Science.gov

Sample records for quadrupole ion storage

  1. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  2. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  3. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  4. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    SciTech Connect

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  5. Ion collision crosssection measurements in quadrupole ion traps using a time-frequency analysis method.

    PubMed

    He, Muyi; Guo, Dan; Chen, Yu; Xiong, Xingchuang; Fang, Xiang; Xu, Wei

    2014-12-01

    In this study, a method for measuring ion collision crosssections (CCSs) was proposed through time-frequency analysis of ion trajectories in quadrupole ion traps. A linear ion trap with added high-order electric fields was designed and simulated. With the presence of high-order electric fields and ion-neutral collisions, ion secular motion frequency within the quadrupole ion trap will be a function of ion motion amplitude, thus a function of time and ion CCS. A direct relationship was then established between ion CCS and ion motion frequency with respect to time, which could be obtained through time-frequency analysis of ion trajectories (or ion motion induced image currents). To confirm the proposed theory, realistic ion trajectory simulations were performed, where the CCSs of bradykinin, angiotensin I and II, and ubiquitin ions were calculated from simulated ion trajectories. As an example, differentiation of isomeric ubiquitin ions was also demonstrated in the simulations. PMID:25319271

  6. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  7. High gradient quadrupoles for low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Le Bec, G.; Chavanne, J.; Benabderrahmane, C.; Farvacque, L.; Goirand, L.; Liuzzo, S.; Raimondi, P.; Villar, F.

    2016-05-01

    High gradient quadrupoles are key components for the coming generation of storage ring based light sources. The typical specifications of these magnets are: almost 100 T /m gradient, half a meter long, and a vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.

  8. Magnetic quadrupole doublet focusing system for high energy ions.

    PubMed

    Glass, Gary A; Dymnikov, Alexander D; Rout, Bibhudutta; Dias, Johnny F; Houston, Louis M; LeBlanc, Jared

    2008-03-01

    A high energy focused ion beam microprobe using a doublet arrangement of short magnetic quadrupole lenses was used to focus 1-3 MeV protons to spot sizes of 1x1 microm2 and 1-4.5 MeV carbon and silicon ion beams to spot sizes of 1.5x1.5 microm2. The results presented clearly demonstrate that this simple doublet configuration can provide high energy microbeams for microanalysis and microfabrication applications. PMID:18377047

  9. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  10. Isobar Suppression by Photodetachment in a RF Quadrupole Ion Cooler

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Havener, A. C.; Havener, C. C.; Liang, F.; Beene, J. R.

    2004-11-01

    Selectively removing unwanted isobaric negative ions by electron photodetachment with a pulsed laser beam has been reported. However, the fraction of the negative ions removed was very small due to the short laser pulses used. Continuous wave (CW) lasers are desired for this application, but the photon flux available from CW lasers is too low. We have investigated a novel scheme for efficient suppression of isobar contaminants by photodetachment in a gas-filled RF-only quadrupole (RFQ) ion cooler. Simulation studies have shown that the RFQ ion cooler can significantly increase the laser-ion interaction time, thus, high efficiency of photodetachment is possible with commercially available CW lasers. A proof-of-principle experiment of Co^- and Ni^- ions is underway. A CW Nd:YAG laser beam at 1064 nm wavelength is used to selectively remove Co^- ions inside a RFQ ion cooler. A detailed description of the experimental setup and expected photodetachment efficiencies for Co^- and Ni^- ions will be given in this report. 1. D. Berkovits, et al., Nucl. Instrum. Meth. B52 (1990) 378-333.

  11. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  12. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  13. Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry

    PubMed Central

    Garrett, Timothy J.; Merves, Matthew; Yost, Richard A.

    2011-01-01

    Some ions exhibit “ion fragility” in quadrupole ion trap mass spectrometry (QIT-MS) during mass analysis with resonance ejection. In many cases, different ions generated from the same compound exhibit different degrees of ion fragility, with some ions (e.g., the [M+H]+ ion) stable and other ions (e.g., the [M+Na]+ ion) fragile. The ion fragility for quadrupole ion trap (QIT) mass spectrometry (MS) for protonated and sodiated ions of three phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, PC (16:0/16:0), 1,2-dipalmitoyl-sn-glycero-3-phophoethanolamine, PE (16:0/16:0), and N-palmitoyl-D-erythro-sphingosylphosphorylcholine, SM (d18:1/16:0), was determined using three previously developed experiments: 1) the peak width using a slow scan speed, 2) the width of the isolation window for efficient isolation, and 3) the energy required for collision-induced dissociation. In addition, ion fragility studies were designed and performed to explore a correlation between ion fragility in QIT mass analysis and ion fragility during transport between the ion source and the ion trap. These experiments were: 1) evaluating the amount of thermal-induced dissociation as a function of heated capillary temperature, and 2) determining the extent of fragmentation occurring with increasing tube lens voltage. All phospholipid species studied exhibited greater ion fragility as protonated species in ion trap mass analysis than as sodiated species. In addition, the protonated species of both SM (d18:0/16:0) and PC (16:0/16:0) exhibited greater tendencies to fragment at higher heated capillary temperatures and high tube lens voltages, whereas the PE (16:0/16:0) ions did not appear to exhibit fragility during ion transport. PMID:22247650

  14. Tandem-in-space and tandem-in-time mass spectrometry: Triple quadrupoles and quadrupole ion traps

    SciTech Connect

    Johnson, J.V.; Yost, R.A. ); Kelley, P.E.; Bradford, D.C. )

    1990-10-15

    Tandem-in-time and tandem-in-space MS/MS on quadrupole ion trap (ITMS) and triple quadrupole (TQMS) tandem mass spectrometers, respectively, were compared by evaluating the MS/MS daughter spectra, efficiencies of collision-induced dissociation (CID), limits of detection, and dynamic ranges obtained for the methane positive chemical ionization (PCI)-CID of two alkylphosphonates. Although the yield of daughter ions is dependent upon a number of instrumental parameters on both instruments, with judicious selection of parameters the ITMS and TQMS both yielded daughter ions of similar relative abundances. The ITMS had greater efficiencies of fragmentation, collection, and mass selection and transmission of the daughter ions to the detector. With PCI-MS/MS analysis of diisopropyl methylphosphonate standards introduced via capillary gas chromatography, full daughter spectra could be obtained for as little as 15 pg and 1.5 ng injected for the ITMS and the TQMS, respectively.

  15. Development of a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hebert, Joseph Ellis

    Because of its potential to be made portable the quadrupole ion trap (QPIT) is a prime candidate for specialized applications such as atmospheric studies, other field measurements, or measurements anywhere a laboratory instrument would be prohibitively inconvenient. To utilize the QPIT in such ways it is necessary to design and construct custom built instruments. A QPIT mass spectrometer was constructed as the foundation for such future development. Two ionization schemes were employed. Direct electron bombardment was used for in situ ion production, and UV photoionization was used to produce ions external to the trap. Calibration measurements determined that the system performed as theory dictated. It was also demonstrated that the system was capable of sampling the atmosphere and detecting the presence of an atmospheric contaminant. Finally, DC bias foils were invented as a novel approach to mass isolation in the trap. The use of DC bias foils was demonstrated to be an exceptionally easy and inexpensive method of controlling the contents of the QPIT.

  16. Comparative performance of tripole and quadrupole ion guides at elevated pressure.

    PubMed

    Misharin, Alexander S; Moskovets, Eugene; Gamage, Chaminda M; Doroshenko, Vladimir M; Vilkov, Andrey N

    2008-04-01

    This study presents the first practical demonstration of an operational tripole ion guide. The transmission was measured for both the tripole and quadrupole ion guides at 1 Torr pressure. It was found that the quadrupole provides 2.5-3 times better ion transmission efficiency. Two different electric schemes for driving the tripole were tested. Similar transmission characteristics were obtained in both cases. A brief analysis of the tripole performance and ways to improve it is presented. PMID:18338373

  17. Simulation of Ions Confined by Quadrupole Electric Fields

    NASA Astrophysics Data System (ADS)

    Cummings, Michael David

    Computer simulations are routinely used to develop physical insight into ionic systems confined by static and time-varying quadrupole electric fields. However, after nearly 30 years of numerical exploration, three questions remain: which numerical techniques produce accurate simulations for the least computational expense? How can thermal equilibrium initial conditions be generated? How should temperature be calculated? Trapped ion simulations generally employ molecular dynamics techniques, where ion trajectories are numerically calculated at discrete points in time. While many numerical methods have been applied to these systems, it is unclear which technique is fastest or what time-step is required. In this work, the computational speed of and time-step for 11 commonly used techniques are assessed through analysis of four numerical error components. The most rapid method and required step-size depend strongly on the system parameters, with any one of the Beeman, Gear6, 5th-order Adams-Bashforth-Moulton, or 4th-order Runge-Kutta algorithms proving most appropriate. The 11 algorithms are then applied to a realistic multi-ion system and verify that the four tests accurately predict the required step size. When equilibrium properties are desired, simulations should commence from initial conditions that conform closely to thermal equilibrium; however little has been published on initial condition generation and assessment for the multi-ion system. A method is presented for generating thermal equilibrium via laser cooling and recoil heating, a ramp-down stage, where the heating and cooling are gradually reduced, and an equilibration phase where the ensemble is evolved under only the trapping forces. Furthermore, it is demonstrated that thermal equilibrium can be assessed using well-known tests of distribution normality. When time-varying fields are present, temperature calculation becomes difficult, as the ion motion contains both thermal and nonthermal components. The

  18. Progress in the development of superconducting quadrupoles for heavy ion fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  19. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  20. Fluorescence imaging for visualization of the ion cloud in a quadrupole ion trap mass spectrometer.

    PubMed

    Talbot, Francis O; Sciuto, Stephen V; Jockusch, Rebecca A

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial (r) and axial (z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6% of r0 and ~3% of z0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/z (higher qz) are located in the center of the trapping region, effectively excluding higher m/z (lower qz) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution. PMID:24092629

  1. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Talbot, Francis O.; Sciuto, Stephen V.; Jockusch, Rebecca A.

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial ( r) and axial ( z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/ z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/ z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/ z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

  2. A superconducting quadrupole magnet array for a heavy ion fusion driver

    SciTech Connect

    Caspi, S.; Bangerter, r.; Chow, K.; Faltens, A.; Gourley, S.; Hinkins, R.; Gupta, R.; Lee, E.; McInturff, A.; Scanlan, R.; Taylor, C.; Wolgast, D.

    2000-06-27

    A multi-channel quadrupole array has been proposed to increase beam intensity and reduce space charge effects in a Heavy Ion Fusion Driver. A single array unit composed of several quadrupole magnets, each with its own beam line, will be placed within a ferromagnetic accelerating core whose cost is directly affected by the array size. A large number of focusing arrays will be needed along the accelerating path. The use of a superconducting quadrupole magnet array will increase the field and reduce overall cost. We report here on the design of a compact 3 x 3 superconducting quadrupole magnet array. The overall array diameter and length including the cryostat is 900 x 700 mm. Each of the 9 quadrupole magnets has a 78 mm warm bore and an operating gradient of 50 T/m over an effective magnetic length of 320 mm.

  3. Quadrupole transport experiment with space charge dominated cesium ion beam

    SciTech Connect

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel.

  4. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    SciTech Connect

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-04-15

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

  5. Comparison of liquid chromatography using triple quadrupole and quadrupole ion trap mass analyzers to determine pesticide residues in oranges.

    PubMed

    Soler, Carla; Mañes, Jordi; Picó, Yolanda

    2005-03-01

    Liquid chromatography-triple quadrupole/mass spectrometry (LC-TQ/MS) and liquid chromatography-quadrupole ion trap/mass spectrometry (LC-QIT/MS) for determining bupirimate, hexaflumuron, tebufenpyrad, buprofezin, pyriproxyfen, and fluvalinate in fruits have been compared. The differences in the mass spectra obtained by triple and ion trap quadrupoles are discussed, showing how both of them provide interesting features. The evaluation of the two instruments was carried out by ethyl acetate extraction of oranges spiked with the studied pesticides at LOQ and 10 times the LOQ. Results obtained by LC-TQ/MS correlated well with those obtained by LC-QIT/MS. Recoveries were 70-94% by LC-TQ/MS and 72-92% by LC-QIT/MS with the R.S.D. from five replicate analysis 4-14% and 8-18%, respectively. Matrix effects were tested for both techniques by standard addition to blank extracts. Although the matrix effects are not originated in mass analyzer but in the LC/MS interface, they were, generally, more marked by LC-QIT-MS than by LC-TQ/MS. The limits of quantification (LOQs) were 0.005-0.2 mg kg(-1) by both equipments--appropriate values for determining these pesticides in orange from the regulatory point of view. The results indicate that the TQ provides higher precision, better linearity, it is more robust, and when the purpose of the analysis is quantitative determination, preferable over the QIT. However, the application of both mass spectrometers to analyze orange samples conventionally treated showed that any can be used for qualitative and quantitative purposes. PMID:15844516

  6. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  7. Linear radio frequency quadrupole for the cooling and bunching of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Darius, G.; Ban, G.; Brégeault, J.; Delahaye, P.; Desrues, Ph.; Durand, D.; Fléchard, X.; Herbane, M.; Labalme, M.; LeBrun, Ch.; Liénard, E.; Mauger, F.; Merrer, Y.; Méry, A.; Naviliat-Cuncic, O.; Szerypo, J.; Vallerand, Ph.; Vandamme, Ch.

    2004-11-01

    A linear radio frequency quadrupole has been built for the transport, cooling, and bunching of radioactive ions extracted from an ECR source. The device uses the buffer gas cooling technique and was designed such as to extend the technique for the cooling of very light ions using H2 as buffer gas. We describe here the technical specifications of the device and present results of the first tests concerning the cooling and bunching of stable ions.

  8. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers[S

    PubMed Central

    Shaner, Rebecca L.; Allegood, Jeremy C.; Park, Hyejung; Wang, Elaine; Kelly, Samuel; Haynes, Christopher A.; Sullards, M. Cameron; Merrill, Alfred H.

    2009-01-01

    Sphingolipids are a highly diverse category of bioactive compounds. This article describes methods that have been validated for the extraction, liquid chromatographic (LC) separation, identification and quantitation of sphingolipids by electrospray ionization, tandem mass spectrometry (ESI-MS/MS) using triple quadrupole (QQQ, API 3000) and quadrupole-linear-ion trap (API 4000 QTrap, operating in QQQ mode) mass spectrometers. Advantages of the QTrap included: greater sensitivity, similar ionization efficiencies for sphingolipids with ceramide versus dihydroceramide backbones, and the ability to identify the ceramide backbone of sphingomyelins using a pseudo-MS3 protocol. Compounds that can be readily quantified using an internal standard cocktail developed by the LIPID MAPS Consortium are: sphingoid bases and sphingoid base 1-phosphates, more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides, and these complex sphingolipids with dihydroceramide backbones. With minor modifications, glucosylceramides and galactosylceramides can be distinguished, and more complex species such as sulfatides can also be quantified, when the internal standards are available. JLR LC ESI-MS/MS can be utilized to quantify a large number of structural and signaling sphingolipids using commercially available internal standards. The application of these methods is illustrated with RAW264.7 cells, a mouse macrophage cell line. These methods should be useful for a wide range of focused (sphingo)lipidomic investigations. PMID:19036716

  9. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    SciTech Connect

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da; Polfer, Nick C.

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.

  10. Fundamental studies of ion injection and trapping of electrosprayed ions on a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Quarmby, Scott Thomas

    The quadrupole ion trap is a highly versatile and sensitive analytical mass spectrometer. Because of the advantages offered by the ion trap, there has been intense interest in coupling it to ionization techniques such as electrospray which form ions externally to the ion trap. In this work, experiments and computer simulations were employed to study the injection of electrosprayed ions into the ion trap of a Finnigan MAT LCQ LC/MS n mass spectrometer. The kinetic energy distribution of the ion beam was characterized and found to be relatively wide, a result of the high pressures from the atmospheric pressure source. One of the most important experimental parameters which affects ion injection efficiency is the RF voltage applied to the ring electrode. A theoretical model was fit to experimental data allowing the optimum RF voltage for trapping a given m/z ion to be predicted. Computer simulations of ion motion were performed to study the effect of various instrumental parameters on trapping efficiency. A commercially available ion optics program, SIMION v6.0, was chosen because it allowed the actual ion trap electrode geometry including endcap holes to be simulated. In contrast to previous computer simulations, SIMION provided the ability to start ions outside the ion trap and to simulate more accurately the injection of externally formed ions. The endcap holes were found to allow the RF field to penetrate out of the ion trap and affect ions as they approached the ion trap. From these simulations, a model for the process by which injected ions are trapped was developed. Using these computer simulations, techniques of improving trapping efficiency were investigated. Most previous techniques perturb ions which are already in the ion trap and therefore cannot be used to accumulate ions; the ability to accumulate ions is a necessity with ionization sources such as electrospray which form ions continuously. One such novel technique for improving trapping efficiency

  11. Ion collision cross section analyses in quadrupole ion traps using the filter diagonalization method: a theoretical study.

    PubMed

    Jiang, Ting; He, Miyi; Guo, Dan; Zhai, Yanbing; Xu, Wei

    2016-04-28

    Previously, we have demonstrated the feasibility of measuring ion collision cross sections (CCSs) within a quadrupole ion trap by performing time-frequency analyses of simulated ion trajectories. In this study, an improved time-frequency analysis method, the filter diagonalization method (FDM), was applied for data analyses. Using the FDM, high resolution could be achieved in both time- and frequency-domains when calculating ion time-frequency curves. Owing to this high-resolution nature, ion-neutral collision induced ion motion frequency shifts were observed, which further cause the intermodulation of ion trajectories and thus accelerate image current attenuation. Therefore, ion trap operation parameters, such as the ion number, high-order field percentage and buffer gas pressure, were optimized for ion CCS measurements. Under optimized conditions, simulation results show that a resolving power from 30 to more than 200 could be achieved for ion CCS measurements. PMID:27066889

  12. Electric Quadrupole Shift Cancellation in Single-Ion Optical Frequency Standards

    SciTech Connect

    Dube, P.; Madej, A.A.; Bernard, J.E.; Marmet, L.; Boulanger, J.-S.; Cundy, S.

    2005-07-15

    The electric quadrupole shift is presently the most significant source of uncertainty on the systematic shifts for several single-ion optical frequency standards. We present a simple method for canceling this shift based on measurements of the Zeeman spectrum of the clock transition. This method is easy to implement and yields very high cancellation levels. A fractional uncertainty of 5x10{sup -18} for the canceled quadrupole shift is estimated for a measurement of the absolute frequency of the 5s {sup 2}S{sub 1/2}-4d {sup 2}D{sub 5/2} clock transition of {sup 88}Sr{sup +}.

  13. Classical trajectories and RRKM modeling of collisional excitation and dissociation of benzylammonium and tert-butyl benzylammonium ions in a quadrupole-hexapole-quadrupole tandem mass spectrometer.

    PubMed

    Knyazev, Vadim D; Stein, Stephen E

    2010-03-01

    Collision-induced dissociation of the benzylammonium and the 4-tert-butyl benzylammonium ions was studied experimentally in an electrospray ionization quadrupole-hexapole-quadrupole tandem mass spectrometer. Ion fragmentation efficiencies were determined as functions of the kinetic energy of ions and the collider gas (argon) pressure. A theoretical Monte Carlo model of ion collisional excitation, scattering, and decomposition was developed. The model includes simulation of the trajectories of the parent and the product ions flight through the hexapole collision cell, quasiclassical trajectory modeling of collisional activation and scattering of ions, and Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the parent ion decomposition. The results of modeling demonstrate a general agreement between calculations and experiment. Calculated values of ion fragmentation efficiency are sensitive to initial vibrational excitation of ions, scattering of product ions from the collision cell, and distribution of initial ion velocities orthogonal to the axis of the collision cell. Three critical parameters of the model were adjusted to reproduce the experimental data on the dissociation of the benzylammonium ion: reaction enthalpy and initial internal and translational temperatures of the ions. Subsequent application of the model to decomposition of the t-butyl benzylammonium ion required adjustment of the internal ion temperature only. Energy distribution functions obtained in modeling depend on the average numbers of collisions between the ion and the atoms of the collider gas and, in general, have non-Boltzmann shapes. PMID:20060316

  14. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules.

    PubMed

    Hopfgartner, Gérard; Varesio, Emmanuel; Tschäppät, Viviane; Grivet, Chantal; Bourgogne, Emmanuel; Leuthold, Luc Alexis

    2004-08-01

    Recently, linear ion traps (LITs) have been combined with quadrupole (Q), time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). LITs can be used either as ion accumulation devices or as commercially available, stand-alone mass spectrometers with MSn capabilities. The combination of triple quadrupole MS with LIT technology in the form of an instrument of configuration QqLIT, using axial ejection, is particularly interesting, because this instrument retains the classical triple quadrupole scan functions such as selected reaction monitoring (SRM), product ion (PI), neutral loss (NL) and precursor ion (PC) while also providing access to sensitive ion trap experiments. For small molecules, quantitative and qualitative analysis can be performed using the same instrument. In addition, for peptide analysis, the enhanced multiply charged (EMC) scan allows an increase in selectivity, while the time-delayed fragmentation (TDF) scan provides additional structural information. Various methods of operating the hybrid instrument are described for the case of the commercial Q TRAP (AB/MDS Sciex) and applications to drug metabolism analysis, quantitative confirmatory analysis, peptides analysis and automated nanoelectrospray (ESI-chip-MS) analysis are discussed. PMID:15329837

  15. Broad spectrum drug screening using liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Stone, Judy

    2010-01-01

    Centrifuged urine, internal standard (promazine), and ammonium formate buffer are mixed in an autosampler vial to achieve a 10-fold dilution of the specimen. Without additional pretreatment, 10 microL of the sample is injected onto a C18 reverse phase column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray atmospheric pressure ionization. Pseudomolecular drug ions are analyzed by a hybrid triple quadrupole linear ion trap mass spectrometer operated with a 264-drug selected ion monitoring (SRM) acquisition method that includes an information-dependant acquisition (IDA) algorithm. PMID:20077072

  16. Improving Negative Ion Beam Quality and Purity with a RF Quadrupole Cooler

    SciTech Connect

    Liu, Y.

    2011-09-26

    Recent progress in the development of a gas-filled RF quadrupole ion cooler for cooling negative ions is reported. Experiments demonstrate that negative ion beams can be cooled to 2 eV FWHM energy spread with more than 50% transmission through the cooler. The RFQ cooler can potentially improve the purity of radioactive ion beams by magnetic mass separation. New developments on purifying negative ion beams by photodetachment in the RFQ cooler are presented. With a laser of proper photon energy, nearly 100% suppression of the unwanted negative ions in the RFQ cooler has been observed, while the desired ions remain mostly intact. A recent experimental study demonstrates that pure ground state negative ion beams can be obtained by state-selective photodetachment in the RFQ cooler.

  17. Improving Negative Ion Beam Quality And Purity With A RF Quadrupole Cooler

    SciTech Connect

    Liu, Yuan

    2011-01-01

    Recent progress in the development of a gas-filled RF quadrupole ion cooler for cooling negative ions is reported. Experiments demonstrate that negative ion beams can be cooled to 2 eV FWHM energy spread with more than 50% transmission through the cooler. The RFQ cooler can potentially improve the purity of radioactive ion beams by magnetic mass separation. New developments on purifying negative ion beams by photodetachment in the RFQ cooler are presented. With a laser of proper photon energy, nearly 100% suppression of the unwanted negative ions in the RFQ cooler has been observed, while the desired ions remain mostly intact. A recent experimental study demonstrates that pure ground state negation ion beams can be obtained by state-selective photodetachment in the RFQ cooler.

  18. Dynamics Of Ions In A Radio-Frequency Quadrupole Trap

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Williams, Angelyn P.; Maleki, Lutfollah

    1994-01-01

    Report describes computer-simulation study of motions of various numbers of ions in Paul trap. Study part of continuing effort to understand motions of trapped charged particles (atoms, ions, molecules, or dust particles). Motions characterized in terms of heating by radio-frequency fields, formation of crystallike structures in cold clouds of trapped particles, and other phenomena important in operation of radio-frequency traps in frequency standards.

  19. A compact radio frequency quadrupole for ion bunching in the WITCH experiment

    NASA Astrophysics Data System (ADS)

    Traykov, E.; Beck, M.; Breitenfeldt, M.; Delahaye, P.; De Leebeeck, V.; Friedag, P.; Herlert, A.; Geeraert, N.; Heirman, W.; Lønne, P.-I.; Mader, J.; Roccia, S.; Soti, G.; Tandecki, M.; Timmermans, M.; Thiboud, J.; Van Gorp, S.; Wauters, F.; Weinheimer, C.; Zákoucký, D.; Severijns, N.

    2011-08-01

    During the last several years the WITCH (Weak Interaction Trap for CHarged particles) experimental setup at ISOLDE has undergone various upgrades aiming at improvement of general performance. An essential innovation, a compact Radio Frequency Quadrupole (RFQ) ion cooler and buncher device, was designed and successfully commissioned as a part of the off-line tuning system of WITCH. The RFQ is coupled to the existing surface ionization ion source providing high intensity ion bunches (up to 107 ions per bunch) towards the pulsed drift tube and the Penning traps of WITCH. This achievement allows for loading and tuning of the Penning traps in the domain of space charge limits and grants off-line operation independently of the REX-ISOLDE ion source. The current upgrade allows for a more thorough and frequent testing with bunched stable ion beams of high intensities, which will be used for studying various systematic effects involved in experiments with radioactive ions.

  20. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  1. Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles

    NASA Astrophysics Data System (ADS)

    Pavlovic, Márius; Griesmayer, Erich; Seemann, Rolf

    2005-06-01

    A beam-transport study of an isocentric gantry for ion therapy is presented. The gantry is designed with the number of quadrupoles down to the theoretical minimum, which is the feature published for the first time in this paper. This feature has been achieved without compromising the ion-optical functions of the beam-transport system that is capable of handling non-symmetric beams (beams with different emittances in vertical and horizontal plane), pencil-beam scanning, double-achromatic optics and beam-size control. Ion-optical properties of the beam-transport system are described, discussed and illustrated by computer simulations performed by the TRANSPORT-code.

  2. Lithium-Ion Cell Storage Study

    NASA Technical Reports Server (NTRS)

    Lee, Leonine; Rao, Gopalkrishna M.

    2000-01-01

    This viewgraph presentation reviews the issues concerning storage of lithium ion batteries. The presentation outlines tests used to establish a best long term storage for the lithium ion cells. Another objective of the study was to determine the preferred solstice condition for the lithium ion chemistry (polymer and liquid electrolyte). It also compared voltage clamped with trickle charge storage. The tests and results are reviewed

  3. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    NASA Astrophysics Data System (ADS)

    Harada, Kentaro; Kobayashi, Yukinori; Miyajima, Tsukasa; Nagahashi, Shinya

    2007-12-01

    We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM) with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR) in High Energy Accelerator Research Organization (KEK). The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3T/m and a shorter pulse width of 2.4μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  4. Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions

    NASA Astrophysics Data System (ADS)

    Slavchov, Radomir I.; Ivanov, Tzanko I.

    2014-02-01

    A new equation of state relating the macroscopic quadrupole moment density {seriesshape Q} to the gradient of the field ∇E in an isotropic fluid is derived: {seriesshape Q} = αQ(∇E - {series U}∇.E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)1/2 = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.

  5. Systematic Azimuth Quadrupole and Minijet Trends from Two-Particle Correlations in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David

    Heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) produce a tremendous amount of data but new techniques are necessary for a comprehensive understanding of the physics behind these collisions. We present measurements from the STAR detector of both pt-integral and pt-differential azimuth two-particle correlations on azimuth (phi) and pseudorapidity (eta) for unidentified hadrons in Au-Au collisions at a center of mass energy = 62 and 200 GeV. The azimuth correlations can be fit to extract a quadrupole component--related to conventional v2 measures--and a same-side peak. The azimuth quadrupole component is distinguished from eta-localized same-side correlations by taking advantage of the full 2D eta and phi dependence. Both pt-integral and pt-differential results are presented as functions of Au-Au centrality. We observe simple universal energy and centrality trends for the pt-integral quadrupole component. pt-differential results can be transformed to reveal quadrupole pt spectra that are nearly independent of centrality. A parametrization of the pt-differential quadrupole shows a simple pt dependence that can be factorized from the centrality and collision energy dependence above 0.75 GeV/c. Angular correlations contain jet-like structure with most-probable hadron momentum 1 GeV/c. For better comparison to RHIC data we analyze the energy scale dependence of fragmentation functions from e+-e - collisions on rapidity y. We find that replotting fragmentation functions on a normalized rapidity variable results in a compact form precisely represented by the beta distribution, its two parameters varying slowly and simply with parton energy scale Q. The resulting parameterization enables extrapolation of fragmentation functions to low Q in order to describe fragment distributions at low transverse momentum ptin heavy ion collisions at RHIC. We convert minimum-bias jet-like angular correlations to single-particle hadron yields and compare them with parton

  6. Stray-field-induced quadrupole shift and absolute frequency of the 688-THz {sup 171}Yb{sup +} single-ion optical frequency standard

    SciTech Connect

    Tamm, Chr.; Weyers, S.; Lipphardt, B.; Peik, E.

    2009-10-15

    We report experimental investigations of a single-ion optical frequency standard based on {sup 171}Yb{sup +}. The ion is confined in a cylindrically symmetric radiofrequency Paul trap. The reference transition is the {sup 2}S{sub 1/2}(F=0)-{sup 2}D{sub 3/2}(F{sup '}=2) electric quadrupole transition at 688 THz. Using a differential measurement scheme, we determine the shift of the reference transition frequency that occurs due to the interaction of the electric quadrupole moment of the {sup 2}D{sub 3/2} state with the gradient of the electrostatic stray field in the trap. We determine an upper limit for the instability of the quadrupole shift over times between 100 s to 20 h. We also observe the variations in the shift and in the applied stray-field compensation voltages that result from loading a new ion into the trap and during a subsequent storage period of 74 days. This information is utilized to measure the absolute frequency of the reference transition with an uncertainty that is a factor of 3 smaller than that of the previous measurement. Using a fiber laser based optical frequency comb generator and the cesium fountain clock CSF1 of PTB (Physikalisch-Technische Bundesanstalt), the frequency at 300 K temperature is determined as 688 358 979 309 306.62{+-}0.73 Hz.

  7. A quadrupole ion trap with cylindrical geometry operated in the mass-selective instability mode.

    PubMed

    Wells, J M; Badman, E R; Cooks, R G

    1998-02-01

    A cylindrical geometry ion trap is used to record mass spectra in the mass-selective instability mode. The geometry of the cylindrical ion trap has been optimized to maximize the quadrupole field component relative to the higher-order field content through field calculations using the Poisson/Superfish code and through experimental variation of the electrode structure. The results correspond well with predictions of the calculations. The trap has been used to record mass spectra with better than unit mass resolution, high sensitivity, and a mass/charge range of ∼600 Th. Multistage (MS(3)) experiments have been performed, and the Mathieu stability region has been experimentally mapped. The performance of this device compares satisfactorily with that of the hyperbolic ion trap. PMID:21644742

  8. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-07-15

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  9. Reactions of vinyl chloride and methanol in a quadrupole ion trap mass spectrometer during VOC analysis

    SciTech Connect

    Bian, L.; Alley, E.G.; Lynn, B.C. Jr.

    1999-05-01

    A reaction between vinyl chloride and the solvent (methanol) was observed during volatile organic compound (VOC) analysis on a gas chromatograph/quadrupole ion trap mass spectrometer (GC/MS). A chromatographic peak at a retention time consistent with vinyl chloride produced a mass spectrum without the characteristic chlorine isotope ions m/z 62 and 64 but instead contained an apparent molecular ion, m/z 58. The m/z 58 ion is not found in the reference spectrum of vinyl chloride. This spectrum was observed when methanol was used as solvent in internal standard, surrogate standard, or analyte solutions. Subsequent VOC standard analysis indicated that the abundance of the m/z 58 ion was directly proportional to the amount of vinyl chloride in the water samples. The correct spectrum for vinyl chloride was observed when no methanol was added. From these experiments, the authors concluded that a reaction was occurring between the vinyl chloride and methanol in the ion trap producing a new species with a molecular ion at m/z 58. When ethanol was used as the solvent for the internal standard solution or surrogate standard, a correct spectrum of vinyl chloride was obtained.

  10. Nuclear physics experiments with ion storage rings

    NASA Astrophysics Data System (ADS)

    Litvinov, Yu. A.; Bishop, S.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, L. X.; Dillmann, I.; Egelhof, P.; Geissel, H.; Grisenti, R. E.; Hagmann, S.; Heil, M.; Heinz, A.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kozhuharov, C.; Lestinsky, M.; Ma, X. W.; Nilsson, T.; Nolden, F.; Ozawa, A.; Raabe, R.; Reed, M. W.; Reifarth, R.; Sanjari, M. S.; Schneider, D.; Simon, H.; Steck, M.; Stöhlker, T.; Sun, B. H.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wakasugi, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Zhang, Y. H.

    2013-12-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.

  11. Potential Distribution and Transmission Characteristics in a Curved Quadrupole Ion Guide

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyu; Xiong, Caiqiao; Xu, Gaoping; Liu, Hao; Tang, Yin; Zhu, Zhiqiang; Chen, Rui; Qiao, Haoxue; Tseng, Yao-Hsin; Peng, Wen-Ping; Nie, Zongxiu; Chen, Yi

    2011-02-01

    The potential distribution in the curved quadrupole is exactly characterized by the Laplace equation, and an approximate solution to the Laplace equation is calculated. We represent the Laplace equation under the coordinates named minimal rotation frame (MRF) and derive an expression on the hexapole and octopole superposition. Our conclusion is in agreement with the results by the numerical (SIMION) method. Based on the Poincare-Lighthill-Kuo (PLK) method reported in our previous work, the nonlinear effects of ion motion are investigated in detail. The frequency shift of ion motion can be well eliminated by coupling the hexapole component with a positive octopole component, and the transmission efficiency of ions is found to decrease dramatically with the increase of the ionic kinetic energy in the z-direction. Furthermore, the transmission characteristics of ions are discussed with regards to the phase-space theory. The results show that the centrifugally introduced axis shift is mainly responsible for the ion losses. A modified direct current (dc) voltage supply pattern is hence proposed to compensate for this effect.

  12. Intense heavy-ion beam transport with electric and magnetic quadrupoles

    SciTech Connect

    Fessenden, T.J.; Barnard, J.J.; Cable, M.D.; Deadrick, F.J.; Eylon, S.; Nelson, M.B.; Sangster, T.C.; Hopkins, H.S.

    1995-08-01

    As part of the small induction recirculator development at LLNL, the authors are testing an injector and transport line that delivers 4 {micro}s beams of potassium with repetition rates up to 10 Hz at a nominal current of 2 mA. The normalized K-V equivalent emittance of the beams is near 0.02 {pi} mm-mrad and is mostly determined by the temperature of the source (0.1 eV). K{sup +} ions generated at 80 keV in a Pierce diode are matched to an alternating gradient transport line by seven electric quadrupoles. Two additional quads have been modified to serve as two-axis steerers. The matching section is followed by a transport section comprised of seven permanent magnet quadrupoles. Matching to this section is achieved by adjusting the voltages on the electric quadrupoles to voltages calculated by an envelope matching code. Measurements of beam envelope parameters are made at the matching section entrance and exit as well as at the end of the permanent magnet transport section. Beam current waveforms along the experiment are compared with results from a one-dimension longitudinal dynamics code. Initial experiments show particle loss occurring at the beam head as a result of overtaking. The apparatus is also being used for the development of non or minimally intercepting diagnostics for future recirculator experiments. These include capacitive monitors for determining beam line-charge density and position in the recirculator; flying wire scanners for beam position; and gated TV scanners for measuring beam profiles and emittance.

  13. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    SciTech Connect

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-04-15

    We explore the potential of the electric quadrupole transitions 7s {sup 2}S{sub 1/2}-6d {sup 2}D{sub 3/2}, 6d {sup 2}D{sub 5/2} in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several competitive {sup A}Ra{sup +} candidates, with A= 223-229, are identified. In particular, we show that the transition 7s {sup 2}S{sub 1/2} (F=2,m{sub F}=0)-6d {sup 2}D{sub 3/2} (F=0,m{sub F}=0) at 828 nm in {sup 223}Ra{sup +}, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case, which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency uncertainty of 10{sup -17}. With more experimental effort, the {sup 223,225,226}Ra{sup +} clocks could be pushed to a projected performance reaching the 10{sup -18} level.

  14. Evaluation of a Novel Design for an Electrostatic Quadrupole Triplet Ion Beam Lens

    NASA Astrophysics Data System (ADS)

    Burns, L. R.; Bouas, J. D.; Matteson, S.; Weathers, D. L.

    2006-12-01

    We describe the design and evaluation of an electrostatic quadrupole triplet lens constructed to focus ion beams of up to 200 keV in energy. The lens was built to be used in an apparatus for fundamental sputtering studies. These studies are motivated in part by a desire to understand the influence of low-energy physiochemical processes on surfaces and atmospheres exposed to the solar wind in the inner Solar System. The lens is very compact and incorporates a feature to induce octupole fields that can correct for spherical and other octupole-order aberrations. Two methods were used to evaluate the lens: observation of the focused beam spot on a specially fabricated target while systematically varying lens voltages, and the grid-shadow technique. The latter demonstrated that octupole-order aberrations were completely corrected in one direction when the lens quadrupoles were operated individually with appropriate octupole excitations. This research was made possible by a grant from the National Science Foundation through the Physics Research Experience for Undergraduates (REU) Program at the University of North Texas. Additionally, funding was provided by the Ronald E. McNair Post-baccalaureate Achievement Program at the University of North Texas.

  15. Electrospray liquid chromatography quadrupole ion trap mass spectrometry determination of phenyl urea herbicides in water.

    PubMed

    Draper, W M

    2001-06-01

    Phenyl urea herbicides were determined in water by electrospray quadrupole ion trap liquid chromatography-mass spectrometry (ES-QIT-LC-MS). Over a wide concentration range [M - H](-) and MH(+) ions were prominent in ES spectra. At high concentrations dimer and trimer ions appeared, and sodium, potassium, and ammonium adducts also were observed. In the case of isopturon, source collision-induced dissociation (CID) fragmentation with low offset voltages increased the ion current associated with MH(+) and diminished dimer and trimer ion abundance. In the mass analyzer CID involved common pathways, for example, daughter ions of [M - H](-) resulted from loss of R(2)NH in N',N'-dialkyl ureas or loss of C(3)H(5)NO(2) (87 amu) in N'-methoxy ureas. A 2 mm (i.d.) x 15 cm C(18) reversed phase column was used for LC-MS with a linear methanol/water gradient and 0.5 mL/min flow rate. Between 1 and 100 pg/microg/L the response was highly linear with instrument detection limits ranging from <10 to 50 pg injected. Whereas the positive ES signal intensity was greater for each of the compounds except fluometuron, negative ion monitoring gave the highest signal-to-noise ratio. Analysis of spiked Colorado River water, a source high in total dissolved solids and total organic carbon, demonstrated that ES-QIT-LC-MS was routinely capable of quantitative analysis at low nanogram per liter concentrations in conjunction with a published C(18) SPE method. Under these conditions experimental method detection limits were between 8.0 and 36 ng/L, and accuracy for measurements in the 20-50 parts per trillion range was from 77 to 96%. Recoveries were slightly lower in surface water (e.g., 39-76%), possibly due to suppression of ionization. PMID:11409961

  16. Rapid screening and characterization of drug metabolites using a new quadrupole-linear ion trap mass spectrometer.

    PubMed

    Hopfgartner, Gérard; Husser, Christophe; Zell, Manfred

    2003-02-01

    The application of a new hybrid RF/DC quadrupole-linear ion trap mass spectrometer to support drug metabolism and pharmacokinetic studies is described. The instrument is based on a quadrupole ion path and is capable of conventional tandem mass spectrometry (MS/MS) as well as several high-sensitivity ion trap MS scans using the final quadrupole as a linear ion trap. Several pharmaceutical compounds, including trocade, remikiren and tolcapone, were used to evaluate the capabilities of the system with positive and negative turbo ionspray, using either information-dependent data acquisition (IDA) or targeted analysis for the screening, identification and quantification of metabolites. Owing to the MS/MS in-space configuration, quadrupole-like CID spectra with ion trap sensitivity can be obtained without the classical low mass cutoff of 3D ion traps. The system also has MS(3) capability which allows fragmentation cascades to be followed. The combination of constant neutral loss or precursor ion scan with the enhanced product ion scan was found to be very selective for identifying metabolites at the picogram level in very complex matrices. Owing to the very high cycle time and, depending on the mass range, up to eight different MS experiments could be performed simultaneously without compromising chromatographic performance. Targeted product ion analysis was found to be complementary to IDA, in particular for very low concentrations. Comparable sensitivity was found in enhanced product ion scan and selected reaction monitoring modes. The instrument is particularly suitable for both qualitative and quantitative analysis. PMID:12577280

  17. Storage rings for radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Nolden, F.; Dimopoulou, C.; Dolinskii, A.; Steck, M.

    2008-10-01

    Storage rings for radioactive heavy ions can be applied for a wide range of experiments in atomic and nuclear physics. The rare isotope beams are produced in flight via fragmentation or fission of high-intensity primary ions and they circulate in the storage ring at moderately relativistic energies (typically between 0.1 GeV/u up to 1 GeV/u). Due to their production mechanism they are usually highly charged or even fully stripped. The circulating radioactive heavy ion beams can be used to measure nuclear properties such as masses and decay times, which, in turn, can depend strongly on the ionic charge state. The storage rings must have large acceptances and dynamic apertures. The subsequent application of stochastic precooling of the secondary ions which are injected with large transverse and longitudinal emittances, and electron cooling to reach very high phase space densities has turned out to be a helpful tool for experiments with short-lived ions having lifetimes down to a few seconds. Some of these experiments have already been performed at the experimental storage ring ESR at GSI. The storage ring complex of the FAIR project is intended to enhance significantly the range of experimental possibilities. It is planned to extend the scope of experimental possibilities to collisions with electron or antiproton beams.

  18. Storage Characteristics of Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Blosiu, J. O.; Surampudi, S.

    2000-01-01

    Lithium ion cells are being developed under the NASA/Air Force Consortium for the upcoming aerospace missions. First among these missions are the Mars 2001 Lander and Mars 2003 Lander and Rover missions. Apart from the usual needs of high specific energy, energy density and long cycle life, a critical performance characteristic for the Mars missions is low temperature performance. The batteries need to perform well at -20 C, with at least 70% of the rated capacity realizable at moderate discharge rates (C/5). Several modifications have been made to the lithium ion chemistry, mainly with respect to the electrolyte, both at JPL' and elsewhere to achieve this. Another key requirement for the battery is its storageability during pre-cruise and cruise periods. For the Mars programs, the cruise period is relatively short, about 12 months, compared to the Outer Planets missions (3-8 years). Yet, the initial results of our storage studies reveal that the cells do sustain noticeable permanent degradation under certain storage conditions, typically of 10% over two months duration at ambient temperatures, attributed to impedance buildup. The build up of the cell impedance or the decay in the cell capacity is affected by various storage parameters, i.e., storage temperature, storage duration, storage mode (open circuit, on buss or cycling at low rates) and state of charge. Our preliminary studies indicate that low storage temperatures and states of charge are preferable. In some cases, we have observed permanent capacity losses of approx. 10% over eight-week storage at 40 C, compared to approx. 0-2% at O C. Also, we are attempting to determine the impact of cell chemistry and design upon the storageability of Li ion cells.

  19. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  20. Radio-frequency-quadrupole linac in a heavy ion fusion driver system

    SciTech Connect

    Hansborough, L.D.; Stokes, R.; Swenson, D.A.; Wangler, T.P.

    1980-01-01

    A new type of linear accelerator, the radio-frequency quadrupole (RFQ) linac, is being developed for the acceleration of low-velocity ions. The RFQ accelerator can be adapted to any high-current applications. A recent experimental test carried out at the Los Alamos Scienific Laboratory (LASL) has demonstrated the outstandig properties of RFQ systems. The test linac accepts a 30-mA proton beam of 100-keV energy and focuses, bunches, and accelerates the beam to an energy to 640 keV. This ia done in a length of 1.1 m, with a transmission efficiency of 87% and with a radial emittance growth of less than 60%. The proven capability of the RFQ linac, when extended to heavy ion acceleration, should provide an ideal technique for use in the low-velocity portion of a heavy-ion linac for inertial-confinement fusion. A specific concept for such an RFQ-based system is described.

  1. Ion Sponge: A 3-Dimentional Array of Quadrupole Ion Traps for Trapping and Mass-Selectively Processing Ions in Gas Phase

    PubMed Central

    2015-01-01

    In this study, the concept of ion sponge has been explored for developing 3D arrays of large numbers of ion traps but with simple configurations. An ion sponge device with 484 trapping units in a volume of 10 × 10 × 3.2 cm has been constructed by simply stacking 9 meshes together. A single rf was used for trapping ions and mass-selective ion processing. The ion sponge provides a large trapping capacity and is highly transparent for transfer of ions, neutrals, and photons for gas phase ion processing. Multiple layers of quadrupole ion traps, with 121 trapping units in each layer, can operate as a single device for MS or MS/MS analysis, or as a series of mass-selective trapping devices with interlayer ion transfers facilitated by AC and DC voltages. Automatic sorting of ions to different trapping layers based on their mass-to-charge (m/z) ratios was achieved with traps of different sizes. Tandem-in-space MS/MS has also been demonstrated with precursor ions and fragment ions trapped in separate locations. PMID:24758328

  2. Construction and testing of arc dipoles and quadrupoles for the relativistic heavy ion collider (RHIC) at BNL

    SciTech Connect

    Wanderer, P.; Muratore, J.; Anerella, M.

    1995-05-01

    The production run of superconducting magnets for the Relativistic Heavy Ion Collider (RHIC) project at Brookhaven National Laboratory (BNL) is well underway. Of the 288 arc dipoles needed for the collider, more than 120 have been delivered. More than 150 arc quadrupoles have been delivered. All of these magnets have been accepted for RHIC. This paper reports the construction and performance of these magnets. Novel features of design and test, introduced to enhance technical performance and control costs, are also discussed. Other papers submitted to this Conference summarize work on the sextupoles and tuning quads, arc correctors, and combined corrector-quadrupole-sextupole assemblies (CQS).

  3. Developments of multiplexed and miniature two-dimensional quadrupole ion trap mass spectrometers

    NASA Astrophysics Data System (ADS)

    Smith, Scott A.

    Quadrupole ion trap mass spectrometry (QIT MS) is a powerful and commonly-employed method for the specific analysis of mass, composition, and structure of gas-phase ionic chemical species. Useful for a wide variety of tasks, applications of ion traps include environmental monitoring, surface analysis (including depth profiling and imaging), ion thermochemical property elucidation, protein and DNA sequencing, and high-resolution chemical separations (through ion soft-landing). Though the principles of QIT MS have been known for over half a century, innovations in instrumentation and applications continue. As new needs for specific and sensitive chemical analysis arise, so also do new and more efficient analytical devices and methods of analysis. Such a trend is exemplified through the construction of a dual-source QIT mass spectrometer (described herein) capable of multi-source chemical analyses for the purposes of enhanced proteomic sequence coverage and for the strictly-controlled comparison of the structural differences in ion populations generated by different ionization techniques. Furthermore, as mass spectrometry becomes increasingly commonplace outside the bounds of the analytical laboratory, demand for capable researcher equipment is also increasing. Advances in instrument performance, such as can be had through enhanced power efficiency and the enabling of chemical analysis of high mass-to-charge ratio (m/z) species (e.g., proteins), will open new doors to in situ chemical analysis hand-portable mass spectrometers. Hence, research into new mass analyzer designs and methods of fabrication using stereolithography apparatus (SLA) for the purpose of creating enhanced-performance mass spectrometers are accordingly described in the text of this dissertation.

  4. Ion separation in imperfect fields of the quadrupole mass analyzer Part I. Ion beam dynamics in the phase-space

    NASA Astrophysics Data System (ADS)

    Titov, Vladimir V.

    1995-01-01

    The theoretical aspects of ion separation in imperfect fields of the quadrupole mass analyzer are discussed by applying analysis of the beam dynamics in a phase-space. The analytical method which uses an approximate solution of the Hill equation with a small heterogeneous part which indicates that the trap mechanism of ion separation is conditioned by the properties of characteristic solutions is improved. These solutions are reduced to an approximate solution in the form of a general solution of a homogeneous Mathieu equation with combined factors taking into account a small heterogeneous part which defines the region of beam capture (acceptance) in a phase-space. The estimation criterion of simulation accuracy is the relative deviation of an operating point on the Mathieu diagram from the top of a stability triangle. The infringement of independence principle of ion oscillations about each of the positional axes caused by distortions increases the cross-sectional area of the beam. The beam is cut out by the mass analyzer aperture. This causes transmission losses which depend on phase. Therefore, the ion current at the mass analyzer exit is amplitude modulated by the frequency of the alternate component of field. The maximum current is at zero phase. The modulation depth is proportional to the relative value of the distortions.

  5. Comparison Of Electromagnetic, Electrostatic And Permanent Magnet Quadrupole Lens Probe-Forming Systems For High Energy Ions

    SciTech Connect

    Dymnikov, Alexander D.; Glass, Gary A.

    2011-06-01

    The focusing system is an essential part of any ion microbeam system and focusing of MeV ion beams is generally accomplished using quadrupole lenses. There are two types of quadrupole lenses requiring the application of either voltage or current to provide the excitation, but there is also the possibility of utilizing lenses constructed from permanent magnets. All of these lens types have different advantages and disadvantages. Most microprobes employ electromagnetic quadrupoles for focusing, however electrostatic lenses have several advantages with respect to electromagnetic lenses, including significantly smaller size, no hysteresis effects, no heating, the utilization of highly stable voltage supplies, focusing which is independent of ion mass, and construction from industrial grade materials. The main advantage of the permanent magnetic lens is that it does not require the application of external power which can significantly reduce the overall lifetime cost. In this presentation, the short probe-forming systems comprised from all these types of quadrupole lenses are compared and the smallest beam spot size and appropriate optimal parameters of these probe-forming systems are determined.

  6. Broad-Spectrum Drug Screening Using Liquid Chromatography-Hybrid Triple-Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Stone, Judy

    2016-01-01

    Urine is processed with a simple C18 solid-phase extraction (SPE) and reconstituted in mobile phase. The liquid chromatography system (LC) injects 10 μL of extracted sample onto a reverse-phase LC column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray ionization (ESI). Pseudomolecular ions (M + H) are analyzed by a hybrid triple-quadrupole linear ion trap (QqQ and QqLIT) mass spectrometer using an SRM-IDA-EPI acquisition. An initial 125 compound selected ion monitoring (SRM) survey scan (triple quadrupole or QqQ mode) is processed by the information-dependent acquisition (IDA) algorithm. The IDA algorithm selects SRM signals from the survey scan with a peak height above the threshold (the three most abundant SRM signals above 1000 cps) to define precursor ions for subsequent dependent scanning. In the dependent QqLIT scan(s), selected precursor ion(s) are passed through the first quadrupole (Q1), fragmented with three different collision energies in the collision cell (Q2 or q), and product ions are collected in the third quadrupole (Q3), now operating as a linear ion trap (LIT). The ions are scanned out of the LIT in a mass dependent manner to produce a full-scan product ion spectrum (m/z 50-700) defined as an Enhanced (meaning acquired in LIT mode) Product Ion (EPI) spectrum (Mueller et al., Rapid Commun Mass Spectrom 19:1332-1338, 2005). Each EPI spectrum is linked to its precursor ion and to the associated SRM peak from the survey scan. EPI spectra are automatically searched against a 125 drug library of reference EPI spectra for identification. When the duty cycle is complete (one survey scan of 125 SRMs plus 0-3 dependent IDA-EPI scans) the mass spectrometer begins another survey scan of the 125 SRMs. PMID:26660183

  7. Degradation study of enniatins by liquid chromatography-triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Serrano, A B; Meca, G; Font, G; Ferrer, E

    2013-12-15

    Enniatins A, A1, B and B1 (ENs) are mycotoxins produced by Fusarium spp. and are normal contaminants of cereals and derivate products. In this study, the stability of ENs was evaluated during food processing by simulation of pasta cooking. Thermal treatments at different incubation times (5, 10 and 15 min) and different pH (4, 7 and 10) were applied in an aqueous system and pasta resembling system (PRS). The concentrations of the targeted mycotoxins were determined using liquid chromatography coupled to tandem mass spectrometry. High percentages of ENs reduction (81-100%) were evidenced in the PRS after the treatments at 5, 10 and 15 min of incubation. In contrast to the PRS, an important reduction of the ENs was obtained in the aqueous system after 15 min of incubation (82-100%). In general, no significant differences were observed between acid, neutral and basic solutions. Finally, several ENs degradation products were identified using the technique of liquid chromatography-triple quadrupole linear ion trap mass spectrometry. PMID:23993608

  8. Infrared Multiphoton Dissociation of Duplex DNA/Drug Complexes in a Quadrupole Ion Trap

    PubMed Central

    Wilson, Jeffrey J.; Brodbelt, Jennifer S.

    2008-01-01

    Non-covalent duplex DNA/drug complexes formed between one of three 14-base pair non-self complementary duplexes with variable GC content and one of eight different DNA-interactive drugs are characterized by infrared multiphoton dissociation (IRMPD), and the resulting spectra are compared to conventional collisional activated dissociation (CAD) mass spectra in a quadrupole ion trap mass spectrometer. IRMPD yielded comparable information to previously reported CAD results in which strand separation pathways dominate for complexes containing the more AT-rich sequences and/or minor groove binding drugs, whereas drug ejection pathways are prominent for complexes containing intercalating drugs and/or duplexes with higher GC base content. The large photoabsorptive cross-section of the phosphate backbone at 10.6 μm promotes highly efficient dissociation within short irradiation times (< 2 ms at 50 W) or using lower laser powers and longer irradiation times (< 15 W at 15 ms), activation times on par with or shorter than standard CAD experiments. This large photoabsorptivity leads to a controllable ion activation method which can be used to produce qualitatively similar spectra to CAD while minimizing uninformative base loss dissociation pathways or instead be tuned to yield a high degree of secondary fragmentation. Additionally, the low mass cut-off associated with conventional CAD plays no role in IRMPD, resulting in richer MS/MS information in the low m/z region. IRMPD is also used for multi-adduct dissociation in order to increase MS/MS sensitivity, and a two stage IRMPD/IRMPD method is demonstrated as a means to give specific DNA sequence information that would be useful when screening drug binding by mixtures of duplexes. PMID:17249688

  9. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    SciTech Connect

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D.

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  10. A thermosphere composition measurement using a quadrupole mass spectrometer with a side energy focussing quasi-open ion source

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Spencer, N. W.; Schmitt, G. A.

    1971-01-01

    The atomic oxygen concentration in the altitude range 130 to 240 km was determined through the use of a quadrupole spectrometer with a strongly focussing ion source. The instrument is used in the Thermosphere Probe in a manner that greatly increases the proportion of measured oxygen ions that have not experienced a surface collision and permits quantitative evaluation of surface recombination and thermalization effects which inevitably enter all spectrometer determinations. The data obtained strengthen the concept that consideration of surface effects is significant in quantifying spectrometer measurements of reactive gases, and tend to be in agreement with von Zahn's recent results.

  11. Excitation of transverse dipole and quadrupole modes in a pure ion plasma in a linear Paul trap to study collective processes in intense beams

    SciTech Connect

    Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.; Wang, Hua; Koppell, Stewart; Talley, Matthew

    2013-05-15

    Transverse dipole and quadrupole modes have been excited in a one-component cesium ion plasma trapped in the Paul Trap Simulator Experiment (PTSX) in order to characterize their properties and understand the effect of their excitation on equivalent long-distance beam propagation. The PTSX device is a compact laboratory Paul trap that simulates the transverse dynamics of a long, intense charge bunch propagating through an alternating-gradient transport system by putting the physicist in the beam's frame of reference. A pair of arbitrary function generators was used to apply trapping voltage waveform perturbations with a range of frequencies and, by changing which electrodes were driven with the perturbation, with either a dipole or quadrupole spatial structure. The results presented in this paper explore the dependence of the perturbation voltage's effect on the perturbation duration and amplitude. Perturbations were also applied that simulate the effect of random lattice errors that exist in an accelerator with quadrupole magnets that are misaligned or have variance in their field strength. The experimental results quantify the growth in the equivalent transverse beam emittance that occurs due to the applied noise and demonstrate that the random lattice errors interact with the trapped plasma through the plasma's internal collective modes. Coherent periodic perturbations were applied to simulate the effects of magnet errors in circular machines such as storage rings. The trapped one component plasma is strongly affected when the perturbation frequency is commensurate with a plasma mode frequency. The experimental results, which help to understand the physics of quiescent intense beam propagation over large distances, are compared with analytic models.

  12. Vibration study of the APS storage ring 0. 8 meter quadrupole/girder assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-05-01

    The overall objective of this study is to obtain insights into the dynamic coupled behavior of the quadrupole magnet and the girder assembly, and an assessment of the potential for unacceptable vibration levels which would require redesign of the quadrupole and/or girder mounting system(s). Specific objectives include determination of vibrational characteristics (natural frequencies, damping, mode shapes, and transfer functions) of the coupled magnet/girder system, measurement of response amplitudes of forced excitation and ambient floor motion, and calculation of magnification factors associated with the observed coupled vibration modes. In the Phase 1 tests the 0.8 meter quadrupole was mounted to the girder with a prototypic mount and excitation was primarily by an electromagnetic exciter or the result of ambient floor motion, with the exception of Test 7, which was impulse excited. In the Phase 2 tests the excitation was primarily by impulse with only a few tests with ambient floor excitation. A strong, coupled magnet/girder mode response occurs at frequency of 7.62 Hz resulting in very large magnification factors (low damping values) and large displacements. It appears that a low frequency rigid body mode of the magnet coincides with a girder mode frequency. The Phase 2 tests show the effect of jackscrew conditions on system response. When the pedestal bolts were loose, the jackscrew/pedestal assembly deflected slightly from its initial vertical position, resulting in a shift in position of the jackshaft within the screw assembly. The result was a significant reduction of frequency and a large increase in damping.

  13. Vibration study of the APS storage ring 0.8 meter quadrupole/girder assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-05-01

    The overall objective of this study is to obtain insights into the dynamic coupled behavior of the quadrupole magnet and the girder assembly, and an assessment of the potential for unacceptable vibration levels which would require redesign of the quadrupole and/or girder mounting system(s). Specific objectives include determination of vibrational characteristics (natural frequencies, damping, mode shapes, and transfer functions) of the coupled magnet/girder system, measurement of response amplitudes of forced excitation and ambient floor motion, and calculation of magnification factors associated with the observed coupled vibration modes. In the Phase 1 tests the 0.8 meter quadrupole was mounted to the girder with a prototypic mount and excitation was primarily by an electromagnetic exciter or the result of ambient floor motion, with the exception of Test 7, which was impulse excited. In the Phase 2 tests the excitation was primarily by impulse with only a few tests with ambient floor excitation. A strong, coupled magnet/girder mode response occurs at frequency of 7.62 Hz resulting in very large magnification factors (low damping values) and large displacements. It appears that a low frequency rigid body mode of the magnet coincides with a girder mode frequency. The Phase 2 tests show the effect of jackscrew conditions on system response. When the pedestal bolts were loose, the jackscrew/pedestal assembly deflected slightly from its initial vertical position, resulting in a shift in position of the jackshaft within the screw assembly. The result was a significant reduction of frequency and a large increase in damping.

  14. Perturbative Particle Simulation for an Intense Ion Beam in a Periodic Quadrupole Focusing Field

    NASA Astrophysics Data System (ADS)

    Lee, W. W.

    1996-11-01

    footnotetext[1]This work is supported the DOE contract DE-AC02-76-CHO-3073. footnotetext[2]In collaboration with Q. Qian and R. C. Davidson, PPPL. Stability and transport properties of an intense ion beam propagating through an alternating-gradient quadrupole focusing field with initial Kapchinskij-Vladimirskij (KV) distribution(I. M. Kapchinksij and V. V. Vladimirskj, Proceedings of the International Conference on High Energy Accelerators and Instrumentation (CERN Geneva, 1959), p. 274.) are studied using newly-developed perturbative particle simulation techniques. Specifically, two different schemes have been investigated: the first is based on the δ f scheme originally developed for tokamak plasmas,(A. Dimits and W. W. Lee, J. Comput. Phys. 107), 309 (1993); S. Parker and W. W. Lee, Phys. Fluids B 5, 77 (1993). and the other is related to the linearized trajectory scheme.(J. Byers, Proceedings of the 4th Conference on Numerical Simulation of Plasmas, (NRL, Washington D.C., 1970),p.496.) While the former is useful for both linear and nonlinear simulations, the latter can be used for benchmark purpose. Stability properties and associated mode structures are investigated over a wide range of beam current and focusing field strength. The new schemes are found to be highly effective in describing detailed properties of beam stability and propagation over long distances. For example, a stable KV beam can indeed propagate over hundreds of lattice period in the simulation with negligible growth. On the other hand, in the unstable region when the beam current is sufficiently high,(I. Hoffman, L. Laslett, L. Smith, and I. Haber, Particle Accelerators 13), 145 (1983). large-amplitude density perturbations with (δ n)_max/hatn0 ~ 1 with low azimuthal harmonic numbers, concentrated near the beam surface, are observed. The corresponding mode structures are of Gaussian shape in the radial direction. The physics of nonlinear saturation and emittance growth will be discussed

  15. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy.

    PubMed

    Stockett, Mark H; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion. PMID:27250388

  16. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, Mark H.; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  17. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    SciTech Connect

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  18. Experimental atomic physics in heavy-ion storage rings

    SciTech Connect

    Datz, S.; Andersen, L.H.; Briand, J.P.; Liesen, D.

    1987-01-01

    This paper outlines the discussion which took place at the ''round table'' on experimental atomic physics in heavy-ion storage rings. Areas of discussion are: electron-ion interactions, ion-ion collisions, precision spectroscopy of highly charged ions, beta decay into bound final states, and atomic binding energies from spectroscopy of conversion elections. 18 refs., 1 tab. (LSP)

  19. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry.

    PubMed

    Shen, Yan; Han, Chao; Liu, Bin; Lin, Zhengfeng; Zhou, Xiujin; Wang, Chengjun; Zhu, Zhenou

    2014-02-01

    A simple, precise, accurate, and validated liquid chromatography-quadrupole linear ion trap mass spectrometry method was developed for the determination of vanillin, ethyl vanillin, and coumarin in infant formula samples. Following ultrasonic extraction with methanol/water (1:1, vol/vol), and clean-up on an HLB solid-phase extraction cartridge (Waters Corp., Milford, MA), samples were separated on a Waters XSelect HSS T3 column (150 × 2.1-mm i.d., 5-μm film thickness; Waters Corp.), with 0.1% formic acid solution-acetonitrile as mobile phase at a flow rate of 0.25 mL/min. Quantification of the target was performed by the internal standard approach, using isotopically labeled compounds for each chemical group, to correct matrix effects. Data acquisition was carried out in multiple reaction monitoring transitions mode, monitoring 2 multiple reaction monitoring transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus of the linear ion trap. The novel liquid chromatography-quadrupole linear ion trap mass spectrometry platform offers the best sensitivity and specificity for characterization and quantitative determination of vanillin, ethyl vanillin, and coumarin in infant formula and fulfills the quality criteria for routine laboratory application. PMID:24359823

  20. Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform

    SciTech Connect

    Soni, M.H.; Cooks, R.G. )

    1994-08-01

    Broad-band excitation of ions is accomplished in the quadrupole ion trap mass spectrometer using notched waveforms created by the SWIFT (stored waveform inverse Fourier transform) technique. A series of notched SWIFT pulses are applied during the period of ion injection from an external Cs[sup +] source to resonantly eject all ions whose resonance frequencies fall within the frequency range of the pulse while injecting only those analyte ions whose resonance frequencies fall within the limits of the notch. This allows selective injection and accumulation of the ions of interest and continuous ejection of the unwanted ions. This is shown to result in significant improvement in S/N ratio, resolution, and sensitivity for the analyte ions of interest. Selective ion injection is demonstrated by injecting the protonated molecules of peptides VSV and gramicidin S and the intact cation of l-carnitine hydrochloride, using singly notched SWIFT pulses. Multiply notched SWIFT pulses are used to simultaneously inject ions of different m/z values of l-carnitine hydrochloride into the ion trap. A new coarse/fine ion isolation procedure, which employs a doubly notched SWIFT pulse, is demonstrated for isolating ions of a single m/z value of 4-bromobiphenyl from a population of trapped ions. 36 refs., 10 figs., 2 tabs.

  1. Electric Quadrupole Moments of the D States of Alkaline-Earth-Metal Ions

    SciTech Connect

    Sur, Chiranjib; Latha, K.V.P.; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Das, B.P.; Mukherjee, D.

    2006-05-19

    The electric quadrupole moment for the 4d {sup 2}D{sub 5/2} state of {sup 88}Sr{sup +}; one of the most important candidates for an optical clock, has been calculated using the relativistic coupled-cluster theory. This is the first application of this theory to determine atomic electric quadrupole moments. The result of the calculation is presented and the important many-body contributions are highlighted. The calculated electric quadrupole moment is (2.94{+-}0.07)ea{sub 0}{sup 2}, where a{sub 0} is the Bohr radius and e the electronic charge while the measured value is (2.6{+-}0.3)ea{sub 0}{sup 2}. This is so far the most accurate determination of the electric quadrupole moment for the above mentioned state. We have also calculated the electric quadrupole moments for the metastable 4d {sup 2}D{sub 3/2} state of {sup 88}Sr{sup +} and for the 3d {sup 2}D{sub 3/2,5/2} and 5d {sup 2}D{sub 3/2,5/2} states of {sup 43}Ca{sup +} and {sup 138}Ba{sup +}, respectively.

  2. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    DOE PAGESBeta

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ionmore » injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.« less

  3. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    SciTech Connect

    Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F.; Friedman, A.; Roy, P.K.; Seidl, P.; Lund, S.M.; Faltens, A.; Vay, J.L.; Prost, L.

    2007-06-04

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam.

  4. Electrons in a Positive-Ion Beam with Solenoid or Quadrupole Magnet Transport

    SciTech Connect

    Molvik, A W; Cohen, R H; Friedman, A; Covo, M K; Lund, S M; Sharp, W M; Seidl, P A; Bieniosek, F M; Coleman, J E; Faltens, A; Roy, P K; Vay, J L; Prost, L

    2007-06-01

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam.

  5. A quadrupole ion trap mass spectrometer for in-situ UHV analyses on Earth and other planetary environments

    NASA Astrophysics Data System (ADS)

    Cox, S. E.; Madzunkov, S. M.; Simcic, J.; Farley, K. A.

    2014-12-01

    The JPL quadrupole ion trap mass spectrometer presents an exceptional opportunity for combining cutting edge terrestrial geochemical research with the next generation of extraterrestrial science. The QIT is a small mass spectrometer that filters particles of different mass by electron ionization and subsequent separation with a quadrupole RF field. The latest version is capable of achieving very high resolution (R > 1000) without an increase in power consumption through the addition of a dipole RF to augment the primary quadrupole field. Crucially, we demonstrate the ability to achieve this resolution with high sensitivity (> 1014 cps/Torr), and at UHV without the addition of a cooling gas. In this mode, the high sensitivity and extremely low background allow the measurement of a large number of species in very small samples. Most laboratory instruments are too heavy, large, and energy-intensive to fly on spacecraft in their optimal forms. As a result, instruments for spaceflight have traditionally been heavily-modified versions of terrestrial instruments, designed to be lighter, smaller, and more efficient than their terrestrial counterparts, at the expense of analytical capabilities. The JPL QIT, in contrast, weighs less than 1 kg, is only a few cm in size, and consumes less than 30W. Only the accompanying UHV system and supporting electronics must be extensively redesigned for spaceflight, and NASA already possesses pumps capable of fulfilling this need. The opportunity for parallel development for terrestrial and extraterrestrial labs and the capability of direct comparison between planetary science and terrestrial geochemistry will benefit both fields.

  6. Development of a quadrupole-based Secondary-Ion Mass Spectrometry (SIMS) system at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Aron, Paul R.; Liff, Dale R.

    1990-01-01

    The design, construction, and initial use of an ion microprobe to carry out secondary ion mass spectrometry (SIMS) of solid samples is reported. The system is composed of a differentially pumped custom-made UHV (Ultra High Vacuum) chamber, a quadrupole mass spectrometer and a telefocus A-DIDA ion gun with the capability of producing beams of Cesium, as well as inert and reactive gases. The computer control and acquisition of the data were designed and implemented using a personal computer with plug-in boards, and external circuitry built as required to suit the system needs. The software is being developed by using a FORTH-like language. Initial tests aimed at characterizing the system, as well as preliminary surface and depth-profiling studies are presently underway.

  7. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    SciTech Connect

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E.; Dearth, M.A.

    1997-09-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  8. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-11-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 Tm and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  9. A high gradient superconducting quadrupole for a low charge state ion linac

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-07-01

    A superconducting quadrupole magnet has been designed for use as the focusing element in a low charge state linac proposed at Argonne. The expected field gradient is 350 T/m at an operating current of 53 A, and the bore diameter is 3 cm. The use of rare earth material holmium for pole tips provides about 10% more gradient then iron pole tips. The design and the status of construction of a prototype singlet magnet is described.

  10. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    SciTech Connect

    Rodrigues, G. Kanjilal, D.; Roy, A.; Becker, R.; Baskaran, R.

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  11. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam. PMID:24593474

  12. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  13. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method.

    PubMed

    Leveque, Nathalie L; Acheampong, Akwasi; Heron, Sylvie; Tchapla, Alain

    2012-04-13

    The kinetic method was applied to differentiate and quantify mixtures of regioisomeric triacylglycerols (TAGs) by generating and mass selecting alkali ion bound metal dimeric clusters with a TAG chosen as reference (ref) and examining their competitive dissociations in a quadrupole ion trap mass spectrometer. This methodology readily distinguished pairs of regioisomers (AAB/ABA) such as LLO/LOL, OOP/OPO and SSP/SPS and consequently distinguished sn-1/sn-3, sn-2 substituents on the glycerol backbone. The dimeric complex ions [ref, Li, TAG((AAB and/or ABA))](+) generated by electrospray ionization mass spectrometry were subjected to collision induced dissociation causing competitive loss of either the neutral TAG reference (ref) leading to [Li(AAB and/or ABA)](+) or the neutral TAG molecule (TAG((AAB and/or ABA))) leading to [ref, Li](+). The ratio of the two competitive dissociation rates, defined by the product ion branching ratio (R(iso)), was related via the kinetic method to the regioisomeric composition of the investigated TAG mixture. In this work, a linear correlation was established between composition of the mixture of each TAG regioisomer and the logarithm of the branching ratio for competitive fragmentation. Depending on the availability of at least one TAG regioisomer as standard, the kinetic method and the standard additions method led to the quantitative analysis of natural TAG mixtures. PMID:22444537

  14. Structurally diagnostic ion-molecule reactions and collisionally activated dissociation of 1,4-benzodiazepines in a quadrupole ion trap mass spectrometer.

    PubMed

    McCarley, T D; Brodbelt, J

    1993-09-01

    The ion-molecule reactions of various 1,4-benzodiazepines and dimethyl ether ions were studied with a quadrupole ion trap mass spectrometer. The methoxymethylene ions of dimethyl ether selectively react with 3-hydroxy-1,4-benzodiazepines (temazepam, oxazepam) to form (M+13)+ adducts by methylene substitution, and they react with 1,4-benzodiazepines that do not have hydroxyl substituents (diazepam, nordiazepam, nitrazepam) to form (M+15)+ adduct by a simple methyl cation transfer. These adducts are formed by elimination of methanol or formaldehyde, respectively, from (M+CH2OCH3)+ precursor ions. Ion-molecule reactions of model compounds with dimethyl ether ions suggest that the reactive site in the formation of (M+15)+ adducts is the imine functional group of the 1,4-benzodiazepines, while the reactive site for formation of (M+13)+ adducts involves a functional group interaction between the hydroxyl and carbonyl functional groups. Fragmentation induced by chemical ionization and collisionally activated dissociation provides further structural information for the differentiation of 1,4-benzodiazepines. Also, the gas-phase basicities of diazepam and temazepam have been estimated by bracketing techniques to be between 220.7 and 222.2 kcal/mol. PMID:8238931

  15. Direct Determination of the Magnetic Quadrupole Contribution to the Lyman-{alpha}{sub 1} Transition in a Hydrogenlike Ion

    SciTech Connect

    Weber, G.; Stoehlker, Th.; Braeuning, H.; Hess, S.; Kozhuharov, C.; Spillmann, U.; Surzhykov, A.; Maertin, R.; Winters, D. F. A.; Brandau, C.; Fritzsche, S.; Geyer, S.; Hagmann, S.; Petridis, N.; Reuschl, R.; Trotsenko, S.

    2010-12-10

    We report the observation of an interference between the electric dipole (E1) and the magnetic quadrupole (M2) amplitudes for the linear polarization of the Ly-{alpha}{sub 1} (2p{sub 3/2}{yields}1s{sub 1/2}) radiation of hydrogenlike uranium. This multipole mixing arises from the coupling of the ion to different multipole components of the radiation field. Our observation indicates a significant depolarization of the Ly-{alpha}{sub 1} radiation due to the E1-M2 amplitude mixing. It proves that a combined measurement of the linear polarization and of the angular distribution enables a very precise determination of the ratio of the E1 and the M2 transition amplitudes and the corresponding transition rates without any assumptions concerning the population mechanism for the 2p{sub 3/2} state.

  16. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An ultra-high performance liquid chromatography-ion mobility- quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine core structure, plus methylated, oxidized, and reduced speci...

  17. Paired-ion electrospray ionization--triple quadrupole tandem mass spectrometry for quantification of anionic surfactants in waters.

    PubMed

    Santos, Inês C; Guo, Hongyue; Mesquita, Raquel B R; Rangel, António O S S; Armstrong, Daniel W; Schug, Kevin A

    2015-10-01

    A new paired ion electrospray ionization tandem mass spectrometry method for determination of anionic surfactants in water samples was developed. In this method, dicationic ion-pairing reagents were complexed with monoanionic analytes to facilitate analyte detection in positive mode electrospray ionization - mass spectrometry. Single ion monitoring and selected reaction monitoring on a triple quadrupole instrument were performed and compared. Four dicationic reagents were tested for the determination of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBS), and stearic acid (SA), among other common anions. The obtained limits of detection were compared with those from previous literature. Solid phase extraction using a C18 cartridge was performed in order to eliminate matrix interferences. A literature review was compiled for the methods published between 2010 and 2015 for determination of anionic surfactants. The optimized method was more sensitive than previously developed methods with LOD values of 2.35, 35.4, 37.0, 1.68, and 0.675 pg for SDS, SA, DBS, PFOS, and PFOA, respectively. The developed method was effectively applied for the determination of anionic surfactants in different water samples such as bottled drinking water, cooking water, tap water, and wastewater. PMID:26078166

  18. Real-Time Quantitative Analysis of H2, He, O2, and Ar by Quadrupole Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Harrison, W. W.; Griffin, Timothy P.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    The use of a quadrupole ion trap mass spectrometer for quantitative analysis of hydrogen and helium as well as other permanent gases is demonstrated. The customized instrument utilizes the mass selective instability mode of mass analysis as with commercial instruments; however, this instrument operates at a greater RF trapping frequency and without a buffer gas. With these differences, a useable mass range from 2 to over 50 Da is achieved, as required by NASA for monitoring the Space Shuttle during a launch countdown. The performance of the ion trap is evaluated using part-per-million concentrations of hydrogen, helium, oxygen and argon mixed into a nitrogen gas stream. Relative accuracy and precision when quantitating the four analytes were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were slightly higher than the requirement. The instrument provided adequate performance at fast data recording rates, demonstrating the utility of an ion trap mass spectrometer as a real-time quantitative monitoring device for permanent gas analysis.

  19. Development and Evaluation of a Variable-Temperature Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Derkits, David; Wiseman, Alex; Snead, Russell F.; Dows, Martina; Harge, Jasmine; Lamp, Jared A.; Gronert, Scott

    2016-02-01

    A new, variable-temperature mass spectrometer system is described. By applying polyimide heating tape to the end-cap electrodes of a Bruker (Bremen, Germany) Esquire ion trap, it is possible to vary the effective temperature of the system between 40 and 100°C. The modification does not impact the operation of the ion trap and the heater can be used for extended periods without degradation of the system. The accuracy of the ion trap temperatures was assessed by examining two gas-phase equilibrium processes with known thermochemistry. In each case, the variable-temperature ion trap provided data that were in good accord with literature data, indicating the effective temperature in the ion trap environment was being successfully modulated by the changes in the set-point temperatures on the end-cap electrodes. The new design offers a convenient and effective way to convert commercial ion trap mass spectrometers into variable-temperature instruments.

  20. Development and Evaluation of a Variable-Temperature Quadrupole Ion Trap Mass Spectrometer.

    PubMed

    Derkits, David; Wiseman, Alex; Snead, Russell F; Dows, Martina; Harge, Jasmine; Lamp, Jared A; Gronert, Scott

    2016-02-01

    A new, variable-temperature mass spectrometer system is described. By applying polyimide heating tape to the end-cap electrodes of a Bruker (Bremen, Germany) Esquire ion trap, it is possible to vary the effective temperature of the system between 40 and 100°C. The modification does not impact the operation of the ion trap and the heater can be used for extended periods without degradation of the system. The accuracy of the ion trap temperatures was assessed by examining two gas-phase equilibrium processes with known thermochemistry. In each case, the variable-temperature ion trap provided data that were in good accord with literature data, indicating the effective temperature in the ion trap environment was being successfully modulated by the changes in the set-point temperatures on the end-cap electrodes. The new design offers a convenient and effective way to convert commercial ion trap mass spectrometers into variable-temperature instruments. PMID:26483183

  1. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-01-01

    HISTRAP is a proposed synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac. The ring will have a maximum bending power of 2.0 T.m and have a circumference of 46.8 m.

  2. Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics

    NASA Astrophysics Data System (ADS)

    Canterbury, Jesse D.; Merrihew, Gennifer E.; MacCoss, Michael J.; Goodlett, David R.; Shaffer, Scott A.

    2014-12-01

    The most common data collection in shotgun proteomics is via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest. An alternative to DDA is data-independent acquisition (DIA), a process in which a specified range in m/ z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum, thus potentially offering a more comprehensive analysis of peptides than DDA. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified with an electrodynamic ion funnel, and an LTQ Velos. These instruments represent both older (LTQ) and newer (LTQ Velos) ion trap designs (i.e., linear versus dual ion traps, respectively), and allow direct comparison of peptide identifications using both DDA and DIA analysis. Further, as the LTQ Velos has an enhanced "S-lens" ion guide to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, whereas the faster scanning LTQ Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design.

  3. Development of a New Ion Mobility (Quadrupole) Time-of-Flight Mass Spectrometer

    PubMed Central

    Ibrahim, Yehia M.; Baker, Erin S.; Danielson, William F.; Norheim, Randolph V.; Prior, David C.; Anderson, Gordon A.; Belov, Mikhail E.; Smith, Richard D.

    2014-01-01

    A new ion mobility spectrometer (IMS) platform was developed to improve upon the sensitivity and reproducibility of our previous platforms, and further enhance IMS-MS utility for broad ‘pan-omics’ measurements. The new platform incorporated an improved electrospray ionization source and interface for enhanced sensitivity, and providing the basis for further benefits based upon implementation of multiplexed IMS. The ion optics included electrodynamic ion funnels at both the entrance and exit of the IMS, an ion funnel trap for ion injection, and a design in which nearly all ion optics (e.g. drift rings, ion funnels) were fabricated using printed circuit board technology. The IMS resolving power achieved was ~73 for singly-charged ions, very close to the predicted diffusion-limited resolving power (~75). The platform’s performance evaluation (e.g. for proteomics measurements) include LC-IMS-TOF MS datasets for 30 technical replicates for a trypsin digested human serum, and included platform performance in each dimension (LC, IMS and MS) separately. PMID:26185483

  4. DETERMINING ION COMPOSITIONS USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER

    EPA Science Inventory

    For the past decade, we have used double focusing mass spectrometers to determine
    compositions of ions observed in mass spectra produced from compounds introduced by GC
    based on measured exact masses of the ions and their +1 and +2 isotopic profiles arising from atoms of ...

  5. Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics

    PubMed Central

    Canterbury, Jesse D.; Merrihew, Gennifer E.; Goodlett, David R.; MacCoss, Michael J.; Shaffer, Scott A.

    2015-01-01

    A common strategy in mass spectrometry analyses of complex protein mixtures is to digest the proteins to peptides, separate the peptides by microcapillary liquid chromatography and collect tandem mass spectra (MS/MS) on the eluting, complex peptide mixtures, a process commonly termed “shotgun proteomics”. For years, the most common way of data collection was via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest, a process often leaving lower abundant signals unanalyzed and therefore unidentified in the experiment. Advances in both instrumentation duty cycle and sensitivity allow DDA to probe to lower peptide abundance and therefore enable mapping proteomes to a more significant depth. An alternative to acquiring data by DDA is by data-independent acquisition (DIA), in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum. As a consequence, DIA acquisition potentially offers more comprehensive analysis of peptides than DDA and in principle can yield tandem mass spectra of all ionized molecules following their conversion to the gas-phase. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified in-house with an electrodynamic ion funnel, and an LTQ-Velos. These instruments were chosen as they are representative of both older (LTQ) and newer (LTQ-Velos) ion trap designs i.e., linear ion trap and dual ion traps, respectively, and allow direct comparison of peptide identification using both DDA and DIA analysis. Further, as the LTQ-Velos has an improved “S-lens” ion guide in the high-pressure region to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different

  6. An electrostatic quadrupole doublet focusing system for MeV heavy ions in MeV-SIMS

    NASA Astrophysics Data System (ADS)

    Seki, T.; Shitomoto, S.; Nakagawa, S.; Aoki, T.; Matsuo, J.

    2013-11-01

    The importance of imaging mass spectrometry (MS) for visualizing the spatial distribution of molecular species in biological tissues and cells is growing. In conventional SIMS with keV-energy ion beams, elastic collisions occur between projectiles and atoms in constituent molecules. The collisions produce fragments, making acquisition of molecular information difficult. In contrast, MeV-energy ion beams excite electrons near the surface and enhance the ionization of high-mass molecules, hence, fragment suppressed SIMS spectrum of ionized molecules can be obtained. This work is a further step on our previous report on the successful development of a MeV secondary ion mass spectrometry (MeV-SIMS) for biological samples. We have developed an electrostatic quadrupole doublet (EQ doublet) focusing system, made of two separate lenses, Q1 and Q2, to focus the MeV heavy ion beam and reduce measurement time. A primary beam of 6 MeV Cu4+ was focused with this EQ doublet. We applied 1120 V to the Q1 lens and 1430 V to the Q2 lens, and the current density increased by a factor of about 60. Using this arrangement, we obtained an MeV-SIMS image of 100 × 100 pixels of cholesterol-OH+ of cerebellum (m/z = 369.3) over a 4 mm × 4 mm field of view, with a pixel size of 40 μm within 5 min, showing that our EQ doublet reduces the measurement time of current imaging by a factor of about 30.

  7. A Generic Multiple Reaction Monitoring Based Approach for Plant Flavonoids Profiling Using a Triple Quadrupole Linear Ion Trap Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-06-01

    Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix ( Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.

  8. A frequency and amplitude scanned quadrupole mass filter for the analysis of high m/z ions

    SciTech Connect

    Shinholt, Deven L.; Anthony, Staci N.; Alexander, Andrew W.; Draper, Benjamin E.; Jarrold, Martin F.

    2014-11-15

    Quadrupole mass filters (QMFs) are usually not used to analyze high m/z ions, due to the low frequency resonant circuit that is required to drive them. Here we describe a new approach to generating waveforms for QMFs. Instead of scanning the amplitude of a sine wave to measure the m/z spectrum, the frequency of a trapezoidal wave is digitally scanned. A synchronous, narrow-range (<0.2%) amplitude scan overlays the frequency scan to improve the sampling resolution. Because the frequency is the primary quantity that is scanned, there is, in principle, no upper m/z limit. The frequency signal is constructed from a stabilized base clock using a field programmable gate array. This signal drives integrating amplifiers which generate the trapezoidal waves. For a trapezoidal wave the harmonics can be minimized by selecting the appropriate rise and fall times. To achieve a high resolving power, the digital signal has low jitter, and the trapezoidal waveform is generated with high fidelity. The QMF was characterized with cesium iodide clusters. Singly and multiply charged clusters with z up to +5 were observed. A resolving power of ∼1200 (FWHM) was demonstrated over a broad m/z range. Resolution was lost above 20 000 Th, partly because of congestion due to overlapping multiply charged clusters. Ions were observed for m/z values well in excess of 150 000 Th.

  9. A frequency and amplitude scanned quadrupole mass filter for the analysis of high m/z ions

    NASA Astrophysics Data System (ADS)

    Shinholt, Deven L.; Anthony, Staci N.; Alexander, Andrew W.; Draper, Benjamin E.; Jarrold, Martin F.

    2014-11-01

    Quadrupole mass filters (QMFs) are usually not used to analyze high m/z ions, due to the low frequency resonant circuit that is required to drive them. Here we describe a new approach to generating waveforms for QMFs. Instead of scanning the amplitude of a sine wave to measure the m/z spectrum, the frequency of a trapezoidal wave is digitally scanned. A synchronous, narrow-range (<0.2%) amplitude scan overlays the frequency scan to improve the sampling resolution. Because the frequency is the primary quantity that is scanned, there is, in principle, no upper m/z limit. The frequency signal is constructed from a stabilized base clock using a field programmable gate array. This signal drives integrating amplifiers which generate the trapezoidal waves. For a trapezoidal wave the harmonics can be minimized by selecting the appropriate rise and fall times. To achieve a high resolving power, the digital signal has low jitter, and the trapezoidal waveform is generated with high fidelity. The QMF was characterized with cesium iodide clusters. Singly and multiply charged clusters with z up to +5 were observed. A resolving power of ˜1200 (FWHM) was demonstrated over a broad m/z range. Resolution was lost above 20 000 Th, partly because of congestion due to overlapping multiply charged clusters. Ions were observed for m/z values well in excess of 150 000 Th.

  10. Comprehensive Lipidome Analysis by Shotgun Lipidomics on a Hybrid Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Almeida, Reinaldo; Pauling, Josch Konstantin; Sokol, Elena; Hannibal-Bach, Hans Kristian; Ejsing, Christer S.

    2015-01-01

    Here we report on the application of a novel shotgun lipidomics platform featuring an Orbitrap Fusion mass spectrometer equipped with an automated nanoelectrospray ion source. To assess the performance of the platform for in-depth lipidome analysis, we evaluated various instrument parameters, including its high resolution power unsurpassed by any other contemporary Orbitrap instrumentation, its dynamic quantification range and its efficacy for in-depth structural characterization of molecular lipid species by quadrupole-based higher-energy collisional dissociation (HCD), and ion trap-based resonant-excitation collision-induced dissociation (CID). This evaluation demonstrated that FTMS analysis with a resolution setting of 450,000 allows distinguishing isotopes from different lipid species and features a linear dynamic quantification range of at least four orders of magnitude. Evaluation of fragmentation analysis demonstrated that combined use of HCD and CID yields complementary fragment ions of molecular lipid species. To support global lipidome analysis, we designed a method, termed MSALL, featuring high resolution FTMS analysis for lipid quantification, and FTMS2 analysis using both HCD and CID and ITMS3 analysis utilizing dual CID for in-depth structural characterization of molecular glycerophospholipid species. The performance of the MSALL method was benchmarked in a comparative analysis of mouse cerebellum and hippocampus. This analysis demonstrated extensive lipidome quantification covering 311 lipid species encompassing 20 lipid classes, and identification of 202 distinct molecular glycerophospholipid species when applying a novel high confidence filtering strategy. The work presented here validates the performance of the Orbitrap Fusion mass spectrometer for in-depth lipidome analysis.

  11. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future. PMID:26996438

  12. A differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer: a mass spectrometer capable of MS(n) experiments free from interfering reactions.

    PubMed

    Owen, Benjamin C; Jarrell, Tiffany M; Schwartz, Jae C; Oglesbee, Rob; Carlsen, Mark; Archibold, Enada F; Kenttämaa, Hilkka I

    2013-12-01

    A novel differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer was designed and built to facilitate tandem MS experiments free from interfering reactions. The instrument consists of two differentially pumped Thermo Scientific linear quadrupole ion trap (LQIT) systems that have been connected via an ion transfer octupole encased in a machined manifold. Tandem MS experiments can be performed in the front trap and then the resulting product ions can be transferred via axial ejection into the back trap for further, independent tandem MS experiments in a differentially pumped area. This approach allows the examination of consecutive collision-activated dissociation (CAD) and ion-molecule reactions without unwanted side reactions that often occur when CAD and ion-molecule reactions are examined in the same space. Hence, it greatly facilitates investigations of ion structures. In addition, the overall lower pressure of the DLQIT, as compared to commercial LQIT instruments, results in a reduction of unwanted side reactions with atmospheric contaminants, such as water and oxygen, in CAD and ion-molecule experiments. PMID:24171553

  13. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  14. Identification of 2-aminothiazolobenzazepine metabolites in human, rat, dog, and monkey microsomes by ion-molecule reactions in linear quadrupole ion trap mass spectrometry.

    PubMed

    Zhang, Minli; Eismin, Ryan; Kenttämaa, Hilkka; Xiong, Hui; Wu, Ye; Burdette, Doug; Urbanek, Rebecca

    2015-03-01

    2-Aminothiazolobenzazepine (2-ATBA), 7-[(1-methyl-1H-pyrazol-4-yl)methyl]-6,7,8,9-tetrahydro-5H-[1,3]thiazolo[4,5-h][3]benzazepin-2-amine, is a D2 partial agonist that has demonstrated antipsychotic effects in a rodent in vivo efficacy model. The metabolite profile showed that 2-ATBA is mainly metabolized by oxidation. However, identification of the oxidation site(s) in the 2-aminothiazole group presents a challenge for the traditional metabolite identification methods such as liquid chromatography/mass spectrometry and NMR due to the lack of unique tandem mass spectrometry fragmentation patterns for ions with the 2-aminothiazole group oxidized at different sites and the lack of stability for purification or reference standard synthesis. We describe the characterization of the oxidized heteroatoms of the 2-aminothiazole group via gas-phase ion-molecule reactions (GPIMR) in a modified linear quadrupole ion trap mass spectrometer. The GPIMR reagents used were dimethyl disulfide, tert-butyl peroxide, and tri(dimethylamino)borane. Each reagent was introduced into the ion trap through the helium line and was allowed to react with the protonated metabolites. The ionic ion-molecule reaction products and their fragmentation profiles were compared with the profiles of the ionic ion-molecule reaction products of protonated reference compounds that had specific heteroatom functionalities. The oxidized 2-aminothiazole metabolite of 2-ATBA showed a similar GPIMR profile to that of the reference compounds with a tertiary N-oxide functionality and distinct from the profiles of the reference compounds with N-aryl hydroxylamine, nitroso, or pyridine N-oxide functionalities. This study demonstrates the feasibility of fingerprinting the chemical nature of oxidized nitrogen functional groups via GPIMR profiling for metabolite structure elucidation. PMID:25547868

  15. Secondary batteries with multivalent ions for energy storage.

    PubMed

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600

  16. A Quadrupole Ion Trap Mass Spectrometer for Quantitative Analysis of Nitrogen-Purged Compartments within the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Griffin, Timothy P.; Helms, William R.; Yost, Richard A.; Steinrock, T. (Technical Monitor)

    2001-01-01

    To enter orbit, the Space Shuttle burns 1.8 million liters of liquid hydrogen combined with 0.8 million liters of liquid oxygen through three rocket engines mounted in the aft. NASA monitors the nitrogen-purged aft compartment for increased levels of hydrogen or oxygen in order to detect and determine the severity of a cryogenic fuel leak. Current monitoring is accomplished with a group of mass spectrometer systems located as much as 400 feet away from the Shuttle. It can take up to 45 seconds for gas to reach the mass spectrometer, which precludes monitoring for leaks in the final moments before liftoff (the orbiter engines are started at T-00:06 seconds). To remedy the situation, NASA is developing a small rugged mass spectrometer to be used as point-sensors around the Space Shuttle. As part of this project, numerous mass analyzer technologies are being investigated. Presented here are the preliminary results for one such technology, quadrupole ion trap mass spectrometry (QITMS). A compact QITMS system has been developed in-house at the University of Florida for monitoring trace levels of four primary gases, hydrogen, helium, oxygen, and argon, all in a nitrogen background. Since commercially available QITMS systems are incapable of mass analysis at m/z(exp 2), the home-built system is preferred for the evaluation of QITMS technology.

  17. Characterization of column packing materials in high-performance liquid chromatography by charge-detection quadrupole ion trap mass spectrometry.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Chen, Rui; Zhang, Yiming; Peng, Wen-Ping; Nie, Zongxiu; Chang, Huan-Cheng; Liu, Huwei; Chen, Yi

    2011-07-01

    This article reports an application of charge-detection quadrupole ion trap mass spectrometry (CD-ITMS) to characterize the column packing materials in high-performance liquid chromatography (HPLC). Both the mean mass and the mass distribution of the packing materials are obtained and used to calculate the specific surface area of unbonded silica, the carbon load of the bonded silica, and their particle size distributions. The obtained specific surface areas and carbon loads are consistent with those measured independently by nitrogen sorption and elemental analysis respectively, whereas the derived size distributions show better resolution than that measured by a laser particle size analyzer. Furthermore, we evaluate the uniformity of particle size, which is the key parameter for column efficiency of the liquid chromatography by analyzing the mass distribution of the packing materials at the top and bottom of the column. A broader mass distribution, which yields decreased column efficiency, is observed for the column top because of the excessive use of the column. Our results suggest that CD-ITMS can serve as an alternative means for the characterization of the packing materials in HPLC and is potentially useful for column quality control. PMID:21612293

  18. Investigation of the gas-phase hydrogen/deuterium exchange behavior of aromatic dicarboxylic acids in a quadrupole ion trap

    NASA Astrophysics Data System (ADS)

    Chipuk, Joseph E.; Brodbelt, Jennifer S.

    2007-11-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions of four deprotonated aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalic acid) with D2O were performed in a quadrupole ion trap mass spectrometer. Experimental results showed significant differences in the rate and extent of exchange when the relative position of the carboxylic acid groups varied. Spontaneous and near complete exchange of one aromatic hydrogen atom occurred when the carboxylic acid groups were in the meta-position, whereas no additional exchange was observed for either the ortho- or para-isomers or for the structurally similar naphthalic acid. Computational investigations support the participation of several possible exchange mechanisms with the contribution of each relying heavily on the relative orientation of the acid moieties. A relay mechanism that bridges the deprotonation site and the labile hydrogen site appears to be responsible for the H/D exchange of not only the labile hydrogen atom of isophthalic acid, but also for the formation of a stable carbanion and corresponding subsequent exchange of one aromatic hydrogen atom. The impact of hydrogen bonding on the relay mechanism is demonstrated by the reaction of phthalic acid as the extent and rate of reaction are greatly retarded by the favorable interaction of the two carboxylic acid groups. Finally, a flip-flop mechanism is likely responsible for the exchange of both terephthalic acid and 2,6-naphthalic acid where the reactive sites are too remote for exchange via relay.

  19. Wide-scope screening and quantification of 50 pesticides in wine by liquid chromatography/quadrupole time-of-flight mass spectrometry combined with liquid chromatography/quadrupole linear ion trap mass spectrometry.

    PubMed

    He, Zeying; Xu, Yaping; Wang, Lu; Peng, Yi; Luo, Ming; Cheng, Haiyan; Liu, Xiaowei

    2016-04-01

    In this paper, a wide scope screening method of pesticides in wine was established using liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF MS) and liquid chromatography/quadrupole linear ion trap mass spectrometry (LC-QqLIT MS). Information dependent acquisition (IDA) experiments are used to obtain both MS and MS/MS information for LC-QTOF MS analysis. For LC-QqLIT MS analysis, MS/MS spectra of target pesticides were simultaneously acquired using Enhanced Product Ion (EPI) mode at very low concentrations to increase the confidence in analytical results of multiple reaction monitoring (MRM) by library searching. Method validation was carried out using 50 pesticides commonly used in vineyards. The LOQs, linearity, repeatability were determined and good enough for quantification. The screening and quantification results obtained using LC-QTOF MS and LC-QqLIT MS were compared. Contaminants were screened against libraries containing over 2800 compounds based on accurate mass, isotopic patterns, and MS/MS spectra searching to extend the scope of this methodology to non-target screening. PMID:26593613

  20. Liquid chromatography quadrupole linear ion trap mass spectrometry for multiclass screening and identification of lipophilic marine biotoxins in bivalve mollusks.

    PubMed

    Wu, Haiyan; Guo, Mengmeng; Tan, Zhijun; Cheng, Haiyan; Li, Zhaoxin; Zhai, Yuxiu

    2014-09-01

    A liquid chromatography quadrupole linear ion trap mass spectrometry method with fast polarity switching and a scheduled multiple reaction monitoring algorithm mode was developed for multiclass screening and identification of lipophilic marine biotoxins in bivalve molluscs. A major advantage of the method is that it can detect members of all six groups of lipophilic marine biotoxins [okadaic acid (OA), yessotoxins (YTX), azaspiracids (AZA), pectenotoxins (PTX), cyclic imines (CI), and brevetoxins (PbTx)], thereby allowing quantification and high confidence identification from a single liquid chromatography tandem mass spectrometry (LC-MS/MS) injection. An enhanced product ion (EPI) library was constructed after triggered collection of data via information-dependent acquisition (IDA) of EPI spectra from standard samples. A separation method for identifying 17 target toxins in a single analysis within 12min was developed and tested. Different solid phase extraction sorbents, the matrix effect (for oyster, scallop, and mussel samples), and stability of the standards also were evaluated. Matrix-matched calibration was used for quantification of the toxins. The limits of detection were 0.12-13.6μg/kg, and the limits of quantification were 0.39-45.4μg/kg. The method was used to analyze 120 shellfish samples collected from farming areas along the coast of China, and 7% of the samples were found to be contaminated with toxins. The library search identified PbTx-3, YTX, OA, PTX2, AZA1, AZA2, and desmethylspirolide C (SPX1). Overall, the method exhibited excellent sensitivity and reproducibility, and it will have broad applications in the monitoring of lipophilic marine biotoxins. PMID:25086754

  1. Secondary batteries with multivalent ions for energy storage

    PubMed Central

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg−1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600

  2. Secondary batteries with multivalent ions for energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg-1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  3. Enhanced lithium ion storage in nanoimprinted carbon

    NASA Astrophysics Data System (ADS)

    Wang, Peiqi; Chen, Qian Nataly; Xie, Shuhong; Liu, Xiaoyan; Li, Jiangyu

    2015-07-01

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  4. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  5. Nuclear physics with unstable ions at storage rings

    NASA Astrophysics Data System (ADS)

    Bosch, Fritz; Litvinov, Yuri A.; Stöhlker, Thomas

    2013-11-01

    During the last two decades, ion storage-cooler rings have been proven as powerful devices for addressing precision experiments in the realm of atomic physics, nuclear physics and nuclear astrophysics. Most important, in particular for stored unstable nuclides, is the unrivalled capability of ion cooler-rings to generate brilliant beams of highest phase-space density owing to sophisticated cooling techniques, and to store them for extended periods of time by preserving their charge state. This report focuses on nuclear physics and nuclear astrophysics experiments with in-flight produced exotic ions that were injected into storage-cooler rings. Those experiments were conducted within the last decade mainly at the only operating facilities that are capable to provide and to store exotic ions, namely the ESR in Darmstadt, Germany and the CSRe-ring in Lanzhou, China. The majority of nuclear physics experiments performed at these equipments concerns ground-state properties of nuclei far from stability, such as masses and lifetimes. The rich harvest of these measurements is presented. In particular it is shown that storage-cooler rings are ideal, if not the only, devices where two-body beta decays of exotic highly-charged ions, such as bound-state beta decay and orbital electron capture, can be studied in every detail, based on “single-ion decay spectroscopy”. Furthermore, experiments at the border between atomic and nuclear physics are discussed which render valuable information on nuclear properties by exploiting one of the most precise tools of atomic spectroscopy on stored ions, the “dielectronic recombination”. Ion storage rings with cooled exotic beams and equipped with thin internal gas targets deliver also unrivalled opportunities for addressing with highest precision key reactions in the fields of nuclear astrophysics and nuclear structure. First very promising experiments exploring the potential of ion cooler-rings in this realm have been already

  6. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    SciTech Connect

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-06-14

    expanded with additional bacteria and fungi. These spectra were acquired on a Finnigan Magnum ion trap using helium buffer gas. A new database of Cl spectra of microorganisms is planned using the CBMS Block II instrument and air as the buffer gas. Using the current database, the fatty acid composition of the organisms was compared using the percentage of the ion current attributable to fatty acids. The data presented suggest promising rules for discrimination of these organisms. Strain, growth media and vegetative state do contribute to some of the distributions observed in the data. However, the data distributions observed in the current study only reflect our experience to date and do not fully represent the variability that might be expected in practice: Acquisition of MS/ MS spectra has begun (using He and air buffer gas) of the protonated molecular ion of a variety of fatty acids and for a number of ions nominally assigned as fatty acids from microorganisms. These spectra will be used to help verify fatty acid .

  7. Identification of the sulfoxide functionality in protonated analytes via ion/molecule reactions in linear quadrupole ion trap mass spectrometry.

    PubMed

    Sheng, Huaming; Williams, Peggy E; Tang, Weijuan; Zhang, Minli; Kenttämaa, Hilkka I

    2014-09-01

    A mass spectrometric method utilizing gas-phase ion/molecule reactions of 2-methoxypropene (MOP) has been developed for the identification of the sulfoxide functionality in protonated analytes in a LQIT mass spectrometer. Protonated sulfoxide analytes react with MOP to yield an abundant addition product (corresponding to 37-99% of the product ions), which is accompanied by a much slower proton transfer. The total efficiency (percent of gas-phase collisions leading to products) of the reaction is moderate (3-14%). A variety of compounds with different functional groups, including sulfone, hydroxylamino, N-oxide, aniline, phenol, keto, ester, amino and hydroxy, were examined to probe the selectivity of this reaction. Most of the protonated compounds with proton affinities lower than that of MOP react mainly via proton transfer to MOP. The formation of adduct-MeOH ions was found to be characteristic for secondary N-hydroxylamines. N-Oxides formed abundant MOP adducts just like sulfoxides, but sulfoxides can be differentiated from N-oxides based on their high reaction efficiencies. The reaction was tested by using the anti-inflammatory drug sulindac (a sulfoxide) and its metabolite sulindac sulfone. The presence of a sulfoxide functionality in the drug but a sulfone functionality in the metabolite was readily demonstrated. The presence of other functionalities in addition to sulfoxide in the analytes was found not to influence the diagnostic reactivity. PMID:24968187

  8. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE

    SciTech Connect

    Schmidt, H. T.; Thomas, R. D.; Gatchell, M.; Rosen, S.; Reinhed, P.; Loefgren, P.; Braennholm, L.; Blom, M.; Bjoerkhage, M.; Baeckstroem, E.; Alexander, J. D.; Leontein, S.; Zettergren, H.; Liljeby, L.; Kaellberg, A.; Simonsson, A.; Hellberg, F.; Mannervik, S.; Larsson, M.; Geppert, W. D.; and others

    2013-05-15

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C{sub n}{sup -}, n= 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C{sub 2}{sup -} molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s {+-} 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10{sup -14} mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  9. Study of the in vitro metabolism of TJ0711 using ultra high performance liquid chromatography with quadrupole time-of-flight and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry.

    PubMed

    Hu, Lei; Lv, Zhenhua; Li, Gao; Xu, Xiaolong; Zhang, Chenghao; Cao, Peng; Huang, Jiangeng; Si, Luqin

    2015-06-01

    TJ0711 (1-[4-(2-methoxyethyl)phenoxy]-3-[2-(2-methoxyphenoxy)ethylamino]-2-propanol) is a novel β-adrenoreceptor blocker with vasodilating activity. The aim of this study was to investigate the in vitro metabolic properties of TJ0711 from both qualitative and quantitative aspects using mouse, rat, dog, and human liver microsomes as well as rat hepatocytes. Two modern liquid chromatography with tandem mass spectrometry systems, ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry, were utilized for the analysis. To better characterize the metabolic pathways of TJ0711, two major metabolites were incubated under the same conditions as that for TJ0711. TJ0711 was extensively metabolized in vitro, and a total of 34 metabolites, including 19 phase I and 15 phase II metabolites, were identified. Similar metabolite profiles were observed among species, and demethylation, hydroxylation, carboxylic acid formation, and glucuronidation were proposed as the major metabolic routes. Significant interspecies differences were observed in the metabolic stability studies of TJ0711. Furthermore, gender differences were significant in mice, rats, and dogs, but were negligible in humans. The valuable information provided in this work will be useful in planning and interpreting further pharmacokinetic, in vivo metabolism and toxicological studies of this novel β-blocker. PMID:25800512

  10. A transverse electron target for heavy ion storage rings

    SciTech Connect

    Geyer, Sabrina Meusel, Oliver; Kester, Oliver

    2015-01-09

    Electron-ion interaction processes are of fundamental interest for several research fields like atomic and astrophysics as well as plasma applications. To address this topic, a transverse electron target based on the crossed beam technique was designed and constructed for the application in storage rings. Using a sheet beam of free electrons in crossed beam geometry promises a good energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width in the transverse plane of 5 mm. Therewith, electron densities of up to 10{sup 9} electrons/cm{sup 3} are reachable in the interaction region. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV to a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions and its influence on spectroscopic measurements. Also, the effect on ion-beam optics due to the space charge of the electron beam was investigated. Presently the electron target is integrated into a test bench to evaluate its performance for its dedicated installation at the storage rings of the FAIR facility. Therefore, optical diagnostics of the interaction region and charge state analysis with a magnetic spectrometer is used. Subsequently, the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements.

  11. Differentiation of regioisomeric aromatic ketocarboxylic acids by atmospheric pressure chemical ionization CAD tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.; Habicht, S. C.; Fu, M.; Shea, R. C.; Mossman, A. B.; Kenttämaa, Hilkka I.

    2011-01-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

  12. Differentiation of Regioisomeric Aromatic Ketocarboxylic Acids by Positive Mode Atmospheric Pressure Chemical Ionization Collision-Activated Dissociation Tandem Mass Spectrometry in a Linear Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Amundson, Lucas M.; Owen, Benjamin C.; Gallardo, Vanessa A.; Habicht, Steven C.; Fu, Mingkun; Shea, Ryan C.; Mossman, Allen B.; Kenttämaa, Hilkka I.

    2011-04-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

  13. Matrix-assisted laser desorption/ionization mass spectrometric imaging of complete rat sections using a triple quadrupole linear ion trap.

    PubMed

    Hopfgartner, Gérard; Varesio, Emmanuel; Stoeckli, Markus

    2009-03-01

    The fast imaging of complete rat sections by matrix-assisted laser desorption/ionization on a triple quadrupole linear ion trap is demonstrated. After administration of the pharmaceutical compound (MW=467.4 u) at 0.5 mg/kg the parent drug could be identified in full scan mode and in the enhanced product ion spectrum mode. Furthermore, the precursor ion mode could also be used to monitor the presence of the parent drug in the tissue section. In the selected reaction monitoring mode, using a laser frequency of 1000 Hz and a rastering speed of about 18 mm/s, a targeted representative image of drug distribution in a rat section could be obtained in less than 15 min. PMID:19206086

  14. NMR relaxation behavior and quadrupole coupling constants of 39K and 23Na ions in glycerol. Comparisons with 39K tissue data

    NASA Astrophysics Data System (ADS)

    Wellard, R. Mark; Shehan, B. Philip; Craik, David J.; Adam, William R.

    The quadrupole coupling constants (qcc) for 39K and 23Na ions in glycerol have been calculated from linewidths measured as a function of temperature (which in turn results in changes in solution viscosity). The qcc of 39K in glycerol is found to be 1.7 MHz, and that of 23Na is 1.6 MHz. The relaxation behavior of 39K and 23Na ions in glycerol shows magnetic field and temperature dependence consistent with the equations for transverse relaxation more commonly used to describe the reorientation of nuclei in a molecular framework with intramolecular field gradients. It is shown, however, that τ c is not simply proportional to the ratio of viscosity/temperature (η T). The 39K qcc in glycerol and the value of 1.3 MHz estimated for this nucleus in aqueous solution are much greater than values of 0.075 to 0.12 MHz calculated from T 2 measurements of 39K in freshly excised rat tissues. This indicates that, in biological samples, processes such as exchange of potassium between intracellular compartments or diffusion of ions through locally ordered regions play a significant role in determining the effective quadrupole coupling constant and correlation time governing 39K relaxation. T1 and T2 measurements of rat muscle at two magnetic fields also indicate that a more complex correlation function may be required to describe the relaxation of 39K in tissue. Similar results and conclusions are found for 23Na.

  15. Miniaturized GC/MS instrumentation for in situ measurements: micro gas chromatography coupled with miniature quadrupole array and paul ion trap mass spectrometers

    NASA Technical Reports Server (NTRS)

    Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.

    2002-01-01

    Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.

  16. Deterioration of stannous ion in radiopharmaceutical kits during storage.

    PubMed

    McBride, M H; Shaw, S M; Kessler, W V

    1979-10-01

    The deterioration of stannous ion (Sn++) in inhouse-prepared and commercial radiopharmaceutical kits was studied. Sn++ content of three types of nonlyophilized, deoxygenated, aqueous inhouse-prepared kits [diethylenetriamine pentaacetic acid (DTPA), pyrophosphate and glucoheptonate] and of three commercially prepared kits (two lyophilized pyrophosphate kits and one diphosphonate in sealed glass ampul kit) was measured by differential pulse polarography. Inhouse-prepared kits were assayed initially and after storage for 6, 12, 24 and 48 days at 24, 5 and -18 C. Commercial kits were assayed initially and after storage for 12, 24 and 48 days at 5 and 24 C. Of the inhouse-prepared kits, Sn++ stability when stored for 48 days at 5 and 24 C. Freezer storage should be used, when possible, to insure maximum stability of Sn++ in inhouse-prepared, nonlyophilized ratiopharmaceutical kits. The commercial procedures of lyophilization and of sealing the reagent in a sealed glass ampul prolong Sn++ stability. PMID:507080

  17. Optical image storage in ion implanted PLZT ceramics

    SciTech Connect

    Peercy, P. S.; Land, C. E.

    1980-01-01

    Optical images can be stored in transparent lead-lanthanum-zirconate-titanate (PLZT) ceramics by exposure to near-uv light with photon energies greater than the band gas energy of approx. 3.35 eV. The image storage process relies on optically induced changes in the switching properties of ferroelectric domains (photoferroelectric effect). Stored images are nonvolatile but can be erased by uniform uv illumination and simultaneous application of an electric field. Although high quality images, with contrast variations of greater than or equal to 100:1 and spatial resolution of approx. 10 ..mu..m, can be stored using the photoferroelectric effect, relatively high exposure energies (approx. 100 mJ/cm/sup 2/) are required to store these images. This large exposure energy severely limits the range of possible applications of nonvolatile image storage in PLZT ceramics. It was found in H, He, and Ar implanted PLZT that the photosensitivity can be significantly increased by ion implantation into the surface to be exposed. The photosensitivity after implantation with 5 x 10/sup 14/ 500 keV Ar/cm/sup 2/ is increased by about three orders of magnitude over that of unimplanted PLZT. The image storage process and the effect of ion implantation is presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and ion implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage with light intensity for ion implanted PLZT.

  18. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect

    Babinec, Susan

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge

  19. Infrared irradiation in the collision cell of a hybrid tandem quadrupole/time-of-flight mass spectrometer for declustering and cleaning of nanoelectrosprayed protein complex ions.

    PubMed

    El-Faramawy, Ayman; Guo, Yuzhu; Verkerk, Udo H; Thomson, Bruce A; Siu, K W Michael

    2010-12-01

    Herein we report the performance of a hybrid quadrupole time-of-flight tandem mass spectrometer with an improved designed for coaxial infrared laser introduction for the characterization and dissociation of large protein complex ions and their aggregates formed under nanoelectrospray ionization. The major improvement from the original design (Raspopov, S. A.; El-Faramawy, A.; Thomson, B. A.; Siu, K. W. M. Anal. Chem. 2006, 78, 4572-4577) involves the use of a hollow silica waveguide and physical isolation of the infrared laser. Large model protein complex ions and their aggregates examined include alcohol dehydrogenase, avidin, GroEL, and others. Gentle heating of these complexes with the infrared laser facilitated declustering and resulted in better resolved mass spectral peaks and more accurate molecular-weight measurements. PMID:21062028

  20. Rapid screening and characterization of drug metabolites using multiple ion monitoring dependent product ion scan and postacquisition data mining on a hybrid triple quadrupole-linear ion trap mass spectrometer.

    PubMed

    Yao, Ming; Ma, Li; Duchoslav, Eva; Zhu, Mingshe

    2009-06-01

    Multiple ion monitoring (MIM)-dependent acquisition with a triple quadrupole-linear ion trap mass spectrometer (Q-trap) was previously developed for drug metabolite profiling. In the analysis, multiple predicted metabolite ions are monitored in both Q1 and Q3 regardless of their fragmentations. The collision energy in Q2 is set to a low value to minimize fragmentation. Once an expected metabolite is detected by MIM, enhanced product ion (EPI) spectral acquisition of the metabolite is triggered. To analyze in vitro metabolites, MIM-EPI retains the sensitivity and selectivity similar to that of multiple reaction monitoring (MRM)-EPI in the analysis of in vitro metabolites. Here we present an improved approach utilizing MIM-EPI for data acquisition and multiple data mining techniques for detection of metabolite ions and recovery of their MS/MS spectra. The postacquisition data processing tools included extracted ion chromatographic analysis, product ion filtering and neutral loss filtering. The effectiveness of this approach was evaluated by analyzing oxidative metabolites of indinavir and glutathione (GSH) conjugates of clozapine and 4-ethylphenol in liver microsome incubations. Results showed that the MIM-EPI-based data mining approach allowed for comprehensive detection of metabolites based on predicted protonated molecules, product ions or neutral losses without predetermination of the parent drug MS/MS spectra. Additionally, it enabled metabolite detection and MS/MS acquisition in a single injection. This approach is potentially useful in high-throughout screening of metabolic soft spots and reactive metabolites at the drug discovery stage. PMID:19418486

  1. The KACST Heavy-Ion Electrostatic Storage Ring

    SciTech Connect

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-27

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  2. The KACST Heavy-Ion Electrostatic Storage Ring

    NASA Astrophysics Data System (ADS)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  3. Analyzing system safety in lithium-ion grid energy storage

    DOE PAGESBeta

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less

  4. Analyzing system safety in lithium-ion grid energy storage

    NASA Astrophysics Data System (ADS)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  5. Analyzing system safety in lithium-ion grid energy storage

    SciTech Connect

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  6. Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization.

    PubMed

    Weston, Daniel J; Bateman, Robert; Wilson, Ian D; Wood, Tim R; Creaser, Colin S

    2005-12-01

    A novel approach to the rapid analysis of pharmaceutical drug formulations using hyphenated ion mobility spectrometry (IMS) and time-of-flight mass spectrometry (ToF-MS) that requires no sample pretreatment or chromatographic separation is described. A modified quadrupole time-of-flight mass spectrometer containing an ion mobility drift cell was used for gas-phase electrophoretic separation of ions prior to ToF-MS detection. The generation of sample ions directly from tablets and cream formulations was effected by desorption electrospray ionization (DESI) using a modified electrospray ion source. The analysis of a range of over-the-counter and prescription tablet formulations is described, including histamine H2 receptor antagonist (ranitidine), analgesic (paracetamol), opiate (codeine), and aromatase inhibitor anticancer (anastrozole) drugs. The successful determination of active drugs from soft formulations, such as an antiseptic cream (chlorhexidine) and a nicotine-containing skin patch, is also presented. Limits of detection for the active drugs using the DESI/IMS/ToF-MS method fell within the high-picomole to nanomole range. In all cases, the use of ion mobility drift tube separation showed increased selectivity for active drug responses (present as low as 0.14% w/w) over excipient responses such as poly(ethylene glycol). Tandem mass spectrometric analysis of precursor ions separated by IMS allowed positive confirmation of active drugs with little loss of ion mobility efficiency. The ability to analyze hard or soft pharmaceutical formulations directly by DESI combined with ion mobility spectrometry/mass spectrometry in approximately 2 min demonstrates the potential applicability of this novel method to pharmaceutical screening of low-molecular-weight drug formulations with high selectivity over the formulation vehicle. PMID:16316164

  7. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  8. Rapid screening and characterization of drug metabolites using a multiple ion monitoring-dependent MS/MS acquisition method on a hybrid triple quadrupole-linear ion trap mass spectrometer.

    PubMed

    Yao, Ming; Ma, Li; Humphreys, W Griffith; Zhu, Mingshe

    2008-10-01

    A novel LC/MS/MS method that uses multiple ion monitoring (MIM) as a survey scan to trigger the acquisition of enhanced product ions (EPI) on a hybrid quadrupole-linear ion trap mass spectrometer (Q TRAP) was developed for drug metabolite identification. In the MIM experiment, multiple predicted metabolite ions were monitored in both Q1 and Q3. The collision energy in Q2 was set to a low value to minimize fragmentation. Results from analyzing ritonavir metabolites in rat hepatocytes demonstrate that MIM-EPI was capable of targeting a larger number of metabolites regardless of their fragmentation and retained sensitivity and duty cycle similar to multiple reaction monitoring (MRM)-EPI. MIM-based scanning methods were shown to be particularly useful in several applications. First, MIM-EPI enabled the sensitive detection and MS/MS acquisition of up to 100 predicted metabolites. Second, MIM-MRM-EPI was better than MRM-EPI in the analysis of metabolites that undergo either predictable or unpredictable fragmentation pathways. Finally, a combination of MIM-EPI and full-scan MS (EMS), as an alternative to EMS-EPI, was well suited for routine in vitro metabolite profiling. Overall, MIM-EPI significantly enhanced the metabolite identification capability of the hybrid triple quadrupole-linear ion trap LC/MS. PMID:18416441

  9. Optical imaging and information storage in ion implanted ferroelectric ceramics

    SciTech Connect

    Peercy, P.S.; Land, C.E.

    1981-11-01

    Photographic images can be stored in ferroelectric-phase lead lanthanum zirconate titanate (PLZT) ceramics using a novel photoferroelectric effect. These images are nonvolatile but erasable and can be switched from positive to negative by application of an electric field. We have found that the photosensitivity of ferroelectric PLZT is dramatically improved by ion implantation into the surface exposed to image light. For example, the intrinsic photosensitivity to near-UV light is increased by as much as four orders of magnitude by coimplantation with Ar and Ne. The increased photosensitivity results from implantation-induced decreases in dark conductivity and dielectric constant in the implanted layer. Furthermore, the increased photoferroelectric sensitivity has recently been extended from the near-UV to the visible spectrum by implants of Al and Cr. Ion-implanted PLZT is the most sensitive, nonvolatile, selectively-erasable image storage medium currently known.

  10. Magnetic properties of ISABELLE superconducting quadrupoles

    SciTech Connect

    Willen, E; Engelmann, R; Greene, A F; Herrera, J; Jaeger, K; Kirk, H; Robins, K

    1981-01-01

    A number of superconducting quadrupole magnets have been constructed in the ISABELLE project during the past year. With these quadrupoles, it was intended to test construction techniques, magnet performance and measuring capability in an effort to arrive at a quadrupole design satisfactory for use in the storage ring accelerator. While these magnets are designed to have dimensions and field properties close to those needed for regular cell ISABELLE quadrupoles, no effort was made to make them identical to one another. This report details the performance characteristics of one of these magnets, MQ3005.

  11. Path dependence of lithium ion cells aging under storage conditions

    NASA Astrophysics Data System (ADS)

    Su, Laisuo; Zhang, Jianbo; Huang, Jun; Ge, Hao; Li, Zhe; Xie, Fengchao; Liaw, Bor Yann

    2016-05-01

    This work investigates path dependence of lithium ion cells that are stored under static and non-static conditions. In the static storage tests, the levels of temperature and state of charge (SOC) are kept constant. The results of 12 tests from a combination of three temperatures and four SOCs show that, as expected, the cell ages faster at higher temperature and higher SOC. However, the cell aging mode, while consistent for all the evaluated temperatures, is different at 95% SOC from that at lower SOCs. In the non-static storage tests, the levels of temperature and SOC vary with time during the test process. The effect of the sequence of stress levels on cell aging is studied statistically using the statistical method of analysis of variation (ANOVA). It is found that cell capacity fade is path independent of both SOC and temperature, while cell resistance increase is path dependent on SOC and path independent of temperature. Finally, rate-based empirical aging models are adopted to fit the cell aging in the static storage tests. The aging model for capacity fade is demonstrated to be applicable to the non-static tests with errors between -3% and +3% for all the tested conditions over 180 days.

  12. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. PMID:27237840

  13. Rapid Quantification of Four Anthocyanins in Red Grape Wine by Hydrophilic Interaction Liquid Chromatography/Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Sun, Yongming; Xia, Biqi; Chen, Xiangzhun; Duanmu, Chuansong; Li, Denghao; Han, Chao

    2015-01-01

    The identification and quantification of four anthocyanins (cyanidin-3-O-glucoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, and malvidin-3-O-glucoside) in red grape wine were carried out by hydrophilic interaction liquid chromatography/triple quadrupole linear ion trap MS (HILIC/QTrap-MS/MS). Samples were diluted directly and separated on a Merck ZIC HILIC column with 20 mM ammonium acetate solution-acetonitrile mobile phase. Quantitative data acquisition was carried out in the multiple reaction monitoring mode. Additional identification and confirmation of target compounds were performed using the enhanced product ion mode of the linear ion trap. The LOQs were in the range 0.05-1.0 ng/mL. The average recoveries were in the range 94.6 to 104.5%. The HILIC/QTrap-MS/MS platform offers the best sensitivity and specificity for characterization and quantitative determination of the four anthocyanins in red grape wines and fulfills the quality criteria for routine laboratory application. PMID:26651575

  14. An integrated approach for profiling oxidative metabolites and glutathione adducts using liquid chromatography coupled with ultraviolet detection and triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Chen, Guiying; Cheng, Zhongzhe; Zhang, Kerong; Jiang, Hongliang; Zhu, Mingshe

    2016-09-10

    The use of liquid chromatography (LC) coupled with triple quadrupole linear ion trap (Qtrap) mass spectrometry (MS) for both quantitative and qualitative analysis in drug metabolism and pharmacokinetic studies is of great interest. Here, a new Qtrap-based analytical methodology for simultaneous detection, structural characterization and semi-quantitation of in vitro oxidative metabolites and glutathione trapped reactive metabolites was reported. In the current study, combined multiple ion monitoring and multiple reaction monitoring were served as surveying scans to trigger product ion spectral acquisition of oxidative metabolites and glutathione adduct, respectively. Then, detection of metabolites and recovery of their MS/MS spectra were accomplished using multiple data mining approaches. Additionally, on-line ultraviolet (UV) detection was employed to determine relative concentrations of major metabolites. Analyses of metabolites of clozapine and nomifensine in rat liver microsomes not only revealed multiple oxidative metabolites and glutathione adducts, but also identified their major oxidative metabolism and bioactivation pathways. The results demonstrated that the LC/UV/MS method enabled Qtrap to perform the comprehensive profiling of oxidative metabolites and glutathione adducts in vitro. PMID:27497649

  15. The application of 2-D dual nanoscale liquid chromatography and triple quadrupole-linear ion trap system for the identification of proteins.

    PubMed

    Tschäppät, Viviane; Varesio, Emmanuel; Signor, Luca; Hopfgartner, Gérard

    2005-09-01

    2-D nanoscale LC combined with a triple quadrupole-linear ion trap mass spectrometer was applied to the analysis of a complex peptide mixture. A 2-D dual nanoscale LC-MS/MS system was compared to a conventional one. Peptides were separated with a strong cation exchange (SCX) microcolumn in the first dimension and two C18 nanocolumns were used as second dimension. MS experiments were performed using information-dependent data acquisition, where two precursor ions were selected from an enhanced MS (EMS) or an enhanced multicharged ion (EMC) as survey scan. The major benefit of EMC instead of EMS was a two-fold reduction of the data file and a 15% increase of characterized proteins. The advantage of the 2-D dual nanoscale LC-MS/MS system versus the conventional 2-D nanoscale LC-MS/MS system was reflected in the significant increase of peptides which were successfully identified within the same time frame. The first factor contributing to this increase was that the mass spectrometer was collecting twice the number of relevant MS/MS data. The second factor is the use of twice the number of SCX salt fractions in the first dimension, allowing a better sample fractionation, thereby reducing the number of peptides transferred to the second chromatographic dimension per salt fraction. PMID:16224964

  16. Nanoionics: ion transport and electrochemical storage in confined systems.

    PubMed

    Maier, J

    2005-11-01

    The past two decades have shown that the exploration of properties on the nanoscale can lead to substantially new insights regarding fundamental issues, but also to novel technological perspectives. Simultaneously it became so fashionable to decorate activities with the prefix 'nano' that it has become devalued through overuse. Regardless of fashion and prejudice, this article shows that the crystallizing field of 'nanoionics' bears the conceptual and technological potential that justifies comparison with the well-acknowledged area of nanoelectronics. Demonstrating this potential implies both emphasizing the indispensability of electrochemical devices that rely on ion transport and complement the world of electronics, and working out the drastic impact of interfaces and size effects on mass transfer, transport and storage. The benefits for technology are expected to lie essentially in the field of room-temperature devices, and in particular in artificial self-sustaining structures to which both nanoelectronics and nanoionics might contribute synergistically. PMID:16379070

  17. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1989-03-01

    Twenty-three laced permanent magnet quadrupole drift tube magnets have been constructed, tested, and installed in the SuperHILAC heavy ion linear accelerator at LBL, marking the first accelerator use of this new type of quadrupole. The magnets consist of conventional tape-wound quadrupole electromagnets, using iron pole-pieces, with permanent magnet material (samarium cobalt) inserted between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the individual quadrupole magnets in a drift tube linac is never reversed, we can take advantage of this asymmetrical saturation to provide about 20% greater focusing strength than is available with conventional quadrupoles, while replacing the vanadium permendur poletips with iron poletips. Comparisons between these magnets and conventional tape-wound quadrupoles will be presented. 3 refs., 5 figs.

  18. Micromechanical Modeling of Storage Particles in Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Purkayastha, Rajlakshmi Tarun

    The effect of stress on storage particles within a lithium ion battery, while acknowledged, is not understood very well. In this work three non-dimensional parameters were identified which govern the stress response within a spherical storage particle. These parameters are developed using material properties such as the diffusion coefficient, particle radius, partial molar volume and Young's modulus. Stress maps are then generated for various values of these parameters for fixed rates of insertion, applying boundary conditions similar to those found in a battery. Stress and concentration profiles for various values of these parameters show the coupling between stress and concentration is magnified depending on the values of the parameters. These maps can be used for different materials, depending on the value of the dimensionless parameters. The value of maximum stress generated is calculated for extraction as well as insertion of lithium into the particle. The model was then used to study to ellipsoidal particles in order to ascertain the effect of geometry on the maximum stress within the particle. By performing a parameter study, we can identify those materials for which particular aspect ratios of ellipsoids are more beneficial, in terms of reducing stress. We find that the stress peaks at certain aspect ratios, mostly at 2 and 1/ 2 . A parameter study was also performed on cubic particle. The values of maximum stresses for both insertion and extraction of lithium were plotted as contour plots. It was seen that the material parameters influenced the location of the maximum stress, with the maximum stress occurring either at the center of the edge between two faces or the point at the center of a face. Newer materials such as silicon are being touted as new lithium storage materials for batteries due to their higher capacity. Their tendency to rapidly loose capacity in a short period of time has led to a variety designs such are the use of carbon nanotubes or

  19. Analysis of neutral oligosaccharides for structural characterization by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry.

    PubMed

    Ojima, Noriyuki; Masuda, Katsuyoshi; Tanaka, Koichi; Nishimura, Osamu

    2005-03-01

    We have acquired multi-stage mass spectra (MSn) of four branched N-glycans derived from human serum IgG by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF-MS) in order to demonstrate high sensitivity structural analysis. [M+H]+ and [M+Na]+ ions were detected in the positive mode. The detection limit of [M+Na]+ in MS/MS and MS3 measurements for structural analysis was found to be 100 fmol, better than that for [M+H]+. The [M+H]+ ions subsequently fragmented to produce predominantly a Y series of fragments, whereas [M+Na]+ ions fragmented to give a complex mixture of B and Y ions together with some cross-ring fragments. Three features of MALDI-QIT-CID fragmentation of [M+Na]+ were cleared by the analysis of MS/MS, MS3 and MS4 spectra: (1) the fragment ions resulting from the breaking of a bond are more easily generated than that from multi-bond dissociation; (2) the trimannosyl-chitobiose core is either hardly dissociated, easily ionized or it is easy to break a bond between N-acetylglucosamine and mannose; (3) the fragmentation by loss of only galactose from the non-reducing terminus is not observed. We could determine the existence ratios of candidates for each fragment ion in the MS/MS spectrum of [M+Na]+ by considering these features. These results indicate that MSn analysis of [M+Na]+ ions is more useful for the analysis of complicated oligosaccharide structures than MS/MS analysis of [M+H]+, owing to the higher sensitivity and enhanced structural information. Furthermore, two kinds of glycans, with differing branch structures, could be distinguished by comparing the relative fragment ion abundances in the MS3 spectrum of [M+Na]+. These analyses demonstrate that the MSn technology incorporated in MALDI-QIT-TOF-MS can facilitate the elucidation of structure of complex branched oligosaccharides. PMID:15712371

  20. Quantitative and qualitative profiling of endocannabinoids in human plasma using a triple quadrupole linear ion trap mass spectrometer with liquid chromatography.

    PubMed

    Thomas, Aurélien; Hopfgartner, Gérard; Giroud, Christian; Staub, Christian

    2009-03-01

    Owing to the large implication of endocannabinoids (ECs) in many physiological and pathophysiological processes, a rapid liquid chromatography/electrospray ionisation triple quadrupole linear ion trap mass spectrometric assay (LC/ESI-QqQ(LIT)) was developed for the detection and characterization of anandamide (AEA), 2-arachidonoyl glycerol (2-AG), virodhamine (VA), noladin ether (2-AGE), and N-arachidonoyl dopamine (NADA) in human plasma. The ECs were extracted from 500 microL of plasma by liquid-liquid extraction (LLE) and separated by using an XTerra C18 MS column (50 x 3.0 mm i.d., 3.5 microm) with gradient elution. The mobile phase was composed of a mixture of acetonitrile, water, and formic acid (0.1%). For confirmatory analysis, an information-dependent acquisition (IDA) experiment was performed with selected reaction monitoring (SRM) as survey scan and enhanced product ion (EPI) as dependent scan. The assay was found to be linear in the concentration range of 0.1-5 ng/mL for AEA, 0.3-5 ng/mL for VA, 2-AGE, and NADA and 1-20 ng/mL for 2-AG using a 0.5 mL aliquot of plasma. Repeatability and intermediate precision were found less than 15% over the tested concentration ranges. The developed method thus provided the rapid, highly sensitive and highly selective requirement for assess quantitation, and identification of ECs in plasma. PMID:19170046

  1. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  2. Ion storage ring measurements of dielectronic recombination for astrophysically relevant Fe{sup q+} ions

    SciTech Connect

    Savin, D.W.; Kahn, S.M. Badnell, N.R.; Brandau, C.; Hoffknecht, A.; Muller, A.; Schippers, S. Chen, M.H.; Gwinner, G.; Linkemann, J.; Repnow, R.; Saghiri, A.A.; Schmitt, M.; Schwalm, D.; Wolf, A.

    1999-06-01

    Iron ions provide many valuable plasma diagnostics for cosmic plasmas. The accuracy of these diagnostics, however, often depends on an accurate understanding of the ionization structure of the emitting gas. Dielectronic recombination (DR) is the dominant electron-ion recombination mechanism for most iron ions in cosmic plasmas. Using the heavy-ion storage ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, we have measured the low temperature DR rates for Fe{sup q+} where q=15, 17, 18, and 19. These rates are important for photoionized gases which form in the media surrounding active galactic nuclei, X-ray binaries, and cataclysmic variables. Our results demonstrate that commonly used theoretical approximations for calculating low temperature DR rates can easily under- or over-estimate the DR rate by a factor of {approximately}2 or more. As essentially all DR rates used for modeling photoionized gases are calculated using these approximations, our results indicate that new DR rates are needed for almost all charge states of cosmically abundant elements. Measurements are underway for other charge states of iron. {copyright} {ital 1999 American Institute of Physics.}

  3. Ion storage ring measurements of dielectronic recombination for astrophysically relevant Fe{sup q+} ions

    SciTech Connect

    Savin, D. W.; Kahn, S. M.; Badnell, N. R.; Bartsch, T.; Brandau, C.; Hoffknecht, A.; Mueller, A.; Schippers, S.; Chen, M. H.; Grieser, M.; Gwinner, G.; Linkemann, J.; Repnow, R.; Saghiri, A. A.; Schmitt, M.; Schwalm, D.; Wolf, A.

    1999-06-10

    Iron ions provide many valuable plasma diagnostics for cosmic plasmas. The accuracy of these diagnostics, however, often depends on an accurate understanding of the ionization structure of the emitting gas. Dielectronic recombination (DR) is the dominant electron-ion recombination mechanism for most iron ions in cosmic plasmas. Using the heavy-ion storage ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, we have measured the low temperature DR rates for Fe{sup q+} where q=15, 17, 18, and 19. These rates are important for photoionized gases which form in the media surrounding active galactic nuclei, X-ray binaries, and cataclysmic variables. Our results demonstrate that commonly used theoretical approximations for calculating low temperature DR rates can easily under- or over-estimate the DR rate by a factor of {approx}2 or more. As essentially all DR rates used for modeling photoionized gases are calculated using these approximations, our results indicate that new DR rates are needed for almost all charge states of cosmically abundant elements. Measurements are underway for other charge states of iron.

  4. Ion storage ring measurements of dielectronic recombination for astrophysically relevant Fe[sup q+] ions

    SciTech Connect

    Savin, D.W.; Kahn, S.M. ) Badnell, N.R.); Brandau, C.; Hoffknecht, A.; Muller, A.; Schippers, S. ) Chen, M.H. ); Gwinner, G.; Linkemann, J.; Repnow, R.; Saghiri, A.A.; Schmitt, M.; Schwalm, D.; Wolf, A. )

    1999-06-01

    Iron ions provide many valuable plasma diagnostics for cosmic plasmas. The accuracy of these diagnostics, however, often depends on an accurate understanding of the ionization structure of the emitting gas. Dielectronic recombination (DR) is the dominant electron-ion recombination mechanism for most iron ions in cosmic plasmas. Using the heavy-ion storage ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, we have measured the low temperature DR rates for Fe[sup q+] where q=15, 17, 18, and 19. These rates are important for photoionized gases which form in the media surrounding active galactic nuclei, X-ray binaries, and cataclysmic variables. Our results demonstrate that commonly used theoretical approximations for calculating low temperature DR rates can easily under- or over-estimate the DR rate by a factor of [approximately]2 or more. As essentially all DR rates used for modeling photoionized gases are calculated using these approximations, our results indicate that new DR rates are needed for almost all charge states of cosmically abundant elements. Measurements are underway for other charge states of iron. [copyright] [ital 1999 American Institute of Physics.

  5. Ion storage ring measurements of dielectronic recombination for astrophysically relevant Feq+ ions

    SciTech Connect

    Savin, D W; Badnell, N R; Bartsch, T; Brandau, C; Chen, M H; Grieser, M; Gwinner, G; Hoffknecht, A; Kahn, S M; Linkemann, J; Muller, A; Repnow, R; Saghiri, A A; Schippers, S; Schmitt, M; Schwalm, D; Wolf, A

    2000-06-06

    Iron ions provide many valuable plasma diagnostics for cosmic plasmas. The accuracy of these diagnostics, however, often depends on an accurate understanding of the ionization structure of the emitting gas. Dielectronic recombination (DR) is the dominant electron-ion recombination mechanism for most iron ions in cosmic plasmas. Using the heavy-ion storage ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, we have measured the low temperature DR rates for Fe{sup q+} where q = 15, 17, 18, and 19. These rates are important for photoionized gases which form in the media surrounding active galactic nuclei, X-ray binaries, and cataclysmic variables. Our results demonstrate that commonly used theoretical approximations for calculating low temperature DR rates can easily under- or over-estimate the DR rate by a factor of {approx} 2 or more. As essentially all DR rates used for modeling photoionized gases are calculated using these approximations, our results indicate that new DR rates are needed for almost all charge states of cosmically abundant elements. Measurements are underway for other charge states of iron.

  6. Photodissociation of dinucleotide ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Worm, Esben S.; Andersen, Inge Hald; Andersen, Jens Ulrik; Holm, Anne I. S.; Hvelplund, Preben; Kadhane, Umesh; Nielsen, Steen Brøndsted; Poully, Jean-Christophe; Støchkel, Kristian

    2007-04-01

    The decay of protonated DNA dinucleotides, dA2+ , dG2+ , dT2+ , dC2+ and deprotonated ones, dA2- and dT2- , after 260nm photon absorption was measured in an electrostatic ion storage ring (A denotes adenine, G guanine, T thymine, and C cytosine). Fragmentation on the microsecond time scale was observed and assigned to statistical dissociation. Good fits to the decay spectra were obtained with a model based on microcanonical rate constants of the Arrhenius type with activation energies and preexponential factors for the dissociation that agree well with literature values. In accordance with results from other groups, dT2+ was found to have the longest lifetime among the cations. The importance of decay processes faster than the microsecond time scale is elucidated by a comparison between the total ion beam depletion and that due to the observed statistical decay. We find that such processes play a major role for all of the dinucleotides, being more than 25 times more probable than the microsecond statistical dissociation for dA2+ , dG2+ , and dC2+ , about 10 times for dT2+ , and between 2 and 6 times for dA2- and dT2- . For the cations, we ascribe these processes to nonstatistical dissociation prior to randomization of the excitation energy among all degrees of freedom whereas direct photoelectron detachment may play a role for the anions. Thus, our data indicate that the propensity for nonstatistical dissociation increases upon nucleobase protonation. Consistent with this trend, the propensity is less for dT2+ than for the other dinucleotide cations because the phosphoric acid group competes with thymine for the proton.

  7. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    SciTech Connect

    Baumann, K; Weber, U; Simeonov, Y; Zink, K

    2015-06-15

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular and thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.

  8. Tuning and understanding the phase interface of TiO₂ nanoparticles for more efficient lithium ion storage.

    PubMed

    Wang, Rui; Xue, Xuyan; Lu, Wencai; Liu, Hongwei; Lai, Chao; Xi, Kai; Che, Yanke; Liu, Jingquan; Guo, Shaojun; Yang, Dongjiang

    2015-08-14

    We demonstrate that mixed-phase anatase-TiO2(B) nanoparticles can provide an interesting interphase interface with atomic-level contact for achieving more efficient Li ion storage with high capacity and cycle life. A novel lithium storage mode - "interfacial charge storage in allomorphs" (ICSA) - plays an important role in enhancing Li ion storage. PMID:26172091

  9. An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Song, Yuelin; Song, Qingqing; Li, Jun; Zhang, Na; Zhao, Yunfang; Liu, Xiao; Jiang, Yong; Tu, Pengfei

    2016-01-15

    It is important to conduct large-scale detection, identification, and quantitation of metabolites in a given sample. Herein, a practical strategy was proposed to quantitatively compare the chemome between Cistanche deserticola (CD) and C. tubulosa (CT), which have been widely believed as the ideal edible and medicinal plants for conquering the deserts. The entire workflow was implemented on high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometer and consisted of three primary steps: (1) component detection and identification, various mass spectrometric approaches were applied to globally screen the chemical constituents, and structural elucidation was achieved by comparing with authentic compounds, analyzing MS(2) spectra, and referring to the literature along with accessible databases; (2) comprehensive relative quantitation, scheduled multiple reaction monitoring algorithm was introduced for relative quantitation of all detected ingredients; and (3) chemome comparison, the quantitative dataset was subjected for multivariate statistical analysis to carry out comparative study. A total of 513 metabolites were detected and relatively quantitated, and 379 ones were annotated. Betaine, Krebs cycle intermediates, phenylethanoid glycosides, and iridoids were picked out as the chemical markers being responsible for the discrimination of the chemical profiles between CD and CT. Above all, the quantitative chemome of CD and CT were exhaustively characterized and compared, which could advance their values concerning drug development, economics, and desertification control. The proposed strategy is expected as a reliable choice for widely targeted metabolomics of plants. PMID:26742897

  10. Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography-quadrupole-linear ion trap-mass spectrometry.

    PubMed

    Pareja, Lucía; Martínez-Bueno, M J; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, A R

    2011-07-29

    A multiresidue method was developed for the quantification and confirmation of 70 pesticides in paddy field water. After its filtration, water was injected directly in a liquid chromatograph coupled to a hybrid triple quadrupole-linear ion trap-mass spectrometer (QqLIT). The list of target analytes included organophosphates, phenylureas, sulfonylureas, carbamates, conazoles, imidazolinones and others compounds widely used in different countries where rice is cropped. Detection and quantification limits achieved were in the range from 0.4 to 80 ng L(-1) and from 2 to 150 ng L(-1), respectively. Correlation coefficients for the calibration curves in the range 0.1-50 μg L(-1) were higher than 0.99 except for diazinon (0.1-25 μg L(-1)). Only 9 pesticides presented more than 20% of signal suppression/enhancement, no matrix effect was observed in the studied conditions for the rest of the target pesticides. The method developed was used to investigate the occurrence of pesticides in 59 water samples collected in paddy fields located in Spain and Uruguay. The study shows the presence of bensulfuron methyl, tricyclazole, carbendazim, imidacloprid, tebuconazole and quinclorac in a concentration range from 0.08 to 7.20 μg L(-1). PMID:21397903

  11. Quantitative determination of isoquinoline alkaloids and chlorogenic acid in Berberis species using ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Singh, Awantika; Bajpai, Vikas; Kumar, Sunil; Arya, Kamal Ram; Sharma, Kulwant Rai; Kumar, Brijesh

    2015-06-01

    Berberis species are well known and used extensively as medicinal plants in traditional medicine. They have many medicinal values attributable to the presence of alkaloids having different pharmacological activities. In this study, a method was developed and validated as per international conference on harmonization guidelines using ultra high performance liquid chromatography with hybrid triple quadrupole-linear ion trap mass spectrometry operated in the multiple reaction monitoring mode for nine bioactive compounds, including protoberberine alkaloids, aporphine alkaloids and chlorogenic acid. This method was applied in different plant parts of eight Berberis species to determine variations in content of nine bioactive compounds. The separation was achieved on an ACQUITY UPLC CSH™ C18 column using a gradient mobile phase at flow rate 0.3 mL/min. Calibration curves for all the nine analytes provided optimum linear detector response (with R(2) ≥0.9989) over the concentration range of 0.5-1000 ng/mL. The precision and accuracy were within RSDs ≤2.4 and ≤2.3%, respectively. The results indicated significant variation in the total contents of the nine compounds in Berberis species. PMID:25847792

  12. Development of cadmium/silver/palladium separation by ion chromatography with quadrupole inductively coupled plasma mass spectrometry detection for off-line cadmium isotopic measurements.

    PubMed

    Gautier, C; Bourgeois, M; Isnard, H; Nonell, A; Stadelmann, G; Goutelard, F

    2011-08-01

    A separation method was investigated to perform off-line cadmium isotopic measurements on a (109)Ag transmutation target. Ion chromatography (IC) with Q ICPMS detection (quadrupole inductively coupled plasma mass spectrometry detection) was chosen to separate cadmium from the isobarically interfering elements, silver and palladium, present in the sample. The optimization of chromatographic conditions was particularly studied. Several anion and cation columns (Dionex AG11(®), CS10(®) and CS12(®)) were compared with different mobile phases (HNO(3), HCl). The separation procedure was achieved with a carboxylate-functionalized cation exchange CS12 column using 0.5 M HNO(3) as eluent. The developed technique yielded satisfactory results in terms of separation factors (greater than 5) and provides an efficient solution to obtain rapidly purified cadmium fractions (decontamination factors higher 100,000 for silver and palladium) which can directly be analyzed by multi collection inductively coupled plasma mass spectrometry (MC ICPMS). By applying the proposed procedure, accurate and precise cadmium isotope ratios were determined for the irradiated (109)Ag transmutation target. PMID:21703628

  13. HPLC/ESI-quadrupole ion trap mass spectrometry for characterization and direct quantification of amphoteric and nonionic surfactants in aqueous samples

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Garland, Jay L.; Johnson, Jodie V.

    2002-01-01

    An amphoteric (cocamidopropylbetaine, CAPB) and a nonionic (alcohol polyethoxylate, AE) surfactant were characterized by electrospray ionization quadrupole ion trap mass spectrometry (ESI-MS) as to their homologue distribution and ionization/fragmentation chemistry. Quantitative methods involving reversed-phase gradient HPLC and (+)ESI-MSn were developed to directly determine these surfactants in hydroponic plant growth medium that received simulated graywater. The predominant homologues, 12 C alkyl CAPB and 9 EO AE, were monitored to represent the total amount of the respective surfactants. The methods demonstrated dynamic linear ranges of 0.5-250 ng (r2 > 0.996) for CAPB and 8-560 ng (r2 > 0.998) for AE homologue mixture, corresponding to minimum quantification limits of 25 ppb CAPB and 0.4 ppm AE with 20-microL injections. This translated into an even lower limit for individual components due to the polydispersive nature of the surfactants. The procedure was successfully employed for the assessment of CAPB and AE biodegradation in a hydroponic plant growth system used as a graywater bioreactor.

  14. Simultaneous Qualitative Assessment and Quantitative Analysis of Metabolites (Phenolics, Nucleosides and Amino Acids) from the Roots of Fresh Gastrodia elata Using UPLC-ESI-Triple Quadrupole Ion MS and ESI- Linear Ion Trap High-Resolution MS.

    PubMed

    Chen, Sha; Liu, Jun Qiu; Xiao, Hui; Zhang, Jun; Liu, An

    2016-01-01

    A sensitive, effective and optimized method, based on ultra performance liquid chromatography (UPLC) coupled with ESI-triple quadrupole ion MS and ESI-linear ion trap high-resolution MS, has been developed for the simultaneous quantitative and qualitative determination of phenolics, nucleosides and amino acids in the roots of fresh Gastrodia elata. Optimization of the analytical method provided higher separation efficiency and better peak resolution for the targeted compounds. The simultaneous separation protocols were also optimized by routinely using accurate mass measurements, within 5 ppm error, for each molecular ion and the subsequent fragment ions. In total, 31 compounds, including 23 phenolics, two nucleosides, four amino acids, one gastrodin and one other compound were identified or tentatively characterized. Mono-substituted parishin glucoside (9), methoxy mono-substituted parishin (13), methyl parishin (26), p-hydroxybenzyl di-substituted parishin (29), and p-hydroxybenzyl parishin (31) were tentatively identified as new compounds. Principal metabolite content analysis and the composition of eight representative G. elata cultivars of various species indicated that geographic insulation was the main contributor to clustering. PMID:26954012

  15. Simultaneous Qualitative Assessment and Quantitative Analysis of Metabolites (Phenolics, Nucleosides and Amino Acids) from the Roots of Fresh Gastrodia elata Using UPLC-ESI-Triple Quadrupole Ion MS and ESI- Linear Ion Trap High-Resolution MS

    PubMed Central

    Chen, Sha; Liu, Jun Qiu; Xiao, Hui; Zhang, Jun; Liu, An

    2016-01-01

    A sensitive, effective and optimized method, based on ultra performance liquid chromatography (UPLC) coupled with ESI-triple quadrupole ion MS and ESI-linear ion trap high-resolution MS, has been developed for the simultaneous quantitative and qualitative determination of phenolics, nucleosides and amino acids in the roots of fresh Gastrodia elata. Optimization of the analytical method provided higher separation efficiency and better peak resolution for the targeted compounds. The simultaneous separation protocols were also optimized by routinely using accurate mass measurements, within 5 ppm error, for each molecular ion and the subsequent fragment ions. In total, 31 compounds, including 23 phenolics, two nucleosides, four amino acids, one gastrodin and one other compound were identified or tentatively characterized. Mono-substituted parishin glucoside (9), methoxy mono-substituted parishin (13), methyl parishin (26), p-hydroxybenzyl di-substituted parishin (29), and p-hydroxybenzyl parishin (31) were tentatively identified as new compounds. Principal metabolite content analysis and the composition of eight representative G. elata cultivars of various species indicated that geographic insulation was the main contributor to clustering. PMID:26954012

  16. Liquid chromatography tandem mass spectrometric quantitation of sulfamethazine and its metabolites: direct analysis of swine urine by triple quadrupole and by ion trap mass spectrometry.

    PubMed

    Bartolucci, G; Pieraccini, G; Villanelli, F; Moneti, G; Triolo, A

    2000-01-01

    This work describes a new method for the quantitation of trace amounts of sulfamethazine (SMZ) and its main metabolite, N4-acetylsulfamethazine (Ac-SMZ), in swine urine, using high-performance liquid chromatography (HPLC) tandem mass spectrometric analysis of crude urine after addition of internal standard and simple dilution with water. The aim was to determine whether residues of this sulfamidic drug, normally administered to swine in order to prevent infectious diseases, were present in urine at levels lower than those permitted by regulatory authorities before human consumption (EU Project SMT, contract number CT 96-2092). A 10 microL volume of diluted urine was injected into a very short, narrow-bore chromatographic column (Zorbax SB-C18 2.1 i. d. x30 mm length, 3.5 microm pore size). Elution of the analytes of interest was achieved in less than seven minutes using a rapid gradient (from 20 to 80% methanol in 3 minutes). Either a PE Sciex API 365 triple quadrupole (QqQ), operated in the selected reaction monitoring (SRM) mode, or a Finnigan LCQ ion trap (IT) mass spectrometer, operated in narrow-range product ion scan, was used as the final detector. Electrospray (ESI) was used as the ionization technique. A comparison of the two tandem mass spectrometers was performed by analyzing the same set of test samples, at three concentration levels, on three different days. Linearity of responses of the calibration standards, intra- and inter-assay precision of the samples, specificity and limits of detection were evaluated for both systems. Both the QqQ and the IT instrument was suitable for rapid, sensitive and specific determination of the analytes, although the overall performance of the QqQ was slightly superior in terms of linearity, precision and sensitivity. PMID:10844733

  17. Screening for DNA adducts by data-dependent constant neutral loss-triple stage mass spectrometry with a linear quadrupole ion trap mass spectrometer.

    PubMed

    Bessette, Erin E; Goodenough, Angela K; Langouët, Sophie; Yasa, Isil; Kozekov, Ivan D; Spivack, Simon D; Turesky, Robert J

    2009-01-15

    A two-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M + H - 116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2]+. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AalphaC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AalphaC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 microg of DNA is employed for the assay. PMID:19086795

  18. Simultaneous determination of diclofenac, its human metabolites and microbial nitration/nitrosation transformation products in wastewaters by liquid chromatography/quadrupole-linear ion trap mass spectrometry.

    PubMed

    Osorio, Victoria; Imbert-Bouchard, Marta; Zonja, Bozo; Abad, José-Luis; Pérez, Sandra; Barceló, Damià

    2014-06-20

    An analytical method was developed and validated for the first determination of five major human metabolites of the non-steroidal anti-inflammatory drug diclofenac as well as two microbial transformation products in wastewater. The method was based on the extraction of diclofenac and the chemically synthetized compounds by solid-phase extraction (SPE), using a hydrophilic-lipophilic balanced polymer followed by liquid chromatography (LC) coupled to hybrid quadrupole-linear ion trap mass spectrometry (QqLIT-MS). Quantitation was performed by the internal standard approach, to correct for matrix effects. The accuracy of the method was generally higher than 40% for raw and treated wastewater with a precision below 12%. In wastewater influent and effluent samples the detection limits for the majority of target compounds were 0.3-2.5ngL(-1) and 0.1-3.1ngL(-1), respectively. The method was applied to the analysis of influent and effluent wastewater samples from urban wastewater treatment plants. Moreover, to obtain an extra tool for confirmation and identification of the studied diclofenac-derived compounds, Information-Dependent Acquisition (IDA) experiments were performed, with selected reaction monitoring (SRM) as the survey scan and an enhanced product ion (EPI) scan as the dependent scan. Diclofenac and its major human metabolite, 4'-hydroxydiclofenac were detected in all samples at concentrations of 331-1150ngL(-1) and 585-6000ngL(-1), respectively. Neither microbial transformation product of diclofenac was detected in any of the influent samples analyzed, but in effluents, their concentrations ranged from 4 to 105ngL(-1). PMID:24835592

  19. Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer

    PubMed Central

    2015-01-01

    As a driver for many biological processes, phosphorylation remains an area of intense research interest. Advances in multiplexed quantitation utilizing isobaric tags (e.g., TMT and iTRAQ) have the potential to create a new paradigm in quantitative proteomics. New instrumentation and software are propelling these multiplexed workflows forward, which results in more accurate, sensitive, and reproducible quantitation across tens of thousands of phosphopeptides. This study assesses the performance of multiplexed quantitative phosphoproteomics on the Orbitrap Fusion mass spectrometer. Utilizing a two-phosphoproteome model of precursor ion interference, we assessed the accuracy of phosphopeptide quantitation across a variety of experimental approaches. These methods included the use of synchronous precursor selection (SPS) to enhance TMT reporter ion intensity and accuracy. We found that (i) ratio distortion remained a problem for phosphopeptide analysis in multiplexed quantitative workflows, (ii) ratio distortion can be overcome by the use of an SPS-MS3 scan, (iii) interfering ions generally possessed a different charge state than the target precursor, and (iv) selecting only the phosphate neutral loss peak (single notch) for the MS3 scan still provided accurate ratio measurements. Remarkably, these data suggest that the underlying cause of interference may not be due to coeluting and cofragmented peptides but instead from consistent, low level background fragmentation. Finally, as a proof-of-concept 10-plex experiment, we compared phosphopeptide levels from five murine brains to five livers. In total, the SPS-MS3 method quantified 38 247 phosphopeptides, corresponding to 11 000 phosphorylation sites. With 10 measurements recorded for each phosphopeptide, this equates to more than 628 000 binary comparisons collected in less than 48 h. PMID:25521595

  20. LCLS Undulator Quadrupole Fiducialization Plan

    SciTech Connect

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  1. Analysis of 40 weight loss compounds adulterated in health supplements by liquid chromatography quadrupole linear ion trap mass spectrometry.

    PubMed

    Zeng, Yun; Xu, Yimin; Kee, Chee-Leong; Low, Min-Yong; Ge, Xiaowei

    2016-03-01

    In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) with scheduled multiple reaction monitoring (MRM) enhanced product ion (EPI) method was developed for simultaneous determination of 40 compounds with weight loss effect, including bisacodyl, phenolphthalein, and sibutramine and its metabolites, etc. They might be adulterated in health supplements to get prominent weight loss effect. The samples were analyzed using a Q-Trap 5500 coupled with high performance liquid chromatography (HPLC) and a CORTECS ultra performance liquid chromatography (UPLC) C18 column (100 mm x 2.1 mm x1.6 µm). Scheduled MRM was used as survey scan, MS2 spectra acquired in the EPI mode were used to perform library searching to increase the confidence of detection. Limits of detection were less than 10 ng/g for the majority of the analytes. A total of 447 weight loss products were tested in our laboratory in the past three years. Among these samples, 119 samples were found to be adulterated with one or more weight loss compounds, including sibutramine, its metabolites benzyl sibutramine and desmethyl sibutramine; phenolphthalein; bisacodyl; furosemide; liothyronine (T3); and thyroxine (T4). Copyright © 2015 John Wiley & Sons, Ltd. PMID:26305055

  2. [Simultaneous determination of nine beta-blockers in porcine tissues by ultra-fast liquid chromatography coupled with quadrupole/linear ion trap mass spectrometry].

    PubMed

    Zhang, Hongwei; Xu, Hui; Gao, Jianguo; Liang, Chengzhu; Xu, Biao; Geng, Juan; Wang, Fengmei; Zhang, Xiaomei; Cheng, Gang

    2014-06-01

    A highly sensitive method using ultra-fast liquid chromatography coupled with quadrupole/linear ion trap mass spectrometry (UFLC-Q/Trap MS) was developed to simultaneously screen and confirm nine beta-blockers (BBs) in porcine tissues (porcine muscle, liver and kidney). The method was used for trace determination of atenolol, pindolol, acebutolol, metoprolol, carazolol, labetalol, bisoprolol, propranolol and penbutolol. The homogenized tissues were hydrolyzed by beta-glucuronidase/aryl sulfatase and extracted with acetonitrile, followed by continuous purification procedures of disperse solid phase extraction (d-SPE) with diatomaceous earth and BondElut cartridge. The ultra-fast chromatographic separation was conducted on a Kinetex C18-XB column (150 mm x 2.1 mm, 2.6 microm) using 0.1% (v/v) formic acid aqueous solution and methanol as mobile phases in gradient elution. The optimized ion transitions were mployed in the mixed-mode of scheduled multiple reaction monitoring (sMRM) -information dependent acquisition (IDA)-enhanced product ion (EPI) scan. Qualification analysis was performed through spectra-matching with on-line lab-built MS/MS library. For quantification stable isotope-labelled analogues of the analytes were used as internal standards. As a result, in porcine liver, kidney and muscle, the nine BBs showed good linearity with all the correlation coefficients (r) more than 0.995 in the range of 0.1-20 microg/L. The limits of quantification (LOQ, S/N > or = 10) were 0.5 kg/kg for all the analytes. The developed method gave average recoveries of 87.5%-111.8% spiked at 0.5, 1.0 and 5.0 microg/kg with the relative standard deviations of 4.0%-12. 5%. The proposed method can be used to screen and confirm the nine BBs in a single run, which makes it effective in surveillance and detection of the BBs residues in porcine tissues. PMID:25269253

  3. Storage of potassium ions in layered vanadium pentoxide nanofiber electrodes for aqueous pseudocapacitors.

    PubMed

    Yeager, Matthew P; Du, Wenxin; Bishop, Brendan; Sullivan, Matthew; Xu, Wenqian; Su, Dong; Senanayake, Sanjaya D; Hanson, Jonathan; Teng, Xiaowei

    2013-12-01

    Spaced out: This paper investigates potassium-ion storage in vanadium pentoxide nanofibers (VNFs, K0.33 V2 O5 ) with a layered architecture. In situ XRD experiments reveal that the interplanar space of VNF expands/contracts upon extraction/insertion of potassium ions during the redox process. PMID:24124048

  4. Ion Exchange Resins for Long-Term Spent Nuclear Fuel Storage

    SciTech Connect

    Rideaux, J.

    1999-03-08

    This paper will specifically address the use and life cycle of ion exchange resins as they relate to the SRS Spent Nuclear Fuel Storage Basins. This paper also chronicles the use of two types of ion exchange resins and their affect on basin water quality from the sixties until today.

  5. Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry.

    PubMed

    Jelić, Aleksandra; Petrović, Mira; Barceló, Damià

    2009-11-15

    A simple and sensitive method for simultaneous analysis of 43 pharmaceutical compounds in sewage sludge and sediment samples was developed and validated. The target compounds were extracted using pressurized liquid extraction (PLE) and then purified and pre-concentrated by solid phase extraction (SPE) using a hydrophilic-lipophilic balanced polymer. PLE extraction was performed on temperature of 100 degrees C, with methanol/water mixture (1/2, v/v) as extraction solvent. The quantitative analysis was performed by liquid chromatography tandem mass spectrometry using a hybrid triple quadrupole-linear ion trap mass spectrometer (LC-QqLIT-MS). Data acquisition was carried out in selected reaction monitoring (SRM) mode, monitoring two SRM transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the Information Dependent Acquisition (IDA) function. The method was validated through the estimation of the linearity, sensitivity, repeatability, reproducibility and matrix effects. The internal standard approach was used for quantification because it efficiently corrected matrix effects. Despite the strong matrix interferences, the recoveries were generally higher of 50% in both matrixes and the detection and quantification limits were very low. Beside the very good sensitivity provided by LC-QqLIT-MS, an important characteristic of the method is that all the target compounds can be simultaneously extracted, treated and analysed. Hence, it can be used for routine analysis of pharmaceuticals providing large amount of data. The method was applied for the analysis of pharmaceuticals in river sediment and wastewater sludge from three treatment plants with different treatment properties (i.e. capacity, secondary treatment, quality of influent waters). The analysis showed a widespread occurrence of pharmaceuticals in the sludge matrices. PMID:19782237

  6. Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry.

    PubMed

    Díaz-Cruz, M Silvia; García-Galán, M Jesús; Barceló, Damià

    2008-06-01

    The present work describes the development of a highly sensitive analytical method based on liquid chromatography-quadrupole linear ion trap-mass spectrometry (LC-QqLIT-MS) for the determination of nine sulfonamide antibiotics and one N4-acetylated metabolite in environmental waters (wastewater, surface water and groundwater) and bottled mineral water. Special emphasis was devoted to the elimination of matrix components during solid-phase extraction (SPE) by the evaluation of three different extraction/purification strategies: single cartridges (Oasis HLB and Oasis MCX) and tandem (TD) extraction (combination of both). The method developed proved to be suitable for sulfonamide determination in all kinds of waters tested. The method was shown to be linear in a wide concentration range, with correlation coefficients higher than 0.999 for all compounds except for sulfadimethoxine (R2 0.997). The overall instrumental repeatability was satisfactory, with the exception of the metabolite (RSD 34%). Method limits of detection achieved for sulfonamides were in the range 0.01-1.13 ng L(-1) and for the metabolite 0.08-461 ng L(-1). Recovery rates were estimated at 500 ng L(-1) spike level in the four water matrices selected. The highest recovery achieved in all matrices was that corresponding to the Oasis HLB cartridge. In environmental waters, recovery values obtained were higher than 61% for the surface water and, in general, higher than 90% for groundwater and wastewater. Bottled mineral water exhibited recovery rates higher than 92%, with the exception of sulfamethoxypiridazine (82%) and sulfapyridine (86%) In order to demonstrate the applicability of the developed method, several water samples were analyzed. Results evidenced the requirement for consideration of N4-acetylated metabolites of sulfonamides in environmental residue analysis to avoid the underestimation of removal rates of such pharmaceutical compounds during wastewater treatments. PMID:18440009

  7. Quantitative determination of capsaicin, a transient receptor potential channel vanilloid 1 agonist, by liquid chromatography quadrupole ion trap mass spectrometry: evaluation of in vitro metabolic stability.

    PubMed

    Beaudry, Francis; Vachon, Pascal

    2009-02-01

    Capsaicin is the most abundant pungent molecule present in red peppers and it is widely used for food flavoring, in pepper spray in self-defense devices and more recently in ointments for the relief of neuropathic pain. Capsaicin is a selective agonist of transient receptor potential channel, vanilloid subfamily member 1. A selective and sensitive quantitative method for the determination of capsaicin by LC-ESI/MS/MS was developed. The method consisted of a protein precipitation extraction followed by analysis using liquid chromatography electrospray quadrupole ion trap mass spectrometry. The chromatographic separation was achieved using a 100 x 2 mm C(18) Waters Symmetry column combined with a gradient mobile phase composed of acetonitrile and 0.1% formic acid aqueous solution at a flow rate of 220 microL/min. The mass spectrometer was operating in full-scan MS/MS mode using two-segment analysis. An analytical range of 10-5000 ng/mL was used in the calibration curve constructed in rat plasma. The interbatch precision and accuracy observed were 6.5, 6.7, 5.3 and 101.2, 102.7, 103.5% at 50, 500 and 5000 ng/mL, respectively. An in vitro metabolic stability study was performed in rat, dog and mouse liver microsomes and the novel analytical method was adapted and used to determine intrinsic clearance of capsaicin. Results suggest very rapid degradation with T(1/2) ranging from 2.3 to 4.1 min and high clearance values suggesting that drug bioavailability will be considerably reduced, consequently affecting drug response and efficacy. PMID:18816461

  8. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS.

    SciTech Connect

    PARKER,B.

    2001-06-18

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing.

  9. Peptide profiling of Internet-obtained Cerebrolysin using high performance liquid chromatography - electrospray ionization ion trap and ultra high performance liquid chromatography - ion mobility - quadrupole time of flight mass spectrometry.

    PubMed

    Gevaert, Bert; D'Hondt, Matthias; Bracke, Nathalie; Yao, Han; Wynendaele, Evelien; Vissers, Johannes Petrus Cornelis; De Cecco, Martin; Claereboudt, Jan; De Spiegeleer, Bart

    2015-09-01

    Cerebrolysin, a parenteral peptide preparation produced by controlled digestion of porcine brain proteins, is an approved nootropic medicine in some countries. However, it is also easily and globally available on the Internet. Nevertheless, until now, its exact chemical composition was unknown. Using high performance liquid chromatography (HPLC) coupled to ion trap and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-ion mobility-time-of-flight mass spectrometry (Q-IM-TOF MS), combined with UniProt pig protein database search and PEAKS de novo sequencing, we identified 638 unique peptides in an Internet-obtained Cerebrolysin sample. The main components in this sample originate from tubulin alpha- and beta-chain, actin, and myelin basic protein. No fragments of known neurotrophic factors like glial cell-derived neurotrophic factor (GDNF), neurotrophin nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) were found, suggesting that the activities reported in the literature are likely the result of new, hitherto unknown cryptic peptides with nootropic properties. PMID:26017115

  10. Storage of ions from laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Knight, R. D.

    1981-01-01

    A method of storing large numbers of metal ions created in laser-produced plasmas is presented. The outer electrode of the electrostatic ion trap is designed to give a harmonic axial potential. The ions trapped by the technique included Be(+), C(+), Al(+), Fe(+), and Pb(+). The initial number of ions stored (2 x 10 to the 8th) appeared to be the trap maximum since increasing the laser power beyond 2-3 MW did not change the ion number. An initial rapid decay in the 30-50 msec range was generally followed by a long tail at the 10% level with times greater than 100 msec. The technique should be valuable for refractory elements which cannot be easily vaporized for electron impact ionization.

  11. Storage and Aging Effects on Spherical Resorcinol-Formaldehyde Resin Ion Exchange Performance

    SciTech Connect

    Fiskum, Sandra K.; Arm, Stuart T.; Edwards, Matthew K.; Steele, Marilyn J.; Thomas, Kathie K.

    2007-09-10

    Bechtel National, Inc. (BNI) is evaluating the alternate Cs ion exchanger, spherical resorcinol-formaldehyde (RF), for use in the River Protection Project-Waste Treatment Plant (RPP-WTP).( ) Previous test activities with spherical RF indicate that it has adequate capacity, selectivity, and kinetics to perform in the plant according to the flowsheet needs. It appears to have better elution and hydraulic properties than the existing alternatives: ground-gel RF and SuperLig® 644 (SL 644).( ) To date, the spherical RF performance testing has been conducted on freshly manufactured resin (within ~2 months of manufacture). The ion exchange resins will be manufactured and shipped to the WTP up to 1 year before being used in the plant. Changes in the resin properties during storage could reduce the capacity of the resin to remove Cs from low-activity waste solutions. Active sites on organic SL-644 resin have been shown to degrade during storage (Arm et al. 2004). Additional testing was needed to study the effects of storage conditions and aging on spherical RF ion exchange performance. Variables that could have a significant impact on ion exchange resins during storage include storage temperature, medium, and time. Battelle—Pacific Northwest Division (PNWD) was contracted to test the effects of various storage conditions on spherical RF resin. Data obtained from the testing will be used by the WTP operations to provide direction for suitable storage conditions and manage the spherical RF resin stock. Storage test conditions included wet and dry resin configurations under nitrogen at three temperatures. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan( ) TSS A-219 to evaluate the impact of storage conditions on RF resin performance. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract DE-AC05-76RL

  12. Simultaneous determination of 18 preservative residues in vegetables by ultra high performance liquid chromatography coupled with triple quadrupole/linear ion trap mass spectrometry using a dispersive-SPE procedure.

    PubMed

    Zhou, Xue; Cao, Shurui; Li, Xianliang; Tang, Bobin; Ding, Xiaowen; Xi, Cunxian; Hu, Jiangtao; Chen, Zhiqiong

    2015-05-01

    A new method combining dispersive-solid phase purification procedure with ultra high performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry was developed for simultaneous determination of 18 preservative residues in vegetables. The new method not only had the advantages of dispersive-solid phase purification procedure such as high recoveries, easy operation, rapid analysis, little solvent usage and wide analysis range of preservatives, but also had the advantages of ultra high performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry to be operated in positive mode and negative mode simultaneously. The method was validated for the following representative matrices: radish (tuber), tomato (eggplant fruit), cabbage (leafy), cowpea (bean), cucumber (melon) and so on. Samples were extracted with hexane-ethyl acetate (1:2, v/v), and then detected by ultra high performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry after being cleaned up with dispersive-solid phase purification procedure. Significant matrix effects were compensated by using the matrix-matched calibration curves. 18 preservatives showed good linearity over the range of 5.0-100.0 μg/L with correlation coefficients of 0.9904-1.000. The limits of detections were in the range of 0.04-4.16 μg/kg and the limits of quantity were in the range of 0.13-13.85 μg/kg. The recoveries of 18 preservatives ranged from 76.0% to 120.0% with the spiked levels of 2, 4 and 10 μg/kg into homogenized vegetables, and the relative standard deviations (RSDs) ranged from 0.3% to 14.8%. Compared with the reported literatures, the method is more rapid, simple, highly sensitive, reliable and can meet testing requirements of 18 preservative residues in vegetables. PMID:25797719

  13. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material. PMID:26726470

  14. Simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba by ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry and QuEChERS for sample preparation.

    PubMed

    Xing, Yanyan; Meng, Wenting; Sun, Wanyang; Li, Dongxiang; Yu, Zhiguo; Tong, Ling; Zhao, Yunli

    2016-09-15

    A high-throughput method for simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba (RPA) was developed by coupling the modified QuEChERS method with ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry (UHPLC-QqLIT-MS). The 21 mycotoxins were extracted and cleaned up using QuEChERS-based procedure, then further separated on a C18 column and detected by a hybrid triple quadrupole linear ion trap mass spectrometer equipped with electrospray ionization source in the multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) mode. Under this technique, 13 mycotoxins were detected using acetonitrile and water containing 0.1% formic acid as the mobile phase in positive mode while the other 8 mycotoxins were detected using acetonitrile and water containing 0.1% ammonia as the mobile phase in negative mode. The calibration curves of all analytes showed good linearity (r(2)>0.995) within test ranges. The limits of detection and quantification ranged from 0.031 to 5.4μg/kg and 0.20 to 22μg/kg, respectively. Additionally, recoveries were all above 75.3% with relative standard deviations within 15%. The method proposed herein with significant advantages including simple pretreatment, rapid determination as well as high sensitivity, accuracy and throughput would be a preferred candidate for the determination and quantification of multi-class mycotoxin contaminants in real samples. PMID:27500642

  15. Photographic-image storage in ion-implanted PLZT ceramics

    SciTech Connect

    Peercy, P.C.; Land, C.E.

    1982-01-01

    Photographic images can be stored in transparent lead lanthanum zirconate titanate (PLZT) ceramics using near-UV light with photon energies near the band gap energy of 3.42 eV. Coimplanting inert ions, e.g., Ar, Ne and He, into the surface exposed to image light can increase near-UV photosensitivity by a factor of almost 10/sup 4/, with no degradation of image quality, so that the exposure energy threshold is reduced from approx. 100 mJ/cm/sup 2/ to approx. 10 ..mu..Jcm/sup 2/. Coimplanting chemically active and inert ions, e.g., Al or Cr and Ne, can result in similar improvement of the extrinsic (visible light) photosensitivity and in an essentially flat photoresponse from about 400 to 600 nm. In addition, thermal diffusion of Al followed by Ne implantation yield photosensitivity increases in the near-UV comparable to the best results obtained to date with ion implantation.

  16. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring

    SciTech Connect

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-03-30

    A method to measure the neutrino mass kinematically using beams of ions which undergo beta decay is proposed. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. By counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for m{sub n}u<0.2 eV, it is necessary to control the ion momentum with a precision better than deltap/p<10{sup -5}, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least O(10{sup 18}) decays.

  17. Fabricating high-density magnetic storage elements by low-dose ion beam irradiation

    SciTech Connect

    Neb, R.; Sebastian, T.; Pirro, P.; Hillebrands, B.; Pofahl, S.; Schaefer, R.; Reuscher, B.

    2012-09-10

    We fabricate magnetic storage elements by irradiating an antiferromagnetically coupled ferromagnetic/nonmagnetic/ferromagnetic trilayer by a low-dose ion beam. The irradiated areas become ferromagnetically coupled and are capable of storing information if their size is small enough. We employ Fe/Cr/Fe trilayers and a 30 keV focused Ga{sup +}-ion beam to demonstrate the working principle for a storage array with a bit density of 7 Gbit/in.{sup 2}. Micromagnetic simulations suggest that bit densities of at least two magnitudes of order larger should be possible.

  18. Correlation of ion-ion interaction with electrical conductivity in solid state polymeric separator for energy storage applications

    NASA Astrophysics Data System (ADS)

    Sharma, Parul Kumar; Sadiq, M.; Bhatt, Chandni; Sharma, A. L.

    2016-05-01

    In the present study, we report innovative study on the prepared high quality solid state free standing thin polymeric separator. In prepared free standing polymeric separator, polymer (PEO) has been used as host matrix; appropriate bulky anion salt (LiPF6) as conducting species and Nano ceramic filler (BaTiO3) is used to enrich the mechanical and thermal stability of separator used for the device applications. The Fourier Transform Infra-Red (FTIR) result has been analysed properly of the prepared materials to look the microscopic interaction among polymer-ion, ion-ion and polymer-ion-clay interaction. Electrical conductivity results has been recorded using the impedance spectroscopy results which gives the estimated value of the order of ˜10-3 Scm-1 of the nano ceramic doped polymeric separator which is desirable for energy storage application. A fine correlation has been established between the obtained results by this two analysis.

  19. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    SciTech Connect

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  20. Electron-ion recombination of Si IV forming Si III: Storage-ring measurement and multiconfiguration Dirac-Fock calculations

    SciTech Connect

    Schmidt, E. W.; Bernhardt, D.; Mueller, A.; Schippers, S.; Fritzsche, S.; Hoffmann, J.; Jaroshevich, A. S.; Krantz, C.; Lestinsky, M.; Orlov, D. A.; Wolf, A.; Lukic, D.; Savin, D. W.

    2007-09-15

    The electron-ion recombination rate coefficient for Si IV forming Si III was measured at the heavy-ion storage-ring TSR. The experimental electron-ion collision energy range of 0-186 eV encompassed the 2p{sup 6}nln{sup '}l{sup '} dielectronic recombination (DR) resonances associated with 3s{yields}nl core excitations, 2s2p{sup 6}3snln{sup '}l{sup '} resonances associated with 2s{yields}nl (n=3,4) core excitations, and 2p{sup 5}3snln{sup '}l{sup '} resonances associated with 2p{yields}nl (n=3,...,{infinity}) core excitations. The experimental DR results are compared with theoretical calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via the 3s{yields}3pn{sup '}l{sup '} and 3s{yields}3dn{sup '}l{sup '}(both n{sup '}=3,...,6) and 2p{sup 5}3s3ln{sup '}l{sup '} (n{sup '}=3,4) capture channels. Finally, the experimental and theoretical plasma DR rate coefficients for Si IV forming Si III are derived and compared with previously available results.

  1. Analysis of pesticides residues in fresh produce using buffered acetonitrile extraction and aminopropyl cleanup with gas chromatography/triple quadrupole mass spectrometry, liquid chromatography/triple quadrupole mass spectrometry, gas chromatography/ion trap detector mass spectrometry, and GC with a halogen-specific detector.

    PubMed

    Brown, Amy N; Cook, Jo Marie; Hammack, Walter T; Stepp, Jason S; Pelt, Jonathan V; Gerard, Ghislain

    2011-01-01

    A rapid and inexpensive multiresidue method for determining pesticides in fruits and vegetables is presented. Extraction of a 15 g sample with 15 mL acetonitrile was followed by buffering with magnesium sulfate, sodium chloride, sodium citrate dihydrate, and disodium citrate. Acidification with formic acid prior to dispersive cleanup with aminopropyl sorbent and magnesium sulfate was used to stabilize base-sensitive pesticides such as chlorothalonil. Extracts were concentrated to 2 g/mL. Analyses were conducted by GC/ion trap detector MS, GC-halogen-specific detector, and LC/triple quadrupole MS. Accuracy and repeatability for 166 compounds in tomato, potato, and cabbage were 70-120% and <20% CV in 85% of the compounds, respectively. Reproducibility over a 4 month period in multiple commodities and analytical conditions was 62-124%, with CVs better than 30% for 91% of the compounds. Supply cost/sample was reduced 66%, and time to extract a batch of 24 samples was reduced by half compared to the prior method that used a 50 g sample, 100 mL acetonitrile, multiple SPE columns, and additional instrumentation. Additional extraction studies were conducted in tomatoes, oranges, and green beans at 4 g/mL using a GC/MS triple quadrupole system with a programmable temperature vaporization inlet. Recoveries of 70-120% were achieved in 93% of all compounds in green beans, 95% in tomatoes, and 97% in oranges. PMID:21797022

  2. Spatially periodic radio-frequency quadrupole focusing linac

    NASA Astrophysics Data System (ADS)

    Kolomiets, A. A.; Plastun, A. S.

    2015-12-01

    The new design for a spatially periodical rf quadrupole focusing linac is proposed. It consists of accelerating gaps formed between conventional cylindrical drift tubes, between drift tubes and rf quadrupoles with nonzero axial potential, and inside these rf quadrupoles, formed in the same way as in a conventional radio-frequency quadrupole (RFQ) linac with modulated electrodes. Such a combination provides both higher energy gain rate than conventional RFQ and stability of transverse motion for ion beams. The structure can be designed using various combinations of quadrupoles and drift tubes. Some options are considered in the paper using the smooth approximation method and computer simulation of beam dynamics. Transverse stability of particles has been studied. The proposed structure can provide suppression of rf defocusing effects on transverse beam dynamics. Some limitations of the spatially periodic rf quadrupole structure are mentioned.

  3. T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation

    SciTech Connect

    Hensinger, W.K.; Olmschenk, S.; Stick, D.; Hucul, D.; Yeo, M.; Acton, M.; Deslauriers, L.; Monroe, C.; Rabchuk, J.

    2006-01-16

    We demonstrate a two-dimensional 11-zone ion trap array, where individual laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap geometry consists of two linear rf-ion trap sections that are joined at a 90 deg. angle to form a T-shaped structure. We shuttle a single ion around the corners of the T-junction and swap the positions of two crystallized ions using voltage sequences designed to accommodate the nontrivial electrical potential near the junction. Full two-dimensional control of multiple ions demonstrated in this system may be crucial for the realization of scalable ion trap quantum computation and the implementation of quantum networks.

  4. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations.

    PubMed

    Zhang, Xinyu; Garimella, Sandilya V B; Prost, Spencer A; Webb, Ian K; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V; Norheim, Randolph V; Baker, Erin S; Anderson, Gordon A; Ibrahim, Yehia M; Smith, Richard D

    2015-06-16

    A new Structures for Lossless Ion Manipulations (SLIM) module, having electrode arrays patterned on a pair of parallel printed circuit boards (PCB), was constructed and utilized to investigate capabilities for ion trapping at a pressure of 4 Torr. Positive ions were confined by application of RF voltages to a series of inner rung electrodes with alternating phase on adjacent electrodes, in conjunction with positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potentials applied to the inner rung electrodes to control the ion transport and accumulation inside the ion trapping region. We show that ions can be trapped and accumulated with up to 100% efficiency, stored for at least 5 h with no significant losses, and then could be rapidly ejected from the SLIM trap. The present results provide a foundation for the development of much more complex SLIM devices that facilitate extended ion manipulations. PMID:25971536

  5. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  6. Investigation of the heavy-ion mode in the FAIR High Energy Storage Ring

    NASA Astrophysics Data System (ADS)

    Kovalenko, O.; Dolinskii, O.; Litvinov, Yu A.; Maier, R.; Prasuhn, D.; Stöhlker, T.

    2015-11-01

    High energy storage ring (HESR) as a part of the future accelerator facility FAIR (Facility for Antiproton and Ion Research) will serve for a variety of internal target experiments with high-energy stored heavy ions (SPARC collaboration). Bare uranium is planned to be used as a primary beam. Since a storage time in some cases may be significant—up to half an hour—it is important to examine the high-order effects in the long-term beam dynamics. A new ion optics specifically for the heavy ion mode of the HESR is developed and is discussed in this paper. The subjects of an optics design, tune working point and a dynamic aperture are addressed. For that purpose nonlinear beam dynamics simulations are carried out. Also a flexibility of the HESR ion optical lattice is verified with regard to various experimental setups. Specifically, due to charge exchange reactions in the internal target, secondary beams, such as hydrogen-like and helium-like uranium ions, will be produced. Thus the possibility of separation of these secondary ions and the primary {{{U}}}92+ beam is presented with different internal target locations.

  7. Ion Storage with the High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James; Lewis, Raymond; Chakrabarti, Suman; Pearson, Boise

    2002-01-01

    The matter antimatter reaction represents the densest form of energy storage/release known to modern physics: as such it offers one of the most compact sources of power for future deep space exploration. To take the first steps along this path, NASA-Marshall Space Flight Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a goal of maintaining 10(exp 12) particles for up to 18 days. Experiments have been performed with this hardware using normal matter (positive hydrogen ions) to assess the device's ability to hold charged particles. These ions are currently created using an electron gun method to ionize background gas; however, this technique is limited by the quantity that can be captured. To circumvent this issue, an ion source is currently being commissioned which will greatly increase the number of ions captured and more closely simulate actual operations expected at an antiproton production facility. Ions have been produced, stored for various time intervals, and then extracted against detectors to measure species, quantity and energy. Radio frequency stabilization has been tested as a method to prolong ion lifetime: results show an increase in the baseline 1/e lifetime of trapped particles from hours to days. Impurities in the residual background gas (typically carbon-containing species CH4, CO, CO2, etc.) present a continuing problem by reducing the trapped hydrogen population through the mechanism of ion charge exchange.

  8. Diagnostic ion filtering strategy for chemical characterization of Guge Fengtong Tablet with high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Zeng, Su-Ling; Liu, Xin-Guang; Lai, Chang-Jiang-Sheng; Liu, E-Hu; Li, Ping

    2015-05-01

    The present study was designed to characterize the chemical constituents of Guge Fengtong Tablet (GGFTT). Based on the chromatographic retention behavior, fragmentation pathways of chemical components and the published literatures, a diagnostic ion filtering strategy with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-Q-TOF/MS) was established to identify the multiple bioactive constituents of GGFTT. The rapid identification of forty-seven components, including 18 phenolic acids, 8 saponins, 14 gingerol-related compounds, and 7 diarylhepatonoids, was accomplished using this newly developed method. The coupling of HPLC-ESI-Q-TOF/MS with the diagnostic ion filtering strategy was useful and efficient for the in-depth structural elucidation of chemical compounds of GGFTT. PMID:25986289

  9. Entanglement, magnetic and quadrupole moments properties of the mixed spin Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Abgaryan, V. S.; Ananikian, N. S.; Ananikyan, L. N.; Hovhannisyan, V.

    2015-02-01

    Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings. Thermal negativity as a measure of quantum entanglement of the mixed spin system is calculated. Different behavior for the negativity is obtained for the various values of Heisenberg dipolar and quadrupole couplings. The intermediate plateau of the negativity has been observed at the absence of the single-ion anisotropy and quadrupole interaction term. When dipolar and quadrupole couplings are equal there is a similar behavior of negativity and quadrupole moment.

  10. Responses of a direct ion storage dosimeter (DIS-1) to heavy charged particles.

    PubMed

    Yasuda, H

    2001-12-01

    The responses of a direct ion storage dosimeter (DIS-1) to energetic heavy charged particles were examined using (4)He, (12)C, (40)Ar and (56)Fe ion beams at the HIMAC at the National Institute of Radiological Sciences. The efficiency of the DIS-1 on the basis of absorbed dose was almost unity for the helium and carbon ions and was slightly decreased for the argon and iron ions. The linearity in the dose response and the angular independence for these heavy ions were fairly good. Although further studies are necessary, these results suggest that the DIS-1 would be a suitable passive dosimeter for measurements of absorbed dose in a field dominated by heavy charged particles such as the space environment. PMID:11741505

  11. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  12. An ion-beam injection line for the ELASR storage ring at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Almalki, M. H.; Alshammari, S. M.; Alrashdi, A. O.; Alamer, H. S.; Jabr, A. S.; Lanazi, A. Z.

    2016-01-01

    A versatile ion injector beam-line has been developed for the specific use in the multi-purpose low-energy, storage ring facility at the King Abdulaziz City for Sciences and Technology (KACST) in Riyadh, Saudi Arabia. It incorporates a purpose-developed, high-resolution mass analyzing magnet and it is thereby dedicated to provide the ELASR storage ring with beams of ions of specific mass. It is also intended to operate independently as a single-pass experiment. This versatile ion-injection line was constructed in a staged approach, in which an axial injection version was built first, commissioned and is currently operating. The injection line in its final design is now being assembled and commissioned at KACST.

  13. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    PubMed

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-01

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries. PMID:25653194

  14. The acceleration and storage of radioactive ions for a neutrino factory

    SciTech Connect

    B. Autin et al.

    2003-12-23

    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for {sup 6}He and 60 for {sup 18}Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.

  15. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    SciTech Connect

    Zhang, Xinyu; Garimella, Venkata BS; Prost, Spencer A.; Webb, Ian K.; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V.; Norheim, Randolph V.; Baker, Erin Shammel; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-16

    A structure for lossless ion manipulation (SLIM) module was constructed with electrode arrays patterned on a pair of parallel printed circuit boards (PCB) separated by 5 mm and utilized to investigate capabilities for ion trapping at 4 Torr. Positive ions were confined by application of RF having alternating phases on a series of inner rung electrodes and by positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potential of the inner rung electrodes so as to control the ion transport and accumulation inside the ion trap. We show that ions could be trapped and accumulated with 100% efficiency, stored for at least 5 hours with no losses, and could be rapidly ejected from the SLIM trap.

  16. Ion Storage Tests with the High Performance Antimatter Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Chakrabarti, Suman; Pearson, Boise; Schafer, Charles (Technical Monitor)

    2002-01-01

    The NASA/Marshall Space Flight Centers (NASA/MSFC) Propulsion Research Center (PRC) is evaluating an antiproton storage system, referred to as the High Performance Antiproton Trap (HiPAT). This interest stems from the sheer energy represented by matter/antimatter annihilation process with has an energy density approximately 10 order of magnitude above that of chemical propellants. In other terms, one gram of antiprotons contains the equivalent energy of approximately 23 space shuttle external tanks or ET's (each ET contains roughly 740,000 kgs of fuel and oxidizer). This incredible source of stored energy, if harnessed, would be an enabling technology for deep space mission where both spacecraft weight and propulsion performance are key to satisfying aggressive mission requirements. The HiPAT hardware consists of a 4 Tesla superconductor system, an ultra high vacuum test section (vacuum approaching 10(exp -12) torr), and a high voltage confinement electrode system (up to 20 kvolts operation). The current laboratory layout is illustrated. The HiPAT designed objectives included storage of up to 1 trillion antiprotons with corresponding lifetimes approaching 18 days. To date, testing has centered on the storage of positive hydrogen ions produced in situ by a stream of high-energy electrons that passes through the trapping region. However, due to space charge issues and electron beam compression as it passes through the HiPAT central field, current ion production is limited to less then 50,000 ions. Ion lifetime was determined by counting particle populations at the end of various storage time intervals. Particle detection was accomplished by destructively expelling the ions against a micro-channel plate located just outside the traps magnetic field. The effect of radio frequency (RF) stabilization on the lifetime of trapped particles was also examined. This technique, referred to as a rotating wall, made use of a segmented electrode located near the center of the trap

  17. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance.

    PubMed

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g(-1) at 30 mA g(-1) and ∼420 mAh g(-1) at 30 A g(-1), which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  18. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-06-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ~1,100 mAh g-1 at 30 mA g-1 and ~420 mAh g-1 at 30 A g-1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.

  19. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    PubMed Central

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g−1 at 30 mA g−1 and ∼420 mAh g−1 at 30 A g−1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  20. Storage-ring measurements of hyperfine induced transition rates in berylliumlike ions

    SciTech Connect

    Schippers, Stefan

    2013-07-11

    The status of experimental measurements and theoretical calculations of the hyperfine induced 2s2p{sup 3}P{sub 0}{yields}2s{sup 21}S{sub 0} transition rate in Be-like ions is reviewed. Possible reasons, such as external electromagnetic fields and competing E1M1 two-photon transitions, for presently existing significant discrepancies between experiment and theory are discussed. Finally, directions for future research are outlined.

  1. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    PubMed Central

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163

  2. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    PubMed Central

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R.; Pradhan, Padmanava; Jadhav, Swapnil R.; Dubey, Madan; John, George; Ajayan, Pulickel M.

    2012-01-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered. PMID:23233879

  3. The cost of lithium is unlikely to upend the price of Li-ion storage systems

    NASA Astrophysics Data System (ADS)

    Ciez, Rebecca E.; Whitacre, J. F.

    2016-07-01

    As lithium ion batteries become more common in electric vehicles and other storage applications, concerns about the cost of their namesake material, and its impact on the cost of these batteries, will continue. However, examining the constituent materials of these devices shows that lithium is a relatively small contributor to both the battery mass and manufacturing cost. The use of more expensive lithium precursor materials results in less than 1% increases in the cost of lithium ion cells considered. Similarly, larger fluctuations in the global lithium price (from 0 to 25/kg from a baseline of 7.50 per kg of Li2CO3) do not change the cost of lithium ion cells by more than 10%. While this small cost increase will not have a substantial impact on consumers, it could affect the manufacturers of these lithium ion cells, who already operate with small profit margins.

  4. Intensity-sensitive and position-resolving cavity for heavy-ion storage rings

    NASA Astrophysics Data System (ADS)

    Chen, X.; Sanjari, M. S.; Hülsmann, P.; Litvinov, Yu. A.; Nolden, F.; Piotrowski, J.; Steck, M.; Stöhlker, Th.; Walker, P. M.

    2016-08-01

    A heavy-ion storage ring can be adapted for use as an isochronous mass spectrometer if the ion velocity matches the transition energy of the ring. Due to the variety of stored ion species, the isochronous condition cannot be fulfilled for all the ions. In order to eliminate the measurement uncertainty stemming from the velocity spread, an intensity-sensitive and position-resolving cavity is proposed. In this paper we first briefly discuss the correction method for the anisochronism effect in the measurement with the cavity. Then we introduce a novel design, which is operated in the monopole mode and offset from the central beam orbit to one side. The geometrical parameters were optimized by analytic and numerical means in accordance with the beam dynamics of the future collector ring at FAIR. Afterwards, the electromagnetic properties of scaled prototypes were measured on a test bench. The results were in good agreement with the predictions.

  5. Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS.

    PubMed

    Orrego-Lagarón, Naiara; Vallverdú-Queralt, Anna; Martínez-Huélamo, Miriam; Lamuela-Raventos, Rosa M; Escribano-Ferrer, Elvira

    2016-02-20

    Several biological activities (antioxidant, anti-inflammatory, anticarcinogenic) are attributed to naringenin (NAR)-a predominant flavonoid of citrus fruit and tomato-despite its low bioavailability after ingestion. NAR undergoes extensive metabolism when crossing the gastrointestinal tract, resulting in enteric, hepatic and microbial metabolites, some of them with recognized beneficial effects on human health. This study sought to provide new insights into the metabolism of NAR in regions of the gastrointestinal tract where it has been less studied: the stomach and colon. With this purpose, liquid chromatography coupled with an electrospray ionization hybrid linear ion trap quadrupole Orbitrap mass spectrometry technique (LC-ESI-LTQ-Orbitrap-MS) was used for an accurate identification of NAR metabolites, and liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) on a triple quadrupole was used for their identification and quantification. The combination of both analytical techniques provided a broader metabolic profile of NAR. As far as we know, this is the first in-depth metabolic profiling study of NAR in the stomach of mice. Three of the metabolites determined using the LC-LTQ-Orbitrap could not be identified by LC-ESI-MS/MS in stomach perfusion samples: apigenin, 3-(4-hydroxyphenyl) propionic acid and phloroglucinol. The number of colonic metabolites determined using the LTQ-Orbitrap-MS was more than twice the number identified by LC-ESI-MS/MS. PMID:26698229

  6. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  7. Structural characterization of product ions of regulated veterinary drugs by electrospray ionization and quadrupole time-of-flight mass spectrometry (part 3) Anthelmintics, thyreostats, and flukicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RATIONALE: Previously we have reported a liquid chromatography tandem mass spectrometry method for the identification and quantification of regulated veterinary drugs. The methods used three selected transition ions but most of these ions lacked structural characterization. The work presented here ...

  8. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries

    PubMed Central

    Wu, Xiaoyan; Jin, Shifeng; Zhang, Zhizhen; Jiang, Liwei; Mu, Linqin; Hu, Yong-Sheng; Li, Hong; Chen, Xiaolong; Armand, Michel; Chen, Liquan; Huang, Xuejie

    2015-01-01

    Organic carbonyl compounds represent a promising class of electrode materials for secondary batteries; however, the storage mechanism still remains unclear. We take Na2C6H2O4 as an example to unravel the mechanism. It consists of alternating Na-O octahedral inorganic layer and π-stacked benzene organic layer in spatial separation, delivering a high reversible capacity and first coulombic efficiency. The experiment and calculation results reveal that the Na-O inorganic layer provides both Na+ ion transport pathway and storage site, whereas the benzene organic layer provides electron transport pathway and redox center. Our contribution provides a brand-new insight in understanding the storage mechanism in inorganic-organic layered host and opens up a new exciting direction for designing new materials for secondary batteries. PMID:26601260

  9. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  10. Redox-assisted Li+-storage in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qizhao, Huang; Qing, Wang

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+) and ionic species (Li+) at the electrode-electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li+ storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. Project supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP8-2011-04).

  11. Electrospray Quadrupole Travelling Wave Ion Mobility Time-of-Flight Mass Spectrometry for the Detection of Plasma Metabolome Changes Caused by Xanthohumol in Obese Zucker (fa/fa) Rats

    PubMed Central

    Wickramasekara, Samanthi I.; Zandkarimi, Fereshteh; Morré, Jeff; Kirkwood, Jay; Legette, LeeCole; Jiang, Yuan; Gombart, Adrian F.; Stevens, Jan F.; Maier, Claudia S.

    2013-01-01

    This study reports on the use of traveling wave ion mobility quadrupole time-of-flight (ToF) mass spectrometry for plasma metabolomics. Plasma metabolite profiles of obese Zucker fa/fa rats were obtained after the administration of different oral doses of Xanthohumol; a hop-derived dietary supplement. Liquid chromatography coupled data independent tandem mass spectrometry (LC-MSE) and LC-ion mobility spectrometry (IMS)-MSE acquisitions were conducted in both positive and negative modes using a Synapt G2 High Definition Mass Spectrometry (HDMS) instrument. This method provides identification of metabolite classes in rat plasma using parallel alternating low energy and high energy collision spectral acquisition modes. Data sets were analyzed using pattern recognition methods. Statistically significant (p < 0.05 and fold change (FC) threshold > 1.5) features were selected to identify the up-/down-regulated metabolite classes. Ion mobility data visualized using drift scope software provided a graphical read-out of differences in metabolite classes. PMID:24958146

  12. This-layer chromatography/electrospray ionization triple-quadrupole linear ion trap mass spectrometry system: analysis of rhodamine dyes separated on reversed-phase C8 plates

    SciTech Connect

    Ford, Michael J; Kertesz, Vilmos; Van Berkel, Gary J

    2005-01-01

    The direct analysis of separated rhodamine dyes on reversed-phase C{sub 8} thin-layer chromatography plates using a surface sampling/electrospray emitter probe coupled with a triple-quadrupole linear ion trap mass spectrometer is presented. This report represents continuing work to advance the performance metrics and utility of this basic surface sampling electrospray mass spectrometry system for the analysis of thin-layer chromatography plates. Experimental results examining the role of sampling probe spray end configuration on liquid aspiration rate and gas-phase ion signal generated are discussed. The detection figures-of-merit afforded by full-scan, automated product ion and selected reaction monitoring modes of operation were examined. The effect of different eluting solvents on mass spectrum signal levels with the reversed-phase C{sub 8} plate was investigated. The combined effect of eluting solvent flow-rate and development lane surface scan rate on preservation of chromatographic resolution was also studied. Analysis of chromatographically separated red pen ink extracts from eight different pens using selected reaction monitoring demonstrated the potential of this surface sampling electrospray mass spectrometry system for targeted compound analysis with real samples.

  13. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using Ultrahigh-Performance Liquid Chromatography and Positive Electrospray Ionization-Quadrupole Orbital Ion Trap High-Resolution Mass Spectrometry.

    PubMed

    Liao, Chia-Ding; Wong, Jon W; Zhang, Kai; Yang, Paul; Wittenberg, James B; Trucksess, Mary W; Hayward, Douglas G; Lee, Nathaniel S; Chang, James S

    2015-09-23

    Ultrahigh-performance liquid chromatography using positive electrospray ionization and quadrupole orbital ion trap high-resolution mass spectrometry was evaluated for analyzing mycotoxins in finished cereal and nut products. Optimizing the orbital ion trap mass analyzer in full-scan mode using mycotoxin-fortified matrix extracts gave mass accuracies, δM, of < ± 2.0 ppm at 70,000 full width at half maximum (FWHM) mass resolution (RFWHM). The limits of quantitation were matrix- and mycotoxin-dependent, ranging from 0.02 to 11.6 μg/kg. Mean recoveries and standard deviations for mycotoxins from acetonitrile/water extraction at their relevant fortification levels were 91 ± 10, 94 ± 10, 98 ± 12, 91 ± 13, 99 ± 15, and 93 ± 17% for corn, rice, wheat, almond, peanut, and pistachio, respectively. Nineteen mycotoxins with concentrations ranging from 0.3 (aflatoxin B1 in peanut and almond) to 1175 μg/kg (fumonisin B1 in corn flour) were found in 35 of the 70 commercial grain and nut samples surveyed. Mycotoxins could be identified at δM < ± 5 ppm by identifying the precursor and product ions in full-scan MS and data-dependent MS/MS modes. This method demonstrates a new analytical approach for monitoring mycotoxins in finished grain and nut products. PMID:25531669

  14. A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer.

    PubMed

    Wright, Steven; Malcolm, Andrew; Wright, Christopher; O'Prey, Shane; Crichton, Edward; Dash, Neil; Moseley, Richard W; Zaczek, Wojciech; Edwards, Peter; Fussell, Richard J; Syms, Richard R A

    2015-03-17

    Miniaturized mass spectrometers are becoming increasingly capable, enabling the development of many novel field and laboratory applications. However, to date, triple quadrupole tandem mass spectrometers, the workhorses of quantitative analysis, have not been significantly reduced in size. Here, the basis of a field-deployable triple quadrupole is described. The key development is a highly miniaturized ion optical assembly in which a sequence of six microengineered components is employed to generate ions at atmospheric pressure, provide a vacuum interface, effect ion guiding, and perform fragmentation and mass analysis. Despite its small dimensions, the collision cell efficiently fragments precursor ions and yields product ion spectra that are very similar to those recorded using conventional instruments. The miniature triple quadrupole has been used to detect thiabendazole, a common pesticide, in apples at a level of 10 ng/g. PMID:25708099

  15. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  16. Colliding or co-rotating ion beams in storage rings for EDM search

    NASA Astrophysics Data System (ADS)

    Koop, I. A.

    2015-11-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10-20. We show that the bending radius of such an EDM storage ring could be about 2-3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed.

  17. Dipole Excitation: A New Method for Mass Analysis with a Quadrupole Mass Filter

    NASA Astrophysics Data System (ADS)

    Konenkov, Nikolai V.; Douglas, Donald J.; Berdnikov, Alexander S.

    2016-07-01

    Trajectory calculations are used to investigate peak shapes and ion transmission with a proposed new method of mass analysis with a quadrupole mass filter. Dipole excitation is applied to either the x or the y electrodes, or both, to create bands of instability within the first stability region. With excitation between the y electrodes (near β y = 0), ions are removed from the low mass side of a peak, and with ion excitation in x (near β x = 1), ions are removed from the high mass side. The mass resolution can be approximately doubled with comparatively little loss in ion transmission. Ion motion in an ideal quadrupole field and in the field of a quadrupole constructed with round rods has been studied. With an ideal quadrupole field, excitation in y is found to give better peak shape and resolution than excitation in x. With quadrupoles constructed with round rods, excitation in y is found to remove ions from both the low and high mass sides of a peak. The additional higher order multipoles introduced to the quadrupole potential by the use of round rods couple the x motion to the y motion so that exciting the y motion also excites ions in x. Thus, only excitation in y is necessary. Both with an ideal quadrupole field and quadrupoles constructed with round rods, the resolution can be increased ca. ×2 with little loss of transmission.

  18. Dipole Excitation: A New Method for Mass Analysis with a Quadrupole Mass Filter.

    PubMed

    Konenkov, Nikolai V; Douglas, Donald J; Berdnikov, Alexander S

    2016-07-01

    Trajectory calculations are used to investigate peak shapes and ion transmission with a proposed new method of mass analysis with a quadrupole mass filter. Dipole excitation is applied to either the x or the y electrodes, or both, to create bands of instability within the first stability region. With excitation between the y electrodes (near β y  = 0), ions are removed from the low mass side of a peak, and with ion excitation in x (near β x  = 1), ions are removed from the high mass side. The mass resolution can be approximately doubled with comparatively little loss in ion transmission. Ion motion in an ideal quadrupole field and in the field of a quadrupole constructed with round rods has been studied. With an ideal quadrupole field, excitation in y is found to give better peak shape and resolution than excitation in x. With quadrupoles constructed with round rods, excitation in y is found to remove ions from both the low and high mass sides of a peak. The additional higher order multipoles introduced to the quadrupole potential by the use of round rods couple the x motion to the y motion so that exciting the y motion also excites ions in x. Thus, only excitation in y is necessary. Both with an ideal quadrupole field and quadrupoles constructed with round rods, the resolution can be increased ca. ×2 with little loss of transmission. Graphical Abstract ᅟ. PMID:27026406

  19. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  20. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  1. Improved sensitivity of ochratoxin A analysis in coffee using high-performance liquid chromatography with hybrid triple quadrupole-linear ion trap mass spectrometry (LC-QqQLIT-MS/MS).

    PubMed

    Kokina, Aija; Pugajeva, Iveta; Bartkevics, Vadims

    2016-04-01

    A novel and sensitive method utilising high-performance liquid chromatography coupled to triple quadrupole-linear ion trap mass spectrometry (LC-QqQLIT-MS/MS) was developed in order to analyse the content of ochratoxin A (OTA) in coffee samples. The introduction of the triple-stage MS scanning mode (MS(3)) has been shown to increase greatly sensitivity and selectivity by eliminating the high chromatographic baseline caused by interference of complex coffee matrices. The analysis included the sample preparation procedure involving extraction of OTA using a methanol-water mixture and clean-up by immunoaffinity columns and detection using the MS(3) scanning mode of LC-QqQLIT-MS/MS. The proposed method offered a good linear correlation (r(2) > 0.998), excellent precision (RSD < 2.9%) and recovery (94%). The limit of quantification (LOQ) for coffee beans and espresso beverages was 0.010 and 0.003 µg kg(-1), respectively. The developed procedure was compared with traditional methods employing liquid chromatography coupled to fluorescent and tandem quadrupole detectors in conjunction with QuEChERS and solid-phase extraction. The proposed method was successfully applied to the determination of OTA in 15 samples of coffee beans and in 15 samples of espresso coffee beverages obtained from the Latvian market. OTA was found in 10 samples of coffee beans and in two samples of espresso in the ranges of 0.018-1.80 µg kg(-1) and 0.020-0.440 µg l(-1), respectively. No samples exceeded the maximum permitted level of OTA in the European Union (5.0 µg kg(-1)). PMID:26933771

  2. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  3. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  4. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  5. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  6. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  7. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  8. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    PubMed Central

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  9. Quadrupole mass spectrometry and time-of-flight analysis of ions resulting from 532 nm pulsed laser ablation of Ni, Al, and ZnO targets

    SciTech Connect

    Sage, Rebecca S.; Cappel, Ute B.; Ashfold, Michael N. R.; Walker, Nicholas R.

    2008-05-01

    This work describes the design and validation of an instrument to measure the kinetic energies of ions ejected by the pulsed laser ablation (PLA) of a solid target. Mass spectra show that the PLA of Ni, Al, and ZnO targets, in vacuum, using the second harmonic of a Nd:YAG laser (532 nm, pulse duration {approx}10 ns) generates abundant X{sup n+} ions (n{<=}3 for Ni, {<=}2 for Al, {<=}3 and {<=}2 for Zn and O respectively from ZnO). Ions are selected by their mass/charge (m/z) ratio prior to the determination of their times of flight. PLA of Ni has been studied in most detail. The mean velocities of ablated Ni{sup n+} ions are shown to follow the trend v(Ni{sup 3+})>v(Ni{sup 2+})>v(Ni{sup +}). Data from Ni{sup 2+} and Ni{sup 3+} are fitted to shifted Maxwellian functions and agree well with a model which assumes both thermal and Coulombic contributions to ion velocities. The dependence of ion velocities on laser pulse energy (and fluence) is investigated, and the high energy data are shown to be consistent with an effective accelerating voltage of {approx}90 V within the plume. The distribution of velocities associated with Ni{sup 3+} indicates a population at cooler temperature than Ni{sup 2+}.

  10. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    PubMed

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems. PMID:21799983