved commanding changes in the rigid-body modes or nulling disturbances in the flexible modes. The study provides parametric-type data which could be useful in the final design of a large space antenna control system. Results are presented to illustrate the effect on control requirements of (1) the number of modes controlled; (2) the number, type, and location of control actuators; and (3) variations in the closed-loop dynamics of the control system. Comparisons are given between the decoupled-control results and those obtained by using a linear quadratic regulator approach. Time history responses are presented to illustrate the effects of the control procedures.
Gaussian Process Model Based Predictive Control Jus Kocijan, Roderick Murray-Smith,
Gaussian Process Model Based Predictive Control Jus Kocijan, Roderick Murray-Smith, Carl Edward model-based predictive control. The extra information provided within Gaussian process model is used. The predictive control principle is demonstrated on control of pH process benchmark. I. INTRODUCTION Model
Predictive control with Gaussian process models Jus Kocijan1,2
Edinburgh, University of
1 Predictive control with Gaussian process models Jus Kocijan1,2 , Roderick Murray-Smith3,4 , Carl for Biological Cybernetics, T¨ubingen Abstract--This paper describes model-based predictive control based predictive control, Nonlinear control, Gaussian process models, Constraint optimisation. I. INTRODUCTION
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.
Lin, Chuan-Kai; Wang, Sheng-De
2004-11-01
A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization. PMID:15565777
Space shuttle active-pogo-suppressor control design using linear quadratic regulator techniques
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Lorenz, C. F.
1979-01-01
Two methods of active pogo suppression (stabilization) for the space shuttle vehicle were studied analytically. The basis for both approaches was the linear quadratic regulator, state space technique. The first approach minimized root-mean-square pump inlet pressure by using either fullstate feedback, partial-state feedback, or output feedback with a Kalman filter. The second approach increased the modal damping associated with the critical structural modes by using either full-state feedback or reconstructed state feedback. A number of implementable controls were found by both approaches. The designs were analyzed with respect to sensitivity, complexity, and controller energy requirements, as well as controller performance. Practical controllers resulting from the two design approaches tended to use pressure and flow as feedback variables for the minimum-rms method and structural accelerations or velocities for the modal control method. Both approaches are suitable for the design of active pogo-suppression controllers.
Singular linear-quadratic control problem for systems with linear delay
Sesekin, A. N.
2013-12-18
A singular linear-quadratic optimization problem on the trajectories of non-autonomous linear differential equations with linear delay is considered. The peculiarity of this problem is the fact that this problem has no solution in the class of integrable controls. To ensure the existence of solutions is required to expand the class of controls including controls with impulse components. Dynamical systems with linear delay are used to describe the motion of pantograph from the current collector with electric traction, biology, etc. It should be noted that for practical problems fact singularity criterion of quality is quite commonly occurring, and therefore the study of these problems is surely important. For the problem under discussion optimal programming control contained impulse components at the initial and final moments of time is constructed under certain assumptions on the functional and the right side of the control system.
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.
CAD of control systems: Application of nonlinear programming to a linear quadratic formulation
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1980-01-01
It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.
Jian Sun; Agami Reddy
2005-01-01
This paper presents a general and systematic methodology, termed complete simulation-based sequential quadratic programming (CSB-SQP), for determining the optimal control of building HVAC&R systems. This approach allows the coupling of a detailed simulation program with an efficient optimization method, namely the sequential quadratic programming (SQP) algorithm. This approach allows the use of accurate component models of the system as against
Nazarathy, Yoni
2013-01-01
model and controller through a detailed mathematical description coupled with simulation results-Quadratic Model Predictive Control for Urban Traffic Networks Tung Lea , Hai L. Vua Yoni Nazarathyb , Bao Voa traffic networks. This paper presents a general model predictive control framework for both centralized
Guo, Lei
-Time Linear Quadratic Gaussian Control T. E. Duncan, Fellow, IEEE, L. Guo, Fellow, IEEE, and B. Pasik-Duncan, Senior Member, IEEE Abstract-- The adaptive linear quadratic Gaussian control problem, where the linear transformation of the state AAA and the linear transformation of the control BBB are unknown, is solved assuming
Linear-quadratic-regulator pointing control system design for a high-altitude balloon payload
White, J.E.; Etter, J.R.
1987-11-01
A pointing control system design for the science package of a NASA high-altitude research balloon is described. The balloon assembly consists of a single helium balloon connected to a payload recovery parachute, payload gondola, and ballast hopper. Pointing of the scientific payload is accomplished via an arrangement of drive motors and a flywheel. Linear quadratic regulator (LQR) synthesis techniques are employed to produce the azimuth and elevation controller designs. The use of LQR synthesis is motivated by the azimuthal dynamic coupling encountered between the balloon and gondola. Two control devices are employed in azimuth, one of which is a decoupler motor and the other a flywheel. The decoupler motor is intended to isolate the gondola from the balloon such that the flywheel can be accelerated or decelerated about a steady-state angular velocity to provide precise azimuthal pointing. The multiple-input/multiple-output nature of the azimuth pointing problem is best handled in a matrix synthesis procedure such as LQR. The controller design methodology is explained, and a combination of time responses and singular value analyses are used to analytically evaluate the performance of the control system. 11 refs., 17 figs.
Soliton transmission control by super-Gaussian filters
NASA Astrophysics Data System (ADS)
Peral, E.; Capmany, J.; Marti, J.
1996-12-01
Bandwidth-limited filtering has been proven to overcome certain limitations in soliton transmission systems. We propose super-Gaussian filters instead of Butterworth filter response obtained with conventionally used Fabry-Perot etalons as a method to improve soliton stability and reduce dispersion degradation and theoretically demonstrate their practical implementation in the form of holographic fiber gratings.
Ayvaz, Muzaffer; Demiralp, Metin [Istanbul Technical University, Informatics Institute, Maslak, 34469, Istanbul (Turkey)
2011-09-14
In this study, the optimal control equations for one dimensional quantum harmonic oscillator under the quadratic control operators together with linear dipole polarizability effects are constructed in the sense of Heisenberg equation of motion. A numerical technique based on the approximation to the non-commuting quantum mechanical operators from the fluctuation free expectation value dynamics perspective in the classical limit is also proposed for the solution of optimal control equations which are ODEs with accompanying boundary conditions. The dipole interaction of the system is considered to be linear, and the observable whose expectation value will be suppressed during the control process is considered to be quadratic in terms of position operator x. The objective term operator is also assumed to be quadratic.
Antsaklis, Panos
Xuping Xu and Panos J. Antsaklis, "An Approach to General Switched Linear Quadratic Optimal Control. Antsaklis, "An Approach to General Switched Linear Quadratic Optimal Control Problems with State Jumps Switched Linear Quadratic Optimal Control Problems with State Jumps," Proceedings of the 15th International
NSDL National Science Digital Library
2013-06-21
The quadratic formula is easy to solve, yet sufficiently sophisticated that it provides insight into oscillations of masses connected by springs, as well as insight into chemical bonds between atoms. The purpose of this video is to illustrate what it means to find the "zeros" or "roots" of the quadratic equation, both using a graphical description, as well as by analytically completing the square to obtain the famous quadratic formula.
N. A. Carella
2015-04-02
The subset of quadratic primes {p = an^2 + bn + c : n => 1} generated by an irreducible polynomial f(x) = ax^2 + bx + c over the integers is widely believed to be an unbounded subset of prime numbers. This note provides the details of a possible proof for some of these quadratic polynomials. In particular, it is shown that the cardinality of the simplest subset of quadratic primes {p = n^2 + 1 : n => 1} is infinite.
A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation
Huang, Yong E-mail: taogang@njust.edu.cn; Tao, Gang E-mail: taogang@njust.edu.cn
2014-09-01
The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.
Adaptive Optimal Control for Redundantly Actuated Arms
Mitrovic, Djordje; Klanke, Stefan; Vijayakumar, Sethu
2008-01-01
Optimal feedback control has been proposed as an attractive movement generation strategy in goal reaching tasks for anthropomorphic manipulator systems. Recent developments, such as the iterative Linear Quadratic Gaussian ...
Zhang, Jianhua; Jiang, Man; Ren, Mifeng; Hou, Guolian; Xu, Jinliang
2013-11-01
In this paper, a new adaptive control approach is presented for multivariate nonlinear non-Gaussian systems with unknown models. A more general and systematic statistical measure, called (h,?)-entropy, is adopted here to characterize the uncertainty of the considered systems. By using the "sliding window" technique, the non-parameter estimate of the (h,?)-entropy is formulated. Then, the improved neuron based controllers are developed for multivariate nonlinear non-Gaussian systems by minimizing the entropies of the tracking errors in closed loops. The condition to guarantee the strictly decreasing entropy of tracking error is presented. Moreover, the convergence in the mean-square sense has been analyzed for all the weights in the neural controllers. Finally, the comparative simulation results are presented to show that the performance of the proposed algorithm is superior to that of PID control strategy. PMID:23910156
Shinn-Horng Chen; Wen-Hsien Ho; Jyh-Horng Chou; Liang-An Zheng
2011-01-01
By integrating the robust stabilizability condition, the orthogonal-functions approach (OFA), and the hybrid Taguchi-genetic algorithm (HTGA), an integrative method is presented in this paper to design the robust-stable and quadratic finite-horizon optimal active vibration controller with low trajectory sensitivity such that (i) the flexible mechanical system with elemental parametric uncertainties can be robustly stabilized, and (ii) a quadratic finite-horizon integral
Uncertainty control and precision enhancement of weak measurements in the quadratic regime
NASA Astrophysics Data System (ADS)
Bernardo, Bertúlio de Lima; Martins, Weliton S.; Azevedo, Sérgio; Rosas, Alexandre
2015-07-01
Weak-value amplification has been successfully used to amplify the sensitivity of small detector signals, which paved the way towards new developments for precise parameter estimation methods. In general, the scheme is based on the idea that, between pre- and postselection, the measured system and the pointer are coupled in such a way that the interaction depends linearly on the coupling constant, the so-called linear regime. In this article, we propose an improvement to this technique that is based on the quadratic regime of interaction to increase the precision of such measurements. We demonstrate that by employing a purely real (imaginary) weak value in this regime, it is possible to decrease considerably the standard deviation of the final pointer observable in the position (momentum) space, when compared to the traditional linear regime, rendering a precision enhancement. By using an all-optical implementation, we obtained experimental data that confirm our theoretical predictions.
Active noise control with on-line estimation of non-Gaussian noise characteristics
NASA Astrophysics Data System (ADS)
Bergamasco, Marco; Della Rossa, Fabio; Piroddi, Luigi
2012-01-01
Active noise control (ANC) is a methodology for attenuating noise based on adaptive signal processing algorithms. ANC is well assessed for the attenuation of Gaussian noise, but the rejection of non-Gaussian impulsive noise signals represents a much more critical task that may even impair algorithm convergence. To overcome this problem the adaptive filter weight update process must be modified by discarding or discounting samples associated with impulsive noise. This can be done either by modeling the impulsive noise with a non-Gaussian distribution such as the Symmetric ?-stable (S?S) distribution or by applying an outlier detection method. With both approaches the accuracy in the noise description appears to be crucial for effective noise reduction. This paper proposes two novel approaches for the attenuation of impulsive noise both for invariant and time-varying noise distributions. The first one is based on the on-line estimation of an S?S model of the noise probabilistic description. The second relies on a simple on-line recursive procedure that reliably estimates amplitude thresholds for outlier detection. Both methods compare favorably with competitor approaches, while maintaining a sufficiently low algorithm complexity. Several examples are shown to demonstrate the algorithms' effectiveness.
NASA Astrophysics Data System (ADS)
Fletcher, S. J.; Kliewer, A.; Jones, A. S.; Forsythe, J. M.
2014-12-01
With the recent derivation of a mixed distribution based incremental VAR data assimilation system, the need to adapt the current Gaussian based quality control measures to allow for the correct assessment of lognormal distribution based observational errors has to be addressed. In this paper we take the "buddy check" system and show that it is possible to derive a similar measure in terms of a linearization with respect to ln x and not x. The gross error check is also discussed in the framework of which statistic, mean, mode of median, is the measure to be "centered" about, given the skewness of lognormal distribution. The final part of this paper is concerned with comparing the impact of using the current Gaussian and the new lognormal based distribution with an incremental mixed distribution based 4DVAR system with the Lorenz 1963 model.
Application of optimal control theory to the design of the NASA/JPL 70-meter antenna servos
NASA Technical Reports Server (NTRS)
Alvarez, L. S.; Nickerson, J.
1989-01-01
The application of Linear Quadratic Gaussian (LQG) techniques to the design of the 70-m axis servos is described. Linear quadratic optimal control and Kalman filter theory are reviewed, and model development and verification are discussed. Families of optimal controller and Kalman filter gain vectors were generated by varying weight parameters. Performance specifications were used to select final gain vectors.
NASA Technical Reports Server (NTRS)
Hamer, H. A.; Johnson, K. G.
1986-01-01
An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.
Venuti, Lorenzo Campos; Zanardi, Paolo
2013-01-01
A finite quantum system evolving unitarily equilibrates in a probabilistic fashion. In the general many-body setting the time fluctuations of an observable A are typically exponentially small in the system size. We consider here quasifree Fermi systems where the Hamiltonian and observables are quadratic in the Fermi operators. We first prove a bound on the temporal fluctuations ?A(2) and then map the equilibration dynamics to a generalized classical XY model in the infinite temperature limit. Using this insight, we conjecture that, in most cases, a central limit theorem can be formulated, leading to what we call Gaussian equilibration: observables display a Gaussian distribution with relative error ?A/A[over ¯]=O(L(-1/2)), where L is the dimension of the single-particle space. The conjecture, corroborated by numerical evidence, is proven analytically under mild assumptions for the magnetization in the quantum XY model and for a class of observables in a tight-binding model. We also show that the variance is discontinuous at the transition between a quasifree model and a nonintegrable one. PMID:23410282
Control Barrier Function Based Quadratic Programs with Application to Bipedal Robotic Walking
Hsu, Shao-Chen
2014-12-12
This thesis presents a methodology for the development of control barrier functions (CBFs) through a backstepping inspired approach. Given a set defined as the superlevel set of a function, h, the main result is a constructive ...
The use of gaussian quadrature formulas for the optimal design of particle control equipment
Benitez, J. (Puerto Rico Univ., Mayaguez (Puerto Rico))
1988-01-01
Optimal design of devices for control of particulate emissions requires that overall and partial mass penetrations be estimated. The overall mass penetration is the fraction of the total particulate material of all sizes entering the control device that is not collected. Partial mass penetration refers to the fraction of particulate material, up to a given particule size, that is not collected. To estimate these penetrations, the particulate size distribution function and the penetration as a function of particle size must be known. When these functions are substituted into the penetration expressions, the resulting integrals must be evaluated graphically or numerically. Optimal design of combinations of various types of equipment operating in series usually involve trial-and-error solution. Therefore, the graphical approach to penetration evaluation becomes tedious and time consuming. This paper presents a computationally simple and convenient method for numerical penetration calculations using Gaussian quadrature formulas.
Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jeon, G. J.
1983-01-01
Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.
On the Dual Decomposition of Linear Quadratic Optimal Control Problems for Vehicular Formations
Jovanovic, Mihailo
systems, owing to its excessive communication requirements. A preferred alternative is to have control that vehicles can iteratively compute their primal and dual variables by only communicating with their immediate of the augmented Lagrangian method, and numerical examples are provided to demonstrate the utility of our results
Quadratic Loss of Order Restricted Estimators for Treatment Means with a Control
Chu-In Charles Lee
1988-01-01
We consider an experiment which consists of $k$ treatment groups and a control group. Let the sample means $\\\\bar{Y}_0, \\\\bar{Y}_1, \\\\cdots, \\\\bar{Y}_k$ be independent normal variates with expected values $\\\\mu_0, \\\\mu_1, \\\\cdots, \\\\mu_k$ and with variances $\\\\sigma^2\\/n_0, \\\\sigma^2\\/n_1, \\\\cdots, \\\\sigma^2\\/n_k$. Let $w_0, w_1, \\\\cdots, w_k$ be positive weights and let $\\\\mu^\\\\ast_0, \\\\mu^\\\\ast_1, \\\\cdots, \\\\mu^\\\\ast_k$ be the weighted least squares estimators
Quadratic Effects in Conversion
NASA Astrophysics Data System (ADS)
Richardson, Andrew; Tracy, Eugene; Kaufman, Allan
2007-11-01
Phase space ray-tracing techniques can be used to solve wave problems exhibiting mode conversion [1,2]. The (x,k)-dependence of the dispersion matrix, D, is linearized near the conversion, and the matrix is then converted back to an operator. The resulting coupled equations can be solved for the local fields. Matching these local solutions onto uncoupled WKB far-field solutions gives scattering coefficients which can be used to treat the mode conversion as a ray-splitting process. In this work, we study the effects of quadratic terms in D near a mode conversion. We show that for one spatial dimension, D can be put into normal form, where the diagonals contain quadratic corrections, and the off-diagonals are the constant coupling. The quadratic terms introduce phase corrections to the far-field coupled WKB solutions, while the local solutions have both amplitude and phase corrections. These corrections allow for better matching at the conversion, which we illustrate by comparing the asymptotic solution with a numerical solution for the 1-D conversion. 1] A. Jaun, E. Tracy and A. Kaufman, Plasma Phys. Control. Fusion 49, 43-67 (2007). 2] E. Tracy, A. Kaufman and A. Jaun, to appear, Phys. Plasmas (2007).
On the quadratic sampled-data regulator with unstable random disturbances
NASA Technical Reports Server (NTRS)
Halyo, N.; Foulkes, R. H.
1974-01-01
This paper is concerned with the design of a digital controller, optimizing a quadratic cost function, for a linear system subjected to plant disturbance. The disturbance is viewed as a Gaussian random process generated by a linear system which may be unstable. It is shown that the optimal control consists of the sum of two terms: the optimal control when no disturbance is present and a term depending on the estimates of the disturbance. Necessary and sufficient conditions for the convergence of the gain matrices is given.
Acceleration-Augmented LQG Control of an Active Magnetic Bearing
NASA Technical Reports Server (NTRS)
Feeley, Joseph J.
1993-01-01
A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.
Improved temperature control of a PWR nuclear reactor using an LQG\\/LTR based controller
Hussein Arab-Alibeik; Saeed Setayeshi
2003-01-01
State feedback assisted classical (SFAC) control has been developed to improve the temperature response performance of nuclear reactors via modifying the embedded classical controller reference signal. This is done by means of an outermost state feedback controller. A linear quadratic Gaussian with loop transfer recovery (LQG\\/LTR) at the plant output seems a good candidate for the state feedback loop of
Singular quadratic Lie superalgebras
Minh Thanh Duong; Rosane Ushirobira
2012-06-24
In this paper, we give a generalization of results in \\cite{PU07} and \\cite{DPU10} by applying the tools of graded Lie algebras to quadratic Lie superalgebras. In this way, we obtain a numerical invariant of quadratic Lie superalgebras and a classification of singular quadratic Lie superalgebras, i.e. those with a nonzero invariant. Finally, we study a class of quadratic Lie superalgebras obtained by the method of generalized double extensions.
NSDL National Science Digital Library
2011-01-01
Completing the square is applied to the general quadratic to derive the quadratic formula. Before an area application example is given there is a quick review of the four methods that have been presented for solving quadratic equations. Complex numbers are introduced before the discriminant is presented.
NSDL National Science Digital Library
Robert Lengacher
2012-07-05
This is an introductory lesson to graphing quadratic equations. This lesson uses graphing technology to illustrate the differences between quadratic equations and linear equations. In addition, it allows students to identify important parts of the quadratic equation and how each piece changes the look of the graph.
?p-norms of codewords from capacity- and dispersion-achieveing Gaussian codes
Polyanskiy, Yury
It is demonstrated that codewords of good codes for the additive white Gaussian noise (AWGN) channel become more and more isotropically distributed (in the sense of evaluating quadratic forms) and resemble white Gaussian ...
VTOL controls for shipboard landing. M.S.Thesis
NASA Technical Reports Server (NTRS)
Mcmuldroch, C. G.
1979-01-01
The problem of landing a VTOL aircraft on a small ship in rough seas using an automatic controller is examined. The controller design uses the linear quadratic Gaussian results of modern control theory. Linear time invariant dynamic models are developed for the aircraft, ship, and wave motions. A hover controller commands the aircraft to track position and orientation of the ship deck using only low levels of control power. Commands for this task are generated by the solution of the steady state linear quadratic gaussian regulator problem. Analytical performance and control requirement tradeoffs are obtained. A landing controller commands the aircraft from stationary hover along a smooth, low control effort trajectory, to a touchdown on a predicted crest of ship motion. The design problem is formulated and solved as an approximate finite-time linear quadratic stochastic regulator. Performance and control results are found by Monte Carlo simulations.
ECE 6744/ ME 6544/AOE 6744: Linear Control Theory Course Syllabus
Farhood, Mazen
ECE 6744/ ME 6544/AOE 6744: Linear Control Theory Course Syllabus Instructor: Mazen Farhood 224 control theory, linear-quadratic Gaussian (optimal controller/observer) theory, and methods for ensuring robustness to model uncertainty and time delays. References: Texts Focusing on Linear Optimal Control P
Design of a candidate flutter suppression control law for DAST ARW-2
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1984-01-01
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQC (Linear Quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
NASA Technical Reports Server (NTRS)
Patel, R. V.; Toda, M.; Sridhar, B.
1977-01-01
The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.
Statistical Cosmology with Quadratic Density Fields
Peter Watts; Peter Coles
2002-08-15
Primordial fluctuations in the cosmic density are usually assumed to take the form of a Gaussian random field that evolves under the action of gravitational instability. In the early stages, while they have low amplitude, the fluctuations grow linearly. During this phase the Gaussian character of the fluctuations is preserved. Later on, when the fluctuations have amplitude of order the mean density or larger, non-linear effects cause departures from Gaussianity. In Fourier space, non-linearity is responsible for coupling Fourier modes and altering the initially random distribution of phases that characterizes Gaussian initial conditions. In this paper we investigate some of the effects of quadratic non-linearity on basic statistical properties of cosmological fluctuations. We demonstrate how this form of non-linearity can affect asymptotic properties of density fields such as homogeneity, ergodicity, and behaviour under smoothing. We also show how quadratic density fluctuations give rise to a particular relationship between the phases of different Fourier modes which, in turn, leads to the generation of a non-vanishing bispectrum. We thus elucidate the relationship between higher-order power spectra and phase distributions.
A quantum mechanical version of Price's theorem for Gaussian states
Igor G. Vladimirov
2014-09-15
This paper is concerned with integro-differential identities which are known in statistical signal processing as Price's theorem for expectations of nonlinear functions of jointly Gaussian random variables. We revisit these relations for classical variables by using the Frechet differentiation with respect to covariance matrices, and then show that Price's theorem carries over to a quantum mechanical setting. The quantum counterpart of the theorem is established for Gaussian quantum states in the framework of the Weyl functional calculus for quantum variables satisfying the Heisenberg canonical commutation relations. The quantum mechanical version of Price's theorem relates the Frechet derivative of the generalized moment of such variables with respect to the real part of their quantum covariance matrix with other moments. As an illustrative example, we consider these relations for quadratic-exponential moments which are relevant to risk-sensitive quantum control.
Quadratic Forms, Geodesics and
Wirosoetisno, Djoko
Forms Hyperbolic surfaces Closed Geodesics Spectral Theory Propaganda Outline Quadratic Forms Hyperbolic surfaces Closed Geodesics Spectral Theory Propaganda #12;Indefinite Quadratic Forms, Closed Geodesics Propaganda Pell's Equation Algorithm for solving x2 - 2y2 = ±1 (Pythagoreans) Start with x1 = 1, y1 = 1 We
Quadratic eigenvalue problems.
Walsh, Timothy Francis; Day, David Minot
2007-04-01
In this report we will describe some nonlinear eigenvalue problems that arise in the areas of solid mechanics, acoustics, and coupled structural acoustics. We will focus mostly on quadratic eigenvalue problems, which are a special case of nonlinear eigenvalue problems. Algorithms for solving the quadratic eigenvalue problem will be presented, along with some example calculations.
Mahajan, Aditya
1 Sufficient statistics for linear control strategies in decentralized systems with partial history sharing Aditya Mahajan and Ashutosh Nayyar Abstract--In decentralized control systems with linear dy- namics, quadratic cost, and Gaussian disturbance (also called decentralized LQG systems) linear control
Rate allocation in a remote control structure
Meadow, Charles Joe
1984-01-01
45 Figure 5. Modified Transmission Scheme for Control Channel 50 Figure 6. Block Diagram of Remote Control System 53 Figure 7. Adaptive Differential Pulse Code Modulation (a) Encoder. (b) Decoder 56 Figure 8. Simulated Control System 61 Figure 9... be done in an optimum way. Considering a Linear-Quadratic-Gaussian (LQG) system, Larson [1] stated that optimal quantized control was achieved by 1) performing optimal state estimation (Kalman filtering); 2) generating a control from this estimate...
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1983-01-01
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
Ali Fellah Jahromi; A. Zabihollah
2010-01-01
A novel semi-active control system for suspension systems of passenger car using Magnetorheological (MR) damper is introduced. The suspension system is considered as a mass-spring model with a seven-degrees-of-freedom, a passive damper and an active damper. The semi-active vibration control is designed to reduce the amplitude of automotive vibration caused by the alteration of road profile. The control mechanism is
NASA Technical Reports Server (NTRS)
Bensoussan, A.; Delfour, M. C.; Mitter, S. K.
1976-01-01
Available published results are surveyed for a special class of infinite-dimensional control systems whose evolution is characterized by a semigroup of operators of class C subscript zero. Emphasis is placed on an approach that clarifies the system-theoretic relationship among controllability, stabilizability, stability, and the existence of a solution to an associated operator equation of the Riccati type. Formulation of the optimal control problem is reviewed along with the asymptotic behavior of solutions to a general system of equations and several theorems concerning L2 stability. Examples are briefly discussed which involve second-order parabolic systems, first-order hyperbolic systems, and distributed boundary control.
Ellis, John; Fairbairn, Malcolm; Sueiro, Maria, E-mail: john.ellis@cern.ch, E-mail: malcolm.fairbairn@kcl.ac.uk, E-mail: maria.sueiro@kcl.ac.uk [Theoretical Particle Physics and Cosmology Group, Department of Physics, King's College London, Strand, London, WC2R 2LS (United Kingdom)
2014-02-01
Inflationary models based on a single scalar field ? with a quadratic potential V = ½m{sup 2}?{sup 2} are disfavoured by the recent Planck constraints on the scalar index, n{sub s}, and the tensor-to-scalar ratio for cosmological density perturbations, r{sub T}. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on n{sub s} and r{sub T}. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.
On the application of deterministic optimization methods to stochastic control problems.
NASA Technical Reports Server (NTRS)
Kramer, L. C.; Athans, M.
1972-01-01
A technique is presented by which one can apply the Minimum Principle of Pontryagin to stochastic optimal control problems formulated around linear systems with Gaussian noises and general cost criteria. Using this technique, the stochastic nature of the problem is suppressed but for two expectation operations, the optimization being essentially deterministic. The technique is applied to systems with quadratic and non-quadratic costs to illustrate its use.
Quadrats en progressi Xavier Xarles
Xarles, Xavier
Quadrats en progressiÂ´o aritm`etica Â p. #12;Problema Quants quadrats (enters) hi ha en progressiÃ³ aritmÃ¨tica? Quadrats en progressiÂ´o aritm`etica Â p. #12;Problema Quants quadrats (enters) hi ha en progressiÃ³ aritmÃ¨tica? Exemple: 1, 25, 49. Quadrats en progressiÂ´o aritm`etica Â p. #12;Problema Quants
A generalized eigenproblem approach to singular control problems. I. LQG problems
B. R. Copeland; M. G. Safonov
1991-01-01
Summarizes new results which give a general descriptor representation for the solution to the LQG (linear quadratic Gaussian) control problem. The descriptor representation applies without additional complexity to singular cases, i.e. when the associated noise intensities and\\/or control weightings are not invertible improper solutions. The authors also determine the limiting transfer function and resulting cost. The results reflect the reduction
An efficiently solvable quadratic program for stabilizing dynamic locomotion
Kuindersma, Scott
We describe a whole-body dynamic walking controller implemented as a convex quadratic program. The controller solves an optimal control problem using an approximate value function derived from a simple walking model while ...
CPHD filters with unknown quadratic clutter generators
NASA Astrophysics Data System (ADS)
Mahler, Ronald
2015-05-01
Previous research has produced CPHD filters that can detect and track multiple targets in unknown, dynamically changing clutter. The .first such filters employed Poisson clutter generators and, as a result, were combinatorially complex. Recent research has shown that replacing the Poisson clutter generators with Bernoulli clutter generators results in computationally tractable CPHD filters. However, Bernoulli clutter generators are insufficiently complex to model real-world clutter with high accuracy, because they are statistically first-degree. This paper addresses the derivation and implementation of CPHD filters when first-degree Bernoulli clutter generators are replaced by second-degree quadratic clutter generators. Because these filters are combinatorially second-order, they are more easily approximated. They can also be implemented in exact closed form using beta-Gaussian mixture (BGM) or Dirichlet-Gaussian mixture (DGM) techniques.
He, Jing; Li, Hongzhe; Edmondson, Andrew C; Rader, Daniel J; Li, Mingyao
2012-07-01
In many case-control genetic association studies, a set of correlated secondary phenotypes that may share common genetic factors with disease status are collected. Examination of these secondary phenotypes can yield valuable insights about the disease etiology and supplement the main studies. However, due to unequal sampling probabilities between cases and controls, standard regression analysis that assesses the effect of SNPs (single nucleotide polymorphisms) on secondary phenotypes using cases only, controls only, or combined samples of cases and controls can yield inflated type I error rates when the test SNP is associated with the disease. To solve this issue, we propose a Gaussian copula-based approach that efficiently models the dependence between disease status and secondary phenotypes. Through simulations, we show that our method yields correct type I error rates for the analysis of secondary phenotypes under a wide range of situations. To illustrate the effectiveness of our method in the analysis of real data, we applied our method to a genome-wide association study on high-density lipoprotein cholesterol (HDL-C), where "cases" are defined as individuals with extremely high HDL-C level and "controls" are defined as those with low HDL-C level. We treated 4 quantitative traits with varying degrees of correlation with HDL-C as secondary phenotypes and tested for association with SNPs in LIPG, a gene that is well known to be associated with HDL-C. We show that when the correlation between the primary and secondary phenotypes is >0.2, the P values from case-control combined unadjusted analysis are much more significant than methods that aim to correct for ascertainment bias. Our results suggest that to avoid false-positive associations, it is important to appropriately model secondary phenotypes in case-control genetic association studies. PMID:21933777
He, Jing; Li, Hongzhe; Edmondson, Andrew C.; Rader, Daniel J.; Li, Mingyao
2012-01-01
In many case–control genetic association studies, a set of correlated secondary phenotypes that may share common genetic factors with disease status are collected. Examination of these secondary phenotypes can yield valuable insights about the disease etiology and supplement the main studies. However, due to unequal sampling probabilities between cases and controls, standard regression analysis that assesses the effect of SNPs (single nucleotide polymorphisms) on secondary phenotypes using cases only, controls only, or combined samples of cases and controls can yield inflated type I error rates when the test SNP is associated with the disease. To solve this issue, we propose a Gaussian copula-based approach that efficiently models the dependence between disease status and secondary phenotypes. Through simulations, we show that our method yields correct type I error rates for the analysis of secondary phenotypes under a wide range of situations. To illustrate the effectiveness of our method in the analysis of real data, we applied our method to a genome-wide association study on high-density lipoprotein cholesterol (HDL-C), where “cases” are defined as individuals with extremely high HDL-C level and “controls” are defined as those with low HDL-C level. We treated 4 quantitative traits with varying degrees of correlation with HDL-C as secondary phenotypes and tested for association with SNPs in LIPG, a gene that is well known to be associated with HDL-C. We show that when the correlation between the primary and secondary phenotypes is >0.2, the P values from case–control combined unadjusted analysis are much more significant than methods that aim to correct for ascertainment bias. Our results suggest that to avoid false-positive associations, it is important to appropriately model secondary phenotypes in case–control genetic association studies. PMID:21933777
A hypothesis-based algorithm for planning and control in non-Gaussian belief spaces
Platt, Robert, Jr.
2011-08-27
We consider the partially observable control problem where it is potentially necessary to perform complex information-gathering operations in order to localize state. One approach to solving these problems is to create ...
The Mystical "Quadratic Formula."
ERIC Educational Resources Information Center
March, Robert H.
1993-01-01
Uses projectile motion to explain the two roots found when using the quadratic formula. An example is provided for finding the time of flight for a projectile which has a negative root implying a negative time of flight. This negative time of flight also has a useful physical meaning. (MVL)
Control law design to meet constraints using SYNPAC-synthesis package for active controls
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1982-01-01
Major features of SYNPAC (Synthesis Package for Active Controls) are described. SYNPAC employs constrained optimization techniques which allow explicit inclusion of design criteria (constraints) in the control law design process. Interrelationships are indicated between this constrained optimization approach, classical and linear quadratic Gaussian design techniques. Results are presented that were obtained by applying SYNPAC to the design of a combined stability augmentation/gust load alleviation control law for the DAST ARW-2.
Gesture Recognition Using Quadratic Curves
Qiulei Dong; Yihong Wu; Zhanyi Hu
2006-01-01
This paper presents a novel method for human gesture recog- nition based on quadratic curves. Firstly, face and hands in the images are extracted by skin color and their central points are kept tracked by a modifled Greedy Exchange algorithm. Then in each trajectory, the cen- tral points are fltted into a quadratic curve and 6 invariants from this quadratic
Quadratic weighted median filters for edge enhancement of noisy images.
Aysal, Tuncer Can; Barner, Kenneth E
2006-11-01
Quadratic Volterra filters are effective in image sharpening applications. The linear combination of polynomial terms, however, yields poor performance in noisy environments. Weighted median (WM) filters, in contrast, are well known for their outlier suppression and detail preservation properties. The WM sample selection methodology is naturally extended to the quadratic sample case, yielding a filter structure referred to as quadratic weighted median (QWM) that exploits the higher order statistics of the observed samples while simultaneously being robust to outliers arising in the higher order statistics of environment noise. Through statistical analysis of higher order samples, it is shown that, although the parent Gaussian distribution is light tailed, the higher order terms exhibit heavy-tailed distributions. The optimal combination of terms contributing to a quadratic system, i.e., cross and square, is approached from a maximum likelihood perspective which yields the WM processing of these terms. The proposed QWM filter structure is analyzed through determination of the output variance and breakdown probability. The studies show that the QWM exhibits lower variance and breakdown probability indicating the robustness of the proposed structure. The performance of the QWM filter is tested on constant regions, edges and real images, and compared to its weighted-sum dual, the quadratic Volterra filter. The simulation results show that the proposed method simultaneously suppresses the noise and enhances image details. Compared with the quadratic Volterra sharpener, the QWM filter exhibits superior qualitative and quantitative performance in noisy image sharpening. PMID:17076391
System analysis via integral quadratic constraints
Alexandre Megretski; Anders Rantzer
1997-01-01
This paper introduces a unified approach to robustness analysis with respect to nonlinearities, time variations, and uncertain parameters. From an original idea by Yakubovich (1967), the approach has been developed under a combination of influences from the Western and Russian traditions of control theory. It is shown how a complex system can be described, using integral quadratic constraints (IQC) for
LQG\\/LTR robust control of nuclear reactors with improved temperature performance
Adel Ben-Abdennour; Robert M. Edwards; Kwang Y. Lee
1992-01-01
The authors present the design of a robust controller using the linear quadratic Gaussian with loop transfer recovery (LQG\\/LTR) for nuclear reactors with the objective of maintaining a desirable performance for reactor fuel temperature and the temperature of the coolant leaving the reactor for a wide range of reactor powers. The results obtained are compared to those for an observer-based
LETTER Communicated by Tamar Flash Stochastic Optimal Control and Estimation Methods Adapted
Todorov, Emanuel
realistic models of the motor task and the senso- rimotor periphery. Recent studies have highlighted the importance of incorporating biologically plausible noise into such models. Here we ex- tend the linear-quadratic-gaussian framework--currently the only frame- work where such problems can be solved efficiently--to include control
Gaussian quantum information Christian Weedbrook
Cerf, Nicolas
, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Nicolas J. Cerf Quantum Information C. Ralph Centre for Quantum Computation and Communication Technology, School of MathematicsGaussian quantum information Christian Weedbrook Center for Quantum Information and Quantum Control
Kazuo Tanaka; T. Ikeda; H. O. Wang
1996-01-01
This paper presents stability analysis for a class of uncertain nonlinear systems and a method for designing robust fuzzy controllers to stabilize the uncertain nonlinear systems, First, a stability condition for Takagi and Sugeno's fuzzy model is given in terms of Lyapunov stability theory. Next, new stability conditions for a generalized class of uncertain systems are derived from robust control
2006-01-01
Statistical image reconstruction methods based on maximum a posteriori (MAP) principle have been developed for emission tomography. The prior distribution of the unknown image plays an important role in MAP reconstruction. The most commonly used prior are Gaussian priors, whose logarithm has a quadratic form. Gaussian priors are relatively easy to analyze. It has been shown that the effect of a Gaussian prior can be approximated by linear filtering a maximum likelihood (ML) reconstruction. As a result, sharp edges in reconstructed images are not preserved. To preserve sharp transitions, non-Gaussian priors have been proposed. However, their effect on clinical tasks is less obvious. In this paper, we compare MAP reconstruction with Gaussian and non-Gaussian priors for lesion detection and region of interest quantification using computer simulation. We evaluate three representative priors: Gaussian prior, Huber prior, and Geman-McClure prior. We simulate imaging a prostate tumor using positron emission tomography (PET). The detectability of a known tumor in either a fixed background or a random background is measured using a channelized Hotelling observer. The bias-variance tradeoff curves are calculated for quantification of the total tumor activity. The results show that for the detection and quantification tasks, the Gaussian prior is as effective as non-Gaussian priors. PMID:23165056
Lesson 17: Quadratic Inequalities
NSDL National Science Digital Library
2011-01-01
The lesson begins with using graphs to solve quadratic inequalities. AN equation modeling the height of a rocket is graphed along with a second equation that represents the minimum height at which the rocket can legally and safely be exploded. The intersections of the graphs provide the solution interval. A second method is then presented where the inequality is put into standard form and then solved for its x-intercepts. Interval notation and union of sets is reviewed before a purely algebraic procedure for solving the inequalities is presented. The lesson concludes with an application problem.
NASA Technical Reports Server (NTRS)
Oakley, Celia M.; Barratt, Craig H.
1990-01-01
Recent results in linear controller design are used to design an end-point controller for an experimental two-link flexible manipulator. A nominal 14-state linear-quadratic-Gaussian (LQG) controller was augmented with a 528-tap finite-impulse-response (FIR) filter designed using convex optimization techniques. The resulting 278-state controller produced improved end-point trajectory tracking and disturbance rejection in simulation and experimentally in real time.
Metin, Baris; Wiersema, Jan R; Verguts, Tom; Gasthuys, Roos; van Der Meere, Jacob J; Roeyers, Herbert; Sonuga-Barke, Edmund
2014-12-01
According to the state regulation deficit (SRD) account, ADHD is associated with a problem using effort to maintain an optimal activation state under demanding task settings such as very fast or very slow event rates. This leads to a prediction of disrupted performance at event rate extremes reflected in higher Gaussian response variability that is a putative marker of activation during motor preparation. In the current study, we tested this hypothesis using ex-Gaussian modeling, which distinguishes Gaussian from non-Gaussian variability. Twenty-five children with ADHD and 29 typically developing controls performed a simple Go/No-Go task under four different event-rate conditions. There was an accentuated quadratic relationship between event rate and Gaussian variability in the ADHD group compared to the controls. The children with ADHD had greater Gaussian variability at very fast and very slow event rates but not at moderate event rates. The results provide evidence for the SRD account of ADHD. However, given that this effect did not explain all group differences (some of which were independent of event rate) other cognitive and/or motivational processes are also likely implicated in ADHD performance deficits. PMID:25482092
Mixed-integer quadratic programming
Rafael Lazimy
1982-01-01
This paper considers mixed-integer quadratic programs in which the objective function is quadratic in the integer and in the continuous variables, and the constraints are linear in the variables of both types. The generalized Benders' decomposition is a suitable approach for solving such programs. However, the program does not become more tractable if this method is used, since Benders' cuts
Noise-Shaped Predictive Coding for Multiple Descriptions of a Colored Gaussian Source
Zamir, Ram
(·, ·) is a distortion measure, and (·) denotes time-averaging over the source sequence. The MD quadratic rate-distortion function (RDF) for memoryless Gaussian sources was found by Ozarow [1] and the extension to stationary Gaussian MD RDF can be achieved by dithered Delta-Sigma quantization (DSQ) and memoryless entropy coding
Computing quadratic entropy in evolutionary trees
Klavzar, Sandi
Computing quadratic entropy in evolutionary trees Drago Bokal # Faculty of Natural Sicences trees, the maximum of quadratic entropy is a measure of pairwise evolutionary distinctness. Keywords: evolutionary tree, phylogenetic tree, quadratic entropy, originality, distinctÂ ness, Wiener
NASA Technical Reports Server (NTRS)
Picco, C. E.; Shavers, M. R.; Victor, J. M.; Duron, J. L.; Bowers, W. h.; Gillis, D. B.; VanBaalen, M.
2009-01-01
LIDAR systems that maintain a constant beam spot size on a retroreflector in order to increase the accuracy of bearing and ranging data must use a software controlled variable position lens. These systems periodically update the estimated range and set the position of the focusing lens accordingly. In order to precisely calculate the r NOHD for such a system, the software method for setting the variable position lens and gaussian laser propagation can be used to calculate the irradiance at any point given the range estimation. NASA s Space Shuttle LIDAR, called the Trajectory Control Sensor (TCS), uses this configuration. Analytical tools were developed using Excel and VBA to determine the radiant energy to the International Space Station (ISS) crewmembers eyes while viewing the shuttle on approach and departure. Various viewing scenarios are considered including the use of through-the-lens imaging optics and the window transmissivity at the TCS wavelength. The methodology incorporates the TCS system control logic, gaussian laser propagation, potential failure mode end states, and guidance from American National Standard for the Safe Use of Lasers (ANSI Z136.1-2007). This approach can be adapted for laser safety analyses of similar LIDAR systems.
Linear quadratic stationkeeping on travelling ellipses
NASA Technical Reports Server (NTRS)
Adams, Neil J.; Redding, David C.; Cox, Kenneth J.
1987-01-01
An automatic controller for Space Shuttle stationkeeping or formationkeeping is presented. The controller, which is a candidate for future on-orbit autopilot enhancement, uses a fuel 'optimized' limit cycle trajectory in a feedforward loop for precise control at nonequilibrium set points. Disturbance rejection is accomplished by a discrete time, linear quadratic regulator, which is employed for tracking of the feedforward model. Feedback gain selection is done to provide good limit cycling performance and low fuel consumption. Velocity correlations are carried out by use of a pseudo 6 degree-of-freedom jet selection scheme. Results indicate that 20 ft precision can be achieved using current sensors.
Gaussian cloning of coherent states with known phases
Alexanian, Moorad
2006-04-15
The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier.
LQG\\/LTR controller design using a reduced order model
Rajiva Prakash; S. V. Rao
1989-01-01
A specific robust controller design procedure, linear quadratic Gaussian with loop transfer recovery (LQG\\/LTR), is studied. LQG\\/LTR design using a reduced-order model is performed. The error due to the use of the reduced model is accounted for by computing multiplicative error. All closed right half plane modes of the given system are included in the reduced-order model. The reduced-order LQG\\/LTR
Circuit analog of quadratic optomechanics
Eun-jong Kim; J. R. Johansson; Franco Nori
2014-12-22
We propose a superconducting electrical circuit that simulates a quadratic optomechanical system. A capacitor placed between two transmission-line (TL) resonators acts like a semi-transparent membrane, and a superconducting quantum interference device (SQUID) that terminates a TL resonator behaves like a movable mirror. Combining these circuit elements, it is possible to simulate a quadratic optomechanical coupling whose coupling strength is determined by the coupling capacitance and the tunable bias flux through the SQUIDs. Estimates using realistic parameters suggest that an improvement in the coupling strength could be realized, to five orders of magnitude from what has been observed in membrane-in-the-middle cavity optomechanical systems. This leads to the possibility of achieving the strong-coupling regime of quadratic optomechanics.
Circuit analog of quadratic optomechanics
NASA Astrophysics Data System (ADS)
Kim, Eun-jong; Johansson, J. R.; Nori, Franco
2015-03-01
We propose a superconducting electrical circuit that simulates a quadratic optomechanical system. A capacitor placed between two transmission-line (TL) resonators acts like a semitransparent membrane, and a superconducting quantum interference device (SQUID) that terminates a TL resonator behaves like a movable mirror. Combining these circuit elements, it is possible to simulate a quadratic optomechanical coupling whose coupling strength is determined by the coupling capacitance and the tunable bias flux through the SQUIDs. Estimates using realistic parameters suggest that an improvement in the coupling strength could be realized, to five orders of magnitude from what has been observed in membrane-in-the-middle cavity optomechanical systems. This leads to the possibility of achieving the strong-coupling regime of quadratic optomechanics.
An improved Gaussian mixture model
NASA Astrophysics Data System (ADS)
Gong, Dayong; Wang, Zhihua
2013-03-01
An improved Gaussian mixture model is presented to substitute the typical method of Chris Stauffer which revealed its weakness in uncontrollability of the background constructing course and foreground mergence time as well as invalidation to the low duty background. By setting appropriate time parameters which meet the monitoring needs, the improved method effectively controls the estimates updating process of each background in Gaussian mixture model via layered attenuating the estimates and intensifying the recurrence events while requires almost the same computation. The simulation of traffic monitoring videos indicates that: this model has no scraps of provisionally staying objects, efficaciously picks up the low duty background.
A Quadratic Closure for Compressible Turbulence
Futterman, J A
2008-09-16
We have investigated a one-point closure model for compressible turbulence based on third- and higher order cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to criteria for Adaptive Mesh Refinement. Rapid distortion theory (RDT) as originally applied by Herring closes the turbulence hierarchy of moment equations by discarding third order and higher cumulants. This is similar to the fourth-order cumulant discard hypothesis of Millionshchikov, except that the Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 'rapid' in the sense that the interaction of the mean flow with the turbulence overwhelms the interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both second and fourth-order cumulants are retained. Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting compressible turbulence, without regard to homogeneity or isotropy, and make contact with two equation turbulence models, especially the K-{var_epsilon} and K-L models, and with linear instability growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume simulations.
H II control for model helicopter in hover
NASA Astrophysics Data System (ADS)
Kim, Moo Seok; Kim, Joon Ki; Han, Jeong Yup; Park, Hong Bae; Kang, Soon Ju
2005-12-01
This paper presents mathematical model of six degree-of-freedom (6-DOF) helicopter (ERGO50) in hover, and H II feedback controller which is a powerful technique for the MIMO system as a helicopter. Mathematical model of the helicopter is multi-input multi-output (MIMO) and linearized system which accommodates aerodynamics. H II controller based on optimal control theory is used in a myriad application and plays an important role as a valuable precursor to other advanced methods for future work, when we need to improve stability of the helicopter. We design linear-quadratic-gaussian controller as H II controller. Simulation results show good performance.
Solving Quadratic Equations by Factoring
NSDL National Science Digital Library
2012-08-06
This video explains how to solve quadratic equations with the factoring method. In 4 minutes 23 seconds, the two narrators explain in detail the steps required. Additionally, how these equations relate to objects and events in the real world such as roller coasters is covered.
Quadratic eigenproblems are no problem
Gerard Sleijpen; Henk Van Der Vorst; Martin van Gijzen
1996-01-01
High-dimensional eigenproblems often arise in the solution of scientific problems involving stability or wave modeling. In this article we present results for a quadratic eigenproblem that we encountered in solving an acoustics problem, specifically in modeling the propagation of waves in a room in which one wall was constructed of sound-absorbing material. Efficient algorithms are known for the standard linear
Introduction Non-Gaussian results
Introduction Non-Gaussian results Gaussian results Proof Random fields and condition number¨is Random fields and condition number of random matrices #12;Introduction Non-Gaussian results Gaussian results Proof 1 Introduction 2 Non-Gaussian results 3 Gaussian results 4 Proof Jean-Marc Aza¨is Random
Introduction Non-Gaussian results
Introduction Non-Gaussian results Gaussian results Proof Some work of Mario Wschebor on condition¨is Some work of Mario Wschebor on condition number of random #12;Introduction Non-Gaussian results Gaussian results Proof 1 Introduction 2 Non-Gaussian results 3 Gaussian results 4 Proof Jean-Marc Aza
Sparse gaussian graphical models for speech recognition.
Bell, Peter; King, Simon
2007-01-01
We address the problem of learning the structure of Gaussian graphical models for use in automatic speech recognition, a means of controlling the form of the inverse covariance matrices of such systems. With particular focus on data sparsity issues...
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1979-01-01
Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.
Attitude and vibration control of a large flexible space-based antenna
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1982-01-01
Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise.
Optimal control of entanglement via quantum feedback
Stefano Mancini; Howard M. Wiseman
2006-10-01
It has recently been shown that finding the optimal measurement on the environment for stationary Linear Quadratic Gaussian control problems is a semi-definite program. We apply this technique to the control of the EPR-correlations between two bosonic modes interacting via a parametric Hamiltonian at steady state. The optimal measurement turns out to be nonlocal homodyne measurement -- the outputs of the two modes must be combined before measurement. We also find the optimal local measurement and control technique. This gives the same degree of entanglement but a higher degree of purity than the local technique previously considered [S. Mancini, Phys. Rev. A {\\bf 73}, 010304(R) (2006)].
Orthogonality preserving infinite dimensional quadratic stochastic operators
NASA Astrophysics Data System (ADS)
Ak?n, Hasan; Mukhamedov, Farrukh
2015-09-01
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce ?-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is ?-Volterra quadratic operator. In infinite dimensional setting, we describe all ?-Volterra operators in terms orthogonal preserving operators.
Rational quadratic Bézier curve fitting by simulated annealing technique
NASA Astrophysics Data System (ADS)
Mohamed, Najihah; Abd Majid, Ahmad; Mt Piah, Abd Rahni
2013-04-01
A metaheuristic algorithm, which is an approximation method called simulated annealing is implemented in order to have the best rational quadratic Bézier curve from a given data points. This technique is used to minimize sum squared errors in order to improve the middle control point position and the value of weight. As a result, best fitted rational quadratic Bézier curve and its mathematical function that represents all the given data points is obtained. Numerical and graphical examples are also presented to demonstrate the effectiveness and robustness of the proposed method.
Linear quadratic regulators with eigenvalue placement in a horizontal strip
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1987-01-01
A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.
Asynchronous Multi-Party Computation With Quadratic Communication
Cortes, Corinna
Asynchronous Multi-Party Computation With Quadratic Communication Martin Hirt1 , Jesper Buus can be se- curely computed with communication complexity O(cn2 ) bits, which improves means that an adversary corrupting some of the parties, cannot achieve more than controlling
On the application of deterministic optimization methods to stochastic control problems
NASA Technical Reports Server (NTRS)
Kramer, L. C.; Athans, M.
1974-01-01
A technique is presented by which deterministic optimization techniques, for example, the maximum principle of Pontriagin, can be applied to stochastic optimal control problems formulated around linear systems with Gaussian noises and general cost criteria. Using this technique, the stochastic nature of the problem is suppressed but for two expectation operations, the optimization being deterministic. The use of the technique in treating problems with quadratic and nonquadratic costs is illustrated.
Frequency Locking of an Optical Cavity using LQG Integral Control
S. Z. Sayed Hassen; M. Heurs; E. H. Huntington; I. R. Petersen
2008-09-03
This paper considers the application of integral Linear Quadratic Gaussian (LQG) optimal control theory to a problem of cavity locking in quantum optics. The cavity locking problem involves controlling the error between the laser frequency and the resonant frequency of the cavity. A model for the cavity system, which comprises a piezo-electric actuator and an optical cavity is experimentally determined using a subspace identification method. An LQG controller which includes integral action is synthesized to stabilize the frequency of the cavity to the laser frequency and to reject low frequency noise. The controller is successfully implemented in the laboratory using a dSpace DSP board.
OPTICAL SOLITONS: Excitation of two-dimensional soliton matrices by fundamental Gaussian beams
NASA Astrophysics Data System (ADS)
Borovkova, O. V.; Chuprakov, D. A.; Sukhorukov, Anatolii P.
2005-01-01
The excitation of two-dimensional periodic structures of fields of the first and second radiation harmonics due to the modulation instability of fundamental Gaussian beams is studied in a medium with a quadratic nonlinearity. The distances are found at which soliton matrix structures with a specified period are formed and destroyed. Optical gratings formed due to nonlinear aberration of broad Gaussian beams are considered.
Giorda, Paolo; Paris, Matteo G A
2010-07-01
We extend the quantum discord to continuous variable systems and evaluate Gaussian quantum discord C(?) for bipartite Gaussian states. In particular, for squeezed-thermal states, we explicitly maximize the extractable information over Gaussian measurements: C(?) is minimized by a generalized measurement rather than a projective one. Almost all squeezed-thermal states have nonzero Gaussian discord: They may be either separable or entangled if the discord is below the threshold C(?) = 1, whereas they are all entangled above the threshold. We elucidate the general role of state parameters in determining the discord and discuss its evolution in noisy channels. PMID:20867693
NASA Astrophysics Data System (ADS)
Giorda, Paolo; Paris, Matteo G. A.
2010-07-01
We extend the quantum discord to continuous variable systems and evaluate Gaussian quantum discord C(?) for bipartite Gaussian states. In particular, for squeezed-thermal states, we explicitly maximize the extractable information over Gaussian measurements: C(?) is minimized by a generalized measurement rather than a projective one. Almost all squeezed-thermal states have nonzero Gaussian discord: They may be either separable or entangled if the discord is below the threshold C(?)=1, whereas they are all entangled above the threshold. We elucidate the general role of state parameters in determining the discord and discuss its evolution in noisy channels.
Symplectic Dilations, Gaussian States and Gaussian Channels
K. R. Parthasarathy
2014-10-19
By elementary matrix algebra we show that every real $2n \\times 2n$ matrix admits a dilation to an element of the real symplectic group $Sp (2(n+m))$ for some nonnegative integer $m.$ Our methods do not yield the minimum value of $m,$ for which such a dilation is possible. After listing some of the main properties of Gaussian states in $L^2 (\\mathbb{R}^n),$ we analyse the implications of symplectic dilations in the study of quantum Gaussian channels which lead to some interesting open problems, particularly, in the context of the work of Heinosaari, Holevo and Wolf \\cite{3}.
Learning Mixtures of Gaussians
Sanjoy Dasgupta
1999-01-01
Mixtures of Gaussians are among the most fundamental and widely used statistical models. Current techniques for learning such mixtures from data are local search heuris- tics withweak performance guarantees. We present the first provably correct algorithm for learning a mixture of Gaus- sians. This algorithm is very simple and returns the true centers of the Gaussians to withinthe precision specified
Optimal Unravellings for Feedback Control in Linear Quantum Systems
H. M . Wiseman; A. C. Doherty
2005-02-26
For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case, such as: given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state-based) control problems (the stationary Linear-Quadratic-Gaussian class), this question is a semi-definite program. Moreover, the answer also applies to Markovian (current-based) feedback.
Pitch control system for large-scale wind turbines
NASA Astrophysics Data System (ADS)
Liebst, B. S.
1983-04-01
The purpose of this analysis is to study the design of a pitching blade segment control system for the NASA-DOE MOD 0 wind turbine to alleviate some of the problems associated with shear, tower shadow, and gravity phenomena, such as shortened lifetime and noise generation. The classical linear quadratic Gaussian optimal regulator approach is used in the control formulation. A quasisteady aerodynamic analysis incorporating wind shear and tower shadow is utilized. An equivalent hinge model describes the turbine structural dynamics. The study shows that the proposed control system can provide significant vibration and noise reductions as well as a cleaner power signal, better gust response, and increased annual energy output.
Nishimichi, Takahiro, E-mail: takahiro.nishimichi@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)
2012-08-01
The large-scale clustering pattern of biased tracers is known to be a powerful probe of the non-Gaussianities in the primordial fluctuations. The so-called scale-dependent bias has been reported in various type of models of primordial non-Gaussianities. We focus on local-type non-Gaussianities, and unify the derivations in the literature of the scale-dependent bias in the presence of multiple Gaussian source fields as well as higher-order coupling to cover the models described by frequently-discussed f{sub NL}, g{sub NL} and t{sub NL} parameterization. We find that the resultant power spectrum is characterized by two parameters responsible for the shape and the amplitude of the scale-dependent bias in addition to the Gaussian bias factor. We show how (a generalized version of) Suyama-Yamaguchi inequality between f{sub NL} and t{sub NL} can directly be accessible from the observed power spectrum through the dependence on our new parameter which controls the shape of the scale-dependent bias. The other parameter for the amplitude of the scale-dependent bias is shown to be useful to distinguish the simplest quadratic non-Gaussianities (i.e., f{sub NL}-type) from higher-order ones (g{sub NL} and higher), if one measures it from multiple species of galaxies or clusters of galaxies. We discuss the validity and limitations of our analytic results by comparison with numerical simulations in an accompanying paper.
Complex Gaussian multiplicative chaos
Hubert Lacoin; Rémi Rhodes; Vincent Vargas
2015-02-15
In this article, we study complex Gaussian multiplicative chaos. More precisely, we study the renormalization theory and the limit of the exponential of a complex log-correlated Gaussian field in all dimensions (including Gaussian Free Fields in dimension 2). Our main working assumption is that the real part and the imaginary part are independent. We also discuss applications in 2D string theory; in particular we give a rigorous mathematical definition of the so-called Tachyon fields, the conformally invariant operators in critical Liouville Quantum Gravity with a c=1 central charge, and derive the original KPZ formula for these fields.
Complex Gaussian Multiplicative Chaos
NASA Astrophysics Data System (ADS)
Lacoin, Hubert; Rhodes, Rémi; Vargas, Vincent
2015-07-01
In this article, we study complex Gaussian multiplicative chaos. More precisely, we study the renormalization theory and the limit of the exponential of a complex log-correlated Gaussian field in all dimensions (including Gaussian Free Fields in dimension 2). Our main working assumption is that the real part and the imaginary part are independent. We also discuss applications in 2 D string theory; in particular we give a rigorous mathematical definition of the so-called Tachyon fields, the conformally invariant operators in critical Liouville Quantum Gravity with a c = 1 central charge, and derive the original KPZ formula for these fields.
Four limit cycles from perturbing quadratic integrable systems by quadratic polynomials
Yu, Pei
2010-01-01
In this paper, we give a positive answer to the open question: Can there exist 4 limit cycles in quadratic near-integrable polynomial systems? It is shown that when a quadratic integrable system has two centers and is perturbed by quadratic polynomials, it can generate at least 4 limit cycles with (3,1) distribution. The method of Melnikov function is used.
Symmetric and Quadratic Complexes with Geometric Control
Ranicki, Andrew
[7, Appendix C] for a proof using bounded surgery theory.) 1. Block systems and diagonal subcomplexes with group of covering translations . If X is the universal cover, (f, b) is the surgery obstruction, and (f-groups Ln (A) (n 0) were introduced by Mishchenko [1] to de- scribe the symmetric part of the surgery
Reduced-order model based feedback control of the modified Hasegawa-Wakatani model
Goumiri, I. R.; Rowley, C. W.; Ma, Z. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Gates, D. A.; Krommes, J. A.; Parker, J. B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08544 (United States)
2013-04-15
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.
Explicit Solution to a Certain Non-ELQG Risk-sensitive Stochastic Control Problem
Hata, Hiroaki, E-mail: hata@math.sinica.edu.t [Academia Sinica, Institute of Mathematics (China); Sekine, Jun, E-mail: sekine@kier.kyoto-u.ac.j [Kyoto University, Institute of Economic Research (Japan)
2010-12-15
A risk-sensitive stochastic control problem with finite/infinite horizon is studied with a 1-dimensional controlled process defined by a linear SDE with a linear control-term in the drift. In the criterion function, a non-linear/quadratic term is introduced by using the solution to a Riccati differential equation, and hence, the problem is not ELQG (Exponential Linear Quadratic Gaussian) in general. For the problem, optimal value and control are calculated in explicit forms and the set of admissible risk-sensitive parameters is given in a concrete form. As applications, two types of large deviations control problems, i.e., maximizing an upside large deviations probability and minimizing a downside large deviations probability, are mentioned.
NASA Technical Reports Server (NTRS)
Moore, Douglas B.; Miller, Gerald D.; Klepl, Martin J.
1991-01-01
Three designs for controlling loads while rolling for the Active Flexible Wing (AFW) are discussed. The goal is to provide good roll control while simultaneously limiting the torsion and bending loads experienced by the wing. The first design uses Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) modern control methods to control roll rate and torsional loads at four different wing locations. The second design uses a nonlinear surface command function to produce surface position commands as a function of current roll rate and commanded roll rate. The final design is a flutter suppression control system. This system stabilizes both symmetric and axisymmetric flutter modes of the AFW.
NASA Astrophysics Data System (ADS)
Gray, Morgan; Petit, Cyril; Rodionov, Sergey; Bocquet, Marc; Bertino, Laurent; Ferrari, Marc; Fusco, Thierry
2014-08-01
We propose a new algorithm for an adaptive optics system control law, based on the Linear Quadratic Gaussian approach and a Kalman Filter adaptation with localizations. It allows to handle non-stationary behaviors, to obtain performance close to the optimality defined with the residual phase variance minimization criterion, and to reduce the computational burden with an intrinsically parallel implementation on the Extremely Large Telescopes (ELTs).
Single-photon quadratic optomechanics
Jie-Qiao Liao; Franco Nori
2014-09-10
We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the optomechanical coupling strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time emission and scattering states. The linear entropy is employed to characterize this entanglement by treating it as a bipartite one between a single mode of phonons and a single photon.
Single-photon quadratic optomechanics
Liao, Jie-Qiao; Nori, Franco
2014-01-01
We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the optomechanical coupling strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time emission and scattering states. The linear entropy is employed to characterize this entanglement by treating it as a bipartite one between a single mode of phonons and a single photon. PMID:25200128
Gaussian operations and privacy
Navascues, Miguel; Acin, Antonio
2005-07-15
We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states.
An Unexpected Influence on a Quadratic
ERIC Educational Resources Information Center
Davis, Jon D.
2013-01-01
Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…
Computing quadratic entropy in evolutionary trees
Klavzar, Sandi
Computing quadratic entropy in evolutionary trees Drago Bokal Faculty of Natural Sicences a significant improvement over the currently used quadratic programming approaches. Keywords: evolutionary tree]. If they are given a direction by identifying a root, we can speak about evolutionary trees. Their structure models
Gaussian bridges Dario Gasbarra1
Sottinen, Tommi
Gaussian bridges Dario Gasbarra1 , Tommi Sottinen2 , and Esko Valkeila3 1 Department of Mathematics.valkeila@hut.fi Summary. We consider Gaussian bridges; in particular their dynamic representa- tions. We prove a Girsanov theorem between the law of Gaussian bridge and the original Gaussian process, which holds with natural
A pitch control system for large scale wind turbines
NASA Astrophysics Data System (ADS)
Liebst, B. S.
1981-01-01
A pitching blade segment control system, to alleviate problems associated with wind shear, tower shadow, and gravity, like shortened lifetime and noise generation was designed. The classical linear quadratic Gaussian optimal regulator approach is used in the control formulation. An aerodynamic analysis, incorporating wind shear and tower shadow, is performed. An equivalent hinge model describes the turbine structural dynamics. Pitch, flap and lag blade degrees of freedom and shaft torsion and generator dynamics are included. It is shown that the system reduces vibration and noise, provides a cleaner power signal, improves gust response, and increases annual energy output.
A closed-loop control scheme for steering steady states of glycolysis and glycogenolysis pathway.
Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K
2013-01-01
Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise. PMID:24334381
Large Non-Gaussianity from Multi-Brid Inflation
NASA Astrophysics Data System (ADS)
Naruko, A.; Sasaki, M.
2009-01-01
A model of multi-component hybrid inflation, dubbed multi-brid inflation, in which various observable quantities including the non-Gaussianity parameter f_{NL} can be analytically calculated was proposed recently. In particular, for a two-brid inflation model with an exponential potential and the condition that the end of inflation is an ellipse in the field space, it was found that, while keeping the other observational quantities within the range consistent with observations, large non-Gaussianity is possible for certain inflationary trajectories, provided that the ratio of the two masses is large. One might question whether the resulting large non-Gaussianity is specific to this particular form of the potential and the condition for the end of inflation. In this paper, we consider a model of multi-brid inflation with a potential given by an exponential function of terms quadratic in the scalar field components. We also consider a more general class of ellipses for the end of inflation than those studied previously. Then, focusing on the case of two-brid inflation, we find that large non-Gaussianity is possible in the present model even for the equal-mass case. Then by tuning the model parameters, we find that there exist models for which both the non-Gaussianity and the tensor-to-scalar ratio are large enough to be detected in the very near future.
Non-Gaussian bias: insights from discrete density peaks
Desjacques, Vincent; Riotto, Antonio; Gong, Jinn-Ouk E-mail: jinn-ouk.gong@apctp.org
2013-09-01
Corrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However, numerical simulations clearly support the prediction of the former, in which the non-Gaussian amplitude is proportional to the linear halo bias. To understand better the reasons behind the failure of standard Lagrangian local bias, in which the halo overdensity is a function of the local mass overdensity only, we explore the effect of a primordial bispectrum on the 2-point correlation of discrete density peaks. We show that the effective local bias expansion to peak clustering vastly simplifies the calculation. We generalize this approach to excursion set peaks and demonstrate that the resulting non-Gaussian amplitude, which is a weighted sum of quadratic bias factors, precisely agrees with the peak-background split expectation, which is a logarithmic derivative of the halo mass function with respect to the normalisation amplitude. We point out that statistics of thresholded regions can be computed using the same formalism. Our results suggest that halo clustering statistics can be modelled consistently (in the sense that the Gaussian and non-Gaussian bias factors agree with peak-background split expectations) from a Lagrangian bias relation only if the latter is specified as a set of constraints imposed on the linear density field. This is clearly not the case of standard Lagrangian local bias. Therefore, one is led to consider additional variables beyond the local mass overdensity.
Pelachaud, Catherine
Expressive MPEG-4 Facial Animation Using Quadratic Deformation Models Mohammad Obaid, Ramakrishnan an approach compliant with the MPEG-4 standard to synthesize and control facial expressions generated using 3D with the quadratic deformation model representations of facial expressions. This conformity allows us to utilize
Operational Discord Measure for Gaussian States with Gaussian Measurements
Saleh Rahimi-Keshari; Timothy C. Ralph; Carlton M. Caves
2015-02-09
We introduce an operational discord-type measure for quantifying nonclassical correlations in bipartite Gaussian states based on using Gaussian measurements. We refer to this measure as operational Gaussian discord (OGD). It is defined as the difference between the entropies of two conditional probability distributions associated to one subsystem, which are obtained by performing optimal local and joint Gaussian measurements. We demonstrate the operational significance of this measure in terms of a Gaussian quantum protocol for extracting maximal information about an encoded classical signal. As examples, we calculate OGD for several Gaussian states in the standard form.
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
Byrnes, Christian T.; Nurmi, Sami; Tasinato, Gianmassimo; Wands, David E-mail: s.nurmi@thphys.uni-heidelberg.de E-mail: david.wands@port.ac.uk
2012-03-01
We propose a method to probe higher-order correlators of the primordial density field through the inhomogeneity of local non-Gaussian parameters, such as f{sub NL}, measured within smaller patches of the sky. Correlators between n-point functions measured in one patch of the sky and k-point functions measured in another patch depend upon the (n+k)-point functions over the entire sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to detect or constrain higher- order correlators in local models of non-Gaussianity, as well as to distinguish between single and multiple-source scenarios for generating the primordial density perturbation, and more generally to probe the details of inflationary physics.
Flutter suppression digital control law design and testing for the AFW wind-tunnel model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1992-01-01
Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a string mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory and involved control law order reduction, a gain root-locus study, and the use of previous experimental results. A 23 percent increase in open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.
Flutter suppression digital control law design and testing for the AFW wind tunnel model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1994-01-01
The design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and it also involved control law order reduction, a gain root-locus study, and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.
NASA Technical Reports Server (NTRS)
Dembo, Amir
1989-01-01
Pinsker and Ebert (1970) proved that in channels with additive Gaussian noise, feedback at most doubles the capacity. Cover and Pombra (1989) proved that feedback at most adds half a bit per transmission. Following their approach, the author proves that in the limit as signal power approaches either zero (very low SNR) or infinity (very high SNR), feedback does not increase the finite block-length capacity (which for nonstationary Gaussian channels replaces the standard notion of capacity that may not exist). Tighter upper bounds on the capacity are obtained in the process. Specializing these results to stationary channels, the author recovers some of the bounds recently obtained by Ozarow.
Schur Stability Regions for Complex Quadratic Polynomials
ERIC Educational Resources Information Center
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
Quadratic Lyapunov functions and nonuniform exponential dichotomies
NASA Astrophysics Data System (ADS)
Barreira, Luis; Valls, Claudia
For nonautonomous linear equations x=A(t)x, we show how to characterize completely nonuniform exponential dichotomies using quadratic Lyapunov functions. The characterization can be expressed in terms of inequalities between matrices. In particular, we obtain converse theorems, by constructing explicitly quadratic Lyapunov functions for each nonuniform exponential dichotomy. We note that the nonuniform exponential dichotomies include as a very special case (uniform) exponential dichotomies. In particular, we recover in a very simple manner a complete characterization of uniform exponential dichotomies in terms of quadratic Lyapunov functions. We emphasize that our approach is new even in the uniform case. Furthermore, we show that the instability of a nonuniform exponential dichotomy persists under sufficiently small perturbations. The proof uses quadratic Lyapunov functions, and in particular avoids the use of invariant unstable manifolds which, to the best of our knowledge, are not known to exist in this general setting.
Optimal controllers for finite wordlength implementation
NASA Technical Reports Server (NTRS)
Liu, K.; Skelton, R.
1991-01-01
When a controller is implemented in a digital computer, with A/D and D/A conversion, the numerical errors of the computation can drastically affect the performance of the control system. There exists realizations of a given controller transfer function yielding arbitrarily large effects from computational errors. Since, in general, there is no upper bound, it is important to have a systematic way of reducing these effects. Optimum controller designs are developed which take account of the digital round-off errors in the controller implementation and in the A/D and D/A converters. These results provide a natural extension to the Linear Quadratic Gaussian (LQG) theory since they reduce to the standard LQG controller when infinite precision computation is used. But for finite precision the separation principle does not hold.
Optimal power flow using sequential quadratic programming
NASA Astrophysics Data System (ADS)
Nejdawi, Imad M.
1999-11-01
Optimal power flow (OPF) is an operational as well as a planning tool used by electric utilities to help them operate their network in the most economic and secure mode of operation. Various algorithms to solve the OPF problem evolved over the past three decades; linear programming (LP) techniques were among the major mathematical programming methods utilized. The linear models of the objective function and the linearization of the constraints are the main features of these techniques. The main advantages of the LP approach are simplicity and speed. Nonlinear programming techniques have been applied to OPF solution. The major drawback is the expensive solution of large sparse systems of equations. This research is concerned with the development of a new OPF solution algorithm using sequential quadratic programming (SQP). In this formulation, a small dense system the size of which is equal to the number of control variables is solved in an inner loop. The Jacobian and Hessian terms are calculated in an outer loop. The total number of outer loop iterations is comparable to those in an ordinary load flow in contrast to 20--30 iterations in other nonlinear methods. In addition, the total number of floating point operations is less than that encountered in direct methods by two orders of magnitude. We also model dispatch over a twenty four-hour time horizon in a transmission constrained power network that includes price-responsive loads where large energy customers can operate their loads in time intervals with lowest spot prices.
Test spaces and characterizations of quadratic spaces
NASA Astrophysics Data System (ADS)
Dvure?enskij, Anatolij
1996-10-01
We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.
QUADRATIC RECIPROCITY IN ODD CHARACTERISTIC KEITH CONRAD
Lozano-Robledo, Alvaro
QUADRATIC RECIPROCITY IN ODD CHARACTERISTIC KEITH CONRAD 1. Introduction Let be irreducible in F in characteritic 2. (There is a good analogue of quadratic reciprocity in characteristic 2, but we don't discuss[T]/() is a root of X(N-1)/2 - 1. This polynomial has at most (N - 1)/2 roots in a 1 #12;2 KEITH CONRAD field
Weight of quadratic forms and graph states
Alessandro Cosentino; Simone Severini
2009-11-10
We prove a connection between Schmidt-rank and weight of quadratic forms. This provides a new tool for the classification of graph states based on entanglement. Our main tool arises from a reformulation of previously known results concerning the weight of quadratic forms in terms of graph states properties. As a byproduct, we obtain a straightforward characterization of the weight of functions associated with pivot-minor of bipartite graphs.
Optimal Gaussian entanglement swapping
Hoelscher-Obermaier, Jason; Loock, Peter van
2011-01-15
We consider entanglement swapping with general mixed two-mode Gaussian states and calculate the optimal gains for a broad class of such states including those states most relevant in communication scenarios. We show that, for this class of states, entanglement swapping adds no additional mixedness; that is, the ensemble-average output state has the same purity as the input states. This implies that, by using intermediate entanglement swapping steps, it is, in principle, possible to distribute entangled two-mode Gaussian states of higher purity as compared to direct transmission. We then apply the general results on optimal Gaussian swapping to the problem of quantum communication over a lossy fiber and demonstrate that, in contrast to the negative conclusions in the literature, swapping-based schemes in fact often perform better than direct transmission for high input squeezing. However, an effective transmission analysis reveals that the hope for improved performance based on optimal Gaussian entanglement swapping is spurious since the swapping does not lead to an enhancement of the effective transmission. This implies that the same or better results can always be obtained using direct transmission in combination with, in general, less squeezing.
A Gaussian density matrix under decoherence and friction
Polonyi, Janos
2015-01-01
The time evolution of a Gaussian density matrix of a one dimensional particle, generated by a quadratic, ${\\cal O}(\\partial_t^2)$ effective Lagrangian, describing a harmonic potential, a friction force and decoherence, is studied within the Closed Time Path formalism. The density matrix converges to an asymptotic form, given by a completely decohered thermal state with an ${\\cal O}(\\hbar)$ temperature in the translation invariant case. The time evolution of the state of a harmonic oscillator is followed numerically. The asymptotic density matrix, the fixed point of the master equation, is found analytically and its dependence on the oscillator frequency, the friction constant and the decoherence strength is explored.
NASA Astrophysics Data System (ADS)
Coalson, Rob D.; Karplus, Martin
1990-09-01
The McLachlan variational principle for the time-dependent Schrödinger equation is utilized in conjunction with extant localized Guassian wave packet technology to deduce equations of motion for general multidimensional Gaussians. These equations of motion are characterized by the same simplicity as the local quadratic expansion results of Heller [J. Chem. Phys. 62, 1544 (1975)]. However, the resultant variational wave packet evolution is shown to be an improvement over its local quadratic analog as a tool for computing certain photodissociation spectra. Numerical examples drawn from the Beswick-Jortner model of ICN photodissociation [Chem. Phys. 24, 1 (1977)] are presented.
Weak non-Gaussian approximation
Vasil'ev, O.V.; Dawson, K.A. (Theory Group, Department of Chemistry, University College Dublin, Belfield, Dublin 4 (Ireland))
1995-01-01
A superposition of Gaussian functionals is considered as a trial functional for the Bogoliubov inequality. The direct optimization of the Bogoliubov inequality generates a non-Gaussian approximation. This function may be strongly non-Gaussian but the kernel is the same as the usual one, up to a multiplicative constant.
Bioluminescence tomography with Gaussian prior
Wang, Ge
Bioluminescence tomography with Gaussian prior Hao Gao,1 Hongkai Zhao,2 Wenxiang Cong,3 and Ge Wang: Parameterizing the bioluminescent source globally in Gaussians provides several advantages over voxel representation in bioluminescence tomography. It is mathematically unique to recover Gaussians [Med. Phys. 31
NASA Astrophysics Data System (ADS)
Bazarov, E. N.; Gerasimov, G. A.; Gubin, Vladimir P.; Starostin, Nikolay I.; Fomin, V. V.
1990-02-01
It was found experimentally that when a Gaussian laser beam interacts with a Doppler broadened absorption line in a gas, under conditions of saturation, a dynamic self-focusing of the beam is manifested as a transient process if the radiation frequency varies with time. This effect was studied experimentally in CO2/OsO4 and CO2/SF6 lasers in the presence of sinusoidal frequency modulation of the laser radiation. The dynamic self-focusing was maximal when the modulation frequency was comparable with the homogeneous line width. This effect was a destabilizing factor in lasers stabilized by saturated absorption.
Cell-survival probability at large doses: an alternative to the linear-quadratic model
NASA Astrophysics Data System (ADS)
Hanin, L. G.; Zaider, M.
2010-08-01
A model of irradiated cell survival based on rigorous accounting of microdosimetric effects is developed. The model does not assume that the distribution of lesions is Poisson and is applicable to low, intermediate and high acute doses of low or high LET radiation. For small doses, the model produces the linear-quadratic (LQ) model. However, for high doses the best-fitting LQ model grossly underestimates cell survival. The same is also true for the conventional LQ model, only more so. It is shown that for high doses, the microdosimetric distribution can be approximated by a Gaussian distribution, and the corresponding cell survival probabilities are compared.
Integrated structure/control law design by multilevel optimization
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Schmidt, David K.
1989-01-01
A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.
Users manual for flight control design programs
NASA Technical Reports Server (NTRS)
Nalbandian, J. Y.
1975-01-01
Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.
Factoring Gaussian Precision Matrices for Linear Dynamic Models
Frankel, Joe; King, Simon
2007-01-01
The linear dynamic model (LDM), also known as the Kalman filter model, has been the subject of research in the engineering, control, and more recently, machine learning and speech technology communities. The Gaussian noise ...
Large Non-Gaussianity from Multi-Brid Inflation
NASA Astrophysics Data System (ADS)
Naruko, Atsushi; Sasaki, Misao
A model of multi-component hybrid inflation, dubbed multi-brid inflation, which may yield a large non-Gaussian paramter fNL, was proposed recently. In particular, for a two-brid inflation model with an exponential potential and the condition that the end of inflation is an ellipse in the field space, it was found that, while keeping the other observational quantities within the range consistent with observations, large non-Gaussianity is possible for certain inflationary trajectories. In this talk, in order to see if this result is a general feature of multi-brid inflation, we consider a model with a potential with an exponent quadratic in the scalar field components. We also consider a more general class of ellipses for the end of inflation. Focusing on the case of two-brid inflation, we find that large non-Gaussianity is also possible in the present model. Then by tuning the model parameters, we find that there exist models for which both the non-Gaussianity and the tensor-to-scalar ratio are large enough to be detected in the very near future.
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. PMID:20434153
Chatzis, Sotirios P; Demiris, Yiannis
2011-09-01
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNNs, outperforming classical approaches on a number of benchmark tasks. In this paper, we introduce a novel Bayesian approach toward ESNs, the echo state Gaussian process (ESGP). The ESGP combines the merits of ESNs and Gaussian processes to provide a more robust alternative to conventional reservoir computing networks while also offering a measure of confidence on the generated predictions (in the form of a predictive distribution). We exhibit the merits of our approach in a number of applications, considering both benchmark datasets and real-world applications, where we show that our method offers a significant enhancement in the dynamical data modeling capabilities of ESNs. Additionally, we also show that our method is orders of magnitude more computationally efficient compared to existing Gaussian process-based methods for dynamical data modeling, without compromises in the obtained predictive performance. PMID:21803684
Dark state in a nonlinear optomechanical system with quadratic coupling
NASA Astrophysics Data System (ADS)
Huang, Yue-Xin; Zhou, Xiang-Fa; Guo, Guang-Can; Zhang, Yong-Sheng
2015-07-01
We consider a hybrid system consisting of a cavity optomechanical device with nonlinear quadratic radiation pressure coupled to an atomic ensemble. By considering the collective excitation, we show that this system supports nontrivial, nonlinear dark states. The coupling strength can be tuned via the lasers that ensure the population transfer adiabatically between the mechanical modes and the collective atomic excitations in a controlled way. In addition, we show how to detect the dark-state resonance by calculating the single-photon spectrum of the output fields and the transmission of the probe beam based on two-phonon optomechanically induced transparency. Possible application and extension of the dark states are also discussed.
Optical power flow with sequential quadratic programming
NASA Astrophysics Data System (ADS)
Vanamerongen, R. A. M.
1985-01-01
Newton's method as an approach to solve the optimal power flow problem in electric power plants is presented. A general formulation of the optimal flow problem is given. Newton's method is applied to solve the nonlinear Kuhn-Tucker conditions by iteration. Every Newton step is calculated by solving a quadratic programming problem. Variations of the sequential quadratic programming method are presented. Byproducts of the optimization, namely the Lagrange multipliers and their interpretation as marginal costs and shadow prices, are outlined. The most important computer programs are enclosed.
On orthogonality preserving quadratic stochastic operators
NASA Astrophysics Data System (ADS)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-05-01
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Non-Gaussian fingerprints of self-interacting curvaton
Enqvist, Kari; Taanila, Olli [Physics Department, University of Helsinki, FIN-00014 (Finland); Nurmi, Sami [Institute for Theoretical Physics, University of Heidelberg, 69120 Heidelberg (Germany); Takahashi, Tomo, E-mail: kari.enqvist@helsinki.fi, E-mail: s.nurmi@thphys.uni-heidelberg.de, E-mail: olli.taanila@iki.fi, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)
2010-04-01
We investigate non-Gaussianities in self-interacting curvaton models treating both renormalizable and non-renormalizable polynomial interactions. We scan the parameter space systematically and compute numerically the non-linearity parameters f{sub NL} and g{sub NL}. We find that even in the interaction dominated regime there are large regions consistent with current observable bounds. Whenever the interactions dominate, we discover significant deviations from the relations f{sub NL} ? r{sub dec}{sup ?1} and g{sub NL} ? r{sub dec}{sup ?1} valid for quadratic curvaton potentials, where r{sub dec} measures the curvaton contribution to the total energy density at the time of its decay. Even if r{sub dec} || 1, there always exists regions with f{sub NL} ? 0 since the sign of f{sub NL} oscillates as a function of the parameters. While g{sub NL} can also change sign, typically g{sub NL} is non-zero in the low-f{sub NL} regions. Hence, for some parameters the non-Gaussian statistics is dominated by g{sub NL} rather than by f{sub NL}. Due to self-interactions, both the relative signs of f{sub NL} and g{sub NL} and the functional relation between them is typically modified from the quadratic case, offering a possible experimental test of the curvaton interactions.
Quantum Key Distillation from Gaussian States by Gaussian Operations
NASA Astrophysics Data System (ADS)
Navascués, M.; Bae, J.; Cirac, J. I.; Lewestein, M.; Sanpera, A.; Acín, A.
2005-01-01
We study the secrecy properties of Gaussian states under Gaussian operations. Although such operations are useless for quantum distillation, we prove that it is possible to distill a secret key secure against any attack from sufficiently entangled Gaussian states with nonpositive partial transposition. Moreover, all such states allow for key distillation, when Eve is assumed to perform finite-size coherent attacks before the reconciliation process.
Inverse problem of quadratic time-dependent Hamiltonians
NASA Astrophysics Data System (ADS)
Guo, Guang-Jie; Meng, Yan; Chang, Hong; Duan, Hui-Zeng; Di, Bing
2015-08-01
Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wave-packet obeying the quadratic time-dependent Hamiltonian (QTDH). However, in general, most of the practical cases are not exactly solvable, for we need general solutions of the Riccatti equations which are not generally known. We therefore bypass directly solving for the temporal evolution wave function, and study its inverse problem. We start with a particular evolution of the wave-packet, and get the required Hamiltonian by using the inverse method. The inverse approach opens up a new way to find new exact solutions to the QTDH. Some typical examples are studied in detail. For a specific time-dependent periodic harmonic oscillator, the Berry phase is obtained exactly. Project supported by the National Natural Science Foundation of China (Grant No. 11347171), the Natural Science Foundation of Hebei Province of China (Grant No. A2012108003), and the Key Project of Educational Commission of Hebei Province of China (Grant No. ZD2014052).
Quadratic Measurement and Conditional State Preparation in an Optomechanical System
NASA Astrophysics Data System (ADS)
Brawley, George; Vanner, Michael; Bowen, Warwick; Schmid, Silvan; Boisen, Anja
2014-03-01
An important requirement in the study of quantum systems is the ability to measure non-linear observables at the level of quantum fluctuations. Such measurements enable the conditional preparation of highly non-classical states. Nonlinear measurement, although achieved in a variety of quantum systems including microwave cavity modes and optical fields, remains an outstanding problem in both electromechanical and optomechanical systems. To the best of our knowledge, previous experimental efforts to achieve nonlinear measurement of mechanical motion have not yielded strong coupling, nor the observation of quadratic mechanical motion. Here using a new technique reliant on the intrinsic nonlinearity of the optomechanical interaction, we experimentally observe for the first time a position squared (x2) measurement of the room-temperature Brownian motion of a nanomechanical oscillator. We utilize this measurement to conditionally prepare non-Gaussian bimodal states, which are the high temperature classical analogue of quantum macroscopic superposition states, or cat states. In the future with the aid of cryogenics and state-of-the-art optical cavities, our approach will provide a viable method of generating quantum superposition states of mechanical oscillators. This research was funded by the ARC Center of Excellence for Engineered Quantum Systems.
Sequential design of linear quadratic state regulators via the optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Dib, H. M.; Yates, R. E.
1988-01-01
The use of well-known root-locus techniques for sequentially finding the weighting matrices and the linear quadratic state regulators of multivariable control systems in the frequency domain is considered. This sequential design method permits the retention of some stable open-loop poles and the associated eigenvectors in the closed-loop system; it also allows some optimal closed-loop poles to be placed in a specific region of the complex plane. In addition, it provides a design procedure for determining the weighting matrices and linear quadratic state regulators for the optimal control of multivariable systems in the frequency domain.
Combined control-structure optimization
NASA Technical Reports Server (NTRS)
Salama, M.; Milman, M.; Bruno, R.; Scheid, R.; Gibson, S.
1989-01-01
An approach for combined control-structure optimization keyed to enhancing early design trade-offs is outlined and illustrated by numerical examples. The approach employs a homotopic strategy and appears to be effective for generating families of designs that can be used in these early trade studies. Analytical results were obtained for classes of structure/control objectives with linear quadratic Gaussian (LQG) and linear quadratic regulator (LQR) costs. For these, researchers demonstrated that global optima can be computed for small values of the homotopy parameter. Conditions for local optima along the homotopy path were also given. Details of two numerical examples employing the LQR control cost were given showing variations of the optimal design variables along the homotopy path. The results of the second example suggest that introducing a second homotopy parameter relating the two parts of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto optima, but its effect on modifying the optimal structural shapes may be analogous to the original parameter lambda.
Truncated Gaussians as tolerance sets
NASA Technical Reports Server (NTRS)
Cozman, Fabio; Krotkov, Eric
1994-01-01
This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.
Gaussian Affine Feature Detector
Xu, Xiaopeng
2011-01-01
A new method is proposed to get image features' geometric information. Using Gaussian as an input signal, a theoretical optimal solution to calculate feature's affine shape is proposed. Based on analytic result of a feature model, the method is different from conventional iterative approaches. From the model, feature's parameters such as position, orientation, background luminance, contrast, area and aspect ratio can be extracted. Tested with synthesized and benchmark data, the method achieves or outperforms existing approaches in term of accuracy, speed and stability. The method can detect small, long or thin objects precisely, and works well under general conditions, such as for low contrast, blurred or noisy images.
Quadratic Equation over Associative D-Algebra
Aleks Kleyn
2015-05-30
In this paper, I treat quadratic equation over associative $D$-algebra. In quaternion algebra $H$, the equation $x^2=a$ has either $2$ roots, or infinitely many roots. Since $a\\in R$, $aalgebra, the equation $$(x-b)(x-a)+(x-a)(x-c)=0$$ $b\
Evaluation of Weber's Functions at Quadratic Irrationalities
Williams, Kenneth Stuart
Evaluation of Weber's Functions at Quadratic Irrationalities HABIB MUZAFFAR and KENNETH S. WILLIAMS for the moduli of Weber's functions f(z), f1(z) and f2(z) [20: p. 114]. From these formulae the values of f( -m (z). (2) We also note that (iy) R+ , e-i/24 1 + iy 2 R+ , (3) for y > 0. Weber's three functions f
Canonical Realization of BMS Symmetry. Quadratic Casimir
Gomis, Joaquim
2015-01-01
We study the canonical realization of BMS symmetry for a massive scalar field introduced in reference \\cite{LM}. We will construct an invariant scalar product for the generalized momenta. As a consequence we will introduce a quadratic Casimir with the supertranslations.
Canonical Realization of BMS Symmetry. Quadratic Casimir
Joaquim Gomis; Giorgio Longhi
2015-08-03
We study the canonical realization of BMS symmetry for a massive scalar field introduced in reference \\cite{LM}. We will construct an invariant scalar product for the generalized momenta. As a consequence we will introduce a quadratic Casimir with the supertranslations.
Competing nonlinearities in quadratic nonlinear waveguide arrays
Competing nonlinearities in quadratic nonlinear waveguide arrays Frank Setzpfandt,1, * Dragomir N demonstrate experimentally the existence of competing focusing and defocusing nonlinearities in a double- tively. If an optical system, however, exhibits so- called competing nonlinearities a laser beam can ex
Fourier analysis of quadratic phase interferograms
NASA Astrophysics Data System (ADS)
Muñoz-Maciel, Jesús; Mora-González, Miguel; Casillas-Rodríguez, Francisco J.; Peña-Lecona, Francisco G.
2015-06-01
A phase demodulation method from a single interferogram with a quadratic phase term is developed. The fringe pattern being analysed may contain circular, elliptic or astigmatic fringes. The Fourier transform of such interferograms is seen to be also a sine or a cosine of a second order polynomial in both the real and imaginary parts. In this work we take a discrete Fourier transform of the fringe patterns and then we take separate inverse discrete transforms of the real and imaginary parts of the frequency spectrum. This results in two new interferograms corresponding to the sine and cosine of the quadratic term of the phase modulated by the sine and cosine of the linear term. The linear term of these interferograms may be recovered with similar procedures of fringe analysis from open fringe interferograms. Once the linear term is retrieved the quadratic phase of the interferogram being analysed can also be calculated. The present approach is also being investigated for interferograms with nearly circularly symmetry given that the phase contains some tilt. The described procedure of Fourier analysis from quadratic phase interferograms of nearly symmetric interferograms could be used instead of complex and time consuming algorithms for phase recovery from fringe patterns with closed fringes. Finally, the method is tested in simulated and real data.
Copositive realxation for genera quadratic programming
A. J. Quist; E. De klerk; C. Roos; T. Terlaky
1998-01-01
We consider general, typically nonconvex, Quadratic programming Problem. The Semidefinite relaxation proposed by Shor provides bounds on the optimal solution, but it does not always provide sufficiently strong bounds if linear constraintare also involved. To get rid of the linear side-constraints, another, stronger convex relaxation is derved. This relaxation uses copositive matrices. Special cases are dicussed for which both relaxations
An r-Dimensional Quadratic Placement Algorithm
Kenneth M. Hall
1970-01-01
In this paper the solution to the problem of placing n connected points (or nodes) in r-dimensional Euclidean space is given. The criterion for optimality is minimizing a weighted sum of squared distances between the points subject to quadratic constraints of the form X'X - 1, for each of the r unknown coordinate vectors. It is proved that the problem
PRIMES AND QUADRATIC RECIPROCITY ANGELICA WONG
May, J. Peter
goal of understanding quadratic reciprocity. We begin by discussing Fermat's Little Theorem. The Fermat Test uses Fermat's Little Theorem to test for primality. Although the test is not guaranteed). First, we prove Fermat's Little Theorem, then show that there are infinitely many primes and infinitely
STATISTICAL ANALYSIS OF QUADRATIC IN COMPUTER VISION
and Computer Engineering Written under the direction of Professor Peter Meer and approved by New Brunswick, New Peter Meer Quadratic forms appear in many computer vision applications. Geometry constraints between my deepest thanks and appreciation to Dr. Peter Meer. He dedicated countless days, nights
The Quadratic Assignment Problem Rainer E. Burkard
Dragoti-Çela, Eranda
, and asymptotic behavior. Moreover, it also considers problems related to the QAP, e.g. the biquadratic assignment.-Z. Du, eds. Keywords: quadratic assignment problem, algorithms, asymptotic behavior, polynomially 8.7 Greedy Randomized Adaptive Search Procedure . . . . . . . . . . . . . . . . . . . . 42 8.8 Ant
Iterative LQG Controller Design Through Closed-Loop Identification
NASA Technical Reports Server (NTRS)
Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.
1996-01-01
This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.
NASA Astrophysics Data System (ADS)
Przybytek, Michal; Helgaker, Trygve
2013-08-01
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (?H = 2) and eight (?1st = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (? _min^G=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d4 with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step—namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.
Przybytek, Michal; Helgaker, Trygve
2013-08-01
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (?(H) = 2) and eight (?(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (?min (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions. PMID:23927250
NASA Technical Reports Server (NTRS)
Jacobson, R. A.
1975-01-01
Difficulties arise in guiding a solar electric propulsion spacecraft due to nongravitational accelerations caused by random fluctuations in the magnitude and direction of the thrust vector. These difficulties may be handled by using a low thrust guidance law based on the linear-quadratic-Gaussian problem of stochastic control theory with a minimum terminal miss performance criterion. Explicit constraints are imposed on the variances of the control parameters, and an algorithm based on the Hilbert space extension of a parameter optimization method is presented for calculation of gains in the guidance law. The terminal navigation of a 1980 flyby mission to the comet Encke is used as an example.
Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
NASA Astrophysics Data System (ADS)
Tang, Xu-Bing; Gao, Fang; Wang, Yao-Xiong; Kuang, Sen; Shuang, Feng
2015-03-01
Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations (namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and -subtracted coherent (SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of non-Gaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states (DCSS). The fidelity can reach up to F ? 0.98 and F ? 0.90 for size of amplitude z = 1.53 and 2.36, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203061 and 61074052), the Outstanding Young Talent Foundation of Anhui Province, China (Grant No. 2012SQRL040), and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2012Z035).
Brugnano, Luigi
://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1281&Issue=1 Published by the American Institute of Physics. Related Articles Liouville type theorems for nonlinear elliptic equations involving operator in divergence form J. Math. Phys. 53, 103706 (2012, the corresponding method in the family becomes the classical Gauss collocation formula of order 2s, where s denotes
Linear Quadratic Regulator and Observer Design for a Flexible Joint
Linear Quadratic Regulator and Observer Design for a Flexible Joint Nicanor Quijano and Kevin M the encoder from the motor. Contents 1 Introduction 2 2 Laboratory Procedures 2 2.1 Necessary Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.3 Linear Quadratic Regulator
Geometric Approaches to Quadratic Equations from Other Times and Places.
ERIC Educational Resources Information Center
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
2D Gaussian distributions. Equal height.
Oakes, Terry
2D Gaussian distributions. Equal height. Noise-free. Well separated. #12;2D Gaussian distributions. Equal height. Noise-free. Well separated. #12;2D Gaussian distributions. Equal height. Noise-free. Somewhat separated. #12;2D Gaussian distributions. Equal height. Noise-free. Overlapping. #12;2D Gaussian
ON THE ROLE OF QUADRATIC OSCILLATIONS IN NONLINEAR SCHR
Gallagher, Isabelle - Institut de MathÃ©matiques de Jussieu, UniversitÃ© Paris 7
ON THE ROLE OF QUADRATIC OSCILLATIONS IN NONLINEAR SCHR ODINGER EQUATIONS R #19; EMI CARLES that the nonlinear term has an e#11;ect at leading order only if the initial data have quadratic oscillations-dimensional cubic nonlinear Schrodinger equation is due to quadratic oscillations, e i#21;x 2 , with #21; large
THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY
Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...
Colored Gaussian Multiple Descriptions: Spectral-Domain Characterization and Time-Domain Design
Ostergaard, Jan; Zamir, Ram
2010-01-01
It is well known that Shannon's rate-distortion function (RDF) in the colored quadratic Gaussian (QG) case, can be parametrized via a single Lagrangian variable (the ``water level'' in the reverse water filling solution). In this work, we show that the symmetric colored QG multiple-description (MD) RDF in the case of two descriptions, can be parametrized via two Lagrangian variables. To establish this result, we use two key ideas. First, we propose a new representation for the MD test channel, and show that the minimum mutual information rate across this channel coincide with the QG MD RDF. Second, we use variational calculus to obtain a spectral domain representation of the test channel's optimal side and central distortion spectra given the source spectral density and the side and central distortion constraints. The distortion spectra are specified via two Lagrangian parameters, which control the trade-off between the side distortion, the central distortion, and the coding rate.We also show that the symmetr...
Quantification of Gaussian Quantum Steering
NASA Astrophysics Data System (ADS)
Kogias, Ioannis; Lee, Antony R.; Ragy, Sammy; Adesso, Gerardo
2015-02-01
Einstein-Podolsky-Rosen steering incarnates a useful nonclassical correlation which sits between entanglement and Bell nonlocality. While a number of qualitative steering criteria exist, very little has been achieved for what concerns quantifying steerability. We introduce a computable measure of steering for arbitrary bipartite Gaussian states of continuous variable systems. For two-mode Gaussian states, the measure reduces to a form of coherent information, which is proven never to exceed entanglement, and to reduce to it on pure states. We provide an operational connection between our measure and the key rate in one-sided device-independent quantum key distribution. We further prove that Peres' conjecture holds in its stronger form within the fully Gaussian regime: namely, steering bound entangled Gaussian states by Gaussian measurements is impossible.
Geometry of Gaussian quantum states
Valentin Link; Walter T. Strunz
2015-03-09
We study the Hilbert-Schmidt measure on the manifold of mixed Gaussian states in multi mode continuous variable quantum systems. An analytical expression for the Hilbert-Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert-Schmidt measure.
Mechanistic Hierarchical Gaussian Processes
Wheeler, Matthew W.; Dunson, David B.; Pandalai, Sudha P.; Baker, Brent A.; Herring, Amy H.
2014-01-01
The statistics literature on functional data analysis focuses primarily on flexible black-box approaches, which are designed to allow individual curves to have essentially any shape while characterizing variability. Such methods typically cannot incorporate mechanistic information, which is commonly expressed in terms of differential equations. Motivated by studies of muscle activation, we propose a nonparametric Bayesian approach that takes into account mechanistic understanding of muscle physiology. A novel class of hierarchical Gaussian processes is defined that favors curves consistent with differential equations defined on motor, damper, spring systems. A Gibbs sampler is proposed to sample from the posterior distribution and applied to a study of rats exposed to non-injurious muscle activation protocols. Although motivated by muscle force data, a parallel approach can be used to include mechanistic information in broad functional data analysis applications. PMID:25541568
Normal form decomposition for Gaussian-to-Gaussian superoperators
NASA Astrophysics Data System (ADS)
De Palma, Giacomo; Mari, Andrea; Giovannetti, Vittorio; Holevo, Alexander S.
2015-05-01
In this paper, we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non-positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms of their action on the characteristic function of the inputs. For the special case of one-mode mappings, we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix.
Predicting the Size of Spring Network Swarm in Quadratic Potential Fields
Choset, Howie
of multiple autonomous agents or a swarm of robots have become popular in robotics. Formation control a swarm of robots) have received a lot of attention due to re- cent advances in wireless communicationPredicting the Size of Spring Network Swarm in Quadratic Potential Fields Hyungpil Moon, Howie
HOPF BIFURCATION IN A HIV MODEL WITH A QUADRATIC LOGISTIC GROWTH TERM
HOPF BIFURCATION IN A HIV MODEL WITH A QUADRATIC LOGISTIC GROWTH TERM XINYUE FAN AND CLAUDE-MICHEL BRAUNER Abstract. We consider a model of disease dynamics in the modeling of Human Immunodefi- ciency of virions produced by one infected cell, and r, the logistic parameter which controls the growth rate
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired Target-Feedback-Loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
Stellar objects in the quadratic regime
P. Mafa Takisa; S. D. Maharaj; Subharthi Ray
2014-12-28
We model a charged anisotropic relativistic star with a quadratic equation of state. Physical features of an exact solution of the Einstein-Maxwell system are studied by incorporating the effect of the nonlinear term from the equation of state. It is possible to regain the masses, radii and central densities for a linear equation of state in our analysis. We generate masses for stellar compact objects and perform a detailed study of PSR J1614-2230 in particular. We also show the influence of the nonlinear equation of state on physical features of the matter distribution. We demonstrate that it is possible to incorporate the effects of charge, anisotropy and a quadratic term in the equation of state in modelling a compact relativistic body.
Factorization using the quadratic sieve algorithm
Davis, J.A.; Holdridge, D.B.
1983-01-01
Since the cryptosecurity of the RSA two key cryptoalgorithm is no greater than the difficulty of factoring the modulus (product of two secret primes), a code that implements the Quadratic Sieve factorization algorithm on the CRAY I computer has been developed at the Sandia National Laboratories to determine as sharply as possible the current state-of-the-art in factoring. Because all viable attacks on RSA thus far proposed are equivalent to factorization of the modulus, sharper bounds on the computational difficulty of factoring permit improved estimates for the size of RSA parameters needed for given levels of cryptosecurity. Analysis of the Quadratic Sieve indicates that it may be faster than any previously published general purpose algorithm for factoring large integers. The high speed of the CRAY I coupled with the capability of the CRAY to pipeline certain vectorized operations make this algorithm (and code) the front runner in current factoring techniques.
Factorization using the quadratic sieve algorithm
Davis, J.A.; Holdridge, D.B.
1983-12-01
Since the cryptosecurity of the RSA two key cryptoalgorithm is no greater than the difficulty of factoring the modulus (product of two secret primes), a code that implements the Quadratic Sieve factorization algorithm on the CRAY I computer has been developed at the Sandia National Laboratories to determine as sharply as possible the current state-of-the-art in factoring. Because all viable attacks on RSA thus far proposed are equivalent to factorization of the modulus, sharper bounds on the computational difficulty of factoring permit improved estimates for the size of RSA parameters needed for given levels of cryptosecurity. Analysis of the Quadratic Sieve indicates that it may be faster than any previously published general purpose algorithm for factoring large integers. The high speed of the CRAY I coupled with the capability of the CRAY to pipeline certain vectorized operations make this algorithm (and code) the front runner in current factoring techniques.
Use of quadratic components for buckling calculations
Dohrmann, C.R.; Segalman, D.J.
1996-12-31
A buckling calculation procedure based on the method of quadratic components is presented. Recently developed for simulating the motion of rotating flexible structures, the method of quadratic components is shown to be applicable to buckling problems with either conservative or nonconservative loads. For conservative loads, stability follows from the positive definiteness of the system`s stiffness matrix. For nonconservative loads, stability is determined by solving a nonsymmetric eigenvalue problem, which depends on both the stiffness and mass distribution of the system. Buckling calculations presented for a cantilevered beam are shown to compare favorably with classical results. Although the example problem is fairly simple and well-understood, the procedure can be used in conjunction with a general-purpose finite element code for buckling calculations of more complex systems.
Ruban, V P
2015-01-01
The nonlinear dynamics of an obliquely oriented wave packet at sea surface is studied both analytically and numerically for various initial parameters of the packet, in connection with the problem of oceanic rogue waves. In the framework of Gaussian variational ansatz applied to the corresponding (1+2D) hyperbolic nonlinear Schr\\"odinger equation, a simplified Lagrangian system of differential equations is derived, which determines the evolution of coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description for the process of nonlinear spatio-temporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system is integrated in quadratures, which fact allows us to understand qualitative differences between the linear and nonlinear regimes of the focusing of wave packet. Comparison of the Gaussian model predictions with results of direct numerical simulation of fully nonlinear long-cres...
NASA Astrophysics Data System (ADS)
Ruban, V. P.
2015-05-01
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.
Characterization of a Quadratic Function in Rn
ERIC Educational Resources Information Center
Xu, Conway
2010-01-01
It is proved that a scalar-valued function "f"(x) defined in "n"-dimensional space must be quadratic, if the intersection of tangent planes at x[subscript 1] and x[subscript 2] always contains the midpoint of the line joining x[subscript 1] and x[subscript 2]. This is the converse of a result of Stenlund proved in this JOURNAL in 2001.
Efficient entanglement criteria beyond Gaussian limits using Gaussian measurements.
Nha, Hyunchul; Lee, Su-Yong; Ji, Se-Wan; Kim, M S
2012-01-20
We present a formalism to derive entanglement criteria beyond the Gaussian regime that can be readily tested by only homodyne detection. The measured observable is the Einstein-Podolsky-Rosen (EPR) correlation. Its arbitrary functional form enables us to detect non-Gaussian entanglement even when an entanglement test based on second-order moments fails. We illustrate the power of our experimentally friendly criteria for a broad class of non-Gaussian states under realistic conditions. We also show rigorously that quantum teleportation for continuous variables employs a specific functional form of EPR correlation. PMID:22400723
On the time optimal thermalization of single mode Gaussian states
Alberto Carlini; Andrea Mari; Vittorio Giovannetti
2014-09-25
We consider the problem of time optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e. arbitrary phase rotations, bounded squeezing and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e. when the unitary phase rotations, squeezing and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.
A High-Authority/Low-Authority Control Strategy for Coupled Aircraft-Style Bays
NASA Technical Reports Server (NTRS)
Schiller, N. H.; Fuller, C. R.; Cabell, R. H.
2006-01-01
This paper presents a numerical investigation of an active structural acoustic control strategy for coupled aircraft-style bays. While structural coupling can destabilize or limit the performance of some model-based decentralized control systems, fullycoupled centralized control strategies are impractical for typical aircraft containing several hundred bays. An alternative is to use classical rate feedback with matched, collocated transducer pairs to achieve active damping. Unfortunately, due to the conservative nature of this strategy, stability is guaranteed at the expense of achievable noise reduction. Therefore, this paper describes the development of a combined control strategy using robust active damping in addition to a high-authority controller based on linear quadratic Gaussian (LQG) theory. The combined control system is evaluated on a tensioned, two-bay model using piezoceramic actuators and ideal point velocity sensors. Transducer placement on the two-bay structure is discussed, and the advantages of a combined control strategy are presented.
Application of IFT and SPSA to servo system control.
R?dac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan
2011-12-01
This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation. PMID:22086492
Smoothed analysis of Gaussian elimination
Sankar, Arvind, 1976-
2004-01-01
We present a smoothed analysis of Gaussian elimination, both with partial pivoting and without pivoting. Let A be any matrix and let A be a slight random perturbation of A. We prove that it is unlikely that A has large ...
Hitting Times for Gaussian Processes
Decreusefond, Laurent; Nualart, David
2008-01-01
The Annals of Probability 2008, Vol. 36, No. 1, 319–330 DOI: 10.1214/009117907000000132 © Institute of Mathematical Statistics, 2008 HITTING TIMES FOR GAUSSIAN PROCESSES BY LAURENT DECREUSEFOND AND DAVID NUALART1 GET/Telecom Paris and University... of Kansas We establish a general formula for the Laplace transform of the hitting times of a Gaussian process. Some consequences are derived, and particular cases like the fractional Brownian motion are discussed. 1. Introduction. Consider a zero mean...
Issues in the digital implementation of control compensators. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Moroney, P.
1979-01-01
Techniques developed for the finite-precision implementation of digital filters were used, adapted, and extended for digital feedback compensators, with particular emphasis on steady state, linear-quadratic-Gaussian compensators. Topics covered include: (1) the linear-quadratic-Gaussian problem; (2) compensator structures; (3) architectural issues: serialism, parallelism, and pipelining; (4) finite wordlength effects: quantization noise, quantizing the coefficients, and limit cycles; and (5) the optimization of structures.
The halo bispectrum in N-body simulations with non-Gaussian initial conditions
NASA Astrophysics Data System (ADS)
Sefusatti, E.; Crocce, M.; Desjacques, V.
2012-10-01
We present measurements of the bispectrum of dark matter haloes in numerical simulations with non-Gaussian initial conditions of local type. We show, in the first place, that the overall effect of primordial non-Gaussianity on the halo bispectrum is larger than on the halo power spectrum when all measurable configurations are taken into account. We then compare our measurements with a tree-level perturbative prediction, finding good agreement at large scales when the constant Gaussian bias parameter, both linear and quadratic, and their constant non-Gaussian corrections are fitted for. The best-fitting values of the Gaussian bias factors and their non-Gaussian, scale-independent corrections are in qualitative agreement with the peak-background split expectations. In particular, we show that the effect of non-Gaussian initial conditions on squeezed configurations is fairly large (up to 30 per cent for fNL = 100 at redshift z = 0.5) and results from contributions of similar amplitude induced by the initial matter bispectrum, scale-dependent bias corrections as well as from non-linear matter bispectrum corrections. We show, in addition, that effects at second order in fNL are irrelevant for the range of values allowed by cosmic microwave background and galaxy power spectrum measurements, at least on the scales probed by our simulations (k > 0.01 h Mpc-1). Finally, we present a Fisher matrix analysis to assess the possibility of constraining primordial non-Gaussianity with future measurements of the galaxy bispectrum. We find that a survey with a volume of about 10 h-3 Gpc3 at mean redshift z ? 1 could provide an error on fNL of the order of a few. This shows the relevance of a joint analysis of galaxy power spectrum and bispectrum in future redshift surveys.
Frequency Domain Control Design of Large Space Structures: A Practical Approach
NASA Technical Reports Server (NTRS)
Harding, R.; Das, A.
1985-01-01
Requirements indicate the need for much larger, more accurate, and in some cases, very dynamic satellites. Large control system bandwidths are needed to meet accuracy and response requirements while maintaining tight control over appendage oscillations. Studies in recent years have shown that linear quadratic Gaussian (LQG) controllers can achieve the desired performance if the system is linearized and if the system model is accurate. Results of an LQG controller applied to a single axis satellite with large solar arrays, are given. A reduced order model (ROM) comprises rigid body motion with dominant structural modes. Optimal control and estimation gains are calculated based on an extremely conservative 0.0005 critical damping ratio. In order to examine stability characteristics, single-input single-output (SISO) frequency response concepts are generalized to develop a method of displaying open loop frequency response of multi-input multi-output (MIMO) control system.
A formal approach to the design of multibunch feedback systems: LQG controllers
Hindi, H.; Fox, J.; Prabhaker, S.; Sapozhnikov, L.; Oxoby, G.; Linscott, I.; Teytelman, D.
1994-06-01
We formulate the multibunch feedback problem as a standard control-systems design problem and solve it using Linear Quadratic Gaussian (LQG) regulator theory. Use of a specific optimality criterion allows quantitative evaluation of different controllers and leads to the design of optimal LQG controllers. Computer simulations are used to show that, as compared to the existing Finite Impulse Response (FIR) control, LQG control can provide the same closed-loop damping for less peak power, thus making more effective use of limited kicker power. Furthermore, LQG control enables us to use more power to provide better damping without the problem of driving instabilities with higher loop gains. The code for the LQG filters described has been written for the Quick prototype installed at ALS.
Multivariable control of a forward swept wing aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Quinn, W. W.
1986-01-01
The impact of independent canard and flaperon control of the longitudinal axis of a generic forward swept wing aircraft is examined. The Linear Quadratic Gaussian (LQG)/Loop Transfer Recovery (LTR) method is used to design three compensators: two single-input-single-output (SISO) systems, one with angle of attack as output and canard as control, the other with pitch attitude as output and canard as control, and a two-input-two-output system with both canard and flaperon controlling both the pitch attitude and angle of attack. The performances of the three systems are compared showing the addition of flaperon control allows the aircraft to perform in the precision control modes with very little loss of command following accuracy.
Ultra-fast reconfigurable spatial switching between a quadratic solitary wave and a weak signal
NASA Astrophysics Data System (ADS)
Pioger, P.-H.; Couderc, V.; Grossard, L.; Barthélémy, A.; Baronio, F.; de Angelis, C.; Min, Y. H.; Quiring, V.; Sohler, W.
2006-10-01
Experimental and numerical investigations of an ultra-fast reconfigurable spatial switch based on the nonlinear interaction between a weak wave (the signal) and a solitary wave (the control) at 1548 nm are reported. The non-collinear interaction in a quadratic nonlinear film waveguide gives birth to a third switched optical beam (the idler). This beam could be steered according to the transverse spatial position of the control beam.
The quadratic stochastic Euclidean bipartite matching problem
Sergio Caracciolo; Gabriele Sicuro
2015-10-08
We propose a new approach for the study of the stochastic Euclidean bipartite matching problem with quadratic cost between two sets of $N$ points, $N\\gg 1$. The points are supposed independently randomly generated on a domain $\\Omega\\subset\\mathbb R^d$ with a given generic distribution $\\rho(\\mathbf x)$ on $\\Omega$. In particular, we derive a general expression for the correlation function and for the average optimal cost of the optimal matching. A previous ansatz, for the case of uniform distribution on the flat hypertorus, is derived as particular case.
Holographic entropy increases in quadratic curvature gravity
NASA Astrophysics Data System (ADS)
Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.
2015-09-01
Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.
De Sitter stability in quadratic gravity
A. V. Toporensky; P. V. Tretyakov
2006-12-29
Quadratic curvature corrections to Einstein-Hilbert action lead in general to higher-order equations of motion, which can induced instability of some unperturbed solutions of General Relativity. We study conditions for stability of de Sitter cosmological solution. We argue that simple form of this condition known for FRW background in 3+1 dimensions changes seriously if at least one of these two assumptions is violated. In the present paper the stability conditions for de Sitter solution have been found for multidimensional FRW background and for Bianchi I metrics in 3+1 dimensions.
Quadratically constrained quadratic programs on acyclic graphs with application to power
Low, Steven H.
to obtain a feasible point. We demonstrate this approach on optimal power flow problems over radial networks. Index Terms Quadratic programs, conic relaxations, optimal power flow, distribution networks. I analysis [6] and optimal power flow [7][9]. A wide-range of com- binatorial problems can also be cast
Yajima, Kohji
2015-01-01
We address the question of how one can modify the inflationary tensor spectrum without changing at all the successful predictions on the curvature perturbation. We show that this is indeed possible, and determine the two quadratic curvature corrections that are free from instabilities and affect only the tensor sector at the level of linear cosmological perturbations. Both of the two corrections can reduce the tensor amplitude, though one of them generates large non-Gaussianity of the curvature perturbation. It turns out that the other one corresponds to so-called Lorentz-violating Weyl gravity. In this latter case one can obtain as small as 65% of the standard tensor amplitude. Utilizing this effect we demonstrate that even power-law inflation can be within the 2$\\sigma$ contour of the Planck results.
Shaping super-Gaussian beam through digital micro-mirror device
NASA Astrophysics Data System (ADS)
Ding, XiangYu; Ren, YuXuan; Lu, RongDe
2015-03-01
We have set up a novel system for shaping the Gaussian laser beams into super-Gaussian beams. The digital micro-mirror device (DMD) is able to modulate the laser light spatially through binary-amplitude modulation mechanism. With DMD, the irradiance of the laser beam can be redistributed flexibly and various beams with different intensity distribution can be produced. A super-Gaussian beam has been successfully shaped from the Gaussian beam with the use of DMD. This technique will be widely applied in lithography, quantum emulation and holographic optical tweezers which require precise control of beam profile.
Stochastic Optimal Preview Control of AN Active Vehicle Suspension
NASA Astrophysics Data System (ADS)
Roh, H.-S.; Park, Y.
1999-02-01
Preview control with an estimation scheme is investigated for an active vehicle suspension system with look-ahead sensors. Design of a preview compensator that may be called stochastic optimal, output feedback, preview regulator problem is reduced to the classical linear quadratic Gaussian problem by augmenting dynamics of the original system and previewed road inputs. The resulting solution is a combination of deterministic optimal preview controller and stochastic optimal estimator. The optimal estimator takes the form of a Kalman filter with an additional term of the estimate for the road input, which is given as the weighted preview sensor signal. The Kalman filter gain and the weight used for estimating state and road input, respectively, are designed so that performance degradation by measurement noise is minimized. Numerical examples of a quarter car model are given to verify the performance improvement achievable with the proposed preview control when the estimation from noisy measurement is considered.
Information geometry of Gaussian channels
Alex Monras; Fabrizio Illuminati
2010-03-22
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated from distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a byproduct, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications: It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulae for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states, and provide the optimal observables for the estimation of the channel parameters (e.g. bath couplings, squeezing, and temperature).
Information geometry of Gaussian channels
Monras, Alex; Illuminati, Fabrizio
2010-06-15
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).
Controllable outrigger damping system for high rise building with MR dampers
NASA Astrophysics Data System (ADS)
Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing
2010-04-01
A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.
Quadrotor UAV Control for Vision-based Moving Target Tracking Task
NASA Astrophysics Data System (ADS)
Bohdanov, Denys
The problem of stand-off tracking of a moving target using a quadrotor unmanned aerial vehicle (UAV) based on vision-sensing is investigated. A PID (Proportional-Integral-Derivative) controller is implemented for attitude stabilization of the quadrotor. An LQG-based (Linear-Quadratic-Gaussian) control law is designed and implemented for position control of the quadrotor for a moving target tracking task. A novel vision-based estimation algorithm is developed, enabling estimation of quadrotor's position, altitude and yaw relative to the target based on limited information about the target. Two image processing algorithms are implemented and compared for the task of feature detection and feature tracking in a series of images. Image processing algorithms are integrated with quadrotor control and experiments are performed to validate proposed control and estimation approaches.
Human simulated intelligent control of vehicle suspension system with MR dampers
NASA Astrophysics Data System (ADS)
Yu, Miao; Dong, X. M.; Choi, S. B.; Liao, C. R.
2009-01-01
This paper presents vibration control responses of a controllable magnetorheological (MR) suspension system of a passenger car. The MR damper is designed and manufactured on the basis of the mixed-mode operation, and its time response is experimentally evaluated to integrate with the suspension model. After formulating the dynamic model of a half-car MR suspension system, a human simulated intelligent control (HSIC) scheme is developed to attenuate unwanted vibrations such as pitch angle acceleration. After verifying the effectiveness of the HSIC via computer simulation, the road test of the passenger car installed with four MR dampers is undertaken. The power spectrum densities of dynamic motions such as body acceleration and pitch angle acceleration are measured and analyzed. In addition, the control results obtained from the proposed HSIC are compared with those obtained from a conventional linear quadratic Gaussian (LQG) control method.
Quadratic Model for Reservoir Management: Application to the Central Valley Project
NASA Astrophysics Data System (ADS)
MariñO, Miguel A.; Loaiciga, Hugo A.
1985-05-01
A quadratic optimization model is applied to a large-scale reservoir system to obtain operation schedules. The model has the minimum possible dimensionality, treats spillage and penstock releases as decision variables and takes advantage of system-dependent features to reduce the size of the decision space. An efficient and stable quadratic programming active set algorithm is used to solve for the optimal release policies. The stability and convergence of the solution algorithm are ensured by the factorization of the reduced Hessian matrix and the accurate computation of the Lagrange multipliers. The quadratic model is compared with a simplified linear model and it is found that optimal release schedules are robust to the choice of model, both yielding an increase of nearly 27% in the total annual energy production with respect to conventional operation procedures, although the quadratic model is more flexible and of general applicability. The adequate fulfillment of other system functions such as flood control and water supply is guaranteed via constraints on storage and spillage variables.
Steller Structure Treatment of Quadratic Gravity
NASA Astrophysics Data System (ADS)
Chen, Y.; Shao, C.; Chen, X.
2001-07-01
A scheme for considering stellar structure by taking advantage of the quadratic theory of gravitation in four-dimensions is proposed, citing the fact that the possible deviation of gravity in astrophysical systems from the Newtonian inverse square law can be explained through the use of this theory. A modified Lane-Emden equation is derived by making use of the linearized static field equation of quadratic gravity and the polytropic equation of state for a fluid. The influence on stellar structure of the additional force included in quadratic gravity is investigated. It is shown that the additional force can be treated as a perturbation of a bound system by solutions of the modified Lane-Emden equation and an order-of-magnitude analysis. %ZY. Fujii, Nature (London) 234 (1971), 5; Phys. Rev. D9 (1974), 874. D. R. Long, Phys. Rev. D 9 (1974), 850. J. O'Hanlon, Phys. Rev. Lett. 29 (1972), 137. D. R. Mikkelson and M. J. Newman, Phys. Rev. D 16 (1977), 919. R. V. Wagoner, Phys. Rev. D 1 (1970), 3209. J. Z. Xu and Y. H. Chen, Gen. Relat. Gravit. J. 23 (1991), 169. K. S. Stelle, Gen. Relat. Gravit. J. 8 (1978), 631. C. Xu and G. F. R. Ellis, Class. Quant. Grav. 8 (1991), 1747. A. Eddington, The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press, Cambridge, 1924). W. Pauli, Theory of Relativity (Pergamon Press, New York, 1921). H. A. Buchdahl, Proc. Edinburgh Math. Soc. 8 (1948), 89. J. D. Barrow and A. C. Ottewill, J. of Phys. A 16 (1983), 2757. M. B. Mijic, M. S. Morris and W. M. Suen, Phys. Rev. D 34 (1986), 2934. A. L. Berkin, Phys. Rev. D 42 (1990), 1017. N. D. Birrell and P. C. W. Davies, Quantum Field in Curved Space (Cambridge University Press, 1982). E. T. Tomboulis, Quantum Theory of Gravity, ed. S. M. Christensen (Bristol: Adam Hilger 1984). H. J. Treder, Ann. der Phys. 32 (1975), 383. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York 1972). E. N. Glass and G. Szamosi, Phys. Rev. D 35 (1987), 1205.
Gaussian entanglement distribution via satellite
NASA Astrophysics Data System (ADS)
Hosseinidehaj, Nedasadat; Malaney, Robert
2015-02-01
In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.
Gaussian Entanglement Distribution via Satellite
Nedasadat Hosseinidehaj; Robert Malaney
2015-02-05
In this work we analyse three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the trade-off between space-based engineering complexity and the rate of ground-station entanglement generation.
Gaussian process style transfer mapping for historical Chinese character recognition
NASA Astrophysics Data System (ADS)
Feng, Jixiong; Peng, Liangrui; Lebourgeois, Franck
2015-01-01
Historical Chinese character recognition is very important to larger scale historical document digitalization, but is a very challenging problem due to lack of labeled training samples. This paper proposes a novel non-linear transfer learning method, namely Gaussian Process Style Transfer Mapping (GP-STM). The GP-STM extends traditional linear Style Transfer Mapping (STM) by using Gaussian process and kernel methods. With GP-STM, existing printed Chinese character samples are used to help the recognition of historical Chinese characters. To demonstrate this framework, we compare feature extraction methods, train a modified quadratic discriminant function (MQDF) classifier on printed Chinese character samples, and implement the GP-STM model on Dunhuang historical documents. Various kernels and parameters are explored, and the impact of the number of training samples is evaluated. Experimental results show that accuracy increases by nearly 15 percentage points (from 42.8% to 57.5%) using GP-STM, with an improvement of more than 8 percentage points (from 49.2% to 57.5%) compared to the STM approach.
Constraining Running Non-Gaussianity
Emiliano Sefusatti; Michele Liguori; Amit P. S. Yadav; Mark G. Jackson; Enrico Pajer
2009-06-01
The primordial non-Gaussian parameter fNL has been shown to be scale-dependent in several models of inflation with a variable speed of sound. Starting from a simple ansatz for a scale-dependent amplitude of the primordial curvature bispectrum for two common phenomenological models of primordial non-Gaussianity, we perform a Fisher matrix analysis of the bispectra of the temperature and polarization of the Cosmic Microwave Background (CMB) radiation and derive the expected constraints on the parameter nNG that quantifies the running of fNL(k) for current and future CMB missions such as WMAP, Planck and CMBPol. We find that CMB information alone, in the event of a significant detection of the non-Gaussian component, corresponding to fNL = 50 for the local model and fNL = 100 for the equilateral model of non-Gaussianity, is able to determine nNG with a 1-sigma uncertainty of Delta nNG = 0.1 and Delta nNG = 0.3, respectively, for the Planck mission. In addition, we consider a Fisher matrix analysis of the galaxy power spectrum to determine the expected constraints on the running parameter nNG for the local model and of the galaxy bispectrum for the equilateral model from future photometric and spectroscopic surveys. We find that, in both cases, large-scale structure observations should achieve results comparable to or even better than those from the CMB, while showing some complementarity due to the different distribution of the non-Gaussian signal over the relevant range of scales. Finally, we compare our findings to the predictions on the amplitude and running of non-Gaussianity of DBI inflation, showing how the constraints on a scale-dependent fNL(k) translate into constraints on the parameter space of the theory.
On the generation of a non-gaussian curvature perturbation during preheating
Kohri, Kazunori; Lyth, David H.; Valenzuela-Toledo, Cesar A. E-mail: d.lyth@lancaster.ac.uk
2010-02-01
The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ?. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ? based on the ?N formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ?, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual ?N formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case.
Variational Gaussian Process Dynamical Systems
Damianou, Andreas C; Lawrence, Neil D
2011-01-01
High dimensional time series are endemic in applications of machine learning such as robotics (sensor data), computational biology (gene expression data), vision (video sequences) and graphics (motion capture data). Practical nonlinear probabilistic approaches to this data are required. In this paper we introduce the variational Gaussian process dynamical system. Our work builds on recent variational approximations for Gaussian process latent variable models to allow for nonlinear dimensionality reduction simultaneously with learning a dynamical prior in the latent space. The approach also allows for the appropriate dimensionality of the latent space to be automatically determined. We demonstrate the model on a human motion capture data set and a series of high resolution video sequences.
Tachyon Mediated Non-Gaussianity
Bhaskar Dutta; Jason Kumar; Louis Leblond
2008-06-29
We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.
Tachyon mediated non-Gaussianity
Dutta, Bhaskar; Leblond, Louis; Kumar, Jason [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)
2008-10-15
We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.
Quadratic quantum cosmology with Schutz' perfect fluid
Babak Vakili
2009-12-01
We study the classical and quantum models of a Friedmann-Robertson-Walker (FRW) cosmology, coupled to a perfect fluid, in the context of the $f(R)$ gravity. Using the Schutz' representation for the perfect fluid, we show that, under a particular gauge choice, it may lead to the identification of a time-parameter for the corresponding dynamical system. Moreover, this formalism gives rise to a Schr\\"{o}dinger-Wheeler-DeWitt (SWD) equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wavefunction of the Universe. In the case of $f(R)=R^2$ (pure quadratic model), for some particular choices of the perfect fluid source, exact solutions to the SWD equation can be obtained and the corresponding results are compared to the usual $f(R)=R$ model.
Quadratic magnetic field dependence of magnetoelectric photocurrent
NASA Astrophysics Data System (ADS)
Dai, Junfeng; Lu, Hai-Zhou; Shen, Shun-Qing; Zhang, Fu-Chun; Cui, Xiaodong
2011-04-01
We experimentally study the spin and electric photocurrents excited by a linearly polarized light via direct interband transitions in an InGaAs/InAlAs quantum well. In the absence of a magnetic field, the linearly polarized light induces a pure spin current due to the spin-orbit coupling, which may be transformed into a measurable electric current by applying an in-plane magnetic field. The induced electric photocurrent is linear with the in-plane magnetic field. Here, we report a quadratic magnetic field dependence of the photocurrent in the presence of an additional perpendicular component of the magnetic field. We attribute the observation to the Hall effect of magnetoelectric photocurrent.
Quadratic magnetic field dependence of magnetoelectric photocurrent
NASA Astrophysics Data System (ADS)
Dai, Junfeng; Lu, Hai-Zhou; Shen, Shun-Qing; Zhang, Fu-Chun; Cui, Xiaodong
2012-02-01
We experimentally study the spin and electric photocurrents excited by a linearly polarized light via direct interband transitions in an InGaAs/InAlAs quantum well. In the absence of a magnetic field, the linearly polarized light induces a pure spin current due to the spin-orbit coupling, which may be transformed into a measurable electric current by applying an in-plane magnetic field. The induced electric photocurrent is linear with the in-plane magnetic field. Here, we report a quadratic magnetic field dependence of the photocurrent in the presence of an additional perpendicular component of the magnetic field. We attribute the observation to the Hall effect of magnetoelectric photocurrent.
Linear-quadratic games of resource depletion
Epple, D.; Hansen, L.P.; Roberds, W.
1983-01-01
In this paper we describe some methods for quantitatively analyzing dynamic, multiple agent models in which at least one agent takes into account his influence on the aggregate environment such as the degree of competitiveness in the petroleum industry. We confine our attention to models in which the agents solve stochastic, quadratic optimization problems subject to linear constraints. Discussion is presented in the context of a resource depletion example. The players are resource suppliers; the task is to compare their behavior when they play alternative dynamic games. Our approach to solving these models of dynamic games is first to deduce the stochastic Euler equations for each of the agents and then to simultaneously solve these stochastic Euler equations subject to the respective transversality conditions. The solution strategy involves factoring the characteristic polynomial of the system of stochastic difference equations. 22 refs.
Compact stars with quadratic equation of state
NASA Astrophysics Data System (ADS)
Ngubelanga, Sifiso A.; Maharaj, Sunil D.; Ray, Subharthi
2015-05-01
We provide new exact solutions to the Einstein-Maxwell system of equations for matter configurations with anisotropy and charge. The spacetime is static and spherically symmetric. A quadratic equation of state is utilised for the matter distribution. By specifying a particular form for one of the gravitational potentials and the electric field intensity we obtain new exact solutions in isotropic coordinates. In our general class of models, an earlier model with a linear equation of state is regained. For particular choices of parameters we regain the masses of the stars PSR J1614-2230, 4U 1608-52, PSR J1903+0327, EXO 1745-248 and SAX J1808.4-3658. A comprehensive physical analysis for the star PSR J1903+0327 reveals that our model is reasonable.
Contemporary Mathematics Heights and quadratic forms: Cassels' theorem and its
Fukshansky, Lenny
Contemporary Mathematics Heights and quadratic forms: Cassels' theorem and its generalizations Lenny Fukshansky Abstract. In this survey paper, we discuss the classical Cassels' theorem on existence as Cassels'-type theorems for small-height zeros of quadratic forms with additional conditions. We conclude
Analysis of Students' Error in Learning of Quadratic Equations
ERIC Educational Resources Information Center
Zakaria, Effandi; Ibrahim; Maat, Siti Mistima
2010-01-01
The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…
ON THE ROLE OF QUADRATIC OSCILLATIONS IN NONLINEAR SCHR
Fermanian Kammerer, Clotilde
ON THE ROLE OF QUADRATIC OSCILLATIONS IN NONLINEAR SCHR Ë? ODINGER EQUATIONS R â?? EMI CARLES that the nonlinear term has an e#ect at leading order only if the initial data have quadratic oscillations; the proof, CLOTILDE FERMANIAN KAMMERER, AND ISABELLE GALLAGHER Abstract. We consider a nonlinear semi--classical Schr
Quadratic kinetic equations are linear in the tensor product space
Grzybowski, H.T.
1988-10-01
It is shown that quadratic kinetic equations are linear in the tensor product space. The technique presented and applied to the Boltzmann equation renders quadratic operators linear and can be directly applied to equations having polynomial-type nonlinearities and describing the evolution of probability density functions or distributions.
QUADRATIC MINIMA AND MODULAR FORMS II Barry Brent
and Sloane have improved Siegel's bound in [Mallows, Odlyzko, and Sloane 1975].) John Hsia [private communication to Glenn Stevens] suggested that Siegel's a* *p- proach might be extended to higher levels, modular forms, * *quadratic forms, quadratic minima. The author is grateful to his advisor, Glenn
RQL: Global Placement via Relaxed Quadratic Spreading and Linearization
Chu, Chris C.-N.
gener- ated the best results at the two recent ISPD placement con- tests [13,14]. These analytic placersRQL: Global Placement via Relaxed Quadratic Spreading and Linearization Natarajan Viswanathan 1 that a good quadratic placement, followed by local wirelength-driven spreading can produce excellent results
Weaving a Parabola Web with the Quadratic Transformer
NSDL National Science Digital Library
2012-07-19
Investigate how the graph of a quadratic function and its symbolic expression relate to each other. Start with a set of four graphs, which we?ll call a Parabola Web. Experiment with manipulating them with transformations such as shifting and reflection. Learn about quadratic equations in vertex and root form, and explore how changing these equations affect the graphs.
Computing Symmetrized Weight Enumerators for Lifted Quadratic Residue Codes
Duursma, Iwan M.
Computing Symmetrized Weight Enumerators for Lifted Quadratic Residue Codes I. M. Duursma Dept of a disjoint weight enumerator. Symmetrized weight enumerators are given for the lifted quadratic residue codesÆciently compute weight enumerators of linear codes over primary integer residue rings. For the lifted QR
A non-conforming piecewise quadratic finite element on triangles
M. Fortin; M. Soulie
1983-01-01
The employment of a piecewise quadratic element on the triangle for approximating second-order problems is investigated. It is shown that the triangular elements are quadratic elements which are enhanced by a shape function on each triangle and, subsequently, that nonconforming piecewise elements can be simply implemented. The shape function produces an interior node, which increases the computational complexity slightly. Consideration
On copositive programming and standard quadratic optimization problems
Immanuel M. Bomze; Mirjam Dür; Etienne de Klerk; Cornelis Roos; Arie J. Quist; Tamás Terlaky
2000-01-01
A standard quadratic problem consists of finding global maximizers of a quadratic form over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices (the positive semidefinite matrices which allow a factorization FFT whereF is some non-negative matrix). The dual of this
Effects of Classroom Instruction on Students' Understanding of Quadratic Equations
ERIC Educational Resources Information Center
Vaiyavutjamai, Pongchawee; Clements, M. A.
2006-01-01
Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…
Tangent Lines without Derivatives for Quadratic and Cubic Equations
ERIC Educational Resources Information Center
Carroll, William J.
2009-01-01
In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)
QUADRATIC DIFFERENTIALS IN LOW GENUS: EXCEPTIONAL AND NONVARYING STRATA
Moeller, Martin
QUADRATIC DIFFERENTIALS IN LOW GENUS: EXCEPTIONAL AND NONÂVARYING STRATA DAWEI CHEN AND MARTIN M Ë? OLLER Abstract. We give an algebraic way of distinguishing the components of the exceptional strata of quadratic di#erentials in genus three and four. The complete list of these strata is (9, -1), (6, 3, -1), (3
ENDS OF STRATA OF THE MODULI SPACE OF QUADRATIC DIFFERENTIALS
Boissy, Corentin
ENDS OF STRATA OF THE MODULI SPACE OF QUADRATIC DIFFERENTIALS CORENTIN BOISSY Abstract. Very few results are known about the topology of the strata of the moduli space of quadratic differentials. In this paper, we prove that any connected component of such strata has only one topological end. A typical flat
ENDS OF STRATA OF THE MODULI SPACE OF QUADRATIC DIFFERENTIALS
Paris-Sud XI, Université de
ENDS OF STRATA OF THE MODULI SPACE OF QUADRATIC DIFFERENTIALS CORENTIN BOISSY Abstract. Very few results are known about the topology of the strata of the moduli space of quadratic differentials. In this pa- per, we prove that any connected component of such strata has only one topological end. A typical
A quadratic programming-based method for quantized system identification
Wang, Jiandong
) systems. Numerical examples demonstrate the effectiveness of the proposed method. Keywords: SystemA quadratic programming-based method for quantized system identification Xian'en Liu Jiandong: This paper proposes a quadratic programming (QP)-based method, for linear dynamic system identification from
Towards classification of laminations associated to quadratic polynomials
Sutherland, Scott
Towards classification of laminations associated to quadratic polynomials A Dissertation, Presented of the Dissertation Towards classification of laminations associated to quadratic polynomials by Carlos Cabrera Doctor by Lyubich and Minsky. In particular, we prove that the topology of such laminations is de- termined
Quadratic Modeling Exercises Michael Herzog and Qiyam Tung
Lega, Joceline
. In some sense, you have all the tools you need: quadratics and solving systems of linear equations 4 engineers do in real life. Having said that, you will still get a good taste of why we need the quadratic equation, there is no sense of time. Velocity is the change of y with respect to time over x with respect
A Gradient Descent Approach to Optimal Coherent Quantum LQG Controller Design
Arash Kh. Sichani; Igor G. Vladimirov; Ian R. Petersen
2015-02-01
This paper is concerned with the Coherent Quantum Linear Quadratic Gaussian (CQLQG) control problem of finding a stabilizing measurement-free quantum controller for a quantum plant so as to minimize an infinite-horizon mean square performance index for the fully quantum closed-loop system. In comparison with the observation-actuation structure of classical controllers, the coherent quantum feedback is less invasive to the quantum dynamics and quantum information. Both the plant and the controller are open quantum systems whose dynamic variables satisfy the canonical commutation relations (CCRs) of a quantum harmonic oscillator and are governed by linear quantum stochastic differential equations (QSDEs). In order to correspond to such oscillators, these QSDEs must satisfy physical realizability (PR) conditions, which are organised as quadratic constraints on the controller matrices and reflect the preservation of CCRs in time. The CQLQG problem is a constrained optimization problem for the steady-state quantum covariance matrix of the plant-controller system satisfying an algebraic Lyapunov equation. We propose a gradient descent algorithm equipped with adaptive stepsize selection for the numerical solution of the problem. The algorithm finds a local minimum of the LQG cost over the parameters of the Hamiltonian and coupling operators of a stabilizing PR quantum controller, thus taking the PR constraints into account. A convergence analysis of the proposed algorithm is presented. A numerical example of a locally optimal CQLQG controller design is provided to demonstrate the algorithm performance.
Quadratic algebras for three-dimensional superintegrable systems
Daskaloyannis, C. Tanoudis, Y.
2010-02-15
The three-dimensional superintegrable systems with quadratic integrals of motion have five functionally independent integrals, one among them is the Hamiltonian. Kalnins, Kress, and Miller have proved that in the case of nondegenerate potentials with quadratic integrals of motion there is a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral implies that the integrals of motion form a ternary parafermionic-like quadratic Poisson algebra with five generators. In this contribution we investigate the structure of this algebra. We show that in all the nondegenerate cases there is at least one subalgebra of three integrals having a Poisson quadratic algebra structure, which is similar to the two-dimensional case.
Quadratic divergences and quantum gravitational contributions to gauge coupling constants
Toms, David J. [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)
2011-10-15
The calculation of quadratic divergences in Einstein-Maxwell theory with a possible cosmological constant is considered. We describe a method of calculation, using the background-field method, that is sensitive to quadratic divergences, is respectful of gauge invariance, and is independent of gauge conditions. A standard renormalization group analysis is applied to the result where it is shown that the quadratic divergences do lead to asymptotic freedom as found in the original paper of Robinson and Wilczek. The role and nature of these quadratic divergences is critically evaluated in light of recent criticism. Within the context of the background-field method, it is shown that it is possible to define the charge in a physically motivated way in which the quadratic divergences do not play a role. This latter view is studied in more depth in a toy model described in an appendix.
Quadratic divergences and quantum gravitational contributions to gauge coupling constants
NASA Astrophysics Data System (ADS)
Toms, David J.
2011-10-01
The calculation of quadratic divergences in Einstein-Maxwell theory with a possible cosmological constant is considered. We describe a method of calculation, using the background-field method, that is sensitive to quadratic divergences, is respectful of gauge invariance, and is independent of gauge conditions. A standard renormalization group analysis is applied to the result where it is shown that the quadratic divergences do lead to asymptotic freedom as found in the original paper of Robinson and Wilczek. The role and nature of these quadratic divergences is critically evaluated in light of recent criticism. Within the context of the background-field method, it is shown that it is possible to define the charge in a physically motivated way in which the quadratic divergences do not play a role. This latter view is studied in more depth in a toy model described in an appendix.
Driving\\/braking force distribution of four wheel vehicle by quadratic programming with constraints
Ryo Suzuki; Yuichi Ikeda
2010-01-01
This paper proposes a yaw rate tracking control method that distributes the driving\\/braking force exerted on vehicles at the time of negotiating sharp turns and driving at high speeds. The proposed method employs quadratic programming to distribute the driving\\/braking force in order to equalize the tire load factor on all wheels and consider the limits of the driving\\/braking force. The
A Possible Test for Quadratic Gravity in $d \\ge 4$ dimensions
Janusz Garecki
2002-01-03
In this letter we consider the Einsteinian strengths and dynamical degrees of freedom for quadratic gravity. We show that purely metric quadratic gravity theories are much stronger in Einsteinian sense than the competitive quadratic gravity theories which admit torsion.
On Gaussian Beams Described by Jacobi's Equation
Smith, Steven T.
Gaussian beams describe the amplitude and phase of rays and are widely used to model acoustic propagation. This paper describes four new results in the theory of Gaussian beams. (1) A new version of the ?ervený equations ...
Quantum characterization of bipartite Gaussian states
Olivares, Stefano
a robust and reliable method to fully char- acterize bipartite optical Gaussian states by means of a single, and quantum cloning [9]. In particular, Gaussian entangled states have been successfully gener- ated
Inseparability of photon-added Gaussian states
Li Hongrong; Li Fuli; Zhu Shiyao
2007-06-15
The inseparability of photon-added Gaussian states which are generated from two-mode Gaussian states by adding photons is investigated. According to the established inseparability conditions [New J. Phys. 7, 211 (2005); Phys. Rev. Lett. 96, 050503 (2006)], we find that even if a two-mode Gaussian state is separable, the photon-added Gaussian state becomes entangled when the purity of the Gaussian state is larger than a certain value. The lower bound of entanglement of symmetric photon-added Gaussian states is derived. The result shows that entanglement of the photon-added Gaussian states is involved with high-order moment correlations. We find that fidelity of teleporting coherent states cannot be raised by employing the photon-added Gaussian states as a quantum channel of teleportation.
2012 Problem 1: Gaussian Cannon
NASA Astrophysics Data System (ADS)
Xia, Qing; Gao, Wenli; Wang, Sihui; Zhou, Huijun
2015-10-01
Using the theory of elasticity, we establish an accurate collision model and quantitatively explain how Gaussian Cannon gains its most powerful shot under certain experimental parameters. The work done by magnetic force on the steel ball is obtained by measuring the magnetic force. Essential factors to acquire higher ejection speed have been found.
Text Analysis, Generalizable Gaussian Mixture
Nielsen, Finn Årup
Text Analysis, Generalizable Gaussian Mixture and Neuroinformatics Finn A ffi rup Nielsen Section, DTU May 26, 1999 TEXT ANALYSIS APPLICATION Machine text analysis ffl Document level -- Document(CjX ) -- Determine authorship. p(CjX ) ffl Within text level -- Automatic generation of index -- Finding
Non-gaussian shape recognition
NASA Astrophysics Data System (ADS)
Byun, Joyce; Bean, Rachel
2013-09-01
A detection of primordial non-Gaussianity could transform our understanding of the fundamental theory of inflation. The precision promised by upcoming cosmic microwave background (CMB) and large-scale structure (LSS) surveys raises a natural question: if a detection given a particular template is made, what does this truly tell us about the underlying theory? Even in the case of non-detections and upper bounds on deviations from Gaussianity, what can we then infer about the viable theories that remain? In this paper we present a systematic way to constrain a wide range of non-Gaussian shapes, including general single and multi-field models and models with excited initial states. We present a separable, divergent basis able to recreate many shapes in the literature to high accuracy with between three and seven basis functions. The basis allows shapes to be grouped into broad ''template classes'', satisfying theoretically-relevant priors on their divergence properties in the squeezed limit. We forecast how well a Planck-like CMB survey could not only detect a general non-Gaussian signal but discern more about its shape, using existing templates and new ones we propose. This approach offers an opportunity to tie together minimal theoretical priors with observational constraints on the shape in general, and in the squeezed limit, to gain a deeper insight into what drove inflation.
NASA Technical Reports Server (NTRS)
Straton, Jack C.
1989-01-01
The four-dimensional Fourier-Feynman transformations previously used in analytically reducing the general class of integrals containing multicenter products of 1s hydrogenic orbitals, Coulomb or Yukawa potentials, and plane waves, are replaced by the one-dimensional Gaussian transformation. This reduces the previously required double-diagonalization of the quadratic form of the multicenter integrals to only one diagonalization, yielding a simpler reduced form of the integral. The present work also extends the result to include all s states and pairs of states with l not equal to zero summed over the m quantum number.
Francesca Aicardi
2008-03-27
The continue fractions of quadratic surds are periodic, according to a theorem by Lagrange. Their periods may have differing types of symmetries. This work relates these types of symmetries to the symmetries of the classes of the corresponding indefinite quadratic forms. This allows to classify the periods of quadratic surds and at the same time to find, for an arbitrary indefinite quadratic form, the symmetry type of its class and the number of integer points, for that class, contained in each domain of the Poincare' model of the de Sitter world, introduced in Part I. Moreover, we obtain the same information for every class of forms representing zero, by the finite continue fraction related to a special representative of that class. We will see finally the relation between the reduction procedure for indefinite quadratic forms, defined by the continued fractions, and the classical reduction theory, which acquires a geometrical description by the results of Part I.
LQG controller design using GUI: application to antennas and radio-telescopes
Maneri; Gawronski
2000-01-01
The Linear Quadratic Gaussian (LQG) algorithm has been used to control the JPL's beam wave-guide, and 70-m antennas. This algorithm significantly improves tracking precision in a wind disturbed environment. Based on this algorithm and the implementation experience a Matlab based Graphical User Interface (GUI) was developed to design the LQG controllers applicable to antennas and radiotelescopes. The GUI is described in this paper. It consists of two parts the basic LQG design and the fine-tuning of the basic design using a constrained optimization algorithm. The presented GUI was developed to simplify the design process, to make the design process user-friendly, and to enable design of an LQG controller for one with a limited control engineering background. The user is asked to manipulate the GUI sliders and radio buttons to watch the antenna performance. Simple rules are given at the GUI display. PMID:10871218
Elasticity of Gaussian and nearly Gaussian phantom networks Oded Farago and Yacov Kantor
Farago, Oded
, origin. The simplest theory of rubber elasticity which captures these essential physical fea- turesElasticity of Gaussian and nearly Gaussian phantom networks Oded Farago and Yacov Kantor School the elastic properties of phantom networks of Gaussian and nearly Gaussian springs. We show that the stress
Nonlinear clustering in models with primordial non-Gaussianity: The halo model approach
Smith, Robert E.; Desjacques, Vincent; Marian, Laura
2011-02-15
We develop the halo model of large-scale structure as an accurate tool for probing primordial non-Gaussianity. In this study we focus on understanding the matter clustering at several redshifts in the context of primordial non-Gaussianity that is a quadratic correction to the local Gaussian potential, characterized by the parameter f{sub NL}. In our formulation of the halo model we pay special attention to the effect of halo exclusion and show that this can potentially solve the long-standing problem of excess power on large scales in this model. The halo model depends on the mass function, clustering of halo centers, and the density profiles. We test these ingredients using a large ensemble of high-resolution Gaussian and non-Gaussian numerical simulations, covering f{sub NL}={l_brace}0,+100,-100{r_brace}. In particular, we provide a first exploration of how halo density profiles change in the presence of primordial non-Gaussianity. We find that for f{sub NL} positive (negative) high-mass haloes have an increased (decreased) core density, so being more (less) concentrated than in the Gaussian case. We also examine the halo bias and show that, if the halo model is correct, then there is a small asymmetry in the scale dependence of the bias on very large scales, which arises because the Gaussian bias must be renormalized. We show that the matter power spectrum is modified by {approx}2.5% and {approx}3.5% on scales k{approx}1.0 h Mpc{sup -1} at z=0 and z=1, respectively. Our halo model calculation reproduces the absolute amplitude to within < or approx. 10% and the ratio of non-Gaussian to Gaussian spectra to within < or approx. 1%. We also measure the matter correlation function and find similarly good levels of agreement between the halo model and the data. We anticipate that this modeling will be useful for constraining f{sub NL} from measurements of the shear correlation function in future weak lensing surveys such as Euclid.
Coding along hermite polynomials for gaussian noise channels
Abbe, Emmanuel A.
This paper shows that the capacity achieving input distribution for a fading Gaussian broadcast channel is not Gaussian in general. The construction of non-Gaussian distributions that strictly outperform Gaussian ones, for ...
Nonlinear Modelling and Control using Gaussian Processes
Edinburgh, University of
, and family. Firstly, I owe a debt of gratitude to my supervisor, Carl, whom I've worked with for five years now: through both my MEng and my PhD. It's been great, Carl, I've really enjoyed working with you such a stimulating and friendly environment in which to work. In particular, thanks to Roger and David for the many
Log Gaussian Cox processes Jesper Mller,
Watkins, Joseph C.
Log Gaussian Cox processes by Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. #12;#12;Log Gaussian Cox processes JESPER MØLLER Aalborg University ANNE RANDI SYVERSVEEN. Planar Cox processes directed by a log Gaussian intensity process are investigated in the univariate
Lattice computation of energy moments in canonical and Gaussian quantum statistics
Jani Lukkarinen
2000-01-24
We derive a lattice approximation for a class of equilibrium quantum statistics describing the behaviour of any combination and number of bosonic and fermionic particles with any sufficiently binding potential. We then develop an intuitive Monte Carlo algorithm which can be used for the computation of expectation values in canonical and Gaussian ensembles and give lattice observables which will converge to the energy moments in the continuum limit. The focus of the discussion is two-fold: in the rigorous treatment of the continuum limit and in the physical meaning of the lattice approximation. In particular, it is shown how the concepts and intuition of classical physics can be applied in this sort of computation of quantum effects. We illustrate the use of the Monte Carlo methods by computing canonical energy moments and the Gaussian density of states for charged particles in a quadratic potential.
General model selection estimation of a periodic regression with a Gaussian noise
Konev, Victor; 10.1007/s10463-008-0193-1
2010-01-01
This paper considers the problem of estimating a periodic function in a continuous time regression model with an additive stationary gaussian noise having unknown correlation function. A general model selection procedure on the basis of arbitrary projective estimates, which does not need the knowledge of the noise correlation function, is proposed. A non-asymptotic upper bound for quadratic risk (oracle inequality) has been derived under mild conditions on the noise. For the Ornstein-Uhlenbeck noise the risk upper bound is shown to be uniform in the nuisance parameter. In the case of gaussian white noise the constructed procedure has some advantages as compared with the procedure based on the least squares estimates (LSE). The asymptotic minimaxity of the estimates has been proved. The proposed model selection scheme is extended also to the estimation problem based on the discrete data applicably to the situation when high frequency sampling can not be provided.
Improving stability margins in discrete-time LQG controllers
NASA Technical Reports Server (NTRS)
Oranc, B. Tarik; Phillips, Charles L.
1987-01-01
Some of the problems are discussed which are encountered in the design of discrete-time stochastic controllers for problems that may adequately be described by the Linear Quadratic Gaussian (LQG) assumptions; namely, the problems of obtaining acceptable relative stability, robustness, and disturbance rejection properties. A dynamic compensator is proposed to replace the optimal full state feedback regulator gains at steady state, provided that all states are measurable. The compensator increases the stability margins at the plant input, which may possibly be inadequate in practical applications. Though the optimal regulator has desirable properties the observer based controller as implemented with a Kalman filter, in a noisy environment, has inadequate stability margins. The proposed compensator is designed to match the return difference matrix at the plant input to that of the optimal regulator while maintaining the optimality of the state estimates as directed by the measurement noise characteristics.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation theory and computational methods are developed for the determination of optimal linear-quadratic feedback control, observers and compensators for infinite dimensional discrete-time systems. Particular attention is paid to systems whose open-loop dynamics are described by semigroups of operators on Hilbert spaces. The approach taken is based on the finite dimensional approximation of the infinite dimensional operator Riccati equations which characterize the optimal feedback control and observer gains. Theoretical convergence results are presented and discussed. Numerical results for an example involving a heat equation with boundary control are presented and used to demonstrate the feasibility of the method.
Models for the 3D singular isotropic oscillator quadratic algebra
Kalnins, E. G.; Miller, W.; Post, S.
2010-02-15
We give the first explicit construction of the quadratic algebra for a 3D quantum superintegrable system with nondegenerate (4-parameter) potential together with realizations of irreducible representations of the quadratic algebra in terms of differential-differential or differential-difference and difference-difference operators in two variables. The example is the singular isotropic oscillator. We point out that the quantum models arise naturally from models of the Poisson algebras for the corresponding classical superintegrable system. These techniques extend to quadratic algebras for superintegrable systems in n dimensions and are closely related to Hecke algebras and multivariable orthogonal polynomials.
Estimation of wildlife populations using the quadrat method of sampling
Hribar, John Richard
1970-01-01
, method is that, in order to insure any accuracy at all, it is necessary to sample a large number of quadrate, usually far more than the budget would permit. In practical experi- ence, then, it is the usual procedure to sample as many quadrate... CHAPTER III MODIFICATION OF THE METHOD 3. 1 Need for Modification Experience has shown that the assumption most difficult to satisfy is that of l~ accuracy in enumerating the animals in each of the sampled quadrate. All too often, animals are not seen...
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.
Are ghost surfaces quadratic-flux-minimizing?
S. R. Hudson; R. L. Dewar
2010-01-02
Two candidates for "almost-invariant" toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, $\\oint \\vec{A}\\cdot\\mathbf{dl}$. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other $1{1/2}$ degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.
NASA Technical Reports Server (NTRS)
Fleming, P.
1985-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.
Non-Gaussianity in the cosmic microwave background induced by dipolar dark matter
Blanchet, Luc; Marsat, Sylvain; Langlois, David; Tiec, Alexandre Le E-mail: langlois@iap.fr E-mail: marsat@iap.fr
2013-02-01
In previous work [L. Blanchet and A. Le Tiec, Phys. Rev. D 80 (2009) 023524], motivated by the phenomenology of dark matter at galactic scales, a model of dipolar dark matter (DDM) was introduced. At linear order in cosmological perturbations, the dynamics of the DDM was shown to be identical to that of standard cold dark matter (CDM). In this paper, the DDM model is investigated at second order in cosmological perturbation theory. We find that the internal energy of the DDM fluid modifies the curvature perturbation generated by CDM with a term quadratic in the dipole field. This correction induces a new type of non-Gaussianity in the bispectrum of the curvature perturbation with respect to standard CDM. Leaving unspecified the primordial amplitude of the dipole field, which could in principle be determined by a more fundamental description of DDM, we find that, in contrast with usual models of primordial non-Gaussianities, the non-Gaussianity induced by DDM increases with time after the radiation-matter equality on super-Hubble scales. This distinctive feature of the DDM model, as compared with standard CDM, could thus provide a specific signature in the CMB and large-scale structure probes of non-Gaussianity.
NASA Astrophysics Data System (ADS)
Duarte-Mermoud, Manuel A.; Aguila-Camacho, Norelys; Gallegos, Javier A.; Castro-Linares, Rafael
2015-05-01
This paper presents two new lemmas related to the Caputo fractional derivatives, when ? ?(0, 1 ] , for the case of general quadratic forms and for the case where the trace of the product of a rectangular matrix and its transpose appear. Those two lemmas allow using general quadratic Lyapunov functions and the trace of a matrix inside a Lyapunov function respectively, in order to apply the fractional-order extension of Lyapunov direct method, to analyze the stability of fractional order systems (FOS). Besides, the paper presents a theorem for proving uniform stability in the sense of Lyapunov for fractional order systems. The theorem can be seen as a complement of other methods already available in the literature. The two lemmas and the theorem are applied to the stability analysis of two Fractional Order Model Reference Adaptive Control (FOMRAC) schemes, in order to prove the usefulness of the results.
Gaussian free fields for mathematicians
Scott Sheffield
2007-01-01
The d-dimensional Gaussian free field (GFF), also called the (Euclidean bosonic) massless free field, is a d-dimensional-time analog of Brownian motion. Just as Brownian motion is the limit of the simple random walk (when time and\\u000a space are appropriately scaled), the GFF is the limit of many incrementally varying random functions on d-dimensional grids. We present an overview of the
Nurmi, Sami; Byrnes, Christian T.; Tasinato, Gianmassimo E-mail: ctb22@sussex.ac.uk
2013-06-01
Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f{sub NL}{sup 0}| >> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |f{sub NL}{sup obs.}|?<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations.
Quadratic gravity from BF theory in two and three dimensions
NASA Astrophysics Data System (ADS)
Paszko, Ricardo; da Rocha, Roldão
2015-08-01
A polynomial action in the gauge fields is proposed for two and three dimensions, reproducing quadratic gravity. Such action is further amenable for quantization and based upon the topological BF theory.
Quadratic discrete Fourier transform and mutually unbiased bases
Maurice Robert Kibler
2010-10-28
The present chapter [submitted for publication in "Fourier Transforms, Theory and Applications", G. Nikolic (Ed.), InTech (Open Access Publisher), Vienna, 2011] is concerned with the introduction and study of a quadratic discrete Fourier transform. This Fourier transform can be considered as a two-parameter extension, with a quadratic term, of the usual discrete Fourier transform. In the case where the two parameters are taken to be equal to zero, the quadratic discrete Fourier transform is nothing but the usual discrete Fourier transform. The quantum quadratic discrete Fourier transform plays an important role in the field of quantum information. In particular, such a transformation in prime dimension can be used for obtaining a complete set of mutually unbiased bases.
ON GENERALIZED NEWTON ALGORITHMS : QUADRATIC CONVERGENCE, PATH-FOLLOWING
Malajovich, Gregorio
ON GENERALIZED NEWTON ALGORITHMS : QUADRATIC CONVERGENCE, PATH-FOLLOWING AND ERROR ANALYSIS GREGORIO MALAJOVICH Abstract. Newton iteration is known (under some precise conditions) to con- verge) to actually compute Newton iteration exactly. In this paper, approximate Newton iteration is investigated
Hubble space telescope pointing control system design improvement study results
NASA Astrophysics Data System (ADS)
Bukley, Angelia P.
1995-03-01
Unexpected thermally induced disturbances originating in the solar arrays imposed deleterious effects on the pointing performance of the Hubble Space Telescope (HST). A NASA redesign of the onboard pointing control system (PCS) brought the performance back into specification during a majority of the orbit time. As a result of this controller redesign effort, a wealth of flight data was collected and control design simulation models enhanced. Under sponsorship of the NASA Controls/Structures Interaction Program at the Marshall Space Flight Center, a study was conducted to determine if performance improvements could be obtained when advanced modern control techniques under study in the program were applied to the HST PCS. Five modern control techniques were applied to the problem. Flight data and simulation models were provided to the research teams. The methods considered were reduced-order model-based control, linear-quadratic-Gaussian-based control, analytically and numerically derived Hinfinity control, covariance control, and dual-mode disturbance-accommodating control design. The performance of these designs was tested in a government-furnished nonlinear simulation of the HST. In general, some performance improvements over the NASA redesigned controller were seen in the simulation studies.
Reliable fusion of control and sensing in intelligent machines. Thesis
NASA Technical Reports Server (NTRS)
Mcinroy, John E.
1991-01-01
Although robotics research has produced a wealth of sophisticated control and sensing algorithms, very little research has been aimed at reliably combining these control and sensing strategies so that a specific task can be executed. To improve the reliability of robotic systems, analytic techniques are developed for calculating the probability that a particular combination of control and sensing algorithms will satisfy the required specifications. The probability can then be used to assess the reliability of the design. An entropy formulation is first used to quickly eliminate designs not capable of meeting the specifications. Next, a framework for analyzing reliability based on the first order second moment methods of structural engineering is proposed. To ensure performance over an interval of time, lower bounds on the reliability of meeting a set of quadratic specifications with a Gaussian discrete time invariant control system are derived. A case study analyzing visual positioning in robotic system is considered. The reliability of meeting timing and positioning specifications in the presence of camera pixel truncation, forward and inverse kinematic errors, and Gaussian joint measurement noise is determined. This information is used to select a visual sensing strategy, a kinematic algorithm, and a discrete compensator capable of accomplishing the desired task. Simulation results using PUMA 560 kinematic and dynamic characteristics are presented.
Scale-invariant rotating black holes in quadratic gravity
Guido Cognola; Massimiliano Rinaldi; Luciano Vanzo
2015-07-21
Black hole solutions in pure quadratic theories of gravity are interesting since they allow to formulate a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Ghosh, Dave; Scott, Michael A.; Warnaar, Dirk
1991-01-01
A procedure for optimizing the performance of large flexible spacecraft that require active vibration suppression to achieve required performance is presented. The procedure is to conduct on-orbit testing and system identification followed by a control system design. It is applied via simulation to a spacecraft configuration currently being considered for flight test by NASA - the Controls, Astrophysics, and Structures Experiment in Space (CASES). The system simulator is based on a NASTRAN finite element structural model. A finite number of modes is used to represent the structural dynamics. The system simulator also includes models of the electronics, actuators, sensors, the digital controller, and the internal and external disturbances. Nonlinearities caused by quantization are included in the study to examine tolerance of the procedure to modelling errors. Disturbance and sensor noise is modelled as a Gaussian process. For system identification, the system is excited using sinusoidal inputs at the resonant frequencies of the structure using each actuator. Mode shapes, frequencies, and damping ratios are identified from the unforced response sensor data after each excitation. Then, the excitation data is used to identify the actuator influence coefficients. The results of the individual parameter identification analyses are assembled into an aggregate system model. The control design is accomplished based only on the identified model using multi-input/output linear quadratic Gaussian theory. Its performance is evaluated based on time-to-damp as compared with the uncontrolled structure.
A new adaptive control approach for aerospace vehicles with parameter uncertainties
NASA Technical Reports Server (NTRS)
Hahn, Yungsun; Speyer, Jason L.
1989-01-01
A new stochastic adaptive control structure is developed for the problem of combined parameter estimation and control of aerospace vehicles with changing parameters. Parameter uncertainties are modeled as first-order Gauss-Markov processes, and are introduced to the system dynamics through a small parameter. It is assumed that an accurate inertial measurement unit gives perfect measurements of the state variables. Since the stochastic system is assumed to be Gauss-Markov, the density function of the parameters given these measurements is conditionally Gaussian. Based on this conditionally Gaussian density, the problem of minimizing a quadratic cost over an infinite time horizon can be set up within the framework of stochastic optimal control theory. The optimal feedback control law is derived from a straightforward expansion of the Hamilton-Jacobi-Bellman equation, based on the LQG solution. The resulting nonlinear controller is applied to the pitch axis control of a space platform with uncertain moments of inertia and is shown to produce marked improvement over a fixed controller.
Day, Paul N.; Nguyen, Kiet A.; Pachter, Ruth
2006-09-07
Linear and quadratic response time-dependent density functional theories have been applied to calculate the photophysical properties of donor-{pi}-acceptor molecules which are known to have large nonlinear absorption. The linear absorption and two-photon absorption spectra predicted using hybrid functionals, including the Coulomb-attenuated model, with continuum solvation models are reported and compared to experiment and to previous theoretical predictions. While the quadratic response with these functionals overestimated the TPA cross sections relative to experiment when a Gaussian linewidth function was used, a fairly good agreement was obtained when a Lorentzian linewidth function was applied. In addition, the comparison of the TPA cross sections calculated by the sum over states with those calculated by the two-state approximation indicates the importance of the higher energy states in TPA, particularly in nondegenerate experiments.
The period function of reversible quadratic centers
NASA Astrophysics Data System (ADS)
Mardeši?, P.; Marín, D.; Villadelprat, J.
In this paper we investigate the bifurcation diagram of the period function associated to a family of reversible quadratic centers, namely the dehomogenized Loud's systems. The local bifurcation diagram of the period function at the center is fully understood using the results of Chicone and Jacobs [C. Chicone, M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989) 433-486]. Most of the present paper deals with the local bifurcation diagram at the polycycle that bounds the period annulus of the center. The techniques that we use here are different from the ones in [C. Chicone, M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989) 433-486] because, while the period function extends analytically at the center, it has no smooth extension to the polycycle. At best one can hope that it has some asymptotic expansion. Another major difficulty is that the asymptotic development has to be uniform with respect to the parameters, in order to prove that a parameter is not a bifurcation value. We study also the bifurcations in the interior of the period annulus and we show that there exist three germs of curves in the parameter space that correspond to this type of bifurcation. Moreover we determine some regions in the parameter space for which the corresponding period function has at least one or two critical periods. Finally we propose a complete conjectural bifurcation diagram of the period function of the dehomogenized Loud's systems. Our results can also be viewed as a contribution to the proof of Chicone's conjecture [C. Chicone, review in MathSciNet, ref. 94h:58072].
First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder.
Sivo, Gaetano; Kulcsár, Caroline; Conan, Jean-Marc; Raynaud, Henri-François; Gendron, Eric; Basden, Alastair; Vidal, Fabrice; Morris, Tim; Meimon, Serge; Petit, Cyril; Gratadour, Damien; Martin, Olivier; Hubert, Zoltan; Sevin, Arnaud; Perret, Denis; Chemla, Fanny; Rousset, Gérard; Dipper, Nigel; Talbot, Gordon; Younger, Eddy; Myers, Richard; Henry, David; Todd, Stephen; Atkinson, David; Dickson, Colin; Longmore, Andy
2014-09-22
Adaptive optics provides real time correction of wavefront disturbances on ground based telescopes. Optimizing control and performance is a key issue for ever more demanding instruments on ever larger telescopes affected not only by atmospheric turbulence, but also by vibrations, windshake and tracking errors. Linear Quadratic Gaussian control achieves optimal correction when provided with a temporal model of the disturbance. We present in this paper the first on-sky results of a Kalman filter based LQG control with vibration mitigation on the CANARY instrument at the Nasmyth platform of the 4.2-m William Herschel Telescope. The results demonstrate a clear improvement of performance for full LQG compared with standard integrator control, and assess the additional improvement brought by vibration filtering with a tip-tilt model identified from on-sky data, thus validating the strategy retained on the instrument SPHERE at the VLT. PMID:25321824
Diagnosing non-Gaussianity of forecast and analysis errors in a convective scale model
NASA Astrophysics Data System (ADS)
Legrand, R.; Michel, Y.; Montmerle, T.
2015-07-01
In numerical weather prediction, the problem of estimating initial conditions is usually based on a Bayesian framework. Two common derivations respectively lead to the Kalman filter and to variational approaches. They rely on either assumptions of linearity or assumptions of Gaussianity of the probability density functions of both observation and background errors. In practice, linearity and Gaussianity of errors are tied to one another, in the sense that a nonlinear model will yield non-Gaussian probability density functions, and that standard methods may perform poorly in the context of non-Gaussian probability density functions. This study aims to describe some aspects of non-Gaussianity of forecast and analysis errors in a convective scale model using a Monte-Carlo approach based on an ensemble of data assimilations. For this purpose, an ensemble of 90 members of cycled perturbed assimilations has been run over a highly precipitating case of interest. Non-Gaussianity is measured using the K2-statistics from the D'Agostino test, which is related to the sum of the squares of univariate skewness and kurtosis. Results confirm that specific humidity is the least Gaussian variable according to that measure, and also that non-Gaussianity is generally more pronounced in the boundary layer and in cloudy areas. The mass control variables used in our data assimilation, namely vorticity and divergence, also show distinct non-Gaussian behavior. It is shown that while non-Gaussianity increases with forecast lead time, it is efficiently reduced by the data assimilation step especially in areas well covered by observations. Our findings may have implication for the choice of the control variables.
NASA Astrophysics Data System (ADS)
Troncossi, M.; Di Sante, R.; Rivola, A.
2014-05-01
High-cycle fatigue life tests conducted using controlled random vibrations are commonly used to evaluate failure in components and structures. In most cases, a Gaussian distribution of both the input vibration and the stress response is assumed, while real-life loads may be non-Gaussian causing the response to be non-Gaussian as well. Generating non-Gaussian drive signals with high kurtosis and a given power spectral density, however, does not always guarantee that the stress response will actually be non-Gaussian, because this depends on the adherence of the tested system to the Central Limit Theorem. On the other side, suitable measurement methods need to be developed in order to estimate the stress amplitude response at critical failure locations, and therefore to evaluate and select input loads. In this paper, a simple test rig with a notched cantilevered specimen was developed to measure the response and examine the kurtosis values in the case of stationary Gaussian, stationary non-Gaussian, and non-stationary non-Gaussian excitation signals. The Laser Doppler Vibrometry (LDV) technique was used for the first time in this type of test, to estimate the specimen stress amplitude response in terms of differential displacement at the notch section ends. A method based on the use of accelerometers to correct for the occasional signal drops occurring during the experiment is described and the results are discussed with respect to the ability of the test procedure to evaluate the output signal.
Gaussian Decomposition of Laser Altimeter Waveforms
NASA Technical Reports Server (NTRS)
Hofton, Michelle A.; Minster, J. Bernard; Blair, J. Bryan
1999-01-01
We develop a method to decompose a laser altimeter return waveform into its Gaussian components assuming that the position of each Gaussian within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform, and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points. Initial amplitude estimates are obtained using a non-negative least-squares method. To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method. If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians are included in the optimization procedure. The Gaussian decomposition method is demonstrated on data collected by the airborne Laser Vegetation Imaging Sensor (LVIS) in October 1997 over the Sequoia National Forest, California.
On the use of the OCM's quadratic objective function as a pilot rating metric
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1981-01-01
A correlation between the magnitude of the quadratic objective function from an optimal control pilot model and the subjective rating of the vehicle and task provides a valuable tool for handling qualities research and flight control synthesis. An analysis of simulation results for fourteen aircraft configurations flight tested earlier was conducted. A fixed set of pilot model parameters, are found for all cases in modeling the simulated regulation task. The agreement obtained between performance statistics is shown and a strong correlation was obtained between the cost function and rating.
hp calculators HP 50g Solving for roots of polynomials and quadratics
Vetter, Frederick J.
hp calculators HP 50g Solving for roots of polynomials and quadratics The Numeric Solver Practice finding roots of polynomials and quadratics #12;hp calculators HP 50g Solving for roots of polynomials and quadratics hp calculators - 2 - HP 50g Solving for roots of polynomials and quadratics The Numeric Solver
Breaking Gaussian incompatibility on continuous variable quantum systems
NASA Astrophysics Data System (ADS)
Heinosaari, Teiko; Kiukas, Jukka; Schultz, Jussi
2015-08-01
We characterise Gaussian quantum channels that are Gaussian incompatibility breaking, that is, transform every set of Gaussian measurements into a set obtainable from a joint Gaussian observable via Gaussian postprocessing. Such channels represent local noise which renders measurements useless for Gaussian EPR-steering, providing the appropriate generalisation of entanglement breaking channels for this scenario. Understanding the structure of Gaussian incompatibility breaking channels contributes to the resource theory of noisy continuous variable quantum information protocols.
Emotion suppression moderates the quadratic association between RSA and executive function.
Spangler, Derek P; Bell, Martha Ann; Deater-Deckard, Kirby
2015-09-01
There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated (a) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (b) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a 2-min resting period during which electrocardiogram (ECG) was continually assessed. In the next phase, the women completed an array of executive function and nonexecutive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. PMID:26018941
NASA Astrophysics Data System (ADS)
Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen
2014-02-01
This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.
Minkowski Functional Description of Microwave Background Gaussianity
Serge Winitzki; Arthur Kosowsky
1997-10-15
A Gaussian distribution of cosmic microwave background temperature fluctuations is a generic prediction of inflation. Upcoming high-resolution maps of the microwave background will allow detailed tests of Gaussianity down to small angular scales, providing a crucial test of inflation. We propose Minkowski functionals as a calculational tool for testing Gaussianity and characterizing deviations from it. We review the mathematical formalism of Minkowski functionals of random fields; for Gaussian fields the functionals can be calculated exactly. We then apply the results to pixelized maps, giving explicit expressions for calculating the functionals from maps as well as the Gaussian predictions, including corrections for map boundaries, pixel noise, and pixel size and shape. Variances of the functionals for Gaussian distributions are derived in terms of the map correlation function. Applications to microwave background maps are discussed.
Gaussian mass optimization for kernel PCA parameters
NASA Astrophysics Data System (ADS)
Liu, Yong; Wang, Zulin
2011-10-01
This paper proposes a novel kernel parameter optimization method based on Gaussian mass, which aims to overcome the current brute force parameter optimization method in a heuristic way. Generally speaking, the choice of kernel parameter should be tightly related to the target objects while the variance between the samples, the most commonly used kernel parameter, doesn't possess much features of the target, which gives birth to Gaussian mass. Gaussian mass defined in this paper has the property of the invariance of rotation and translation and is capable of depicting the edge, topology and shape information. Simulation results show that Gaussian mass leads a promising heuristic optimization boost up for kernel method. In MNIST handwriting database, the recognition rate improves by 1.6% compared with common kernel method without Gaussian mass optimization. Several promising other directions which Gaussian mass might help are also proposed at the end of the paper.
Gaussian processes for time-series modelling.
Roberts, S; Osborne, M; Ebden, M; Reece, S; Gibson, N; Aigrain, S
2013-02-13
In this paper, we offer a gentle introduction to Gaussian processes for time-series data analysis. The conceptual framework of Bayesian modelling for time-series data is discussed and the foundations of Bayesian non-parametric modelling presented for Gaussian processes. We discuss how domain knowledge influences design of the Gaussian process models and provide case examples to highlight the approaches. PMID:23277607
Strongly Scale-dependent Non-Gaussianity
Antonio Riotto; Martin S. Sloth
2010-09-15
We discuss models of primordial density perturbations where the non-Gaussianity is strongly scale-dependent. In particular, the non-Gaussianity may have a sharp cut-off and be very suppressed on large cosmological scales, but sizeable on small scales. This may have an impact on probes of non-Gaussianity in the large-scale structure and in the cosmic microwave background radiation anisotropies.
Strongly scale-dependent non-Gaussianity
Riotto, Antonio; Sloth, Martin S.
2011-02-15
We discuss models of primordial density perturbations where the non-Gaussianity is strongly scale dependent. In particular, the non-Gaussianity may have a sharp cutoff and be very suppressed on large cosmological scales, but sizable on small scales. This may have an impact on probes of non-Gaussianity in the large-scale structure and in the cosmic microwave background radiation anisotropies.
Monogamy inequality for distributed Gaussian entanglement
Tohya Hiroshima; Gerardo Adesso; Fabrizio Illuminati
2006-11-08
We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.
Edge localization by multiple of Gaussians theory
Gao Feng; Lucas J. van Vliet
1995-01-01
Zero-crossing of a derivative of Gaussian filter is a well-known edge location criterion. Examples are the Laplacian, the\\u000a second derivative in the gradient direction (SDGD) and the sum of the Laplacian and SDGD (PLUS). Derivative operators can\\u000a easily be implemented by convoluting the primitive image with a derivative of a Gaussian. Gaussian filter displaces the equipotential\\u000a of half height inwards
A transient, quadratic nodal method for triangular-Z geometry
DeLorey, T.F.
1993-06-01
Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.
Gaussian beams in turbulent media.
Consortini, A; Ronchi, L
1970-01-01
The propagation of a gaussian beam in a turbulent medium is investigated by the geometrical optics method. The correlation function as well as the structure function of the phase fluctuations at two points of an imperturbed wavefront are derived in a closed form in the two limiting cases when the points belong to two almost parallel rays or to two highly diverging rays. It is shown that the focused beams may permit a detailed investigation of the parameters of the turbulence, when the turbulence is inhomogeneous and its parameters are slowly varying functions of the coordinates. PMID:20076149
Gaussian effective potential: Quantum mechanics
NASA Astrophysics Data System (ADS)
Stevenson, P. M.
1984-10-01
We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.
NASA Astrophysics Data System (ADS)
Zhang, De-Long; Wu, Bo
2002-02-01
Starting with two dimensional, scalar wave equation, a variational equation was established for the fundamental TE and TM modes guided in Ti : LiNbO 3 waveguides on the basis of assuming a symmetric Gaussian mode field function in the width direction and two-half Gaussian trial functions in the depth direction. The controllable waveguide fabrication parameters, including channel width, diffusion temperature, initial Ti-strip thickness and diffusion time, dependent of fundamental mode size, effective pump area, coupling efficiency between pump and laser modes, and the coupling loss between a Ti : LiNbO 3 waveguide and a fiber were numerically calculated for Z-cut Er : Ti : LiNbO 3 channel waveguide lasers at three possible emission wavelengths 1532,1563 and 1576 nm and two possible pump wavelengths 1480 and 980 nm. The calculated results were compared with those of Gaussian/Hermite-Gaussian mode field distribution in detail.
Stability and control of singularly perturbed systems. Second annual report
Khalil, H.; El-Ansary, M.; Gajic, Z.; Litkouhi, B.; Saberi, A.
1982-09-01
This report surveys the results obtained during the second year of the three-year project entitled, Multimodel Strategies for Stochastic Models, and supported by the US Department of Energy, Electric Energy Systems Division. The report is divided into four parts. Part One presents a new method for studying stability of singularly perturbed systems using quadratic-type Lyapunov functions. The method is less conservative than the previous methods reported in the literature. Several examples are included to demonstrate that. Part Two is a continuation of our effort to study sampled-data control of singularly perturbed systems (see Part Three of the first annual report). Here we study singularly perturbed difference equations resulting from discretizing continious-time singularly perturbed systems. Part Three presents an important development in linear-quadratic Gaussian estimation and control of singularly perturbed systems. Near-optimum estimators and regulators are obtained using a special transformation to decouple slow and fast dynamics. Part Four considers a class of nonlinear singularly perturbed systems driven by wide-band noise and derives a reduced-order diffusion model that represents the behavior of the slow variables.
Preamble to `The Humble Gaussian Distribution'. David MacKay 1 Gaussian Quiz
Wehenkel, Louis
. Assuming that the variables y1, y2, y3 in this belief network have a joint Gaussian distribution, whichPreamble to `The Humble Gaussian Distribution'. David MacKay 1 Gaussian Quiz y1 y3 y2 H1 1 (2) are true? (A) (B) K(2) = 1 .5 .5 1 K-1 (2) = 1.5 -1 -1 2 #12;The Humble Gaussian Distribution
Remarks on Quadratic Hamiltonians in Spaceflight Mechanics
Caillau, Jean-Baptiste
µ will be normalized to one in the text. In accordance with (1), the thrust is directed along by the velocity of the spacecraft. In modern applications such as low-thrust orbit transfer [7], controls are very the feedback u = u/|v| where v stands for q, the system (1) is written as an affine single-input control one, x
Information bounds for Gaussian copulas.
Hoff, Peter D; Niu, Xiaoyue; Wellner, Jon A
2014-01-01
Often of primary interest in the analysis of multivariate data are the copula parameters describing the dependence among the variables, rather than the univariate marginal distributions. Since the ranks of a multivariate dataset are invariant to changes in the univariate marginal distributions, rank-based estimators are natural candidates for semiparametric copula estimation. Asymptotic information bounds for such estimators can be obtained from an asymptotic analysis of the rank likelihood, i.e. the probability of the multivariate ranks. In this article, we obtain limiting normal distributions of the rank likelihood for Gaussian copula models. Our results cover models with structured correlation matrices, such as exchangeable or circular correlation models, as well as unstructured correlation matrices. For all Gaussian copula models, the limiting distribution of the rank likelihood ratio is shown to be equal to that of a parametric likelihood ratio for an appropriately chosen multivariate normal model. This implies that the semiparametric information bounds for rank-based estimators are the same as the information bounds for estimators based on the full data, and that the multivariate normal distributions are least favorable. PMID:25313292
Information bounds for Gaussian copulas
Hoff, Peter D.; Niu, Xiaoyue; Wellner, Jon A.
2013-01-01
Often of primary interest in the analysis of multivariate data are the copula parameters describing the dependence among the variables, rather than the univariate marginal distributions. Since the ranks of a multivariate dataset are invariant to changes in the univariate marginal distributions, rank-based estimators are natural candidates for semiparametric copula estimation. Asymptotic information bounds for such estimators can be obtained from an asymptotic analysis of the rank likelihood, i.e. the probability of the multivariate ranks. In this article, we obtain limiting normal distributions of the rank likelihood for Gaussian copula models. Our results cover models with structured correlation matrices, such as exchangeable or circular correlation models, as well as unstructured correlation matrices. For all Gaussian copula models, the limiting distribution of the rank likelihood ratio is shown to be equal to that of a parametric likelihood ratio for an appropriately chosen multivariate normal model. This implies that the semiparametric information bounds for rank-based estimators are the same as the information bounds for estimators based on the full data, and that the multivariate normal distributions are least favorable. PMID:25313292
Gaussian measures of entanglement versus negativities: the ordering of two-mode Gaussian states
Gerardo Adesso; Fabrizio Illuminati
2005-06-23
In this work we focus on entanglement of two--mode Gaussian states of continuous variable systems. We first review the formalism of Gaussian measures of entanglement, adopting the framework developed in [M. M. Wolf {\\em et al.}, Phys. Rev. A {\\bf 69}, 052320 (2004)], where the Gaussian entanglement of formation was defined. We compute Gaussian measures explicitely for two important families of nonsymmetric two--mode Gaussian states, namely the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in [G. Adesso {\\em et al.}, Phys. Rev. Lett. {\\bf 92}, 087901 (2004)]. This allows us to compare the {\\em orderings} induced on the set of entangled two--mode Gaussian states by the negativities and by the Gaussian entanglement measures. We find that in a certain range of global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement than states of maximum negativity. Thus Gaussian measures and negativities are definitely inequivalent on nonsymmetric two--mode Gaussian states (even when restricted to extremal states), while they are completely equivalent on symmetric states, where moreover the Gaussian entanglement of formation coincides with the true one. However, the inequivalence between these two families of continuous-variable entanglement measures is somehow limited. In fact we show rigorously that, at fixed negativities, the Gaussian entanglement measures are bounded from below, and we provide strong evidence that they are also bounded from above.
Sylvester's law of inertia for quadratic forms on vector bundles
Giacomo Dossena
2013-08-06
This paper presents a generalisation of Sylvester's law of inertia to real non-degenerate quadratic forms on a fixed real vector bundle over a connected locally connected paracompact Hausdorff space. By interpreting the classical inertia as a complete discrete invariant for the natural action of the general linear group on quadratic forms, the simplest generalisation consists in substituting such group with the group of gauge transformations of the bundle. Contrary to the classical law of inertia, here the full action and its restriction to the identity path component typically have different orbits, leading to two invariants: a complete invariant for the full action is given by the isomorphism class of the orthonormal frame bundle associated to a quadratic form, while a complete invariant for the restricted action is the homotopy class of any maximal positive-definite subbundle associated to a quadratic form. The latter invariant is finer than the former, which in turn is finer than inertia. Moreover, the orbit structure thus obtained might be used to shed light on the topology of the space of non-degenerate quadratic forms on a vector bundle.
Hu, Dawei; Li, Ming; Zhou, Rui; Sun, Yi
2012-01-01
In this paper, a valid kinetic model of photo bioreactor (PBR) used for highly-effective cultivation of blue algae, Spirulina platensis, was developed for fully describing the dynamic characteristics of O(2) concentration, then a closed-loop PBR with Linear-Quadratic Gaussian (LQG) servo controller was established and optimized via digital simulation and dynamic response optimization, and the effectiveness of the closed-loop PBR was further tested and accredited by real-time simulation. The result showed that the closed-loop PBR could regulate and control the O(2) concentration in its gas phase according to the reference with desired dynamic response performance, hence microalgae with unique characteristic could be selected as a powerful tool for O(2) regulation and control whenever O(2) concentration in Bioregenerative Life Support System (BLSS) deviates from the nominal level in emergencies, and greatly enhance safety and reliability of BLSS on space and ground missions. PMID:22153599
H2, fixed architecture, control design for large scale systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1990-01-01
The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.
Asymmetric Gaussian harmonic steering in second-harmonic generation
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2013-11-01
Intracavity second-harmonic generation is one of the simplest of the quantum optical processes and is well within the expertise of most optical laboratories. It is well understood and characterized, both theoretically and experimentally. We show that it can be a source of continuous-variable asymmetric Gaussian harmonic steering with fields which have a coherent excitation, hence combining the important effects of harmonic entanglement and asymmetric steering in one easily controllable device, adjustable by the simple means of tuning the cavity loss rates at the fundamental and harmonic frequencies. We find that whether quantum steering is available via the standard measurements of the Einstein-Podolsky-Rosen correlations can depend on which quadrature measurements are inferred from output spectral measurements of the fundamental and the harmonic. Altering the ratios of the cavity loss rates can be used to tune the regions where symmetric steering is available, with the results becoming asymmetric over all frequencies as the cavity damping at the fundamental frequency becomes significantly greater than at the harmonic. This asymmetry and its functional dependence on frequency is a potential new tool for experimental quantum information science, with possible utility for quantum key distribution. Although we show the effect here for Gaussian measurements of the quadratures, and cannot rule out a return of the steering symmetry for some class of non-Gaussian measurements, we note here that the system obeys Gaussian statistics in the operating regime investigated and Gaussian inference is at least as accurate as any other method for calculating the necessary correlations. Perhaps most importantly, this system is simpler than any other methods we are aware of which have been used or proposed to create asymmetric steering.
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
Mismatch management for optical and matter-wave quadratic solitons
R. Driben; Y. Oz; B. A. Malomed; A. Gubeskys; V. A. Yurovsky
2006-10-25
We propose a way to control solitons in $\\chi ^{(2)}$ (quadratically-nonlinear) systems by means of periodic modulation imposed on the phase-mismatch parameter ("mismatch management", MM). It may be realized in the co-transmission of fundamental-frequency (FF) and second-harmonic (SH) waves in a planar optical waveguide via a long-period modulation of the usual quasi-phase-matching pattern of ferroelectric domains. The MM may also be implemented by dint of the Feshbach resonance in a harmonically-modulated magnetic field in a hybrid atomic-molecular Bose-Einstein condensate (BEC), with the atomic and molecular mean fields (MFs) playing the roles of the FF and SH, respectively. The problem is analyzed by two methods. First, we identify stability regions for spatial solitons in the MM system, in terms of the MM amplitude and period, using the MF equations for spatially-inhomogeneous configurations. In particular, an instability enclave is found inside the stability area.The robustness of the solitons is also tested against variation of the shape of the input pulse, and a threshold for the formation of stable solitons is found in terms of its power. Interactions between solitons are virtually unaffected by the MM. The second method (\\textit{parametric approximation}), going beyond the MF description, is developed for spatially-homogeneous states. It demonstrates that the MF description is valid for large modulation periods, while at smaller periods the non-MF component acquires gain, which implies destruction of MF under the action of the high-frequency MM.
Amalgamated Products of Ore and Quadratic Extensions of Rings
Johnson, Garrett
2012-01-01
We study the ideal theory of amalgamated products of Ore and quadratic extensions over a base ring R. We prove an analogue of the Hilbert Basis theorem for an amalgamated product Q of quadratic extensions and determine conditions for when the one-sided ideals of Q are principal or doubly-generated. We also determine conditions that make Q a principal ideal ring. Finally, we show that the double affine Hecke algebra $H_{q,t}$ associated to the general linear group GL_2(k) (here, k is a field with characteristic not 2) is an amalgamated product of quadratic extensions over a three-dimensional quantum torus and give an explicit isomorphism. In this case, it follows that $H_{q,t}$ is a noetherian ring.
Quadratically consistent nodal integration for second order meshfree Galerkin methods
NASA Astrophysics Data System (ADS)
Duan, Qinglin; Wang, Bingbing; Gao, Xin; Li, Xikui
2014-08-01
Robust and efficient integration of the Galerkin weak form only at the approximation nodes for second order meshfree Galerkin methods is proposed. The starting point of the method is the Hu-Washizu variational principle. The orthogonality condition between stress and strain difference is satisfied by correcting nodal derivatives. The corrected nodal derivatives are essentially linear functions which can exactly reproduce linear strain fields. With the known area moments, the stiffness matrix resulting from these corrected nodal derivatives can be exactly evaluated using only the nodes as quadrature points. The proposed method can exactly pass the quadratic patch test and therefore is named as quadratically consistent nodal integration. In contrast, the stabilized conforming nodal integration (SCNI) which prevails in the nodal integrations for meshfree Galerkin methods fails to pass the quadratic patch test. Better accuracy, convergence, efficiency and stability than SCNI are demonstrated by several elastostatic and elastodynamic examples.
Measurement-induced disturbances and nonclassical correlations of Gaussian states
Mista, Ladislav Jr. [Department of Optics, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc (Czech Republic); School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, Scotland (United Kingdom); Tatham, Richard; Korolkova, Natalia [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, Scotland (United Kingdom); Girolami, Davide; Adesso, Gerardo [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2011-04-15
We study quantum correlations beyond entanglement in two-mode Gaussian states of continuous-variable systems by means of the measurement-induced disturbance (MID) and its ameliorated version (AMID). In analogy with the recent studies of the Gaussian quantum discord, we define a Gaussian AMID by constraining the optimization to all bi-local Gaussian positive operator valued measurements. We solve the optimization explicitly for relevant families of states, including squeezed thermal states. Remarkably, we find that there is a finite subset of two-mode Gaussian states comprising pure states where non-Gaussian measurements such as photon counting are globally optimal for the AMID and realize a strictly smaller state disturbance compared to the best Gaussian measurements. However, for the majority of two-mode Gaussian states the unoptimized MID provides a loose overestimation of the actual content of quantum correlations, as evidenced by its comparison with Gaussian discord. This feature displays strong similarity with the case of two qubits. Upper and lower bounds for the Gaussian AMID at fixed Gaussian discord are identified. We further present a comparison between Gaussian AMID and Gaussian entanglement of formation, and classify families of two-mode states in terms of their Gaussian AMID, Gaussian discord, and Gaussian entanglement of formation. Our findings provide a further confirmation of the genuinely quantum nature of general Gaussian states, yet they reveal that non-Gaussian measurements can play a crucial role for the optimized extraction and potential exploitation of classical and nonclassical correlations in Gaussian states.
Optimality of Gaussian Discord Stefano Pirandola,1,*
Braunstein, Samuel L.
Research Laboratory of Electronics & Department of Mechanical Engineering, MIT, Cambridge, Massachusetts the optimality of Gaussian discord, so that the computation of quantum discord for bipartite Gaussian states can the quantum correlations possessed by some of the most important bosonic states in quantum optics and quantum
Parallel sampling of Gaussian Markov random fields
Steinsland, Ingelin
@math.ntnu.no Norwegian University of Science and Technology Parallel sampling of Gaussian Markov random fields Â p.1NTNU Parallel sampling of Gaussian Markov random fields Ingelin Steinsland ingelins/27 #12;NTNU Outline Parallelisation, why, how and how good. Parallel sampling of GMRFs How Performance
ON GENERALIZED GAUSSIAN QUADRATURES FOR BANDLIMITED EXPONENTIALS
Beylkin, Gregory
of this type are not unique. For a given accuracy , bandlimit c, and weight function w, the Gaussian-type which integrate exactly a subspace of polynomials up to a fixed degree, Gaussian type quadratures-selected) accuracy all exponentials with |b| c. We note that, for a given bandlimit c and accuracy , quadratures
Statistical mechanics in the extended Gaussian ensemble
Ramandeep S. Johal; Antoni Planes; Eduard Vives
2003-01-01
The extended Gaussian ensemble (EGE) is introduced as a generalization of the canonical ensemble. This ensemble is a further extension of the Gaussian ensemble introduced by Hetherington [J. Low Temp. Phys. 66, 145 (1987)]. The statistical mechanical formalism is derived both from the analysis of the system attached to a finite reservoir and from the maximum statistical entropy principle. The
Analytic Extensions of the Gaussian Plume Model
A. E. S. Green; R. P. Singhal; R. Venkateswar
1980-01-01
The Gaussian Plume Model is extended to provide analytic characterizations of (a) the dispersion parameters; (b) the Gaussian Plume Model in polar coordinates; (c) the wind rose in direction and velocity space; and (d) the impact of dispersion upon wind rose patterns. The final analytic result should facilitate the estimation of the impact of changes in source emissions upon ground
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
Particle versus Gaussian Approximations: What is the difference?
Crisan, Dan
. . . . . . . ...... Particle versus Gaussian Approximations: What is the difference? Dan Crisan Assimilation Oberwolfach 2-8 December, 2012 Dan Crisan (Imperial College London) Particle versus Gaussian/continuous time What constitutes an approximation ? Quantized information = particles From Gaussian to particle
Fermionic Meixner probability distributions, Lie algebras and quadratic Hamiltonians
L. Accardi; I. Ya. Aref'eva; I. V. Volovich
2014-11-17
We introduce the quadratic Fermi algebra, which is a Lie algebra, and show that the vacuum distributions of the associated Hamiltonians define the fermionic Meixner probability distributions. In order to emphasize the difference with the Bose case, we apply a modification of the method used in the above calculation to obtain a simple and straightforward classification of the 1--dimensional Meixner laws in terms of homogeneous quadratic expressions in the Bose creation and annihilation operators. There is a huge literature of the Meixner laws but this, purely quantum probabilistic, derivation seems to be new. Finally we briefly discuss the possible multi-dimensional extensions of the above results.
Simultaneous zeros of a Cubic and Quadratic form
Zahid, Jahan
2010-01-01
We verify a conjecture of Emil Artin, for the case of a Cubic and Quadratic form over any $p$-adic field, provided the cardinality of the residue class field exceeds 293. That is any Cubic and Quadratic form with at least 14 variables has a non-trivial $p$-adic zero, with the aforementioned condition on the residue class field. A crucial step in the proof, involves generalizing a $p$-adic minimization procedure due to W. M. Schmidt to hold for systems of forms of arbitrary degrees.
Modeling and control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.
1988-01-01
This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory.
Applications of the Gaussian kinematic formula to CMB data analysis
NASA Astrophysics Data System (ADS)
Fantaye, Yabebal; Marinucci, Domenico; Hansen, Frode; Maino, Davide
2015-03-01
The Gaussian kinematic formula (GKF) [R. J. Adler and J. E. Taylor, Random Fields and Geometry (Springer, New York, 2007).] is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under non-Gaussian circumstances. All our results are validated by numerical experiments, which show a perfect agreement between theoretical predictions and Monte Carlo simulations.
Nonlinear and non-Gaussian Bayesian based handwriting beautification
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2013-03-01
A framework is proposed in this paper to effectively and efficiently beautify handwriting by means of a novel nonlinear and non-Gaussian Bayesian algorithm. In the proposed framework, format and size of handwriting image are firstly normalized, and then typeface in computer system is applied to optimize vision effect of handwriting. The Bayesian statistics is exploited to characterize the handwriting beautification process as a Bayesian dynamic model. The model parameters to translate, rotate and scale typeface in computer system are controlled by state equation, and the matching optimization between handwriting and transformed typeface is employed by measurement equation. Finally, the new typeface, which is transformed from the original one and gains the best nonlinear and non-Gaussian optimization, is the beautification result of handwriting. Experimental results demonstrate the proposed framework provides a creative handwriting beautification methodology to improve visual acceptance.
Digital robust control law synthesis using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivekananda
1989-01-01
Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.
Robustness of quadratic hedging strategies in finance via Fourier transforms
Vanmaele, Michèle
consider two models for the stock price process. The first model is a geometric L´evy process in which the robustness of the quadratic hedging strategies we use pricing and hedging formulas based on Fourier transform technically be performed under a related pricing measure that is a risk-neutral measure. Under this measure
SUPPORT VECTOR REGRESSION WITH A GENERALIZED QUADRATIC LOSS
Sperduti, Alessandro
, the loss function is usually (heuristically) chosen on the basis of the task at hand. For example, when input patterns (eventu- ally corrected by the targets of the involved examples), which can be coded as cross-coefficients of pairs of errors in a fully quadratic form, and then to modu- late the strength
Second Order Backward Stochastic Differential Equations with Quadratic Growth
Dylan, Possamai
2012-01-01
We prove the existence and uniqueness of a solution for one-dimensionnal second order backward stochastic differential equations introduced by Soner, Touzi and Zhang (2010), with a bounded terminal condition and a generator which is continuous with quadratic growth in z. We also prove a Feyman-Kac formula and a probabilistic representation for fully nonlinear PDEs in this setting.
Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions
ERIC Educational Resources Information Center
Leyendekkers, J. V.; Shannon, A. G.
2004-01-01
An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.
Cosmological Vorticity in a Gravity with Quadratic Order Curvature Couplings
J. Hwang; H. Noh
1997-10-07
We analyse the evolution of the rotational type cosmological perturbation in a gravity with general quadratic order gravitational coupling terms. The result is expressed independently of the generalized nature of the gravity theory, and is simply interpreted as a conservation of the angular momentum.
Statistical Mechanics of Linear Systems & Quadratic Path Integrals
Deutsch, Josh
Homework 5 Optional Statistical Mechanics of Linear Systems & Quadratic Path Integrals 1. Examine a general linear system, say an arbitrary network of springs under the influence of constant forces. You can chain in an external potential v(r). It is often called the Greens function for the polymer. Here
1 Statistical Mechanics of Linear Systems and Quadratic Path Integrals
Deutsch, Josh
Homework 6 Due 6/4/08 1 Statistical Mechanics of Linear Systems and Quadratic Path Integrals 1. Examine a general linear system, say an arbitrary network of springs under the influence of constant chain in an external potential v(r). It is often called the Greens function for the polymer. Here
Confidence set interference with a prior quadratic bound. [in geophysics
NASA Technical Reports Server (NTRS)
Backus, George E.
1989-01-01
Neyman's (1937) theory of confidence sets is developed as a replacement for Bayesian interference (BI) and stochastic inversion (SI) when the prior information is a hard quadratic bound. It is recommended that BI and SI be replaced by confidence set interference (CSI) only in certain circumstances. The geomagnetic problem is used to illustrate the general theory of CSI.
Root Refinement for Real Polynomials using Quadratic Interval Refinement
Waldmann, Uwe
Root Refinement for Real Polynomials using Quadratic Interval Refinement Michael Kerber MPI consider the problem of approximating all real roots of a square-free polyno- mial f with real coefficients. Given isolating intervals for the real roots and an arbitrary positive integer L, the task
Visualising the Complex Roots of Quadratic Equations with Real Coefficients
ERIC Educational Resources Information Center
Bardell, Nicholas S.
2012-01-01
The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…
Decomposition of Quadratic Variational Florian Becker, Christoph Schnorr
Schnörr, Christoph
Decomposition of Quadratic Variational Problems Florian Becker, Christoph Schn¨orr Image. In this paper we address the decomposition of the general class of qua- dratic variational problems, which will deliver data volumes taken with high-speed cameras, that cannot be handled within the working memory
Solving Systems of Multivariate Quadratic Equations over Finite Fields
International Association for Cryptologic Research (IACR)
the Gröbner basis of the cor- responding ideal is the best choice in this context. One class of algo- rithms Quadratic (MQ) equations is hard in general. More precisely, the associated MQ-problem is known to be NP with a solution in 2005 [5]. Before then it was hard to theoretically analyze the complexity of attacks using F4
MQ Challenge: Hardness Evaluation of Solving Multivariate Quadratic Problems
International Association for Cryptologic Research (IACR)
Department of Informatics, Kyushu University 6 Leading Graduate School Promotion Center, Ochanomizu University Abstract. Multivariate Quadratic polynomial (MQ) problem serve as the basis of security multivariate polynomial maps as public keys. The security of MPKC is thus based on the one
MRSAM: A Quadratically Competitive Multi Robots Navigation Algorithm
Shapiro, Amir
Department of Mechanical Engineering Ben Gurion University of the Negev, Israel {sarids,ashapiro}@bgu.ac.il Yoav Gabriely Department of Mechanical Engineering Technion, Israel Institute of Technology meerygMRSAM: A Quadratically Competitive Multi Robots Navigation Algorithm Shahar Sarid and Amir Shapiro
MRSAM: A Quadratically Competitive Multi-Robot Online Navigation Algorithm
Shapiro, Amir
Shapiro Department of Mechanical Engineering Ben Gurion University of the Negev, Israel {sarids,ashapiro}@bgu.ac.il Yoav Gabriely Department of Mechanical Engineering Technion, Israel Institute of Technology meerygMRSAM: A Quadratically Competitive Multi-Robot Online Navigation Algorithm Shahar Sarid and Amir
Universal Quadratic Lower Bounds on Source Coding Error Exponents
California at Berkeley, University of
source coding problem Source: xi px on finite alphabet X Coding system: Desired error probability Pr-Wolf Delay vs Blocks 4 Conclusions and open problems Chang and Sahai (UC Berkeley) Universal bounds CISS 2007Universal Quadratic Lower Bounds on Source Coding Error Exponents Cheng Chang Anant Sahai Wireless
On the Solution of Nonconvex Cardinality Boolean Quadratic Programming problems
Grossmann, Ignacio E.
On the Solution of Nonconvex Cardinality Boolean Quadratic Programming problems Ricardo M. Limaa University, PA, USA {ricardo.lima@lneg.pt, grossmann@andrew.cmu.edu} Abstract This paper addresses available to solve CBQP problems using the common available software. In the last decades significant theory
THE FUJITA EXPONENT FOR SEMILINEAR HEAT EQUATIONS WITH QUADRATICALLY DECAYING
Pinsky, Ross
THE FUJITA EXPONENT FOR SEMILINEAR HEAT EQUATIONS WITH QUADRATICALLY DECAYING POTENTIAL. 35K55, 35B33, 35B40 . Key words and phrases. critical exponent, blow-up, global solution, Fujita, the so-called Fujita exponent, and one has the following dichotomy: if p > p, then for sufficiently small
Deflating Quadratic Matrix Polynomials with Structure Preserving Transformations
Tisseur, Francoise
of Manchester, Manchester, M13 9PL, UK bSchool of Mechanical, Materials, Manuf. Eng. & Management, University 2000 MSC: 15A18, 65F15, 65F30 1. Introduction Consider the quadratic matrix polynomial Q() = 2 M + C author 1The work of this author was supported by Engineering and Physical Sciences Research Council grant
Front velocity in models with quadratic autocatalysis Vladimir K. Vanaga)
Epstein, Irving R.
Front velocity in models with quadratic autocatalysis Vladimir K. Vanaga) and Irving R. Epstein the dependence of the front velocity on the diffusion coefficients of X and R, the interconversion rates diffusion coef- ficients of X and R, DX and DR , respectively, raise the ques- tion of how the velocity
QUADRATIC CONVERGENCE FOR VALUING AMERICAN OPTIONS USING A PENALTY METHOD
Forsyth, Peter A.
and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of CanadaQUADRATIC CONVERGENCE FOR VALUING AMERICAN OPTIONS USING A PENALTY METHOD P.A. FORSYTH AND K.R. VETZAL Abstract. The convergence of a penalty method for solving the discrete regularized American option
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
Phan Thành Nam; Marcin Napiórkowski; Jan Philip Solovej
2015-08-28
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our sufficient conditions are optimal in the sense that they become necessary when the relevant one-body operators commute.
About Zhang's premodels for Siegel disks of quadratic rational maps.
Chéritat, Arnaud
About Zhang's premodels for Siegel disks of quadratic rational maps. Arnaud Ch´eritat CNRS, Univ. Toulouse Feb. 2011 A. Ch´eritat (CNRS, UPS) About Zhang's premodels Feb. 2011 1 / 33 #12;Let us show) About Zhang's premodels Feb. 2011 2 / 33 #12;A. Ch´eritat (CNRS, UPS) About Zhang's premodels Feb. 2011
Quantum electroweak symmetry breaking through loop quadratic contributions
NASA Astrophysics Data System (ADS)
Bai, Dong; Cui, Jian-Wei; Wu, Yue-Liang
2015-06-01
Based on two postulations that (i) the Higgs boson has a large bare mass mH ?mh ? 125 GeV at the characteristic energy scale Mc which defines the Standard Model (SM) in the ultraviolet region, and (ii) quadratic contributions of Feynman loop diagrams in quantum field theories are physically meaningful, we show that the SM electroweak symmetry breaking is induced by the quadratic contributions from loop effects. As the quadratic running of Higgs mass parameter leads to an additive renormalization, which distinguishes from the logarithmic running with a multiplicative renormalization, the symmetry breaking occurs once the sliding energy scale ? moves from Mc down to a transition scale ? =?EW at which the additive renormalized Higgs mass parameter mH2 (Mc / ?) gets to change the sign. With the input of current experimental data, this symmetry breaking energy scale is found to be ?EW ? 760 GeV, which provides another basic energy scale for the SM besides Mc. Studying such a symmetry breaking mechanism could play an important role in understanding both the hierarchy problem and naturalness problem. It also provides a possible way to explore the experimental implications of the quadratic contributions as ?EW lies within the probing reach of the LHC and the future Great Collider.
FIVE SQUARES IN ARITHMETIC PROGRESSION OVER QUADRATIC FIELDS
Xarles, Xavier
FIVE SQUARES IN ARITHMETIC PROGRESSION OVER QUADRATIC FIELDS ENRIQUE GONZ´ALEZ-JIM´ENEZ AND XAVIER) there is a non-constant arithmetic progression of five squares. This is carried out by translating the problem that the only non-constant arithmetic progression of five squares over Q( 409), up to equivalence, is 72 , 132
Implementation of a quantum cubic gate by adaptive non-Gaussian measurement
Kazunori Miyata; Hisashi Ogawa; Petr Marek; Radim Filip; Hidehiro Yonezawa; Jun-ichi Yoshikawa; Akira Furusawa
2015-07-31
We present a concept of non-Gaussian measurement composed of a non-Gaussian ancillary state, linear optics and adaptive heterodyne measurement, and on the basis of this we also propose a simple scheme of implementing a quantum cubic gate on a traveling light beam. In analysis of the cubic gate in the Heisenberg representation, we find that nonlinearity of the gate is independent from nonclassicality; the nonlinearity is generated solely by a classical nonlinear adaptive control in a measurement-and-feedforward process while the nonclassicality is attached by the non-Gaussian ancilla that suppresses excess noise in the output. By exploiting the noise term as a figure of merit, we consider the optimum non-Gaussian ancilla that can be prepared within reach of current technologies and discuss performance of the gate. It is a crucial step towards experimental implementation of the quantum cubic gate.
Gaussian translation operator in a multilevel scheme
NASA Astrophysics Data System (ADS)
Hansen, Thorkild B.; Borries, Oscar
2015-08-01
A multilevel computation scheme for time-harmonic fields in three dimensions will be formulated with a new Gaussian translation operator that decays exponentially outside a circular cone centered on the line connecting the source and observation groups. This Gaussian translation operator is directional and diagonal with its sharpness determined by a beam parameter. When the beam parameter is set to zero, the Gaussian translation operator reduces to the standard fast multipole method translation operator. The directionality of the Gaussian translation operator makes it possible to reduce the number of plane waves required to achieve a given accuracy. The sampling rate can be determined straightforwardly to achieve any desired accuracy. The use of the computation scheme will be illustrated through a near-field scanning problem where the far-field pattern of a source is determined from near-field measurements with a known probe. Here the Gaussian translation operator improves the condition number of the matrix equation that determines the far-field pattern. The Gaussian translation operator can also be used when the probe pattern is known only in one hemisphere, as is common in practice. Also, the Gaussian translation operator will be used to solve the scattering problem of the perfectly conducting sphere.
Spacecraft Formation Flying Maneuvers Using Linear Quadratic Regulation With No Radial Axis Inputs
NASA Technical Reports Server (NTRS)
Starin, Scott R.; Yedavalli, R. K.; Sparks, Andrew G.; Bauer, Frank H. (Technical Monitor)
2001-01-01
Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame, propulsion system simplifications and weight reduction may be accomplished. This work focuses on the validation of this control system on its own merits, and in comparison to a related system which does provide thrust along the radial axis of the relative frame. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. Control algorithm performance is evaluated based on measures such as the fuel required to complete a maneuver and the maximum acceleration required by the controller. Based on this evaluation, the exclusion of the radial axis of control still allows enough control authority to use Linear Quadratic Regulator (LQR) techniques to design a gain matrix of adequate performance over finite maneuvers. Additional simulations are conducted including perturbations and using no radial control inputs. A major conclusion presented is that control inputs along the three axes have significantly different relationships to the governing orbital dynamics that may be exploited using LQR.
Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states
Adesso, Gerardo; Illuminati, Fabrizio
2005-09-15
We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they are as well bounded from above.
Cloning of Gaussian states by linear optics
Olivares, Stefano; Paris, Matteo G. A.; Andersen, Ulrik L.
2006-06-15
We analyze in details a scheme for cloning of Gaussian states based on linear optical components and homodyne detection recently demonstrated by Andersen et al. [Phys. Rev. Lett. 94, 240503 (2005)]. The input-output fidelity is evaluated for a generic (pure or mixed) Gaussian state taking into account the effect of nonunit quantum efficiency and unbalanced mode mixing. In addition, since in most quantum information protocols the covariance matrix of the set of input states is not perfectly known, we evaluate the average cloning fidelity for classes of Gaussian states with the degree of squeezing and the number of thermal photons being only partially known.
Quantum bit commitment under Gaussian constraints
NASA Astrophysics Data System (ADS)
Mandilara, Aikaterini; Cerf, Nicolas J.
2012-06-01
Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible.
Gaussian coordinate systems for the Kerr metric
M. Novello; E. Bittencourt
2010-04-22
We present the whole class of Gaussian coordinate systems for the Kerr metric. This is achieved through the uses of the relationship between Gaussian observers and the relativistic Hamilton-Jacobi equation. We analyze the completeness of this coordinate system. In the appendix we present the equivalent JEK formulation of General Relativity -- the so-called quasi-Maxwellian equations -- which acquires a simpler form in the Gaussian coordinate system. We show how this set of equations can be used to obtain the internal metric of the Schwazschild solution, as a simple example. We suggest that this path can be followed to the search of the internal Kerr metric.
Non-Gaussian signatures of tachyacoustic cosmology
Bessada, Dennis, E-mail: dennis.bessada@unifesp.br [UNIFESP — Universidade Federal de São Paulo, Laboratório de Física Teórica e Computação Científica, Rua São Nicolau, 210, 09913-030, Diadema, SP (Brazil)
2012-09-01
I investigate non-Gaussian signatures in the context of tachyacoustic cosmology, that is, a noninflationary model with superluminal speed of sound. I calculate the full non-Gaussian amplitude A, its size f{sub NL}, and corresponding shapes for a red-tilted spectrum of primordial scalar perturbations. Specifically, for cuscuton-like models I show that f{sub NL} ? O(1), and the shape of its non-Gaussian amplitude peaks for both equilateral and local configurations, the latter being dominant. These results, albeit similar, are quantitatively distinct from the corresponding ones obtained by Magueijo et al. in the context of superluminal bimetric models.
Collapse dynamics of super-Gaussian Beams.
Grow, Taylor D; Ishaaya, Amiel A; Vuong, Luat T; Gaeta, Alexander L; Gavish, Nir; Fibich, Gadi
2006-06-12
We investigate the self-focusing dynamics of super-Gaussian optical beams in a Kerr medium. We find that up to several times the critical power for self-focusing, super-Gaussian beams evolve towards a Townes profile. At higher powers the super-Gaussian beams form rings which break into filaments as a result of noise. Our results are consistent with the observed self-focusing dynamics of femtosecond laser pulses in air [1] in which filaments are formed along a ring about the axis of the initial beam where the initial beam did not form a ring. PMID:19516712
Equilateral non-Gaussianity from heavy fields
Gong, Jinn-Ouk; Pi, Shi; Sasaki, Misao E-mail: spi@apctp.org
2013-11-01
The effect of self-interactions of heavy scalar fields during inflation on the primordial non-Gaussianity is studied. We take a specific constant-turn quasi-single field inflation as an example. We derive an effective theory with emphasis on non-linear self-interactions of heavy fields and calculate the corresponding non-Gaussianity, which is of equilateral type and can be as relevant as those computed previously in the literature. We also derive the non-Gaussianity by directly using the in-in formalism, and verify the equivalence of these two approaches.
Self-accelerating parabolic beams in quadratic nonlinear media Ido Dolev, Ana Libster, and Ady Arie
Arie, Ady
Self-accelerating parabolic beams in quadratic nonlinear media Ido Dolev, Ana Libster, and Ady Arie://apl.aip.org/authors #12;Self-accelerating parabolic beams in quadratic nonlinear media Ido Dolev,a) Ana Libster, and Ady
Mitchell, John E.
A semidefinite programming heuristic for quadratic programming problems with complementarity of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with com- plementarity constraints can be relaxed to give a semidefinite programming problem
Mitchell, John E.
A semidefinite programming heuristic for quadratic programming problems with complementarity of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with comÂ plementarity constraints can be relaxed to give a semidefinite programming problem
Control of a large space structure using multiple model adaptive estimation and control techniques
NASA Astrophysics Data System (ADS)
Griffin, Gordon C., Jr.
1994-12-01
A moving bank multiple model adaptive estimator/controller (MMAE/MMAC), based on linear system, quadratic cost, and Gaussian noise (LQG) assumptions, is used to quell unwanted vibrations in a large flexible space structure. The structure, known as the SPace Integrated Controls Experiment, or SPICE, exists at Phillips Laboratory, Kirtland AFB, NM. The structure consists of a large platform and a smaller platform connected by a tripod of flexible legs. The purpose of the control system is to maintain a very precise line-of-sight vector through the center of the spacecraft. Kalman filtering, used to estimate the position and velocity of the bending modes of the structure, and LQG control techniques are the primary design tools used in the MMAE/MMAC algorithms. Implementing a parallel bank of filters increases robustness when uncertainties exist in the system model, here specifically allowing adaptation to uncertain and changing undamped natural frequencies of the bending modes of the structure. A moving bank is used to reduce computational loading. The MMAE/MMAC design method provides an excellent method of estimating undamped natural frequency variations and quelling vibrations in the structure. The MMAE/MMAC was able to track numerous parameter changes and jumps while providing adequate control for the structure.
NASA Astrophysics Data System (ADS)
Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian
2011-09-01
Recent results of N-body simulations have shown that current theoretical models are not able to correctly predict the amplitude of the scale-dependent halo bias induced by primordial non-Gaussianity, for models going beyond the simplest, local quadratic case. Motivated by these discrepancies, we carefully examine three theoretical approaches based on (1) the statistics of thresholded regions, (2) a peak-background split method based on separation of scales, and (3) a peak-background split method using the conditional mass function. We first demonstrate that the statistics of thresholded regions, which is shown to be equivalent at leading order to a local bias expansion, cannot explain the mass-dependent deviation between theory and N-body simulations. In the two formulations of the peak-background split on the other hand, we identify an important, but previously overlooked, correction to the non-Gaussian bias that strongly depends on halo mass. This new term is in general significant for any primordial non-Gaussianity going beyond the simplest local fNL model. In a separate paper (to be published in PRD rapid communication), the authors compare these new theoretical predictions with N-body simulations, showing good agreement for all simulated types of non-Gaussianity.
Design, test, and evaluation of three active flutter suppression controllers
NASA Technical Reports Server (NTRS)
Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.
1992-01-01
Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.
Non-Gaussian structure of B-mode polarization after delensing
NASA Astrophysics Data System (ADS)
Namikawa, Toshiya; Nagata, Ryo
2015-10-01
The B-mode polarization of the cosmic microwave background on large scales has been considered as a probe of gravitational waves from the cosmic inflation. Ongoing and future experiments will, however, suffer from contamination due to the B-modes of non-primordial origins, one of which is the lensing induced B-mode polarization. Subtraction of the lensing B-modes, usually referred to as delensing, will be required for further improvement of detection sensitivity of the gravitational waves. In such experiments, knowledge of statistical properties of the B-modes after delensing is indispensable to likelihood analysis particularly because the lensing B-modes are known to be non-Gaussian. In this paper, we study non-Gaussian structure of the delensed B-modes on large scales, comparing it with that of the lensing B-modes. In particular, we investigate the power spectrum correlation matrix and the probability distribution function (PDF) of the power spectrum amplitude. Assuming an experiment in which the quadratic delensing is an almost optimal method, we find that delensing reduces correlations of the lensing B-mode power spectra between different multipoles, and that the PDF of the power spectrum amplitude is well described as a normal distribution function with a variance larger than that in the case of a Gaussian field. These features are well captured by an analytic model based on the 4th order Edgeworth expansion. As a consequence of the non-Gaussianity, the constraint on the tensor-to-scalar ratio after delensing is degraded within approximately a few percent, which depends on the multipole range included in the analysis.
On Randers Metrics of Quadratic Riemann Curvature Benling Li and Zhongmin Shen
Shen, Zhongmin
On Randers Metrics of Quadratic Riemann Curvature Benling Li and Zhongmin Shen September 30, 2007 Abstract In this paper, we study Randers metrics with quadratic Riemann cur- vature as in the Riemannian case. We find equations that characterize R-quadratic Randers metrics. In particular, we show that R
Alignment-orientation conversion by quadratic Zeeman effect: Analysis and observation for Te2
Auzinsh, Marcis
Alignment-orientation conversion by quadratic Zeeman effect: Analysis and observation for Te2 I. P momenta into orientation due to quadratic correction to Zeeman effect. Circularity rate up to 0 of the quadratic correction to the Zeeman effect in diatomic mol- ecules. In particular, we direct now our
An Attribute Weight Setting Method for k-NN Based Binary Classification using Quadratic Programming
Coenen, Frans
An Attribute Weight Setting Method for k-NN Based Binary Classification using Quadratic Programming. In this paper, we propose a new attribute weight setting method for k-NN based classifiers using quadratic the attribute weight setting problem as a quadratic programming problem and exploits commercial software
The Quadratic-Chi Histogram Distance Family Ofir Pele and Michael Werman
Peleg, Shmuel
. The Quadratic-Form part of QC members takes care of cross-bin relationships (e.g. red and orange), alleviating distance family, the Quadratic-Chi (QC). QC members are Quadratic-Form distances with a cross-bin 2 -like normaliza- tion. The cross-bin 2 -like normalization reduces the effect of large bins having undo influence
Fourteen years of mapped, permanent quadrats in a northern mixed prairie, USA
Technology Transfer Automated Retrieval System (TEKTRAN)
This historical dataset consists of 44 permanent 1-m2 quadrats located on northern mixed prairie in eastern Montana, USA. Individual plants in these quadrats were identified and mapped annually from 1932 through 1945. Quadrats were located in six pastures assigned to cattle grazing treatments with l...
Electromagnetically induced transparency with Laguerre-Gaussian modes in ultracold rubidium
Akin, T G; Marino, A M; Abraham, E R I
2014-01-01
We demonstrate electromagnetically induced transparency with the control laser in a Laguerre-Gaussian mode. The transmission spectrum is studied in an ultracold gas for the D2 line in both $^{85}$Rb and $^{87}$Rb, where the decoherence due to diffusion of the atomic medium is negligible. We compare these results to a similar configuration, but with the control laser in the fundamental laser mode. We model the transmission of a probe laser under both configurations, and we find good agreement with the experiment. We conclude that the use of Laguerre-Gaussian modes in electromagnetically induced transparency results in narrower resonance linewidths as compared to uniform control laser intensity. The narrowing of the linewidth is caused by the spatial distribution of the Laguerre-Gaussian intensity profile.
Transform Coding of Densely Sampled Gaussian Data
Pradhan, Sandeep
-time Gaussian source by sampling at a sufficiently high rate, applying the Karhunen-Loeve transform to obtain a discrete-time random process, (b) applying the Karhunen- Loeve transform [3] to long blocks
Optimal cloning of mixed Gaussian states
Guta, Madalin; Matsumoto, Keiji
2006-09-15
We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states.
Gaussian Processes for Classification: Mean Field Algorithms
Winther, Ole
, 1997; Neal, 1997; Gibbs & Mackay, 1997; Barber & Williams, 1997; Williams & Barber, 1997; Opper.e. the approximation of the posterior by a multivariate Gaussian (Barber & Williams, 1997; Williams & Barber, 1997
String Gas Cosmology and Non-Gaussianities
Bin Chen; Yi Wang; Wei Xue; Robert Brandenberger
2008-03-05
Recently it has been shown that string gas cosmology, an alternative model of the very early universe which does not involve a period of cosmological inflation, can give rise to an almost scale invariant spectrum of metric perturbations. Here we calculate the non-Gaussianities of the spectrum of cosmological fluctuations in string gas cosmology, and find that these non-Gaussianities depend linearly on the wave number and that their amplitude depends sensitively on the string scale. If the string scale is at the TeV scale, string gas cosmology could lead to observable non-Gaussianities, if it is close to the Planck scale, then the non-Gaussianities on current cosmological scales are negligible.
Approximate inference in Gaussian graphical models
Malioutov, Dmitry M., 1981-
2008-01-01
The focus of this thesis is approximate inference in Gaussian graphical models. A graphical model is a family of probability distributions in which the structure of interactions among the random variables is captured by a ...
Connectivity of a Gaussian P. Balister
Sarkar, Amites
Connectivity of a Gaussian Network P. Balister Department of Mathematical Sciences, University throughout the world. Paul Balister is a Professor at the University of Memphis, where he has been since 1998
Gaussian Beam Construction for Adiabatic Perturbations
Gaussian Beam Construction for Adiabatic Perturbations Mouez Dimassi, Dâ??epartement de Mathâ??ematiques, Universitâ??e Paris 13, VilÂ letaneuse, France, dimassi@math.univÂparis13.fr JeanÂClaude Guillot, D
Applications of Gaussian Processes to Supernova Data
NASA Astrophysics Data System (ADS)
Thomas, Rollin; Kim, A. G.; Fakhouri, H. K.; Truong, P.
2012-01-01
We demonstrate the use of Gaussian processes in problems relevant to Type Ia supernova cosmology experiments and the analysis of supernovae in general. Gaussian processes are a powerful statistical approach that generalizes the concept of probability distributions over random variables to functions. Nonlinear regression, smoothing, and machine classification problems are target applications of Gaussian processes. Areas where Gaussian processes may be an interesting solution in Type Ia supernova cosmology are: principled construction of spectroscopic surface templates, robust extraction of spectral feature measurements, and light curve fitting/modeling. We describe our high-performance computer framework that scales to data sets of interest to current and near-term cosmology experiments, describe computational challenges in the implementation (and their resolution), and show example results using data from the Nearby Supernova Factory and simulations from the Dark Energy Survey.
Quantum Stochastic Calculus and Quantum Gaussian Processes
K. R. Parthasarathy
2014-12-01
In this lecture we present a brief outline of boson Fock space stochastic calculus based on the creation, conservation and annihilation operators of free field theory, as given in the 1984 paper of Hudson and Parthasarathy. We show how a part of this architecture yields Gaussian fields stationary under a group action. Then we introduce the notion of semigroups of quasifree completely positive maps on the algebra of all bounded operators in the boson Fock space $\\Gamma (\\mathbb{C}^n)$ over $\\mathbb{C}^n.$ These semigroups are not strongly continuous but their preduals map Gaussian states to Gaussian states. They were first introduced and their generators were shown to be of the Lindblad type by Vanheuverzwijn. They were recently investigated in the context of quantum information theory by Heinosaari, Holevo and Wolf. Here we present the exact noisy Schr\\"odinger equation which dilates such a semigroup to a quantum Gaussian Markov process.
Feynman graphs for non-Gaussian measures
S. H. Djah; H. Gottschalk; H. Ouerdiane
2006-11-30
Partition- and moment functions for a general (not necessarily Gaussian) functional measure that is perturbed by a Gibbs factor are calculated using generalized Feynman graphs. From the graphical calculus, a new notion of Wick ordering arises, that coincides with orthogonal decompositions of Wiener-It\\^o \\~type only if the measure is Gaussian. Proving a generalized linked cluster theorem, we show that the logarithm of the partition function can be expanded in terms of connected Feynman graphs ("linked cluster theorem").
Speaker Verification Using Adapted Gaussian Mixture Models
Douglas A. Reynolds; Thomas F. Quatieri; Robert B. Dunn
2000-01-01
Reynolds, Douglas A., Quatieri, Thomas F., and Dunn, Robert B., Speaker Verification Using Adapted Gaussian Mixture Models, Digital Signal Processing10(2000), 19–41.In this paper we describe the major elements of MIT Lincoln Laboratory's Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using
DECOMPOSITION OF THE WAVE FIELD INTO OPTIMIZED GAUSSIAN PACKETS
Cerveny, Vlastislav
DECOMPOSITION OF THE WAVE FIELD INTO OPTIMIZED GAUSSIAN PACKETS K. ZÁCEK Department of Geophysics; Accepted: April 8, 2006 ABSTRACT The decomposition of the wave field into optimized Gaussian packets of the Gaussian packet migration over the methods based on Gaussian beams is a direct relation between the regions
Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Burken, John J.; Frost, Susan A.; Taylor, Brian R.
2011-01-01
When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.
Non-Gaussian halo assembly bias
Reid, Beth A.; Verde, Licia [Institute for Sciences of the Cosmos (ICC), University of Barcelona and IEEC, Barcelona 08028 (Spain); Dolag, Klaus [Max Planck Institute for Astrophysics, P.O. Box 1317, D85741 Garching (Germany); Matarrese, Sabino [Dipartimento di Fisica ''G. Galilei'', Università degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy); Moscardini, Lauro, E-mail: beth.ann.reid@gmail.com, E-mail: liciaverde@icc.ub.edu, E-mail: kdolag@mpa-garching.mpg.de, E-mail: sabino.matarrese@pd.infn.it, E-mail: lauro.moscardini@unibo.it [Dipartimento di Astronomia, Università di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)
2010-07-01
The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f{sub NL}, offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ? 23% and ? 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively.
Bipartite and Multipartite Entanglement of Gaussian States
Gerardo Adesso; Fabrizio Illuminati
2007-03-06
In this chapter we review the characterization of entanglement in Gaussian states of continuous variable systems. For two-mode Gaussian states, we discuss how their bipartite entanglement can be accurately quantified in terms of the global and local amounts of mixedness, and efficiently estimated by direct measurements of the associated purities. For multimode Gaussian states endowed with local symmetry with respect to a given bipartition, we show how the multimode block entanglement can be completely and reversibly localized onto a single pair of modes by local, unitary operations. We then analyze the distribution of entanglement among multiple parties in multimode Gaussian states. We introduce the continuous-variable tangle to quantify entanglement sharing in Gaussian states and we prove that it satisfies the Coffman-Kundu-Wootters monogamy inequality. Nevertheless, we show that pure, symmetric three-mode Gaussian states, at variance with their discrete-variable counterparts, allow a promiscuous sharing of quantum correlations, exhibiting both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. Finally, we investigate the connection between multipartite entanglement and the optimal fidelity in a continuous-variable quantum teleportation network. We show how the fidelity can be maximized in terms of the best preparation of the shared entangled resources and, viceversa, that this optimal fidelity provides a clearcut operational interpretation of several measures of bipartite and multipartite entanglement, including the entanglement of formation, the localizable entanglement, and the continuous-variable tangle.
Non-Gaussianity and gravitational wave background in curvaton with a double well potential
Choi, Ki-Young; Seto, Osamu
2010-11-15
We study the density perturbation by a curvaton with a double well potential and give analytical expressions for the observables such as nonlinear parameters f{sub NL}, g{sub NL} and tensor-to-scalar ratio r{sub T} with emphasizing the differences from the simple quadratic potential. We show that the level of non-Gaussianity and the tensor-to-scalar ratio depends crucially on the reheating temperature as well as the curvaton self-coupling constant for a given initial amplitude of the curvaton. We find that for a large initial field the nonlinear parameters f{sub NL} can be 10-20 and the gravitational wave background also is observable in the Planck satellite.
N-body simulations with generic non-Gaussian initial conditions II: halo bias
NASA Astrophysics Data System (ADS)
Wagner, Christian; Verde, Licia
2012-03-01
We present N-body simulations for generic non-Gaussian initial conditions with the aim of exploring and modelling the scale-dependent halo bias. This effect is evident on very large scales requiring large simulation boxes. In addition, the previously available prescription to implement generic non-Gaussian initial conditions has been improved to keep under control higher-order terms which were spoiling the power spectrum on large scales. We pay particular attention to the differences between physical, inflation-motivated primordial bispectra and their factorizable templates, and to the operational definition of the non-Gaussian halo bias (which has both a scale-dependent and an approximately scale-independent contributions). We find that analytic predictions for both the non-Gaussian halo mass function and halo bias work well once a fudge factor (which was introduced before but still lacks convincing physical explanation) is calibrated on simulations. The halo bias remains therefore an extremely promising tool to probe primordial non-Gaussianity and thus to give insights into the physical mechanism that generated the primordial perturbations. The simulation outputs and tables of the analytic predictions will be made publicly available via the non-Gaussian comparison project web site http://icc.ub.edu/~liciaverde/NGSCP.html.
N-body simulations with generic non-Gaussian initial conditions II: halo bias
Wagner, Christian; Verde, Licia, E-mail: cwagner@icc.ub.edu, E-mail: liciaverde@icc.ub.edu [ICC, University of Barcelona (IEEC-UB), Martí i Franquès 1, Barcelona 08028 (Spain)
2012-03-01
We present N-body simulations for generic non-Gaussian initial conditions with the aim of exploring and modelling the scale-dependent halo bias. This effect is evident on very large scales requiring large simulation boxes. In addition, the previously available prescription to implement generic non-Gaussian initial conditions has been improved to keep under control higher-order terms which were spoiling the power spectrum on large scales. We pay particular attention to the differences between physical, inflation-motivated primordial bispectra and their factorizable templates, and to the operational definition of the non-Gaussian halo bias (which has both a scale-dependent and an approximately scale-independent contributions). We find that analytic predictions for both the non-Gaussian halo mass function and halo bias work well once a fudge factor (which was introduced before but still lacks convincing physical explanation) is calibrated on simulations. The halo bias remains therefore an extremely promising tool to probe primordial non-Gaussianity and thus to give insights into the physical mechanism that generated the primordial perturbations. The simulation outputs and tables of the analytic predictions will be made publicly available via the non-Gaussian comparison project web site http://icc.ub.edu/?liciaverde/NGSCP.html.
Primordial non-Gaussianity and Dark Energy constraints from Cluster Surveys
Sefusatti, Emiliano; Vale, Chris; /Fermilab; Kadota, Kenji; /Fermilab /Minnesota U., Theor. Phys. Inst.; Frieman, Joshua; /Fermilab /KICP, Chicago /Chicago U., Astron.
2006-09-01
Galaxy cluster surveys will be a powerful probe of dark energy. At the same time, cluster abundances is sensitive to any non-Gaussianity of the primordial density field. It is therefore possible that non-Gaussian initial conditions might be misinterpreted as a sign of dark energy or at least degrade the expected constraints on dark energy parameters. To address this issue, we perform a likelihood analysis of an ideal cluster survey similar in size and depth to the upcoming South Pole Telescope/Dark Energy Survey (SPT-DES).We analyze a model in which the strength of the non-Gaussianity is parameterized by the constant f{sub NL}; this model has been used extensively to derive Cosmic Microwave Background (CMB) anisotropy constraints on non-Gaussianity, allowing us to make contact with those works. We find that the constraining power of the cluster survey on dark energy observables is not significantly diminished by non-Gaussianity provided that cluster redshift information is included in the analysis. We also find that even an ideal cluster survey is unlikely to improve significantly current and future CMB constraints on non-Gaussianity. However, when all systematics are under control, it could constitute a valuable cross check to CMB observations.
Parameterization for molecular Gaussian surface and a comparison study of surface mesh generation.
Liu, Tiantian; Chen, Minxin; Lu, Benzhuo
2015-05-01
The molecular Gaussian surface has been frequently used in the field of molecular modeling and simulation. Typically, the Gaussian surface is defined using two controlling parameters; the decay rate and isovalue. Currently, there is a lack of studies in which a systematic approach in the determination of optimal parameterization according to the geometric features has been done. In this paper, surface area, volume enclosed by the surface and Hausdorff distance are used as three criteria for the parameterization to make the Gaussian surface approximate the solvent excluded surface (SES) well. For each of these three criteria, a search of the parameter space is carried out in order to determine the optimal parameter values. The resulted parameters are close to each other and result in similar calculated molecular properties. Approximation of the VDW surface is also done by analyzing the explicit expressions of the Gaussian surface and VDW surface, which analysis and parameters can be similarly applied to the solvent accessible surface (SAS) due to its geometric similarity to the VDW surface. Once the optimal parameters are obtained, we compare the performance of our Gaussian surface generation software TMSmesh with other commonly used software programs, focusing primarily on mesh quality and fidelity. Additionally, the Poisson-Boltzmann solvation energies based on the surface meshes generated by TMSmesh and those generated by other software programs are calculated and compared for a set of molecules with different sizes. The results of these comparisons validate both the accuracy and the applicability of the parameterized Gaussian surface. PMID:25862632
Linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1988-01-01
A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.
Exploring $\\mathcal{W}_{\\infty}$ in the quadratic basis
Tomas Prochazka
2014-11-27
We study the operator product expansions in the chiral algebra $\\mathcal{W}_{\\infty}$, first using the associativity conditions in the basis of primary generating fields and second using a different basis coming from the free field representation in which the OPE takes a simpler quadratic form. The results in the quadratic basis can be compactly written using certain bilocal combinations of the generating fields and we conjecture a closed-form formula for the complete OPE in this basis. Next we show that the commutation relations as well as correlation functions can be easily computed using properties of these bilocal fields. In the last part of this paper we verify the consistency with results derived previously by studying minimal models of $\\mathcal{W}_{\\infty}$ and comparing them to known reductions of $\\mathcal{W}_{\\infty}$ to $\\mathcal{W}_N$. The results we obtain illustrate nicely the role of triality symmetry in the representation theory of $\\mathcal{W}_{\\infty}$.
Application of constrained optimization to active control of aeroelastic response
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1981-01-01
Active control of aeroelastic response is a complex in which the designer usually tries to satisfy many criteria which are often conflicting. To further complicate the design problem, the state space equations describing this type of control problem are usually of high order, involving a large number of states to represent the flexible structure and unsteady aerodynamics. Control laws based on the standard Linear-Quadratic-Gaussian (LQG) method are of the same high order as the aeroelastic plant. To overcome this disadvantage of the LQG mode, an approach developed for designing low order optimal control laws which uses a nonlinear programming algorithm to search for the values of the control law variables that minimize a composite performance index, was extended to the constrained optimization problem. The method involves searching for the values of the control law variables that minimize a basic performance index while satisfying several inequality constraints that describe the design criteria. The method is applied to gust load alleviation of a drone aircraft.
NASA Astrophysics Data System (ADS)
Konnik, Mikhail V.; De Dona, Jose
2014-07-01
Model-based optimal control such as Linear Quadratic Gaussian (LQG) control has been attracting considerable attention for adaptive optics systems. The ability of LQG to handle the complex dynamics of deformable mirrors and its relatively simple implementation makes LQG attractive for large adaptive optics systems. However, LQG has its own share of drawbacks, such as suboptimal handling of constraints on actuators movements and possible numerical problems in case of fast sampling rate discretization of the corresponding matrices. Unlike LQG, the Receding Horizon Control (RHC) technique provides control signals for a deformable mirror that are optimal within the prescribed constraints. This is achieved by reformulating the control problem as an online optimization problem that is solved at each sampling instance. In the unconstrained case, RHC produces the same control signals as LQG. However, when the control signals reach the constraints of actuator's allowable movement in a deformable mirror, RHC finds the control signals that are optimal within those constraints, rather than just clipping the unconstrained optimum as commonly done in LQG control. The article discusses the consequences of high-gain LQG control operation in the case when the constraints on the actuator's movement are reached. It is shown that clipping / saturating the control signals is not only suboptimal, but may be hazardous for the surface of a deformable mirror. The results of numerical simulations indicate that high-gain LQG control can lead to abrupt changes and spikes in the control signal when saturation occurs. The article further discusses a possible link between high-gain LQG and the waffle mode in the closed-loop operation of astronomical adaptive optics systems. Performance evaluation of Receding Horizon Control in terms of atmospheric disturbance rejection and a comparison with Linear Quadratic Gaussian control are performed. The results of the numerical simulations suggest that the disturbance rejection performance in the unconstrained case is the same for LQG and RHC, while RHC clearly outperforms the saturated LQG control in terms of atmospheric turbulence rejection. More importantly, RHC can be used in high-gain mode, unlike LQG, providing better atmospheric disturbance rejection in the constrained case.
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1984-01-01
Closed-loop stability is investigated for multivariable linear time-invariant systems controlled by optimal full state feedback linear quadratic (LQ) regulators, with nonlinear gains present in the feedback channels. Estimates are obtained for the region of attraction when the nonlinearities escape the (0.5, infinity) sector in regions away from the origin and for the region of ultimate boundedness when the nonlinearities escape the sector near the origin. The expressions for these regions also provide methods for selecting the performance function parameters in order to obtain LQ designs with better tolerance for nonlinearities. The analytical results are illustrated by applying them to the problem of controlling the rigid-body pitch angle and elastic motion of a large, flexible space antenna.
Regions of attraction and ultimate boundedness for linear quadratic regulators with nonlinearities
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1984-01-01
The closed-loop stability of multivariable linear time-invariant systems controlled by optimal linear quadratic (LQ) regulators is investigated for the case when the feedback loops have nonlinearities N(sigma) that violate the standard stability condition, sigma N(sigma) or = 0.5 sigma(2). The violations of the condition are assumed to occur either (1) for values of sigma away from the origin (sigma = 0) or (2) for values of sigma in a neighborhood of the origin. It is proved that there exists a region of attraction for case (1) and a region of ultimate boundedness for case (2), and estimates are obtained for these regions. The results provide methods for selecting the performance function parameters to design LQ regulators with better tolerance to nonlinearities. The results are demonstrated by application to the problem of attitude and vibration control of a large, flexible space antenna in the presence of actuator nonlinearities.
Chao, R.M.; Ko, S.H.; Lin, I.H.; Pai, F.S.; Chang, C.C.
2009-12-15
The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)
Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Corless, Martin
2004-01-01
We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.
Quantum integrals of motion for variable quadratic Hamiltonians
Cordero-Soto, Ricardo, E-mail: ricardojavier81@gmail.co [Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804 (United States); Suazo, Erwin, E-mail: erwin.suazo@upr.ed [Department of Mathematical Sciences, University of Puerto Rico, Mayaquez, call box 9000, PR 00681-9000 (Puerto Rico); Suslov, Sergei K., E-mail: sks@asu.ed [School of Mathematical and Statistical Sciences and Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804 (United States)
2010-09-15
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.
From synchronization to multistability in two coupled quadratic maps
Rui Carvalho; Bastien Fernandez; R. Vilela Mendes
2000-05-26
The phenomenology of a system of two coupled quadratic maps is studied both analytically and numerically. Conditions for synchronization are given and the bifurcations of periodic orbits from this regime are identified. In addition, we show that an arbitrarily large number of distinct stable periodic orbits may be obtained when the maps parameter is at the Feigenbaum period-doubling accumulation point. An estimate is given for the coupling strength needed to obtain any given number of stable orbits.
FRW in quadratic form of $f(T)$ gravitational theories
G. G. L. Nashed
2015-06-26
We derive asymptote solution of a homogeneous and isotropic universe governed by the quadratic form of the field equation of $f(T)$ gravity. We explain how the higher order of the torsion can provide an origin for late accelerated phase of the universe in the FRW. The solution makes the scalar torsion $T$ to be a function of the cosmic time $t$. We show that for the equation of state $p=\\omega \\rho$ with $\\omega\
Model Reduction for Control System Design
NASA Technical Reports Server (NTRS)
Enns, D. F.
1985-01-01
An approach and a technique for effectively obtaining reduced order mathematical models of a given large order model for the purposes of synthesis, analysis and implementation of control systems is developed. This approach involves the use of an error criterion which is the H-infinity norm of a frequency weighted error between the full and reduced order models. The weightings are chosen to take into account the purpose for which the reduced order model is intended. A previously unknown error bound in the H-infinity norm for reduced order models obtained from internally balanced realizations was obtained. This motivated further development of the balancing technique to include the frequency dependent weightings. This resulted in the frequency weighted balanced realization and a new model reduction technique. Two approaches to designing reduced order controllers were developed. The first involves reducing the order of a high order controller with an appropriate weighting. The second involves linear quadratic Gaussian synthesis based on a reduced order model obtained with an appropriate weighting.
Slewing and vibration control of the SCOLE
NASA Technical Reports Server (NTRS)
Lin, Jiguan Gene
1988-01-01
A discussion of Slewing and Vibration Control makes the following conclusions: (1) A 2-stage approach is feasible and promising for rapid slewing and precision pointing of SCOLE; (2) Not all bang-bang type of time-minimized slew maneuvers will excite large structural vibrations in SCOLE; and (3) Modal dashpots can be a concentrated high-power vibration control, as well as the usual diffuse (broadband, low-power (low-authority) control. The following recommendations are made: (1) Limit the magnitude of applied forces on reflector to either the 25-lb limit of vernier thrusters on the real Space Shuttle or the 150-lb level equivalent to the cold-gas jets of laboratory SCOLE; (2) to complete stage 2, add an integrated design of LQF/LTR (Linear-Quadratic-Gaussian/Loop-Transfer Recovery) and Modal Dashpots; and, (3) Validate the 2-stage approach using the SCOLE laboratory facility with a comprehensive sequence of integrated designs and experiments coupling nonlinear rigid-body motions with flexible-body dynamics.
Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations
Holger R. Dullin; James D. Meiss
2008-07-04
We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of R^3. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and also is the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical ``vortex-bubble''. We show that this occurs near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pearls that creates multiple copies of the original spherical structure for an iterate of the map.
Measurement of quadratic electrogyration effect in castor oil
NASA Astrophysics Data System (ADS)
Izdebski, Marek; Ledzion, Rafa?; Górski, Piotr
2015-07-01
This work presents a detailed analysis of electrogyration measurement in liquids with the usage of an optical polarimetric technique. Theoretical analysis of the optical response to an applied electric field is illustrated by experimental data for castor oil which exhibits natural optical activity, quadratic electro-optic effect and quadratic electrogyration effect. Moreover, the experimental data show that interaction of the oil with a pair of flat electrodes induces a significant dichroism and natural linear birefringence. The combination of these effects occurring at the same time complicates the procedure of measurements. It has been found that a single measurement is insufficient to separate the contribution of the electrogyration effect, but it is possible on the basis of several measurements performed with various orientations of the polarizer and the analyser. The obtained average values of the quadratic electrogyration coefficient ?13 in castor oil at room temperature are from - 0.92 ×10-22 to - 1.44 ×10-22m2V-2 depending on the origin of the oil. Although this study is focused on measurements in castor oil, the presented analysis is much more general.
Quadratic mutual information for dimensionality reduction and classification
NASA Astrophysics Data System (ADS)
Gray, David M.; Principe, José C.
2010-04-01
A research area based on the application of information theory to machine learning has attracted considerable interest in the last few years. This research area has been coined information-theoretic learning within the community. In this paper we apply elements of information-theoretic learning to the problem of automatic target recognition (ATR). A number of researchers have previously shown the benefits of designing classifiers based on maximizing the mutual information between the class data and the class labels. Following prior research in information-theoretic learning, in the current results we show that quadratic mutual information, derived using a special case of the more general Renyi's entropy, can be used for classifier design. In this implementation, a simple subspace projection classifier is formulated to find the optimal projection weights such that the quadratic mutual information between the class data and the class labels is maximized. This subspace projection accomplishes a dimensionality reduction of the raw data set wherein information about the class membership is retained while irrelevant information is discarded. A subspace projection based on this criterion preserves as much class discriminability as possible within the subspace. For this paper, laser radar images are used to demonstrate the results. Classification performance against this data set is compared for a gradient descent MLP classifier and a quadratic mutual information MLP classifier.
Revisiting the naturalness problem: Who is afraid of quadratic divergences?
NASA Astrophysics Data System (ADS)
Aoki, Hajime; Iso, Satoshi
2012-07-01
It is widely believed that quadratic divergences severely restrict natural constructions of particle physics models beyond the standard model (SM). Supersymmetry provides a beautiful solution, but the recent LHC experiments have excluded large parameter regions of supersymmetric extensions of the SM. It will now be important to reconsider whether we have been misinterpreting the quadratic divergences in field theories. In this paper, we revisit the problem from the viewpoint of the Wilsonian renormalization group and argue that quadratic divergences—which can always be absorbed into a position of the critical surface—should be simply subtracted in model constructions. Such a picture gives another justification to the argument [W. A. Bardeen, Report No. FERMILAB-CONF-95-391-T] that the scale invariance of the SM, except for the soft-breaking terms, is an alternative solution to the naturalness problem. It also largely broadens possibilities of model constructions beyond the SM since we just need to take care of logarithmic divergences, which cause mixings of various physical scales and runnings of couplings.
Principal components of CMB non-Gaussianity
NASA Astrophysics Data System (ADS)
Regan, Donough; Munshi, Dipak
2015-04-01
The skew-spectrum statistic introduced by Munshi & Heavens has recently been used in studies of non-Gaussianity from diverse cosmological data sets including the detection of primary and secondary non-Gaussianity of cosmic microwave background (CMB) radiation. Extending previous work, focused on independent estimation, here we deal with the question of joint estimation of multiple skew-spectra from the same or correlated data sets. We consider the optimum skew-spectra for various models of primordial non-Gaussianity as well as secondary bispectra that originate from the cross-correlation of secondaries and lensing of CMB: coupling of lensing with the Integrated Sachs-Wolfe effect, coupling of lensing with thermal Sunyaev-Zeldovich, as well as from unresolved point sources. For joint estimation of various types of non-Gaussianity, we use the principal component analysis (PCA) to construct the linear combinations of amplitudes of various models of non-Gaussianity, e.g. f^loc_NL,f^eq_NL,f^ortho_NL that can be estimated from CMB maps. We describe how the bias induced in the estimation of primordial non-Gaussianity due to secondary non-Gaussianity may be evaluated for arbitrary primordial models using a PCA analysis. The PCA approach allows one to infer approximate (but generally accurate) constraints using CMB data sets on any reasonably smooth model by use of a look-up table and performing a simple computation. This principle is validated by computing constraints on the Dirac-Born-Infeld bispectrum using a PCA analysis of the standard templates.
NASA Astrophysics Data System (ADS)
Kuyuk, H. S.; Yildirim, E.; Dogan, E.; Horasan, G.
2012-08-01
Two unsupervised pattern recognition algorithms, k-means, and Gaussian mixture model (GMM) analyses have been applied to classify seismic events in the vicinity of Istanbul. Earthquakes, which are occurring at different seismicity rates and extensions of the Thrace-Eskisehir Fault Zone and the North Anatolian Fault (NAF), Turkey, are being contaminated by quarries operated around Istanbul. We have used two time variant parameters, complexity, the ratio of integrated powers of the velocity seismogram, and S/P amplitude ratio as classifiers by using waveforms of 179 events (1.8 < M < 3.0). We have compared two algorithms with classical multivariate linear/quadratic discriminant analyses. The total accuracies of the models for GMM, k-means, linear discriminant function (LDF), and quadratic discriminant function (QDF) are 96.1%, 95.0%, 96.1%, 96.6%, respectively. The performances of models are discussed for earthquakes and quarry blasts separately. All methods clustered the seismic events acceptably where QDF slightly gave better improvements compared to others. We have found that unsupervised clustering algorithms, for which no a-prior target information is available, display a similar discriminatory power as supervised methods of discriminant analysis.
NASA Astrophysics Data System (ADS)
Scoccimarro, Román; Hui, Lam; Manera, Marc; Chan, Kwan Chuen
2012-04-01
We study the scale dependence of halo bias in generic (nonlocal) primordial non-Gaussian (PNG) initial conditions of the type motivated by inflation, parametrized by an arbitrary quadratic kernel. We first show how to generate nonlocal PNG initial conditions with minimal overhead compared to local PNG models for a general class of primordial bispectra that can be written as linear combinations of separable templates. We run cosmological simulations for the local, and nonlocal equilateral and orthogonal models and present results on the scale dependence of halo bias. We also derive a general formula for the Fourier-space bias using the peak-background split in the context of the excursion-set approach to halos and discuss the difference and similarities with the known corresponding result from local bias models. Our peak-background split bias formula generalizes previous results in the literature to include non-Markovian effects and nonuniversality of the mass function and are in better agreement with measurements in numerical simulations than previous results for a variety of halo masses, redshifts and halo definitions. We also derive for the first time quadratic bias results for arbitrary nonlocal PNG, and show that nonlinear bias loops give small corrections at large scales. The resulting well-behaved perturbation theory paves the way to constrain nonlocal PNG from measurements of the power spectrum and bispectrum in galaxy redshift surveys.
Scalable Hyper-parameter Estimation for Gaussian Process Based Time Series Analysis
Chandola, Varun [ORNL; Vatsavai, Raju [ORNL
2010-01-01
Gaussian process (GP) is increasingly becoming popular as a kernel machine learning tool for non-parametric data analysis. Recently, GP has been applied to model non-linear dependencies in time series data. GP based analysis can be used to solve problems of time series prediction, forecasting, missing data imputation, change point detection, anomaly detection, etc. But the use of GP to handle massive scientific time series data sets has been limited, owing to its expensive computational complexity. The primary bottleneck is the handling of the covariance matrix whose size is quadratic in the length of the time series. In this paper we propose a scalable method that exploit the special structure of the covariance matrix for hyper-parameter estimation in GP based learning. The proposed method allows estimation of hyper parameters associated with GP in quadratic time, which is an order of magnitude improvement over standard methods with cubic complexity. Moreover, the proposed method does not require explicit computation of the covariance matrix and hence has memory requirement linear to the length of the time series as opposed to the quadratic memory requirement of standard methods. To further improve the computational complexity of the proposed method, we provide a parallel version to concurrently estimate the log likelihood for a set of time series which is the key step in the hyper-parameter estimation. Performance results on a multi-core system show that our proposed method provides significant speedups as high as 1000, even when running in serial mode, while maintaining a small memory footprint. The parallel version exploits the natural parallelization potential of the serial algorithm and is shown to perform significantly better than the serial faster algorithm, with speedups as high as 10.
Mechanisms of particle clustering in Gaussian and non-Gaussian synthetic turbulence
NASA Astrophysics Data System (ADS)
Nilsen, Christopher; Andersson, Helge I.
2014-10-01
We use synthetic turbulence simulations to study how inertial particles cluster in a turbulent flow, for a wide range of Stokes numbers. Two different types of synthetic turbulence are used: one Gaussian, where the time evolution of the velocity field is a simple phase shift, and one non-Gaussian, where convection is used to evolve the velocity field in time. In both flow types we observe significant particle clustering over a wide range of scales and Stokes numbers. The clustering found at low Stokes numbers can be attributed to the vortex centrifuge effect, where heavy particles are expelled from regions dominated by vorticity. This mechanism is much more effective in the non-Gaussian turbulence, because local flow structures are convected with the particles. The preferential sampling of regions with low vorticity is almost negligible in the Gaussian turbulence. At higher Stokes numbers, caustics are formed in a very similar manner in both Gaussian and non-Gaussian synthetic turbulence. In non-Gaussian turbulence, heavy particles cluster in regions of low fluid kinetic energy, while the opposite is true in Gaussian turbulence. Our results show that synthetic simulations cannot correctly predict how the particle clustering correlates with local fluid flow properties, without including convection.
When Can Non-Gaussian Density Fields Produce a Gaussian Sachs-Wolfe Effect?
Robert J. Scherrer; Robert K. Schaefer
1994-08-08
The Sachs-Wolfe temperature fluctuations produced by primordial density perturbations are proportional to the potential field \\phi, which is a weighted integral over the density field \\delta. Because of the central limit theorem, \\phi can be approximately Gaussian even when \\delta is non-Gaussian. Using the Wold representation for non-Gaussian density fields, \\delta(\\rvec) = \\int f(|\\rvec - \\rvec^\\prime|) \\Delta(\\rvec^\\prime) d^3 \\rvec^\\prime, we find conditions on \\Delta and f for which \\phi must have a Gaussian one-point distribution, while \\delta can be non-Gaussian. Sufficient (but not necessary) conditions are that the density field have a power spectrum (which determines f) of P(k) \\propto k^n, with -2 < n \\le +1, and that \\Delta(\\rvec) be non-Gaussian with no long-range correlations. Thus, there is an infinite set of non-Gaussian density fields which produce a nearly Gaussian one-point distribution for the Sachs-Wolfe effect.
A homotopy algorithm for digital optimal projection control GASD-HADOC
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
Graphical calculus for Gaussian pure states
Nicolas C. Menicucci; Steven T. Flammia; Peter van Loock
2011-02-04
We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semi-local Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term "CV graph state" currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the "closest" CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this new graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.
Hydraulic Conductivity Fields: Gaussian or Not?
Meerschaert, Mark M; Dogan, Mine; Van Dam, Remke L; Hyndman, David W; Benson, David A
2013-08-01
Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales. PMID:24415806
Hydraulic Conductivity Fields: Gaussian or Not?
Meerschaert, Mark M.; Dogan, Mine; Van Dam, Remke L.; Hyndman, David W.; Benson, David A.
2013-01-01
Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales. PMID:24415806