Science.gov

Sample records for quadrupole resonance nqr

  1. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  2. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  3. Nuclear quadrupole resonance characterization of carbamazepine cocrystals.

    PubMed

    Seliger, Janez; Žagar, Veselko

    2012-01-01

    Nuclear quadrupole resonance (NQR) is used as a method for the characterization of cocrystals and crystal polymorphs. (14)N NQR spectra of several cocrystals of carbamazepine have been measured together with the (14)N NQR spectra of cocrystal formers. The results show that the (14)N NQR spectrum of a cocrystal and the (14)N NQR spectra of cocrystal formers differ well outside the experimental resolution. It is further described how the NQDR techniques, that have been used to measure the (14)N NQR frequencies, can be used to check the homogeneity of a polycrystalline sample and to monitor the stability of a metastable crystal polymorph. PMID:23021594

  4. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  5. Charge-inhomogeneity doping relations in YBa2Cu3Oy detected by angle-dependent nuclear quadrupole resonance

    E-print Network

    Keren, Amit

    are close to positive charges their energy is high, and when the poles are close to negative chargesCharge-inhomogeneity doping relations in YBa2Cu3Oy detected by angle-dependent nuclear quadrupole the nuclear quadrupole resonance NQR asymmetry parameter for very wide NQR lines at different positions

  6. Optimal filtering in multipulse sequences for nuclear quadrupole resonance detection

    NASA Astrophysics Data System (ADS)

    Osokin, D. Ya.; Khusnutdinov, R. R.; Mozzhukhin, G. V.; Rameev, B. Z.

    2014-05-01

    The application of the multipulse sequences in nuclear quadrupole resonance (NQR) detection of explosive and narcotic substances has been studied. Various approaches to increase the signal to noise ratio (SNR) of signal detection are considered. We discussed two modifications of the phase-alternated multiple-pulse sequence (PAMS): the 180° pulse sequence with a preparatory pulse and the 90° pulse sequence. The advantages of optimal filtering to detect NQR in the case of the coherent steady-state precession have been analyzed. It has been shown that this technique is effective in filtering high-frequency and low-frequency noise and increasing the reliability of NQR detection. Our analysis also shows the PAMS with 180° pulses is more effective than PSL sequence from point of view of the application of optimal filtering procedure to the steady-state NQR signal.

  7. Detecting body cavity bombs with nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Collins, Michael London

    Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.

  8. Low-frequency nuclear quadrupole resonance with a dc SQUID

    SciTech Connect

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  9. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  10. Narcotics and explosives detection by 14N pure nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

    1994-03-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  11. Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance

    E-print Network

    Romalis, Mike

    Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance S 20 November 2006 A radio-frequency tunable atomic magnetometer is developed for detection of nuclearHz 14 N NQR frequency of ammonium nitrate. A potential application of the magnetometer is detection

  12. Batch-specific discrimination using nuclear quadrupole resonance spectroscopy.

    PubMed

    Kyriakidou, Georgia; Jakobsson, Andreas; Althoefer, Kaspar; Barras, Jamie

    2015-04-01

    In this paper, we report on the identification of batches of analgesic paracetamol (acetaminophen) tablets using nitrogen-14 nuclear quadrupole resonance spectroscopy ((14)N NQR). The high sensitivity of NQR to the electron charge distribution surrounding the quadrupolar nucleus enables the unique characterization of the crystal structure of the material. Two hypothesis were tested on batches of the same brand: the within the same batch variability and the difference between batches that varied in terms of their batch number and expiry date. The multivariate analysis of variance (MANOVA) did not provide any within-batches variations, indicating the natural deviation of a medicine manufactured under the same conditions. Alternatively, the statistical analysis revealed a significant discrimination between the different batches of paracetamol tablets. Therefore, the NQR signal is an indicator of factors that influence the physical and chemical integrity of the material. Those factors might be the aging of the medicine, the manufacturing, or storage conditions. The results of this study illustrate the potential of NQR as promising technique in applications such as detection and authentication of counterfeit medicines. PMID:25719361

  13. Effect of Geomagnetism on 101Ru Nuclear Quadrupole Resonance Measurements of CeRu2

    NASA Astrophysics Data System (ADS)

    Manago, Masahiro; Ishida, Kenji; Matsuda, Tatsuma D.; ?nuki, Yoshichika

    2015-11-01

    We performed 101Ru nuclear quadrupole resonance (NQR) measurements on the s-wave superconductor CeRu2 and found oscillatory behavior in the spin-echo amplitude at the | ± 1/2> \\leftrightarrow | ± 3/2> transitions but not at the | ± 3/2> \\leftrightarrow | ± 5/2> transitions. The modulation disappears in the superconducting state or in a magnetic shield, which implies a geomagnetic field effect. Our results indicate that the NQR spin-echo decay curve at the | ± 1/2> \\leftrightarrow | ± 3/2> transitions is sensitive to a weak magnetic field.

  14. Z .Solid State Nuclear Magnetic Resonance 11 1998 139156 SQUID detected NMR and NQR

    E-print Network

    Augustine, Mathew P.

    Z .Solid State Nuclear Magnetic Resonance 11 1998 139­156 SQUID detected NMR and NQR Matthew P dc Superconducting QUantum Interference Device SQUID is a sensitive detector of magnetic flux to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned

  15. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  16. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    SciTech Connect

    TonThat, D.M.; Clarke, J.

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}

  17. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300?MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ? 20?dB between 90-145?MHz and 74.5-99.5?MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20?dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  18. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  19. Giant Quadrupole-Resonance in Ni Isotopes 

    E-print Network

    Youngblood, David H.; Lui, YW; Garg, U.; Peterson, R. J.

    1992-01-01

    Inelastic scattering of 129 MeV alpha particles has been used to excite the giant quadrupole resonance in Ni-58, Ni-60, Ni-62, Ni-64. The resonance was found to exhaust 58 +/- 12%, 76 +/- 14%, 78 +/- 14%, and 90 +/-16% of the E2 energy-weighted sum...

  20. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred (Downers Grove, IL)

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  1. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  2. 14N NQR and relaxation in ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Stephenson, David

    2015-04-01

    The complete 14N nuclear quadrupole resonance (NQR) spectrum of ammonium nitrate is presented recorded using two double resonance techniques - double contact cross relaxation and zero field NQR. The spectra gave the quadrupole coupling constant (Qcc) and asymmetry parameter ( ?) values for the nitro of 611 kHz, 0.229 and that for the ammonium nitrogen of 242 kHz, 0.835. The three relaxation transition probabilities have been determined for both the nitro and ammonium nitrogen atoms. The bi-exponential relaxation times (T 1) were measured at 295 K. The values for nitro are 16.9 s and 10.5 s and that of the ammonium are 23.0 s and 16.4 s.

  3. Explosives detection with quadrupole resonance analysis

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.

    1997-02-01

    The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.

  4. Commissioning Results of the HZB Quadrupole Resonator

    E-print Network

    Kleindienst, Raphael; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    Recent cavity results with niobium have demonstrated the necessity of a good understanding of both the BCS and residual resistance. For a complete picture and comparison with theory, it is essential that one can measure the RF properties as a function of field, temperature, frequency and ambient magnetic field. Standard cavity measurements are limited in their ability to change all parameters freely and in a controlled manner. On the other hand, most sample measurement setups operate at fairly high frequency, where the surface resistance is always BCS dominated. The quadrupole resonator, originally developed at CERN, is ideally suited for characterization of samples at typical cavity RF frequencies. We report on a modified version of the QPR with improved RF figures of merit for high-field operation. Experimental challenges in the commissioning run and alternate designs for simpler sample changes are shown alongside measurement results of a large grain niobium sample.

  5. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  6. (121,123)Sb and (75)As NMR and NQR investigation of the tetrahedrite (Cu12Sb4S13) - Tennantite (Cu12As4S13) system and other metal arsenides.

    PubMed

    Bastow, T J; Lehmann-Horn, J A; Miljak, D G

    2015-10-01

    This work is motivated by the recent developments in online minerals analysis in the mining and minerals processing industry via nuclear quadrupole resonance (NQR). Here we describe a nuclear magnetic resonance (NMR) and NQR study of the minerals tennantite (Cu12As4S13) and tetrahedrite (Cu12 Sb4S13). In the first part NQR lines associated with (75)As in tennantite and (121,123)Sb isotopes in tetrahedrite are reported. The spectroscopy has been restricted to an ambient temperature studies in accord with typical industrial conditions. The second part of this contribution reports nuclear quadrupole-perturbed NMR findings on further, only partially characterised, metal arsenides. The findings enhance the detection capabilities of NQR based analysers for online measurement applications and may aid to control arsenic and antimony concentrations in metal processing stages. PMID:26453410

  7. Two-pulse and stimulated nuclear-quadrupole-resonance echoes in YAlO sub 3 :Pr sup 3+

    SciTech Connect

    Erickson, L.E. )

    1991-06-01

    The dephasing of trivalent praseodymium dilute in yttrium aluminum oxide (YAlO{sub 3}) in the ground electronic state {sup 3}{ital H}{sub 4} state is evaluated using an optically detected method, to measure two-rf-pulse- and three-rf-pulse-stimulated nuclear quadrupole echoes. The magnitude of the echo is obtained by detecting the weak Raman optical field generated by the interaction of the magnetic moment of the echo and a light beam resonant with the {sup 3}{ital H}{sub 4}(0 cm{sup 1}) to {sup 1}{ital D}{sub 2}(16 374 cm{sup {minus}1}) optical transition. This same light beam is used as an optical pump (37-ms duration) prior the rf-pulse sequence to increase the population difference of the hyperfine energy levels, thereby improving the echo signal. The light is turned off 9 ms before the rf-pulse sequence and remains off until the echo to avoid optical-pumping effects on the measured nuclear-quadrupole-resonance (NQR) echo lifetime. The dephasing time {ital T}{sub 2} from two-pulse nuclear-quadrupole-echo measurement is found to be 366{plus minus}29 {mu}s.

  8. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  9. 35Cl NQR frequency and spin lattice relaxation time in 3,4-dichlorophenol as a function of pressure and temperature.

    PubMed

    Ramu, L; Ramesh, K P; Chandramani, R

    2013-01-01

    The pressure dependences of (35)Cl nuclear quadrupole resonance (NQR) frequency, temperature and pressure variation of spin lattice relaxation time (T(1)) were investigated in 3,4-dichlorophenol. T(1) was measured in the temperature range 77-300?K. Furthermore, the NQR frequency and T(1) for these compounds were measured as a function of pressure up to 5?kbar at 300?K. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W(1) and W(2) for the ?m?=?±1 and ?m?=?±2 transitions were also obtained. A nonlinear variation of NQR frequency with pressure has been observed and the pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. An attempt is made to compare the torsional frequencies evaluated from NQR data with those obtained by IR spectra. On selecting the appropriate mode from IR spectra, a good agreement with torsional frequency obtained from NQR data is observed. The previously mentioned approach is a good illustration of the supplementary nature of the data from IR studies, in relation to NQR studies of compounds in solid state. PMID:23161529

  10. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  11. Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method

    NASA Technical Reports Server (NTRS)

    Hewitt, R. R.

    1971-01-01

    Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

  12. Nuclear quadrupole resonance studies of the SORC sequence and nuclear magnetic resonance studies of polymers

    SciTech Connect

    Jayakody, J.R.P.

    1993-12-31

    The behavior of induction signals during steady-state pulse irradiation in {sup 14}N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work nitrocellulose isotopically highly enriched with {sup 15}N was studied at four different temperatures between 27{degrees} and 120{degrees} Celsius and the correlation times for polymer backbone motions were obtained. Naflon films containing water (D{sub 2}O and H{sub 2} {sup 17}O) and methanol (CH{sub 3}OD, CH{sub 3} {sup 17}OH), have been studied using deuteron and oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the {sup 2}H NMR lineshapes. Activation energies extracted from {sup 2}H spin-lattice relaxation data on the high temperature side of the T{sub 1} minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotrophy of the host polymer.

  13. Effect of a weak static magnetic field on nitrogen-14 quadrupole resonance in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Guendouz, Laouès; Aissani, Sarra; Marêché, Jean-François; Retournard, Alain; Marande, Pierre-Louis; Canet, Daniel

    2013-01-01

    The application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1. This point is of some importance in practice since NQR measurements are almost always performed in the earth field. Moreover, in the course of this study, it has been recognized that important pieces of information regarding line-shape are contained in data points at the beginning of the free induction decay (fid) which, in practice, are eliminated for avoiding spurious signals due to probe ringing. It has been found that these data points can generally be retrieved by linear prediction (LP) procedures. As a further LP benefit, the signal intensity loss (by about a factor of three) is regained. PMID:24183810

  14. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  15. 93Nb- and 27Al-NMR/NQR studies of the praseodymium based PrNb2Al20

    NASA Astrophysics Data System (ADS)

    Kubo, Tetsuro; Kotegawa, Hisashi; Tou, Hideki; Higashinaka, Ryuji; Nakama, Akihiro; Aoki, Yuji; Sato, Hideyuki

    2015-03-01

    We report a study of 93Nb- and 27Al-nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) in a praseodymium based compound PrNb2Al20. The observed NMR line at around 3 T and 30 K shows a superposition of typical powder patterns of one Nb signal and at least two Al signals. 93Nb-NMR line could be reproduced by using the previously reported NQR frequency ?Q ? 1.8MHz and asymmetry parameter ? ? 0 [Kubo T et al 2014 JPS Conf. Proc. 3 012031]. From 27Al-NMR/NQR, NQR parameters are obtained to be ?Q,A ? 1.53 MHz, and ?A ? 0.20 for the site A, and ?Q,B ? 2.28 MHz, and ?B ? 0.17 for the site B. By comparing this result with the previous 27Al-NMR study of PrT2Al20 (T = Ti, V) [Tokunaga Y et al 2013 Phys. Rev. B 88 085124], these two Al site are assigned to the two of three crystallographycally inequivalent Al sites.

  16. Nuclear Quadrupole Resonance Studies of the Sorc Sequence and Nuclear Magnetic Resonance Studies of Polymers.

    NASA Astrophysics Data System (ADS)

    Jayakody, Jayakody R. Pemadasa

    1993-01-01

    The behavior of induction signals during steady -state pulse irradiation in ^{14} N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, Cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work Nitrocellulose isotopically highly enriched with ^{15}N was studied at four different temperatures between 27^ circ and 120^circ Celsius and the correlation times for polymer backbone motions were obtained. Nafion films containing, water (D_2 O and H_2^{17}O) and methanol (CH_3OD, CH _3^{17}OH), have been studied using Deuteron and Oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the ^2H NMR lineshapes. Activation energies extracted from ^2H spin-lattice relaxation data on the high temperature side of the T_1 minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotropy of the host polymer. Activation volumes corresponding to a specific dynamical process were obtained from measurements of spin-lattice relaxation vs. pressure. From the NMR measurements of Nafion films containing methanol, it was found that the molecular motion is much more rapid than the molecular motion of water in Nafion membranes.

  17. Absence of Magnetic Dipolar Phase Transition and Evolution of Low-Energy Excitations in PrNb2Al20 with Crystal Electric Field ?3 Ground State: Evidence from 93Nb-NQR Studies

    NASA Astrophysics Data System (ADS)

    Kubo, Tetsuro; Kotegawa, Hisashi; Tou, Hideki; Higashinaka, Ryuji; Nakama, Akihiro; Aoki, Yuji; Sato, Hideyuki

    2015-07-01

    We report measurements of bulk magnetic susceptibility and 93Nb nuclear quadrupole resonance (NQR) in the Pr-based caged compound PrNb2Al20. By analyzing the magnetic susceptibility and magnetization, the crystal electric field (CEF) level scheme of PrNb2Al20 is determined to be ?3(0 K)-?4(21.32 K)-?5(43.98 K)-?1(51.16 K) within the framework of the localized 4f electron picture. The 93Nb-NQR spectra exhibit neither spectral broadening nor spectral shift upon cooling down to 75 mK. The 93Nb-NQR spin-lattice relaxation rate 1/T1 at 5 K depends on the frequency and remains almost constant below 5 K. The frequency dependence of 1/T1 is attributed to the magnetic fluctuation due to the hyperfine-enhanced 141Pr nuclear moment inherent in the nonmagnetic ?3 CEF ground state. The present NQR results provide evidence that no symmetry-breaking magnetic dipole order occurs down to 75 mK. Also, considering an invariant form of the quadrupole and octupole couplings between a 93Nb nucleus and Pr 4f electrons, Pr 4f quadrupoles and an octupole can couple with a 93Nb nuclear quadrupole moment and nuclear spin, respectively. Together with the results of bulk measurements, the present NQR results suggest that the possibility of a static quadrupole or octupole ordering can be excluded down to 100 mK. At low temperatures below 500 mK, however, the nuclear spin-echo decay rate gradually increases and the decay curve changes from Gaussian decay to Lorentzian decay, suggesting the evolution of a low-energy excitation.

  18. NQR Line Broadening Due to Crystal Lattice Imperfections and Its Relationship to Shock Sensitivity

    NASA Astrophysics Data System (ADS)

    Caulder, S. M.; Buess, M. L.; Garroway, A. N.; Miller, P. J.

    2004-07-01

    The hydrodynamic hot spot model is used to explain the difference between shock sensitive and shock insensitive explosives. Among the major factors that influence the shock sensitivity of energetic compounds are the quality and particle size of the energetic crystals used to formulate the cast plastic bonded explosive. As do all energetic compounds, RDX and HMX exhibit internal crystal defects the magnitude and type of which depend on the manufacturing process used to synthesize and re-crystallize the energetic compound. Nuclear Quadrupole Resonance (NQR) spectroscopy was used to determine the crystal quality of RDX, HMX and CL-20 obtained from various manufacturers. The NQR experimental results are discussed. Cast plastic bonded explosives were made using the RDX and HMX obtained from the various manufacturers and subsequently subjected to the NOL large-scale gap test (LSGT). The results of the LSGT are discussed and correlated with the NQR results. A relationship between the crystal defect density and shock initiation pressure of the plastic bonded explosive is developed and discussed.

  19. Cyclotron-resonance maser in a periodically loaded quadrupole transmission line Y. Leibovitch and E. Jerby*

    E-print Network

    Jerby, Eli

    the circular polarization of the em wave inside the tube. The results of this experiment may leadCyclotron-resonance maser in a periodically loaded quadrupole transmission line Y. Leibovitch and E quadrupole waveguide. The device oscillates at the fundamental and high harmonics of the cyclotron frequency

  20. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by 35Cl NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bronisz, K.; Ostafin, M.; Poleshchuk, O. Kh.; Mielcarek, J.; Nogaj, B.

    2006-11-01

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by 35Cl NQR method in order to find the correlation between electronic structure and biological activity. The 35Cl NQR resonance frequencies ( ?Q) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period ( t0.5), affinity to benzodiazepine receptor (IC 50) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of 35Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  1. High-Efficiency Resonant Cavity Quadrupole Moment Monitor

    SciTech Connect

    Barov, N.; Nantista, C.D.; Miller, R.H.; Kim, J.S.; /FARTECH, San Diego /SLAC

    2007-04-13

    Measurement of the beam quadrupole moment at several locations can be used to reconstruct the beam envelope and emittance parameters. The measurements can be performed in a non-intercepting way using a set of quadrupole-mode cavities. We present a cavity design with an optimized quadrupole moment shunt impedance. The cavity properties can be characterized using a wire test method to insure symmetry about the central axis, and alignment to nearby position sensing cavities. The design and characterization of the prototype structure is discussed.

  2. Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.

    PubMed

    Bachman, Daniel; Tsay, Alan; Van, Vien

    2015-07-27

    We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients. PMID:26367666

  3. ¹?N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹?N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T?) and the transverse relaxation time derived from the observed line-width (T?(?)). PMID:25910551

  4. Size dependence of dipole and quadrupole plasmon resonances in light induced sodium clusters

    E-print Network

    Size dependence of dipole and quadrupole plasmon resonances in light induced sodium clusters.Lotnikw 32/46, 02-668 Warsaw, Poland ABSTRACT The dependence of the optical properties of large sodium of the scattering properties of sodium clusters with cluster size in the context of possible excitation of plasmon

  5. Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Yong, Zehui; Lei, Dang Yuan; Lam, Chi Hang; Wang, Yu

    2014-04-01

    The refractive index sensing properties of plasmonic resonances in gold nanoparticles (nanorods and nanobipyramids) are investigated through numerical simulations. We find that the quadruple resonance in both nanoparticles shows much higher sensing figure of merit (FOM) than its dipolar counterpart, which is attributed mainly to the reduction in resonance linewidth. More importantly, our results predict that at the same sensing wavelength, the sensing FOM of the quadrupole mode can be significantly boosted from 3.9 for gold nanorods to 7.4 for gold nanobipyramids due to the geometry-dependent resonance linewidth, revealing a useful strategy for optimizing the sensing performance of metal nanoparticles.

  6. Measurement of in-situ stress in salt and rock using NQR techniques

    SciTech Connect

    Schempp, E.; Hirschfeld, T.; Klainer, S.

    1980-12-01

    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified.

  7. An 17O nuclear quadrupole resonance study of some carboxylic acids

    NASA Astrophysics Data System (ADS)

    Brosnan, S. G. P.; Edmonds, D. T.; Poplett, I. J. F.

    Using the new technique of doule resonance with coupled multiplets the nuclear quadrupole resonance spectra of 17O, naturally abundant at both the C?O and C?O?H sites in formic acid acrylic acid, fumaric acid, ?-oxalic acid, ? oxalic acid, maleic acid, acetic acid, and substituted acetic acids, were measured. The specimens were frozen solutions or powdered solids. For the C?O?H site fine structure is observed on the spectral lines attributable to magnetic interaction with the neighboring proton. Analysis of the structure gives the sign of the quadrupole coupling constant and also information about the principal axes of the electric field gradient at the 17O nucleus. A simple Townes and Dailey analysis is carried out for the C?O?H site.

  8. Quadrupole moment of XAg/sup m/ determined by level mixing resonance on oriented nuclei

    SciTech Connect

    Berkes, I.; Hajjaji, O.E.; Hlimi, B.; Marest, G.; Coussement, R.; Hardeman, F.; Put, P.; Scheveneels, G.

    1986-01-01

    The quadrupole moment ratio of XAg/sup m/ to ZAg/sup m/ has been determined as Q( XAg/sup m/)/Q( ZAg /sup m/) = 0.960(10) with the level mixing resonance on oriented nuclei technique. Using the previously established electric field gradient of silver in zinc, Q( XAg/sup m/) = 0.98(11) b has been deduced. The results are in agreement with the theoretical predictions.

  9. Ferromagnetic Spin Fluctuation and Unconventional Superconductivity in Rb_{2}Cr_{3}As_{3} Revealed by ^{75}As NMR and NQR.

    PubMed

    Yang, J; Tang, Z T; Cao, G H; Zheng, Guo-Qing

    2015-10-01

    We report ^{75}As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb_{2}Cr_{3}As_{3} with a quasi-one-dimensional crystal structure. Below T?100??K, the spin-lattice relaxation rate (1/T_{1}) divided by temperature, 1/T_{1}T, increases upon cooling down to T_{c}=4.8??K, showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1/T_{1} decreases rapidly below T_{c} without a Hebel-Slichter peak, and follows a T^{5} variation below T?3??K, which points to unconventional superconductivity with point nodes in the gap function. PMID:26551818

  10. Ferromagnetic Spin Fluctuation and Unconventional Superconductivity in Rb2Cr3As3 Revealed by 75As NMR and NQR

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tang, Z. T.; Cao, G. H.; Zheng, Guo-qing

    2015-10-01

    We report 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb2Cr3As3 with a quasi-one-dimensional crystal structure. Below T ˜100 K , the spin-lattice relaxation rate (1 /T1 ) divided by temperature, 1 /T1T , increases upon cooling down to Tc=4.8 K , showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1 /T1 decreases rapidly below Tc without a Hebel-Slichter peak, and follows a T5 variation below T ˜3 K , which points to unconventional superconductivity with point nodes in the gap function.

  11. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q. (San Diego, CA); Clarke, John (Berkeley, CA)

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  12. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  13. Cyclotron-resonance maser in a periodically loaded quadrupole transmission line

    NASA Astrophysics Data System (ADS)

    Leibovitch, Y.; Jerby, E.

    1999-08-01

    A cyclotron-resonance maser (CRM) is implemented in a periodic quadrupole waveguide. The device oscillates at the fundamental and high harmonics of the cyclotron frequency. This CRM employs a tenuous low-energy electron beam (~10 keV, 0.2 A). The periodic structure consists of an array of disks along the quadrupole transmission line, hence it combines both azimuthal and axial periodicities. This waveguide responds as a band-pass filter (BPF) with uniformly spaced passbands. The CRM is tuned to operate when the cyclotron harmonic frequencies coincide with the waveguide passbands. Microwave emission is observed at the first passband (~2.4 GHz), and simultaneously at the second and third harmonics in the corresponding BPF passbands (~4.9 and ~7.4 GHz, respectively). A polarized detector reveals the circular polarization of the em wave inside the tube. The results of this experiment may lead to the development of novel CRM harmonic generators and CRM arrays.

  14. Design and First Measurements of an Alternative Calorimetry Chamber for the HZB Quadrupole Resonator

    E-print Network

    Keckert, Sebastian; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    The systematic research on superconducting thin films requires dedicated testing equipment. The Quadrupole Resonator (QPR) is a specialized tool to characterize the superconducting RF properties of circular planar samples. A calorimetric measurement of the RF surface losses allows the surface resistance to be measured with sub nano-ohm resolution. This measurement can be performed over a wide temperature and magnetic field range, at frequencies of 433, 866 and 1300 MHz. The system at Helmholtz-Zentrum Berlin (HZB) is based on a resonator built at CERN and has been optimized to lower peak electric fields and an improved resolution. In this paper the design of an alternative calorimetry chamber is presented, providing flat samples for coating which are easy changeable. All parts are connected by screwing connections and no electron beam welding is required. Furthermore this design enables exchangeability of samples between the resonators at HZB and CERN. First measurements with the new design show ambiguous r...

  15. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1991-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

  16. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    NASA Astrophysics Data System (ADS)

    Spieker, M.; Tsoneva, N.; Derya, V.; Endres, J.; Savran, D.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Lagoyannis, A.; Lenske, H.; Pietralla, N.; Popescu, L.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2016-01-01

    We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in Sn isotopes, where complementary probes were used. In this study, (?, ?? ?) and (?, ??) experiments were performed on 124Sn. In both reactions, J? =2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (?, ??) experiment, while the (?, ?? ?) experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong ?-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined ?-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  17. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  18. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    SciTech Connect

    Furukawa, Yuji; Roy, Beas; Ran, Sheng; Budko, Sergey L.; Canfield, Paul C.

    2014-03-20

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility ? and the T dependence of 1/T1T?, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  19. Cyclotron-resonance maser in a periodically loaded quadrupole transmission line.

    PubMed

    Leibovitch, Y; Jerby, E

    1999-08-01

    A cyclotron-resonance maser (CRM) is implemented in a periodic quadrupole waveguide. The device oscillates at the fundamental and high harmonics of the cyclotron frequency. This CRM employs a tenuous low-energy electron beam ( approximately 10 keV, 0.2 A). The periodic structure consists of an array of disks along the quadrupole transmission line, hence it combines both azimuthal and axial periodicities. This waveguide responds as a band-pass filter (BPF) with uniformly spaced passbands. The CRM is tuned to operate when the cyclotron harmonic frequencies coincide with the waveguide passbands. Microwave emission is observed at the first passband ( approximately 2.4 GHz), and simultaneously at the second and third harmonics in the corresponding BPF passbands ( approximately 4.9 and approximately 7.4 GHz, respectively). A polarized detector reveals the circular polarization of the em wave inside the tube. The results of this experiment may lead to the development of novel CRM harmonic generators and CRM arrays. PMID:11970024

  20. Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies

    NASA Astrophysics Data System (ADS)

    Ohta, Tetsuya; Nakai, Yusuke; Ihara, Yoshihiko; Ishida, Kenji; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2008-02-01

    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were carried out for the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions are reported to occur at TCurie˜ 3 K and TS˜ 0.8 K [Huy et al.: Phys. Rev. Lett. 99 (2007) 067006], in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T1 and Knight-shift measurements, we confirm that ferromagnetic fluctuations that possess a quantum critical character are present above TCurie and also the occurrence of a ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn2 and YCo2. The onset SC transition is identified at TS˜ 0.7 K, below which 1/T1 arising from 30% of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T1, which follows a T3 dependence in the temperature range 0.3-0.1 K, coexists with the magnetic components of 1/T1 showing a \\sqrt{T} dependence below TS. From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe.

  1. Analytical continuation from bound to resonant states in the Dirac equation with quadrupole-deformed potentials

    NASA Astrophysics Data System (ADS)

    Xu, Xu-Dong; Zhang, Shi-Sheng; Signoracci, A. J.; Smith, M. S.; Li, Z. P.

    2015-08-01

    Background: Resonances with pronounced single-particle characteristics are crucial for quantitative descriptions of exotic nuclei near and beyond the drip lines, and often impact halo formation and nucleon decay processes. Since the majority of nuclei are deformed, the interplay between deformation and orbital structure near threshold can lead to improved descriptions of exotic nuclei. Purpose: Develop a method to study single-particle resonant orbital structure in the Dirac equation with a quadrupole-deformed Woods-Saxon potential. Determine the structure evolution of bound and resonant levels with deformation in this scheme, and examine the impact on halo formation in loosely bound systems, with a focus on the recent halo candidate nucleus 37Mg. Method: Analytical continuation of the coupling constant (ACCC) method is developed on the basis of the Dirac equation with a deformed Woods-Saxon potential. The scalar and vector terms in the deformed potential are determined by the energies of the valence neutron and nearby orbitals, which are extracted from a self-consistent relativistic Hartree-Bogoliubov (RHB) calculation with the PC-PK1 density functional. Results: We compare the energies and widths of resonant orbitals in the recent halo nucleus candidate 37Mg using the ACCC method based on the Dirac coupled-channel equations with those determined from the scattering phase shift (SPS) method. It is found that the results from the two methods agree well for narrow resonances, whereas the SPS method fails for broad resonances. Nilsson levels for bound and resonant orbitals from the ACCC method are calculated over a wide range of deformations and show some decisive hints of halo formation in 37Mg. Conclusions: In our ACCC model for deformed potentials in the coupled-channel Dirac equations, the crossing of the configuration 1 /2 [321 ] and 5 /2 [312 ] orbitals at a deformation of approximately 0.5 enhances the probability to occupy the 1 /2 [321 ] orbital coming from 2 p3 /2 thereby explaining the recent observation of a p -wave one-neutron halo configuration in 37Mg. The resonant 1 /2 [301 ] configuration plays a crucial role in halo formation in the magnesium isotopes beyond A =40 for a wide range of deformations larger than 0.2.

  2. Global investigation of the fine structure of the isoscalar giant quadrupole resonance

    SciTech Connect

    Shevchenko, A.; Burda, O.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Sideras-Haddad, E.; Cooper, G. R. J.; Fearick, R. W.; Foertsch, S. V.; Lawrie, J. J.; Neveling, R.; Smit, F. D.; Fujita, H.; Fujita, Y.; Lacroix, D.

    2009-04-15

    Fine structure in the region of the isoscalar giant quadrupole resonance (ISGQR) in {sup 58}Ni, {sup 89}Y, {sup 90}Zr, {sup 120}Sn, {sup 166}Er, and {sup 208}Pb has been observed in high-energy-resolution ({delta}E{sub 1/2}{approx_equal}35-50 keV) inelastic proton scattering measurements at E{sub 0}=200 MeV at iThemba LABS. Calculations of the corresponding quadrupole excitation strength functions performed within models based on the random-phase approximation (RPA) reveal similar fine structure when the mixing of one-particle one-hole states with two-particle two-hole states is taken into account. A detailed comparison of the experimental data is made with results from the quasiparticle-phonon model (QPM) and the extended time-dependent Hartree-Fock (ETDHF) method. For {sup 208}Pb, additional theoretical results from second RPA and the extended theory of finite Fermi systems (ETFFS) are discussed. A continuous wavelet analysis of the experimental and the calculated spectra is used to extract dominant scales characterizing the fine structure. Although the calculations agree with qualitative features of these scales, considerable differences are found between the model and experimental results and amongst different models. Within the framework of the QPM and ETDHF calculations it is possible to decompose the model spaces into subspaces approximately corresponding to different damping mechanisms. It is demonstrated that characteristic scales mainly arise from the collective coupling of the ISGQR to low-energy surface vibrations.

  3. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10-6??RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10-5??RIU), but also superior than current reported plasmonic sensors. PMID:26565822

  4. Secondary signals in two-frequency nuclear quadrupole resonance on (14)N nuclei with I=1.

    PubMed

    Mozzhukhin, G V; Rameev, B Z; Do?an, N; Akta?, B

    2008-07-01

    Our experimental and theoretical studies show that using two-frequency excitation of (14)N nuclei it is possible to observe secondary NQR signals at one of the three possible transitions due to irradiation of another adjacent transition. As a result of the pulse sequence applied to the adjacent transition the spin-echo signals on the detected transition are observed after essential time interval from the initial single pulse on this frequency. Experiments have been performed on the (14)N nuclei in the sodium nitrite (NaNO(2)) and the military explosive hexahydro-1,3,5-trinitro-s-triazine C(3)H(6)N(6)O(6) (RDX). PMID:18455453

  5. Radio-frequency interference suppression for the quadrupole-resonance confirming sensor

    NASA Astrophysics Data System (ADS)

    Liu, Guoqing; Jiang, Yi; Li, Jian; Barrall, Geoffrey A.

    2004-09-01

    The quadrupole resonance (QR) technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives (e.g., TNT and RDX) within the mine. We focus herein on the detection of TNT via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs). Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. By taking advantage of the spatial correlation of the RFIs received by the antenna array, the RFIs can be reduced significantly. However, the RFIs are usually colored both spatially and temporally and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlation of the RFIs to improve the TNT detection performance. First, we consider exploiting the spatial correlation of the RFIs only and propose a maximum likelihood (ML) estimator for parameter estimation and a constant false alarm rate (CFAR) detector for TNT detection. Second, we adopt a multichannel autoregressive model to take into account the temporal correlation of the RFIs and devise a detector based on the model. Third, we take advantage of the temporal correlation by using a two-dimensional robust Capon beamformer (RCB) with the ML estimator for improved RFI mitigation. Finally, we combine the merits of all of the three aforementioned approaches for TNT detection. The effectiveness of the combined method is demonstrated using the experimental data collected by Quantum Magnetics, Inc.

  6. Crystal structure and 35Cl NQR of (±) ?- (trichloromethyl) -?-propiolactone

    NASA Astrophysics Data System (ADS)

    Basaran, Reha; Dou, Shi-qi; Weiss, Alarich

    1991-09-01

    The crystal structure of (±) ?- (trichloromethyl) -?-propiolactone, C 4H 3Cl 30 2, is reported ( T=294 K); space group C52hP2 l/ c, a=1002(1) pm, b=565.O(5) pm, c=1225(l) pm, ?=9397 (3)? Z=4, V=691.85(2)×10 6pm 3. A weak hydrogen bond is observed between H (C(3)) and the carbonyl oxygen 0(2). The 35Cl NQR spectrum shows three lines in the range 77? T(K)?310. At 77K the resonance frequencies are observed at 39.822(5) MHz, 38.905(5) MHz and 38.322(5) MHz.

  7. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  8. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  9. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device

    NASA Astrophysics Data System (ADS)

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14N NQR based detection device.

  10. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.

    PubMed

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device. PMID:25233110

  11. Systematic of isovector and isoscalar giant quadrupole resonances in normal and superfluid spherical nuclei

    E-print Network

    Guillaume Scamps; Denis Lacroix

    2013-07-09

    The isoscalar (IS) and isovector (IV) quadrupole responses of nuclei are systematically investigated using the time-dependent Skyrme Energy Density Functional including pairing in the BCS approximation. Using two different Skyrme functionals, Sly4 and SkM*, respectively 263 and 304 nuclei have been found to be spherical along the nuclear charts. The time-dependent evolution of these nuclei has been systematically performed giving access to their quadrupole responses. It is shown that the mean-energy of the collective high energy state globally reproduces the experimental IS and IV collective energy but fails to reproduce their lifetimes. It is found that the mean collective energy depends rather significantly on the functional used in the mean-field channel. Pairing by competing with parity effects can slightly affect the collective response around magic numbers and induces a reduction of the collective energy compared to the average trend. Low-lying states, that can only be considered if pairing is included, are investigated. While the approach provides a fair estimate of the low lying state energy, it strongly underestimates the transition rate $B(E2)$. Finally, the possibility to access to the density dependence of the symmetry energy through parallel measurements of both the IS- and IV-GQR is discussed.

  12. Part I. Analyzing the distribution of gas law questions in chemistry textbooks. Part II. Chlorine-35 NQR spectra of group 1 and silver dichloromethanesulfonates

    NASA Astrophysics Data System (ADS)

    Gillette, Gabriel

    Part I. Two studies involving the gas law questions in eight high school and Advanced Placement/college chemistry textbooks were performed using loglinear analysis to look for associations among six variables. These variables included Bloom's Taxonomy (higher-order, lower-order), Book Type (high school, college), Question Format (multiple-choice, problem, short answer), Question Placement (in-chapter, end-of-chapter, test bank), Representation (macroscopic, microscopic, symbolic), and Arkansas Science Standard (conceptual, mathematical; gas laws, pressure conversion, stoichiometry). The first study, involving the conceptual gas law questions, found the Book Type and Question Placement variables had the biggest impact, each appearing in 5 of the 11 significant associations. The second study, involving the mathematical gas law questions, found the Question Placement had the biggest impact, appearing in 7 of the 11 significant associations, followed by Book Type and the Arkansas Science Standard variables, which appeared in 5 of the 11 significant associations. These studies showed that compared to the high school books, college books have fewer multiple-choice questions (compared to short-answer and problem questions), fewer in-chapter questions (compared to end-of-chapter and test bank questions), fewer questions in the chapters and more questions at the end of the chapters and fewer multiple-choice questions in and at the end of the books and more multiple-choice questions in the test banks. Part II. The dichloromethanesulfonate salts of several +1 charged cations, M+Cl2CHSO3 - (M = Li, Na, K, Rb Ag, Cs Tl) were synthesized and studied by 35Cl nuclear quadrupole resonance (NQR). Dichloromethanesulfonic acid was prepared by the methanolysis of dichloromethanesulfonyl chloride, which was neutralized with the metal carbonates to produce the corresponding metal dichloromethanesulfonate salts. This study completed the NQR investigation of the family of chloroacetates and chloromethanesulfonates of silver. The study suggests that the ability of organochlorine atoms to coordinate to silver ions decreases as the number of electron-withdrawing groups attached to carbon atom bound to the coordinating chlorine atom increases. The unusually large NQR spectral width found among M+Cl2CHCO2 - salts are not present among M+Cl2CHSO 3- salts and does not appear to be generally characteristic of the dichloromethyl family of salts.

  13. Nuclear quadrupole resonance of spin 3/2 and entangled two-qubit states

    NASA Astrophysics Data System (ADS)

    Furman, G.; Goren, S. D.; Meerovich, V.; Sokolovsky, V.

    2015-10-01

    A single spin-3/2, possessing a quadrupole moment and placed in a non-uniform electric field, is isomorphic to a system of two spins of 1/2, which can be represented as two qubits. To create these qubits, the degeneracy of the energy levels is removed by applying two radio-frequency fields with different phases and directions. The properties of entanglement between two qubits are studied. We analyze the concurrence, the entropy of entanglement, and fluctuations of the entropy in the pure and mixed states. Concurrence and entropy of entanglement in a mixed state increase with decreasing temperature and approach to their values in a pure state. For a nucleus Cu in high temperature superconductor {{YBa}}2{{Cu}}3{{{O}}}7-? , the estimation of the temperature, at which entanglement appears, gives T ?slant 0.8 ?K.

  14. Quadrupole Shift of Nuclear Magnetic Resonance of Donors in Silicon at Low Magnetic Field

    E-print Network

    P. A. Mortemousque; S. Rosenius; G. Pica; D. P. Franke; T. Sekiguchi; A. Truong; M. P. Vlasenko; L. S. Vlasenko; M. S. Brandt; R. G. Elliman; K. M. Itoh

    2015-06-12

    Above megahertz shifts of nuclear magnetic resonance lines of antimony and bismuth donors in silicon are reported. Defects created by ion implantation of the donors are discussed as the source of effective electric field gradients generating these shifts. The experimental results are modeled quantitatively by molecular orbital theory for a coupled pair consisting of a donor and a spin-dependent recombination readout center.

  15. Secular dynamics of coplanar, non-resonant planetary system under the general relativity and quadrupole moment perturbations

    E-print Network

    Cezary Migaszewski; Krzysztof Gozdziewski

    2008-09-30

    We construct a secular theory of a coplanar system of N-planets not involved in strong mean motion resonances, and which are far from collision zones. Besides the point-to-point Newtonian mutual interactions, we consider the general relativity corrections to the gravitational potential of the star and the innermost planet, and also a modification of this potential by the quadrupole moment and tidal distortion of the star. We focus on hierarchical planetary systems. A survey regarding model parameters (the masses, semi-major axes, spin rate of the star) reveals a rich and non-trivial dynamics of the secular system. Our study is focused on its equilibria. Such solutions predicted by the classic secular theory, which correspond to aligned (mode I) or anti-aligned (mode II) apsides, may be strongly affected by the gravitational corrections. The so called true secular resonance, which is a new feature of the classic two-planet problem discovered by Michtchenko & Malhotra (2004), may appear in other, different regions of the phase space of the generalized model. We found bifurcations of mode II which emerge new, yet unknown in the literature, secularly unstable equilibria and a complex structure of the phase space. These equilibria may imply secularly unstable orbital configurations even for nitially moderate eccentricities. The point mass gravity corrections can affect the long term-stability in the secular time scale, which may directly depend on the age of the host star through its spin rate. We also analyze the secular dynamics of the upsilon Andromede system in the realm of the generalized model. Also in this case of the three-planet system, new secular equilibria may appear.

  16. Splitting of the giant monopole and quadrupole resonances in Sm-154 

    E-print Network

    Youngblood, David H.; Lui, YW; Clark, HL.

    1999-01-01

    identifying fission fragments fol- lowing excitation with small-angle inelastic a scattering and reported a splitting of the E0 strength in rough agreement with the calculations of Abgrall et al. @8#. There have been no results reported where the actual... splitting was observed and where the E0 and E2 components were both separately identified. We have investigated the giant resonance region in 154Sm ~where b;0.3) using inelastic scattering of 240 MeV a par- ticles where excellent peak to continuum...

  17. Electron density distribution in cladribine (2-chloro-2?-deoxyadenosine) - A drug against leukemia and multiple sclerosis - Studied by multinuclear NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Latosi?ska, J. N.; Latosi?ska, M.; Seliger, J.; Žagar, V.; Kazimierczuk, Z.

    2009-07-01

    2-Chloro-2'-deoxyadenosine (Cladribine) chemotherapeutic drug has been studied experimentally in solid state by 35Cl NQR and NMR-NQR double resonance and theoretically by the Density Functional Theory. Fifteen resonance frequencies on 14N have been detected and assigned to particular nitrogen sites in the 2-CdA molecule. The effects of tautomerism, regioisomerism, conformations and molecular aggregations, related to intermolecular hydrogen bond formation, on the NQR parameters have been analysed within the DFT and AIM ( Atoms in Molecules) formalism. The properties of the whole molecule, the so-called global reactivity descriptors, have been calculated for a comparison of both syn and anti conformations of 2-CdA molecule to check the effect of crystal packing on molecular conformation.

  18. Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques

    SciTech Connect

    Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.; Ziegeweid, M.; Pines, A. |

    1995-07-01

    Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

  19. 81Br NQR and crystal structure of 4-bromopyridinium pentabromoantimonate(III); 3c-4e bonding and NQR trans influence

    NASA Astrophysics Data System (ADS)

    Terao, Hiromitsu; Ninomiya, Seiko; Hashimoto, Masao; Eda, Kazuo

    2010-02-01

    The crystal structure of (4-BrC 5H 4NH) 2SbBr 5 was determined by a single crystal X-ray diffraction at 193 K. The crystals belong to the triclinic system (P1¯) with a = 9.1861(19) Å, b = 10.622(2) Å, c = 10.703(2) Å, ? = 99.665(3)°, ? = 97.393(3)°, ? = 108.539(3)°, and Z = 2. There exists an anion dimer Sb 2Br 104- in the crystal structure which consists of an edge-sharing between two SbBr 6 octahedra. The inversion center situated at the center of the shared-edge of the dimer relates two asymmetric units, which consist of a SbBr 52- moiety and two nonequivalent cations. Each cation is bound to the apical Br atoms of Sb 2Br 104- through N-H…Br hydrogen bonds. Seven 81Br NQR resonance lines including those for two Br atoms in the nonequivalent cations have been observed in the temperature range of 77 to ca. 360 K in accordance with the crystal structure. The frequencies of each of the respective pairs of NQR lines for the apical Br and for the equatorial Br atoms showed unusual positive temperature dependence with almost linear changes. For these curves, the other lines of pairs showed symmetrical temperature dependence, maintaining the center of mass almost constant in frequency. These observations may indicate the existence of NQR trans influence which were manifested through the occurrence of substantial electronic redistributions in the 3c-4e (Br-Sb-Br) bonds with temperature changes.

  20. Pressure Dependence of the Chlorine NQR in Chloro Pyridines

    NASA Astrophysics Data System (ADS)

    Ramesh, K. P.; Ramakrishna, J.; Suresh, K. S.; Rao, C. Raghavendra

    2000-02-01

    The 35CI NQR frequency (?Q) and spin lattice relaxation time (T1 ) in 2,6-dichloropyridine, 2 amino 3,5-dichloropyridine and 6 chloro 2-pyridinol have been measured as a function of pressure up to 5.1 kbar at 300 K, and the data have been analysed to estimate the temperature coefficients of the NQR frequency at constant volume. All the three compounds show a non linear variation of the NQR frequency with pressure which can be described by a 2nd order polynomial in pressure. The rate of change of the NQR frequency with pressure is positive and decreases with increasing pressure. The spin lattice relaxation time T1, in all the three compounds shows a small increase with pressure, indicating that the relaxation is mainly due to the torsional motions.

  1. Vol.9, No. 5/May 1992/J. Opt. Soc. Am. B 779 Eu3+ optically detected nuclear quadrupole resonance in

    E-print Network

    Miall, Chris

    itself rather than of the specific crystal growth procedure. Almost all of the defect lines are amenable of the local principal axes at defect sites relative to those of the crystal. Also, varia- tions in flux growth but that other defects seem to be present even in the purest crystals. Site-dependent nuclear quadrupole

  2. Quadrupole-enhanced Raman scattering.

    PubMed

    Hastings, Simon P; Swanglap, Pattanawit; Qian, Zhaoxia; Fang, Ying; Park, So-Jung; Link, Stephan; Engheta, Nader; Fakhraai, Zahra

    2014-09-23

    Dark, nonradiating plasmonic modes are important in the Raman enhancement efficiency of nanostructures. However, it is challenging to engineer such hotspots with predictable enhancement efficiency through synthesis routes. Here, we demonstrate that spiky nanoshells have designable quadrupole resonances that efficiently enhance Raman scattering with unprecedented reproducibility on the single particle level. The efficiency and reproducibility of Quadrupole Enhanced Raman Scattering (QERS) is due to their heterogeneous structure, which broadens the quadrupole resonance both spatially and spectrally. This spectral breadth allows for simultaneous enhancement of both the excitation and Stokes frequencies. The quadrupole resonance can be tuned by simple modifications of the nanoshell geometry. The combination of tunability, high efficiency, and reproducibility makes these nanoshells an excellent candidate for applications such as biosensing, nanoantennaes, and photovoltaics. PMID:25157600

  3. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C{sub 5}H{sub 5}) and Sn({eta}{sup 1}-C{sub 5}H{sub 5}){sub 4}. This work was undertaken in the hope of gaining insight into the intramolecuhrr dynamics, specifically which fluxional processes exist in the solid state, by what mechanism rearrangements are occurring, and the activation energies by which these processes are governed.

  4. Nuclear magnetic and quadrupole resonances of Cu in the low-dimensional magnets Cu2M2Ge4O13 (M = Fe, Sc)

    NASA Astrophysics Data System (ADS)

    Kikuchi, J.; Nagura, S.; Nakanishi, H.; Masuda, T.

    2010-01-01

    We report on the results of nuclear magnetic and quadrupole resonances of Cu in Cu2Fe2Ge4O13 consisting of weakly coupled Cu dimers and Fe chains. In the antiferromagnetic state below 39 K, we observed nuclear resonance of Cu under the internal magnetic field at the Cu site. An analysis of the internal field based on the square-planar coordination of Cu2+suggests that the 3d hole is mainly in the dx2-y2 orbital. In Cu2Sc2Ge4O13 including only Cu dimers, we observed oscillation of Cu spin-echo intensity as a function of the separation time between ?/2 and ? pulses. This is caused by indirect nuclear spin coupling mediated by strong intradimer exchange coupling of the electronic spins, indicating that the dimers are magnetically well isolated in these materials.

  5. Nuclear Quadrupole Double Resonance Investigation of the Anomalous Temperature Coefficients of the Strong Hydrogen Bonds in Sodium and Potassium Deuterium Diacetate.

    NASA Astrophysics Data System (ADS)

    Shaw, Eric Max

    This thesis was directed at learning more about the unusual electronic environment near hydrogen within strong hydrogen bonds. "Strong" hydrogen bonds are unique in that the hydrogen atom is symmetrically located, or nearly so, between two electronegative atoms; the bond energies are relatively large. In a "normal" hydrogen bond the hydrogen atom is bonded to, and thus physically closer to, a parent atom, and only weakly attracted to another electronegative atom; bond energies are typically small. To examine these bonds, deuterium was substituted for hydrogen and the electric quadrupole coupling constant (QCC) of deuterium was measured using field cycling nuclear magnetic resonance. The electric quadrupole moment of deuterium is sensitive to changes in the surrounding electric field gradient, and is thus a good probe of the immediate electronic structure. The results show that the temperature dependence of the QCC is opposite to, and much larger than, what one would normally expect to observe for deuterium. The QCC is found to decrease strongly with decreasing temperature. This project was the first to study in detail the temperature dependence of deuterium QCCs in strong hydrogen bonds. The magnitude of the deuterium QCCs for the diacetates was found to be strongly depressed relative to typical values for deuterium. These results parallel large shifts in the infrared vibrational frequencies observed in many molecules which contain strong hydrogen bonds. The asymmetry parameter, which is a measure of the departure from axial symmetry of the electric field gradient (EFG) at deuterium, was found to be unusually large for what are known to be linear, or nearly linear, three-center bonds. Based on ab initio Hartree-Fock calculations aimed at determining the EFG at H in the archetypal bifluoride ion, F-H-F^-, the electronic charge density is drastically depleted at H. It is believed that the large reduction in the charge density allows the deuterium EFG to be highly sensitive to the shape of the charge distribution on the atoms to which deuterium is bonded. If these atoms are at points of low crystallographic symmetry, the polarization of these adjacent atoms by other nearby atoms may cause the EFG to depart substantially from being axially symmetric. Also obtained from the molecular orbital calculations for bifluoride ion were the total electronic energy and the electric field gradient at H. From these calculations potential function models for the asymmetric stretch and the bend were constructed. An attempt was made to correlate the predictions made by these models for the temperature dependence of the deuteron quadrupole coupling constant in bifluoride ion with the experimentally observed results for the diacetates.

  6. 63,65Cu Nuclear Resonance Study of the Coupled Spin Dimers and Chains Compound Cu2Fe2Ge4O13

    NASA Astrophysics Data System (ADS)

    Kikuchi, Jun; Nagura, Shiro; Murakami, Kazumasa; Masuda, Takatsugu; Redhammer, Günther J.

    2013-03-01

    Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) of Cu have been measured in a coupled spin dimers and chains compound Cu2Fe2Ge4O13. Cu NQR has also been measured in an isostructural material Cu2Sc2Ge4O13 including only spin dimers. Comparison of the temperature dependence of the 63Cu nuclear spin--lattice relaxation rate between the two compounds reveals that the Fe chains in Cu2Fe2Ge4O13 do not change a spin gap energy of the Cu dimers from that in Cu2Sc2Ge4O13, contributing additionally to the relaxation rate at the Cu site. A modestly large internal field of 3.39 T was observed at the Cu site in the antiferromagnetic state of Cu2Fe2 Ge4O13 at 4.2 K, which is partly because of quantum reduction of the ordered moment of a Cu atom. The internal field and the ordered moment of Cu are noncollinear due to large anisotropy of the hyperfine interaction at the Cu site. A model analysis of the internal field based on the fourfold planar coordination of Cu suggests that a 3d hole of the Cu2+ ion is mainly in the d(x2-y2) orbital state.

  7. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    PubMed

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by ?-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with ?-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22366169

  8. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  9. Temperature and baric dependence of nuclear quadruple resonance spectra in indium and gallium monoselenides

    NASA Astrophysics Data System (ADS)

    Khandozhko, Victor; Raranskii, Nikolai; Balazjuk, Vitaly; Samila, Andriy; Kovalyuk, Zahar

    2013-12-01

    Pulsed radiospectroscopy method has been used to study nuclear quadruple resonance (NQR) spectra of 69Ga and 115In isotopes in the layered semiconductors GaSe and InSe. It has been found that in GaSe and InSe there is a considerable temperature dependence of NQR frequency which in the temperature range of 250 to 390 K is practically linear with conversion slope 1.54 kHz/degree for 69Ga and 2.35 kHz/degree for 115In. In the same crystals the effect of uniaxial pressure on NQR spectra applied along the optical axis ? up to the values of 500 kg/?m2 has been studied. A strong attenuation of NQR spectra intensity with increase in pressure on layered crystal package has been established. The unvaried multiplicity of resonance spectra indicates the absence of structural transformations in these layered crystals over the investigated range of temperatures and pressures.

  10. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    SciTech Connect

    Shimada, Rintaro; Hamaguchi, Hiro-o

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-?-carotene (?-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute ?-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of ?-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of ?-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of ?-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  11. Crystal Structure and 35Cl NQR of ( — ) ?-(trichloromethyl)- ?-propiolactone. Comparison with (±) ?-(trichloromethyl)-?-propiolactone

    NASA Astrophysics Data System (ADS)

    Dou, Shi-qi; Basaran, Reha; Paulus, Helmut; Weiss, Alarich

    1993-03-01

    The crystal structure of(-)?-(trichloromethyl)-?-propiolactone at room temperature is reported, as is the 35Cl NQR spectrum in the range 77 ? T/K ? 323.5. The compound crystallizes with the space group D24-212121, Z = 8, a = 2416.0 (10) pm, b = 975.6 (4) pm, c = 595.0 (2) pm. The intramolecular distances and angles of the two crystallographically independent (-) molecules in the unit cell are equal within the limits of error. The spread of the 35Cl NQR spectrum is within 600 kHz, not changing in the temperature range covered. The crystal structure and 35Cl NQR spectrum are discussed. The results found for the (-) compound are compared with the corresponding ones reported for the (±) compound [1], and the influence of the different intramolecular interactions in the two solid states of the chemically identical compounds on the NQR spectrum is discussed.

  12. Quadrupole Contribution to Two Neutron Removal in Heavy Ion Collisions

    E-print Network

    C. J. Benesh

    1992-10-04

    In this report, electric quadrupole corrections to the two neutron removal cross section measured in heavy ion collisions are estimated for $^{197}$Au and $^{59}$Co targets. The quadrupole process is assumed to proceed primarily through excitation of the giant isovector quadrupole resonance, which then decays by neutron emission. For $^{59}$Co, the contribution from E2 radiation is found to be small, while for $^{197}$Au we find the quadrupole contribution resolves the discrepancy between experiment and the simple predictions of the Weissacker-Williams virtual photon method.

  13. Spin dynamics in CuO and Cu[sub 1[minus][ital x

    SciTech Connect

    Carretta, P.; Corti, M.; Rigamonti, A. )

    1993-08-01

    [sup 63]Cu nuclear quadrupole resonance (NQR), nuclear antiferromagnetic resonance (AFNMR), and spin-lattice relaxation, as well as [sup 7]Li NMR and relaxation measurements in CuO and in Cu[sub 1[minus][ital x

  14. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero roll angle or placing skew quadrupole correctors in the bores of main quadrupoles).

  15. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  16. Identification of protein phosphorylation sites within Ser/Thr-rich cluster domains using site-directed mutagenesis and hybrid linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    King, Julie B; Gross, Julia; Lovly, Christine M; Piwnica-Worms, Helen; Townsend, R Reid

    2007-01-01

    We describe a method for the analysis of multi-site phosphorylation in serine/threonine (Ser/Thr)-rich protein sequences. Site-specific mutagenesis was used to introduce tryptic cleavage sites in the serine glutamine/threonine glutamine cluster domain (SCD) of the human checkpoint protein kinase (Chk2). The mutant proteins were shown to autophosphorylate on residues that are inducibly phosphorylated when mammalian cells are exposed to ionizing radiation (serine 33/35, serine 516, threonine 68 and threonine 432). Five Ser/Thr clusters within the SCD were flanked by arginine or lysine residues to produce tryptic peptides for nanospray liquid chromatography (nanoLC)/linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometry. Phosphorylation sites were assigned using accurate-mass-driven analysis and interpretation of low-energy collision-induced dissociation spectra acquired in the ion trap. In addition to verifying known phosphorylation sites, seventeen novel sites were identified within the SCD of Chk2. The approach should be applicable to other O-linked post-translational modifications that occur in proteins with Ser/Thr-rich sequences. PMID:17918214

  17. The Conformational Changes Induced by Ubiquinone Binding in the Na+-pumping NADH:Ubiquinone Oxidoreductase (Na+-NQR) Are Kinetically Controlled by Conserved Glycines 140 and 141 of the NqrB Subunit*

    PubMed Central

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A.; Barquera, Blanca; Hellwig, Petra

    2014-01-01

    Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

  18. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  19. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D. (Orinda, CA); Fugitt, Jock A. (Berkeley, CA); Howard, Donald R. (Danville, CA)

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  20. NQR study of neutral-ionic phase transition and quantum paraelectric state in organic charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Iwase, Fumitatsu; Miyagawa, Kazuya; Kanoda, Kazushi; Horiuchi, Sachio; Tokura, Yoshinori

    2008-12-01

    NQR measurements were performed for the charge-transfer complexes DMTTF-QBr nCl n-4 under ambient and hydrostatic pressures in order to understand the neutral-ionic phase transition and the quantum critical behavior. The 35Cl NQR spectrum of DMTTF-QCl 4 showed a splitting and a shift below Tc, indicating the occurrence of dimerization and charge transfer. The spin-lattice relaxation rate 1/ T1 showed a peak anomaly around Tc, reflecting the critical slowing down. The quantum paraelectric states in DMTTF-2,6-QBr 2Cl 2 and pressured DMTTF-QBr 4 were studied by the 79Br NQR. We found the microscopic evidence for the evolution of the critical fluctuations at low temperatures in the temperature dependence of spin-lattice relaxation rate.

  1. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  2. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Kirkwood, Jay S; Halang, Petra; Quinn, Matthew J; Faulkner, Wyatt J; Aagesen, Alisha M; Steuber, Julia; Stevens, Jan F; Häse, Claudia C

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ?nqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ?nqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ?nqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  3. Ga NMR/NQR study of the kagom compound Nd This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-print Network

    Paris-Sud 11, Université de

    29 Si NMR and 69,71 Ga NMR/NQR study of the kagomé compound Nd 3 Ga 5 SiO 14 This article has been Contact us My IOPscience #12;29 Si NMR and 69,71 Ga NMR/NQR study of the kagom´e compound Nd3Ga5SiO14.zorko@ijs.si Abstract. We report a comprehensive 29 Si NMR and 69,71 Ga NMR/NQR study of the large- spin magnetically

  4. Quadrupole magnets for the SSC

    SciTech Connect

    Lietzke, A.; Barale, P.; Benjegerdes, R.; Caspi, S.; Cortella, J.; Dell`Orco, D.; Gilbert, W.; Green, M.I.; Mirk, K.; Peters, C.; Scanlan, R.; Taylor, C.E.; Wandesforde, A.

    1992-08-01

    At LBL, we have designed, constructed, and tested ten models (4-1meter, 6-5meter) of the Superconducting Super Collider (SSC) main-ring 5 meter focusing quadrupole magnet (211Tesla/meter). The results of this program are herein summarized.

  5. LCLS Undulator Quadrupole Fiducialization Plan

    SciTech Connect

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; ,

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  6. Chapter 11. The Electrostatic Quadrupoles

    E-print Network

    Brookhaven National Laboratory - Experiment 821

    quadrupole segment will be powered from feedthroughs upstream in the vacuum chamber. The feeding leads shown between the leads is 4 cm. The geometry of the feeding leads is such that the trapped electrons are driven \\Gamma 2) ring. There will be set screws which will allow fine adjustments to the cage position relative

  7. Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi

    PubMed Central

    Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  8. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  9. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method of choice. We then give an overview of the measurement system showing how the vibrating wire is positioned onto the quadrupole axis, how the wire position detectors locate the wire relative to tooling balls without touching the wire, and how the tooling ball positions are all measured. The novel feature of this system is the vibrating wire which we discuss in depth. We analyze the wire dynamics and calculate the expected sensitivity of the system. The note should be an aid in debugging the system by providing calculations to compare measurements to.

  10. Image restoration using fast Fourier and wavelet transforms

    NASA Astrophysics Data System (ADS)

    Harrod, William J.; Nagy, James G.; Plemmons, Robert J.

    1994-02-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  11. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  12. Quadrupole Pick-Ups at CERN & Fermilab

    E-print Network

    Large Hadron Collider Program

    Quadrupole Pick-Ups at CERN & Fermilab Quadrupole Pick-Ups at CERN & Fermilab A. Jansson FNAL #12;Andreas Jansson, US-LARP meeting, May 9, 2003 2 Talk outlineTalk outline The quad pick-ups in the CERN PS The quad pick-up in the Fermilab AA Possibilities for LHC (and Tevatron) #12;Andreas Jansson, US

  13. Electrostatic quadrupoles for heavy-ion fusion

    SciTech Connect

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed.

  14. Intersegment hydrogen bonds as possible structural determinants of the N/Q/R site in glutamate receptors.

    PubMed Central

    Tikhonov, D B; Zhorov, B S; Magazanik, L G

    1999-01-01

    Specific electrophysiological and pharmacological properties of ionic channels in NMDA, AMPA, and kainate subtypes of ionotropic glutamate receptors (GluRs) are determined by the Asn (N), Gln (Q), and Arg (R) residues located at homologous positions of the pore-lining M2 segments (the N/Q/R site). Presumably, the N/Q/R site is located at the apex of the reentrant membrane loop and forms the narrowest constriction of the pore. Although the shorter Asn residues are expected to protrude in the pore to a lesser extent than the longer Gln residues, the effective dimension of the NMDA channel (corresponding to the size of the largest permeant organic cation) is, surprisingly, smaller than that of the AMPA channel. To explain this paradox, we propose that the N/Q/R residues form macrocyclic structures (rings) stabilized by H-bonds between a NH(2) group in the side chain of a given M2 segment and a C==O group of the main chain in the adjacent M2 segment. Using Monte Carlo minimization, we have explored conformational properties of the rings. In the Asn, but not in the Gln ring, the side-chain oxygens protruding into the pore may facilitate ion permeation and accept H-bonds from the blocking drugs. In this way, the model explains different electrophysiological and pharmacological properties of NMDA and non-NMDA GluR channels. The ring of H-bonded polar residues at the pore narrowing resembles the ring of four Thr(75) residues observed in the crystallographic structure of the KcsA K(+) channel. PMID:10512812

  15. Nuclear Quadrupole Moment of F

    SciTech Connect

    Martinez-Pinedo, Gabriel; Schwerdtfeger, Peter; Caurier, Etienne; Langanke, Karlheinz; Nazarewicz, Witold; Soehnel, Tilo

    2001-08-06

    The nuclear quadrupole moment (NQM) of the I{sup {pi}}=3/2{sup -} excited nuclear state of {sup 57}Fe at 14.41keV, important in Moessbauer spectroscopy, is determined from the large-scale nuclear shell-model calculations for {sup 54}Fe , {sup 57}Fe , and also from the electronic ab initio and density functional theory calculations including solid state and electron correlation effects for the molecules Fe(CO){sub 5} and Fe(C{sub 5}H{sub 5}){sub 2} . Both independent methods yield very similar results. The recommended value is 0.15(2)eb. The NQM of the isomeric 10+ in {sup 54}Fe has also been calculated. The new NQM values for {sup 54}Fe and {sup 57}Fe are consistent with the perturbed angular distribution data.

  16. DIPOLE AND QUADRUPOLE SORTING FOR THE SNS RING.

    SciTech Connect

    RAPARIA,D.FEDOTOV,A.LEE,Y.Y.ET AL.

    2004-07-05

    The Spallation Neutron Source (SNS) accumulator ring is a high intensity ring and must have low uncontrolled losses for hands on maintenance. To achieve these low losses one needs very tight tolerance. These tight tolerances have been achieved through shimming the magnets and sorting. Dipoles are solid core magnets and had very good field quality but magnet to magnet variation were sorted out according to ITF, since all the dipole are powered with one power supply. Typically, sorting is done to minimize linear effects in beam dynamics. Here, sorting of quadrupoles was done according to a scheme, which allows reducing unwanted strength of nonlinear resonances. As a result, the strength of sextupole resonances for our base line tune-box was strongly reduced which was confirmed by a subsequent beam dynamics simulation.

  17. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W. (East Moriches, NY)

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  18. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  19. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components. PMID:25173260

  20. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  1. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  2. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  3. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  4. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  5. Design, development, and acceleration trials of radio-frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rao, S. V. L. S.; Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V.; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S.; Gupta, S. K.; Singh, P.

    2014-04-01

    A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 ?m leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (˜±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D+) beam, we tested it by accelerating both the proton (H+) and D+ beams. The RFQ was operated in pulsed mode and accelerated both H+ and D+ beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

  6. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  7. Dipole gravity waves from unbound quadrupoles

    E-print Network

    Franklin Felber

    2010-06-10

    Dipole gravitational disturbances from gravitationally unbound mass quadrupoles propagate to the radiation zone with signal strength at least of quadrupole order if the quadrupoles are nonrelativistic, and of dipole order if relativistic. Angular distributions of parallel-polarized and transverse-polarized dipole power in the radiation zone are calculated for simple unbound quadrupoles, like a linear-oscillator/stress-wave pair and a particle storage ring. Laboratory tests of general relativity through measurements of dipole gravity waves in the source region are proposed. A NASA G2 flywheel module with a modified rotor can produce a post-Newtonian dc bias signal at a gradiometer up to 1 mE. At peak luminosity, the repulsive dipole impulses of proton bunches at the LHC can produce an rms velocity of a high-Q detector surface up to 4 micron/s. Far outside the source region, Newtonian lunar dipole gravity waves can produce a 1-cm displacement signal at LISA. Dipole signal strengths of astrophysical events involving unbound quadrupoles, like near collisions and neutron star kicks in core-collapse supernovae, are estimated.

  8. Microfluidic quadrupole and floating concentration gradient

    PubMed Central

    Qasaimeh, Mohammad A.; Gervais, Thomas; Juncker, David

    2014-01-01

    The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows, however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the center of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable – i.e. “floating” – concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena. PMID:21897375

  9. Variable gradient permanent-magnet quadrupole lenses

    SciTech Connect

    O'Shea, P.G.; Zaugg, T.J.; Maggs, R.G.; Schafstall, P.; Dyson, J.E.

    1989-01-01

    Rare earth (RE) permanent-magnet quadrupoles (PMQs) have been used for many applications in particle accelerators. They have the advantage over electromagnets of being lightweight and reliable. One difficulty associated with PMQs is that the quadrupole gradient is not easily adjusted. Over a certain range, the magnetization of RE magnets is a reversible function of temperature. We have developed a scheme to use this property to make variable gradient PMQs. The field gradient changes required for tuning are typically on the order of a few percent. For many RE magnets, this requires temperature changes of a few tens of degrees centigrade and is accomplished by actively heating or cooling the quadrupoles. 8 refs., 7 figs.

  10. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    SciTech Connect

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; ,

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  11. Giant Quadrupole and Monopole Resonances in Si-28 

    E-print Network

    Lui, YW; Bronson, J. D.; Youngblood, David H.; Toba, Y.; Garg, U.

    1985-01-01

    . A total of 66% of the EO energy-weighted sum rule was identified (using a Satchler version 2 form factor) centered at E?=17.9 MeV having a width of 4.8 MeV and 34% of the E2 energy-weighted sum rule was identified above E = 15.3 MeV centered at 19... distributions in ' Mg, Si, and "Ca; they found a large amount of the E2 EWSR exhausted between 14 and 27 MeV, consistent with earlier studies by Youngblood et al. , who investigated Mg, Al, and Sj wjth 126 MeV jnelastjc alpha scatter- ing. Some evidence...

  12. Fine structure of the isoscalar giant quadrupole resonance in 40

    E-print Network

    Roth, Robert

    , Somerset West 7129, South Africa bSchool of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa cSchool of Earth Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa

  13. Chip-Scale Quadrupole Mass Filters for Portable Mass Spectrometry

    E-print Network

    Cheung, Kerry

    We report the design, fabrication, and characterization of a new class of chip-scale quadrupole mass filter (QMF). The devices are completely batch fabricated using a wafer-scale process that integrates the quadrupole ...

  14. An ultra-broadband low-frequency magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Utsuzawa, S.; Cory, D. G.; Hürlimann, M.; Poitzsch, M.; Song, Y.-Q.

    2014-05-01

    MR probes commonly employ resonant circuits for efficient RF transmission and low-noise reception. These circuits are narrow-band analog devices that are inflexible for broadband and multi-frequency operation at low Larmor frequencies. We have addressed this issue by developing an ultra-broadband MR probe that operates in the 0.1-3 MHz frequency range without using conventional resonant circuits for either transmission or reception. This “non-resonant” approach significantly simplifies the probe circuit and allows robust operation without probe tuning while retaining efficient power transmission and low-noise reception. We also demonstrate the utility of the technique through a variety of NMR and NQR experiments in this frequency range.

  15. LARP Long $Nb_{3}Sn$ Quadrupole

    E-print Network

    Ambrosio, G

    2008-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade.

  16. Density functional theory calculations of nuclear quadrupole coupling constants with calibrated 14N quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sicilia, E.; de Luca, G.; Chiodo, S.; Russo, N.; Calaminici, P.; Koster, A. M.; Jug, K.

    Density functional calculations of the electric field gradient tensor at the nitrogen nucleus in 13 test molecules, containing 14 nitrogen sites, have been performed using the linear combination of Gaussian-type orbital Kohn-Sham density functional theory (LCGTO-KSDFT) approach. Local and gradient corrected functionals were used for all-electron calculations. All the molecular structures were optimized at their respective levels of theory with extended basis sets. Calibrated 14N nuclear quadrupole moments were obtained through a fitting procedure between calculated electric field gradients and experimental nuclear quadrupole coupling constants of the test set of molecules for each basis set and functional considered. With these calibrated 14N nuclear quadrupole moments, the nuclear quadrupole coupling constants of the following selected systems were determined: fluoromethylisonitrile, pyridine, pyrrole, imadazole, pyrazole, 1,8-bis(dimethyl-amino)naphthalene, cyclotetramethylenetetranitramine, cocaine and heroin.

  17. Thermal analysis of SC quadrupoles in accelerator interaction regions

    SciTech Connect

    Novitski, Igor; Zlobin, Alexander V.; /Fermilab

    2006-09-01

    This paper presents results of a thermal analysis and operation margin calculation performed for NbTi and Nb{sub 3}Sn low-beta quadrupoles in collider interaction regions. Results of the thermal analysis for NbTi quadrupoles are compared with the relevant experimental data. An approach to quench limit measurements for Nb{sub 3}Sn quadrupoles is discussed.

  18. A preliminary quadrupole asymmetry study of a ?=0.12 superconducting single spoke cavity

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Qin; Lu, Xiang-Yang; Yang, Liu; Luo, Xing; Zhou, Kui; Quan, Sheng-Wen

    2014-10-01

    An Accelerator Driven System (ADS) has been launched in China for nuclear waste transmutation. For the application of high intensity proton beam acceleration, the quadrupole asymmetry effect needs to be carefully evaluated for cavities. Single spoke cavities are the main accelerating structures in the low energy front-end. The single spoke cavity has small transverse electromagnetic field asymmetry, which may lead to transverse RF defocusing asymmetry and beam envelope asymmetry. A superconducting single spoke resonator (PKU-2 Spoke) of ?=0.12 and f=325 MHz with a racetrack-shaped inner conductor has been designed at Peking university. The study of its RF field quadrupole asymmetry and its effect on transverse momentum change has been performed. The quadrupole asymmetry study has also been performed on a ?=0.12 and f=325 MHz ring-shaped single spoke cavity. Our results show that the quadrupole asymmetry is very small for both the racetrack-shaped and the ring-shaped single spoke cavity.

  19. VOLUME 77, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER 1996 Magnetic Excitations of the Doped-Hole State in Diamagnetic La2Cu0.5Li0.5O4

    E-print Network

    Hammel, Chris

    and the mechanism leading to superconductivity. Compounds containing for- mally trivalent copper are rare, La2Cu0 in a background of antiferromagnetically correlated copper moments. Here we report a Cu nuclear quadrupole resonance (NQR) study of the properties of La2CuO4 hole doped by substitution of lithium for copper

  20. AGS-booster orbit and resonance correction

    SciTech Connect

    Milutinovic, J.; Ruggiero, A.G.; Tepikian, S.; Weng, W.T.

    1989-01-01

    A large tune-spread due to space charge and strong random eddy current sextupoles exists at injection in the AGS-Booster. As a result, particles in the beam may cross several imperfection resonances that can be caused by random magnet errors. The correction scheme proposed deals with four half-integer stopband resonances, four third order sextupole induced resonances and both the sum and difference linear coupling resonances. All of these resonances can have a chance to be swept through by the beam during injection bunching and the early stage of acceleration. A system of correctors involving skew quadrupoles, trim quadrupoles and sextupoles is described with the capability of correcting all the major resonances involved, simultaneously. Also a closed orbit correction scheme is described which requires, to be effective, a cascade of local 3-magnet bumps. Several magnet imperfections and survey misalignment errors are investigated. 7 refs., 3 figs.

  1. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-06-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  2. LARP Long Nb3Sn Quadrupole Design.

    SciTech Connect

    Ambrosio,G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2007-08-27

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  3. 15 T And Beyond - Dipoles and Quadrupoles

    SciTech Connect

    Sabbi, GianLuca

    2008-05-19

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R&D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  4. Two-color photoexcitation of Rydberg states via an electric quadrupole transition

    SciTech Connect

    Li Leping; Gu Quanli; Knee, J. L.; Wright, J. D.; DiSciacca, J. M.; Morgan, T. J.

    2008-03-15

    We report the observation of an electric quadrupole transition between the 4s{sup '}[1/2]{sub 0}{sup o} and 3d[3/2]{sub 2}{sup o} states in the spectrum of argon and use it in the first step of a scheme to excite Rydberg states. The initial identification of the transition is based on one-color, two-photon photoionization. A different experiment utilizing two-color, two-photon photoexcitation to Rydberg states confirms the identification. Despite the unavoidable background of one-color, two-photon photoionization, the latter experimental technique makes possible two-photon spectroscopy of Rydberg states using a resonant intermediate state populated by an electric quadrupole transition.

  5. Contribution of electric quadrupole and dipole-quadrupole interference terms in Coulomb breakup of 15C

    NASA Astrophysics Data System (ADS)

    Singh, P.; Kharb, S.; Singh, M.

    2014-02-01

    The effects of electric quadrupole ( E2) and dipole-quadrupole interference ( E1- E2) terms in the Coulomb breakup of 15C have been investigated within the framework of eikonal approximation. The sensitivity of Coulomb breakup cross section, differential in relative energy and Longitudinal Momentum Distribution (LMD) of core fragments, towards these terms have been examined. A very small (1% of E1) contribution of E2 transition has been predicted in integrated Coulomb breakup cross section. Further it is also found that the inclusion of E2 and E1- E2 terms introduces a small asymmetry in the peak of relative energy spectrum and also increases the peak height of the spectrum. The contribution of dipole-quadrupole interference terms is clearly shown in LMD, as it introduces an asymmetry in the shape of LMD and enhances the matching between the data and predictions.

  6. Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions

    SciTech Connect

    Lepers, M.; Dulieu, O.; Kokoouline, V.

    2010-10-15

    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.

  7. Quadrupole Collective States in a Large Single-J Shell

    E-print Network

    K. Burzynski; J. Dobaczewski

    1994-10-21

    We discuss the ability of the generator coordinate method (GCM) to select collective states in microscopic calculations. The model studied is a single-$j$ shell with hamiltonian containing the quadrupole-quadrupole interaction. Quadrupole collective excitations are constructed by means of the quadrupole single-particle operator. Lowest collective bands for $j$=31/2 and particle numbers $N$=4,6,8,10,12, and $14$ are found. For lower values of $j$, exact solutions are obtained and compared with the GCM results.

  8. Magnetic mirror structure for testing shell-type quadrupole coils

    SciTech Connect

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  9. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    SciTech Connect

    Chu Zhe; Lin, W. P.; Yang Xiaofeng E-mail: linwp@shao.ac.cn

    2013-06-20

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  10. Hybrid rare earth quadrupole drift tube magnets

    SciTech Connect

    Halbach, K.; Feinberg, B.; Green, M.I.; MacGill, R.; Milburn, J.; Tanabe, J.

    1985-05-01

    A prototype quadrupole permanent magnet with adjustable field strength has been constructed and tested. The magnet consists of iron pole pieces to provide the required field shape along with rare earth permanent magnet material (samarium cobalt) to energize the magnet. A unique feature of the configuration is the adjustability of the field by rotating the outer rings consisting of permanent magnets and iron. Magnetic tests show small field errors coming from well understood assembly details. Mechanical tests show the design needs further consideration to ensure reliability. It is planned to use this type of magnet in the SuperHILAC prestripper drift tubes. 3 refs., 5 figs.

  11. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The QMA-based instrument will thus give way to substantial reductions of the mass of flight instruments.

  12. The Pipe-Quadrupole, an Alternative for High Gradient Interaction Region Quadrupole Designs

    SciTech Connect

    Oort, J.M. van; Scanlan, R.M.

    1996-12-12

    In the design of interaction region (IR) quadrupoles for high luminosity colliders such as the LHC or a possible upgrade of the Tevatron, the radiation heating of the coil windings is an important issue. Two obvious solutions to this problem can be chosen. The first is to reduce the heat load by added shielding, increased cooling with fins or using Nb{sub 3}Sn to increase the temperature margin. The second solution eliminates the conductor from the areas with the highest radiation intensity, which are located on the symmetry-axes of the midplanes of the coils. A novel quadrupole design is presented, in which the conductor is wound on four half-moon shaped supports, forming elongated toroid sections. The assembly of the four shapes yields a quadrupole field with an active flux return path, and a void in the high radiation area. This void can be occupied by a liquid helium cooling pipe to lower the temperature of the windings from the inside. The coil layout, harmonic optimization and mechanical design are shown, together with the calculated temperature rise for the radiation load of the LHC interaction region quadrupoles.

  13. The CMB Quadrupole in a Polarized Light

    E-print Network

    Olivier Doré; Gilbert P. Holder; Abraham Loeb

    2004-05-12

    The low quadrupole of the cosmic microwave background (CMB), measured by COBE and confirmed by WMAP, has generated much discussion recently. We point out that the well-known correlation between temperature and polarization anisotropies of the CMB further constrains the low multipole anisotropy data. This correlation originates from the fact that the low-multipole polarization signal is sourced by the CMB quadrupole as seen by free electrons during the relatively recent cosmic history. Consequently, the large-angle temperature anisotropy data make restrictive predictions for the large-angle polarization anisotropy, which depend primarily on the optical depth for electron scattering after cosmological recombination, tau. We show that if current cosmological models for the generation of large angle anisotropy are correct and the COBE/WMAP data are not significantly contaminated by non-CMB signals, then the observed C_te amplitude on the largest scales is discrepant at the 99.8% level with the observed C_tt for the concordance LCDM model with tau=0.10. Using tau=0.17, the preferred WMAP model-independent value, the discrepancy is at the level of 98.5%.

  14. Feedback damper system for quadrupole oscillations after transition at RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brennan, J.M.; Schultheiss, C.

    2008-06-23

    The heavy ion beam at RHIC undergoes strong quadrupole oscillations just after it crosses transition, which leads to an increase in bunch length making rebucketing less effective. A feedback system was built to damp these quadrupole oscillations and in this paper the characteristics of the system and the results obtained are presented and discussed.

  15. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W. (East Moriches, NY)

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  16. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  17. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOEpatents

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  18. Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y

    2010-12-03

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of that study, we used a CMM (Coordinate Measuring Machine) instead of the FARO arm for measuring the tooling balls. In addition, a roller cam positioner system replaced the optical movers for moving the quadrupole. With the exception of the quadrupole itself, the system was identical to what will be used in fiducializing the undulator quadrupoles. In this study, we investigate the new vibrating wire set up, including the error associated with each step of fiducialization. A vibrating wire system was constructed to fiducialize the quadrupoles between undulator segments in the LCLS. This note is a continuation of previous work to study the ability of the system to fulfill the fiducialization requirements.

  19. Coupling Current and AC Loss in LHC Superconducting Quadrupoles

    E-print Network

    Di Castro, M; Richter, D; Sanfilippo, S; Wolf, R

    2008-01-01

    One of the issues for the operation of the LHC accelerator at CERN are the field errors generated by coupling currents in the superconducting cables of the main dipoles and quadrupoles, especially during the initial phase of the energy ramp from injection conditions. Coupling current effects have already been measured in the superconducting dipoles, and results are reported elsewhere. This paper reports similar measurements that we have recently performed on different types of LHC superconducting quadrupoles (arc quadrupole, dispersion suppressor and matching section quadrupoles) to quantify the above effects and compare them to the values specified from the beam tolerances. Loss and field errors due to ramping are mainly determined by the contact resistance Rc between the strands of the magnets cables. In this paper the Rc is calculated for several quadrupoles measured using both the measured energy loss and the magnetic field errors during ramping of magnets.

  20. Mechanism of metallization and superconductivity suppression in YBa2(Cu0.97 Zn0.03)3 O6.92 revealed by 67Zn NQR

    NASA Astrophysics Data System (ADS)

    Pelc, D.; Požek, M.; Despoja, V.; Sunko, D. K.

    2015-08-01

    We measure the nuclear quadrupole resonance signal on the Zn site in nearly optimally doped YBa2Cu3O6.92, when Cu is substituted by 3% of isotopically pure 67Zn. We observe that Zn creates large insulating islands, confirming two earlier conjectures: that doping provokes an orbital transition in the CuO2 plane, which is locally reversed by Zn substitution, and that the islands are antiferromagnetic. Also, we find that the Zn impurity locally induces a breaking of the D4 symmetry. Cluster and DFT calculations show that the D4 symmetry breaking is due to the same partial lifting of degeneracy of the nearest-neighbor oxygen sites as in the LTT transition in {La}{}2-xBaxCuO4, similarly well-known to strongly suppress superconductivity (SC). These results show that in-plane oxygen 2p5 orbital configurations are principally involved in the metallicity and SC of all high-Tc cuprates, and provide a qualitative symmetry-based constraint on the SC mechanism.

  1. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  2. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  3. Nonzero Quadrupole Moments of Candidate Tetrahedral Bands

    SciTech Connect

    Bark, R. A.; Lawrie, E. A.; Lawrie, J. J.; Mullins, S. M.; Murray, S. H. T.; Ncapayi, N. J.; Smit, F. D.; Sharpey-Schafer, J. F.; Lindsay, R.

    2010-01-15

    Negative-parity bands in the vicinity of {sup 156}Gd and {sup 160}Yb have been suggested as candidates for the rotation of tetrahedral nuclei. We report the observation of the odd and even-spin members of the lowest energy negative-parity bands in {sup 160}Yb and {sup 154}Gd. The properties of these bands are similar to the proposed tetrahedral band of {sup 156}Gd and its even-spin partner. Band-mixing calculations are performed and absolute and relative quadrupole moments deduced for {sup 160}Yb and {sup 154}Gd. The values are inconsistent with zero, as required for tetrahedral shape, and the bands are interpreted as octupole vibrational bands. The failure to observe the in-band E2 transitions of the bands at low spins can be understood using the measured B(E1) and B(E2) values.

  4. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  5. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  6. Roll measurement of Tevatron dipoles and quadrupoles

    SciTech Connect

    Volk, J.T.; Elementi, L.; Gollwitzer, K.; Jostlein, H.; Nobrega, F.; Shiltsev, V.; Stefanski, R.

    2006-09-01

    In 2003 a simple digital level system was developed to allow for rapid roll measurements of all dipoles and quadrupoles in the Tevatron. The system uses a Mitutoyo digital level and a PC running MS WINDOWS XP and LAB VIEW to acquire data on the upstream and downstream roll of each magnet. The system is sufficiently simple that all 1,000 magnets in the Tevatron can be measured in less than 3 days. The data can be quickly processed allowing for correction of rolled magnets by the Fermilab alignment group. Data will be presented showing the state of the Tevatron in 2003 and the changes in rolls as measured in each shutdown since then.

  7. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling

    E-print Network

    Ravid Shaniv; Nitzan Akerman; Roee Ozeri

    2015-11-23

    We present a method that uses dynamic decoupling of a multi-level quantum probe to distinguish small frequency shifts that depend on $m^2_{j}$, where $m^2_{j}$ is the angular momentum of level $\\left|j\\right\\rangle$ along the quantization axis, from large noisy shifts that are linear in $m_{j}$, such as those due to magnetic field noise. Using this method we measured the electric quadrupole moment of the $4D_{\\frac{5}{2}}$ level in $^{88}Sr^{+}$ to be $2.973^{+0.026}_{-0.033}\\, ea_{0}^{2}$. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in $^{88}Sr^{+}$ based optical atomic clocks and verifies complicated many-body quantum calculations.

  8. Quadrupole hysteresis in uniaxial magnet with unity spin

    NASA Astrophysics Data System (ADS)

    Shapovalov, I. P.; Sayko, P. A.

    2013-12-01

    Uniaxial spin-1 magnets with tensor interactions have been studied in the absence of external magnetic field. The model with the most general form of interactions for the uniaxial symmetry has been investigated. Conditions for the implementation of only two quadrupole phases are considered: the phase with a quadrupole ordering along the lattice symmetry axis and the phase with ordering in the plane normal to the lattice symmetry axis. It has been shown that components of the quadrupole order parameter as a function of the single-ion anisotropy constant at low temperatures has "hysteresis" character. An analytical expression for the remagnetization energy per lattice site has been obtained.

  9. Uv-Uv Hole-Burning Spectroscopy of a Protonated Adenine Dimer in a Cold Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Kang, Hyuk

    2015-06-01

    A novel method for double-resonance photofragmentation spectroscopy in a cold quadrupole ion trap has been developed and utilized to differentiate the structures of a cold protonated adenine dimer. A burn laser generates a population hole of a certain conformer of the dimer stored in a cold quadrupole ion trap, and an auxiliary dipolar RF ejects the photofragments by the burn laser from the trap. A probe laser detects depletion of a certain conformer by the burn laser, and a conformer-specific UV or IR spectrum of a cold ion is obtained by scanning the wavelength of the burn or the probe laser. This simple and versatile method is applicable to any type of double-resonance photofragmentation spectroscopy in a cold quadrupole ion trap. To demonstrate its capability, it was applied to UV-UV hole-burning spectroscopy of a protonated adenine dimer. It is proved that a cold protonated adenine dimer has at least two hydrogen-bonding geometries and each has multiple electronically excited states with significantly different spectral bandwidths, possibly due to different excited state dynamics.

  10. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.

    SciTech Connect

    LUO.Y.PILAT,F.ROSER,T.ET AL.

    2004-07-05

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.

  11. Electro-Magnetic Quadrupole Magnets in the LCLS FEL Undulator

    SciTech Connect

    Emma, P.

    2005-01-31

    We discuss various aspects of electro-magnetic quadrupole (EMQ) magnets for the LCLS FEL undulator, including their utility in beam-based alignment (BBA), magnet design issues, and impact on tunnel environment, reliability, and cost.

  12. Beam based alignment of C-shaped quadrupole magnets

    SciTech Connect

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 {micro}m.

  13. Nb$_{3}$Sn quadrupole development at CEA/Saclay

    E-print Network

    Rifflet, J M; Segreti, M

    2009-01-01

    CEA/Saclay is fabricating a Nb3Sn quadrupole magnet. This magnet is aimed at learning the technology needed for using Nb3Sn in accelerator magnets and its design is based on that of LHC main quadrupole. Particularities induced by the use of Nb3Sn material in the fabrication process will be described and the current status of the development will be given.

  14. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    PubMed

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy. PMID:17026023

  15. Quadrupole collective variables in the natural Cartan-Weyl basis

    E-print Network

    S. De Baerdemacker; K. Heyde; V. Hellemans

    2007-01-03

    The matrix elements of the quadrupole collective variables, emerging from collective nuclear models, are calculated in the natural Cartan-Weyl basis of O(5) which is a subgroup of a covering $SU(1,1)\\times O(5)$ structure. Making use of an intermediate set method, explicit expressions of the matrix elements are obtained in a pure algebraic way, fixing the $\\gamma$-rotational structure of collective quadrupole models.

  16. The quadrupole collective model from a Cartan-Weyl perspective

    E-print Network

    Stijn De Baerdemacker; Kris Heyde; Veerle Hellemans

    2008-08-02

    The matrix elements of the quadrupole variables and canonic conjugate momenta, emerging from collective nuclear models are calculated within a $SU(1,1)\\times O(5)$ basis. Using a harmonic oscillator implementation of the SU(1,1) degree of freedom, it can be shown that the matrix elements of the quadrupole phonon creation and annihilation operators can be calculated in a pure algebraic way, making use of an intermediate state method.

  17. Heteronuclear dipolar recoupling of half-integer quadrupole nuclei under fast magic angle spinning.

    PubMed

    Huang, Shin-Jong; Liu, Shang-Bin; Chan, Jerry C C

    2009-10-01

    An experimental method for the heteronuclear dipolar recoupling of half-integer quadrupole nuclei is proposed. The idea is to manipulate the central transition based on the recoupling technique of spin-polarization-inversion rotary resonance. This method allows the extraction of structural parameters under fast magic-angle spinning. Its validity has been examined by the average Hamiltonian theory and numerical simulations. The initial rotational-echo dephasing arising from the dipolar evolution can be approximated by a parabolic function, from which the heteronuclear van Vleck second moment can be estimated. A factor, estimated from two-spin simulations, is required to account for the effects of the quadrupolar coupling and is rather independent of the geometry and the orders of the spin systems. Our method can facilitate the structural characterization of materials containing half-integer quadrupole nuclei under high-resolution condition. Experimental verification has been carried out on two aluminophosphate systems, namely, AlPO(4)-5 and AlPO(4)-11. PMID:19699618

  18. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    The objective of this research is to develop theories and conduct numerical investigations of electrostatic flute modes in a plasma confined in magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion ounce frequencies in a plasma confined to a magnetic quadrupole. Two intermediate-frequency modes are predicted.

  19. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described.

  20. Quadrupole contribution to the third-order optical activity spectroscopy

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2007-07-01

    Time-resolved nonlinear optical activity measurement spectroscopy can be a useful tool for studying biomolecular and chemical reaction dynamics of chiral molecules. Only recently, the two-dimensional (2D) circularly polarized photon echo (CP-PE) spectroscopy of polypeptides and a photosynthetic light-harvesting complex were discussed, where the beam configuration was specifically controlled in such a way to eliminate the quadrupole contribution to the CP-PE signal. In this paper, we generalize the CP-PE spectroscopy by including the transition quadrupole contributions from peptide amide I vibrational transition and chlorophyll electronic transition. By using a density functional theory calculation method, the corresponding amide I vibrational and chlorophyll Qy electronic transition quadrupole tensor elements are determined. Amplitude of nonlinear optical transition pathway involving a quadrupole transition is found to be comparable to those of magnetic dipole terms for two different cases considered, i.e., dipeptides and photosynthetic antenna complex. However, due to the rotational averaging factors, the overall quadrupole contribution is an order of magnitude smaller than the magnetic dipole contribution. This suggests that the conventional 2D photon echo method and experimental scheme can be directly used to measure the 2D CP-PE signal from proteins and molecular complexes and that the 2D CP-PE signal is mainly dictated by the magnetic dipole contribution.

  1. Statistical thermodynamics of fluids with both dipole and quadrupole moments.

    PubMed

    Benavides, Ana L; Delgado, Francisco J García; Gámez, Francisco; Lago, Santiago; Garzón, Benito

    2011-06-21

    New Gibbs ensemble simulation data for a polar fluid modeled by a square-well potential plus dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions are presented. This simulation data is used in order to assess the applicability of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Ri?o, Physica A 202, 420 (1994)] to systems where more than one term in the multipole expansion is relevant. It is found that this theory is able to reproduce qualitatively well the vapor-liquid phase diagram for different multipolar moment strengths, corresponding to typical values of real molecules, except in the critical region. Hence, this theory is used to model the behavior of substances with multiple chemical bonds such as carbon monoxide and nitrous oxide and we found that with a suitable choice of the values of the intermolecular parameters, the vapor-liquid equilibrium of these species is adequately estimated. PMID:21702567

  2. Calculations on permanent-magnet quadrupoles with nonrectangular cross section

    SciTech Connect

    Boicourt, G.P.; Merson, J.L.

    1988-01-01

    The current trend toward higher frequencies to power drift-tube linacs (DTLs) and coupled-cavity linacs (CCLs) reduces the space available for quadrupole focusing magnets. Similarly, the space available for matching sections between linac sections is limited, and often the matching section bunchers are designed in odd shapes to make them fit. This shaping further restricts focusing magnet space. One approach to attaining sufficient quadrupole strength is such situations is to use rare-earth permanent-magnet quadrupoles (PMQs) with cross sections tailored to fill as much of the available space as possible. In this paper, we describe some techniques we have developed to calculate the properties of such magnets both singly and when other magnets are nearby. 3 refs., 4 figs.

  3. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  4. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  5. Controlling optical properties of metallic multi-shell nanoparticles through suppressed surface plasmon resonance.

    PubMed

    Acapulco, Jesus A I; Hong, Soonchang; Kim, Seong Kyu; Park, Sungho

    2016-01-01

    Herein, we report the surface plasmon resonance of plasmonic multi-shell nanoparticles compared to bimetallic Ag/Au hollow nanospheres of similar final size, shape, and percent composition. The surface plasmon resonance of solid and hollow nanoparticles exhibited a quadrupole mode that was particularly prominent around the 100nm size regime, while multi-shell nanoparticles did not show a quadrupole mode at a similar size. In the latter case, the quadrupole mode of the outermost nanoshell was suppressed by the dipole modes of the inner shells, and the suppression of the quadrupole mode was not affected by the shape of the inner nanostructures. Light interaction of the multi-shell nanoparticle was investigated through simulated electromagnetic field distribution obtained by finite-difference time domain (FDTD) calculations which were in a good agreement with the results of surface-enhanced Raman spectroscopy (SERS). PMID:26414420

  6. Nb$_{3}$Sn quadrupoles designs for the LHC upgrades

    E-print Network

    Felice, H

    2009-01-01

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb3Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  7. Quadrupole Collective Inertia in Nuclear Fission: Cranking Approximation

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Dobaczewski, J.; Nazarewicz, Witold

    2011-01-01

    Collective mass tensor derived from the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) approach is compared with that obtained in the Gaussian Overlap Approximation (GOA) to the generator coordinate method. Illustrative calculations are carried out for one-dimensional quadrupole fission pathways in ^{256}Fm. It is shown that the collective mass exhibits strong variations with the quadrupole collective coordinate. These variations are related to the changes in the intrinsic shell structure. The differences between collective inertia obtained in cranking and perturbative cranking approximations to ATDHFB, and within GOA, are discussed.

  8. Simultaneous quadrupole and octupole shape phase transitions in Thorium

    E-print Network

    Z. P. Li; B. Y. Song; J. M. Yao; D. Vretenar; J. Meng

    2013-09-11

    The evolution of quadrupole and octupole shapes in Th isotopes is studied in the framework of nuclear Density Functional Theory. Constrained energy maps and observables calculated with microscopic collective Hamiltonians indicate the occurrence of a simultaneous quantum shape phase transition between spherical and quadrupole-deformed prolate shapes, and between non-octupole and octupole-deformed shapes, as functions of the neutron number. The nucleus $^{224}$Th is closest to the critical point of a double phase transition. A microscopic mechanism of this phenomenon is discussed in terms of the evolution of single-nucleon orbitals with deformation.

  9. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  10. High and ulta-high gradient quadrupole magnets

    SciTech Connect

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  11. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-08-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  12. Chaos in the Kepler problem with quadrupole perturbations

    E-print Network

    Gabriela Depetri; Alberto Saa

    2013-06-25

    We use the Melnikov integral method to prove that the Hamiltonian flow on the zero-energy manifold for the Kepler problem perturbed by a quadrupole moment is chaotic, irrespective of the perturbation being of prolate or oblate type. This result helps to elucidate some recent conflicting works in the physical literature based on numerical simulations.

  13. Collective Quadrupole Excitations in Transitional Nuclei K. Pomorski1

    E-print Network

    Pomorski, Krzysztof

    Collective Quadrupole Excitations in Transitional Nuclei K. Pomorski1 , L. Pro¨ chniak1 , K. Zaja the low-lying collective excitations in even-even isotopes of Ru, Pd, Te, Ba and Nd. The Strutinsky collective potential and cranking inertial functions were obtained using the Nilsson potential. The e

  14. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-21

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  15. Correction of High Gradient Quadrupole Harmonics with Magnetic Shims

    E-print Network

    Large Hadron Collider Program

    between the yoke inner surface and the collars. Each shim is a package of magnetic low- carbon steel and nonmagnetic brass or stainless steel laminations. By adjusting the relative thickness of mag- neticCorrection of High Gradient Quadrupole Harmonics with Magnetic Shims J. DiMarco, A. Nobrega, T

  16. The low-energy quadrupole mode of nuclei

    NASA Astrophysics Data System (ADS)

    Frauendorf, S.

    2015-08-01

    The phenomenological classification of collective quadrupole excitations by means of the Bohr-Hamiltonian (BH) is reviewed with focus on signatures for triaxility. The variants of the microscopic BH derived by means of the Adiabatic Time-Dependent Mean Field theory from the Pairing-plus-quadrupole-quadrupole interaction, the Shell Correction Method, the Skyrme Energy Density Functional, the Relativistic Mean Field Theory and the Gogny interaction are discussed and applications to concrete nuclides reviewed. The Generator Coordinate Method for the five-dimensional quadrupole deformation space and first applications to triaxial nuclei are presented. The phenomenological classification in the framework of the Interacting Boson Model is discussed with a critical view on the boson number counting rule. The recent success in calculating the model parameters by mapping the mean field deformation energy surface on the bosonic one is discussed and the applications listed. A critical assessment of the models is given with focus on the limitations due to the adiabatic approximation. The Tidal Wave approach and the Triaxial Projected Shell Model are presented as practical approaches to calculate spectral properties outside the adiabatic region.

  17. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  18. Quadrupole polarizabilities of F-, Cl-, and Br- using ?a theory

    NASA Astrophysics Data System (ADS)

    Lata, N. Madhavi; Sen, K. D.

    1990-09-01

    Quadrupole polarizabilities ?q have been calculated using ?a wave functions and the Sternheimer charge-perturbed differential equation procedure for F-, Cl-, and Br-, respectively. It is shown that self-interaction correction with the proper choice of the exchange parameter, aKLI (KLI is Kulback-Leibler information measure), the calculated ?q values are close to the corresponding Hartree-Fock estimates.

  19. Large energy-spread beam diagnostics through quadrupole scans

    NASA Astrophysics Data System (ADS)

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-01

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  20. A magnetic quadrupole pick-up for the CERN PS

    E-print Network

    Chapman-Hatchett, A; Williams, D J

    1999-01-01

    In the LHC era, there will be a need to monitor and correct betatron mismatch between machines in a non-destructive way. For this purpose, a quadrupole pick-up has been designed for the CERN PS. Originally, the PS was built for much larger beam sizes than now required when generating the LHC beam, but its large physical aperture should be maintained. Because of this large aperture to beam-size ratio, the quadrupole signal component in a standard pick-up design is strongly suppressed with respect to the common-mode signal, and thus demands a very high common-mode rejection in the signal processing. A magnetic quadrupole pick-up has been designed, in which the common-mode rejection is incorporated in the pick-up itself, by virtue of its geometry. The rejection is thus limited only by mechanical tolerances and can therefore be very large. Without the common-mode component, the dominating signal is dipolar, and small when the beam is centred in the pick-up. The dipole and quadrupole signals can thus be separated ...

  1. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2010-01-08

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960?s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are ?Proof-of-Principle? magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  2. SECOND GENERATION HIGH GRADIENT QUADRUPOLES FOR THE LHC INTERACTION REGIONS1

    E-print Network

    Large Hadron Collider Program

    SECOND GENERATION HIGH GRADIENT QUADRUPOLES FOR THE LHC INTERACTION REGIONS1 T. Sen, J. Strait-gradient Nb3Sn quadrupoles, suitable for use in a second generation LHC interaction region, are presented generation of low-beta quadrupoles for the LHC IR inner triplets based on NbTi superconductor is being

  3. Fermi resonance in dynamical tunneling in a chaotic billiard

    NASA Astrophysics Data System (ADS)

    Yi, Chang-Hwan; Kim, Ji-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-08-01

    We elucidate that Fermi resonance ever plays a decisive role in dynamical tunneling in a chaotic billiard. Interacting with each other through an avoided crossing, a pair of eigenfunctions are coupled through tunneling channels for dynamical tunneling. In this case, the tunneling channels are an islands chain and its pair unstable periodic orbit, which equals the quantum number difference of the eigenfunctions. This phenomenon of dynamical tunneling is confirmed in a quadrupole billiard in relation with Fermi resonance.

  4. CROSSING A COUPLING SPIN RESONANCE WITH AN RF DIPOLE.

    SciTech Connect

    BAI,M.; ROSER,T.

    2001-06-18

    In accelerators, due to quadrupole roll errors and solenoid fields, the polarized proton acceleration often encounters coupling spin resonances. In the Brookhaven AGS, the coupling effect comes from the solenoid partial snake which is used to overcome imperfection resonances. The coupling spin resonance strength is proportional to the amount of coupling as well as the strength of the corresponding intrinsic spin resonance. The coupling resonance can cause substantial beam polarization loss if its corresponding intrinsic spin resonance is very strong. A new method of using an horizontal rf dipole to induce a full spin flip crossing both the intrinsic and its coupling spin resonances is studied in the Brookhaven's AGS. Numerical simulations show that a full spin flip can be induced after crossing the two resonances by using a horizontal rf dipole to induce a large vertical coherent oscillation.

  5. Arene-Cation Interactions of Positive Quadrupole Moment Aromatics and Arene-Anion Interactions of Negative Quadrupole Moment Aromatics

    E-print Network

    Lewis, Michael

    Arene-Cation Interactions of Positive Quadrupole Moment Aromatics and Arene-Anion Interactions mechanical computations that show the cation binding of positive zz aromatics and the anion binding-molecule organic reaction mechanisms.8 The anion- interaction has not been investigated for as long as the cation

  6. Electron-scale nested quadrupole Hall field in Cluster observations of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Jain, N.; Sharma, A. S.

    2015-06-01

    This paper presents the first evidence of a new and unique feature of spontaneous reconnection at multiple sites in electron current sheet, viz. a "nested quadrupole" structure of the Hall field at electron scales, in Cluster observations. The new nested quadrupole is a consequence of electron-scale processes in reconnection. Whistler response of the upstream plasma to the interaction of electron flows from neighboring reconnection sites produces a large-scale quadrupole Hall field enclosing the quadrupole fields of the multiple sites, thus forming a nested structure. Electron-magnetohydrodynamic simulations of an electron current sheet yields a mechanism of the formation of a nested quadrupole.

  7. Novel methods for detecting buried explosive devices

    SciTech Connect

    Kercel, S.W.; Burlage, R.S.; Patek, D.R.; Smith, C.M.; Hibbs, A.D.; Rayner, T.J.

    1997-04-01

    Oak Ridge National Laboratory (ORNL) and Quantum Magnetics, Inc. (QM) are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  8. Resonant transmission of light in chains of high-index dielectric particles

    NASA Astrophysics Data System (ADS)

    Savelev, Roman S.; Filonov, Dmitry S.; Petrov, Mihail I.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2015-10-01

    We study numerically, analytically, and experimentally the resonant transmission of light in a waveguide formed by a periodic array of high-index dielectric nanoparticles with a side-coupled resonator. We demonstrate that a resonator with high enough Q -factor provides the conditions for the Fano-type interference allowing one to control the resonant transmission of light. We suggest a practical realization of this resonant effect based on the quadrupole resonance of a dielectric particle and demonstrate it experimentally for ceramic disks at microwave frequencies.

  9. Borman effect in resonant diffraction of X-rays

    SciTech Connect

    Oreshko, A. P.

    2013-08-15

    A dynamic theory of resonant diffraction (occurring when the energy of incident radiation is close to the energy of the absorption edge of an element in the composition of a given substance) of synchronous X-rays is developed in the two-wave approximation in the coplanar Laue geometry for large grazing angles in perfect crystals. A sharp decrease in the absorption coefficient in the substance with simultaneously satisfied diffraction conditions (Borman effect) is demonstrated, and the theoretical and first experimental results are compared. The calculations reveal the possibility of applying this approach in analyzing the quadrupole-quadrupole contribution to the absorption coefficient.

  10. New Mechanical Concept for Nb$_{3}$Sn Quadrupole

    E-print Network

    Karppinen, Mikko

    2014-01-01

    A new mechanical design concept for the Nb3Sn quadrupoles has been developed with a goal of an accelerator quality magnet that can be industrially produced in large series. This concept can easily be extended to any length and applied on both 1-in-1 and 2-in-1 configurations. It is based on the pole-loading concept and collared coils using dipole-type collars. First conceptual design study using finite element analysis has been carried out using the present base-line HL-LHC IR quadrupole QXF coil geometry for direct comparison with the bladder-and-key structure. The main features of the new design concept are described and the main results of the structural analysis discussed.

  11. QTG quadrupole magnets for the CNGS transfer line

    E-print Network

    Cornuet, D; Levichev, E B; Pavlov, O; Pupkov, Yu A; Ruvinsky, E; Zickler, T

    2004-01-01

    The QTG quadrupole magnets will be a part of the CERN Neutrino to Gran Sasso (CNGS) transfer line. 23 QTG magnets will be used as lattice and matching quadrupoles. They are being produced in the framework of a German in-kind contribution via DESY to CNGS. The QTG magnets have a maximum gradient of 40 T/m at the 530 A excitation current and are manufactured from laminated steel cores. The yoke length is 2.2 m and the inscribed radius is 22.5 mm. The excitation coils are made of vacuum impregnated hollow copper conductor. The main design aspects and the results of the acceptance tests including mechanical, electrical and magnetic field measurements are described.

  12. Detection of the quadrupole hyperfine structure in HCNH(+)

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Yoder, J. T.

    1992-01-01

    We report the first measurement of the electric quadrupole hyperfine structure of HCNH(+). The J = 1-0 transition of this interstellar molecular ion was observed toward the cold, dark cloud TMC-1, using the NRAO 12 m telescope at 74 GHz. The three hyperfine components of this transition were clearly detected and resolved, enabling the first experimental determination of the quadrupole coupling constant eqQ of HCNH(+). The value of this constant is calculated to be eqQ = -0.49 +/- 0.07 MHz. The column density of HCNH(+) toward TMC-1 was found to be N(tot) about 2.8 x 10 exp 13/sq cm, corresponding to a fractional abundance relative to H2 of f about 3 x 10 exp -9. This abundance is at least one order of magnitude higher than the predictions of ion-molecule chemistry. Detection of the hyperfine structure clearly establishes the presence of HCNH(+) in interstellar space.

  13. 120-mm supercondcting quadrupole for interaction regions of hadron colliders

    SciTech Connect

    Zlobin, A.V.; Kashikhin, V.V.; Mokhov, N.V.; Novitski, I.

    2010-05-01

    Magnetic and mechanical designs of a Nb{sub 3}Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

  14. Test results of LHC interaction regions quadrupoles produced by Fermilab

    SciTech Connect

    Bossert, R.; Carson, J.; Chichili, D.R.; Feher, S.; Kerby, J.; Lamm, M.J.; Nobrega, A.; Nicol, T.; Ogitsu, T.; Orris, D.; Page, T.; Peterson, T.; Rabehl, R.; Robotham, W.; Scanlan, R.; Schlabach, P.; Sylvester, C.; Strait, J.; Tartaglia, M.; Tompkins, J.C.; Velev, G.; /Fermilab

    2004-10-01

    The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.

  15. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-06-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence.

  16. Permanent-magnet quadrupoles in an RFQ linacs

    SciTech Connect

    Lysenko, W.P.; Wang, T.F.

    1985-01-01

    We investigated the possibility of increasing the current-carrying capability of radio-frequency quadrupole (RFQ) linear accelerators by adding permanent-magnet quadrupole (PMQ) focusing to the existing transverse focusing provided by the rf electric field. Increased transverse focusing would also allow shortening RFQ linacs by permitting a larger accelerating gradient, which is normally accomplished by an undesirable increased transverse rf defocusing effect. We found that PMQs were not helpful in increasing the transverse focusing strength in an RFQ. This conclusion was reached after some particle tracing simulations and some analytical calculations. In our parameter regime, the addition of the magnets increases the betatron frequency but does not result in improved focusing because the increased flutter more than offsets the gain from the increased betatron frequency.

  17. Chlorine Nuclear Quadrupole Hyperfine Structure in the Vinyl - Chloride Complex

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.; Messinger, Joseph P.

    2015-06-01

    The microwave spectrum of the vinyl chloride--hydrogen chloride complex, presented at last year's symposium, is greatly complicated by the presence of two chlorine nuclei as well as an observed, but not fully explained tunneling motion. Indeed, although it was possible at that time to demonstrate conclusively that the complex is nonplanar, the chlorine nuclear quadrupole hyperfine splitting in the rotational spectrum resisted analysis. With higher resolution, Balle-Flygare Fourier transform microwave spectra, the hyperfine structure has been more fully resolved, but appears to be perturbed for some rotational transitions. It appears that knowledge of the quadrupole coupling constants will provide essential information regarding the structure of the complex, specifically the location of the hydrogen atom in HCl. Our progress towards obtaining values for these constants will be presented.

  18. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  19. Homotopy analysis method to study a quadrupole mass filter.

    PubMed

    Seddighi Chaharborj, S; Seddighi Chahrborj, S; Sadat Kiai, S M; Abu Bakar, M R; Ziaeian, I; Gheisari, Y

    2012-04-01

    The homotopy analysis method (HAM) is applied to study the behavior of a hyperbolic rods of quadrupole mass filter and a sinusoidal potential form V(ac) ?cos(?t). Numerical computation method of a 20th-order HAM is employed to compare the physical properties of the confined ions with fifth-order Runge-Kutta method. Also, comparison is made for the first stability region, the ion trajectories in real time, the polar plots, and the ion trajectory in x?-?y plan. The results show that the two methods are fairly similar; therefore, the HAM method has potential application to solve linear and nonlinear equations of the charge particle confinement in quadrupole field. PMID:22689625

  20. New values of quadrupole moments of fluorine nuclei

    NASA Astrophysics Data System (ADS)

    Mishra, K. C.; Duff, K. J.; Das, T. P.

    1982-03-01

    The increasing availability of 19F*(I=52) and 20F(I=2) quadrupole interaction data by nuclear radiation techniques has crystallized the need for accurate values of Q for these nuclei. From accurate self-consistent-field calculations on the FCl molecule we have obtained |Q(19F*)|=0.072+/-0.004 barns and |Q(20F)|=0.043+/-0.002, respectively, which are only two-thirds of earlier semiempirical estimates.

  1. Testing the Dipole and Quadrupole Moments of Galactic Models

    E-print Network

    Michael S. Briggs; William S. Paciesas; Geoffrey N. Pendleton; Charles A. Meegan; Gerald J. Fishman; John M. Horack; Chryssa Kouveliotou; Dieter H. Hartmann; Jon Hakkila

    1996-10-18

    If gamma-ray bursts originate in the Galaxy, at some level there should be a galactic pattern in their distribution on the sky. We test published galactic models by comparing their dipole and quadrupole moments with the moments of the BATSE 3B catalog. While many models have moments that are too large, several models are in acceptable or good agreement with the data.

  2. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  3. Analysis on linac quadrupole misalignment in FACET commissioning 2012

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-07-05

    In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.

  4. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John (Smithtown, NY)

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  5. First tests of a superconducting RFQ (rf quadrupole) structure

    SciTech Connect

    Delayen, J.R.; Shepard, K.W.

    1990-01-01

    High surface electric fields have been obtained in the first tests of a superconducting rf quadrupole device. The rf quadrupole fields were generated between niobium vanes 6.5 cm in length, with an edge radius of 2 mm, and with a beam aperture of 6 mm diameter. In tests at 4.2 K, the 64 MHz device operated cw at peak surface electric fields of 128 MV/m. Virtually no electron loading was observed at fields below 100 MV/m. It was possible to operate at surface fields of 210 MV/m in pulses of 1 msec duration using a 2.5 kW rf source. For the vane geometry tested, more than 10 square centimeters of surface support a field greater than 90% of the peak field. The present result indicates that electric fields greater than 100 MV/m can be obtained over an appreciable area, sufficient for some accelerator applications. It also shows that superconducting rf technology may provide an extended range of options for rf quadrupole design.

  6. CMB quadrupole suppression. II. The early fast roll stage

    SciTech Connect

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2006-12-15

    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds N{sub tot}{approx}59, there is a 10%-20% suppression of the CMB quadrupole and about 2%-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l{sup 2}. The suppression is much smaller for N{sub tot}>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N{sub tot}{approx}59.

  7. Perfect 2-d quadrupole fields from permanent magnets

    SciTech Connect

    Lee, E.P.; Vella, M.

    1996-04-01

    Consider the 13-beam channel array shown in Figure 1. It is asserted that, under mathematically ideal assumptions, a pure quadrupole field is centered in each of the 13 beam channel boxes. An identical quadrupole field (for {bar H}, not {bar B}) is also centered in each of the 4 boxes containing 4 magnetic wedges located near the center of the system. An iron yoke ({mu} = {infinity}) with the displayed zig-zag shape provides a boundary condition (H{sub {parallel}} = 0) that makes the 13 channels equivalent to a portion of an infinite array. A similar array can be readily drawn for any number of beams. The quadrupole gradient in the beam channels is B{prime} = M{sub o}/2b, where M{sub o} is the remnant field of the magnetic wedges, and the channel diameter (wedge-to-wedge) is 2b. Note that a unit cell of the array, containing one beam, has diameter 2{radical}2 b (viewed from 45{degree} tilt) so its area is 8 b{sup 2}. A significant advantage of this design over those using dipolar blocks is the large fraction of cross section devoted to beam channels (50% vs 25%). Application to a heavy ion fusion driver is discussed.

  8. Position Stability Monitoring of THEthe LCLS Undulator Quadrupoles

    SciTech Connect

    Nuhn, Heinz Dieter; Gassner, Georg; Peters, Franz; /SLAC

    2012-03-26

    X-ray FELs demand that the positions of undulator components be stable to less than 1 {mu}m per day. Simultaneously, the undulator length increases significantly in order to saturate at x-ray wavelengths. To minimize the impact of the outside environment, the Linac Coherent Light Source (LCLS) undulator is placed underground, but reliable data about ground motion inside such a tunnel was not available in the required stability range during the planning phase. Therefore, a new position monitor system had been developed and installed with the LCLS undulator. This system is capable of measuring x, y, roll, pitch and yaw of each of the 33 undulator quadrupoles with respect to stretched wires. Instrument resolution is about 10 nm and instrument drift is negligible. Position data of individual quadrupoles can be correlated along the entire 132-m long undulator. The system has been under continuous operation since 2009. This report describes long term experiences with the running system and the observed positional stability of the undulator quadrupoles.

  9. Nuclear electric quadrupole interaction of implanted ions in graphite

    NASA Astrophysics Data System (ADS)

    Kastelein, B.; Postma, H.; Andriessen, J.

    1992-11-01

    A number of isotopes have been implanted into thin foils of highly oriented pyrolytic graphite in order to investigate the possibility of using this material as a catcher for on-line LT-NO experiments to measure the quadrupole interaction of short-lived nuclei. Pure nuclear electric quadrupole interaction of nuclei of188,189Ir,203Hg,69mZn,182m,183Re and111In has been observed. Values for the electric field gradient along the C-axis are: +10.0(3) +8.2(9), +5.4(2.6) and +1.5(1)·1022 V/m2, respectively, for Ir, Hg, Re and In in graphite. A value of Q=+0.79(6) b is deduced for the quadrupole moment of189Ir. Two theoretical models provide a better understanding of the origin of the electric field gradient in graphite. The first is based on induced electric polarization of graphite atoms, while in the second one hybridization of impurity and graphite electronic wave functions is calculated.

  10. The exact calculation of quadrupole sources for some incompressible flows

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1988-01-01

    This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

  11. Parametric-Resonance Ionization Cooling in Twin-Helix.

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, R.P. Johnson, Erdelyi. B., J.A. Maloney

    2011-09-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we developed an epicyclic twin-helix channel with correlated optics. Wedge-shaped absorbers immediately followed by short rf cavities are placed into the twin-helix channel. Parametric resonances are induced in both planes using helical quadrupole harmonics. We demonstrate resonant dynamics and cooling with stochastic effects off using GEANT4/G4beamline. We illustrate compensation of spherical aberrations and benchmark COSY Infinity, a powerful tool for aberration analysis and compensation.

  12. TESTING OF NB{sub 3}SN QUADRUPOLE COILS USING MAGNETIC MIRROR STRUCTURE

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V. S.; Kashikhin, V. V.; Lamm, M. J.; Novitski, I.; Tartaglia, M.; Tompkins, J. C.; Turrioni, D.; Yamada, R.

    2010-04-09

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  13. Bose-Einstein Condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap

    E-print Network

    Kumar, Sunil; Verma, Gunjan; Vishwakarma, Chetan; Noaman, Md; Rapol, Umakant

    2014-01-01

    We report a novel approach for preparing a Bose-Einstein condensate (BEC) of $^{87}$Rb atoms using electro-pneumatically driven transfer of atoms into a Quadrupole-Ioffe magnetic trap (QUIC Trap). More than 5$\\times$$10^{8}$ atoms from a Magneto-optical trap are loaded into a spherical quadrupole trap and then these atoms are transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil, thereby, changing the distance between quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80 \\%. This approach is different from a conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed into a QUIC trap by changing the currents in the quadrupole and the Ioffe coils. The phase space density is then increased by forced rf evaporative cooling to achieve the Bose-Einstein condensation having more than $10^{5}$ atoms.

  14. Bose-Einstein Condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap

    E-print Network

    Sunil Kumar; Sumit Sarkar; Gunjan Verma; Chetan Vishwakarma; Md. Noaman; Umakant Rapol

    2014-08-20

    We report a novel approach for preparing a Bose-Einstein condensate (BEC) of $^{87}$Rb atoms using electro-pneumatically driven transfer of atoms into a Quadrupole-Ioffe magnetic trap (QUIC Trap). More than 5$\\times$$10^{8}$ atoms from a Magneto-optical trap are loaded into a spherical quadrupole trap and then these atoms are transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil, thereby, changing the distance between quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80 \\%. This approach is different from a conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed into a QUIC trap by changing the currents in the quadrupole and the Ioffe coils. The phase space density is then increased by forced rf evaporative cooling to achieve the Bose-Einstein condensation having more than $10^{5}$ atoms.

  15. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    SciTech Connect

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  16. Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC

    SciTech Connect

    Albert F. Zeller

    2012-12-28

    The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

  17. Electron-Induced Dissociation of Peptides in a Triple Quadrupole Mass Spectrometer Retrofitted with an Electromagnetostatic Cell

    NASA Astrophysics Data System (ADS)

    Voinov, Valery G.; Bennett, Samuel E.; Barofsky, Douglas F.

    2015-05-01

    Dissociation of peptides induced by interaction with (free) electrons (electron-induced dissociation, EID) at electron energies ranging from near 0 to >30 eV was carried out using a radio-frequency-free electromagnetostatic (EMS) cell retrofitted into a triple quadrupole mass spectrometer. The product-ion mass spectra exhibited EID originating from electronically excited even-electron precursor ions, reduced radical cations formed by capture of low-energy electrons, and oxidized radical cations produced by interaction with high-energy electrons. The spectra demonstrate, within the limits of the triple quadrupole's resolving power, that high-energy EID product-ion spectra produced with an EMS cell exhibit essentially the same qualitative structural information, i.e., amino acid side-chain (SC) losses and backbone cleavages, as observed in high-energy EID spectra produced with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The levels of fragmentation efficiency evident in the product-ion spectra recorded in this study, as was the case for those recorded in earlier studies with FT ICR mass spectrometers, is currently at the margin of analytical utility. Given that this shortcoming can be remedied, EMS cells incorporated into QqQ or QqTOF mass spectrometers could make tandem high-energy EID mass spectrometry more widely accessible for analysis of peptides, small singly charged molecules, pharmaceuticals, and clinical samples.

  18. Progress in the development of superconducting quadrupoles for heavy ion fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  19. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  20. Performance Characteristics of a MEMS Quadrupole Mass Filter With Square Electrodes: Experimental and Simulated Results

    E-print Network

    Hogan, Thomas J.

    Size reduction in quadrupole mass spectrometers (QMSs) is an ongoing requirement driven by the needs of space exploration, portable, and covert monitoring applications. Microelectromechanical systems (MEMS) technology ...

  1. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  2. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    SciTech Connect

    Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  3. Dipole-quadrupole dynamics during magnetic field reversals

    SciTech Connect

    Gissinger, Christophe

    2010-11-15

    The shape and the dynamics of reversals of the magnetic field in a turbulent dynamo experiment are investigated. We report the evolution of the dipolar and the quadrupolar parts of the magnetic field in the VKS experiment, and show that the experimental results are in good agreement with the predictions of a recent model of reversals: when the dipole reverses, part of the magnetic energy is transferred to the quadrupole, reversals begin with a slow decay of the dipole and are followed by a fast recovery, together with an overshoot of the dipole. Random reversals are observed at the borderline between stationary and oscillatory dynamos.

  4. Quadrupole collective states within the Bohr collective Hamiltonian

    E-print Network

    L. Prochniak; S. G. Rohozinski

    2009-11-02

    The article reviews the general version of the Bohr collective model for the description of quadrupole collective states, including a detailed study the model's kinematics. The general form of the classical and quantum Bohr Hamiltonian is presented together with a discussion of the tensor structure of the collective wave functions and with a short review of various methods of solving the Bohr Hamiltonian eigenvalue equation.The methods of derivation of the classical and quantum Bohr Hamiltonian from the microscopic many-body theory are recalled and the microscopic approach to the Bohr Hamiltonian is applied to interpret collective properties of 12 heavy even-even nuclei in the Hf-Hg region.

  5. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  6. Cool Down Analysis of a Cryocooler Based Quadrupole Magnet Cryostat

    NASA Astrophysics Data System (ADS)

    Choudhury, A.; Kar, S.; Chacko, J.; Kumar, M.; Babu, S.; Sahu, S.; Kumar, R.; Antony, J.; Datta, T. S.

    A superconducting quadrupole doublet magnet with cold superferric iron cover for the Hybrid Recoil Mass Analyzer (HYRA) beam line has been commissioned. The total cold mass of the helium vessel with iron yoke and pole is 2 ton. A set of two Sumitomo cryocoolers take care of various heat loads to the cryostat. The first successful cool down of the cryostat has been completed recently, magnets have been powered and magnetic field profiling has been done inside theroom temperature beam tube. This paper will highlight the cryostat details along with the cool down and operational test results obtained from the first cool down.

  7. Small Aperture BPM to Quadrupole Assembly Tolerance Study

    SciTech Connect

    Fong, K. W.

    2010-12-07

    The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.

  8. Operational aspects of the Main Injector large aperture quadrupole (WQB)

    SciTech Connect

    Chou, W.; Bartelson, L.; Brown, B.; Capista, D.; Crisp, J.; DiMarco, J.; Fitzgerald, J.; Glass, H.; Harding, D.; Johnson, D.; Kashikhin, V.; /Fermilab

    2007-06-01

    A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab. [1] Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two for spares. They perform well. The aperture increase meets the design goal and the perturbation to the lattice is minimal. The machine acceptance in the injection and extraction regions is increased from 40{pi} to 60{pi} mm-mrad. This paper gives a brief report of the operation and performance of these magnets. Details can be found in Ref [2].

  9. Finding the Magnetic Center of a Quadrupole to High Resolution

    SciTech Connect

    Fischer, G.E.; Cobb, J.K.; Jenson, D.R.; /SLAC

    2005-08-12

    In a companion pro, collposal it is proposed to align quadrupoles of a transport line to within transverse tolerances of 5 to 10 micrometers. Such a proposal is meaningful only if the effective magnetic center of such lenses can in fact be repeatably located with respect to some external mechanical tooling to comparable accuracy. It is the purpose of this note to describe some new methods and procedures that will accomplish this aim. It will be shown that these methods are capable of yielding greater sensitivity than the more traditional methods used in the past. The notion of the ''nodal'' point is exploited.

  10. Quench margin measurement in Nb3Sn quadrupole magnet

    SciTech Connect

    Kashikhin, V.V.; Bossert, R.; Chlachidze, G.; Lamm, M.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2008-08-01

    One of the possible practical applications of the Nb{sub 3}Sn accelerator magnets is the LHC luminosity upgrade that involves replacing the present NbTi focusing quadrupoles in two high-luminosity interaction regions (IR). The IR magnets are exposed to strong radiation from the interaction point that requires a detailed investigation of the magnet operating margins under the expected radiation-induced heat depositions. This paper presents the results of simulation and measurement of quench limits and temperature margins for a Nb{sub 3}Sn model magnet using a special midplane strip heater.

  11. Quadrupole-octupole coupled states in 112Cd

    SciTech Connect

    Garrett, P.E., LLNL

    1998-05-05

    Negative-parity excitations in the 2.5 MeV region in {sup 112}Cd have been investigated with the (n,n`{gamma}) reaction. Several of these states exhibit enhanced B(E2) values for L decay to the 3{sub 1}{sup -} octupole state, indicative of quadrupole-octupole coupled (2{sup +} {circle_times} 3{sup -}) structures. The B(E1) values observed are typically in the range of 1-5 x 1O{sup -4} W u , irrespective of the final state.

  12. Novel integrated design framework for radio frequency quadrupoles

    NASA Astrophysics Data System (ADS)

    Jolly, Simon; Easton, Matthew; Lawrie, Scott; Letchford, Alan; Pozimski, Jürgen; Savage, Peter

    2014-01-01

    A novel design framework for Radio Frequency Quadrupoles (RFQs), developed as part of the design of the FETS RFQ, is presented. This framework integrates several previously disparate steps in the design of RFQs, including the beam dynamics design, mechanical design, electromagnetic, thermal and mechanical modelling and beam dynamics simulations. Each stage of the design process is described in detail, including the various software options and reasons for the final software suite selected. Results are given for each of these steps, describing how each stage affects the overall design process, with an emphasis on the resulting design choices for the FETS RFQ.

  13. Kick Velocity Induced by Magnetic Dipole and Quadrupole Radiation

    NASA Astrophysics Data System (ADS)

    Kojima, Yasufumi; Kato, Yugo E.

    2011-02-01

    We examine the recoil velocity induced by the superposition of magnetic dipole and quadrupole radiation from a pulsar/magnetar born with rapid rotation. The resultant velocity depends on not the magnitude, but rather the ratio of the two moments and their geometrical configuration. The model does not necessarily lead to high spatial velocity for a magnetar with a strong magnetic field, which is consistent with the recent observational upper bound. The maximum velocity predicted with this model is slightly smaller than that of observed fast-moving pulsars.

  14. Table of nuclear magnetic dipole and electric quadrupole moments

    SciTech Connect

    Stone, N.J. . E-mail: n.stone1@physics.oxford.ac.uk

    2005-05-01

    The table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin, and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2004. Many of the entries prior to 1988 follow those in Raghavan [At. Data Nucl. Data Tables 42 (1989) 189].

  15. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOEpatents

    Felter, Thomas E. (Livermore, CA)

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  16. Ground-state electric quadrupole moment of 31Al

    E-print Network

    D. Nagae; H. Ueno; D. Kameda; M. Takemura; K. Asahi; K. Takase; A. Yoshimi; T. Sugimoto; K. Shimada; T. Nagatomo; M. Uchida; T. Arai; T. Inoue; S. Kagami; N. Hatakeyama; H. Kawamura; K. Narita; J. Murata

    2008-10-16

    Ground-state electric quadrupole moment of 31Al (I =5/2+, T_1/2 = 644(25) ms) has been measured by means of the beta-NMR spectroscopy using a spin-polarized 31Al beam produced in the projectile fragmentation reaction. The obtained Q moment, |Q_exp(31Al)| = 112(32)emb, are in agreement with conventional shell model calculations within the sd valence space. Previous result on the magnetic moment also supports the validity of the sd model in this isotope, and thus it is concluded that 31Al is located outside of the island of inversion.

  17. Adaptation of a 3-D Quadrupole Ion Trap for Dipolar DC Collisional Activation

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; Santini, Robert E.; McLuckey, Scott A.

    2011-09-01

    Means to allow for the application of a dipolar DC pulse to the end-cap electrodes of a three-dimensional (3-D) quadrupole ion trap for as short as a millisecond to as long as hundreds of milliseconds are described. The implementation of dipolar DC does not compromise the ability to apply AC waveforms to the end-cap electrodes at other times in the experiment. Dipolar DC provides a nonresonant means for ion acceleration by displacing ions from the center of the ion trap where they experience stronger rf electric fields, which increases the extent of micro-motion. The evolution of the product ion spectrum to higher generation products with time, as shown using protonated leucine enkephalin as a model protonated peptide, illustrates the broad-band nature of the activation. Dipolar DC activation is also shown to be effective as an ion heating approach in mimicking high amplitude short time excitation (HASTE)/pulsed Q dissociation (PQD) resonance excitation experiments that are intended to enhance the likelihood for observing low m/z products in ion trap tandem mass spectrometry.

  18. Adaptation of a 3-D quadrupole ion trap for dipolar DC collisional activation.

    PubMed

    Prentice, Boone M; Santini, Robert E; McLuckey, Scott A

    2011-09-01

    Means to allow for the application of a dipolar DC pulse to the end-cap electrodes of a three-dimensional (3-D) quadrupole ion trap for as short as a millisecond to as long as hundreds of milliseconds are described. The implementation of dipolar DC does not compromise the ability to apply AC waveforms to the end-cap electrodes at other times in the experiment. Dipolar DC provides a nonresonant means for ion acceleration by displacing ions from the center of the ion trap where they experience stronger rf electric fields, which increases the extent of micro-motion. The evolution of the product ion spectrum to higher generation products with time, as shown using protonated leucine enkephalin as a model protonated peptide, illustrates the broad-band nature of the activation. Dipolar DC activation is also shown to be effective as an ion heating approach in mimicking high amplitude short time excitation (HASTE)/pulsed Q dissociation (PQD) resonance excitation experiments that are intended to enhance the likelihood for observing low m/z products in ion trap tandem mass spectrometry. PMID:21953251

  19. Fano resonance properties of gold nanocrescent arrays.

    PubMed

    Liao, Zhongwei; Zhou, Bingpu; Huang, Yingzhou; Li, Shunbo; Wang, Shuxia; Wen, Weijia

    2014-10-01

    The Fano resonance induced by symmetry breaking could improve the sensitivity of localized surface plasmon resonance sensors. In this work, the spectra of gold nanocrescent arrays are measured and confirmed by simulation results through the finite element method (FEM). The Fano resonance presented in the spectra could be modulated by the symmetry breaking with different waist widths, which are understood through plasmonic hybridization theory with the help of surface charge distribution. Our results indicate the Fano lineshape is generated by the coherent coupling of the quadrupole plasmon mode QH of nanohole and the antibonding plasmon mode D(AB) of nanocrescent. Finally, the high figure of merit (FoM=1.6-3.5) of the Q mode in the visible region illustrates this nanocrescent Fano sensor is of great value in the biological and chemical scientific fields. PMID:25322229

  20. Performance of a Nb(3)Sn Quadrupole Under High Stress

    E-print Network

    Felice, H; Ferracin, P; De Rijk, G; Bajko, M; Caspi, S; Bingham, B; Giloux, C; Bordini, B; Milanese, A; Bottura, L; Sabbi, G L; Hafalia, R; Godeke, A; Dietderich, D

    2011-01-01

    Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb(3)Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb(3)Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb(3)Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on...

  1. Performance of Nb3Sn Quadrupole Under High Stress

    SciTech Connect

    Felice, H.; Bajko, M.; Bingham, B.; Bordini, B.; Bottura, L.; Caspi, S.; Rijk, G. De; Dietderich, D.; Ferracin, P.; Giloux, C.; Godeke, A.; Hafalia, R.; Milanese, A.; Rossi, L.; Sabbi, G. L.

    2010-08-01

    Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb{sub 3}Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb{sub 3}Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb{sub 3}Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on the relation between pre-stress conditions and the training plateau.

  2. Density enhancement of an RF plasma in a magnetic quadrupole

    NASA Astrophysics Data System (ADS)

    Teske, Christian; Iberler, Marcus; Jacoby, Joachim

    2008-05-01

    A new method for the effective confinement of a low pressure gas discharge has been proposed by Christiansen and Jacoby. The principal component is a magnetic quadrupole superimposed upon an RF-driven gas discharge plasma. It has been suggested to use the device as an ion source for accelerator applications and as a plasma target to investigate the interaction of heavy ion beams with a magnetically confined plasma. A complete experiment including a capacitively coupled radio frequency (CCRF) discharge and an electric quadrupole magnet was set up and investigated by applying spectroscopic diagnostic methods. The plasma parameters for the magnetically confined CCRF discharge were measured using a Ar : He gas mixture. The electron temperature and the electron density as a function of the gas pressure and the magnetic field could be determined. A maximum of the mean electron temperature was identified as due to collisionless heating. Further, an ion beam was extracted and the mean electron density derived. The confinement of the plasma at low pressures between 0.4 and 1 Pa has also been obtained with an electron density of 3 × 1017 m-3.

  3. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    SciTech Connect

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  4. Radiation-hardened field coils for FMIT quadrupoles

    SciTech Connect

    Grieggs, R.J.; Liska, D.J.; Harvey, A.

    1983-01-01

    Modern accelerators of the Fusion Materials Irradiation Test (FMIT) class deliver enormous power onto their targets. The high beam currents of such machines produce highly activating radiation fields from beam/target interaction and normal beam losses. The 100-mA deuteron beam from the FMIT accelerator produces a backstreaming fast-neutron flux of 10/sup 11/ n/s-cm/sup 2/ near the target. In addition, the neutron contribution from distributed beam spill of 3 ..mu..A/m along the rest of the machine prevents the use of epoxy resin potting materials in all magnet field coils above 10-MeV beam energies. Two special techniques for radiation-hardened field coils have been developed at Los Alamos for use on the FMIT accelerator. One technique uses vitreous enamel coatings on the conductors and appears attractive for the drift-tube quadrupoles. Another method uses a thermally efficient two-layer coil design that has solid mineral-insulated (MI) conductors with indirect cooling coils, all bonded together in a lead matrix. Test results are discussed, along with applications of the quadrupoles in the FMIT facility that reduce gamma exposures during maintenance periods.

  5. Nuclear electric quadrupole moment of potassium from the molecular method

    NASA Astrophysics Data System (ADS)

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade; Visscher, Lucas

    2015-03-01

    The current standard nuclear quadrupole moments (NQMs) of the 39K , 40K , and 41K isotopes have recently been contested by Singh and co-workers on the basis of their atomic computational data [Singh et al., Phys. Rev. A 86, 032509 (2012), 10.1103/PhysRevA.86.032509]. Thus we performed relativistic calculations of electric field gradients at the potassium nuclei in three diatomic molecules (KF, KCl, and KBr) and combined these values with accurate experimental nuclear quadrupole coupling constants to provide an independent assessment of these NQMs. Our most accurate results, obtained by treating electron correlation with coupled cluster theory, employing a four-component Hamiltonian that includes the Gaunt two-electron correction, and with an incremented relativistic basis set of quadruple-? quality, yield Q (39K)=60.3 (6 ) , Q (40K)=-75.0 (8 ) , and Q (41K)=73.4 (7 ) mb . These values are in better agreement with the results obtained by Singh et al. and indicate that the standard NQMs should be revised.

  6. Giant Quadrupole-Resonance in Mg-24, Al-27 and Si-28 

    E-print Network

    Youngblood, David H.; Rozsa, C. M.; Moss, JM; Brown, D. R.; Bronson, J. D.

    1977-01-01

    . Pitthan and T. Walcher, Phys. Lett. 36B, 563 . (1971);M. B. Lewis and F. E. Bertrand, Nucl. Phys. A196, 337 (1972). 3N. Marty, M. Morlet, A. Willis, V. Comparat, and R. Frascaria, Nucl. Phys. A238, 93 (1975). G. R. Satchler, Phys. Rep. 14C, 97 (1974...). J. M, Moss, C. M. Rozsa, D. H. Youngblood, J. D. Bronson, and A. D. Bacher, Phys. Rev. Lett. 34, 748 (1975). K. T. Knopfle, G. J. Wagner, H. Breuer, M. Rogge, and C. Mayer-Boricke, Phys. Rev. Lett. 35, 779 (1975). K. T. Knopfle, G. J. Wagner, A...

  7. Development and application of an analytical method using gas chromatography/triple quadrupole mass spectrometry for

    E-print Network

    Clement, Prabhakar

    Development and application of an analytical method using gas chromatography/triple quadrupole mass to the development of gas chromatography/triple quadrupole mass spectrometry methods that allow the identification estimated using gas chromatography/mass spectrometry (GC/MS).[7,10,11] The efficiency of GC/MS methods

  8. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    SciTech Connect

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin; Jensen, David R.; Rogers, Ron; Sheppard, John C.; Lorant, Steve St; Weber, Thomas B.; Weisend, John, II; Brueck, Heinrich; Toral, Fernando; /Madrid, CIEMAT

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting technique is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.

  9. Origin of Low-Energy Quadrupole Collectivity in Vibrational Nuclei H. Fujita,2,3

    E-print Network

    Ponomarev, Vladimir

    Origin of Low-Energy Quadrupole Collectivity in Vibrational Nuclei C. Walz,1 H. Fujita,2,3 A is a separation of energy (respectively momentum) scales such that the high-energy degrees of freedom) energy scale. In the IBM the relevant low-energy degrees of freedom for the description of quadrupole

  10. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  11. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  12. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  13. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  14. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  15. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  16. Test Results of a Superconducting Quadrupole Model Designed for Linear Accelerator Applications

    SciTech Connect

    Kashikhin, Vladimir S.; Andreev, Nikolai; Chlachidze, Guram; DiMarco, Joseph; Kashikhin, Vadim V.; Lamm, Michael J.; Lopes, Mauricio L.; Orris, Darryl; Tartaglia, Michael; Tompkins, John C.; Velev, Gueorgui; /Fermilab

    2008-08-01

    The first model of a superconducting quadrupole for use in a Linear Accelerator was designed, built and tested at Fermilab. The quadrupole has a 78 mm aperture, and a cold mass length of 680 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes racetrack type dipole steering coils. The results of the quadrupole design, manufacturing and test, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed. The magnet quench performance and results of magnetic measurements will also be briefly discussed.

  17. A superconducting quadrupole magnet array for a heavy ion fusion driver

    SciTech Connect

    Caspi, S.; Bangerter, r.; Chow, K.; Faltens, A.; Gourley, S.; Hinkins, R.; Gupta, R.; Lee, E.; McInturff, A.; Scanlan, R.; Taylor, C.; Wolgast, D.

    2000-06-27

    A multi-channel quadrupole array has been proposed to increase beam intensity and reduce space charge effects in a Heavy Ion Fusion Driver. A single array unit composed of several quadrupole magnets, each with its own beam line, will be placed within a ferromagnetic accelerating core whose cost is directly affected by the array size. A large number of focusing arrays will be needed along the accelerating path. The use of a superconducting quadrupole magnet array will increase the field and reduce overall cost. We report here on the design of a compact 3 x 3 superconducting quadrupole magnet array. The overall array diameter and length including the cryostat is 900 x 700 mm. Each of the 9 quadrupole magnets has a 78 mm warm bore and an operating gradient of 50 T/m over an effective magnetic length of 320 mm.

  18. Auxiliary Frequency Parametric Excitation of Quadrupole Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel (Inventor); Block, Bruce (Inventor); Rubin, Martin (Inventor); Zurbuchen, Thomas (Inventor)

    2013-01-01

    The apparatus introduces a second adjustable resonant point in a QMS at a frequency that is close to a multiple of the fundamental frequency by adjusting driving point impedance characteristics of the QMS. The apparatus measures the first and second resonant point of the QMS to account for changes in the operational characteristics of the QMS.

  19. COMPENSATION OF FAST KICKER ROLLS WITH SKEW QUADRUPOLES

    SciTech Connect

    Pinayev, I.

    2011-03-28

    The development of the third generation light sources lead to the implementation of the top-up operation, when injection occurs while users collect data. The beam excursions due to the non-closure of the injection bump can spoil the data and need to be suppressed. In the horizontal plane compensation can be achieved by adjusting timing and kick amplitudes. The rolls of the kicker magnets create non-closure in the vertical plane and usually there is no means for correction. In the paper we describe proposed compensation scheme utilizing two skew quadrupoles placed inside the injection bump. The third generation light sources implement top-up operation firstly introduced at Advanced Photon Source. In this mode the circulating beam current is supported near constant by frequent injection of small charge, while photon beam is delivered for users. The beam perturbations caused by the mismatched injection bump can provide undesired noise in the user data. Usually the injection trigger is distributed to the users end stations so that those affected would be able to blank data acquisition. Nevertheless, as good operational practice such transients should be suppressed as much as possible. In the horizontal plane (which is commonly used for injection) one can adjust individual kicker strength as well as trigger delay while observing motion of the stored beam centroid. In the vertical plane such means are unavailable in the most cases. The possible solutions include dedicated weak vertical kickers and motorized adjustment of the roll angle of the injection kickers. Both abovementioned approaches are expensive and can significantly deteriorate reliability. We suggest two employ two skew quadrupoles (to correct both angle and position) placed inside the injection bump. In this case the beam position itself serves as measure of the kicker strength (assuming that kickers are well matched) and vertical kicks from the skew quadrupoles will be self synchronized with injection bump. In this paper we will consider the case when injection hardware (kickers and septa) are located in the same straight. Such an approach simplifies consideration but it can be generalized.

  20. The influence of quadrupole sources in the boundary layer and wake of a blade on helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1991-01-01

    It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.

  1. Magnetic resonance cell

    SciTech Connect

    Kwon, T.M.; Volk, C.H.

    1984-05-01

    There is disclosed a nuclear magnetic alignment device for use in a nuclear magnetic resonance gyroscope and the like. One embodiment includes a container for gas having a layer of rubidium hydride on its inner surface. The container comprising a spherical portion and a tip portion, is rotationally symmetric about an axis of symmetry. Enclosed within the container is a nuclear moment gas having a nuclear electric quadrupole moment, such as xenon-131, and an optically pumpable substance, such as rubidium. A portion of the rubidium is a vapor. The remainder is a condensed pellet which is deposited in the tip of the container such that the pellet is also rotationally symmetric about the axis of symmetry of the container. A layer of rubidium hydride is deposited on the inner surface of the container. The device further includes means for orienting the symmetry axis of the container at an angle to an applied magnetic field such that the relaxation time constant of the aligned nuclear moment gas is substantially at a maximum.

  2. Covariant Spectator Theory of np scattering: Deuteron Quadrupole Moment

    E-print Network

    Franz Gross

    2014-11-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experimental result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from $\\chi$EFT predictions to order N$^3$LO.

  3. Propagation Hanle effect of quadrupole polaritons in Cu2O

    NASA Astrophysics Data System (ADS)

    Moskalenko, S. A.; Liberman, M. A.

    2002-05-01

    The generalized theory of the Hanle effect is developed for the case of propagation quantum beats. Time-integrated quantum beats of two polariton wave packets with the same group velocities and polarizations belonging to two different Zeeman components in Voigt geometry of the quadrupole-active ortho-exciton (Gamma) 5+ level in Cu2O crystal gives rise to the propagation Hanle effect. It is characterized by a quasiresonant dependence of the emitted light intensity on the magnetic field strength, as well as by a supplementary periodic dependence with the period inverse proportional to the sample thickness. The developed theory with the account of the effective propagation way explains recent experimental results published by Kono and Nagasawa.

  4. Alternative Mechanical Structure for LARP Nb3Sn Quadrupoles

    SciTech Connect

    Anerella, M.; Cozzolino, J.; Ambrosio, G.; Caspi, S.; Felice, H.; Kovach, P.; Lamm, M.; Sabbi, G.; Schmalzle, J.; Wanderer, P.

    2010-08-01

    An alternative structure for the 120 mm Nb{sub 3}Sn quadrupole magnet presently under development for use in the upgrade for LHC at CERN is presented. The goals of this structure are to build on the existing technology developed in LARP with the LQ and HQ series magnets and to further optimize the features required for operation in the accelerator. These features include mechanical alignment needed for field quality and provisions for cold mass cooling with 1.9 K helium in a helium pressure vessel. The structure will also optimize coil azimuthal and axial pre-load for high gradient operation, and will incorporate features intended to improve manufacturability, thereby improving reliability and reducing cost.

  5. Quadrupole collectivity in neutron-rich Fe and Cr isotopes.

    PubMed

    Crawford, H L; Clark, R M; Fallon, P; Macchiavelli, A O; Baugher, T; Bazin, D; Beausang, C W; Berryman, J S; Bleuel, D L; Campbell, C M; Cromaz, M; de Angelis, G; Gade, A; Hughes, R O; Lee, I Y; Lenzi, S M; Nowacki, F; Paschalis, S; Petri, M; Poves, A; Ratkiewicz, A; Ross, T J; Sahin, E; Weisshaar, D; Wimmer, K; Winkler, R

    2013-06-14

    Intermediate-energy Coulomb excitation measurements are performed on the N ? 40 neutron-rich nuclei (66,68)Fe and (64)Cr. The reduced transition matrix elements providing a direct measure of the quadrupole collectivity B(E2;2(1)(+) ? 0(1)(+)) are determined for the first time in (68)Fe(42) and (64)Cr(40) and confirm a previous recoil distance method lifetime measurement in (66)Fe(40). The results are compared to state-of-the-art large-scale shell-model calculations within the full fpgd neutron orbital model space using the Lenzi-Nowacki-Poves-Sieja effective interaction and confirm the results of the calculations that show these nuclei are well deformed. PMID:25165918

  6. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE PAGESBeta

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore »XEFT predictions to order N3LO.« less

  7. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  8. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    SciTech Connect

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from XEFT predictions to order N3LO.

  9. Guidelines for the design of very large aperture quadrupole magnets

    SciTech Connect

    Daeel, A.; Jorda, J.P.; Kircher, F.; Mayri, C.

    1996-07-01

    Very large aperture quadrupole magnets have been recently considered as possible spectrometers on high energy colliders. The interesting characteristics are zero field on beam axis, low fields at small angles, transverse field at large angles. Dimension range is 1 m to 5 m for clear bore and 2 m to 8 m for length; typical maximum field is 2.5 T. Superconducting magnets with cosine 2 {theta} structure, coils with one or two layers and iron yoke have been modeled. Use of two types of conductors have been investigated: Rutherford cable and aluminium stabilized composite. The paper describes the optimization procedure and gives diagrams of feasibility. Two alternative structures are mentioned: superferric and active shield magnets.

  10. Triaxial dynamics in the quadrupole-deformed rotor

    E-print Network

    Qiu-Yue Li; Xiao-Xiang Wang; Yan Zuo; Yu Zhang; Feng Pan

    2015-04-20

    The triaxial dynamics of the quadrupole-deformed rotor model of both the rigid and the irrotational type have been investigated in detail. The results indicate that level patterns and E2 transitional characters of the two types of the model can be matched with each other to the leading order of the deformation parameter $\\beta$. Especially, it is found that the dynamical structure of the irrotational type with most triaxial deformation ($\\gamma=30^\\circ$) is equivalent to that of the rigid type with oblate deformation ($\\gamma=60^\\circ$), and the associated spectrum can be classified into the standard rotational bands obeying the rotational $L(L+1)$-law or regrouped into a new ground- and $\\gamma$-band with odd-even staggering in the new $\\gamma$-band commonly recognized as a signature of the triaxiality. The differences between the two types of the model in this case are emphasized especially on the E2 transitional characters.

  11. Nb3Sn Quadrupole Magnets for the LHC IR

    SciTech Connect

    Sabbi, G.; Caspi, S.; Chiesa, L.; Coccoli, M.; Dietderich, D.r.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Lietzke, A.F.; McInturff, A.D.; Scanlan, R.M.

    2001-08-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 x 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC). At present, Nb{sub 3}Sn is the only practical conductor which can meet these requirements. Since Nb{sub 3}Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented.

  12. A Cryogenic test stand for LHC quadrupole magnets

    SciTech Connect

    R. J. Rabehl et al.

    2004-03-09

    A new test stand for testing LHC interaction region (IR) quadrupole magnets at the Fermilab Magnet Test Facility has been designed and operated. The test stand uses a double bath system with a lambda plate to provide the magnet with a stagnant bath of pressurized He II at 1.9 K and 0.13 MPa. A cryostated magnet 0.91 m in diameter and up to 13 m in length can be accommodated. This paper describes the system design and operation. Issues related to both 4.5 K and 1.9 K operations and magnet quenching are highlighted. An overview of the data acquisition and cryogenics controls systems is also included.

  13. Restoring the skew quadrupole moment in the Tevatron dipoles

    SciTech Connect

    Harding, D.J.; Bauer, P.C.; Blowers, J.N.; DiMarco, J.; Glass, H.D.; Hanft, R.W.; Carson, J.A.; Robotham, W.F.; Tartaglia, M.A.; Tompkins, J.C.; Velev, G.; /Fermilab

    2005-05-01

    In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 that will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment process and experience are reported, along with other observations on aging magnets. In January 2003 two lines of inquiry converged, leading to the recognition that the severe betatron coupling that was hindering operation of the Tevatron could be explained by a systematic shift on the skew quadrupole field in the dipole magnets of the same size expected from observed mechanical movement of the coils inside the magnet yokes [1]. This paper reports on subsequent magnet studies that were conducted in parallel with additional beam studies and accelerator modeling [2] exploring the feasibility of the eventual remediation effort [3].

  14. N2 + quadrupole transitions with small Zeeman shift

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi

    2015-10-01

    The vibrational transition frequencies of a N2 + molecular ion are advantageous for precise measurement because the Stark shift is much smaller than that of heteronuclear diatomic molecules. The 14N2 + S(0) transition has been observed by a group in Basel. For most transitions, the Zeeman shift limits the attainable accuracy. This paper reports the quadrupole transitions (observed with simpler apparatus than that required for the Raman transition) for which the Zeeman shift is less than 100 Hz at a magnetic field of 1 G. Q (N ) transitions (N : even) of the molecular ion with I =0 are advantageous for measurement within an uncertainty of 10-16. The transition frequencies of molecular ions with I ?0 are difficult to measure within an uncertainty of 10-12 because J -mixing makes the linear Zeeman coefficient in the Q transitions large and narrow hyperfine splitting makes the quadratic Zeeman coefficient large.

  15. Nuclear electric quadrupole moment of gold from the molecular method

    NASA Astrophysics Data System (ADS)

    Santiago, Régis Tadeu; Haiduke, Roberto Luiz Andrade

    2015-04-01

    The nuclear electric quadrupole moment (NQM) of gold is reviewed by means of the molecular method and data from as many as 15 linear systems. The electric-field gradients (EFGs) used to this end were obtained with the Dirac-Coulomb Hamiltonian and coupled-cluster theory, CCSD(T) and CCSD-T, by means of an augmented relativistic basis set for gold. The direct approach was found to be inadequate for the diatomic molecules investigated, which is probably due to improper treatment of the static electron correlation. However, these effects are much less relevant for OCAu X (X =F ,Cl ,Br , and I ) complexes. Thus, the indirect version of the molecular method is preferred in this case. Hence, a NQM value of 515(15) mb is determined for 197Au from linear regressions performed with the best EFGs determined for ten of these systems.

  16. Manufacturing experience for the LHC inner triplet quadrupole cables

    SciTech Connect

    Scanlan, R.M.; Higley, H.C.; Bossert, R.; Kerby, J.; Gosh, A.K.; Boivin, M.; Roy, T.

    2001-06-12

    The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.

  17. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  18. Use of phase information with a stepper motor to control frequency for tuning system of the Front End Test Stand Radio Frequency Quadrupole at Rutherford Appleton Laboratory

    NASA Astrophysics Data System (ADS)

    Alsari, S.; Aslaninejad, M.; Pozimski, J.

    2015-03-01

    For the Front End Test Stand (FETS) linear accelerator project at the Rutherford Appleton Laboratory in the UK, a 4 m, 4 vanes Radio Frequency Quadrupole (RFQ) with a resonant frequency of 324 MHz has been designed. The RF power feeding the RFQ gives rise to the temperature increase in the RFQ, which in turn, results in shifting the resonant frequency of the RFQ. The frequency shift and the stability in the RFQ frequency can be maintained based on the reflected power or signal phase information. We have, however, investigated restoration of the RFQ nominal frequency based on the RF signal phases driving a stepper motor. The concept and the system set-up and electronics are described in detail. Results of the measurements indicating the full restoration of the RFQ nominal frequency based on the RF signal phases and stepper motor are presented. Moreover, measured sensitivity of tuner with respect to its position is given.

  19. Resonance scraping

    SciTech Connect

    Collins, T.

    1986-06-01

    Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

  20. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  1. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  2. Dipole and quadrupole plasmon in confined quasi-one-dimensional electron gas systems

    NASA Astrophysics Data System (ADS)

    Wu, Reng-lai; Yu, Yabin; Xue, Hong-jie; Hu, Hui-fang; Liu, Quan-hui

    2014-08-01

    An eigen-equation of plasmon excitation in confined quasi-one-dimensional systems is presented. Besides dipole plasmons, quadrupole plasmons are found in the systems by comparing the eigen-solutions with the dipole response. For both dipole and quadrupole plasmons, the plasmon frequencies decrease with the increase of the system's length, and their size dependence can be well fitted by the plasmon dispersion in the infinite systems calculated by the random phase approximation. Through extensively studies of eigen-charge density and induced charge density, we find that quadrupole plasmon corresponds to symmetric charge density distribution, and can only be excited by non-uniform electric field.

  3. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Y?ld?z, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  4. Alternate Oscillation between Scissors and Quadrupole Modes in Sodium Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahiro; Wakayama, Kazuki; Harada, Miho; Morinaga, Atsuo

    2015-04-01

    Using an additional off-axis Helmholtz coil, we modulated the strength of a magnetic field at the center of a cloverleaf trap for sodium Bose-Einstein condensates so that it passed through zero for a few milliseconds. At a modulation time of 1 ms, a scissors mode and a high-lying quadrupole mode were generated independently, which had the same Landau damping rates of 39(10) 1/s. However, at 2 ms, alternate oscillation between the scissors mode and the high-lying quadrupole mode, whose frequency was twice that of the scissors mode, was observed with the frequency of the low-lying quadrupole mode.

  5. Temperature and angular momentum dependence of the quadrupole deformation in sd-shell

    E-print Network

    P. A. Ganai; J. A. Sheikh; I. Maqbool; R. P. Singh

    2009-06-16

    Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard USD interaction and the canonical partition function constructed from the calculated eigen-solutions. It is shown that the extracted average quadrupole moments show a transitional behavior as a function of temperature and the inferred transitional temperature is shown to vary with angular-momentum. The quadrupole deformation of the individual eigen-states is also analyzed.

  6. Design and testing of the magnetic quadrupole for the Heavy Ion Fusion Program

    SciTech Connect

    Benjegerdes, R.; Faltens, A.; Fawley, W.; Peters, C.; Reginato, L.; Stuart, M.

    1995-04-01

    The Heavy Ion Fusion Program at the Lawrence Berkeley Laboratory is conducting experiments in the transport and acceleration of ``driverlike`` beams. The single beam coming from the four-to-one beam combiner will be transported in a lattice of pulsed magnetic quadrupoles. The present beam transport consists of high field, short aspect ratio magnetic quadrupoles to maximize the transportable current. This design could also be converted to be superconducting for future uses in a driver. The pulsed quadrupole will develop a maximum field of two Tesla and will be housed within the induction accelerator cells at the appropriate lattice period. Hardware implementation of the physics requirements and full parameter testing is described.

  7. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described. PMID:19376714

  8. Nuclear Giant Resonances and Linear Response

    E-print Network

    Reinhard, P G; Maruhn, J A; Guo, Lu

    2007-01-01

    We search for nonlinear effects in nuclear giant resonances (GRs), in particular the isovector dipole and the isoscalar quadrupole modes. To that end, we employ a spectral analysis of time-dependent Hartree-Fock (TDHF) dynamics using Skyrme forces. Based on TDHF calculations over a wide range of excitation amplitudes, we explore the collectivity and degree of harmonic motion in these modes. Both GR modes turn out to be highly harmonic in heavy nuclei from A=100 on. There is no trace of a transition to irregular motion and multiple resonances are predicted. Slight anharmonicities are seen for light nuclei, particularly for $^{16}$O. These are mainly caused by the spin-orbit splitting.

  9. High-performance MEMS square electrode quadrupole mass filters for chip-scale mass spectrometry

    E-print Network

    Cheung, Kerry

    We report exciting experimental data from a low-cost, high-performance square electrode quadrupole mass filter with integrated ion optics intended for chips-cale mass spectrometry. The device showed a mass range of 650 amu ...

  10. Compact magnetic quadrupole triplet for a low-energy high-current ion beam transport

    SciTech Connect

    Cho, Yong-Sub; Kim, Han-Sung; Kwon, Hyeok-Jung

    2008-02-15

    It is a difficult task to design a conventional quadrupole triplet as compact and simple as solenoids for high-current ion beam transport. In the design of a quadrupole triplet presented here, we installed three poles with the same orientation on a yoke and these were excited using two coils located between poles. This new design allows the easier fabrication of a compact quadrupole triplet compared to the conventional design. Simple equations for the preliminary design were obtained. A prototype with an aperture radius of 55 mm and a focusing power of 3.3 m{sup -1} for 50 keV proton beams was designed, fabricated, and tested. The measured field profile agreed well with the calculated profile. The length of the compact magnetic quadrupole triplet was comparable with a solenoid, and its electrical power consumption was about 40% that of a solenoid.

  11. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  12. Kinetic equilibrium of space charge dominated beams in a misaligned quadrupole focusing channel

    SciTech Connect

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-07-15

    The dynamics of intense beam propagation through the misaligned quadrupole focusing channel has been studied in a self-consistent manner using nonlinear Vlasov-Maxwell equations. The equations of motion of the beam centroid have been developed and found to be independent of any specific beam distribution. A Vlasov equilibrium distribution and beam envelope equations have been obtained, which provide us a theoretical tool to investigate the dynamics of intense beam propagating in a misaligned quadrupole focusing channel. It is shown that the displaced quadrupoles only cause the centroid of the beam to wander off axis. The beam envelope around the centroid obeys the familiar Kapchinskij-Vladimirskij envelope equation that is independent of the centroid motion. However, the rotation of the quadrupole about its optical axis affects the beam envelope and causes an increase in the projected emittances in the two transverse planes due to the inter-plane coupling.

  13. Field Quality Measurements and Analysis of the LARP Technology Quadrupole Models

    SciTech Connect

    Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; Lamm, M.; Schlabach, P.; Tartaglia, M.; Tompkins, J.C.; Velev, G.V.; Zlobin, A.V.; Caspi, S.; Ferracin, P.; Sabbi, G.I.; Bossert, R.

    2008-06-01

    One of the US-LHC accelerator research program goals is to develop and prove the design and technology of Nb{sub 3}Sn quadrupoles for an upgrade of the LHC Interaction Region (IR) inner triplets. Four 1-m long technology quadrupole models with a 90 mm bore and field gradient of 200 T/m based on similar coils and different mechanical structures have been developed. In this paper, we present the field quality measurements of the first several models performed at room temperature as well as at superfluid helium temperature in a wide field range. The measured field harmonics are compared to the calculated ones. The field quality of Nb{sub 3}Sn quadrupole models is compared with the NbTi quadrupoles recently produced at Fermilab for the first generation LHC IRs.

  14. Laser cooling and sympathetic cooling in a linear quadrupole rf trap 

    E-print Network

    Ryjkov, Vladimir Leonidovich

    2005-02-17

    An investigation of the sympathetic cooling method for the studies of large ultra-cold molecular ions in a quadrupole ion trap has been conducted.Molecular dynamics simulations are performed to study the rf heating ...

  15. DEVELOPMENT AND TEST OF COLLARING METHODS FOR Nb{sub 3}SN QUADRUPOLE MAGNETS

    SciTech Connect

    Bossert, R.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Kashikhin, V. V.; Lamm, M.; Nobrega, F.; Novitski, I.; Tartaglia, M.; Yu, M.; Zlobin, A. V.

    2010-04-09

    Fermilab is developing Nb{sub 3}Sn quadrupole magnets for the planned upgrade of interaction regions of the Large Hadron Collider (LHC). Two distinctly different approaches have been employed, one using quadrupole-symmetric and one using dipole-symmetric collar laminations. This paper describes the design features of both collar types, collaring techniques for brittle Nb{sub 3}Sn coils, and compares the advantages and disadvantages of the two approaches. Results of mechanical analysis for quadrupoles based on dipole-type and quadrupole-type collars are presented. Magnet construction issues and test results are reported. Test results include coil and component strain measurements during construction. Plans for the completion and test of the first dipole-symmetric assembly are described.

  16. PERFORMANCE OF NB{sub 3}SN QUADRUPOLE MAGNETS UNDER LOCALIZED THERMAL LOAD

    SciTech Connect

    Kashikhin, V. V.; Bossert, R.; Chlachidze, G.; Lamm, M.; Mokhov, N. V.; Novitski, I.; Zlobin, A. V.

    2010-04-09

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  17. Conceptual design of large-bore superconducting quadrupoles with active magnetic shielding for the AHF

    SciTech Connect

    Vladimir Kashikhin et al.

    2003-06-09

    The Advanced Hydrotest Facility, under study by LANL, uses large-bore superconducting quadrupole magnets. In the paper we discuss the conceptual design of such quadrupoles using active shielding. The magnets are specified to achieve gradients of up to 24 T/m with a 28-cm warm bore and to have 0.01% field quality. Concepts for quench protection and the magnet cryosystems are also briefly discussed to confirm the viability of the proposed design.

  18. Performance of Nb3Sn quadrupole magnets under localized thermal load

    SciTech Connect

    Kashikhin, V.V.; Bossert, r.; Chlachidze, G.; Lamm, M.; Mokhov, N.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2009-06-01

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  19. Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II

    SciTech Connect

    Decker, F.-J.; Anderson, S.; Kharakh, D.; Sullivan, M.; /SLAC

    2011-07-05

    The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality, a Biot-Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original electric 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced. To strengthen the vertical behavior of the LER beam, a low emittance lattice was developed. It lowered the original vertical design emittance from 0.54 nm-rad to 0.034 nm-rad. In order to achieve this, additional skew quadrupoles were required to bring the coupling correction out of the arcs and closer to the detector solenoid in the straight (Fig. 1). It is important, together with low vertical dispersion, that the low vertical emittance is not coupled into the horizontal, which is what we get if the coupling correction continues into the arcs. Further details of the lattice work is described in another paper; here we concentrate on the development of the permanent skew (PSK) quadrupole solution. Besides the permanent magnets there are two other possibilities, using electric magnets or rotating normal quadrupoles. Electric magnets would have required much more additional equipment like magnets stands, power supply, and new vacuum chamber sections. Rotating existing quadrupoles was also not feasible since they are mostly mounted together with a bending magnet on the same support girder.

  20. Errors and optics study of a permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Rifuggiato, D.; Cirrone, G. A. P.; Cuttone, G.; Giove, D.

    2015-05-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. Nowadays, energy and angular spread of the laser-driven beams are the main issues in application and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN [2] researchers, in collaboration with SIGMAPHI [3] company in France, to be used as a collection and pre-selection system for laser driven proton beams. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for an accurate study of the beam dynamics and the proper matching with a magnetic selection system already realized [6,7]. Hence, different series of simulations have been used for studying the PMQs harmonic contents and stating the mechanical and magnetic tolerances in order to have reasonable good beam quality downstream the system. In this paper is reported the method used for the analysis of the PMQs errors and its validation. Also a preliminary optics characterization is presented in which are compared the effects of an ideal PMQs system with a perturbed system on a monochromatic proton beams.

  1. Asymptotics with a positive cosmological constant. III. The quadrupole formula

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna

    2015-11-01

    Almost a century ago, Einstein used a weak field approximation around Minkowski spacetime to calculate the energy carried away by gravitational waves emitted by a time changing mass-quadrupole. However, by now there is strong observational evidence for a positive cosmological constant, ? . To incorporate this fact, Einstein's celebrated derivation is generalized by replacing Minkowski spacetime with de Sitter spacetime. The investigation is motivated by the fact that, because of the significant differences between the asymptotic structures of Minkowski and de Sitter spacetimes, many of the standard techniques, including the usual 1 /r expansions, cannot be used for ? >0 . Furthermore, since, e.g., the energy carried by gravitational waves is always positive in Minkowski spacetime but can be arbitrarily negative in de Sitter spacetime irrespective of how small ? is, the limit ? ?0 can fail to be continuous. Therefore, a priori it is not clear that a small ? would introduce only negligible corrections to Einstein's formula. We show that, while even a tiny cosmological constant does introduce qualitatively new features, in the end, corrections to Einstein's formula are negligible for astrophysical sources currently under consideration by gravitational wave observatories.

  2. A Graphical Approach to Radio Frequency Quadrupole Design

    E-print Network

    Turemen, G; Yasatekin, B

    2014-01-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ b...

  3. A graphical approach to radio frequency quadrupole design

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Unel, G.; Yasatekin, B.

    2015-07-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ behavior and produces 3D design files that can be fed to a milling machine. The paper discusses the experience gained during design process of SANAEM Project Prometheus (SPP) RFQ and underlines some of DEMIRCI's capabilities.

  4. Effects of charge inhomogeneities on elementary excitations in La2-xSrxCuO?

    DOE PAGESBeta

    Park, S. R.; Hamann, A.; Pintschovius, L.; Lamago, D.; Khaliullin, G.; Fujita, M.; Yamada, K.; Gu, G. D.; Tranquada, J. M.; Reznik, D.

    2011-12-12

    Purely local experimental probes of many copper oxide superconductors show that their electronic states are inhomogeneous in real space. For example, scanning tunneling spectroscopic imaging shows strong variations in real space, and according to nuclear quadrupole resonance (NQR) studies, the charge distribution in the bulk varies on the nanoscale. However, the analysis of the experimental results utilizing spatially averaged probes often ignores this fact. We have performed a detailed investigation of the doping dependence of the energy and linewidth of the zone-boundary Cu-O bond-stretching vibration in La2-xSrxCuO? by inelastic neutron scattering. Both our results as well as previously reported angle-dependentmore »momentum widths of the electronic spectral function detected by angle-resolved photoemission can be reproduced by including the same distribution of local environments extracted from the NQR analysis.« less

  5. Effects of charge inhomogeneities on elementary excitations in La2-xSrxCuO?

    SciTech Connect

    Park, S. R.; Hamann, A.; Pintschovius, L.; Lamago, D.; Khaliullin, G.; Fujita, M.; Yamada, K.; Gu, G. D.; Tranquada, J. M.; Reznik, D.

    2011-12-12

    Purely local experimental probes of many copper oxide superconductors show that their electronic states are inhomogeneous in real space. For example, scanning tunneling spectroscopic imaging shows strong variations in real space, and according to nuclear quadrupole resonance (NQR) studies, the charge distribution in the bulk varies on the nanoscale. However, the analysis of the experimental results utilizing spatially averaged probes often ignores this fact. We have performed a detailed investigation of the doping dependence of the energy and linewidth of the zone-boundary Cu-O bond-stretching vibration in La2-xSrxCuO? by inelastic neutron scattering. Both our results as well as previously reported angle-dependent momentum widths of the electronic spectral function detected by angle-resolved photoemission can be reproduced by including the same distribution of local environments extracted from the NQR analysis.

  6. Magnetic Resonance

    Cancer.gov

    Focus Group on Magnetic Resonance Spectroscopy (MRS) in Clinical Oncology(April 1999) To explore the technical requirements for MRS and the application of hydrogen and multinuclear spectroscopy for tumor response to therapy.

  7. Magnetic field perturbation caused by bending vibrations of a quadrupole

    SciTech Connect

    Lebedev, V.; Stupakov, G.

    1992-07-01

    Bending vibration of a magnet body supported at two symmetric points is studied. The magnet is modeled by a slender elastic beam. The resonant frequencies are found and the averaged displacement of the magnet is calculated as a function of the frequency.

  8. Contemporary research with nuclear resonance fluorescence at the S-DALINAC

    SciTech Connect

    Zweidinger, M.; Beck, T.; Beller, J.; Gayer, U.; Mertes, L.; Pai, H.; Pietralla, N.; Ries, P.; Romig, C.; Werner, V.

    2015-02-24

    In the last decades many nuclear resonance fluorescence experiments aiming for low-lying dipole excitations were performed at the Darmstadt High Intensity Photon Setup at S-DALINAC facility. On the electric dipole side, quadrupole-octupole coupled states and the Pygmy Dipole Resonance are of particular interest. On the magnetic dipole side, the so-called scissors mode is in the focus of interest. Furthermore, using the method of resonant self absorption, the decay behavior of J{sup ?}?=?1{sup ?} states was investigated in {sup 140}Ce.

  9. Fabrication and Test of 90-mm Nb3Sn Quadrupole Model Based on Dipole-type Collar

    SciTech Connect

    Bossert, R.; Andreev, N.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, M.; Velev, G.; Zlobin, A.V.

    2010-07-29

    A series of 90-mm TQC quadrupole models with a collar-based mechanical structure has been fabricated and tested within the framework of the US-LHC Accelerator Research Program (LARP) using quadrupole-symmetric stainless steel collar laminations. This paper describes the design features, construction and test of TQC02Eb, the first TQC made with dipole-type collar and collaring techniques. Magnet test includes quench performance and field quality measurements at 4.5 and 1.9 K. Results of model performance for TQC quadrupoles based on dipole-type and quadrupole-type collars are compared and discussed.

  10. Dipole and quadrupole tests of the isotropy of gamma-ray burst locations

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.

    1993-01-01

    Dipole and quadrupole tests of the isotropy of locations on the sphere are discussed. The statistics (cos theta), the dipole moment to the Galactic center, and mean (sin-squared b - 1/3), the quadrupole moment about the Galactic plane, can be used to search for significant anisotropies in galactic coordinates. Such coordinate-system-based tests are the most powerful tests of dipole and quadrupole anisotropies in the particular coordinate system. Two statistics which have not been previously applied to gamma-ray burst data are described. The Rayleigh-Watson statistic measures the size of the dipole moment of the locations and the Bingham statistic measures the deviation of the eigenvalues of a quadrupole-like matrix from the values expected for isotropy. Tests based upon these two statistics search for dipole and quadrupole moments in spherical location data in a coordinate-system-independent, and thus model-independent, manner. They can detect an anisotropy in any direction and yield an analytic statistical significance to any detected anisotropy. The statistical tests are demonstrated herein using a variety of data sets.

  11. Puzzle of the {sup 6}Li Quadrupole Moment: Steps toward Solving It

    SciTech Connect

    Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.

    2005-07-01

    The problem of the origin of the quadrupole deformation in the {sup 6}Li ground state is investigated with allowance for the three-deuteron component of the {sup 6}Li wave function. Two long-standing puzzles related to the tensor interaction in the {sup 6}Li nucleus are known: that of an anomalous smallness of the {sup 6}Li quadrupole moment (being negative, it is smaller in magnitude than the {sup 7}Li quadrupole moment by a factor of 5) and that of an anomalous behavior of the tensor analyzing power T{sub 2q} in the scattering of polarized {sup 6}Li nuclei on various targets. It is shown that a large (in magnitude) negative exchange contribution to the {sup 6}Li quadrupole moment from the three-deuteron configuration cancels almost completely the 'direct' positive contribution due to the {alpha}d folding potential. As a result, the total quadrupole moment proves to be close to zero and highly sensitive to fine details of the tensor nucleon-nucleon interaction in the {sup 4}He nucleus and of its wave function.

  12. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    SciTech Connect

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon

    2014-01-29

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  13. Classical toy models for the monopole shift and the quadrupole shift.

    PubMed

    Rose, Katrin; Cottenier, Stefaan

    2012-08-28

    The penetration of s- and p(1/2)-electrons into the atomic nucleus leads to a variety of observable effects. The presence of s-electrons inside the nucleus gives rise to the isotope shift in atomic spectroscopy, and to the isomer shift in Mössbauer spectroscopy. Both well-known phenomena are manifestations of the more general monopole shift. In a recent paper (Koch et al., Phys. Rev. A, 2010, 81, 032507), we discussed the existence of the formally analogous quadrupole shift: a tensor correction to the electric quadrupole interaction due to the penetration of relativistic p(1/2)-electrons into the nucleus. The quadrupole shift is predicted to be observable by high-accuracy molecular spectroscopy on a set of 4 molecules (the quadrupole anomaly). The simple physics behind all these related phenomena is easily obscured by an elaborate mathematical formalism that is required for their derivation: a multipole expansion in combination with perturbation theory, invoking quantum physics and ideally relativity. In the present paper, we take a totally different approach. We consider three classical 'toy models' that can be solved by elementary calculus, and that nevertheless contain all essential physics of the monopole and quadrupole shifts. We hope that this intuitive (yet exact) analysis will increase the understanding about multipole shift phenomena in a broader community. PMID:22782015

  14. Rotating dipole and quadrupole field for a multiple cathode system

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Meng, W.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skarita, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC [1]. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. The future eRHIC project, next upgrade of EHIC, will be the first electron-heavy ion collider in the world. For polarized-electron and polarized proton collisions, it requires a polarized electron source with high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the quantum efficiency, lifetime, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and combine the multiple bunched beams from cathodes to the same axis. We name it as 'Gatling gun' because its operations bear similarity to a multi-barrel Gatling gun. The electron spin direction is not affected by electric field but will follow to the direction of the magnetic bending. This requires that, to preserve the spin polarization from cathode, the fixed bending field after the solenoid and the rotating bending field in combiner must be either a pair of electric bendings or a pair of magnetic bendings. We choose the scheme with a pair of magnetic bendings because it is much easier than the scheme with a pair of electric bendings at our 200 keV electron energy level.

  15. Quadrupole and scissors modes and nonlinear mode coupling in trapped two-component Bose-Einstein condensates

    SciTech Connect

    Kasamatsu, Kenichi; Tsubota, Makoto; Ueda, Masahito

    2004-04-01

    We theoretically investigate quadrupolar collective excitations in two-component Bose-Einstein condensates and their nonlinear dynamics associated with harmonic generation and mode coupling. Under the Thomas-Fermi approximation and the quadratic polynomial ansatz for density fluctuations, the linear analysis of the superfluid hydrodynamic equations predicts excitation frequencies of three normal modes constituted from monopole and quadrupole oscillations, and those of three scissors modes. These six modes are bifurcated into in-phase and out-of-phase modes by the intercomponent interaction, yielding the nonlinear dynamics that are absent in a single-component condensate. We obtain analytically the resonance conditions for the second-harmonic generation in terms of the trap aspect ratio and the strength of intercomponent interaction. The numerical simulation of the coupled Gross-Pitaevskii equations vindicates the validity of the analytical results and reveals the dynamics of the second-harmonic generation and nonlinear mode coupling that lead to nonlinear oscillations of the condensate with damping and recurrence reminiscent of the Fermi-Pasta-Ulam problem.

  16. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    SciTech Connect

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-10-26

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented.

  17. Second-order powder pattern and simulated spectra of EPR transitions in orthorhombic symmetry or NMR with quadrupole interactions

    NASA Astrophysics Data System (ADS)

    González-Tovany, L.; Beltrán-López, V.

    The shape of the powder pattern of the center resonance line ( m = {1}/{2} ? - {1}/{2}) for EPR in orthorhombic symmetry, or NMR with quadrupole interaction, is determined for all values of the crystal field asymmetry parameter ? by means of a general analytical method developed by Beltran-Lopez and Castro-Tello. Previously unknown forms of the powder pattern and a new type of spectral feature resembling a divergence are shown to exist around the value ? = ? {2}/{3} Analytical representations in terms of elliptical integrals are obtained and compared with numerically integrated powder patterns for representative values of ?. Numerical Gaussian quadrature of the powder pattern from the single-variable integral arising in this method is shown to be a very efficient semianalytical method of calculation for computer work, requiring only a few seconds of CPU time versus the several minutes needed with the grid or the Monte Carlo methods. Comparison of experimental and simulated spectra obtained by convoluting powder patterns with first-derivative Lorentzian lineshapes of convenient width are also shown. Semianalytical spectra are much smoother than Monte Carlo simulated spectra, revealing finer spectral features.

  18. A frequency and amplitude scanned quadrupole mass filter for the analysis of high m/z ions

    SciTech Connect

    Shinholt, Deven L.; Anthony, Staci N.; Alexander, Andrew W.; Draper, Benjamin E.; Jarrold, Martin F.

    2014-11-15

    Quadrupole mass filters (QMFs) are usually not used to analyze high m/z ions, due to the low frequency resonant circuit that is required to drive them. Here we describe a new approach to generating waveforms for QMFs. Instead of scanning the amplitude of a sine wave to measure the m/z spectrum, the frequency of a trapezoidal wave is digitally scanned. A synchronous, narrow-range (<0.2%) amplitude scan overlays the frequency scan to improve the sampling resolution. Because the frequency is the primary quantity that is scanned, there is, in principle, no upper m/z limit. The frequency signal is constructed from a stabilized base clock using a field programmable gate array. This signal drives integrating amplifiers which generate the trapezoidal waves. For a trapezoidal wave the harmonics can be minimized by selecting the appropriate rise and fall times. To achieve a high resolving power, the digital signal has low jitter, and the trapezoidal waveform is generated with high fidelity. The QMF was characterized with cesium iodide clusters. Singly and multiply charged clusters with z up to +5 were observed. A resolving power of ?1200 (FWHM) was demonstrated over a broad m/z range. Resolution was lost above 20?000 Th, partly because of congestion due to overlapping multiply charged clusters. Ions were observed for m/z values well in excess of 150?000 Th.

  19. Novel galactolipids from the leaves of Ipomoea batatas L.: characterization by liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Napolitano, Assunta; Carbone, Virginia; Saggese, Paola; Takagaki, Kinya; Pizza, Cosimo

    2007-12-12

    Sixteen novel and ten known galactolipids have been isolated and characterized from the leaves of Ipomoea batatas L. (sweet potato) using an analytical method based on high-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight tandem mass spectrometry. Using this technique, the structures and regiochemistries of the fatty acyl groups and the positions of the double bonds on the acyl chains were determined. Sugar moieties were identified by analysis of one- and two-dimensional nuclear magnetic resonance spectra. The positions of the double bonds of polyunsaturated fatty acids were confirmed, and in some cases their geometries determined, by gas chromatography-mass spectrometry. This is the first report of galactolipids in the leaves of sweet potato. PMID:17988089

  20. Resonant diffraction of synchrotron radiation in rubidium dihydrophosphate crystals

    SciTech Connect

    Mukhamedzhanov, E. Kh.; Kovalchuk, M. V.; Borisov, M. M.; Ovchinnikova, E. N.; Troshkov, E. V.; Dmitrienko, V. E.

    2010-03-15

    Purely resonant Bragg reflections 006, 55bar 0, and 666 in a rubidium dihydrophosphate (RbH{sub 2}PO{sub 4}) crystal at the K edge of rubidium have been experimentally and theoretically investigated. These reflections remain forbidden when the resonant dipole-dipole (E1E1) contribution to the resonant atomic factor is taken into account; they may be due to the dipole-quadrupole (E1E2) transitions as well as to the anisotropy atomic factor, which is caused by thermal atomic displacements (thermally induced contribution) and/or local jumps of hydrogen atoms. A numerical simulation showed that, at room temperature (experimental conditions), the thermally induced contribution to the 'forbidden' reflections is dominant.

  1. Antimagnetic rotation and sudden change of electric quadrupole transition strength in 143Eu

    NASA Astrophysics Data System (ADS)

    Rajbanshi, S.; Roy, S.; Nag, Somnath; Bisoi, Abhijit; Saha, S.; Sethi, J.; Bhattacharjee, T.; Bhattacharyya, S.; Chattopadhyay, S.; Gangopadhyay, G.; Mukherjee, G.; Palit, R.; Raut, R.; Saha Sarkar, M.; Singh, A. K.; Trivedi, T.; Goswami, A.

    2015-09-01

    Lifetimes of the states in the quadrupole structure in 143Eu have been measured using the Doppler shift attenuation method and the parity of the states in the sequence has been firmly identified from polarization measurements using the Indian National Gamma Array. The decreasing trends of the deduced quadrupole transition strength B (E 2) with spin, along with increasing J (2) / B (E 2) values before the band crossing, conclusively establish the origin of these states as arising from antimagnetic rotation. The abrupt increase in the B (E 2) values after the band crossing in the quadrupole band, a novel feature observed in the present experiment, may possibly indicate the crossing of different shears configurations resulting in the re-opening of a shears structure. The results are reproduced well by numerical calculations within the framework of a semi-classical geometric model.

  2. Development of a GC/Quadrupole-Orbitrap Mass Spectrometer, Part I: Design and Characterization

    PubMed Central

    2015-01-01

    Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins. PMID:25208235

  3. Magnetic and Mechanical Analysis of the HQ Model Quadrupole Designs for LARP

    SciTech Connect

    Felice, Helene; Caspi, Shlomo; Ferracin, Paolo; Kashikhin, Vadim; Novitski, Igor; Sabbi, GianLuca; Zlobin, Alexander

    2008-06-01

    Insertion quadrupoles with large bore and high gradient are required to upgrade the luminosity of the Large Hadron Collider (LHC). The US LHC Accelerator Research Program is developing Nb{sub 3}Sn technology for the upgrade. This effort includes a series of 1 m long Technology Quadrupoles (TQ), to demonstrate the reproducibility at moderate field, and High-gradient Quadrupoles (HQ) to explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ models are expected to achieve peak fields of 15 T or higher. A coil aperture of 90 mm, corresponding to gradients above 300 T/m, was chosen as the baseline. Peak stresses above 150 MPa are expected. Progress on the magnetic and mechanical design of the HQ models will be reported.

  4. Triaxial quadrupole deformation dynamics in sd-shell nuclei around {sup 26}Mg

    SciTech Connect

    Hinohara, Nobuo; Kanada-En'yo, Yoshiko

    2011-01-15

    Large-amplitude dynamics of axial and triaxial quadrupole deformation in {sup 24,26}Mg, {sup 24}Ne, and {sup 28}Si is investigated on the basis of the quadrupole collective Hamiltonian constructed with the use of the constrained Hartree-Fock-Bogoliubov plus the local quasiparticle random-phase approximation method. The calculation reproduces well properties of the ground rotational bands, and {beta} and {gamma} vibrations in {sup 24}Mg and {sup 28}Si. The {gamma} softness in the collective states of {sup 26}Mg and {sup 24}Ne are discussed. Contributions of the neutrons and protons to the transition properties are also analyzed in connection with the large-amplitude quadrupole dynamics.

  5. Calculations and measurements for the SLAC SLC positron return quadrupole magnet

    SciTech Connect

    Early, R.A.; Cobb, J.K.

    1986-09-01

    The three-dimensional magnetostatic computer program TOSCA, running on the NMFECC CRAY X-MP computer, was used to compute the integral of gradient length for the SLC type QT4 positron return line quadrupole magnet. Since the bore diameter of the magnet is 12.7 centimeters, and the length is only 10.16 centimeters, three dimensional effects are important. POISSON calculations were done on a two-dimensional model to obtain magnetic shimming which assured enough positive twelve pole to offset end effects, while TOSCA was used to estimate the effective length of the quadrupole. No corrections were required on the magnet as built. Measurements showed that the required integrated gradient was achieved for the given current, and that integrated higher harmonics were generally less than 0.1% of the quadrupole component.

  6. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    SciTech Connect

    Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F.; Friedman, A.; Roy, P.K.; Seidl, P.; Lund, S.M.; Faltens, A.; Vay, J.L.; Prost, L.

    2007-06-04

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam.

  7. Electrons in a Positive-Ion Beam with Solenoid or Quadrupole Magnet Transport

    SciTech Connect

    Molvik, A W; Cohen, R H; Friedman, A; Covo, M K; Lund, S M; Sharp, W M; Seidl, P A; Bieniosek, F M; Coleman, J E; Faltens, A; Roy, P K; Vay, J L; Prost, L

    2007-06-01

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam.

  8. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    NASA Astrophysics Data System (ADS)

    Paar, V.; Brant, S.; Canto, L. F.; Leander, G.; Vouk, M.

    1982-04-01

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  9. Design and Field Measurements of Printed-Circuit Quadrupoles and Dipoles

    SciTech Connect

    Zhang, W.W.; Bernal, S.; Li, H.; Godlove, T.; Kishek, R.A.; O'Shea, P.G.; Reiser, M.; Yun, V.; Venturini, M.; /SLAC

    2011-11-08

    Air-core printed-circuit (PC) quadrupoles and dipoles have been developed for the University of Maryland electron ring, currently under construction. The quadrupoles and dipoles are characterized by very small magnetic fields (about 15 G at the aperture edge) and small aspect ratios (length/diameter < 1). We review the theory behind the design of the PC lenses and bending elements, and present general expressions for estimating the values of integrated field and integrated field gradient as functions of design parameters. The new quadrupole magnet represents an improvement over an earlier version which was based on an empirical approach. Further, we summarize the results of multipole content of the magnet fields as measured with a rotating coil apparatus of special construction. The results are compared with calculations with an iron-free magnetics code and are related to different types of errors in the manufacture and assembly of the PC magnets.

  10. 14 N quadrupole coupling in the microwave spectra of N-vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2015-11-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2-40 GHz, and aimed at analyses of their 14 N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants ?aa and ?bb -?cc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters.

  11. K{beta} resonant x-ray emission spectra in MnF{sub 2}

    SciTech Connect

    Taguchi, M.; Parlebas, J. C.; Uozumi, T.; Kotani, A.; Kao, C.-C.

    2000-01-15

    We report experimental and theoretical results on Mn K{beta} resonant x-ray emission spectra (K{beta} RXES) at the pre-edge region of K-edge x-ray absorption spectroscopy in a powdered MnF{sub 2} sample. The experimental results are studied theoretically in terms of coherent second-order optical process, using a MnF{sub 6}{sup -4} cluster model with the effects of intra-atomic multiplet coupling and interatomic hybridization in the space of three configurations and taking into account both the Mn 1s-3d quadrupole excitation and the Mn 1s-4p dipole excitation. The agreement between theory and experiment is good. Moreover, we show that if the sample is a single crystal the resonant x-ray emission spectroscopy caused by the quadrupole excitation has a strong sensitivity to the angle of the incident photon. (c) 2000 The American Physical Society.

  12. Localized Surface Plasmon Resonance of Silver Nanotriangles Synthesized by a Versatile Solution Reaction.

    PubMed

    Wu, Chunfang; Zhou, Xue; Wei, Jie

    2015-12-01

    The surface plasmon resonance (SPR) of silver nanoparticles can be tuned throughout the visible and near-infrared region by their shape and size. Considering SPR applications, an easy and controllable method for preparing the silver nanocrystals with defined shape and size, is necessary. In this work, the triangular silver nanoplates were synthesized by reducing Ag(+) ions with ascorbic acid in the presence of silver seeds and poly(vinylpyrrolidone) (PVP) at room temperature. Both the seeds (as the nucleation sites) and PVP (as the capping reagent) played an important role in determining the edge length of the silver nanotriangles. The SPR of silver nanotriangles showed three distinct bands corresponding to the in-plane dipole, quadrupole, and out-plane quadrupole plasmon resonance, and the SPR shifted to shorter wavelengths with the decreased edge length of the silver nanotriangles as the theoretical calculation. PMID:26340946

  13. Mitigating radiation loads in Nb(3)Sn quadrupoles for LHC upgrades

    SciTech Connect

    Mokhov, N.V.; Rakhno, I.L.; /Fermilab

    2006-08-01

    Challenging beam-induced energy deposition issues are addressed for the next generation of the LHC high-luminosity interaction regions based on Nb{sub 3}Sn quadrupoles. Detailed MARS15 Monte Carlo energy deposition calculations are performed for various coil diameters, thicknesses and materials of the inner absorber at a field gradient of 200 T/m. It is shown that using the inner absorber made of tungsten-based materials can make the final focus superconducting quadrupoles compatible with a luminosity of 10{sup 35} cm{sup -2}s{sup -1}.

  14. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  15. Degree of accuracy in determining the nuclear electric quadrupole moment of radium

    SciTech Connect

    Bieron, Jacek; Pyykkoe, Pekka

    2005-03-01

    The multiconfiguration Dirac-Hartree-Fock (MCDHF) model has been employed to calculate the atomic expectation values responsible for the hyperfine splittings of the 7s7p {sup 3}P{sub 1,2} and {sup 1}P{sub 1} levels of radium. Calculated electric field gradients, together with the experimental electric quadrupole hyperfine structure constants, allow us to extract a nuclear electric quadrupole moment Q({sup 223}Ra) of 1.21(0.03) barn. This value is in good agreement with the semiempirical determination based on neutral radium hyperfine and fine structure, but differs from the latest result from an alkali-like radium ion.

  16. Dynamics of extended bodies in a Kerr spacetime with spin-induced quadrupole tensor

    E-print Network

    Bini, Donato; Geralico, Andrea

    2015-01-01

    The features of equatorial motion of an extended body in Kerr spacetime are investigated in the framework of the Mathisson-Papapetrou-Dixon model. The body is assumed to stay at quasi-equilibrium and respond instantly to external perturbations. Besides the mass, it is completely determined by its spin, the multipolar expansion being truncated at the quadrupole order, with a spin-induced quadrupole tensor. The study of the radial effective potential allows to analytically determine the ISCO shift due to spin and the associated frequency of the last circular orbit.

  17. Dynamics of extended bodies in a Kerr spacetime with spin-induced quadrupole tensor

    E-print Network

    Donato Bini; Guillaume Faye; Andrea Geralico

    2015-07-27

    The features of equatorial motion of an extended body in Kerr spacetime are investigated in the framework of the Mathisson-Papapetrou-Dixon model. The body is assumed to stay at quasi-equilibrium and respond instantly to external perturbations. Besides the mass, it is completely determined by its spin, the multipolar expansion being truncated at the quadrupole order, with a spin-induced quadrupole tensor. The study of the radial effective potential allows to analytically determine the ISCO shift due to spin and the associated frequency of the last circular orbit.

  18. Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence/mixing dynamics

    E-print Network

    Kenichi Matsuyanagi; Masayuki Matsuo; Takashi Nakatsukasa; Kenichi Yoshida; Nobuo Hinohara; Koichi Sato

    2015-07-14

    Assuming that the time-evolution of the self-consistent mean field is determined by five pairs of collective coordinate and collective momentum, we microscopically derive the collective Hamiltonian for low-frequency quadrupole modes of excitation. We show that the five-dimensional collective Schr\\"odinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We focus on basic ideas and recent advances of the approaches based on the time-dependent mean-field theory, but relations to other time-independent approaches are also briefly discussed.

  19. Quadrupole moments of some doubly-even molibden nuclei and the onset of collectivity

    SciTech Connect

    Turkan, N.; Ibis, I.; Maras, I.

    2012-07-15

    A good description of the quadrupole moments is obtained by investigating {sup 94,96,98,100,102,104,106,108}Mo isotopes in terms of the interacting boson model. After the positiveparity states and electromagnetic-transition rates B(E2) of even-mass Mo nuclei were calculated it was seen that there is a good agreement between the obtained results and some previous experimental data. At the end of the quadrupole moment calculations it was proved that the results agree well with the previous experimental data.

  20. Tests of a 70 mm aperture quadrupole for the LHC low-$\\beta$ insertions

    E-print Network

    Lamm, M J; Ostojic, R; Rival, F; Rodríguez-Mateos, F; Siemko, A; Taylor, T M; Walckiers, L; Milward, S R; Treadgold, J R

    1999-01-01

    Three 70 mm aperture 1-meter superconducting quadrupole magnets for the LHC low- beta insertions have been designed and built in collaboration between CERN and Oxford Instruments. These magnets feature a four layer coil wound fromtwo 8.2 mm wide graded NbTi cables. In this paper, the authors present the results from the tests at 4.4 K and 1.9 K of the third quadrupole (Q3), with an emphasis on studies concerning quench protection. After a summary of Q3 training in three thermal cycles, quench velocities, peak temperatures in the two superconducting cables and the performance of the layer strip heaters are reported. (6 refs).

  1. 3 mm Anisotropy Measurement: On the Quadrupole Component in theCosmic Background Radiation

    SciTech Connect

    Lubin, Philip M.; Epstein, Gerald L.; Smoot, George F.

    1982-11-01

    We have mapped the large-scale anisotropy in the cosmic background radiation at 3 mm wavelength using a liquid-helium-cooled balloon-borne radiometer sensitive enough to detect the dipole in one gondola rotation (1 minute). Statistical errors on the dipole and quadrupole components are below 0.1 mK with less than 0.1 m K galactic contribution. We find a dipole consistent with previous measurements but disagree with recent quadrupole reports. The measurement is also useful in searching for spectral distortions.

  2. Dynamics of extended bodies in a Kerr spacetime with spin-induced quadrupole tensor

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Faye, Guillaume; Geralico, Andrea

    2015-11-01

    The features of equatorial motion of an extended body in Kerr spacetime are investigated in the framework of the Mathisson-Papapetrou-Dixon model. The body is assumed to stay at quasiequilibrium and respond instantly to external perturbations. Besides the mass, it is completely determined by its spin, the multipolar expansion being truncated at the quadrupole order, with a spin-induced quadrupole tensor. The study of the radial effective potential allows us to analytically determine the innermost stable circular orbit shift due to spin and the associated frequency of the last circular orbit.

  3. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    NASA Technical Reports Server (NTRS)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  4. Charged particle in the field an electric quadrupole in two dimensions

    E-print Network

    A. D. Alhaidari

    2007-09-22

    We obtain analytic solution of the time-independent Schrodinger equation in two dimensions for a charged particle moving in the field of an electric quadrupole. The solution is written as a series in terms of special functions that support a tridiagonal matrix representation for the angular and radial components of the wave operator. This solution is for all energies, the discrete (for bound states) as well as the continuous (for scattering states). The expansion coefficients of the wavefunction are written in terms of orthogonal polynomials satisfying three-term recursion relations. The charged particle could become bound to the quadrupole only if its moment exceeds a certain critical value.

  5. Electric Quadrupole Shift Cancellation in Single-Ion Optical Frequency Standards

    SciTech Connect

    Dube, P.; Madej, A.A.; Bernard, J.E.; Marmet, L.; Boulanger, J.-S.; Cundy, S.

    2005-07-15

    The electric quadrupole shift is presently the most significant source of uncertainty on the systematic shifts for several single-ion optical frequency standards. We present a simple method for canceling this shift based on measurements of the Zeeman spectrum of the clock transition. This method is easy to implement and yields very high cancellation levels. A fractional uncertainty of 5x10{sup -18} for the canceled quadrupole shift is estimated for a measurement of the absolute frequency of the 5s {sup 2}S{sub 1/2}-4d {sup 2}D{sub 5/2} clock transition of {sup 88}Sr{sup +}.

  6. CP-Violating Effect of the Th Nuclear Magnetic Quadrupole Moment: Accurate Many-Body Study of ThO

    E-print Network

    Titov, Anatoly

    CP-Violating Effect of the Th Nuclear Magnetic Quadrupole Moment: Accurate Many-Body Study of ThO L) and parity (P)-violating effect in 229 ThO is induced by the nuclear magnetic quadrupole moment. We perform nuclear and molecular calculations to express this effect in terms of the strength constants of T, P

  7. Study of multipole giant resonances in /sup 90/Zr and /sup 120/Sn in scattering of 93-MeV /sup 6/Li ions

    SciTech Connect

    Venikov, N.I.; Glukhov, Y.A.; Dem'yanova, A.S.; Drozdov, S.I.; Novatskii, V.G.; Ogloblin, A.A.; Sakuta, S.B.; Stepanov, D.N.; Unezhev, V.N.; Yupinov, Y.L.; Brynkush, M.; Grama, K.; Lazer, I.

    1981-04-01

    In the inelastic scattering of /sup 6/Li ions with energy 93 MeV we have investigated the regions of quadrupole and octupole giant isoscalar resonances (E/sub x/approx.63A/sup -1/3/ and E/sub x/approx.30A/sup -13/ MeV, respectively) in the nuclei /sup 90/Zr and /sup 120/Sn. The angular distributions of the resonance groups obtained in the region of angles 12--24/sup 0/ are analyzed by the distorted wave Born approximation. Detailed study of the group at E/sub x/approx.63A/sup -1/3/ favors existence of a monopole giant resonance which is located at an excitation energy approx.76A/sup -1/3/ MeV on the left wing of the quadrupole resonance.

  8. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-05-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  9. First-principles study of boron oxygen hole centers in crystals: Electronic structures and nuclear hyperfine and quadrupole parameters

    SciTech Connect

    Li Zucheng; Pan Yuanming

    2011-09-15

    The electronic structures, nuclear hyperfine coupling constants, and nuclear quadrupole parameters of fundamental boron oxygen hole centers (BOHCs) in zircon (ZrSiO{sub 4}, I4{sub 1}/amd) and calcite (CaCO{sub 3}, R3c) have been investigated using ab initio Hartree-Fock (HF) and various density functional theory (DFT) methods based on the supercell models with all-electron localized basis sets. Both exact HF exchange and appropriate correlation functionals are important in describing the BOHCs, and the parameter-free hybrid method based on Perdew, Burke, and Ernzerhof density functionals (PBE0) turns out to be the best DFT method in reproducing the electron paramagnetic resonance (EPR) data. Our results reveal three distinct types of simple-spin (S = 1/2) [BO{sub 3}]{sup 2-} centers in calcite: (i) the classic [BO{sub 3}]{sup 2-} radical with the D{sub 3h} symmetry and the unpaired spin equally distributed on the three oxygen atoms (i.e. the O{sub 3}{sup 5-} type); (ii) the previously reported [BO{sub 2}]{sup 0} center with the unpaired spin equally distributed on two of the three oxygen atoms (O{sub 2}{sup 3-}); and (iii) a new variety with {approx}90% of its unpaired spin localized on one (O{sup -}) of the three oxygen atoms with a long B-O bond (1.44 A). Calculations confirm the unusual [BO{sub 4}]{sup 0} center in zircon and show it to arise from a highly distorted configuration with 90% of the unpaired spin on one oxygen atom that has a considerably longer B-O bond (1.68 A) than its three counterparts (1.45 A). The calculated magnitudes and directions of {sup 11}B and {sup 17}O hyperfine coupling constants and nuclear quadrupole constants for the [BO{sub 4}]{sup 0} center in zircon are in excellent agreement with the 15 K EPR experimental data. These BOHCs are all characterized by a small negative spin density on the central B atom arising from spin polarization. Our calculations also demonstrate that the spin densities on BOHCs are affected substantially by crystalline environments, and so periodic boundary treatment, such as the supercell scheme, is a must in accounting for the electronic and spin structures of BOHCs in crystals. These atomistic and electronic models of BOHCs in the crystalline matrices provide new insights into their precursors and counterparts in glasses and other amorphous materials.

  10. Phase-Space Exploration in Nuclear Giant Resonance Decay

    E-print Network

    S. Drozdz; S. Nishizaki; J. Speth; J. Wambach

    1994-07-08

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in $^{40}$Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of 1p-1h and 2p-2h states. If the 2p-2h background shows the characteristics typical for chaotic systems, the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.

  11. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks

    E-print Network

    Derevianko, Andrei

    2015-01-01

    Spherically-symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to non-vanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for $^{133}$Cs atomic clocks, the spatial gradients of electric fields must be smaller than $30 \\, \\mathrm{V}/\\mathrm{cm}^2$ to guarantee fractional inaccuracies below $10^{-16}$.

  12. Nuclear magnetic resonance in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Finch, Michael F.

    1987-05-01

    Nuclear Magnetic Resonance (NMR) lineshapes of Ga-69 in GaAs:In were studied for two different levels of indium dopant. The lineshapes were developed by Fourier analysis of the spin echoes. First order quadrupole effects manifested themselves as wings in the lineshapes. As expected the wings were larger in the more heavily doped sample. The dependence of the second moment of the lineshapes on the orientation of the crystal in the field supports a continuous solid model of the strain, in which the strain attenuates as the cube of the distance from the impurity site. Because of noise levels the model can only be confirmed for distances greater than 10A from the impurity, and no determination of the strain on the first through eighth shells surrounding the impurity can be made.

  13. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  14. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  15. Large-Aperture Nb3Sn Quadrupoles for 2nd generation LHC IRs1

    E-print Network

    Large Hadron Collider Program

    Large-Aperture Nb3Sn Quadrupoles for 2nd generation LHC IRs1 A.V. Zlobin*, E. Barzi, D. Chichili or even higher field gradient in the same or larger aperture. However, only Nb3Sn superconductor-luminosity LHC IRs with larger aperture and possibly higher field gradient based on the Nb3Sn superconductor

  16. Collision-induced light scattering by isotropic molecules: The role of the quadrupole polarizability

    NASA Astrophysics Data System (ADS)

    El-Sheikh, S. M.; Tabisz, G. C.; Buckingham, A. D.

    2001-04-01

    The contribution of the quadrupole polarizability C to the long-range polarizability of two interacting isotropic molecules is specified. Its role is seen to be important for the intensity of the polarized component of collision-induced light scattering by inert gas atoms.

  17. Collision-induced light scattering by isotropic molecules: the role of the quadrupole polarizability

    NASA Astrophysics Data System (ADS)

    El-Sheikh, S. M.; Tabisz, G. C.; Buckingham, A. D.

    1999-09-01

    The contribution of the quadrupole polarizability C to the long-range polarizability of two interacting isotropic molecules is specified. Its role is seen to be important for the intensity of the polarized component of collision-induced light scattering by inert gas atoms.

  18. Low-lying collective quadrupole strengths in even-even nuclei

    SciTech Connect

    Raman, S.

    1990-01-01

    A simple ansatz that nuclei not too near closed shells are as deformed as they can be within a single major shell'' appears to quantitatively reproduce the quadrupole deformations of even-even nuclei. The energy-weighted sum of the low-lying E2 strengths is found to be remarkably regular in its overall behavior. 17 refs., 2 figs.

  19. Development and Coil Fabrication for the LARP 3.7-m Long Nb3Sn Quadrupole

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V.V.; Kovach, P.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore,, J.; Nobreaga, F.; Novitsky, I.; Peggs, S.; Prestemon, S.; Sabbi, G. L.; Schmalzle, J.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A. V.

    2008-08-17

    The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb{sub 3}Sn quadrupole models. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb{sub 3}Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb{sub 3}Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.

  20. Search for Electric Quadrupole Moments in Nuclear Collisions with Finite Net Baryon Density

    E-print Network

    California at Los Angles, University of

    Search for Electric Quadrupole Moments in Nuclear Collisions with Finite Net Baryon Density Lynn between the elliptic flows (v2) of positive and negative pions leading to v2(+ ) - ature and energy density. Quarks and gluons are elementary particles, which under normal circumstances

  1. Ion beam properties after mass filtering with a linear radiofrequency quadrupole

    NASA Astrophysics Data System (ADS)

    Ferrer, R.; Kwiatkowski, A. A.; Bollen, G.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Ringle, R.; Savory, J.; Schwarz, S.

    2014-01-01

    The properties of ion beams passing through a linear radiofrequency quadrupole mass filter were investigated with special attention to their dependence on the mass resolving power. Experimentally, an increase of the transverse emittance was observed as the mass-to-charge selectivity of the mass filter was raised. The experimental behavior was confirmed by beam transport simulations.

  2. A new high-gradient correction quadrupole for the Fermilab luminosity upgrade

    SciTech Connect

    Mantsch, P.; Carson, J.; Riddiford, A.; Lamm, M.J.

    1989-03-01

    Special superconducting correction quadrupoles are needed for the luminosity upgrade of the Fermilab Tevatron Collider. These correctors are part of the low-beta system for the interaction regions at B/phi/ and D/phi/. The requirements are high gradient and low current. A quadrupole has been designed that meets the operating gradient of 0.63 T/cm at 1086 A. The one-layer quadrupole is wound with a cable consisting of five individually insulated rectangular strands. The five strands are overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is complete the five strands are connected in series. A prototype quadrupole has been assembled and tested. The magnet reached a plateau current of 1560 A corresponding to a gradient of 0.91 T/cm without training. The measured field harmonics are substantially better than required. 8 refs., 6 figs., 4 tabs.

  3. PROOF COPY 003305JCP Second-order quadrupole-shielding effects in magic-angle spinning

    E-print Network

    Frydman, Lucio

    PROOF COPY 003305JCP PROOF COPY 003305JCP Second-order quadrupole-shielding effects in magic, University of Exeter, Exeter EX4 4QD, United Kingdom Lucio Frydman Department of Chemical Physics, Weizmann interaction can give rise to shielding-derived terms that are not entirely averaged away by conventional magic

  4. 57Fe quadrupole splitting and isomer shift in various oxyhemoglobins: study using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Berkovsky, A. L.; Kumar, A.; Kundu, S.; Vinogradov, A. V.; Konstantinova, T. S.; Semionkin, V. A.

    2010-04-01

    A comparative study of normal human, rabbit and pig oxyhemoglobins and oxyhemoglobin from patients with chronic myeloleukemia and multiple myeloma using Mössbauer spectroscopy with a high velocity resolution demonstrated small variations of the 57Fe quadrupole splitting and isomer shift. These variations may be a result of small structural differences in the heme iron stereochemistry of various hemoglobins.

  5. Ion Trap/Ion Mobility/Quadrupole/Time-of-Flight Mass Spectrometry for Peptide Mixture Analysis

    E-print Network

    Clemmer, David E.

    Ion Trap/Ion Mobility/Quadrupole/Time-of-Flight Mass Spectrometry for Peptide Mixture Analysis for the analysis of peptide mixtures. In this approach, a mixture of peptides is electrosprayed into the gas phase. The mixture of ions that is created is accumulated in an ion trap and periodi- cally injected into a drift

  6. A superconducting quadrupole array for transport of multiple high current beams

    SciTech Connect

    Faltens, A.; Shuman, D.

    1999-11-01

    We present a conceptual design of a superconducting quadrupole magnet array for the side-by-side transport of multiple high current particle beams in induction linear accelerators. The magnetic design uses a modified cosine 20 current distribution inside a square cell boundary. Each interior magnet's neighbors serve as the return flux paths and the poles are placed as close as possible to each other to facilitate this. No iron is present in the basic 2-D magnetic design; it will work at any current level without correction windings. Special 1/8th quadrupoles are used along the transverse periphery of the array to contain and channel flux back into the array, making every channel look as part of an infinite array. This design provides a fixed dimension array boundary equal to the quadrupole radius that can be used for arrays of any number of quadrupole channels, at any field level. More importantly, the design provides magnetic field separation between the array and the induction cores which may be surrounding it. Flux linkage between these two components can seriously affect the operation of both of them.

  7. Joint and angle-covariant spin measurements with a quadrupole magnetic field

    NASA Technical Reports Server (NTRS)

    Martens, Hans; Demuynck, Willem M.

    1994-01-01

    We study a Stern-Gerlach type setup, with a quadrupole magnetic field, for neutral particles of arbitrary spin. The Hamiltonian is of a form proposed for joint measurements of the incompatible observables. The measurement results are discussed, showing the limitation of such Hamiltonians. Some remarks are made on the relevance of covariance as a criterion for measurement schemes.

  8. The Fortuitous Latitude of the Pierre Auger Observatory and Telescope Array for Reconstructing the Quadrupole Moment

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.; Weiler, Thomas J.

    2015-03-01

    Determining anisotropies in the arrival directions of cosmic rays at the highest energy is an important task in astrophysics. It is common and useful to partition the sky into spherical harmonics as a measure of anisotropy. The two lowest nontrivial spherical harmonics, the dipole and the quadrupole, are of particular interest, since these distributions encapsulate a dominant single source and a plane of sources, as well as offering relatively high statistics. The best experiments for the detection of ultra high energy cosmic rays currently are all ground-based, with highly nonuniform exposures on the sky resulting from the fixed experimental locations on the Earth. This nonuniform exposure increases the complexity and error in inferring anisotropies. It turns out that there is an optimal latitude for an experiment at which nonuniform exposure does not diminish the inference of the quadrupole moment. We derive the optimal latitude and find that (presumably by a fortuitous coincidence) this optimal latitude runs through the largest cosmic ray experiment, the Pierre Auger Observatory (PAO) in the Southern Hemisphere, and close to the largest cosmic ray experiment in the Northern Hemisphere, the Telescope Array (TA). Consequently, assuming a quadrupole distribution, PAO and TA can reconstruct the cosmic ray quadrupole distribution to a high precision without concern for their partial sky exposure.

  9. Coil Creep and Skew-Quadrupole Field Components in the Tevatron

    SciTech Connect

    Annala, G.; Harding, D.J.; Syphers, M.J.; /Fermilab

    2011-07-11

    During the start-up of Run II of the Tevatron Collider program, several issues surfaced which were not present, or not seen as detrimental, during Run I. These included the repeated deterioration of the closed orbit requiring orbit smoothing every two weeks or so, the inability to correct the closed orbit to desired positions due to various correctors running at maximum limits, regions of systematically strong vertical dipole corrections, and the identification of very strong coupling between the two transverse degrees-of-freedom. It became apparent that many of the problems being experienced operationally were connected to a deterioration of the main dipole magnet alignment, and remedial actions were undertaken. However, the alignment alone was not enough to explain the corrector strengths required to handle transverse coupling. With one exception, strong coupling had generally not been an issue in the Tevatron during Run I. Based on experience with the Main Ring, the Tevatron was designed with a very strong skew quadrupole circuit to compensate any quadrupole alignment and skew quadrupole field errors that might present themselves. The circuit was composed of 48 correctors placed evenly throughout the arcs, 8 per sector, evenly placed in every other cell. Other smaller circuits were installed but not initially needed or commissioned. These smaller circuits were composed of individual skew quadrupole correctors on either side of the long straight sections. These circuits were tuned by first bringing the horizontal and vertical tunes near each other. The skew quadrupoles were then adjusted to minimize tune split, usually to less than 0.003. Initially, the main skew quad circuit (designated T:SQ) could accomplish this global decoupling with only 4% of its possible current, and the smaller circuits were not required at all. The start-up of Run Ib was complicated by what was later discovered to be a rolled triplet quadrupole magnet in one of the Interaction Regions. This led to a reduction in luminosity of nearly 50%, as well as operational confusion until it was uncovered. By the time Collider Run II began, the current needed on the main SQ circuit had increased to 60% of its maximum value. Some of the smaller circuits were also needed to fully decouple the tunes. With this history, several studies were performed early in Run II to search for strong local coupling sources like the triplet quadrupole, but without success. The strong corrector settings were indicative of a much larger problem than a single rolled magnet, and the locality of the error was hard to deduce from the setting of a global correction system. Several possible reasons for the increase in coupling were investigated.

  10. Far-field potential production by quadrupole generators in cylindrical volume conductors.

    PubMed

    Dumitru, D; King, J C

    1993-01-01

    Far-field potentials have been observed clinically and recognized as such for approximately 30 years. Unfortunately a complete understanding of far-field potential generation is not yet at hand. An attractive model is the representation of an action potential by a quadrupole consisting of a leading and trailing dipole with respect to the direction of propagation. This investigation physically models an action potential by using a quadrupole constant current source and substantiates the concept that an action potential as modeled by two dipoles back-to-back is capable of producing far-field potentials in cylindrical volume conductors. The 4 postulated mechanisms of generating far-field potentials are validated, i.e., an action potential encountering (1) different size volume conductors, (2) the termination of excitable tissue, (3) a change in conducting medium conductivity, and (4) a bend in the nerve. A fifth postulated but previously not demonstrated method of far-field production, neural branching, is shown by the quadrupole model to also be capable of yielding far-field potentials. The termination of a volume conductor is also shown to be capable of generating a voltage difference across the quadrupole. Any of the above 6 conditions create an alteration in the symmetry of the leading and trailing dipole moments resulting in a transient potential difference across the quadrupole as recorded with a far-field recording montage. The potential difference produced by the asymmetric electric field between the leading and trailing dipoles recorded distantly in areas of low potential gradient is the so-called far-field potential. This investigation substantiates the utility of the leading/trailing dipole model of far-field production and offers a simple model of passive voltage distributions secondary to dipolar moment imbalances to better understand the generation of far-field potentials in cylindrical volume conductors. PMID:7691566

  11. Deformation-induced splitting of the monopole giant resonance in 24Mg

    E-print Network

    J. Kvasil; V. O. Nesterenko; A. Repko; P. -G. Reinhard; W. Kleinig

    2015-10-19

    The strong deformation splitting of the isoscalar giant monopole resonance (ISGMR), recently observed in ($\\alpha,\\alpha'$) reaction in prolate $^{24}$Mg, is analyzed in the framework of the Skyrme quasiparticle random-phase-approximation (QRPA) approach with the Skyrme forces SkM*, SVbas and SkP$^{\\delta}$. The calculations with these forces give close results and confirm that the low-energy E0-peak is caused by the deformation-induced coupling of ISGMR with the K=0 branch of the isoscalar giant quadrupole resonance.

  12. Diagnostics of a spatial spin-modulated structure using nuclear magnetic resonance and Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Rusakov, V. S.; Pokatilov, V. S.; Sigov, A. S.; Matsnev, M. E.; Gubaidulina, T. V.

    2014-12-01

    Methods of the diagnostics of the spatial spin-modulated structure of the cycloidal type in multiferroics based on nuclear magnetic resonance and Mössbauer spectroscopy have been considered. It has been established that Mössbauer spectroscopy makes it possible to determine the anharmonicity parameter of the spatial spin-modulated structure of the cycloidal type with no worse accuracy than nuclear magnetic resonance with higher resolution. Mössbauer spectroscopy, being sensitive to the hyperfine quadrupole interaction of the nucleus in the excited state, makes it possible to obtain additional information on the features of the spatial spin-modulated structure.

  13. OVERCOMING DEPOLARIZING RESONANCES IN THE AGS WITH TWO HELICAL PARTIAL SNAKES

    SciTech Connect

    HUANG,H.; AHRENS, L.; BAI, M.; BROWN, K.A.; GARDNER, C.J.; ET AL.

    2007-06-25

    Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.

  14. Static quadrupole moment of high-spin isomers in the doubly-odd {sup 214}Fr nucleus

    SciTech Connect

    Neyens, G.; Van Asbroeck, I.; Coussement, R.

    1995-06-01

    We have determined the spectroscopic quadrupole moment of two high-spin isomers ({ital I}=11 {h_bar} and {ital I}=32 {h_bar}) which have recently been identified in the doubly-odd {sup 214}Fr nucleus. The data have been extracted from a series of former level mixing spectroscopy (LEMS) measurements which had been performed to measure quadrupole moments of high-spin isomers in {sup 211,212,213}Fr isotopes. The quadrupole frequencies were measured in natural and enriched poly- and single-crystalline T1 at different temperatures.

  15. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    SciTech Connect

    Wang, L; Pivi, M.; /SLAC

    2011-08-18

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism [2]. Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the trapping mechanism is also greatly sensitive to the detail dynamics of the electrons [3]. Both the positron beam and the spacing charge force of electron cloud itself play important roles. This paper reports the simulation of electron cloud in CESRTA/ILC quadrupole and sextupole magnets. Table 1 shows the main parameters used in the simulation.

  16. Deuterium quadrupole coupling in N-acetylglycine and librational dynamics in solid poly(gamma-benzyl-L-glutamate).

    PubMed

    Usha, M G; Peticolas, W L; Wittebort, R J

    1991-04-23

    To study the dynamics of peptide groups in solid proteins, we have accurately determined the principal components and molecular orientation of the electric field gradient tensor for the exchangeable deuterons in monoclinic N-acetylglycine by single-crystal deuterium nuclear magnetic resonance. These results are compared with the principal components of the amide deuterons in solid poly(gamma-benzyl-L-glutamate) measured in powder samples over a wide temperature range (140-400 K). The comparison indicates that in the solid polypeptide the N-D bonds undergo a small-amplitude torsional reorientation (libration) perpendicular to the peptide plane. To estimate dynamic rates, longitudinal relaxation times (T1 values) are reported for N-acetylglycine and poly(gamma-benzyl-L-glutamate). T1 values for the carboxyl and amide deuterons in N-acetylglycine are approximately 100 s, whereas for the amide deuterons in the polypeptide T1 approximately 1 s, also indicating that the N-D bonds are not stationary in the polypeptide. We determine from the reduced quadrupole coupling tensor the mean-square amplitude for the libration and show that it increases linearly with temperature. A simple qualitative theory for the relaxation times is presented on the basis of the assumption that the N-D reorientation is described either as a diffusion process in a square well or as a damped Langevin oscillator with a harmonic restoring force. The conclusion is that the short relaxation times of the polypeptide amide deuterons result from substantial frictional effects on reorientation that increase with temperature. PMID:1708284

  17. Beam engineering for selective and enhanced coupling to multipolar resonances

    E-print Network

    Das, Tanya; Schuller, Jon A

    2015-01-01

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. In this letter, we demonstrate selective and enhanced coupling to specific multipole resonances via beam engineering. We first derive an analytical method for determining the scattering and absorption of spherical nanoparticles (NPs) that depends only on the local electromagnetic field quantities within an inhomogeneous beam. Using this analytical technique, we demonstrate the ability to drastically manipulate the scattering properties of a spherical NP by varying illumination properties and demonstrate the excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. This work enhances the understanding of fundamental light-matter interactions in metamaterials, and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  18. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  19. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    NASA Astrophysics Data System (ADS)

    Gulyuz, Kerim; Stedwell, Corey N.; Wang, Da; Polfer, Nick C.

    2011-05-01

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure (˜10-5 Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH+, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.

  20. Hybrid quadrupole mass filter?quadrupole ion trap?time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions.

    PubMed

    Gulyuz, Kerim; Stedwell, Corey N; Wang, Da; Polfer, Nick C

    2011-05-01

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator?amplifier (OPO?A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure (?10(-5) Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH(+), as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups. PMID:21639521

  1. Tests results of Nb$_{3}$Sn quadrupole magnets using a shell-based support structure

    E-print Network

    Caspi, S

    2009-01-01

    In support of the development of a 90 mm aperture Nb3Sn superconducting quadrupole for the US LHC Accelerator Research Program (LARP), test results of five quadrupole magnets are compared. All five assemblies used key and bladder technology to compress and support the coils within an iron yoke and an aluminium shell. The first three models (TQS01a, b, c) used Nb3Sn MJR conductor and segmented bronze poles. The last two models (TQS02a, b) used Nb3Sn RRP conductor, and segmented titanium alloy (TiAl6V4) poles, with no axial gaps during reaction. This presentation summarizes the magnets performance during assembly, cool-down and excitation and compares measurements with design expectations.

  2. Coil End Optimization of the Nb$_3$Sn Quadrupole for the High Luminosity LHC

    E-print Network

    Izquierdo Bermudez, S; Bossert, R; Cheng, D; Ferracin, P; Krave, ST; Perez, J C; Schmalzle, J; Yu, M

    2015-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture quadrupole magnet that aims at providing a nominal gradient of 140 T/m. The resulting conductor peak field of more than 12 T requires the use of Nb3Sn superconducting coils. In this paper the coil design for the quadrupole short model (SQXF) is described, focusing in particular on the optimization of the end-parts. We first describe the magnetic optimization aiming at reducing the peak field enhancement in the ends and minimizing the integrated multipole content. Then we focus on the analysis and tests performed to determine the most suitable shapes of end turns and spacers, minimizing the mechanical stress on the cables. We conclude with a detailed description of the baseline end design for the first series of the short model coils.

  3. Dipole and Quadrupole Moments of Mirror Nuclei 8B and 8li

    E-print Network

    G. Kim; R. R. Khaydarov; Il-Tong Cheon; F. A. Gareev

    1999-12-24

    Magnetic dipole and electric quadrupole moments of the mirror nuclei 8Li and 8B are analysed in the framework of the multiparticle shell model by using two approaches : i) the one-particle spectroscopic factors and ii) the one-particle fractional parentage coefficients. These two approaches are compared both each to other and with a microscopic multicluster model. The one-particle nucleon states are calculated taking into account the continuum by the method of the expansion of the Sturm - Liouville functions. The experimental magnetic and quadrupole moments of 8Li and 8Bare reproduced well by using fractional parentage coefficients technique. The root mean-square radii and the radial density distributions are obtained for these nuclei.

  4. Test of a NbTi Superconducting Quadrupole Magnet Based on Alternating Helical Windings

    SciTech Connect

    Caspi, S.; Trillaud, F.; Godeke, A.; Dietderich, D.; Ferracin, P.; Sabbi, G.; Giloux, C.; Perez, J. G.; Karppinen, M.

    2009-08-16

    It has been shown that by superposing two solenoid-like thin windings, that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is cos({theta})-like and the resulting magnetic field in the bore is a pure dipole field. Following a previous test of such a superconducting dipole magnet, a quadrupole magnet was designed and built using similar principles. This paper describes the design, construction and test of a 75 mm bore 600 mm long superconducting quadrupole made with NbTi wire. The simplicity of the design, void of typical wedges, end-spacers and coil assembly, is especially suitable for future high field insert coils using Nb{sub 3}Sn as well as HTS wires. The 3 mm thick coil reached 46 T/m but did not achieve its current plateau.

  5. Design Studies of Nb3Sn High-Gradient Quadrupole Models for LARP

    SciTech Connect

    Sabbi, GianLuca; Andreev, Nikolai; Caspi, Shlomo; Dietderich, Daniel; Ferracin, Paolo; Ghosh, Arup; Kashikhin, Vadim; Lietzke, Al; McInturff, Alfred; Novitski, Igor; Zlobin, Alexander

    2007-06-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 10{sup 35} cm{sup -2} s{sup -1} at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. Nb{sub 3}Sn conductor is required in order to operate at high field and with sufficient temperature margin. We report here on the conceptual design studies of a series of 1 m long 'High-gradient Quadrupoles' (HQ) that will explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ design is expected to provide coil peak fields of more than 15 T, corresponding to gradients above 300 T/m in a 90 mm bore. Conductor requirements, magnetic, mechanical and quench protection issues for candidate HQ designs will be presented and discussed.

  6. The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure

    SciTech Connect

    Chlachidze, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, N.; Novitski, I.; Orris, D.; Tartaglia, M.

    2010-07-30

    Several 90-mm quadrupole coils made of 0.7-mm Nb{sub 3}Sn strand based on the 'Restack Rod Process' (RRP) of 108/127 design, with cored and non-cored cables and different cable insulation, were fabricated and individually tested at Fermilab using a test structure designed to provide a quadrupole magnetic field environment. The coils were instrumented with voltage taps and strain gauges to study quench performance and mechanical properties. The Nb{sub 3}Sn strand and cable parameters, the coil fabrication details, the mirror model assembly procedure and test results at temperatures of 4.5 K and 1.9 K are reported and discussed.

  7. Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider

    SciTech Connect

    James T Volk et al.

    2001-09-24

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0-20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype.

  8. High Accuracy AB Initio Calculation of Metal Quadrupole-Coupling Parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Stanton, John F.; Gauss, Jürgen

    2014-06-01

    Accurate quantum-chemical calculations of metal quadrupole-coupling parameters are challenging due to the sensitivity of these parameters to both relativistic and electron-correlation effects. In the present study we have employed the spin-free exact two-component theory in its one-electron variant for a cost-effective treatment of scalar-relativistic effects in combination with coupled-cluster methods for a systematic incorporation of electron correlation. Spin-orbit effects have been included by means of perturbation theory at the Hartree-Fock self-consistent-field level. The accuracy and applicability of the model presented here is demonstrated with calculations of metal quadrupole-coupling parameters for a set of copper and gold compounds.

  9. Simulation studies of space-charge-dominated beam transport in large aperture ratio quadrupoles

    SciTech Connect

    Fawley, W.M.; Laslett, L.J.; Celata, C.M.; Faltens, A.; Haber, I.

    1993-05-01

    For many cases of interest in the design of heavy-ion fusion accelerators, the maximum transportable current in a magnetic quadrupole lattice scales as ({alpha}/L){sup 2} where {alpha} is the useful dynamic aperture and L is the half-lattice period. There are many cost benefits to maximizing the usable aperture which must be balanced against unwanted effects such as possible emittance growth and particle loss from anharmonic fringe fields. We have used two independent simulation codes to model space-charge dominated beam transport both in an azimuthally-pure quadrupole FODO lattice design and in a more conventional design. Our results indicate that careful matching will be necessary to minimize emittance growth and that ({alpha}/L) ratios of 0.2 or larger are possible for particular parameters.

  10. Fabrication and test of LARP technological quadrupole models of TQC series

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Nobrega, A.; Novitski, I.; /Fermilab /LBL, Berkeley /Brookhaven

    2008-08-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, several two-layer technological quadrupole models of TQC series with 90 mm aperture and collar-based mechanical structure have been developed at Fermilab in collaboration with LBNL. This paper summarizes the results of fabrication and test of TQC02a, the second TQC model based on RRP Nb3Sn strand, and TQC02b, built with both MJR and RRP strand. The test results presented include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9K to 4.5K.

  11. Aharonov-Anandan quantum phases and Landau quantization associated with a magnetic quadrupole moment

    NASA Astrophysics Data System (ADS)

    Fonseca, I. C.; Bakke, K.

    2015-12-01

    The arising of geometric quantum phases in the wave function of a moving particle possessing a magnetic quadrupole moment is investigated. It is shown that an Aharonov-Anandan quantum phase (Aharonov and Anandan, 1987) can be obtained in the quantum dynamics of a moving particle with a magnetic quadrupole moment. In particular, it is obtained as an analogue of the scalar Aharonov-Bohm effect for a neutral particle (Anandan, 1989). Besides, by confining the quantum particle to a hard-wall confining potential, the dependence of the energy levels on the geometric quantum phase is discussed and, as a consequence, persistent currents can arise from this dependence. Finally, an analogue of the Landau quantization is discussed.

  12. Core polarization for the electric quadrupole moment of neutron-rich Aluminum isotopes

    E-print Network

    Kenichi Yoshida

    2009-02-18

    The core polarization effect for the electric quadrupole moment of the neutron-rich $^{31}$Al, $^{33}$Al and $^{35}$Al isotopes in the vicinity of the island of inversion are investigated by means of the microscopic particle-vibration coupling model in which the Skyrme Hartee-Fock-Bogoliubov and quasiparticle-random-phase approximation are used to calculate the single-quasiparticle wave functions and the excitation modes. It is found that the polarization charge for the proton $1d_{5/2}$ hole state in $^{33}$Al is quite sensitive to coupling to the neutrons in the $pf$-shell associated with the pairing correlations, and that the polarization charge in $^{35}$Al becomes larger due to the stronger collectivity of the low-lying quadrupole vibrational mode in the neighboring $^{36}$Si nucleus.

  13. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    SciTech Connect

    Fu, Li-juan; Vaara, Juha; Rizzo, Antonio

    2013-11-14

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup ?4}–10{sup ?6} rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  14. Quadrupole phases and phase transitions in uniaxial magnets with tensor interactions

    NASA Astrophysics Data System (ADS)

    Shapovalov, I. P.

    2013-06-01

    Uniaxial magnets with spin one, single-ion anisotropy, and anisotropic biquadratic exchange interaction are investigated in the absence of magnetic field. Possible types of quadrupole ordering in the system are discussed for the case in which the anisotropy of biquadratic exchange interaction has the most general form compatible with the axial symmetry. Besides the two phases with the stationary planes of quadrupole ordering (QOZ and QOX phases), there may appear a phase (QO< phase) in which the orientation of the quadrupolar-ordering plane changes continuously as the Hamiltonian parameters are varied. For the QOX phase, two branches of spin excitations have been found, one of which includes the Goldstone mode. The QO< phase boundary with the other two quadrupolar phases at finite temperatures has been determined, the expression for the QO<-QOZ phase boundary has been derived analytically.

  15. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    SciTech Connect

    Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  16. Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures

    SciTech Connect

    Hsueh, Chun-Hway; Li, Jia-Han; Hatab, Nahla A.; Gu, Baohua

    2011-01-01

    The discovery of single-molecule sensitivity via surfaceenhanced Raman scattering on resonantly excited noble metal nanoparticles has brought an increasing interest in its applications to the molecule detection and identification. Periodic gold bowtie nanostructures have recently been shown to give a large enhancement factor sufficient for single molecule detection. In this work, we simulate the plasmon resonance for periodic gold bowtie nanostructures. The difference between the dipole and the quadrupole resonances is described by examining the magnitude and phase of electric field, the bound surface charge, and the polarization. The gap size dependence of the field enhancement can be interpreted by considering cavity field enhancement. Also, additional enhancement is obtained through the long-range collective photonic effect when the bowtie array periodicity matches the resonance wavelength.

  17. MEMS & BioMEMS Chip-Scale Quadrupole Mass Filters for a Micro Gas Analyzer ...................................................................................................................MS.1

    E-print Network

    Reif, Rafael

    MEMS & BioMEMS Chip-Scale Quadrupole Mass Filters for a Micro Gas Analyzer...................................................................................................................MS.2 MEMS-based Plasma Probes for Spacecraft Re-entry Monitoring.........................................................................MS.4 Direct Patterning of Metallic MEMS through Microcontact Printing

  18. Measurements of the H2 4-0 quadrupole bands of Uranus and Neptune

    SciTech Connect

    Smith, W.H.; Macy, W. Jr.

    1980-01-01

    It is found that the equivalent widths of the lines of the 4-0 H2 quadrupole band on Uranus and Neptune are substantially smaller than the values found by some previous observers. An analysis of the results based on a range of atmospheric models yields H2 abundances of 240 + or - 60 km-amagats for Uranus and greater than approximately 200 km amagats for Neptune.

  19. Nitrogen vacancy center fluorescence from a submicron diamond cluster levitated in a linear quadrupole ion trap

    NASA Astrophysics Data System (ADS)

    Kuhlicke, Alexander; Schell, Andreas W.; Zoll, Joachim; Benson, Oliver

    2014-08-01

    We report the observation of nitrogen vacancy fluorescence from a diamond cluster levitating in a linear quadrupole ion trap. Single clusters with diameters from micro- down to a few hundred nanometers can be trapped and characterized. We investigate the influence of the surface charge on the fluorescence and show how trapping stability can be increased. Subsequently, clusters are deposited on fiber facets. The presented method is an important first step towards optomechanical cooling of a single isolated nanodiamond.

  20. Dynamic Topography and Sea Level Change Inferred from Dipole and Quadrupole Moments of Plate Tectonic Reconstructions

    NASA Astrophysics Data System (ADS)

    Conrad, C. P.; Steinberger, B. M.; Torsvik, T. H.

    2014-12-01

    Although constraints on the history of mantle flow are difficult to obtain, tectonic reconstructions contain information about the longest wavelength patterns of mantle flow that drove plate motions in the past. To examine the influence of this long-wavelength flow on global geodynamics, we computed the dipole and quadrupole moments (harmonic degrees 1 and 2) of the spherical vector fields associated with tectonic reconstructions of plate motions back to 250 Ma. Areas of dipole or quadrupole divergence lie above regions of major mantle upwelling, and convergence regions reside atop major mantle downwellings. To constrain the time-dependence of dynamic topography associated with these upwellings and downwellings, we used a numerical model of present-day mantle flow to relate degree-1 and degree-2 patterns of dynamic topography to the orientations and amplitudes of the dipole and quadrupole moments of present-day plate motions. We then apply this relationship to the dipole and quadrupole moments of past plate motions to compute the long-wavelength components of dynamic topography for the Mesozoic and Cenozoic. Continental motions over this time-evolving dynamic topography predict patterns of continental uplift and subsidence that can be related to geological observations of continental surfaces relative to sea level. Net uplift or subsidence of the global seafloor can also induce eustatic sea level changes. We infer that dispersal of the Pangean supercontinent away from upwelling beneath Africa may have exposed the seafloor to an increasingly larger area of positive dynamic topography since the early Mesozoic that has caused up to 100 m of sea level rise during this time period. This component of sea level change helps to balance observations of Cretaceous and Cenozoic sea level change with an estimated total sea level budget that includes concurrent tectonic and climatic influences that produce sea level drop of up to ~250 m.

  1. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range.

    PubMed

    Zolotukhin, D B; Tyunkov, A V; Yushkov, Yu G; Oks, E M

    2015-12-01

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons. PMID:26724016

  2. Performance of quadrupole and sextupole magnets for the Advanced Photon Source storage ring

    SciTech Connect

    Kim, S.H.; Doose, C.L.; Kim, K.; Thompson, K.M.; Turner, L.R.

    1993-10-01

    From the magnetic measurement data of several production quadrupole and sextupole magnets for the storage ring of the Advanced Photon Source, the excitation efficiencies and systematic and random multipole coefficients of the magnets are summarized. The designs of the magnets, which are constrained due to the geometry of the vacuum chamber have rotation symmetries of 180{degrees} and 120{degrees}. The production data meet the allowed tolerances of a few parts in 10{sup {minus}4} for the storage ring.

  3. Finite Element Model of Training in the superconducting quadrupole magnet SQ02

    SciTech Connect

    Caspi, Shlomo; Ferracin, Paolo

    2007-11-01

    This paper describes the use of 3D finite element models to study training in superconducting magnets. The simulations are used to examine coil displacements when the electromagnetic forces are cycled, and compute the frictional energy released during conductor motion with the resulting temperature rise. A computed training curve is then presented and discussed. The results from the numerical computations are compared with test results of the Nb{sub 3}Sn racetrack quadrupole magnet SQ02.

  4. Neutral Pion Electroproduction in the Delta Resonance Region

    SciTech Connect

    Anthony Villano

    2007-11-01

    The electroproduction of baryon resonances at high Q2 is examined. Analysis focuses on the Delta(1232) resonance via exclusive pseudoscalar meson production of À0 particles. Differential cross sections are extracted for exclusive À0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Delta(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Delta region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G#23;M is extracted along with the scalar to magnetic dipole ratio C2/M1.

  5. Neutral pion electroproduction in the Delta resonance region

    NASA Astrophysics Data System (ADS)

    Villano, Anthony Nicholas

    The electroproduction of baryon resonances at high Q2 is examined. Analysis focuses on the Delta(1232) resonance via exclusive pseudoscalar meson production of pi0 particles. Differential cross sections are extracted for exclusive pi 0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Delta(1232) resonance. The transition to pQCD is discussed in terms of E2/ M1 and other multipoles. The helicity amplitude A32 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Delta region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G*M is extracted along with the scalar to magnetic dipole ratio C2/M1.

  6. Development of TQC01, a 90mm Nb3Sn model quadrupole for LHC upgrade based on ss collar

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Ghosh, A.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Novitski, I.; Sabbi, G.L.; Turrioni, D.; Whitson, G.; Yamada, r.; /Fermilab /LBL, Berkeley /Brookhaven

    2005-10-01

    As a first step toward the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer technological quadrupole models (TQS01 at LBNL and TQC01 at Fermilab) are being constructed within the framework of the US LHC Accelerator Research Program (LARP). Both models use the same coil design, but have different coil support structures. This paper describes the TQC01 design, fabrication technology and summarizes its main parameters.

  7. Development of TQC01, a 90 mm Nb3 Sn Model Quadrupole for LHC Upgrade Based on SS Collar

    SciTech Connect

    Bossert, R. C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Caspi, S.; Dietderich, D. R.; Ferracin, P.; Ghosh, A.; Gourlay, S. A.; Hafalia, A. R.; Hannaford, C. R.; Kashikhin, V. S.; Kashikhin, V. V.; Lietzke, A. F.; Mattafirri, S.; McInturff, A. D.; Novitski, I.; Sabbi, G. L.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A. V.

    2006-06-01

    As a first step toward the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer technological quadrupole models (TQS01 at LBNL and TQC01 at Fermilab) are being constructed within the framework of the US LHC Accelerator Research Program (LARP). Both models use the same coil design, but have different coil support structures. This paper describes the TQC01 design, fabrication technology and summarizes its main parameters.

  8. Accumulation and storage of ionized duplex DNA molecules in a quadrupole ion trap

    SciTech Connect

    Doktycz, M.J.; Habibi-Goudarzi, S.; McLuckey, S.A. )

    1994-10-15

    Evidence for the accumulation and storage of ionized duplex DNA molecules in a quadrupole ion trap is presented. Aqueous solutions of complementary single-strand molecules of DNA were annealed to form duplexes in solution and subjected to electrospray ionization. The ions liberated in this process were transported through an atmosphere/vacuum interface and injected into a quadrupole ion trap operated with a bath gas present at a pressure of 1 mTorr. Despite the roughly 2 order of magnitude poorer signal levels noted for electrospray of aqueous solutions relative to those observed for single-strand oligonucleotides in methanol solutions, aqueous solutions were used to avoid denaturing the duplexes. Ion trap mass spectra are reported here for duplexes consisting of two complementary 20-mer single strands and two complementary 10-mers. Tandem mass spectrometry results are also reported for the 10-mer duplex. These results are significant in that they indicate that the ions are kinetically stable under the ion injection, storage, and mass analysis conditions of the quadrupole ion trap operated with a relatively high pressure of bath gas. The tools of ion trap mass spectrometry can therefore be applied to this important class of compounds. 49 refs., 7 figs.

  9. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    SciTech Connect

    Kimura, N.; Yamamoto, A.; Andreev, N.; Kashikhin, V. S.; Tartaglia, M. A.; Kerby, J.; Takahashi, M.; Tosaka, T.

    2014-01-29

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  10. Gas flow in barred potentials - III. Effects of varying the quadrupole

    NASA Astrophysics Data System (ADS)

    Sormani, Mattia C.; Binney, James; Magorrian, John

    2015-12-01

    We run hydrodynamical simulations of a 2D isothermal non-self-gravitating inviscid gas flowing in a rigidly rotating externally imposed potential formed by only two components: a monopole and a quadrupole. We explore systematically the effects of varying the quadrupole while keeping fixed the monopole and discuss the consequences for the interpretation of longitude-velocity diagrams in the Milky Way. We find that the gas flow can constrain the quadrupole of the potential and the characteristics of the bar that generates it. The exponential scale length of the bar must be at least 1.5 kpc. The strength of the bar is also constrained. Our global interpretation favours a pattern speed of ? = 40 km s-1 kpc-1. We find that for most observational features, there exist a value of the parameters that matches each individual feature well, but is difficult to reproduce all the important features at once. Due to the intractably high number of parameters involved in the general problem, quantitative fitting methods that can run automatic searches in parameter space are necessary.

  11. LARP NB3SN QUADRUPOLE MAGNETS FOR THE LHC LUMINOSITY UPGRADE

    SciTech Connect

    Ferracin, P.

    2009-06-01

    The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb{sub 3}Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: (1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, (2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos2{theta} coils, and (3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that ND{sub 3}Sn technology is mature for use in high energy accelerators. After an overview of design features and test results of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos2{theta} coils, and the qualification of the support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb{sub 3}Sn superconducting magnets, is presented.

  12. Gas flow in barred potentials - III. Effects of varying the Quadrupole

    E-print Network

    Sormani, Mattia Carlo; Magorrian, John

    2015-01-01

    We run hydrodynamical simulations of a 2D isothermal non self-gravitating inviscid gas flowing in a rigidly rotating externally imposed potential formed by only two components: a monopole and a quadrupole. We explore systematically the effects of varying the quadrupole while keeping fixed the monopole and discuss the consequences for the interpretation of longitude-velocity diagrams in the Milky Way. We find that the gas flow can constrain the quadrupole of the potential and the characteristics of the bar that generates it. The exponential scale length of the bar must be at least $1.5\\rm\\, kpc$. The strength of the bar is also constrained. Our global interpretation favours a pattern speed of $\\Omega=40\\,\\rm km s^{-1} {kpc}^{-1}$. We find that for most observational features, there exist a value of the parameters that matches each individual feature well, but is difficult to reproduce all the important features at once. Due to the intractably high number of parameters involved in the general problem, quantitat...

  13. Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.

    2014-12-01

    A transition charge, dipole, and quadrupole from electrostatic potential (TrESP-CDQ) method for electronic coupling calculations is proposed. The TrESP method is based on the classical description of electronic Coulomb interaction between transition densities for individual molecules. In the original TrESP method, only the transition charge interactions were considered as the electronic coupling. In the present study, the TrESP method is extended to include the contributions from the transition dipoles and quadrupoles as well as the transition charges. Hence, the self-consistent transition density is employed in the ESP fitting procedure. To check the accuracy of the present approach, several test calculations are performed to a helium dimer, a methane dimer, and an ethylene dimer. As a result, the TrESP-CDQ method gives a much improved description of the electronic coupling, compared with the original TrESP method. The calculated results also show that the self-consistent treatment to the transition densities contributes significantly to the accuracy of the electronic coupling calculations. Based on the successful description of the electronic coupling, the contributions to the electronic coupling are also analyzed. This analysis clearly shows a negligible contribution of the transition charge interaction to the electronic coupling. Hence, the distribution of the transition density is found to strongly influence the magnitudes of the transition charges, dipoles, and quadrupoles. The present approach is useful for analyzing and understanding the mechanism of excitation-energy transfer.

  14. Cryo-technical design aspects of the superconducting SIS100 quadrupole doublet modules

    SciTech Connect

    Meier, J. P.; Bleile, A.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.

    2014-01-29

    The FAIR project was initiated to build an international accelerator and experimental facility for basic research activities in various fields of modern physics. The core component of the project will be the SIS100 heavy ion accelerator, producing heavy ion beams of uniquely high intensities and qualities. The superconducting main quadrupoles and corrector magnets are assembled within complex quadrupole doublet modules (QDMs), combining two superconducting quadrupole (focusing and defocusing), sextupole and steering magnets in one cryostat. In addition a cryo-catcher, a beam position monitor and a cold beam pipe will be integrated. In accordance with the magnet lattice structure, the QDM series for the SIS100 consists of four main families composed of eleven different configurations. The common technical feature of all configurations is a sophisticated common girder structure, mechanically integrating all functional components in one cold mass and being suspended in a corresponding cryostat system. The requirements to position preservation during thermal cycling are to be fulfilled by a precise and stable support of the functional elements, as well as by a reliable, reproducible and stable cold mass suspension system. The main design aspects of the QDMs will be discussed as a result of these requirements.

  15. Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider.

    SciTech Connect

    Spencer, Cherrill M

    2002-08-23

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0 -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype. See High Reliability Prototype Quadrupole for the Next Linear Collider by C.E Rago, C.M SPENCER, Z. Wolf submitted to this conference.

  16. Cryo-technical design aspects of the superconducting SIS100 quadrupole doublet modules

    NASA Astrophysics Data System (ADS)

    Meier, J. P.; Bleile, A.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.

    2014-01-01

    The FAIR project was initiated to build an international accelerator and experimental facility for basic research activities in various fields of modern physics. The core component of the project will be the SIS100 heavy ion accelerator, producing heavy ion beams of uniquely high intensities and qualities. The superconducting main quadrupoles and corrector magnets are assembled within complex quadrupole doublet modules (QDMs), combining two superconducting quadrupole (focusing and defocusing), sextupole and steering magnets in one cryostat. In addition a cryo-catcher, a beam position monitor and a cold beam pipe will be integrated. In accordance with the magnet lattice structure, the QDM series for the SIS100 consists of four main families composed of eleven different configurations. The common technical feature of all configurations is a sophisticated common girder structure, mechanically integrating all functional components in one cold mass and being suspended in a corresponding cryostat system. The requirements to position preservation during thermal cycling are to be fulfilled by a precise and stable support of the functional elements, as well as by a reliable, reproducible and stable cold mass suspension system. The main design aspects of the QDMs will be discussed as a result of these requirements.

  17. Radiation and Thermal Analysis of Superconducting Quadrupoles in the Interaction Region of Linear Collider

    SciTech Connect

    Drozhdin, A.I.; Kashikhin, V.V.; Kashikhin, V.S.; Lopes, M.L.; Mokhov, N.V.; Zlobin, A.V.; Seryi, Andrei; /SLAC

    2011-10-14

    Radiation heat deposition in the superconducting magnets of the Interaction Region (IR) of a linear collider can be a serious issue that limits the magnet operating margins and shortens the material lifetime. Radiation and thermal analyses of the IR quadrupoles in the incoming and extraction beam lines of the ILC are performed in order to determine the magnet limits. This paper presents an analysis of the radial, azimuthal and longitudinal distributions of heat deposition in the incoming and disrupted beam doublets. Operation margins of the magnets based on NbTi superconductor are calculated and compared. The radiation and thermal analysis of the ILC IR quadrupoles based on Rutherford type cables was performed. It was found that the peak radiation heat deposition takes place in the second extraction quadrupole QFEX2. The maximum power density in the coil is {approx}17mW/g. This is rather high, comparing to the proton machines (LHC). However, the fast radial decay of the heat deposition together with the high thermal conductivity of the Rutherford type cable limits the coil temperatures to a moderate level. It was determined that both 2-layer and 4-layer QFEX2 magnet designs have thermal margins of a factor of {approx}4 at the nominal gradient of 31.3 T/m. Because of the large margins, these magnets can easily accommodate possible changes in the IR optics and heat deposition levels.

  18. Giant resonances in {sup 238}U within the quasiparticle random-phase approximation with the Gogny force

    SciTech Connect

    Peru, S.; Gosselin, G.; Martini, M.; Dupuis, M.; Hilaire, S.

    2011-01-15

    Fully consistent axially-symmetric deformed quasiparticle random-phase approximation (QRPA) calculations have been performed, using the same Gogny D1S effective force for both the Hartree-Fock-Bogolyubov mean field and QRPA matrix. New implementation of this approach leads to the applicability of QRPA to heavy deformed nuclei. Giant resonances and low-energy collective states for monopole, dipole, quadrupole, and octupole modes are predicted for the heavy deformed nucleus {sup 238}U and compared with experimental data.

  19. Giant dipole resonance width as a probe for nuclear deformation at finite excitation

    E-print Network

    Deepak Pandit; Balaram Dey; Debasish Mondal; S. Mukhopadhyay; Surajit Pal; Srijit Bhattacharya; A. De; S. R. Banerjee

    2013-05-15

    The systematic study of the correlation between the experimental giant dipole resonance (GDR) width and the average deformation of the nucleus at finite excitation is presented for the mass region A ~ 59 to 208. We show that the width of the GDR (\\Gamma) and the quadrupole deformation of the nucleus do not follow a linear relation, as predicted earlier, due to the GDR induced quadrupole moment and the correlation also depends on the mass of the nuclei. The different empirical values of extracted from the experimental GDR width match exceptionally well with the thermal shape fluctuation model. As a result, this universal correlation between and \\Gamma provides a direct experimental probe to determine the nuclear deformation at finite temperature and angular momentum in the entire mass region.

  20. A Resonant Cavity Approach to Non-Invasive, Pulse-to-Pulse EmittanceMeasurement

    SciTech Connect

    Kim, J.S.; Nantista, C.D.; Miller, R.H.; Weidemann, A.W.; /FARTECH, San Diego /SLAC

    2010-06-15

    We present a resonant cavity approach for non-invasive, pulse-to-pulse, beam emittance measurements of non-circular multi-bunch beams. In a resonant cavity, desired field components can be enhanced up to Q{sub L{lambda}}/{pi}, where Q{sub L{lambda}} is the loaded quality factor of the resonant mode {lambda}, when the cavity resonant mode matches the bunch frequency of a bunch-train beam pulse. In particular, a quad-cavity, with its quadrupole mode (TM{sub 220} for rectangular cavities) at beam operating frequency, rotated 45{sup o} with respect to the beamline, extracts the beam quadrupole moment exclusively, utilizing the symmetry of the cavity and some simple networks to suppress common modes. Six successive beam quadrupole moment measurements, performed at different betatron phases in a linear transport system determine the beam emittance, i.e. the beam size and shape in the beam's phase space, if the beam current and position at these points are known. In the presence of x-y beam coupling, ten measurements are required. One measurement alone provides the rms-beam size of a large aspect ratio beam. The resolution for such a measurement of rms-beam size with the rectangular quad-cavity monitor presented in this article is estimated to be on the order of ten microns. A prototype quad-cavity was fabricated and preliminary beam tests were performed at the Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear Accelerator Center (SLAC). Results were mainly limited by beam jitter and uncertainty in the beam position measurement at the cavity location. This motivated the development of a position-emittance integrated monitor.

  1. Electron spin echo envelope modulation of molecular motions of deuterium nuclei

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Maryasov, A. G.; Bowman, M. K.; Dzuba, S. A.

    2015-12-01

    Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy is a powerful technique for the study of hyperfine interactions between an unpaired electron and nearby nuclei in solids, and is employed in quantitative structural studies. Here, we describe the use of ESEEM to study the slow motion of deuterium nuclei using their nuclear quadrupole resonance (NQR) line shapes. Two ESEEM techniques were employed: the conventional three-pulse ESEEM experiment, ?/2 - ? - ?/2 - T- ?/2 - ? - echo, and the four-pulse ESEEM, ?/2 - ? - ?/2 - T/2 - ? - T/2 - ?/2 - ? - echo, with the time variable T scanned in both cases. The nitroxide free radical 4-tert-butyliminomethyl-2,2,5,5-tetramethyl(d12)-3-imidazoline-1-oxyl with four deuterated methyl groups was investigated in a glassy ortho-terphenyl matrix over a wide temperature range. It was shown that four-pulse ESEEM allowed measurement of the nearly pure 2H NQR line shape. Between 90 K and 120 K, the ESEEM spectra change drastically. At low temperatures, four-pulse ESEEM spectra show a Pake-like pattern, which evolves into a single line at higher temperatures, which is typical for NQR of rotating methyl CD3 groups. Comparison with literature data on NQR allows estimation of the reorientation rate, k. At ?100 K, where the spectral changes are most pronounced, k was found to be ?105 s-1. The spectral linewidths for the three-pulse ESEEM were found to decrease similarly with increasing temperature; so the three-pulse technique is also capable to detect motion of this type. The ESEEM approach, along with site-directed spin labeling, may be useful for detection of motional transitions near the spin labels in biological systems, when information on motion is required in a wide temperature range.

  2. Electron spin echo envelope modulation of molecular motions of deuterium nuclei.

    PubMed

    Syryamina, V N; Maryasov, A G; Bowman, M K; Dzuba, S A

    2015-12-01

    Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy is a powerful technique for the study of hyperfine interactions between an unpaired electron and nearby nuclei in solids, and is employed in quantitative structural studies. Here, we describe the use of ESEEM to study the slow motion of deuterium nuclei using their nuclear quadrupole resonance (NQR) line shapes. Two ESEEM techniques were employed: the conventional three-pulse ESEEM experiment, ?/2 - ? - ?/2 - T- ?/2 - ? - echo, and the four-pulse ESEEM, ?/2 - ? - ?/2 - T/2 - ? - T/2 - ?/2 - ? - echo, with the time variable T scanned in both cases. The nitroxide free radical 4-tert-butyliminomethyl-2,2,5,5-tetramethyl(d12)-3-imidazoline-1-oxyl with four deuterated methyl groups was investigated in a glassy ortho-terphenyl matrix over a wide temperature range. It was shown that four-pulse ESEEM allowed measurement of the nearly pure (2)H NQR line shape. Between 90K and 120K, the ESEEM spectra change drastically. At low temperatures, four-pulse ESEEM spectra show a Pake-like pattern, which evolves into a single line at higher temperatures, which is typical for NQR of rotating methyl CD3 groups. Comparison with literature data on NQR allows estimation of the reorientation rate, k. At ?100K, where the spectral changes are most pronounced, k was found to be ?10(5)s(-1). The spectral linewidths for the three-pulse ESEEM were found to decrease similarly with increasing temperature; so the three-pulse technique is also capable to detect motion of this type. The ESEEM approach, along with site-directed spin labeling, may be useful for detection of motional transitions near the spin labels in biological systems, when information on motion is required in a wide temperature range. PMID:26583529

  3. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been attempted. That is, while the designs developed and tested using the matrix program OptiM can work well, a real simulation with lumped dipoles, quadrupoles, and solenoids and their associated fringe fields has not succeeded. As a consequence of this realization, a new approach is being attempted that is based on the use of a helical solenoid (HS) channel that is made of simple coils that provide a much more homogeneous magnetic field. However, in order to use the HS a new approach was required to generate a variable dispersion that is needed according to the PIC theory described above. This approach and its first implementation will be described at EPAC08 in June, 2008.

  4. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers

    PubMed Central

    Liu, Xiaotong; Li, Dabing; Sun, Xiaojuan; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren

    2015-01-01

    The tunability of surface plasmon resonance can enable the highest degree of localised surface plasmon enhancement to be achieved, based on the emitting or absorbing wavelength. In this article, tunable dipole surface plasmon resonances of Ag nanoparticles (NPs) are realized by modification of the SiO2 dielectric layer thicknesses. SiO2 layers both beneath and over the Ag NPs affected the resonance wavelengths of local surface plasmons (LSPs). By adjusting the SiO2 thickness beneath the Ag NPs from 5?nm to 20?nm, the dipole surface plasmon resonances shifted from 470?nm to 410?nm. Meanwhile, after sandwiching the Ag NPs by growing SiO2 before NPs fabrication and then overcoating the NPs with various SiO2 thicknesses from 5?nm to 20?nm, the dipole surface plasmon resonances changed from 450?nm to 490?nm. The SiO2 cladding dielectric layer can tune the Ag NP surface charge, leading to a change in the effective permittivity of the surrounding medium, and thus to a blueshift or redshift of the resonance wavelength. Also, the quadrupole plasmon resonances were suppressed by the SiO2 cladding layer because the dielectric SiO2 can suppress level splitting of surface plasmon resonances caused by the Ag NP coupling effect. PMID:26218501

  5. The effects of proton beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Cappiello, C.C.; Dugan, M.P.

    1993-12-01

    We describe a method for performing nuclear resonance absorption with the proton beam from a radio frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen relative to that of electrostatic accelerators. This choice of accelerator results in tradeoffs in performance and complexity in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, we successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of our initial laboratory measurements are reported.

  6. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    SciTech Connect

    Graybill, R.; Morgado, R.E.; Cappiello, C.C.

    1994-05-01

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported.

  7. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect

    NASA Astrophysics Data System (ADS)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2015-10-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., ? = 1) and at the nonlinear resonance condition (i.e., ? = 0.5). Using the HB method, the nonlinear 3? harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3? series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  8. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  9. Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Woods, R. Clive; Li, Fangyu

    2006-01-01

    Here we show the generation of high-frequency-gravitational-waves (HFGWs) utilizing piezoelectric elements such as the ubiquitous Film-Bulk-Acoustic-Resonators (FBARs), found in cell phones, as energized by inexpensive magnetrons, found in microwave ovens, generating GWs having a frequency of about 4.9GHz and their detection by means of new synchro-resonance techniques developed in China. In the 1960s Weber suggested piezoelectric crystals for gravitational-wave (GW) generation. Since then researchers have proposed specific designs. The major obstacle has been the cost of procuring, installing, and energizing a sufficient number of such resonators to generate sufficiently powerful GWs to allow for detection. Recent mass-production techniques, spurred on by the production of cell phones, have driven the cost of resonators down. The new Chinese detector for detecting the 4.9×109Hz HFGW is a coupling-system of fractal membranes-beam-splitters and a narrow, 6.1 cm-radius, pulsed-Gaussian-laser or continuous-Gaussian detection beam passing through a static 15T-magnetic field. The detector is sensitive to GW amplitudes of ~10-30 to be generated with signal-to-noise ratios greater than one. It is concluded that a cost-effective HFGW generation and detection apparatus can now be fabricated and operated in the laboratory. If the two groups or clusters of magnetrons and FBARs were space borne and at lunar distance (e.g., at the Moon and at the lunar L3 libration point) and the quadrupole formalism approximately holds for GW radiators (the FBAR clusters) many GW wavelengths apart, then the HFGW power would be about 420 W and the flux about 2×105 Wm-2 (or more than one hundred times greater than the solar radiation flux at the Earth) focused at the focal spot, or remote-HFGW-emitter, anywhere in the Earth's environs - on or below the Earth's surface.

  10. On the time-optimal implementation of quantum Fourier transform for qudits represented by quadrupole nucleus

    E-print Network

    V. P. Shauro; V. E. Zobov

    2012-11-21

    We consider the problem of time-optimal realization of the quantum Fourier transform gate for a single qudit with number of levels d from 3 to 8. As a qudit the quadrupole nucleus with spin I > 1/2 controlled by NMR is considered. We calculate the dependencies of the gate error on the duration of radio-frequency pulse obtained by numerical optimization using Krotov-based algorithm. It is shown that the dependences of minimum time of QFT gate implementation on qudit dimension are different for integer and half-integer spins.

  11. A new method of alpha ray measurement using a Quadrupole Mass Spectrometer

    E-print Network

    Y. Iwata; Y. Inoue; M. Minowa

    2007-04-16

    We propose a new method of alpha($\\alpha$)-ray measurement that detects helium atoms with a Quadrupole Mass Spectrometer(QMS). A demonstration is undertaken with a plastic-covered $^{241}$Am $\\alpha$-emitting source to detect $\\alpha$-rays stopped in the capsule. We successfully detect helium atoms that diffuse out of the capsule by accumulating them for one to 20 hours in a closed chamber. The detected amount is found to be proportional to the accumulation time. Our method is applicable to probe $\\alpha$-emitting radioactivity in bulk material.

  12. Proton-neutron quadrupole interactions: an effective contribution to the pairing field

    E-print Network

    R. Fossion; C. De Coster; J. E. Garcia-Ramos; K. Heyde

    2002-01-22

    We point out that the proton-neutron energy contribution, for low multipoles (in particular for the quadrupole component), effectively renormalizes the strength of the pairing interaction acting amongst identical nucleons filling up a single-j or a set of degenerate many-j shells. We carry out the calculation in lowest-order perturbation theory. We perform a study of this correction in various mass regions. These results may have implications for the use of pairing theory in medium-heavy nuclei and for the study of pairing energy corrections to the liquid drop model when studying nuclear masses.

  13. Additivity of Effective Quadrupole Moments and Angular Momentum Alignments in the A~130 Nuclei

    SciTech Connect

    Matev, M.; Afanasjev, A. V.; Dobaczewski, J.; Lalazissis, G. A.; Nazarewicz, Witold

    2007-01-01

    The additivity principle of the extreme shell model stipulates that an average value of a one-body operator be equal to the sum of the core contribution and effective contributions of valence (particle or hole) nucleons. For quadrupole moment and angular momentum operators, we test this principle for highly and superdeformed rotational bands in the A~130 nuclei. Calculations are done in the self-consistent cranked non-relativistic Hartree-Fock and relativistic Hartree mean-field approaches. Results indicate that the additivity principle is a valid concept that justifies the use of an extreme single-particle model in an unpaired regime typical of high angular momenta.

  14. Effective medium theory for two-dimensional non-magnetic metamaterial lattices up to quadrupole expansions

    NASA Astrophysics Data System (ADS)

    Chremmos, Ioannis; Kallos, Efthymios; Giamalaki, Melpomeni; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2015-07-01

    We present a formulation for deriving effective medium properties of infinitely periodic two-dimensional metamaterial lattice structures beyond the conventional static and quasi-static limits. We utilize the multipole expansions, where the polarization currents associated with the supported Bloch modes are expressed via the electric dipole, magnetic dipole, and electric quadrupole moments per unit length. We then propose a method to calculate the Bloch modes based on the lattice geometry and individual unit element structure. The results revert to well-known formulas in the traditional quasistatic limit and are useful for the homogenization of nanorod-type metamaterials which are frequently used in optical applications.

  15. Observation of electric quadrupole transitions to Rydberg nd states of ultracold rubidium atoms

    NASA Astrophysics Data System (ADS)

    Tong, D.; Farooqi, S. M.; van Kempen, E. G. M.; Pavlovic, Z.; Stanojevic, J.; Côté, R.; Eyler, E. E.; Gould, P. L.

    2009-05-01

    We report the observation of dipole-forbidden, but quadrupole-allowed, one-photon transitions to high-Rydberg states in Rb. Using pulsed uv excitation of ultracold atoms in a magneto-optical trap, we excite 5s?nd transitions over a range of principal quantum numbers n=27-59 . Compared to dipole-allowed (E1) transitions from 5s?np , these E2 transitions are weaker by a factor of approximately 2000. We also report measurements of the anomalous np3/2:np1/2 fine-structure transition strength ratio for n=28-75 . Both results are in agreement with theoretical predictions.

  16. Adiabatic Formation of a Matched-beam Distribution for an Alternating-gradient Quadrupole Lattice

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.; Qin, Hong

    2010-02-02

    The formation of a quasiequilibrium beam distribution matched to an alternating-gradient quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is studied numerically using particle-in-cell simulations. Quiescent beam propagation over several hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase advances describing the strength of the oscillating focusing field. Properties of the matched-beam distribution are investigated. In particular, self-similar evolution of the beam density profile is observed over a wide range of system parameters. The numerical simulations are performed using the WARP particle-in-cell code.

  17. Vane fabrication for the proof-of-principle radio-frequency quadrupole accelerator

    SciTech Connect

    Williams, S.W.; Potter, J.M.

    1981-01-01

    The electrodes for the Proof-of-Principle (POP) Radio-Frequency Quadrupole (RFQ) accelerator were machined on a numerically controlled, three-axis, vertical mill. These pole tips, or vanes, were prepared for, and used, in the successful demonstration of RFQ practicality at Los Alamos National Laboratory in February 1980. The data set that described the vanes contained about 10 million bits of tool position data. The vanes were cut from OFHC copper blanks. The tolerances achieved were approximately +- 0.005 cm. The design and manufacturing procedures are described.

  18. Analysis of continuously rotating quadrupole focusing channels using generalized Courant-Snyder theory

    SciTech Connect

    Chung, Moses; Qin, Hong; Gilson, Erik; Davidson, Ronald C.

    2013-01-01

    By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously-rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linear focusing channels.

  19. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. PMID:21353577

  20. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  1. Density functional theory study of nitrogen-14 nuclear quadrupole coupling parameters of L-histidine: hydrogen-bonded system.

    PubMed

    Elmi, Maryam Mitra; Kaykhaei, Abbas Ali; Elmi, Fatemeh

    2012-04-01

    The calculations of nitrogen-14 nuclear quadrupole parameters, nuclear quadrupole coupling constant, ?, and asymmetry parameter, ?, of L-His were done in two distinct environments: one as a free fully optimized molecule, an isolated molecule with the geometrical parameters taken from X-ray, and the other in the orthorhombic and monoclinic solid states. The most probable interacting molecules with the central molecule in the crystalline phase were considered in the hexameric clusters to include hydrogen-bonding effects in the calculations. The computations were performed with PW91P86/6-31++G** and B3LYP6-31++G** methods using the Gaussian 98 program. The good agreement between the nitrogen-14 quadrupole parameters of the free His and imidazole molecules with their microwave available data demonstrates that the applied level of theory and the 6-31++G** basis set are suitable to obtain reliable electric field gradient values. In the solid state, the shifts of quadrupole coupling parameters from the monomer to the solid phase are reasonably well reproduced for the amino and imino sites of imidazole ring in a hexameric cluster. That implies the fact that the hexameric cluster worked effectively to generate the results which are compatible with the experiment. The quadrupole coupling constant values of -N(+) H(3) group are in fair agreement with the experiment. This discrepancy is due to the absences of vibrational effects and the rotation of -N(+) H(3) group around N-C(?) bond. PMID:22415677

  2. Fabrication and test of 4m long Nb3Sn quadrupole coil made of RRP-114-127 strand

    SciTech Connect

    Bossert, R.; Ambrosio, G.; Andreev, N.; Barzi, E.; Chlachidze, G.; Kashikhin, V.V.; Lamm, M.; Nobrega, A.; Novitski, I.; Orris, D.; Tartaglia, M.; /Fermilab

    2011-06-01

    Fermilab is collaborating with LBNL and BNL (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. Several two-layer quadrupole models of the 1-meter and 3.4-meter length with 90mm apertures have been fabricated and tested by the US-LARP collaboration. High-Jc RRP-54/61 strand was used for nearly all models. Large flux jumps typical for this strand due to the large sub-element diameter limited magnet quench performance at temperatures below 2.5-3K. This paper summarizes the fabrication and test by Fermilab of LQM01, a long quadrupole coil test structure (quadrupole mirror) with the first 3.4m quadrupole coil made of more stable RRP-114/127 strand. The coil and structure are fully instrumented with voltage taps, full bridge strain gauges and strip heaters to monitor preload, thermal properties and quench behavior. Measurements during fabrication are reported, including preload during the yoke welding process. Testing is done at 4.5K, 1.9K and a range of intermediate temperatures. The test results include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9K to 4.5K.

  3. Test Results of the First 3.7 m Long Nb3Sn Quadrupole by LARP and Future Plans

    SciTech Connect

    Ambrosio, G.; Schmalzle, J.; Andreev, N.; Anerella, M.; Barzi, E.; Bingham, B.; Bocian, D.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Escallier, J.; Felice, H.; Ferracin, P.; Ghosh, A.; Godeke, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V.V.; Kim, M.J.; Kovach, P.; Lam, M.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitshy, I.; Orris, D.; Prebys, E.; Prestemon, S.; Sabbi, G.L.; Schmalzle, J.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Velev, G.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2011-08-03

    In December 2009 during its first cold test, LQS01, the first Long Nb{sub 3}Sn Quadrupole made by LARP (LHC Accelerator Research Program, a collaboration of BNL, FNAL, LBNL and SLAC), reached its target field gradient of 200 T/m. This target was set in 2005 by the US Department of Energy, CERN and LARP, as a significant milestone toward the development of Nb{sub 3}Sn quadrupoles for possible use in LHC luminosity upgrades. LQS01 is a 90 mm aperture, 3.7 m long quadrupole using Nb{sub 3}Sn coils. The coil layout is equal to the layout used in the LARP Technological Quadrupoles (TQC and TQS models). Pre-stress and support are provided by a segmented aluminum shell pre-loaded using bladders and keys, similarly to the TQS models. After the first test the magnet was disassembled, reassembled with an optimized pre-stress, and reached 222 T/m at 4.5 K. In this paper we present the results of both tests and the next steps of the Long Quadrupole R and D.

  4. Test Results of the first 3.7 m Long Nb3Sn Quadrupole by LARP and Future Plans

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bingham, B.; Bocian, D.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Escallier, J.; Felice, H.; Ferracin, P.; Ghosh, A.; Godeke, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V. V.; Kim, M. J.; Kovach,, P.; Lamm, M.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Orris, D.; Prebys, E.; Prestemon, S.; Sabbi, G. L.; Schmalzle, J.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Velev, G.; Wanderer, P.; Whitson, G.; Zlobin, A. V.

    2010-08-01

    In December 2009 during its first cold test, LQS01, the first long Nb{sub 3}Sn Quadrupole made by LARP (LHC Accelerator Research Program, a collaboration of BNL, FNAL, LBNL and SLAC), reached its target field gradient of 200 T/m. This target was set in 2005 by the US Department fo Energy, CERN and LARP, as a significant milestone toward the development of Nb{sub 3}Sn quadrupoles for possible use in LHC luminosity upgrades. LQS01 is a 90 mm aperture, 3.7 m long quadrupole using Nb{sub 3}Sn coils. The coil layout is equal to the layout used in the LARP Technological Quadrupoles (TQC and TQS models). Pre-stress and support are provided by a segmented aluminum shell pre-loaded using bladders and keys, similarly to the TQS models. After the first test the magnet was disassembled, reassembled with an optimized pre-stress, and reached 222 T/m at 4.5 K. In this paper we present the results of both tests and the next steps of the Long Quadrupole R&D.

  5. Resonances in barred galaxies

    NASA Astrophysics Data System (ADS)

    Ceverino, D.; Klypin, A.

    2007-08-01

    The inner parts of many spiral galaxies are dominated by bars. These are strong non-axisymmetric features which significantly affect orbits of stars and dark matter particles. One of the main effects is the dynamical resonances between galactic material and the bar. We detect and characterize these resonances in N-body models of barred galaxies by measuring angular and radial frequencies of individual orbits. We found narrow peaks in the distribution of orbital frequencies with each peak corresponding to a specific resonance. We found five different resonances in the stellar disc and two in the dark matter. The corotation resonance (CR) and the inner and outer Lindblad resonances are the most populated. The spatial distributions of particles near resonances are wide. For example, the inner Lindblad resonance is not localized at a given radius. Particles near this resonance are mainly distributed along the bar and span a wide range of radii. On the other hand, particles near the CR are distributed in two broad areas around the two stable Lagrange points. The distribution resembles a wide ring at the corotation radius. Resonances capture disc and halo material in near-resonant orbits. Our analysis of orbits in both N-body simulations and simple analytical models indicates that resonances tend to prevent the dynamical evolution of this trapped material. Only if the bar evolves as a whole, resonances drift through the phase space. In this case particles anchored near resonant orbits track the resonance shift and evolve. The criteria to ensure a correct resonant behaviour discussed by Weinberg and Katz can be achieved with few millions particles because the regions of trapped orbits near resonances are large and evolving.

  6. Superconducting quadrupoles

    SciTech Connect

    McInturff, A.D.

    1985-07-01

    The data base for this paper will represent the work from two different groups and two different Laboratories (Brookhaven National Laboratory and Fermi National Accelerator Laboratory). The majority of the data was that obtained by the Fermi National Accelerator Group and is the most recent, and is based on a larger number of coil windings. The coil winding sizes that will be discussed are 12 cm, (Figure 1) 7.6 cm and 5 cm, (Figure 2) for the inner diameter. The maximum gradients measured in the 5 cm sizes were 1.93 T/cm at 3.5 K and 1.79 T/cm at 4.2 K. In the 7.6 cm size were 1.35 T/cm at 2.0 K and 1.1 T/cm at 4.2 K and in the 12.0 cm size was 1.35 T/cm at 4.2 K. The 12 cm size used a cold iron shield, but had an older conductor, so one effect (increase due to Fe) offset the other (lower J/sub c/ (H) of the earlier superconductor). These gradients (especially the 12 cm measurements) can be improved using more modern conductors, (i.e., approx.20% + g/(cm A) and their higher current densities. These gradients represent an increase of 2 to 3+ times the value obtainable using conventional iron and copper magnets at a comparable aperature. The original purposes for these coils were for the 12 cm size, the Isabelle lattice, the 7.6 cm size, the Tevatron lattice and low ..beta.. insertion focus, and the 5 cm size, the final focus of SLC at SLAC and SSC size coils.

  7. Chapter 1 Magnetic Resonance Contributions to Other Sciences

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    In 1947, I.I. Rabi invented the molecular beam magnetic resonance method for the important, but limited purpose, of measuring nuclear magnetic moments and five of us working in his laboratory immediately began such experiments. The first experiments with LiCl gave the expected single resonance for each nucleus, but we were surprised to discover six resonances for the proton in H2, which we soon showed was due to the magnetic effects of the other proton and the rotating charged molecule: from these measurements we could also obtain new information on molecular structure. We had another shock when we studied D2 and found the resonance curves were spread more widely for D2 than H2 even though the magnetic interactions should have been much smaller. We found we could explain this by assuming that the deuteron had an electric quadrupole moment and J. Schwinger pointed out that this would require the existence of a previously unsuspected electric tensor force between the neutron and the proton. With this, the resonance method was giving new fundamental information about nuclear forces. In 1944, Rabi and I pointed out that it should be possible by the Dirac theory and our past resonance experiments to calculate exactly the hyperfine interaction between the electron and the proton in the hydrogen atom and we had two graduate students, Nafe and Nelson do the experiment and they found a disagreement which led J. Schwinger to develop the first successful relativistic quantum field theory and QED. In 1964, Purcell, Bloch and others detected magnetic resonance transitions by the effect of the transition on the oscillator, called NMR, making possible measurements on liquids, solids and gases and giving information on chemical shifts and thermal relaxation times T1 and T2. I developed a magnetic resonance method for setting a limit to the EDM of a neutron in a beam and with others for neutrons stored in a suitably coated bottle. Magnetic resonance measurements provide high stability atomic clocks. Both the second and the meter are now defined in terms of atomic clocks. Lauterbuhr, Mansfield, Damadian and others developed the important methods of using inhomogeneous magnetic fields to localize the magnetic resonance in a tissue sample producing beautiful and valuable magnetic resonance images, MRI's, and fMRI's.

  8. Crossing simple resonances

    SciTech Connect

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  9. Magnetic Resonance Imaging (MRI)

    MedlinePLUS

    ... Your Best Self Smart Snacking Losing Weight Safely Magnetic Resonance Imaging (MRI) KidsHealth > Teens > Cancer Center > Diagnostic Tests > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ...

  10. MRI (Magnetic Resonance Imaging)

    MedlinePLUS

    ... Radiation-Emitting Products and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More ... MB) Also available in Other Language versions . Description Magnetic resonance imaging (MRI) is a medical imaging procedure ...

  11. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  12. Molecular resonance phenomena. [Calculation of resonance widths

    SciTech Connect

    Hazi, A.U.

    1980-01-01

    It is attempted to show that the Stieltjes-moment-theory provides a practical and a reasonably accurate method for calculating the widths of molecular resonances. The method seems to possess a number of advantages for molecular applications, since it avoids the explicit construction of continuum wavefunctions. It is very simple to implement the technique numerically, because it requires only existing bound-state electronic structure codes. Through the use of configuration interaction techniques, many-electron correlation and polarization effects can be included in the description of both the resonance and the non-resonant background continuum. To illustrate the utility and the accuracy of the Stieltjes-moment-theory technique, used in conjunction with configuration interaction (CI) wave functions, recent applications to the /sup 1/..sigma../sub u/(1sigma/sub u/ 2sigma/sub g/) autoionizing resonance state of H/sub 2/ and the well known /sup 2/PI/sub g/ state of N/sub 2//sup -/ are discussed. The choices of the one-electron basis sets and the types of many-electron configurations appropriate for these two cases are described. Also, guidelines for the selection of the projection operators defining the resonant and non-resonant subspaces in the case of both Feshbach and shape-resonances are given. The numerical results indicate that the Stieltjes-moment-theory technique, which employs L/sup 2/ basis functions exclusively, produces as accurate resonance parameters as can be extracted from direct electron-molecule scattering calculations, provided approximately the same approximations are used to describe important physical effects such as target polarization. Furthermore the method provides sufficiently accurate fixed-nuclei electronic resonance parameters to be used in ab initio calculation of resonant vibrational excitation cross sections. (WHK)

  13. Electroproduction of the Delta(1232) resonance at high momentum transfer

    NASA Astrophysics Data System (ADS)

    Frolov, Valery Victor

    We studied the electroproduction of the ?(1232) resonance at Q2 of 2.8 and 4 GeV2 via the reaction p(e,e/sp/prime p)?0. Angular distributions of the decay ?(1232) ? p?0 were measured over a wide range of barycentric energies. The transition N - /Delta form factor, G*M, and the ratios of electric quadrupole and Conlomb quadrupole to magnetic dipole multipole amplitudes (REM = E1+/M1+ and RSM = S1+/M1+) were extracted from the decay angular distribution, The goal of this experiment is to asses the transition in Q2 from the constituent quark model (CQM) to the regime where hard perturbative QCD (pQCD) processes become important. At Q 2~ few GeV2 the predictions for ratio REM vary from a ~[-]0.02[-]0.03 in the CQM limit, to about +1 in the pQCD limit. The ratio RSM is expected to vanish in both limits. The analysis of the data shows that GM* is decreasing faster with Q2 than dipole form factor, the ratio REM remains up to Q2 of 4 GeV2, and RSM is small but nonzero. These results indicate that hadron helicity is not conserved in the N - /Delta transition and rule out the QCD prediction, REM = +1 and RSM = 0.

  14. Quadrupole-octopole alignment of CMB related to the primordial power spectrum with dipolar modulation in anisotropic spacetime

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Li, Xin; Wang, Sai

    2015-05-01

    The WMAP and Planck observations show that the quadrupole and octopole orientations of the CMB might align with each other. We reveal that the quadrupole-octopole alignment is a natural implication of the primordial power spectrum in an anisotropic spacetime. The primordial power spectrum is presented with a dipolar modulation. We obtain the privileged plane by employing the “power tensor” technique. At this plane, there is maximum correlation between quadrupole and octopole. The probability for the alignment is much larger than that in the isotropic universe. We find that this model would lead to deviations from the statistical isotropy only for low-? multipoles. Supported by National Natural Science Foundation of China (11075166, 11147176)

  15. Shapiro Delays at the Quadrupole Order for Tests of the No-Hair Theorem Using Pulsars around Spinning Black Holes

    E-print Network

    Christian, Pierre; Loeb, Abraham

    2015-01-01

    One avenue for testing the no-hair theorem is obtained through timing a pulsar orbiting close to a black hole and fitting for quadrupolar effects on the time-of-arrival of pulses. If deviations from the Kerr quadrupole are measured, then the no-hair theorem is invalidated. To this end, we derive an expression for the light travel time delay for a pulsar orbiting in a black-hole spacetime described by the Butterworth-Ipser metric, which has an arbitrary spin and quadrupole moment. We consider terms up to the quadrupole order in the black-hole metric and derive the time-delay expression in a closed analytic form. This allows for fast computations that are useful in fitting time-of-arrival observations of pulsars orbiting close to astrophysical black holes.

  16. Optimization and test of a 120mm LARP Nb3Sn quadrupole coil using magnetic mirror structure

    SciTech Connect

    Bossert, R.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Caspi, S.; Cheng, D.; Chlachidze, G.; Dietderich, D.; Felice, H.; Ferracin, P.; /LBL, Berkeley /Brookhaven /LBL, Berkeley /Fermilab /LBL, Berkeley /Brookhaven

    2011-09-01

    The US-LARP collaboration is developing a new generation of large-aperture high-field quadrupoles based on Nb{sub 3}Sn superconductor for the LHC upgrades. The development and implementation of this new technology involves the fabrication and testing of series of model magnets, coils and other components with various design and processing features. New 120-mm HQ coils made of Rutherford cable, one with an interlayer resistive core, and both with optimized reaction processes, were fabricated and tested using a quadrupole mirror structure under operating conditions similar to those in a real magnet. The coils were instrumented with voltage taps and strain gauges to study the mechanical and quench performance. Quench antenna and temperature gauges were installed in the mirror structure to measure the coil temperature and locate quench origins. This paper presents details of the coil design and fabrication procedures, coil assembly and pre-stress in the quadrupole mirror structure, and coil test results.

  17. ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

    E-print Network

    Crofts, Antony R.

    CHAPTER 3 ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY 1 Sergei A. Dikanov and 2 Antony R. Crofts 1 for the investigation of unpaired electron spins. Two terms are used in the literature: electron paramagnetic resonance (EPR) and electron spin resonance (ESR). We will use the first term in this chapter. During the sixty

  18. Performance of HQ02, an optimized version of the 120 mm $Nb_3Sn$ LARP quadrupole

    E-print Network

    Chlachidze, G; Anerella, M; Borgnolutti, F; Bossert, R; Caspi, S; Cheng, D W; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia A R; Marchevsky, M; Orris, D; Roy, P K; Sabbi, G L; Salmi, T; Schmalzle, J; Sylvester, C; Tartaglia, M; Tompkins, J; Wanderer, P; Wang, X R; Zlobin, A V

    2013-01-01

    In preparation for the high luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) is developing a new generation of large aperture high-field quadrupoles based on Nb3Sn technology. One meter long and 120 mm diameter HQ quadrupoles are currently produced as a step toward the eventual aperture of 150 mm. Tests of the first series of HQ coils revealed the necessity for further optimization of the coil design and fabrication process. A new model (HQ02) has been fabricated with several design modifications, including a reduction of the cable size and an improved insulation scheme. Coils in this magnet are made of a cored cable using 0.778 mm diameter Nb3Sn strands of RRP 108/127 sub-element design. The HQ02 magnet has been fabricated at LBNL and BNL, and then tested at Fermilab. This paper summarizes the performance of HQ02 at 4.5 K and 1.9 K temperatures.

  19. Temperature and phase-space density of a cold atom cloud in a quadrupole magnetic trap

    NASA Astrophysics Data System (ADS)

    Ram, S. P.; Mishra, S. R.; Tiwari, S. K.; Rawat, H. S.

    2014-08-01

    We present studies on modifications in the temperature, number density and phase-space density when a laser-cooled atom cloud from optical molasses is trapped in a quadrupole magnetic trap. Theoretically, for a given temperature and size of the cloud from the molasses, the phase-space density in the magnetic trap is shown first to increase with increasing magnetic field gradient and then to decrease with it after attaining a maximum value at an optimum value of the magnetic-field gradient. The experimentally-measured variation in the phase-space density in the magnetic trap with changing magnetic field gradient is shown to exhibit a similar trend. However, the experimentally-measured values of the number density and the phase-space density are much lower than the theoretically-predicted values. This is attributed to the experimentally-observed temperature in the magnetic trap being higher than the theoretically-predicted temperature. Nevertheless, these studies can be useful for setting a higher phase-space density in the trap by establishing an optimal value of the field gradient for a quadrupole magnetic trap.

  20. Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field

    SciTech Connect

    Abe, K.; Hasegawa, T.

    2010-03-15

    Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. The analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.

  1. Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

    SciTech Connect

    Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.

    2011-07-15

    Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of {sup 192,194,196}Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the {gamma}-vibration bands are compared to the corresponding sequences of experimental states.

  2. Quadrupole Collective Dynamics from Energy Density Functionals: Collective Hamiltonian and the Interacting Boson Model

    E-print Network

    K. Nomura; T. Niksic; T. Otsuka; N. Shimizu; D. Vretenar

    2011-06-14

    Microscopic energy density functionals (EDF) have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this work we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations, and the Interacting Boson Model. The two models are compared in a study of the evolution of non-axial shapes in Pt isotopes. Starting from the binding energy surfaces of $^{192,194,196}$Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM-2 Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the $\\gamma$-vibration bands are compared to the corresponding sequences of experimental states.

  3. Magnetic design of large-bore superconducting quadrupoles for the AHF

    SciTech Connect

    Vladimir S Kashikhin et al.

    2002-08-13

    The Advanced Hydrotest Facility (AHF), under study by LANL, utilizes large-bore superconducting quadrupole magnets to image protons for radiography of fast events. In this concept, 50-GeV proton bunches pass through a thick object and are imaged by a lens system that analyzes the scattered beam to determine object details. Twelve simultaneous views of the object are obtained using multiple beam lines. The lens system uses two types of quadrupoles: a large bore (48-cm beam aperture) for wide field of view imaging and a smaller bore (23 cm aperture) for higher resolution images. The gradients of the magnets are 10.14 T/m and 18.58 T/m with magnetic lengths of 4.3 m and 3.0 m, respectively. The magnets are sufficiently novel to present a design challenge. Evaluation and comparisons were made for various types of magnet design: shell and racetrack coils, cold and warm iron, as well as an active superconducting screen. Nb{sub 3}Sn cable was also considered as an alternative to avoid quenching under high beam-scattering conditions. The superconducting shield concept eliminates the iron core and greatly lessens the cryogenic energy needed for cool down. Several options are discussed and comparisons are made.

  4. Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Rodríguez-Guzmán, R.; Robledo, L. M.

    2015-07-01

    Collective quadrupole and octupole states are described in a series of Sm and Gd isotopes within the framework of the interacting boson model (IBM), whose Hamiltonian parameters are deduced from mean-field calculations with the Gogny energy density functional. The link between both frameworks is the (?2?3 ) potential energy surface computed within the Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The diagonalization of the IBM Hamiltonian provides excitation energies and transition strengths of an assorted set of states including both positive- and negative-parity states. The resultant spectroscopic properties are compared with the available experimental data and also with the results of the configuration mixing calculations with the Gogny force within the generator coordinate method (GCM). The structure of excited 0+ states and its connection with double-octupole phonons is also addressed. The model is shown to describe the empirical trend of the low-energy quadrupole and octupole collective structure fairly well and turns out to be consistent with GCM results obtained with the Gogny force.

  5. Field Tolerances for the Triplet Quadrupoles of the LHC High Luminosity Lattice

    SciTech Connect

    Nosochkov, Yuri; Cai, Y.; Jiao, Y.; Wang, M-H.; Fartoukh, S.; Giovannozzi, M.; Maria, R.de; McIntosh, E.; ,

    2012-06-25

    It has been proposed to implement the so-called Achromatic Telescopic Squeezing (ATS) scheme in the LHC high luminosity (HL) lattice to reduce beta functions at the Interaction Points (IP) up to a factor of 8. As a result, the nominal 4.5 km peak beta functions reached in the Inner Triplets (IT) at collision will be increased by the same factor. This, therefore, justifies the installation of new, larger aperture, superconducting IT quadrupoles. The higher beta functions will enhance the effects of the triplet quadrupole field errors leading to smaller beam dynamic aperture (DA). To maintain the acceptable DA, the effects of the triplet field errors must be re-evaluated, thus specifying new tolerances. Such a study has been performed for the so-called '4444' collision option of the HL-LHC layout version SLHCV3.01, where the IP beta functions are reduced by a factor of 4 in both planes with respect to a pre-squeezed value of 60 cm at two collision points. The dynamic aperture calculations were performed using SixTrack. The impact on the triplet field quality is presented.

  6. High order beam features and fitting quadrupole scan data to particle code model.

    SciTech Connect

    Lysenko, W. P.; Garnett, R. W.; Gilpatrick, J. D.; Qiang, J.; Rybarcyk, L. J.; Ryne, Robert; Schneider, J. D.; Smith, H. V.; Young, L. M.; Schulze, M. E.

    2003-01-01

    Quadrupole scans in the HEBT of the 6.7 MeV LEDA RFQ were analyzed to characterize the RFQ output beam. In previous work, profiles measured by the wire scanner were fit to models (beam parameterizations and HEBT simulations) to determine the transverse Courant-Snyder parameters {alpha}, {beta}, and {epsilon} at the RFQ exit. Unfortunately, at the larger quadrupole settings, the measured profiles showed features that were not present in any of our simulations. Here we describe our latest analysis, which resulted in very good fits by using an improved model for the RFQ output beam. The model beam was generated by the RFQ simulation code TOUTATIS. In our fitting code, this beam was distorted by linear transformations that changed the Courant-Snyder parameters to whatever values were required by the nonlinear optimizer while preserving the high-order features of the phase-space distribution. No new physics in the HEBT was required to explain our quad-scan results, just an improved initial beam. High-order features in the RFQ output beam apparently make a significant difference in behavior downstream of the RFQ. While this result gives us increased confidence in our codes, we still have a mystery: exactly what high-order features in the beam are responsible for the the strange behavior downstream. Understanding this phenomenon may be helpful to understanding our halo-experiment data. We have begun to study this by comparing higher-order moments of the TOUTATIS distribution with other distributions.

  7. Timescales of Kozai-Lidov oscillations at quadrupole and octupole order in the test particle limit

    NASA Astrophysics Data System (ADS)

    Antognini, J. M. O.

    2015-10-01

    Kozai-Lidov (KL) oscillations in hierarchical triple systems have found application to many astrophysical contexts, including planet formation, Type Ia supernovae, and supermassive black hole dynamics. The period of these oscillations is known at the order-of-magnitude level, but dependences on the initial mutual inclination or inner eccentricity are not typically included. In this work I calculate the period of KL oscillations (tKL) exactly in the test particle limit at quadrupole order (TPQ). I explore the parameter space of all hierarchical triples at TPQ and show that except for triples on the boundary between libration and rotation, the period of KL oscillations does not vary by more than a factor of a few. The exact period may be approximated to better than 2 per cent for triples with mutual inclinations between 60° and 120° and initial eccentricities less than ˜0.3. In addition, I derive an analytic expression for the period of octupole-order oscillations due to the `eccentric KL mechanism' (EKM). I show that the time-scale for EKM oscillations is proportional to ? _{oct}^{-1/2}, where ?oct measures the strength of octupole perturbations relative to quadrupole perturbations.

  8. Technetium-99 NMR and rationalized quadrupole moment values for transition metal nuclei

    NASA Astrophysics Data System (ADS)

    Kidd, R. G.

    A 99Tc half-height linewidth of 29 Hz was observed for a 0.63 M aqueous solution of NaTCO 4. This, together with literature values for other transition metal NMR line-widths, gives quadrupole coupling constants for a model system of seven MO 4n- molecules in solution (M = 51V, 53Cr, 95Mo, 55Mn, 99Tc, 187Re, 188Os), where the electric field gradients are small and uniform, with an average value of (0.36 ± 0.07) × 10 15 esu cm -3. The constancy of electric field gradient within this series permits the determination of new quadrupole moment values, in 10 -24 cm 2 or barn units, of 0.28 for 51V, 0.038 for 53Cr, 0.11 for 55Mn, 0.011 for 95Mo, 0.13 for 97MO, 0.28 for 99Tc, 3.0 for 185Re, 2.8 for 187Re, and 0.54 for 189Os, which do not depend upon a theoretical electric field gradient calculation. The new value for 55Mn lies outside the range of previously reported values and is discussed in detail.

  9. The development of magnetic field measurement system for drift-tube linac quadrupole

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  10. Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force

    E-print Network

    K. Nomura; R. Rodríguez-Guzmán; L. M. Robledo

    2015-07-17

    Collective quadrupole and octupole states are described in a series of Sm and Gd isotopes within the framework of the interacting boson model (IBM), whose Hamiltonian parameters are deduced from mean field calculations with the Gogny energy density functional. The link between both frameworks is the ($\\beta_2\\beta_3$) potential energy surface computed within the Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The diagonalization of the IBM Hamiltonian provides excitation energies and transition strengths of an assorted set of states including both positive and negative parity states. The resultant spectroscopic properties are compared with the available experimental data and also with the results of the configuration mixing calculations with the Gogny force within the generator coordinate method (GCM). The structure of excited $0^{+}$ states and its connection with double octupole phonons is also addressed. The model is shown to describe the empirical trend of the low-energy quadrupole and octupole collective structure fairly well, and turns out to be consistent with GCM results obtained with the Gogny force.

  11. Deuterium Quadrupole Coupling in Propiolic Acid and Fluorobenzenes Measured with Ftmw Spectrometer Using Multiple Fids

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Sargus, Bryan M.; Carey, Spencer J.; Kukolich, Stephen G.

    2013-06-01

    Rotational spectra of deuterated propiolic acids (Pro-OD and Pro-CD), 1-fluorobezence (4-D), and 1,2-difluorobezence (4-D) in their ground states have been measured using the newly constructed Fourier transform microwave (FTMW) spectrometer with 12" dia. mirrors and 5 kHz resolution. Multiple Free Induction Decays (FIDs) [up to 15] as well as background subtraction can be achieved with each beam pulse. For 1-fluorobezence (4-D), three hyperfine lines from the lowest J=1-0 transition were measured to check the synthesis method. For 1,2-difluorobezence (4-D), we obtained 35 hyperfine transitions from 3 to 12 GHz, including four different ?J transitions. Deuterium quadrupole coupling along three the inertia axes was well resolved. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, both including four different ?J transitions, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling along three the inertia axes was well resolved for Pro-OD. For Pro-CD, only the eQq_a_a was determined due to the near-coincidence of the CD bond and the a inertial axis.

  12. Extracting the {Omega}{sup -} electric quadrupole moment from lattice QCD data

    SciTech Connect

    Ramalho, G.; Pena, M. T.

    2011-03-01

    The {Omega}{sup -} has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the {Omega}{sup -} magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the {Omega}{sup -} form factors, as function of the square of the transferred four-momentum, Q{sup 2}, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular G{sub E2}, are determined at finite Q{sup 2} only, and the extraction of the electric quadrupole moment, Q{sub {Omega}}{sup -}=G{sub E2}(0)(e/2M{sub {Omega}}), involves an extrapolation of the numerical lattice results. In this work, we reproduce the lattice QCD data with a covariant spectator quark model for {Omega}{sup -} which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q{sub {Omega}}{sup -}. Our prediction is Q{sub {Omega}}{sup -}=(0.96{+-}0.02)x10{sup -2} efm{sup 2}[G{sub E2}(0)=0.680{+-}0.012].

  13. Shell-model study of quadrupole collectivity in light tin isotopes

    E-print Network

    L. Coraggio; A. Covello; A. Gargano; N. Itaco; T. T. S. Kuo

    2015-04-13

    A realistic shell-model study is performed for neutron-deficient tin isotopes up to mass A=108. All shell-model ingredients, namely two-body matrix elements, single-particle energies, and effective charges for electric quadrupole transition operators, have been calculated by way of the many-body perturbation theory, starting from a low-momentum interaction derived from the high-precision CD-Bonn free nucleon-nucleon potential. The focus has been put on the enhanced quadrupole collectivity of these nuclei, which is testified by the observed large B(E2;0+ -> 2+)s. Our results evidence the crucial role played by the Z=50 cross-shell excitations that need to be taken into account explicitly to obtain a satisfactory theoretical description of light tin isotopes. We find also that a relevant contribution comes from the calculated neutron effective charges, whose magnitudes exceed the standard empirical values. An original double-step procedure has been introduced to reduce effectively the model space in order to overcome the computational problem.

  14. Quadrupole source in prediction of the noise of rotating blades - A new source description

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1987-01-01

    The aim of this paper is to perform a theoretical study of the quadrupole term of the Ffowcs Williams-Hawkings (FW-H) equation to obtain practical results for applications to rotating blades. The quadrupole term of the FW-H equation is algebraically manipulated into volume, surface and line sources using generalized function theory and differential geometry. The volume source is of the type in Lighthill's jet noise theory. The surface sources are on the blade and shock surfaces and the line source is at the trailing edge. It is shown that contribution of volume sources in the boundary layer and wakes can be written in the form of surface integrals. It is argued that the surface and line sources and the part of the volume sources in the boundary layer, wakes and vortices near the blades should be sufficient in calculation of the noise of high speed rotating blades. The integrals correspoding to the various sources appearing in the formula for calculation of the acoustic pressure are briefly derived.

  15. Electronic manufacturing process improvement (EMPI) for automatic winding of quadrupole fiber optic gyro sensor coils

    NASA Astrophysics Data System (ADS)

    Safonov, Gregory S.

    1994-09-01

    The purpose of this EMPI program was to design an Automatic Coil Winding Station (ACWS) for winding Fiber Optic Gyro (FOG) sensor coils through the use of TQM, QFD, etc., followed by use of Taguchi an other statistical techniques to optimize the coil winding process. Four phases were involved: Process Definition, Critical Factor Identification, Variability Reduction, and SPC Implementation. Winding FOG coils is both difficult and fragile in that it is a quadrupole wind - as apposed to the conventional thread wind - compounded by the requirement for low tension precision, high-fiber packing density, and always risk of damage to the delicate fiber itself. The critical factor identification in the quadrupole winding process was reduced to fiber crossover - a significant detrimental influence on gyro performance - which, in turn, was closely identified with fiber gap control. The station was completed and deployed to the field where production coils are currently being wound. The ACWS not only lowered the required labor skill but succeeded in reducing the winding cycle time to 1 hour (from 24 hours) and touch labor time to 0.3 hours (from 24 hours) while improving the yield and performance through improved process control.

  16. Progress in the Long ${\\rm Nb}_{3}{\\rm Sn}$ Quadrupole R&D by LARP

    DOE PAGESBeta

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bocian, D.; Bossert, R.; Buehler, M.; Caspi, S.; Chlachidze, G.; Dietderich, D.; et al

    2011-11-14

    After the successful test of the first long Nb3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled in the LQS01more »structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02.« less

  17. Evolution of ground-state quadrupole and octupole stiffnesses in even-even barium isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Lei; Yang, Jie; Liu, Min-Liang; Xu, Fu-Rong

    2015-08-01

    Quadrupole and octupole stiffnesses in the ground states of even-even Ba-150112 isotopes have been systematically investigated by means of potential-energy-surface calculations. The calculations are carried out in both (?2,? ,?4 ) and (?2,?3,?4,?5) deformation spaces with the inclusion of triaxial and reflection-asymmetric shape degrees of freedom, respectively. The present results are compared with previous calculations and available experiments. The shape instabilities are evaluated by analyzing the potential energy curves with respect to both the quadrupole and octupole deformations, which is consistent with the previous discussions predicting the ? softness or triaxiality and octupole instability. In addition, taking the near-drip-line 114Ba nucleus as an example, we briefly investigate the effects of potential parameters (e.g., the strength of the spin-orbit potential ? , and the nuclear surface diffuseness a ) on the deformation energy curve, showing almost negligible modifications of nuclear shape and stiffness but considerable changes in the depth of the minimum and the height of the fission barrier (which may be very important for the study of heavy and superheavy nuclei).

  18. Vapor-liquid equilibria simulation and an equation of state contribution for dipole-quadrupole interactions.

    PubMed

    Vrabec, Jadran; Gross, Joachim

    2008-01-10

    A systematic investigation on vapor-liquid equilibria (VLEs) of dipolar and quadrupolar fluids is carried out by molecular simulation to develop a new Helmholtz energy contribution for equations of state (EOSs). Twelve two-center Lennard-Jones plus point dipole and point quadrupole model fluids (2CLJDQ) are studied for different reduced dipolar moments micro*2=6 or 12, reduced quadrupolar moments Q*2=2 or 4 and reduced elongations L*=0, 0.505, or 1. Temperatures cover a wide range from about 55% to 95% of the critical temperature of each fluid. The NpT+test particle method is used for the calculation of vapor pressure, saturated densities, and saturated enthalpies. Critical data and the acentric factor are obtained from fits to the simulation data. On the basis of this data, an EOS contribution for the dipole-quadrupole cross-interactions of nonspherical molecules is developed. The expression is based on a third-order perturbation theory, and the model constants are adjusted to the present 2CLJDQ simulation results. When applied to mixtures, the model is found to be in excellent agreement with results from simulation and experiment. The new EOS contribution is also compatible with segment-based EOS, such as the various forms of the statistical associating fluid theory EOS. PMID:18072758

  19. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    SciTech Connect

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-04-15

    We explore the potential of the electric quadrupole transitions 7s {sup 2}S{sub 1/2}-6d {sup 2}D{sub 3/2}, 6d {sup 2}D{sub 5/2} in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several competitive {sup A}Ra{sup +} candidates, with A= 223-229, are identified. In particular, we show that the transition 7s {sup 2}S{sub 1/2} (F=2,m{sub F}=0)-6d {sup 2}D{sub 3/2} (F=0,m{sub F}=0) at 828 nm in {sup 223}Ra{sup +}, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case, which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency uncertainty of 10{sup -17}. With more experimental effort, the {sup 223,225,226}Ra{sup +} clocks could be pushed to a projected performance reaching the 10{sup -18} level.

  20. Ovenized microelectromechanical system (MEMS) resonator

    DOEpatents

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.