Science.gov

Sample records for qualite applicable au

  1. Qualitative biomechanical principles for application in coaching.

    PubMed

    Knudson, Duane

    2007-01-01

    Many aspects of human movements in sport can be readily understood by Newtonian rigid-body mechanics. Many of these laws and biomechanical principles, however, are counterintuitive to a lot of people. There are also several problems in the application of biomechanics to sports, so the application of biomechanics in the qualitative analysis of sport skills by many coaches has been limited. Biomechanics scholars have long been interested in developing principles that facilitate the qualitative application of biomechanics to improve movement performance and reduce the risk of injury. This paper summarizes the major North American efforts to establish a set of general biomechanical principles of movement, and illustrates how principles can be used to improve the application of biomechanics in the qualitative analysis of sport technique. A coach helping a player with a tennis serve is presented as an example. The standardization of terminology for biomechanical principles is proposed as an important first step in improving the application ofbiomechanics in sport. There is also a need for international cooperation and research on the effectiveness of applying biomechanical principles in the coaching of sport techniques. PMID:17542182

  2. Qualitative Research Applications in Athletic Training

    PubMed Central

    Pitney, William A.; Parker, Jenny

    2002-01-01

    Objective: To explain the ethnographic, phenomenologic, and grounded theory approaches to qualitative research and to describe how these approaches can be applied to contemporary topics related to athletic training education. Background: Athletic training education has recently experienced an increase in the use of qualitative methods, and various qualitative approaches are viable for answering many questions related to athletic training education. Ethnography focuses on describing a culture or subculture. Phenomenology focuses on the meaning of lived human experience. Grounded theory focuses on developing theory related to social processes. Each approach is contextual and attempts to facilitate insight and understanding related to the human condition. Description: We provide an in-depth discussion of each of the selected qualitative approaches and explain the focus and unique data-collection and data-analysis strategies and identify the distinctive outcomes of each approach. Each research approach has a distinct purpose, and the specific application is driven by the questions asked. We also identify questions that are amenable to a specific method. Applications: To better understand the interactive nature of education and learning, athletic training researchers are beginning to ask questions that require information to be gathered about meaning, contexts, culture, and processes. Such questions are best answered through the use of qualitative research methods that most commonly include ethnography, phenomenology, and grounded theory. In order for athletic training professionals to gain the most from the research conducted, it is essential that they have an understanding of the theoretic underpinnings of these methods and when each should be used. PMID:12937540

  3. Validity in Qualitative Research: Application of Safeguards

    ERIC Educational Resources Information Center

    Daytner, Katrina M.

    2006-01-01

    The construct of validity has received considerable attention in qualitative methods literature (Denzin, 1989; Erickson, 1986; Geertz, 1973; Goetz & LeCompte, 1984; Howe & Eisenhart, 1990; Maxwell, 1992; Smith & Glass, 1987). Much of the attention has been focused upon the issue of whether qualitative results and interpretations accurately reflect…

  4. Qualitative Reasoning for Additional Die Casting Applications

    SciTech Connect

    R. Allen Miller; Dehua Cui; Yuming Ma

    2003-05-28

    If manufacturing incompatibility of a product can be evaluated at the early product design stage, the designers can modify their design to reduce the effect of potential manufacturing problems. This will result in fewer manufacturing problems, less redsign, less expensive tooling, lower cost, better quality, and shorter development time. For a given design, geometric reasoning can predict qualitatively the behaviors of a physical manufacturing process by representing and reasoning with incomplete knowledge of the physical phenomena. It integrates a design with manufacturing processes to help designers simultaneously consider design goals and manufacturing constraints during the early design stage. The geometric reasoning approach can encourage design engineers to qualitatively evaluate the compatibility of their design with manufacturing limitations and requirements.

  5. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  6. Bright, NIR-emitting Au23 from Au25: characterization and applications including biolabeling.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Verma, Pramod Kumar; Pal, Samir Kumar; Kumar, R C Arun; Paul, Soumya; Omkumar, Ramakrishnapillai Vyomakesannair; Pradeep, Thalappil

    2009-10-01

    A novel interfacial route has been developed for the synthesis of a bright-red-emitting new subnanocluster, Au(23), by the core etching of a widely explored and more stable cluster, Au(25)SG(18) (in which SG is glutathione thiolate). A slight modification of this procedure results in the formation of two other known subnanoclusters, Au(22) and Au(33). Whereas Au(22) and Au(23) are water soluble and brightly fluorescent with quantum yields of 2.5 and 1.3 %, respectively, Au(33) is organic soluble and less fluorescent, with a quantum yield of 0.1 %. Au(23) exhibits quenching of fluorescence selectively in the presence of Cu(2+) ions and it can therefore be used as a metal-ion sensor. Aqueous- to organic-phase transfer of Au(23) has been carried out with fluorescence enhancement. Solvent dependency on the fluorescence of Au(23) before and after phase transfer has been studied extensively and the quantum yield of the cluster varies with the solvent used. The temperature response of Au(23) emission has been demonstrated. The inherent fluorescence of Au(23) was used for imaging human hepatoma cells by employing the avidin-biotin interaction. PMID:19711391

  7. Shape-controlled synthesis of Au-Pd bimetallic nanocrystals for catalytic applications.

    PubMed

    Zhang, Lei; Xie, Zhaoxiong; Gong, Jinlong

    2016-07-21

    Au-Pd nanostructured materials have been recognized as important heterogeneous catalysts in various reactions, due to their superior activities caused by the ensemble and ligand effects. In recent years, shape-controlled synthesis of noble metal nanocrystals (NCs) provided a brand-new insight for improving the performance of catalysts. The electronic properties and catalytic activities of Au-Pd NCs could be optimized by tuning their shape and composition engineering. This review describes recent progress in the design and synthesis of shape-controlled Au-Pd bimetallic NCs and their emerging catalytic applications. The review starts with a general discussion of various applications of Au-Pd catalysts and the significance of preparing shape-controlled Au-Pd NCs, followed by an overview of synthetic strategies for two different structures of Au-Pd bimetallic catalysts: a core-shell structure and an alloy structure. We also put forward the key factors for the preparation of Au-Pd core-shell and alloy structures. Additionally, we discussed the unique optical properties and structural effects of shape-controlled Au-Pd NCs. These recent advancements in the methodology development of Au-Pd bimetallic NCs offer numerous insights for generating Au-Pd NCs with a number of unique geometries in the future. Furthermore, the systematic synthesis of core-shell or alloy structures would provide insights for the preparation of other bimetallic NCs. PMID:27095006

  8. The characteristics of Au:VO2 nanocomposite thin film for photo-electricity applications

    NASA Astrophysics Data System (ADS)

    Zhu, Yabin; Na, Jie; He, Fan; Zhou, Yueliang

    2013-08-01

    Au nanoparticles have been fabricated on normal glass substrates using nanosphere lithography (NSL) method. Vanadium dioxide has been deposited on Au/glass by reactive radio frequency (rf) magnetron sputtering. The structure and composition were determined by X-ray diffraction and X-ray photoelectron spectroscope. Electrical and optical properties of bare VO2 and Au:VO2 nanocomposite thin films were measured. Typical hysteresis behavior and sharp phase transition were observed. Nanopartical Au could effectively reduce the transition temperature to 40 °C. The transmittance spectrum for both Au:VO2 nanocomposite thin film shows high transmittance under transition temperature and low transmittance above transition temperature. The characteristics present the Au:VO2 nanocomposite thin film can be used for applications, such as “smart window” or “laser protector”.

  9. Thermal stability of Mo/Au bilayers for TES applications

    NASA Astrophysics Data System (ADS)

    Parra-Borderías, María; Fernández-Martínez, Iván; Fàbrega, Lourdes; Camón, Agustín; Gil, Oscar; González-Arrabal, Raquel; Sesé, Javier; Costa-Krämer, José Luis; Warot-Fonrose, Bénédicte; Serin, Virginie; Briones, Fernando

    2012-09-01

    Mo/Au bilayers are among the most suitable materials to be used as transition-edge sensors (TES) in cryogenic microcalorimeters and bolometers, developed, among other fields, for space missions. For this purpose the thermal stability of TES at temperatures below 150 °C is a critical issue. We report on the dependence of functional properties (superconducting critical temperature, residual resistance and α) as well as on microstructure, chemical composition and interface quality for optimized high quality Mo/Au bilayers on annealing temperature and time. Data show that the functional properties of the bilayers remain stable at T < 150 °C, but changes in microstructure, interface quality and functional properties were observed for layers heated at T ≥ 200 °C. Microstructural and chemical composition data suggest that the measured changes in residual resistance ratio (RRR) and TC at T ≥ 200 °C are mainly due to an increase in the average Au grain size and to Au migration along the Mo grain boundaries at the Au/Mo interface. A way to stabilize the functional properties of the Mo/Au bilayers against temperature enhancements is proposed.

  10. Application of statistical process control to qualitative molecular diagnostic assays.

    PubMed

    O'Brien, Cathal P; Finn, Stephen P

    2014-01-01

    Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data. PMID:25988159

  11. Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core-shell nanoreactors for gas sensor applications.

    PubMed

    Majhi, Sanjit Manohar; Rai, Prabhakar; Raj, Sudarsan; Chon, Bum-Soo; Park, Kyung-Kuen; Yu, Yeon-Tae

    2014-05-28

    In this work, Au@Cu2O core-shell nanoparticles (NPs) were synthesized by simple solution route and applied for CO sensing applications. Au@Cu2O core-shell NPs were formed by the deposition of 30-60 nm Cu2O shell layer on Au nanorods (NRs) having 10-15 nm width and 40-60 nm length. The morphology of Au@Cu2O core-shell NPs was tuned from brick to spherical shape by tuning the pH of the solution. In the absence of Au NRs, cubelike Cu2O NPs having ∼200 nm diameters were formed. The sensor having Au@Cu2O core-shell layer exhibited higher CO sensitivity compared to bare Cu2O NPs layer. Tuning of morphology of Au@Cu2O core-shell NPs from brick to spherical shape significantly lowered the air resistance. Transition from p- to n-type response was observed for all devices below 150 °C. It was demonstrated that performance of sensor depends not only on the electronic sensitization of Au NRs but also on the morphology of the Au@Cu2O core-shell NPs. PMID:24779525

  12. Highly selective ratiometric fluorescent probe for Au3+ and its application to bioimaging.

    PubMed

    Choi, Ji Young; Kim, Gun-Hee; Guo, Zhiqian; Lee, Hye Yeon; Swamy, K M K; Pai, Jaeyoung; Shin, Seunghoon; Shin, Injae; Yoon, Juyoung

    2013-11-15

    The 4-propargylamino-1,8-naphthalimide based fluorescent probe 1 has been explored as a sensor for selective detection of Au(3+). 4-Amino-1,8-naphthalimides, that possess typical intramolecular charge transfer (ICT) electronic characteristics, have been widely used as versatile platforms for fluorescent probes. The newly designed probe 1 contains a propargylamine moiety at C-4 of the naphthalimide chromophore that reacts with Au(3+) to generate a product that has distinctly different electronic properties from 1. Specifically, the probe undergoes a remarkable change in its absorption spectrum upon addition of Au(3+) that is associated with a distinct color change from yellow to light pink. In addition, a blue shift of ca. 56 nm also takes place in the emission spectra of the probe. Consequently, 1 serves as a reaction-based sensor or so called chemodosimeter for Au(3+). Importantly, surfactants enhance the rate of reaction of 1 with Au(3+), thus, enhancing its use as a real time sensor. Finally, the results of studies probing its application to bioimaging of Au(3+) in live cells show that the probe 1 has a unique ability to sense Au(3+) in cells and, in particular, in lipid droplets within cells. PMID:23810913

  13. Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Arsalani, S.; Neishaboorynejad, T.

    2014-05-01

    This work demonstrates a simple method for synthesizing gold-silver bimetallic nanoparticles (Ag@Au BNPs). Ag@Au BNPs on the carbon thin film are prepared by co-deposition of RF-sputtering and RF-PECVD using acetylene gas and gold-silver target. X-ray diffraction analysis indicates that Au and Ag NPs with FCC crystal structure are formed in our samples. From AFM image and data, average particles size of gold and silver are estimated to be about 5 and 8 nm, respectively. XRD profile and localized surface plasmon resonance (LSPR) spectroscopy indicate that Ag NPs in Ag@Au BNPs composite have a more chemical activity with respect to bare Ag NPs. Biosensor application of Ag@Au BNPs without probe immobilization is introduced too. The change in LSPR absorption peak of Ag@Au BNPs in presence of DNA primer decamer (ten-deoxycytosine) at fM concentrations is investigated. The LSPR absorption peak of Au NPs has a blue shift and the LSPR absorption peak of Ag NPs has a red shift by addition of DNA primer and under DNA exposure up to 1 h. Our sample shows a good response to low concentration of DNA and has a short response time. Both of these are prerequisite for applying this sample as LSPR biosensor chip.

  14. Enzymatic deposition of Au nanoparticles on the designed electrode surface and its application in glucose detection.

    PubMed

    Zhang, Hongfang; Liu, Ruixiao; Sheng, Qinglin; Zheng, Jianbin

    2011-02-01

    This paper reported the enzymatic deposition of Au nanoparticles (AuNPs) on the designed 3-mercapto-propionic acid/glucose oxidase/chitosan (MPA/GOD/Chit) modified glassy carbon electrode and its application in glucose detection. Chit served as GOD immobilization matrix and interacted with MPA through electrostatic attraction. AuNPs, without nano-seeds presented on the electrode surface, was produced through the glucose oxidase catalyzed oxidation of glucose. The mechanism of production of AuNPs was confirmed to be that enzymatic reaction products H(2)O(2) in the solution reduce gold complex to AuNPs. The characterizations of the electrode modified after each assembly step was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy showed the average particle size of the AuNPs is 40nm with a narrow particle size distribution. The content of AuNPs on the electrode surfaces was measured by differential pulse stripping voltammetry. The electrochemical signals on voltammogram showed a linear increase with the glucose concentration in the range of 0.010-0.12mM with a detection limit of 4μM. This provided a method to the determination of glucose. PMID:21115279

  15. Application of Cryopreserved Fibroblast Culture with Au Nanoparticles to Treat Burns.

    PubMed

    Volkova, Nataliia; Yukhta, Mariia; Pavlovich, Olena; Goltsev, Anatoliy

    2016-12-01

    The aim was to investigate a possibility of using the cryopreserved human culture of fibroblasts (CrHFC) with gold nanoparticles (AuNPs) to treat experimental burns in rats.The third-degree burns were modeled in white male rats. All the animals with burns were divided into three experimental groups: control group with no wound treatment; group 1 was composed of animals with CrHFC application; and group 2 consisted of those with CrHFC and AuNPs (6 μg/ml) application to a burn surface the next day after the injury. The CrHFC was applied to the methylcellulose gel in a dose of 5 × 10(4) of viable cells per 1 cm(2) of the burn. The animals were removed from the experiment on day 21 after the treatment.The CrHFC use alone and with AuNPs to the surface of burns stimulated the wound healing compared with the control. The effect of using CrHFC was less pronounced compared to the CrHFC application with AuNPs. It was reflected in a slower recovery of burns and moderate lymphocytic infiltration of granulation tissue. Immunofluorescent analysis emphasized that the use of CrHFC with AuNPs accelerated the skin synthetic processes and was helpful in recovering type I and III collagen content on day 21 after therapy.The results were likely related primarily to the unique structure and antimicrobial properties of AuNPs. Our experimental study of the effect of CrHFC with AuNPs application on regenerative processes in burns gives some pre-conditions to the following advanced bio- and nanotechnology developments. PMID:26762263

  16. Virus-templated Au and Au/Pt Core/shell Nanowires and Their Electrocatalytic Activitives for Fuel Cell Applications

    PubMed Central

    LEE, YOUJIN; KIM, JUNHYUNG; YUN, DONG SOO; NAM, YOON SUNG; SHAO-HORN, YANG; BELCHER, ANGELA M.

    2014-01-01

    A facile synthetic route was developed to make Au nanowires (NWs) from surfactant-mediated bio-mineralization of a genetically engineered M13 phage with specific Au binding peptides. From the selective interaction between Au binding M13 phage and Au ions in aqueous solution, Au NWs with uniform diameter were synthesized at room temperature with yields greater than 98 % without the need for size selection. The diameters of Au NWs were controlled from 10 nm to 50 nm. The Au NWs were found to be active for electrocatalytic oxidation of CO molecules for all sizes, where the activity was highly dependent on the surface facets of Au NWs. This low-temperature high yield method of preparing Au NWs was further extended to the synthesis of Au/Pt core/shell NWs with controlled coverage of Pt shell layers. Electro-catalytic studies of ethanol oxidation with different Pt loading showed enhanced activity relative to a commercial supported Pt catalyst, indicative of the dual functionality of Pt for the ethanol oxidation and Au for the anti-poisoning component of Pt. These new one-dimensional noble metal NWs with controlled compositions could facilitate the design of new alloy materials with tunable properties. PMID:24910712

  17. Au dotted magnetic network nanostructure and its application for on-site monitoring femtomolar level pesticide.

    PubMed

    Yang, Tianxi; Guo, Xiaoyu; Wang, Hui; Fu, Shuyue; Yu, Jie; Wen, Ying; Yang, Haifeng

    2014-04-01

    A novel magnetically responsive and surface-enhanced Raman spectroscopy (SERS) active nanocomposite is designed and prepared by direct grafting of Au nanoparticles onto the surface of magnetic network nanostructure (MNN) with the help of a nontoxic and environmentally friendly reagent of inositol hexakisphosphate shortly named as IP6. The presence of IP6 as a stabilizer and a bridging agent could weave Fe3O4 nanoparticles (NPs) into magnetic network nanostructure, which is easily dotted with Au nanoparticles (Au NPs). It has been shown firstly that the huge Raman enhancement of Au-MNN is reached by an external magnetic collection. Au-MNN presenting the large surface and high detection sensitivity enables it to exhibit multifunctional applications involving sufficient adsorption of dissolved chemical species for enrichment, separation, as well as a Raman amplifier for the analysis of trace pesticide residues at femtomolar level by a portable Raman spectrometer. Therefore, such multifunctional nanocomposites can be developed as a smart and promising nanosystem that integrates SERS approach with an easy assay for concentration by an external magnet for the effective on-site assessments of agricultural and environmental safety. PMID:24130070

  18. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  19. Green synthesis and applications of Au-Ag bimetallic nanoparticles.

    PubMed

    Meena Kumari, M; Jacob, John; Philip, Daizy

    2015-02-25

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenolapplication. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field. PMID:25218228

  20. Large coincidence lattice on Au/Fe3O4 incommensurate structure for spintronic applications

    NASA Astrophysics Data System (ADS)

    Muñoz-Noval, Alvaro; Rubio-Zuazo, Juan; Salas-Colera, Eduardo; Serrano, Aida; Rubio-Marcos, Fernando; Castro, Germán R.

    2015-11-01

    The design of metallic hybrid systems for spintronics has been widely studied during the past decade, motivated by the promising technological applications of these materials. Nevertheless, the importance of preserving the native structure and properties of the interfaces is often ignored. Here, we present the fabrication of nanocrystalline Au (0 0 1) onto a single oriented Fe3O4 (0 0 1) thin film as a promising hybrid system to develop spintronic devices by growing Au over the Fe3O4 by using a simple one-pot Pulsed Laser Deposition (PLD) approach. The structural coupling between Au nanocrystals and Fe3O4 layer results in the development of an incommensurate structure based on a coincidence lattice of order 35, which preserves the intrinsic properties of the Au nanocrystals, the Fe3O4 matrix and the interface between them. The general strategy described in the present work preserves the structure and main intrinsic properties of the constituting materials, being a fundamental issue for the future development of spintronic devices.

  1. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Spadavecchia, J.; Taurino, A.; Rella, R.

    2010-03-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV-vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA-Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA-DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T)15ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality.

  2. Application of Haddon’s matrix in qualitative research methodology: an experience in burns epidemiology

    PubMed Central

    Deljavan, Reza; Sadeghi-Bazargani, Homayoun; Fouladi, Nasrin; Arshi, Shahnam; Mohammadi, Reza

    2012-01-01

    Background Little has been done to investigate the application of injury specific qualitative research methods in the field of burn injuries. The aim of this study was to use an analytical tool (Haddon’s matrix) through qualitative research methods to better understand people’s perceptions about burn injuries. Methods This study applied Haddon’s matrix as a framework and an analytical tool for a qualitative research methodology in burn research. Both child and adult burn injury victims were enrolled into a qualitative study conducted using focus group discussion. Haddon’s matrix was used to develop an interview guide and also through the analysis phase. Results The main analysis clusters were pre-event level/human (including risky behaviors, belief and cultural factors, and knowledge and education), pre-event level/object, pre-event phase/environment and event and post-event phase (including fire control, emergency scald and burn wound management, traditional remedies, medical consultation, and severity indicators). This research gave rise to results that are possibly useful both for future injury research and for designing burn injury prevention plans. Conclusion Haddon’s matrix is applicable in a qualitative research methodology both at data collection and data analysis phases. The study using Haddon’s matrix through a qualitative research methodology yielded substantially rich information regarding burn injuries that may possibly be useful for prevention or future quantitative research. PMID:22866013

  3. Au/(Ti-W) and Au/Cr metallization of chemically vapor-deposited diamond substrates for multichip module applications

    NASA Astrophysics Data System (ADS)

    Meyyappan, Ilango; Malshe, A. P.; Naseem, H. A.; Brown, W. D.

    1994-12-01

    Since diamond obtained by chemical vapor deposition (CVD) has an extremely high thermal conductivity, it holds great promise in solving thermal management problems in high performance multichip modules (MCMs). Consequently, there is a need to develop a reliable metallization system for CVD diamond. Refractory metals such as Ti, Mo, Ta and W are known to form adhering carbide layers at high temperatures. Also, transition metals such as Cr, Ni and Ni-Cr are widely used in other MCM technologies involving Si, AlN, SiC and alumina substrates. In the work reported here, adherent Au/Cr and Au/(Ti-W) metallization systems were produced at low temperatures using d.c. magnetron sputtering and electron beam evaporation techniques. Adhesion at low temperature is essential since CVD diamond could lose its thermal and electrical properties at high temperatures. Furthermore, interaction between metal layers may cause an increase in conductor trace resistivity and delamination. Adhesion was measured using a Sebastian V-A thin film stud pull tester. The deposition parameters were optimized to give maximum adhesion using a statistical design software package, echip. In the case of the sputtered metallization, pre-sputter cleaning of diamond surface improved adhesion significantly. Values above 9 klbf/sq in were obtained in the case of Au/(Ti-W) and 11.8 klbf/sq in in the case of Au/Cr. Post-deposition annealing was performed in nitrogen ambient to investigate the effect of post-metallization processing on adhesion and also to test for any possible interaction between the metals at high temperatures. Annealing temperatures were limited to 450 C since MCM substrates are seldom exposed to temperatures higher than these. Energy-dispersive spectroscopy (EDS) analysis indicated outdiffusion of W through Au at 400 deg C. No interdiffusion was observed in the case of Au/Cr as per optical microscopy and EDS analysis. Auger electron spectroscopy results indicate interaction between the

  4. Synthesis, characterization and application of Au-198 nanoparticles as radiotracer for industrial applications.

    PubMed

    Goswami, Sunil; Pant, H J; Biswal, Jayashree; Samantray, J S; Sharma, V K; Dash, Ashutosh

    2016-05-01

    This paper describes synthesis and characterization of radioactive gold nanoparticles ((198)Au-NPs), and explores their utility as a radiotracer for tracing an aqueous phase in a continuous laboratory-scale bubble column at ambient conditions. The performance of the (198)Au-NPs as a radiotracer was compared with the results obtained with a conventional radiotracer i.e. bromine-82 ((82)Br) as ammonium bromide and found to be identical. A tank-in-series with backmixing model (TISBM) was used to simulate the RTDs of the aqueous phase and characterize flow in the bubble column. PMID:26897465

  5. Mo6S3I6-Au composites: synthesis, conductance, and applications.

    PubMed

    Zhang, Renyun; Hummelgård, Magnus; Dvorsek, Damjan; Mihailovic, Dragan; Olin, Håkan

    2010-08-15

    A single-step, premixing method was used to directly deposit gold nanoparticles on Mo(6)S(3)I(6) (MSI) molecular wire bundles. Gold nanoparticles with different sizes and densities were coated on the MSI by changing the concentration of the gold containing salt, HAuCl(4). TEM, SEM, and EDX characterization showed deposition of gold nanoparticles on the MSI nanowire surface. The electrical resistance of these MSI-Au composites was more than 100 times lower than that for pure MSI, and was mainly dependent on the density of the deposited gold nanoparticles. Furthermore, we immobilized thiol group-labeled oligonucleotide on the composites and then hybridized with a fully matched sequence. The resistance of the MSI-Au composites increased during the thiol step, while it decreased by hybridizing, due to the conductance difference between single- and double-stranded DNA chains. These results indicate that this new kind of MSI-Au composite could be used as a platform for different applications, including biosensors. PMID:20494366

  6. Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor.

    PubMed

    Liu, Na; Chen, Xia; Ma, Zhanfang

    2013-10-15

    In this work, a new nanocomposite, which was composed of ionic liquid functionalized graphene sheet (IL-GS) loaded gold nanoparticles (AuNPs), was prepared. The IL-GS was directly synthesized by the electrochemical exfoliation of graphite in ionic liquid (IL). Due to the modification of the IL, IL-GS can not only be dispersed easily in aqueous solution to form a homogeneous colloidal suspension of individual sheet, but also exhibits an improved conductivity. Meanwhile, the loaded AuNPs on the nanocomposites can increase the specific surface area to capture a large amount of antibodies as well as improve the capability of electron transfer. The IL-GS-Au nanocomposites were successfully employed for the fabrication of a facile and sensitive electrochemical immunosensor. Carcinoembryonic antigen (CEA) was used as a model protein. The proposed immunosensor exhibits a wide linear detection range (LDR) from 1 fg mL⁻¹ to 100 ng mL⁻¹, and an ultralow limit of detection (LOD) of 0.1 fg mL⁻¹ (S/N=3). In addition, for the detection of clinical serum samples, it is well consistent with the data determined by the developed immunoassay and ELISA, indicating that the immunosensor provides a possible application for the detection of CEA in clinical diagnostics. PMID:23644143

  7. Ellagic Acid Directed Growth of Au-Pt Bimetallic Nanoparticles and Their Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Barnaby, Stacey N.; Sarker, Nazmul H.; Banerjee, Ipsita A.

    2013-02-01

    In this work, we report the facile formation of bimetallic nanoparticles of Au-Pt in the presence of the plant polyphenol ellagic acid (EA). It was found that EA formed micro-fibrillar assemblies, which aggregated into micro-bundles under aqueous conditions. Those micro-bundles acted as templates for the growth of Au nanoparticles, as well as bimetallic Au-Pt nanoparticles biomimetically. At higher concentrations of EA, it was observed that in addition to forming fibrous micro-bundles, columnar assemblies of EA were formed in the presence of the metal nanoparticles. The formation of the assemblies was found to be concentration dependent. It appears that upon binding to metal ions and subsequent formation of the nanoparticles, morphological changes occur in the case of EA assemblies. The morphological changes observed were probed by electron microscopy. Further, the ability of the materials to degrade the toxic aromatic nitro compound 2-methoxy-4-nitroaniline was explored, where 50% degradation was observed within 15 min, indicating that such hybrid materials may have potential applications in environmental remediation.

  8. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future. PMID:25137194

  9. Educators' and Applicants' Views of the Postdoctoral Pediatric Dentistry Admission Process: A Qualitative Study.

    PubMed

    Ricker, Kevin; Mihas, Paul; Lee, Jessica Y; Guthmiller, Janet M; Roberts, Michael W; Divaris, Kimon

    2015-11-01

    The postdoctoral application and matching process in dental education is a high-stakes and resource-intensive process for all involved. While programs seek the most qualified candidates, applicants strive to be competitive to increase their likelihood of being accepted to a desirable program. There are limited data regarding either subjective or objective factors underlying the complex interplay between programs and applicants. This qualitative study sought to provide insight into the stakeholders' experiences and views on the matching process. Telephone and in-person interviews were conducted with ten pediatric dentistry program directors and ten recent applicants to pediatric dentistry programs in the United States in 2013-14. Participants were selected to represent the geographic (five districts of the American Academy of Pediatric Dentistry) and institutional (hospital- or university-based) diversity of pediatric dentistry programs. Interviews were recorded and transcribed verbatim. Veracity and need for more information were the themes most often articulated by both groups. The program directors most valued teachability and self-motivation as desirable applicant characteristics. The applicants relied primarily on subjective sources to gather information about programs and prioritized location and financial factors as pivotal for their rankings. Both groups appreciated the uniformity of the current application process and highlighted several weaknesses and areas for improvement. These results shed light on the postdoctoral matching process in pediatric dentistry via a qualitative description of stakeholders' experiences and viewpoints. These insights can serve as a basis for improving and refining the matching process. PMID:26522631

  10. Learning Qualitative Differential Equation models: a survey of algorithms and applications

    PubMed Central

    PANG, WEI; COGHILL, GEORGE M.

    2013-01-01

    Over the last two decades, qualitative reasoning (QR) has become an important domain in Artificial Intelligence. QDE (Qualitative Differential Equation) model learning (QML), as a branch of QR, has also received an increasing amount of attention; many systems have been proposed to solve various significant problems in this field. QML has been applied to a wide range of fields, including physics, biology and medical science. In this paper, we first identify the scope of this review by distinguishing QML from other QML systems, and then review all the noteworthy QML systems within this scope. The applications of QML in several application domains are also introduced briefly. Finally, the future directions of QML are explored from different perspectives. PMID:23704803

  11. A new method for qualitative simulation of water resources systems: 2. Applications

    NASA Astrophysics Data System (ADS)

    Antunes, M. P.; Seixas, M. J.; Camara, A. S.; Pinheiro, M.

    1987-11-01

    SLIN (Simulação Linguistica) is a new method for qualitative dynamic simulation. As was presented previously (Camara et al., this issue), SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.

  12. Nanocomposite of Au Nanoparticles/Helical Carbon Nanofibers and Application in Hydrogen Peroxide Biosensor.

    PubMed

    Zhai, Mumu; Cui, Rongjing; Gu, Ning; Zhang, Genhua; Lin, Wang; Yu, Lingjun

    2015-06-01

    A combined sol-gel/hydrogen reduction method has been developed for the mass production of helical carbon nanofibers (HCNFs) by the pyrolysis of acetylene at 425 degrees C in the presence of NiO nanoparticles. The synthesized HCNFs were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The helical-structured carbon nanofibers have a large specific surface area and excellent biocompatibility. A novel enzymatic hydrogen peroxide sensor was then successfully fabricated based on the nanocomposites containing HCNFs and gold nanoparticles (AuNPs). The results indicated that the Au/HCNFs nanocomposites exhibited excellent electrocatalytic activity to the reduction of H2O2, offering a wide linear range from 1.0 μM to 3157 μM with a detection limit as low as 0.46 μM. The apparent Michaelis-Menten constant of the biosensor was 0.61 mM. The as-fabricated biosensor showed a rapid and sensitive amperometric response to hydrogen peroxide with acceptable preparation reproducibility and excellent stability. Because of their low cost and high stability, these novel HCNFs represent seem to be a kind of promising biomaterial and may find wide new applications in scopes such as biocatalysis, immunoassay, environmental monitoring and so on. PMID:26369097

  13. Developing a Brief Suicide Prevention Intervention and Mobile Phone Application: a Qualitative Report

    PubMed Central

    Kennard, Beth D; Biernesser, Candice; Wolfe, Kristin L; Foxwell, Aleksandra A; Craddock Lee, Simon J; Rial, Katie V; Patel, Sarita; Cheng, Carol; Goldstein, Tina; McMakin, Dana; Blastos, Beatriz; Douaihy, Antoine; Zelazny, Jamie; Brent, David A

    2015-01-01

    Suicide is the second leading cause of death among youth and has become a serious public health problem. There has been limited research on strategies to decrease the likelihood of reattempt in adolescents. As phase one of a treatment development study, clinicians, parents and adolescents participated in qualitative interviews in order to gain new perspectives on developing a targeted intervention and a safety plan phone application for suicide prevention. Participants indicated that transition of care, specific treatment targets and safety planning were important parts of treatment. In addition, all participants endorsed the use of a smartphone application for these purposes. PMID:26977137

  14. Preparation of Ag/Au bimetallic nanostructures and their application in surface-enhanced fluorescence.

    PubMed

    Dong, Jun; Ye, Yanyan; Zhang, Wenhui; Ren, Zebin; Huo, Yiping; Zheng, Hairong

    2015-11-01

    An effective substrate for surface-enhanced fluorescence, which consists of cluster Ag/Au bimetallic nanostructures on a copper surface, was synthesized via a multi-stage galvanic replacement reaction of a Ag cluster in a chlorauric acid (HAuCl4) solution at room temperature. The fabricated silver/gold bimetallic cluster were found to yield large surface-enhanced fluorescence (SEF) enhancement factors for rhodamine 6G probe molecules deposited on the substrate, and also the fluorescence efficiency is critically dependent on the period of nanostructure growth. With the help of proper control reaction conditions, such as the reaction time, and concentration of reaction solutions, the maximum fluorescence enhanced effect was obtained. Therefore, the bimetallic nanostructure substrate also can be adapted to studies in SEF, which will expand the application of SEF. PMID:25691287

  15. Modelisation et commande des redresseurs triphases fonctionnant a haut rendement et a faible taux de distorsion harmonique: Application au redresseur triphase de vienne

    NASA Astrophysics Data System (ADS)

    Belhadj Youssef, Nesrine

    Les problemes de la qualite de l'onde electrique constituent l'une des preoccupations majeures des fournisseurs de l'energie et des organismes specialises en qualite d'energie. Ce sujet a gagne davantage d'ampleur avec l'utilisation ascendante des convertisseurs de l'energie electrique dans la majorite des applications industrielles et domestiques. Dans le cadre de cette these, on s'interesse plus particulierement au type des convertisseurs alternatif/continu, dont le fonctionnement adequat implique la parfaite regulation du bus DC de tension, l'attenuation des harmoniques de courants, la compensation de l'energie reactive et la maximisation du rendement energetique. Ces differents criteres doivent etre maintenus pour diverses conditions de fonctionnement, c'est-a-dire independamment des variations parametriques auxquelles le systeme peut etre sujet. Il s'avere donc indispensable d'adopter des techniques de commande efficaces, ce qui passe par une modelisation correcte du convertisseur. L'optimisation du nombre de capteurs dans le circuit est egalement un facteur cle a prendre en consideration.

  16. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application

    NASA Astrophysics Data System (ADS)

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-01

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent

  17. Pd-on-Au Supra-nanostructures Decorated Graphene Oxide: An Advanced Electrocatalyst for Fuel Cell Application.

    PubMed

    Tao, Yingzhou; Dandapat, Anirban; Chen, Liming; Huang, Youju; Sasson, Yoel; Lin, Zhenyu; Zhang, Jiawei; Guo, Longhua; Chen, Tao

    2016-08-30

    We report a very easy and effective approach for synthesizing unique palladium-on-gold supra-nanostructure (Au@Pd-SprNS)-decorated graphene oxide (GO) nanosheets. The SprNSs comprising Au nanorods as core and a unique close-packed assembly of tiny anisotropic Pd nanoparticles (NPs) as shell were homogeneously distributed on the GO surface via electrostatic self-assembly. Compared with the traditional one-pot method for synthesis of metal NPs on GO sheets, the size and shape of core-shell Au@Pd SprNSs can be finely controlled and uniformly distributed on the GO carrier. Interestingly, this Au@Pd-SprNSs/GO nanocomposite displayed high electrocatalytic activities toward the oxidation of methanol, ethanol, and formic acid, which can be attributed to the abundance of intrinsic active sites including high density of atomic steps, ledges and kinks, Au-Pd heterojunctions and cooperative action of the two metals of the SprNSs. Additionally, uniform dispersion of the SprNSs over the GO nanosheets prevent agglomeration between the SprNSs, which is of great significance to enhance the long-term stability of catalyst. This work will introduce a highly efficient Pd-based nanoelectrocatalyst to be used in fuel cell application. PMID:27482606

  18. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application.

    PubMed

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-21

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S([double bond, length as m-dash]O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process. PMID:26758553

  19. Electrical performance of Ti-ZnO-Au thin film composite structure for device application

    NASA Astrophysics Data System (ADS)

    Joshi, Priyanka; Singh, Jitendra; Das, Surajit; Desai, J. V.; Akhtar, Jamil

    2016-04-01

    Thin film layers of Au/Ti approximately 2200 Å thick and ZnO approximately 2.24 µm thick were sputtered sequentially onto silicon dioxide coated <100> Si-wafer. Conventional wisdom confirms the adhesion of gold over zinc oxide (ZnO) by an intermediate layer of titanium for better adhesion. But, in Au/Ti/ZnO/Au/Ti structure, it was observed that with the passing of time the gold diffused into ZnO thin film at room temperature, making a very low resistance between the two gold layers eventually making a conductive path in ZnO. Therefore, electrical connectivity was found between the metal layers. A detailed experimental analysis has been carried out in support of the observed Au diffusion. In the present work, reliability of Ti/Au metallisation and anomalous electrical behavior due to gold diffusion has been studied.

  20. How and why do interviewers try to make impressions on applicants? A qualitative study.

    PubMed

    Wilhelmy, Annika; Kleinmann, Martin; König, Cornelius J; Melchers, Klaus G; Truxillo, Donald M

    2016-03-01

    To remain viable in today's highly competitive business environments, it is crucial for organizations to attract and retain top candidates. Hence, interviewers have the goal not only of identifying promising applicants but also of representing their organization. Although it has been proposed that interviewers' deliberate signaling behaviors are a key factor for attracting applicants and thus for ensuring organizations' success, no conceptual model about impression management (IM) exists from the viewpoint of the interviewer as separate from the applicant. To develop such a conceptual model on how and why interviewers use IM, our qualitative study elaborates signaling theory in the interview context by identifying the broad range of impressions that interviewers intend to create on applicants, what kinds of signals interviewers deliberately use to create their intended impressions, and what outcomes they pursue. Following a grounded theory approach, multiple raters analyzed in-depth interviews with interviewers and applicants. We also observed actual employment interviews and analyzed memos and image brochures to generate a conceptual model of interviewer IM. Results showed that the spectrum of interviewers' IM intentions goes well beyond what has been proposed in past research. Furthermore, interviewers apply a broad range of IM behaviors, including verbal and nonverbal as well as paraverbal, artifactual, and administrative behaviors. An extensive taxonomy of interviewer IM intentions, behaviors, and intended outcomes is developed, interrelationships between these elements are presented, and avenues for future research are derived. PMID:26436440

  1. Crystallographic investigation of Au nanoparticles embedded in a SrTiO3 thin film for plasmonics applications by means of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pincini, Davide; Mazzoli, Claudio; Bernhardt, Hendrik; Katzer, Christian; Schmidl, Frank; Uschmann, Ingo; Detlefs, Carsten

    2015-03-01

    Self-organized monocrystalline Au nanoparticles with potential applications in plasmonics are grown in a SrTiO3 matrix by a novel two-step deposition process. The crystalline preferred orientation of these Au nanoparticles is investigated by synchrotron hard x-ray diffraction. Nanoparticles preferentially align with the (111) direction along the substrate normal (001), whereas two in-plane orientations are found with [ 110 ] SrTiO3 ∥ [ 110 ] Au and [ 100 ] SrTiO3 ∥ [ 110 ] Au . Additionally, a smaller diffraction signal from nanoparticles with the (001) direction parallel to the substrate normal (001) is observed; once again, two in-plane orientations are found, with [ 100 ] SrTiO3 ∥ [ 100 ] Au and [ 100 ] SrTiO3 ∥ [ 110 ] Au . The populations of the two in-plane orientations are found to depend on the thickness of the gold film deposited in the first step of the growth.

  2. Facile Synthesis of Quasi-One-Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen-Reduction Reaction.

    PubMed

    Cai, Kai; Liu, Jiawei; Zhang, Huan; Huang, Zhao; Lu, Zhicheng; Foda, Mohamed F; Li, Tingting; Han, Heyou

    2015-05-11

    An intermediate-template-directed method has been developed for the synthesis of quasi-one-dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core-shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction intermediates played an important role in the preparation, which fabricated the framework and provided a localized reducing agent for the reduction of the Au and Pt precursors. The Pt7 Au PABNTs showed higher electrocatalytic activity and durability in the oxygen-reduction reaction (ORR) in 0.1 M HClO4 than porous Pt nanotubes (PtNTs) and commercially available Pt/C. The mass activity of PABNTs was 218 % that of commercial Pt/C after an accelerated durability test. This study demonstrates the potential of PABNTs as highly efficient electrocatalysts. In addition, this method provides a facile strategy for the synthesis of desirable hetero-nanostructures with controlled size and shape by utilizing an intermediate template. PMID:25833689

  3. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    PubMed Central

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-01-01

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future. PMID:26861380

  4. Peer Review of Grant Applications: Criteria Used and Qualitative Study of Reviewer Practices

    PubMed Central

    Abdoul, Hendy; Perrey, Christophe; Amiel, Philippe; Tubach, Florence; Gottot, Serge; Durand-Zaleski, Isabelle; Alberti, Corinne

    2012-01-01

    Background Peer review of grant applications has been criticized as lacking reliability. Studies showing poor agreement among reviewers supported this possibility but usually focused on reviewers’ scores and failed to investigate reasons for disagreement. Here, our goal was to determine how reviewers rate applications, by investigating reviewer practices and grant assessment criteria. Methods and Findings We first collected and analyzed a convenience sample of French and international calls for proposals and assessment guidelines, from which we created an overall typology of assessment criteria comprising nine domains relevance to the call for proposals, usefulness, originality, innovativeness, methodology, feasibility, funding, ethical aspects, and writing of the grant application. We then performed a qualitative study of reviewer practices, particularly regarding the use of assessment criteria, among reviewers of the French Academic Hospital Research Grant Agencies (Programmes Hospitaliers de Recherche Clinique, PHRCs). Semi-structured interviews and observation sessions were conducted. Both the time spent assessing each grant application and the assessment methods varied across reviewers. The assessment criteria recommended by the PHRCs were listed by all reviewers as frequently evaluated and useful. However, use of the PHRC criteria was subjective and varied across reviewers. Some reviewers gave the same weight to each assessment criterion, whereas others considered originality to be the most important criterion (12/34), followed by methodology (10/34) and feasibility (4/34). Conceivably, this variability might adversely affect the reliability of the review process, and studies evaluating this hypothesis would be of interest. Conclusions Variability across reviewers may result in mistrust among grant applicants about the review process. Consequently, ensuring transparency is of the utmost importance. Consistency in the review process could also be improved by

  5. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography.

    PubMed

    Lopatynskyi, Andrii M; Lytvyn, Vitalii K; Nazarenko, Volodymyr I; Guo, L Jay; Lucas, Brandon D; Chegel, Volodymyr I

    2015-01-01

    This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called 'hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for

  6. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.

    2015-03-01

    This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of

  7. Stabilization of AuNPs by monofunctional triazole linked to ferrocene, ferricenium, or coumarin and applications to synthesis, sensing, and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Igartua, María E; Rapakousiou, Amalia; Salmon, Lionel; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2014-11-01

    Monofunctional triazoles linked to ferrocene, ferricenium, or coumarin (Cou), easily synthesized by copper-catalyzed azide alkyne (CuAAC) "click" reactions between the corresponding functional azides and (trimethylsilyl)acetylene followed by silyl group deprotection, provide a variety of convenient neutral ligands for the stabilization of functional gold nanoparticles (AuNPs) in polar organic solvents. These triazole (trz)-AuNPs are very useful toward a variety of applications to synthesis, sensing, and catalysis. Both ferrocenyl (Fc) and isostructural ferricenium linked triazoles give rise to AuNP stabilization, although by different synthetic routes. Indeed, the first direct synthesis and stabilization of AuNPs by ferricenium are obtained by the reduction of HAuCl4 upon reaction with a ferrocene derivative, AuNP stabilization resulting from a synergy between electrostatic and coordination effects. The ferricenium/ferrocene trz-AuNP redox couple is fully reversible, as shown by cyclic voltammograms that were recorded with both redox forms. These trz-AuNPs are stable for weeks in various polar solvents, but at the same time, the advantage of trz-AuNPs is the easy substitution of neutral trz ligands by thiols and other ligands, giving rise to applications. Indeed, this ligand substitution of trz at the AuNP surface yields a stable Fc-terminated nanogold-cored dendrimer upon reaction with a Fc-terminated thiol dendron, substitution of Cou-linked trz with cysteine, homocysteine, and glutathione provides remarkably efficient biothiol sensing, and a ferricenium-linked trz-AuNP catalyst is effective for NaBH4 reduction of 4-nitrophenol to 4-aminophenol. In this catalytic example, the additional electrostatic AuNP stabilization modulates the reaction rate and induction time. PMID:25363304

  8. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection.

    PubMed

    Kim, Si-In; Eom, Gayoung; Kang, Mijeong; Kang, Taejoon; Lee, Hyoban; Hwang, Ahreum; Yang, Haesik; Kim, Bongsoo

    2015-06-19

    Bimetallic nanostructures can provide distinct and improved physicochemical properties by the coupling effect of the two metal components, making them promising materials for a variety of applications. Herein, we report composition-selective fabrication of ordered intermetallic Au-Cu nanowires (NWs) by two-step chemical vapor transport method and their application to nano-electrocatalytic glucose detection. Ordered intermetallic Au3Cu and AuCu3 NWs are topotaxially fabricated by supplying Cu-containing chemicals to pre-synthesized single-crystalline Au NW arrays. The composition of fabricated Au-Cu NWs can be selected by changing the concentration of Cu-containing species. Interestingly, Au3Cu NW electrodes show unique electrocatalytic activity for glucose oxidation, allowing us to detect glucose without interference from ascorbic acid. Such interference-free detection of glucose is attributed to the synergistic effect, induced by incorporation of Cu in Au. We anticipate that Au3Cu NWs could show possibility as efficient nano-size electrochemical glucose sensors and the present fabrication method can be employed to fabricate valuable ordered intermetallic nanostructures. PMID:26016531

  9. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection

    NASA Astrophysics Data System (ADS)

    Kim, Si-In; Eom, Gayoung; Kang, Mijeong; Kang, Taejoon; Lee, Hyoban; Hwang, Ahreum; Yang, Haesik; Kim, Bongsoo

    2015-06-01

    Bimetallic nanostructures can provide distinct and improved physicochemical properties by the coupling effect of the two metal components, making them promising materials for a variety of applications. Herein, we report composition-selective fabrication of ordered intermetallic Au-Cu nanowires (NWs) by two-step chemical vapor transport method and their application to nano-electrocatalytic glucose detection. Ordered intermetallic Au3Cu and AuCu3 NWs are topotaxially fabricated by supplying Cu-containing chemicals to pre-synthesized single-crystalline Au NW arrays. The composition of fabricated Au-Cu NWs can be selected by changing the concentration of Cu-containing species. Interestingly, Au3Cu NW electrodes show unique electrocatalytic activity for glucose oxidation, allowing us to detect glucose without interference from ascorbic acid. Such interference-free detection of glucose is attributed to the synergistic effect, induced by incorporation of Cu in Au. We anticipate that Au3Cu NWs could show possibility as efficient nano-size electrochemical glucose sensors and the present fabrication method can be employed to fabricate valuable ordered intermetallic nanostructures.

  10. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application.

    PubMed

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 mW/ cm² in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm², respectively. PMID:26580661

  11. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  12. Cyclotron produced 198gAu, a potential radionuclide for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Haba, Hiromitsu; Kassim, Hasan Abu

    2016-02-01

    Production cross-sections of the natPt(d,x)198Au reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. Only a partial agreement is obtained with the existing literature data and the theoretical data extracted from the TENDL-2013 library. Physical thick target yield for the 198Au radionuclide was deduced using the measured cross-sections, and found a general agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<15 MeV) cyclotron and an enriched 198Pt (100%) target could be used to obtain 198Au in no carrier added form.

  13. Production of radio-gold 199Au for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Haba, Hiromitsu; Kassim, Hasan Abu

    2016-01-01

    Production cross-sections of the natPt(d,x)199Au reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. Only a partial agreement is obtained with the existing literature data. Theoretical data extracted from the TENDL-2013 library shows large discrepancy with the measured ones. Physical thick target yield for the 199Au radionuclide was deduced using the measured cross-sections, and found a general agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<15 MeV) cyclotron and an enriched 198Pt (100%) target could be used to obtain 199Au in no carrier added form.

  14. Nonlinear stability of solar type 3 radio bursts. 2: Application to observations near 1 AU

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, R. A.; Papadopoulos, K.

    1978-01-01

    A set of rate equations including strong turbulence effects and anomalous resitivity are solved using parmeters which model several solar type 3 bursts. Exciter distributions observed at 1 AU are excitation of the linear bump-in-tail instability, amplifying Langmuir waves above the threshold for the oscillating two stream instability (OTSI). The OTSI, and the attendant anomalous resistivity produce a rapid spectral transfer of Langmuir waves to short wavelengths, out of resonance with the electron exciter. Further energy loss of the beam is thus precluded. The various parameters needed to model the bursts are extrapolated inside 1 AU with similar results. Again, the OTSI is excited and decouples the electron beam from the Langmuir radiation. Reabsorption of the Langmuir waves by the beam is shown to be unimportant in all cases, even at 0.1 AU. The theory provides a natural explanation for the observed realationship between radio flux, and the electron flux.

  15. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Ye, Chen; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2015-05-01

    A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows the controlled preparation of various Au/Ag/SnO2 nanoparticles to adjust their LSPR to suit various applications.A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows

  16. Au-coated ZnO nanostructures for surface enhanced Raman spectroscopy applications

    SciTech Connect

    Dikovska, A O; Nedyalkov, N N; Imamova, S E; Atanasova, G B; Atanasov, P A

    2012-03-31

    Thin ZnO nanostructured films were produced by pulsed laser deposition (PLD) for surface enhanced Raman spectroscopy (SERS) studies. The experimental conditions used for preparation of the samples were chosen to obtain different types of ZnO nanostructures. The Raman spectra of rhodamine 6G (R6G) were measured at an excitation wavelength of 785 nm after coating the ZnO nanostructures with a thin Au layer. The influence of the surface morphology on the Raman signal obtained from the samples was investigated. High SERS signal enhancement was observed from all Au-coated ZnO nanostructures.

  17. Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface-Enhanced Raman Scattering.

    PubMed

    Gao, Xiaonan; Esteves, Richard J Alan; Nahar, Lamia; Nowaczyk, Jordan; Arachchige, Indika U

    2016-05-25

    The direct cross-linking of Au/Ag alloy nanoparticles (NPs) into high surface area, mesoporous Au/Ag aerogels via chemical oxidation of the surface ligands is reported. The precursor alloy NPs with composition-tunable morphologies were produced by galvanic replacement of the preformed Ag hollow NPs. The effect of Au:Ag molar ratio on the NP morphology and surface plasmon resonance has been thoroughly investigated and resulted in smaller Au/Ag alloy NPs (4-8 nm), larger Au/Ag alloy hollow NPs (40-45 nm), and Au/Ag alloy hollow particles decorated with smaller Au NPs (2-5 nm). The oxidative removal of surfactant ligands, followed by supercritical drying, is utilized to construct large (centimeter to millimeter) self-supported Au/Ag alloy aerogels. The resultant assemblies exhibit high surface areas (67-73 m(2)/g), extremely low densities (0.051-0.055 g/cm(3)), and interconnected mesoporous (2-50 nm) networks, making them of great interest for a number of new technologies. The influence of mesoporous gel morphology on surface-enhanced Raman scattering (SERS) has been studied using Rhodamine 101 (Rd 101) as the probe molecule. The alloy aerogels exhibit SERS signal intensities that are 10-42 times higher than those achieved from the precursor Au/Ag alloy NPs. The Au/Ag alloy aerogel III exhibits SERS sensing capability down to 1 nM level. The increased signal intensities attained for alloy aerogels are attributed to highly porous gel morphology and enhanced surface roughness that can potentially generate a large number of plasmonic hot spots, creating efficient SERS substrates for future applications. PMID:27142886

  18. Approximate treatment of semicore states in GW calculations with application to Au clusters

    SciTech Connect

    Xian, Jiawei; Baroni, Stefano; Umari, P.

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.

  19. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.

    PubMed

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-28

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (∼15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (∼1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (∼76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection. PMID:26701141

  20. ZnO/Au-based surface plasmon resonance for CO2 gas sensing application

    NASA Astrophysics Data System (ADS)

    Nuryadi, Ratno; Mayasari, Rina Dewi

    2016-01-01

    We fabricate surface plasmon resonance (SPR) device using a modified ZnO/Au-Kretschmann configuration to investigate the possibility of using ZnO for CO2 gas sensing at room temperature. Here, nanostructured ZnO/Au layer was deposited on the flat surface of the prism and then gas chamber was placed on the ZnO/Au surface to observe the gas response. The ZnO structures were characterized by X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy. We found that ZnO structures have two types of nanostructures, i.e., individual nanorods and flower-like structures, which have hexagonal crystal structure. The ZnO nanorod has a diameter ranged from 200 to 300 nm and length ranged from 3 to 5 μm. The effect of gas response is demonstrated by a shift of SPR spectra and a change in light reflectance. It is found that the adsorption of gas molecules on the ZnO nanorods produces the shift of SPR angle to the lower light incident angle. A consistent sensing behavior over repetitive circles is also demonstrated.

  1. Electrogenerated Chemiluminescence Behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium.

    PubMed

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin

    2016-01-01

    In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O8(2-) system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01-100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore. PMID:26902375

  2. Electrogenerated Chemiluminescence Behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium

    PubMed Central

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin

    2016-01-01

    In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O82− system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01–100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore. PMID:26902375

  3. REFLECT: Logiciel de restitution des reflectances au sol pour l'amelioration de la qualite de l'information extraite des images satellitales a haute resolution spatiale

    NASA Astrophysics Data System (ADS)

    Bouroubi, Mohamed Yacine

    Multi-spectral satellite imagery, especially at high spatial resolution (finer than 30 m on the ground), represents an invaluable source of information for decision making in various domains in connection with natural resources management, environment preservation or urban planning and management. The mapping scales may range from local (finer resolution than 5 m) to regional (resolution coarser than 5m). The images are characterized by objects reflectance in the electromagnetic spectrum witch represents the key information in many applications. However, satellite sensor measurements are also affected by parasite input due to illumination and observation conditions, to the atmosphere, to topography and to sensor properties. Two questions have oriented this research. What is the best approach to retrieve surface reflectance with the measured values while taking into account these parasite factors? Is this retrieval a sine qua non condition for reliable image information extraction for the diverse domains of application for the images (mapping, environmental monitoring, landscape change detection, resources inventory, etc.)? The goals we have delineated for this research are as follow: (1) Develop software to retrieve ground reflectance while taking into account the aspects mentioned earlier. This software had to be modular enough to allow improvement and adaptation to diverse remote sensing application problems; and (2) Apply this software in various context (urban, agricultural, forest) and analyse results to evaluate the accuracy gain of extracted information from remote sensing imagery transformed in ground reflectance images to demonstrate the necessity of operating in this way, whatever the type of application. During this research, we have developed a tool to retrieve ground reflectance (the new version of the REFLECT software). This software is based on the formulas (and routines) of the 6S code (Second Simulation of Satellite Signal in the Solar Spectrum

  4. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg2+ ion sensing, cellular imaging and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Khandelwal, Puneet; Singh, Dheeraj K.; Sadhu, Subha; Poddar, Pankaj

    2015-11-01

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe

  5. Optical properties of random alloys: application to CuAu and NiPt

    NASA Astrophysics Data System (ADS)

    Krishna Saha, Kamal; Mookerjee, Abhijit

    2005-07-01

    In an earlier paper we presented a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us (Mookerjee 1973 J. Phys. C: Solid State Phys. 6 1340). In this communication we shall combine the augmented space methodology with the tight-binding linear muffin-tin orbital technique (TB-LMTO) to study the optical conductivities of two alloys, CuAu and NiPt.

  6. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-01

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection.Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on

  7. Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing.

    PubMed

    Won, Yu-Ho; Stanciu, Lia A

    2012-01-01

    In this work we investigated the surface and facet-dependent catalytic properties of metal oxide particles as well as noble metal/metal oxide heterogeneous structures, with cuprous oxide (Cu(2)O) and Au/Cu(2)O being selected as model systems. As an example of application, we explored the potential of these materials in developing electrocatalytic devices. Cu(2)O particles were synthesized in various shapes, then used for testing their morphology-dependent electrochemical properties applied to the detection of glucose. While we did not attempt to obtain the best detection limit reported to date, the octahedral and hexapod Cu(2)O particles showed reasonable detection limits of 0.51 and 0.60 mM, respectively, which are physiologically relevant concentrations. However, detection limit seems to be less affected by particle shapes than sensitivity. Heterogeneous systems where Au NPs were deposited on the surface of Cu(2)O particles were also tested with similar results in terms of the effect of surface orientation. PMID:23201983

  8. Cu2O and Au/Cu2O Particles: Surface Properties and Applications in Glucose Sensing

    PubMed Central

    Won, Yu-Ho; Stanciu, Lia A.

    2012-01-01

    In this work we investigated the surface and facet-dependent catalytic properties of metal oxide particles as well as noble metal/metal oxide heterogeneous structures, with cuprous oxide (Cu2O) and Au/Cu2O being selected as model systems. As an example of application, we explored the potential of these materials in developing electrocatalytic devices. Cu2O particles were synthesized in various shapes, then used for testing their morphology-dependent electrochemical properties applied to the detection of glucose. While we did not attempt to obtain the best detection limit reported to date, the octahedral and hexapod Cu2O particles showed reasonable detection limits of 0.51 and 0.60 mM, respectively, which are physiologically relevant concentrations. However, detection limit seems to be less affected by particle shapes than sensitivity. Heterogeneous systems where Au NPs were deposited on the surface of Cu2O particles were also tested with similar results in terms of the effect of surface orientation. PMID:23201983

  9. Hybridized doxorubicin-Au nanospheres exhibit enhanced near-infrared surface plasmon absorption for photothermal therapy applications.

    PubMed

    Zhou, Jialin; Wang, Zuhua; Li, Qingpo; Liu, Fei; Du, Yongzhong; Yuan, Hong; Hu, Fuqiang; Wei, Yinghui; You, Jian

    2015-03-19

    Photothermal therapy (PTT) employs photosensitizing agents, which are taken up by cells and generate heat when irradiated with near-infrared (NIR) light, to enable the photoablation of cancer cells. High absorption in the NIR region is crucial for a photosensitizing agent to achieve efficient PTT. Different combinations between gold nanoparticles and fluorescent agents always influence their spectrum properties. Herein, we fabricated a novel combination of a fluorescent agent (doxorubicin, DOX, also a popular chemotherapeutic agent) with gold nanospheres by synthesizing hybridized DOX-Au nanospheres (DAuNS), where a part of the DOX molecules and Au co-formed a hybridized matrix as the shell and the remaining DOX molecules precipitated as the core. The unique structure of DAuNS induced interesting changes in the characteristics including spectrum properties, morphology, drug loading and antitumor activity. We observed that DAuNS exhibited a significantly enhanced surface plasmon absorption in the NIR region, inducing a more efficient photothermal conversion and stronger tumor-cell killing ability under NIR laser irradiation. In addition, our study presents a new and simple platform to load a drug into nanoparticles. DAuNS could be a promising nanoparticle with the "two punch" efficacy of PTT and chemotherapy and could be used in clinical applications due to its controllable synthesis, small size, and narrow size distribution. PMID:25757809

  10. Crystallographic investigation of Au nanoparticles embedded in a SrTiO{sub 3} thin film for plasmonics applications by means of synchrotron radiation

    SciTech Connect

    Pincini, Davide; Mazzoli, Claudio; Bernhardt, Hendrik; Katzer, Christian; Schmidl, Frank; Uschmann, Ingo; Detlefs, Carsten

    2015-03-14

    Self-organized monocrystalline Au nanoparticles with potential applications in plasmonics are grown in a SrTiO{sub 3} matrix by a novel two-step deposition process. The crystalline preferred orientation of these Au nanoparticles is investigated by synchrotron hard x-ray diffraction. Nanoparticles preferentially align with the (111) direction along the substrate normal (001), whereas two in-plane orientations are found with [110]{sub SrTiO{sub 3}}∥[110]{sub Au} and [100]{sub SrTiO{sub 3}}∥[110]{sub Au}. Additionally, a smaller diffraction signal from nanoparticles with the (001) direction parallel to the substrate normal (001) is observed; once again, two in-plane orientations are found, with [100]{sub SrTiO{sub 3}}∥[100]{sub Au} and [100]{sub SrTiO{sub 3}}∥[110]{sub Au}. The populations of the two in-plane orientations are found to depend on the thickness of the gold film deposited in the first step of the growth.

  11. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  12. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    PubMed Central

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-01-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at −0.65 V, −0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes. PMID:26577799

  13. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications.

    PubMed

    Rai, Prabhakar; Yoon, Ji-Wook; Jeong, Hyun-Mook; Hwang, Su-Jin; Kwak, Chang-Hoon; Lee, Jong-Heun

    2014-07-21

    Au@NiO yolk-shell nanoparticles (NPs) were synthesized by simple solution route and applied for efficient gas sensor towards H₂S gas. Carbon encapsulated Au (Au@C core-shell) NPs were synthesized by glucose-assisted hydrothermal method, whereas Au@NiO yolk-shell NPs were synthesized by precipitation method using Au@C core-shell NPs as a template. Sub-micrometer Au@NiO yolk-shell NPs were formed having 50-70 nm Au NPs at the periphery of NiO shell (10-20 nm), which was composed of 6-12 nm primary NiO particles. Au@NiO yolk-shell NPs showed higher response for H2S compared to other interfering gases (ethanol, p-xylene, NH₃, CO and H₂). The maximum response was 108.92 for 5 ppm of H₂S gas at 300 °C, which was approximately 19 times higher than that for the interfering gases. The response of Au@NiO yolk-shell NPs to H₂S was approximately 4 times higher than that of bare NiO hollow nanospheres. Improved performance of Au@NiO yolk-shell NPs was attributed to hollow spaces that allowed the accessibility of Au NPs to gas molecules. It was suggested that adsorption of H₂S on Au NPs resulted in the formation of sulfide layer, which possibly lowered its work function, and therefore tuned the electron transfer from Au to NiO rather NiO to Au, which leaded to increase in resistance and therefore response. PMID:24933405

  14. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method.

    PubMed

    Wang, Junfeng; Wu, Xuezhong; Wang, Chongwen; Rong, Zhen; Ding, Hongmei; Li, Hui; Li, Shaohua; Shao, Ningsheng; Dong, Peitao; Xiao, Rui; Wang, Shengqi

    2016-08-10

    This study proposes a facile method for synthesis of Au-coated magnetic nanoparticles (AuMNPs) core/shell nanocomposites with nanoscale rough surfaces. MnFe2O4 nanoparticles (NPs) were first modified with a uniform polyethylenimine layer (2 nm) through self-assembly under sonication. The negatively charged Au seeds were then adsorbed on the surface of the MnFe2O4 NPs through electrostatic interaction for Au shell formation. Our newly developed sonochemically assisted hydroxylamine seeding growth method was used to grow the adsorbed gold seeds into large Au nanoparticles (AuNPs) to form a nanoscale rough Au shell. Au-coated magnetic nanoparticles (AuMNPs) were obtained from the intermediate product (Au seeds decorated magnetic core) under sonication within 5 min. The AuMNPs were highly uniform in size and shape and exhibited satisfactory surface-enhanced Raman scattering (SERS) activity and strong magnetic responsivity. PATP was used as a probe molecule to evaluate the SERS performance of the synthesized AuMNPs with a detection limit of 10(-9) M. The synthesized AuMNPs were conjugated with Staphylococcus aureus (S. aureus) antibody for bacteria capture and separation. The synthesized plasmonic AuNR-DTNB NPs, whose LSPR wavelength was adjusted to the given laser excitation wavelength (785 nm), were conjugated with S. aureus antibody to form a SERS tag for specific recognition and report of the target bacteria. S. aureus was indirectly detected through SERS based on sandwich-structured immunoassay, with a detection limit of 10 cells/mL. Moreover, the SERS intensity at Raman peak of 1331 cm(-1) exhibited a linear relationship to the logarithm of bacteria concentrations ranging from 10(1) cells/mL to 10(5) cells/mL. PMID:27420923

  15. Hybridized doxorubicin-Au nanospheres exhibit enhanced near-infrared surface plasmon absorption for photothermal therapy applications

    NASA Astrophysics Data System (ADS)

    Zhou, Jialin; Wang, Zuhua; Li, Qingpo; Liu, Fei; Du, Yongzhong; Yuan, Hong; Hu, Fuqiang; Wei, Yinghui; You, Jian

    2015-03-01

    Photothermal therapy (PTT) employs photosensitizing agents, which are taken up by cells and generate heat when irradiated with near-infrared (NIR) light, to enable the photoablation of cancer cells. High absorption in the NIR region is crucial for a photosensitizing agent to achieve efficient PTT. Different combinations between gold nanoparticles and fluorescent agents always influence their spectrum properties. Herein, we fabricated a novel combination of a fluorescent agent (doxorubicin, DOX, also a popular chemotherapeutic agent) with gold nanospheres by synthesizing hybridized DOX-Au nanospheres (DAuNS), where a part of the DOX molecules and Au co-formed a hybridized matrix as the shell and the remaining DOX molecules precipitated as the core. The unique structure of DAuNS induced interesting changes in the characteristics including spectrum properties, morphology, drug loading and antitumor activity. We observed that DAuNS exhibited a significantly enhanced surface plasmon absorption in the NIR region, inducing a more efficient photothermal conversion and stronger tumor-cell killing ability under NIR laser irradiation. In addition, our study presents a new and simple platform to load a drug into nanoparticles. DAuNS could be a promising nanoparticle with the ``two punch'' efficacy of PTT and chemotherapy and could be used in clinical applications due to its controllable synthesis, small size, and narrow size distribution.Photothermal therapy (PTT) employs photosensitizing agents, which are taken up by cells and generate heat when irradiated with near-infrared (NIR) light, to enable the photoablation of cancer cells. High absorption in the NIR region is crucial for a photosensitizing agent to achieve efficient PTT. Different combinations between gold nanoparticles and fluorescent agents always influence their spectrum properties. Herein, we fabricated a novel combination of a fluorescent agent (doxorubicin, DOX, also a popular chemotherapeutic agent) with gold

  16. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.

    PubMed

    Gorbunova, M V; Apyari, V V; Dmitrienko, S G; Garshev, A V

    2016-09-14

    Gold nanorods (AuNRs) stabilized by cetyltrimethylammonium bromide (CTAB) were synthesized and an interaction of catecholamines (CAs) with silver ions in the presence of the obtained AuNRs was studied. The reaction results into formation of core-shell Au@Ag nanorods (Au@AgNRs) and leads to a hypsochromic shift of the long-wave surface plasmon resonance (SPR) band in the absorption spectrum of AuNRs. The influence of a CA structure, excess of CTAB, interaction time, pH, concentration of AuNRs, silver ions and CAs on this interaction was studied. Based on correlation of the NRs spectral characteristics with the concentration of CAs, a method for spectrophotometric determination of dobutamine, epinephrine, norepinephrine and dopamine with detection limits 27, 18, 16 and 13 μg L(-1), respectively, has been developed. The method can be applied to the analysis of medicines. PMID:27566354

  17. Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Pullithadathil, Biji; Prasad, Arun K.; Dhara, Sandip; Ashok, Anuradha; Mohamed, Kamruddin; Tyagi, Ashok Kumar; Raj, Baldev

    2015-11-01

    A rapid synthesis route for hybrid ZnO@Au core-shell nanorods has been realized for ultrasensitive, trace-level NO2 gas sensor applications. ZnO nanorods and hybrid ZnO@Au core-shell nanorods are structurally analyzed using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Optical characterization using UV-visible (UV-vis), photoluminescence (PL) and Raman spectroscopies elucidate alteration in the percentage of defect and charge transport properties of ZnO@Au core-shell nanorods. The study reveals the accumulation of electrons at metal-semiconductor junctions leading to upward band bending for ZnO and thus favors direct electron transfer from ZnO to Au nanoclusters, which mitigates charge carrier recombination process. The operating temperature of ZnO@Au core-shell nanorods based sensor significantly decreased to 150 °C compared to alternate NO2 sensors (300 °C). Moreover, a linear sensor response in the range of 0.5-5 ppm of NO2 concentration was observed with a lowest detection limit of 500 ppb using conventional electrodes. The defects with deep level, observed in ZnO nanorods and hybrid ZnO@Au core-shell nanorods influences local electron density, which in-turn indirectly influence the gas sensing properties. The ZnO@Au core-shell nanorods based sensor exhibited good selectivity toward NO2 and was found to be very stable.

  18. Qualitative analysis of a generalized Maxwell-Einstein system - Application for a cosmological model

    NASA Astrophysics Data System (ADS)

    Tossa, Joel; Fabris, Julo C.; Romero, Carlos

    1992-02-01

    A methodology for studying dynamical systems is employed to qualitatively analyze the relationship between a Maxwellian field coupled to gravity and Einstein equations. The Maxwellian-type field is assumed to have n even dimensions to develop variables describing the expansion factor of the 4D universe and the variation of the gravitational constant. The resulting phase diagram is analyzed and found to have trajectories expanding from a singularity at infinity and tending toward equilibrium. This description of Minkowskian space-time is complemented by nonphysical regions in which trajectories originating from a 'big-bang' singularity tend toward an unstable singularity at infinity.

  19. Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Liu, Jun; Aksay, Ilhan A.; Yin, Geping; Lin, Yuehe

    2011-03-01

    PtAu alloy nanoparticles (~ 3.2 nm in diameter) are synthesized in poly(diallyldimethylammonium chloride) (PDDA) aqueous solution and uniformly dispersed on graphene nanosheets. PtAu/graphene exhibits high electrocatalytic activity and stability for formic acid oxidation, which is attributed to the high dispersion of PtAu nanoparticles and the specific interaction between PtAu and graphene, indicating a promising catalyst for direct formic acid fuel cells. The facile method can be readily extended to the synthesis of other alloy nanoparticles.

  20. Fabrication of hierarchical core-shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications.

    PubMed

    Qin, Yao; Zhou, Yanjie; Li, Jie; Ma, Jie; Shi, Donglu; Chen, Junhong; Yang, Jinhu

    2014-03-15

    Three dimensional dandelion-like hierarchical core-shell Au@ZnO heteroarchitectures with ZnO nanorods grown radially on Au nanoparticle (NP) cores have been successfully prepared with a high yield via a simple solution method involving heteroseed-induced nucleation and subsequent heteroepitaxial growth processes. Briefly, mercaptopropionic acid (MA) modified Au NPs were synthesized beforehand and served as nucleation centers for primary ZnO seed generation and Au@ZnO heteroseed formation. Then an epitaxial growth of ZnO nanorods (ZnO NRs) on the Au@ZnO heteroseeds resulted in the formation of Au@ZnO dandelions. The photocatalytic properties of as-prepared Au@ZnO dandelions were evaluated through rhodamine B (RhB) photodegradation under UV irradiation. The result showed that the Au@ZnO dandelions had improved photocatalytic performance compared with pure ZnO NRs and hybrids of ZnO NRs/Au NPs, due likely to the synergistic effect of the metal-semiconductor heterojunction and the unique dandelion-like hierarchical core-shell structure. PMID:24461832

  1. Quantitative and qualitative research across cultures and languages: cultural metrics and their application.

    PubMed

    Wagner, Wolfgang; Hansen, Karolina; Kronberger, Nicole

    2014-12-01

    Growing globalisation of the world draws attention to cultural differences between people from different countries or from different cultures within the countries. Notwithstanding the diversity of people's worldviews, current cross-cultural research still faces the challenge of how to avoid ethnocentrism; comparing Western-driven phenomena with like variables across countries without checking their conceptual equivalence clearly is highly problematic. In the present article we argue that simple comparison of measurements (in the quantitative domain) or of semantic interpretations (in the qualitative domain) across cultures easily leads to inadequate results. Questionnaire items or text produced in interviews or via open-ended questions have culturally laden meanings and cannot be mapped onto the same semantic metric. We call the culture-specific space and relationship between variables or meanings a 'cultural metric', that is a set of notions that are inter-related and that mutually specify each other's meaning. We illustrate the problems and their possible solutions with examples from quantitative and qualitative research. The suggested methods allow to respect the semantic space of notions in cultures and language groups and the resulting similarities or differences between cultures can be better understood and interpreted. PMID:24809790

  2. The effect of Alexander technique training program: A qualitative study of ordinary behavior application.

    PubMed

    Kim, Soo-Yeon; Baek, Soon Gi

    2014-12-01

    The purpose of this study was to configure and apply the Alexander technique training program and assess the effect of program through physical, emotional and behavioral aspects. To achieve the research aims, qualitative research method had been conducted, subjecting 8 people, who were participating in Alexander Technique training program for this study. The study used focus group interview method for collecting date and employed for the interview method by mixing the semi-structured and unstructured questionnaire. The results were followings. First, one could develop body awareness and body consciousness through experiencing lived bodily sensation. Second, from Alexander Technique training program, people experienced psycho & physical's equilibrium. Third, one could change not only the manner of use of body but also the attitude to the life from conscious attention to daily ordinary movement. The results provided empirical evidence of Alexander Technique training program's functions in terms of physical, emotional and behavioral aspect through the process of consciousness control from lived body education. PMID:25610819

  3. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Rai, Prabhakar; Yoon, Ji-Wook; Jeong, Hyun-Mook; Hwang, Su-Jin; Kwak, Chang-Hoon; Lee, Jong-Heun

    2014-06-01

    Au@NiO yolk-shell nanoparticles (NPs) were synthesized by simple solution route and applied for efficient gas sensor towards H2S gas. Carbon encapsulated Au (Au@C core-shell) NPs were synthesized by glucose-assisted hydrothermal method, whereas Au@NiO yolk-shell NPs were synthesized by precipitation method using Au@C core-shell NPs as a template. Sub-micrometer Au@NiO yolk-shell NPs were formed having 50-70 nm Au NPs at the periphery of NiO shell (10-20 nm), which was composed of 6-12 nm primary NiO particles. Au@NiO yolk-shell NPs showed higher response for H2S compared to other interfering gases (ethanol, p-xylene, NH3, CO and H2). The maximum response was 108.92 for 5 ppm of H2S gas at 300 °C, which was approximately 19 times higher than that for the interfering gases. The response of Au@NiO yolk-shell NPs to H2S was approximately 4 times higher than that of bare NiO hollow nanospheres. Improved performance of Au@NiO yolk-shell NPs was attributed to hollow spaces that allowed the accessibility of Au NPs to gas molecules. It was suggested that adsorption of H2S on Au NPs resulted in the formation of sulfide layer, which possibly lowered its work function, and therefore tuned the electron transfer from Au to NiO rather NiO to Au, which leaded to increase in resistance and therefore response.Au@NiO yolk-shell nanoparticles (NPs) were synthesized by simple solution route and applied for efficient gas sensor towards H2S gas. Carbon encapsulated Au (Au@C core-shell) NPs were synthesized by glucose-assisted hydrothermal method, whereas Au@NiO yolk-shell NPs were synthesized by precipitation method using Au@C core-shell NPs as a template. Sub-micrometer Au@NiO yolk-shell NPs were formed having 50-70 nm Au NPs at the periphery of NiO shell (10-20 nm), which was composed of 6-12 nm primary NiO particles. Au@NiO yolk-shell NPs showed higher response for H2S compared to other interfering gases (ethanol, p-xylene, NH3, CO and H2). The maximum response was 108.92 for 5 ppm

  4. Synthesis and characterization of Cu2O/Au and its application in catalytic reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Guo, X. H.; Ma, J. Q.; Ge, H. G.

    2015-08-01

    Monodispersed Cu2O spherical colloids with diameter of about 300 nm were prepared by a facile additive-assisted complex-precursor solution method. Core-shell structure Cu2O/Au composites, constructed by spherical Cu2O core and Au nanoparticles shell, were obtained via galvanic replacement method. The morphology, microstructure and optical properties of the Cu2O/Au composites were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectra and ultraviolet-visible absorption. The results showed that Au NPs with an average size of 12 nm were uniformly distributed on the surface of the Cu2O spheres with size about 300 nm. Cu2O/Au composites exhibit high catalytic activity toward 4-NP reduction at room temperature.

  5. Naphthalimide derived fluorescent probes with turn-on response for Au(3+) and the application for biological visualization.

    PubMed

    Li, Yan; Qiu, Yanxin; Zhang, Jianjian; Zhu, Xinyue; Zhu, Bin; Liu, Xiaoyan; Zhang, Xiaoyu; Zhang, Haixia

    2016-09-15

    The 4-N,N-dimethyl-1,8-naphthalimide based fluorescent probes have been explored for selective detection of Au(3+). Both probes show a pronounced fluorescence enhancement response to Au(3+). Hydroxy is introduced as ligand of Au(3+) for Probe 1 and the newly designed Probe 2 contains an alkyne moiety to recognize Au(3+) through an irreversible C≡C bond hydrolysis reaction. Probe 1 exhibits higher performance such as faster response, lower detection limit of 0.050μM and the better responsive effect in 99.5% water system compared with most of probes published. The Probe 2 displays high stability to pH, suitable water solubility, wider linear range (0-100μM) to Au(3+), and live-cells imaging with low cytotoxicity. PMID:27135938

  6. Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

    PubMed Central

    Kashanian, Soheila

    2015-01-01

    Summary The unique properties and applications of iron oxide and Au nanoparticles have motivated researchers to synthesize and optimize a combined nanocomposite containing both. By using various polymers such as chitosan, some of the problems of classic core–shell structures (such as reduced saturation magnetization and thick coating) have been overcome. In the present study, chitosan and one of its well-known derivatives, N-trimethylchitosan (TMC), were applied to construct three-layer nanocomposites in an Au/polymer/Fe3O4 system. It was demonstrated that replacement of chitosan with TMC reasonably improved the properties of the final nanocomposites including their size, magnetic behavior and thermal stability. Moreover, the results of the MTT assay showed no significant cytotoxicity effect when the Au/TMC/Fe3O4 nanocomposites were applied in vitro. These TMC-containing magnetic nanoparticles are well-coated by Au nanoparticles and have good biocompatibility and can thus play the role of a platform or a label in various fields of application, especially the biomedical sciences and biosensors. PMID:26425418

  7. The effect of Alexander technique training program: A qualitative study of ordinary behavior application

    PubMed Central

    Kim, Soo-Yeon; Baek, Soon Gi

    2014-01-01

    The purpose of this study was to configure and apply the Alexander technique training program and assess the effect of program through physical, emotional and behavioral aspects. To achieve the research aims, qualitative research method had been conducted, subjecting 8 people, who were participating in Alexander Technique training program for this study. The study used focus group interview method for collecting date and employed for the interview method by mixing the semi-structured and unstructured questionnaire. The results were followings. First, one could develop body awareness and body consciousness through experiencing lived bodily sensation. Second, from Alexander Technique training program, people experienced psycho & physical’s equilibrium. Third, one could change not only the manner of use of body but also the attitude to the life from conscious attention to daily ordinary movement. The results provided empirical evidence of Alexander Technique training program’s functions in terms of physical, emotional and behavioral aspect through the process of consciousness control from lived body education. PMID:25610819

  8. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  9. Can the caged bird sing? Reflections on the application of qualitative research methods to case study design in homeopathic medicine

    PubMed Central

    Thompson, Trevor DB

    2004-01-01

    Background Two main pathways exist for the development of knowledge in clinical homeopathy. These comprise clinical trials conducted primarily by university-based researchers and cases reports and homeopathic "provings" compiled by engaged homeopathic practitioners. In this paper the relative merits of these methods are examined and a middle way proposed. This consists of the "Formal Case Study" (FCS) in which qualitative methods are used to increase the rigour and sophistication with which homeopathic cases are studied. Before going into design issues this paper places the FCS in an historical and academic context and describes the relative merits of the method. Discussion Like any research, the FCS should have a clear focus. This focus can be both "internal", grounded in the discourse of homeopathy and also encompass issues of wider appeal. A selection of possible "internal" and "external" research questions is introduced. Data generation should be from multiple sources to ensure adequate triangulation. This could include the recording and transcription of actual consultations. Analysis is built around existing theory, involves cross-case comparison and the search for deviant cases. The trustworthiness of conclusions is ensured by the application of concepts from qualitative research including triangulation, groundedness, respondent validation and reflexivity. Though homeopathic case studies have been reported in mainstream literature, none has used formal qualitative methods – though some such studies are in progress. Summary This paper introduces the reader to a new strategy for homeopathic research. This strategy, termed the "formal case study", allows for a naturalistic enquiry into the players, processes and outcomes of homeopathic practice. Using ideas from qualitative research, it allows a rigorous approach to types of research question that cannot typically be addressed through clinical trials and numeric outcome studies. The FCS provides an opportunity

  10. Plethora or paucity: a systematic search and bibliometric study of the application and design of qualitative methods in nursing research 2008-2010.

    PubMed

    Ball, Elaine; McLoughlin, Moira; Darvill, Angela

    2011-04-01

    Qualitative methodology has increased in application and acceptability in all research disciplines. In nursing, it is appropriate that a plethora of qualitative methods can be found as nurses pose real-world questions to clinical, cultural and ethical issues of patient care (Johnson, 2007; Long and Johnson, 2007), yet the methods nurses readily use in pursuit of answers remains under intense scrutiny. One of the problems with qualitative methodology for nursing research is its place in the hierarchy of evidence (HOE); another is its comparison to the positivist constructs of what constitutes good research and the measurement of qualitative research against this. In order to position and strengthen its evidence base, nursing may well seek to distance itself from a qualitative perspective and utilise methods at the top of the HOE; yet given the relation of qualitative methods to nursing this would constrain rather than broaden the profession in search of answers and an evidence base. The comparison between qualitative and quantitative can be both mutually exclusive and rhetorical, by shifting the comparison this study takes a more reflexive position and critically appraises qualitative methods against the standards set by qualitative researchers. By comparing the design and application of qualitative methods in nursing over a two year period, the study examined how qualitative stands up to independent rather than comparative scrutiny. For the methods, a four-step mixed methods approach newly constructed by the first author was used to define the scope of the research question and develop inclusion criteria. 2. Synthesis tables were constructed to organise data, 3. Bibliometrics configured data. 4. Studies selected for inclusion in the review were critically appraised using a critical interpretive synthesis (Dixon-Woods et al., 2006). The paper outlines the research process as well as findings. Results showed of the 240 papers analysed, 27% used ad hoc or no

  11. Qualitative Research and Case Study Applications in Education. Revised and Expanded from "Case Study Research in Education."

    ERIC Educational Resources Information Center

    Merriam, Sharan B.

    This book offers a resource guide for qualitative researchers in education, discussing data collection techniques, data analysis, reporting, and the issues of validity, reliability, and ethics. Part 1 reviews the nature and design of qualitative research; it discusses various types of qualitative research (including case studies), and how to…

  12. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    NASA Astrophysics Data System (ADS)

    Leng, Jing; Wang, Wen-Min; Lu, Li-Min; Bai, Ling; Qiu, Xin-Lan

    2014-02-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.

  13. An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications

    NASA Astrophysics Data System (ADS)

    Scuderi, Viviana; Impellizzeri, Giuliana; Romano, Lucia; Scuderi, Mario; Brundo, Maria V.; Bergum, Kristin; Zimbone, Massimo; Sanz, Ruy; Buccheri, Maria A.; Simone, Francesca; Nicotra, Giuseppe; Svensson, Bengt G.; Grimaldi, Maria G.; Privitera, Vittorio

    2014-09-01

    We propose a ground-breaking approach by an upside-down vision of the Au/TiO2 nano-system in order to obtain an enhanced photocatalytic response. The system was synthesized by wrapping Au nanoparticles (~8 nm mean diameter) with a thin layer of TiO2 (~4 nm thick). The novel idea of embedding Au nanoparticles with titanium dioxide takes advantage of the presence of metal nanoparticles, in terms of electron trapping, without losing any of the TiO2 exposed surface, so as to favor the photocatalytic performance of titanium dioxide. A complete structural characterization was made by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The remarkable photocatalytic performance together with the stability of the nano-system was demonstrated by degradation of the methylene blue dye in water. The non-toxicity of the nano-system was established by testing the effect of the material on the reproductive cycle of Mytilus galloprovincialis in an aquatic environment. The originally synthesized material was also compared to conventional TiO2 with Au nanoparticles on top. The latter system showed a dispersion of Au nanoparticles in the liquid environment, due to their instability in the aqueous solution that clearly represents an environmental contamination issue. Thus, the results show that nanometric TiO2 wrapping of Au nanoparticles has great potential in eco-friendly water/wastewater purification.

  14. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  15. Non-centrosymmetric Au-SnO2 hybrid nanostructures with strong localization of plasmonic for enhanced photocatalysis application.

    PubMed

    Wu, Wei; Liao, Lei; Zhang, Shaofeng; Zhou, Juan; Xiao, Xiangheng; Ren, Feng; Sun, Lingling; Dai, Zhigao; Jiang, Changzhong

    2013-06-21

    We present an innovative approach to the production of sub-100 nm hollow Au-SnO2 hybrid nanospheres, employing a low-cost, surfactant-free and environmentally friendly solution-based route. The hollow hybrid nanostructures were synthesized using a seed-mediated hydrothermal method, which can be divided into two stages: (1) formation of multicore-shell Au@SnO2 nanoparticles (NPs) and (2) thermal diffusion and ripening to form hollow Au-SnO2 hybrid NPs. The morphology, optical properties and formation mechanism were determined by a collection of joint techniques. Photocatalytic degradation of Rhodamine B (RhB) in the liquid phase served as a probe reaction to evaluate the activity of the as-prepared hollow hybrid Au-SnO2 NPs under the irradiation of both visible light and ultraviolet light. Significantly, the as-obtained Au-SnO2 hybrid nanostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to commercial pure SnO2 products and P25 TiO2, mainly owing to the effective electron hole separation at the SnO2-Au interfaces and strong localization of plasmonic near-fields effects. PMID:23685533

  16. Development and application of a two-tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis

    NASA Astrophysics Data System (ADS)

    Tan, Kim Chwee Daniel; Khang Goh, Ngoh; Sai Chia, Lian; Treagust, David F.

    2002-04-01

    This article describes the development and application of a two-tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis. The development of the diagnostic instrument was guided by the framework outlined by Treagust. The instrument was administered to 915 Grade 10 students (15 to 17 years old) from 11 schools after they had learned the theory involved in qualitative analysis and after a series of qualitative analysis practical sessions. The Cronbach alpha reliability of the instrument was .68, the facility indices ranged from .17 to .48, and the discrimination indices ranged from .20 to .53. The study showed that the Grade 10 students had difficulty understanding the reactions involved in the identification of cations and anions, for example, double decomposition reactions, the formation and reaction of complex salts, and thermal decomposition. The findings of the study and literature on practical work were used to develop a qualitative analysis teaching package.

  17. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  18. Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS-Au hybrid nanoplatelets and corresponding application in photocatalysis.

    PubMed

    Chauhan, Himani; Kumar, Yogesh; Dana, Jayanta; Satpati, Biswarup; Ghosh, Hirendra N; Deka, Sasanka

    2016-08-25

    Multicomponent hybrid nanocrystals (HNC) consisting of a semiconductor and metallic domains are an important class of nanostructured materials demonstrating useful applications and interesting basic knowledge. In this scenario, Au nanoparticle (NP) islands of ∼2 nm have been grown on unique two dimensional (2D) CdSe/CdS core@shell hexagonal nanoheteroplatelets of 20 nm diameter to form unprecedented 2D CdSe/CdS-Au HNCs and detailed optical characterization has been carried out to determine the dimensionality based electron transfer dynamics on the ultrafast scale. Steady state optical absorption studies show that upon growing Au NPs onto the 2D nanoplates, a new band appears in the red region of the spectra (500-800 nm), which suggests a strong interaction between the exciton of the core-shell and the plasmon of the metal NPs. Fluorescence studies showed the quenching of emission of the semiconductor domains upon the growth of the metallic domains. Detailed optical and TRPL studies suggested efficient charge transfer from the 2D CdSe/CdS to the Au domains, irrespective of excitation wavelength. Femtosecond transient absorption studies suggest that the electron transfer from the 2D hybrid nanocrystals to the metal domain is on an ultrafast time scale (∼800 fs). No evidence is observed for charge transfer from the 2 nm Au domains to the semiconductor seeds. The broad absorption in the visible region of the hybrid nanocrystals and the ultrafast charge transfer facilitates very efficient photo-catalytic reactions under direct sun light, as a case study. PMID:27533050

  19. Qualitative analysis and applications of a kind of state-dependent impulsive differential equations

    NASA Astrophysics Data System (ADS)

    Wang, Fengyan; Pang, Guoping; Chen, Lansun

    2008-06-01

    This paper analyzes a certain type of impulsive differential equations (IDEs). Several useful theorems for its periodic solutions and their stabilities are given. The key idea is that a periodically time-dependent IDE can be transformed into the state-dependent IDE. As applications of our theory, the optimization problems in population dynamics are studied. That is, the maximum sustainable yields of single population models with periodically impulsive constant harvesting are discussed. Furthermore, we apply these results to the studies of the order-1 periodic solutions and their stability of a single population model with stage structure in which the mature is impulsively proportionally harvested while the immature is impulsively added with the constant.

  20. Low temperature synthesis of RGO-Au nanocomposite with apparently reduced time and its application as a chemical sensor

    NASA Astrophysics Data System (ADS)

    Tuz Johra, Fatima; Jung, Woo-Gwang

    2016-01-01

    For the first time, a reduced graphene oxide (RGO)-Au nanocomposites (NC) is synthesized at a low temperature by refluxing without a surfactant. Transmission electron microscopy suggests that Au nanoparticles (NPs) 10-20 nm in size are dispersed on the RGO thin film. X-ray diffraction study, UV-vis spectrometry, and Raman spectroscopy confirmed the reduction of graphene oxide (GO). This RGO-Au NC shows an excellent ability to detect Cr(VI) by electrochemical sensing, with good responses to both current and voltage. A glassy carbon electrode modified with the NC shows a significant voltammetric reduction peak. The voltammetric detection ability is highly dependent on the pH of the electrolyte. The large surface area of RGO's porous structure and the electroactive Au NPs both allow free exchange of reaction intermediates, resulting in significantly enhanced Cr(VI) reduction activity. The RGO-Au electrode shows a good linear response in a range of Cr(VI) concentrations from 10 to 800 μM and a high sensitivity of 0.0146 μA μM-1 with a 2.10 μM detection limit.

  1. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application.

    PubMed

    Gupta, Vinod Kumar; Atar, Necip; Yola, Mehmet Lütfi; Eryılmaz, Merve; Torul, Hilal; Tamer, Uğur; Boyacı, Ismail Hakkı; Ustündağ, Zafer

    2013-09-15

    This study represents a novel template demonstration of a glucose biosensor based on mercaptophenyl boronic acid (MBA) terminated Ag@AuNPs/graphene oxide (Ag@AuNPs-GO) nanomaterials. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) method. The TEM image shows that Ag@AuNPs in the nanocomposite is in the range of diameters of 10-20 nm. The nanocomposite was used for the determination of glucose through the complexation between boronic acid and diol groups of glucose. Thus, a novel glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into MBA terminated Ag@AuNPs-GO nanocomposite film (MBA-Ag@AuNPs-GO). The linearity range of glucose was obtained as 2-6mM with detection limit of 0.33 mM. The developed biosensor was also applied successfully for the determination of glucose in blood samples. The concentration value of glucose in blood samples was calculated to be 1.97±0.002 mM from measurements repeated for six times. PMID:23816220

  2. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  3. Using Qualitative Methods to Create a Home Health Web Application User Interface for Patients with Low Computer Proficiency

    PubMed Central

    Baier, Rosa R.; Cooper, Emily; Wysocki, Andrea; Gravenstein, Stefan; Clark, Melissa

    2015-01-01

    Introduction: Despite the investment in public reporting for a number of healthcare settings, evidence indicates that consumers do not routinely use available data to select providers. This suggests that existing reports do not adequately incorporate recommendations for consumer-facing reports or web applications. Methods: Healthcentric Advisors and Brown University undertook a multi-phased approach to create a consumer-facing home health web application in Rhode Island. This included reviewing the evidence base review to identify design recommendations and then creating a paper prototype and wireframe. We performed qualitative research to iteratively test our proposed user interface with two user groups, home health consumers and hospital case managers, refining our design to create the final web application. Results: To test our prototype, we conducted two focus groups, with a total of 13 consumers, and 28 case manager interviews. Both user groups responded favorably to the prototype, with the majority commenting that they felt this type of tool would be useful. Case managers suggested revisions to ensure the application conformed to laws requiring Medicare patients to have the freedom to choose among providers and could be incorporated into hospital workflow. After incorporating changes and creating the wireframe, we conducted usability testing interviews with 14 home health consumers and six hospital case managers. We found that consumers needed prompting to navigate through the wireframe; they demonstrated confusion through both their words and body language. As a result, we modified the web application’s sequence, navigation, and function to provide additional instructions and prompts. Discussion: Although we designed our web application for low literacy and low health literacy, using recommendations from the evidence base, we overestimated the extent to which older adults were familiar with using computers. Some of our key learnings and recommendations run

  4. Application of cladistics to terrane history—parsimony analysis of qualitative geological data

    NASA Astrophysics Data System (ADS)

    Young, Gavin C.

    Hypotheses of terrane dispersal or accretion can be represented graphically as branching diagrams (cladograms), but an assessment of competing hypotheses of terrane history requires a method of analysis of supporting evidence which resolves the most parsimonious explanation of all available data. Cladistics is a rigorous analytical method first developed for phylogeny reconstruction (i.e. biological history), but applicable to any hierarchical data set. Given appropriate definitions, the various types of geological, geophysical and biological data used to support hypotheses of fragmentation or fusion history for geological regions (terranes) assumed to have had independent geological histories can be organized hierarchically. Terrane fragmentation is equivalent to phylogenetic splitting of biological taxa, and standard algorithms for parsimony analysis may be directly applied. Terrane accretion may be represented as a coalescing area cladogram, and the supporting evidence also forms a hierarchical data set, but with two main differences. The less general attributes historically precede the more general (the reverse applies in phylogeny reconstruction), and the branching points (nodes on the cladogram), unlike hypothetical common ancestors in phylogeny reconstruction, represent defined geographic areas, with a geological structure which can be investigated. In cladistic reconstruction of evolutionary history the common ancestors are hypothetical, and their attributes can only be inferred from the distribution of attributes amongst the terminals (known biological taxa); in contrast, the end product of terrane accretion is a composite structure (geological province) within which juxtaposition of terranes may eliminate some of the possible historical sequences which led to its formation.

  5. Low temperature activation of Au/Ti getter film for application to wafer-level vacuum packaging

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Moulin, Johan; Lani, Sébastien; Hallais, Géraldine; Renard, Charles; Bosseboeuf, Alain

    2015-03-01

    Non-evaporable getter (NEG) thin films based on alloys of transition metals have been studied by various authors for vacuum control in wafer-level packages of micro electro mechanical systems (MEMS). These materials have typically a relatively high activation temperature (300-450 °C) which is incompatible with some temperature sensitive MEMS devices. In this work we investigate the potential of Au/Ti system with a thin or ultrathin non oxidizable Au layer as a low activation temperature getter material. In this bilayer system, gettering activation is produced by thermal outdiffusion of titanium atoms through the gold film. The outdiffusion kinetics of titanium was modelled and characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS) at various temperatures. Results confirm that Au/Ti bilayer is a promising getter material for wafer-level packaging with an activation temperature below 300 °C for 1 h annealing time.

  6. The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng.

    PubMed

    Sandasi, Maxleene; Vermaak, Ilze; Chen, Weiyang; Viljoen, Alvaro

    2016-01-01

    The name "ginseng" is collectively used to describe several plant species, including Panax ginseng (Asian/Oriental ginseng), P. quinquefolius (American ginseng), P. pseudoginseng (Pseudoginseng) and Eleutherococcus senticosus (Siberian ginseng), each with different applications in traditional medicine practices. The use of a generic name may lead to the interchangeable use or substitution of raw materials which poses quality control challenges. Quality control methods such as vibrational spectroscopy-based techniques are here proposed as fast, non-destructive methods for the distinction of four ginseng species and the identification of raw materials in commercial ginseng products. Certified ginseng reference material and commercial products were analysed using hyperspectral imaging (HSI), mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Principal component analysis (PCA) and (orthogonal) partial least squares discriminant analysis models (OPLS-DA) were developed using multivariate analysis software. UHPLC-MS was used to analyse methanol extracts of the reference raw materials and commercial products. The holistic analysis of ginseng raw materials revealed distinct chemical differences using HSI, MIR and NIR. For all methods, Eleutherococcus senticosus displayed the greatest variation from the three Panax species that displayed closer chemical similarity. Good discrimination models with high R²X and Q² cum vales were developed. These models predicted that the majority of products contained either /P. ginseng or P. quinquefolius. Vibrational spectroscopy and HSI techniques in tandem with multivariate data analysis tools provide useful alternative methods in the authentication of ginseng raw materials and commercial products in a fast, easy, cost-effective and non-destructive manner. PMID:27077839

  7. Comparison of some morphological and absorption properties of the nanoparticles Au/TiO2 embedded films prepared by different technologies on the substrates for application in the plasmonic solar cell

    NASA Astrophysics Data System (ADS)

    Dao, Khac An; Thuy Nguyen, Thi; Huong Nguyen, Thi Mai; Nguyen, Duy Thien

    2015-03-01

    The nanoparticle Au/TiO2 embedded system plays a very important role in the plasmonic solar cell. The features of the nanoparticle embedded system will determine light enhancement, light absorption, scattering and localized surface plasmon resonance (LSPR), aiming to enhance the efficiency of the plasmatic solar cell. The characterizations of nanoparticles Au/TiO2 embedded system consist of many parameters: the sizes of nanoparticles (Au, TiO2), the weight ratio of Au to TiO2, the thickness of the single layer or multilayer of Au/TiO2, the arrangements of Au and TiO2 nanoparticles in integrated-matrix system, the light absorption, scattering and LSPR capacities of the Au/TiO2 system. These parameters, however, depend on the technological conditions, the structure of plasmonic solar cell as well as the used substrate materials. This paper presents some technological developments for nanoparticles Au/TiO2 embedded systems by different methods, including the preparation of the mixer Au/TiO2 solutions and fabrication of the nanoparticle Au/TiO2 systems with different Au percentages on several substrates (glass/ITO and AAO(Al)/Si…), and measured results of the morphological, structural and optical properties using FESEM, EDX, UV-vis spectroscopy. The comparisons of experiment results between different technology conditions and substrates (glass/ITO, AAO(Al)/Si…) are also shown and discussed with the aim of choosing the suitable technological process and technological conditions for application in the plasmonic solar cell.

  8. Development and Application of a Two-Tier Multiple Choice Diagnostic Instrument To Assess High School Students' Understanding of Inorganic Chemistry Qualitative Analysis.

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Goh, Ngoh Khang; Chia, Lian Sai; Treagust, David F.

    2002-01-01

    Describes the development and application of a two-tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis. Shows that the Grade 10 students had difficulty understanding the reactions involved in the identification of cations and anions, for example, double decomposition…

  9. Observation of dynamic water microadsorption on Au surface

    SciTech Connect

    Huang, Xiaokang Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  10. Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions

    EPA Science Inventory

    An efficient and sustainable protocol is described for the oxidative esterification of aldehydes and the reduction of aromatic nitro compounds that uses magnetically separable and reusable maghemite-supported gold nanocatalyst (nanocat-Fe-Au) under mild conditions. The complex ch...

  11. Patients’ experiences of using a smartphone application to increase physical activity: the SMART MOVE qualitative study in primary care

    PubMed Central

    Casey, Monica; Hayes, Patrick S; Glynn, Fergus; ÓLaighin, Gearóid; Heaney, David; Murphy, Andrew W; Glynn, Liam G

    2014-01-01

    Background Regular physical activity is known to help prevent and treat numerous non-communicable diseases. Smartphone applications (apps) have been shown to increase physical activity in primary care but little is known regarding the views of patients using such technology or how such technology may change behaviour. Aim To explore patients’ views and experiences of using smartphones to promote physical activity in primary care. Design and setting This qualitative study was embedded within the SMART MOVE randomised controlled trial, which used an app (Accupedo-Pro Pedometer) to promote physical activity in three primary care centres in the west of Ireland. Method Taped and transcribed semi-structured interviews with a purposeful sample of 12 participants formed the basis of the investigation. Framework analysis was used to analyse the data. Results Four themes emerged from the analysis: transforming relationships with exercise; persuasive technology tools; usability; and the cascade effect. The app appeared to facilitate a sequential and synergistic process of positive change, which occurred in the relationship between the participants and their exercise behaviour; the study has termed this the ‘Know-Check-Move’ effect. Usability challenges included increased battery consumption and adjusting to carrying the smartphone on their person. There was also evidence of a cascade effect involving the families and communities of participants. Conclusion Notwithstanding technological challenges, an app has the potential to positively transform, in a unique way, participants’ relationships with exercise. Such interventions can also have an associated cascade effect within their wider families and communities. PMID:25071063

  12. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen

    PubMed Central

    Ji, Lei; Yan, Tao; Li, Yan; Gao, Jian; Wang, Qi; Hu, Lihua; Wu, Dan; Wei, Qin; Du, Bin

    2016-01-01

    A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine, acting as both the reductant and template for one-step synthesis of gold nanoparticles. The prepared Au/PDA/Fe3O4@C@PGC nanocomposites show ferromagnetic features, extremely excellent electron transfer, large specific surface area and excellent dispersing property. These are conducive to the electrochemical signal output and the immobilization of antibody. In this work, a highly label-free sensitive magnetic immunosensor was developed based on Au/PDA/Fe3O4@C@PGC nanocomposites for the detection of carcino-embryonic antigen (CEA). The magnetic glassy carbon electrode was used to fix the Au/PDA/Fe3O4@C@PGC nanocomposites with the help of magnetic force. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.001 ng/mL–20.0 ng/mL), a low detection limit (0.33 pg/mL), good reproducibility, selectivity and acceptable stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers. PMID:26868035

  13. Tailored synthesis of photoactive TiO ₂ nanofibers and Au/TiO ₂ nanofiber composites: structure and reactivity optimization for water treatment applications.

    PubMed

    Nalbandian, Michael J; Greenstein, Katherine E; Shuai, Danmeng; Zhang, Miluo; Choa, Yong-Ho; Parkin, Gene F; Myung, Nosang V; Cwiertny, David M

    2015-02-01

    Titanium dioxide (TiO2) nanofibers with tailored structure and composition were synthesized by electrospinning to optimize photocatalytic treatment efficiency. Nanofibers of controlled diameter (30-210 nm), crystal structure (anatase, rutile, mixed phases), and grain size (20-50 nm) were developed along with composite nanofibers with either surface-deposited or bulk-integrated Au nanoparticle cocatalysts. Their reactivity was then examined in batch suspensions toward model (phenol) and emerging (pharmaceuticals, personal care products) pollutants across various water qualities. Optimized TiO2 nanofibers meet or exceed the performance of traditional nanoparticulate photocatalysts (e.g., Aeroxide P25) with the greatest reactivity enhancements arising from (i) decreasing diameter (i.e., increasing surface area), (ii) mixed phase composition [74/26 (±0.5) % anatase/rutile], and (iii) small amounts (1.5 wt %) of surface-deposited, more so than bulk-integrated, Au nanoparticles. Surface Au deposition consistently enhanced photoactivity by 5- to 10-fold across our micropollutant suite independent of their solution concentration, behavior that we attribute to higher photocatalytic efficiency from improved charge separation. However, the practical value of Au/TiO2 nanofibers was limited by their greater degree of inhibition by solution-phase radical scavengers and higher rate of reactivity loss from surface fouling in nonidealized matrixes (e.g., partially treated surface water). Ultimately, unmodified TiO2 nanofibers appear most promising for use as reactive filtration materials because their performance was less influenced by water quality, although future efforts must increase the strength of TiO2 nanofiber mats to realize such applications. PMID:25582552

  14. A simple approach to the synthesis of eccentric Au@SiO2 Janus nanostructures and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Di; Hu, Huicheng; Chen, Lei; Xu, Yong; Qu, Lili; Yang, Peipei; Zhang, Qiao

    2016-06-01

    In this paper, we present a simple method to synthesize eccentric Au@SiO2 Janus nanoparticles. By simply tuning the concentration of poly(vinyl pyrrolidone) (PVP), the surface of gold nanoparticle can be partially or fully wrapped with the amphiphilic ligand. As a result, Janus nanoparticle or concentric core-shell nanostructures can be obtained, respectively. A systematic study has been carried out to confirm the function of PVP molecules. The as-prepared Janus nanoparticle can act as a catalyst to catalyze the reduction of 4-nitrophenol, while the core-shell nanostructure is not active due to the coverage of dense silica shell. This work provides a robust and scalable method to produce Au@SiO2 Janus nanoparticles.

  15. Adsorption between TC-stabilized AuNPs and the phosphate group: application of the PTP1B activity assay.

    PubMed

    Lv, Jun; Wang, Xiaonan; Zhang, Yuanyuan; Li, Defeng; Zhang, Juan; Sun, Lizhou

    2015-12-01

    Based on the adsorption between tetracycline (TC) and phosphate groups, a general colorimetric method is explored in this work by using TC-stabilized gold nanoparticles (TC/AuNPs) and 4-aminophenyl phosphate-functionalized Fe3O4 magnetic nanoparticles (APP/MNPs). Taking protein tyrosine phosphatase 1B (PTP1B) as an example, 4-aminophenyl phosphate (APP) can be hydrolyzed into 4-aminophenol (AP) by PTP1B, resulting in the disappearance of the phosphate group on the outer layer of MNPs and the loss of corresponding adsorptive ability. Upon addition of TC/AuNP solution, TC/AuNPs will remain in the supernatant solution after magnetic separation and a high absorbance value can be observed. So PTP1B activity is related to the concentrations of TC/AuNPs in the supernatant solution. In this work, the enzyme activity can be determined at levels as low as 0.0885 U mL(-1) and over a linear detection range as wide as 0.1 U mL(-1) to 0.9 U mL(-1). Moreover, using the proposed method, the inhibition effect of betulinic acid (BA) and sodium orthovanadate (Na3VO4) on PTP1B activity can be tested with IC50 values of 30 μM and 4 μM, respectively. Therefore, a universal platform for the accurate colorimetric analysis of kinase and phosphatase activities can be established through the adsorption between TC and phosphate groups. PMID:26523458

  16. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor. PMID:26799703

  17. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current–voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung’s method and Norde’s technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I–V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor. PMID:26799703

  18. First results on d+Au collisions from PHOBOS

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2004-02-01

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at √SNN = 200 GeV, in the range 0.25 < pT < 6.0 GeV/c. With increasing collision centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-pT hadrons observed in Au+Au collisions.

  19. Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application.

    PubMed

    Wu, Ze; Fu, Qiangqiang; Yu, Shiting; Sheng, Liangrong; Xu, Meng; Yao, Cuize; Xiao, Wei; Li, Xiuqing; Tang, Yong

    2016-11-15

    Current diagnostic technologies primarily rely on bulky and costly analytical instruments. Therefore, cost-effective and portable diagnosis tools that can be used for point-of-care tests (POCT) are highly desirable. In this study, we report a cost-effective, portable capillary-based biosensor for quantitative detection of biomarkers by the naked eye. This capillary-based biosensor was tested by measuring the distance of blue ink movement, which was directly correlated with the oxygen (O2) produced by efficient core-shell Pt@Au nanoparticles (Pt@AuNPs) catalysts decomposed hydrogen peroxide (H2O2). By linking the Pt@AuNPs with antibodies, capillary-based biosensor sandwich immunoassays were constructed. The concentrations of the target proteins were positively correlated with the distances of ink movement. To demonstrate their performance, the biosensors were used to detect the cancer biomarker sprostate-specific antigen (PSA) and carcinoembryonic antigen (CEA). The linear detection range (LDR) of the capillary-based biosensor for detecting PSA was from 0.02 to 2.5ng/mL, and the limit of detection (LOD) was 0.017ng/mL. LDR of the biosensor for detecting CEA was from 0.063 to 16ng/mL, and the LOD was 0.044ng/mL. For detection of PSA and CEA in clinical serum samples, the detection results of the capillary-based biosensor were well correlate with the results from of chemiluminescence immunoassays (CLIAs). Thus, the capillary-based biosensor may potentially be a useful strategy for point-of-care testing, in addition to being portable and cost effective. PMID:27240013

  20. Qualitative Evaluation.

    ERIC Educational Resources Information Center

    Stone, James C., Ed.; James, Raymond A., Ed.

    1981-01-01

    "Qualitative evaluation" is the theme of this issue of the California Journal of Teacher Education. Ralph Tyler states that evaluation is essentially descriptive, and using numbers does not solve basic problems. Martha Elin Vernazza examines the issue of objectivity in history and its implications for evaluation. She posits that the decisive…

  1. Gold nanowired: a linear (Au25)(n) polymer from Au25 molecular clusters.

    PubMed

    De Nardi, Marco; Antonello, Sabrina; Jiang, De-en; Pan, Fangfang; Rissanen, Kari; Ruzzi, Marco; Venzo, Alfonso; Zoleo, Alfonso; Maran, Flavio

    2014-08-26

    Au25(SR)18 has provided fundamental insights into the properties of clusters protected by monolayers of thiolated ligands (SR). Because of its ultrasmall core, 1 nm, Au25(SR)18 displays molecular behavior. We prepared a Au25 cluster capped by n-butanethiolates (SBu), obtained its structure by single-crystal X-ray crystallography, and studied its properties both experimentally and theoretically. Whereas in solution Au25(SBu)18(0) is a paramagnetic molecule, in the crystal it becomes a linear polymer of Au25 clusters connected via single Au-Au bonds and stabilized by proper orientation of clusters and interdigitation of ligands. At low temperature, [Au25(SBu)18(0)]n has a nonmagnetic ground state and can be described as a one-dimensional antiferromagnetic system. These findings provide a breakthrough into the properties and possible solid-state applications of molecular gold nanowires. PMID:25088331

  2. Application of Au-Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Choa, Sung-Hoon; Kim, Woonbae; Hwang, Junsik; Ham, Sukjin; Moon, Changyoul

    2006-03-01

    Development of packaging is one of the critical issues toward realizing commercialization of radio-frequency-microelectromechanical system (RF-MEMS) devices. The RF-MEMS package should be designed to have small size, hermetic protection, good RF performance, and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low-temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at temperatures below 300°C is used. Au-Sn multilayer metallization with a square loop of 70 µm in width is performed. The electrical feed-through is achieved by the vertical through-hole via filling with electroplated Cu. The size of the MEMS package is 1 mm × 1 mm × 700 µm. The shear strength and hermeticity of the package satisfies the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  3. Fixed-frequency and Frequency-agile (au, HTS) Microstrip Bandstop Filters for L-band Applications

    NASA Technical Reports Server (NTRS)

    Saenz, Eileen M.; Subramanyam, Guru; VanKeuls, Fred W.; Chen, Chonglin; Miranda, Felix A.

    2001-01-01

    In this work, we report on the performance of a highly selective, compact 1.83 x 2.08 cm(exp 2) (approx. 0.72 x 0.82 in(exp 2) microstrip line bandstop filter of YBa2CU3O(7-delta) (YBCO) on LaAlO3 (LAO) substrate. The filter is designed for a center frequency of 1.623 GHz for a bandwidth at 3 dB from reference baseline of less than 5.15 MHz, and a bandstop rejection of 30 dB or better. The design and optimization of the filter was performed using Zeland's IE3D circuit simulator. The optimized design was used to fabricate gold (Au) and High-Temperature Superconductor (HTS) versions of the filter. We have also studied an electronically tunable version of the same filter. Tunability of the bandstop characteristics is achieved by the integration of a thin film conductor (Au or HTS) and the nonlinear dielectric ferroelectric SrTiO3 in a conductor/ferroelectric/dielectric modified microstrip configuration. The performance of these filters and comparison with the simulated data will be presented.

  4. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Bresser, Dominic; Lieberwirth, Ingo; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2015-06-01

    The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles). PMID:25598387

  5. Applicability of Standards for Evaluation of Educational Programs Projects and Materials in an International Setting: Qualitative Research.

    ERIC Educational Resources Information Center

    Dockrell, W. B.

    1984-01-01

    This article responds to the "Standards for Evaluation of Educational Programs, Projects and Materials" by addressing three issues in qualitative research: (1) data quality; (2) data verification; and (3) collusion between evaluators and their sponsors. To be of maximum international value, the standards report needs more emphasis on qualitative…

  6. A Review of Qualitative Data Gathering Methods and Their Applications To Support Organizational Strategic Planning Processes. Study Number Six.

    ERIC Educational Resources Information Center

    Wright, Phillip C.; Geroy, Gary D.

    Exploring existing methodologies to determine whether they can be adapted or adopted to support strategic goal setting, this paper focuses on information gathering techniques as they relate to the human resource development professional's input into strategic planning processes. The information gathering techniques are all qualitative methods and…

  7. α-Amylase monitoring by a novel amperometric biosensor based on Au electrode: its optimization, characterization, and application.

    PubMed

    Mengulluoglu, Umut; Altug, Cagri; Ertugrul, H Deniz; Yildiz, Abdulkerim; Ekici, E Melis; Dinckaya, Erhan

    2012-02-01

    A low-cost and sensitive amperometric biosensor was developed for the determination of α-amylase activity. The biosensor was constructed by immobilizing glucose oxidase-gelatin via glutaraldehyde on the Au electrode surface. Measurements were carried out chronoamperometrically at -0.7 V. Several parameters such as glucose oxidase activity, gelatin amount, and glutaraldehyde percentage for cross-linking were optimized. Optimum pH, optimum temperature, repeatability, and storage stabilities of the biosensor were identified. Under the optimum experimental conditions, a linear calibration curve was obtained for α-amylase between 0.819 and 13.110 U/ml. Sample analyses were carried out by detecting α-amylase activities in baker's yeast samples. PMID:21838534

  8. [Application of qualitative interviews in inheritance research of famous old traditional Chinese medicine doctors: ideas and experience].

    PubMed

    Luo, Jing; Fu, Chang-geng; Xu, Hao

    2015-04-01

    The inheritance of famous old traditional Chinese medicine (TCM) doctors plays an essential role in the fields of TCM research. Qualitative interviews allow for subjectivity and individuality within clinical experience as well as academic ideas of doctors, making it a potential appropriate research method for inheritance of famous old TCM doctors. We summarized current situations of inheritance research on famous old TCM doctors, and then discussed the feasibility of applying qualitative interviews in inheritance of famous old TCM doctors. By combining our experience in research on inheritance of famous old TCM doctors, we gave some advice on study design, interview implementation, data transcription and analyses , and report writing, providing a reference for further relevant research. PMID:26043577

  9. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application

    NASA Astrophysics Data System (ADS)

    Karamipour, Sh.; Sadjadi, M. S.; Farhadyar, N.

    2015-09-01

    Gold coated magnetite core shell is a kind of nanoparticle that include magnetic iron oxide core with a thin layer nanogold. Fe3O4-gold core-shell nanostructure can be used in biomedical applications such as magnetic bioseparation, bioimaging, targeting drug delivery and cancer treatment. In this study, the synthesis and characterization of gold coated magnetite nanoparticles were discussed. Magnetite nanoparticles with an average size of 6 nm in diameter were synthesized by the chemical co-precipitation method and gold-coated Fe3O4 core-shell nanostructures were produced with an average size of 11.5 nm in diameter by reduction of Au3+ with citrate ion in the presence of Fe3O4. Folate-conjugated gold coated magnetite nanoparticles were synthesized to targeting folate receptor that is overexpressed on the surface of cancerous cells. For this purpose, we used L-cysteine, as a bi-functional linker for attachment to gold surface and it was linked to the gold nanoparticles surface through its thiol group. Then, we conjugated amino-terminated nanoparticles to folic acid with an amide-linkage formation. These gold magnetic nanoparticles were characterized by various techniques such as X-ray powder diffraction (XRD) analysis, Fourier transform infrared spectrometer (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dispersive analysis of X-ray (EDAX) and vibrating sample magnetometer (VSM) analysis. The magnetic and optical properties of Fe3O4 nanostructure were changed by gold coating and attachment of L-cysteine and folic acid to Fe3O4@Au nanoparticles.

  10. Nano-scale Au supported on Fe3O4: characterization and application in the catalytic treatment of 2,4-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Gómez-Quero, Santiago; Cárdenas-Lizana, Fernando; Keane, Mark A.

    2012-07-01

    Catalytic hydrodechlorination (HDC) is an effective means of detoxifying chlorinated waste. Gold nanoparticles supported on Fe3O4 have been tested in the gas phase (1 atm, 423 K) HDC of 2,4-dichlorophenol. Two 1% w/w supported gold catalysts have been prepared by: (i) stepwise deposition of Au on α-Fe2O3 with subsequent temperature-programmed reduction at 673 K (Au/Fe3O4-step); (ii) direct deposition of Au on Fe3O4 (Au/Fe3O4-dir). TEM analysis has established the presence of Au at the nano-scale with a greater mean diameter (7.6 nm) on Au/Fe3O4-dir relative to Au/Fe3O4-step (4.5 nm). We account for this difference in terms of stronger (electrostatic) precursor/support interactions in the latter that can be associated with the lower pH point of zero charge (with respect to the final deposition pH) for Fe2O3. Both catalysts promoted the preferential removal of the ortho-Cl substituent in 2,4-dichlorophenol, generating 4-chlorophenol and phenol as products of partial and total HDC, respectively, where Au/Fe3O4-step delivered a two-fold higher rate (2 × 10-4 molCl h-1 mAu-2) when compared with Au/Fe3O4-dir. This unprecedented selectivity response is attributed to activation of the ortho-C-Cl bond via interaction with electron-deficient Au nanoparticles. The results demonstrate the feasibility of a controlled recovery/recycling of chlorophenol waste using nano-structured Au catalysts.

  11. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    NASA Astrophysics Data System (ADS)

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional

  12. Relativity, gold, closed-shell interactions, and CsAu.NH3.

    PubMed

    Pyykkö, Pekka

    2002-10-01

    The chemical properties of gold are strongly influenced by relativistic effects. One example is the large electronegativity of Au, which qualitatively explains the stability of (solid or liquid) cesium auride, Cs(+)Au(-), and other systems with Au(-) ions. An especially impressive compound is CsAu.NH(3), the structure and bonding of which are discussed. Future possibilities for finding further aurides are outlined. PMID:12370896

  13. Fabrication of High Sensitive Immunochromato Kit Using Au Colloid

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji

    Au colloid have characteristics of surface plasmon resonance with absorption at 500 nm~600 nm wavelength. Surface on the citric acid Au colloid can be conjugated with protein eg. antibody. Various particle size of Au colloid makes it high sensitive immunochromato as diagnostics. High sensitive immunochromato will be useful for application of cancer marker eg. prostate specific antigen and influenza early diagnosis.

  14. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  15. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds.

    PubMed

    Keast, V J; Barnett, R L; Cortie, M B

    2014-07-30

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications. PMID:25001413

  16. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Barnett, R. L.; Cortie, M. B.

    2014-07-01

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications.

  17. Transport de particules massives dans un fluide turbulent: Application a l'erosion due au sable sur les parois d'une turbine hydraulique

    NASA Astrophysics Data System (ADS)

    Bergeron, Stephen

    Le transport de particules massives par un champ turbulent est un vaste domaine de la mécanique des fluides. Il possède de nombreuses applications comme par exemple le transport de sable dans une turbine hydraulique. En raison de la dureté des grains de quartz et des grandes vitesses de collision avec les parois métalliques, un phénomène d'érosion intensif se produit. Les dommages résultants peuvent diminuer le rendement de la turbine au cours des quelques mois suivant la mise en opération. L'objectif de cette thèse est de mettre au point un outil permettant de prédire ces zones d'érosion. Ce projet de recherche en contexte industriel a été réalisé en collaboration avec la compagnie General Electric Hydro du Canada. Dans un régime hautement turbulent, il est possible d'obtenir une expression suffisamment générale en utilisant une formulation partiellement empirique: l'équation de Basset- Boussinesq-Oseen modifiée. Ce choix de modèle tient compte du niveau de précision recherché et de la méthode numérique employée afin de résoudre la phase fluide. Il permet aussi d'éliminer plusieurs ambiguïtés fréquemment rencontrées dans la littérature et implementées dans certains codes commerciaux courants. La formulation mathématique du problème est effectuée dans un espace mixte Euler-Lagrange. Les paramètres dynamiques sont relies au type de particules et à l'intensité de la turbulence. Le code numérique résultant est le plus performant développé à ce jour (août 1998). Les trajectoires de plusieurs centaines de milliers de particules peuvent être simulées et visualisées de manière interactive sur une station de travail (SGI R4K, R8K et R10K). L'utilisateur du logiciel est libre de se déplacer dans l'espace à l'aide d'un environnement similaire a un ``simulateur de vol''. Il peut ainsi analyser les détails du processus d'érosion de même que l'écoulement du fluide dans la turbine. Les zones d'érosion obtenues à l

  18. A General Survey of Qualitative Research Methodology.

    ERIC Educational Resources Information Center

    Cary, Rick

    Current definitions and philosophical foundations of qualitative research are presented; and designs, evaluation methods, and issues in application of qualitative research to education are discussed. The effects of positivism and the post-positivist era on qualitative research are outlined, and naturalist and positivist approaches are contrasted.…

  19. Au-Ag@Au Hollow Nanostructure with Enhanced Chemical Stability and Improved Photothermal Transduction Efficiency for Cancer Treatment.

    PubMed

    Jiang, Tongtong; Song, Jiangluqi; Zhang, Wenting; Wang, Hao; Li, Xiaodong; Xia, Ruixiang; Zhu, Lixin; Xu, Xiaoliang

    2015-10-01

    Despite the fact that Au-Ag hollow nanoparticles (HNPs) have gained much attention as ablation agents for photothermal therapy, the instability of the Ag element limits their applications. Herein, excess Au atoms were deposited on the surface of a Au-Ag HNP by improving the reduction power of l-ascorbic acid (AA) and thereby preventing the reaction between HAuCl4 and the Ag element in the Au-Ag alloy nanostructure. Significantly, the obtained Au-Ag@Au HNPs show excellent chemical stability in an oxidative environment, together with remarkable increase in extinction peak intensity and obvious narrowing in peak width. Moreover, finite-difference time-domain (FDTD) was used to simulate the optical properties and electric field distribution of HNPs. The calculated results show that the proportion of absorption cross section in total extinction cross section increases with the improvement of Au content in HNP. As predicted by the theoretical calculation results, Au-Ag@Au nanocages (NCs) exhibit a photothermal transduction efficiency (η) as high as 36.5% at 808 nm, which is higher than that of Au-Ag NCs (31.2%). Irradiated by 808 nm laser at power densities of 1 W/cm(2), MCF-7 breast cancer cells incubated with PEGylated Au-Ag@Au NCs were seriously destroyed. Combined together, Au-Ag@Au HNPs with enhanced chemical stability and improved photothermal transduction efficiency show superior competitiveness as photothermal agents. PMID:26371629

  20. Designing a web-application to support home-based care of childhood CKD stages 3-5: Qualitative study of family and professional preferences

    PubMed Central

    2014-01-01

    Background There is a lack of online, evidence-based information and resources to support home-based care of childhood CKD stages 3-5. Methods Qualitative interviews were undertaken with parents, patients and professionals to explore their views on content of the proposed online parent information and support (OPIS) web-application. Data were analysed using Framework Analysis, guided by the concept of Self-efficacy. Results 32 parents, 26 patients and 12 professionals were interviewed. All groups wanted an application that explains, demonstrates, and enables parental clinical care-giving, with condition-specific, continously available, reliable, accessible material and a closed communication system to enable contact between families living with CKD. Professionals advocated a regularly updated application to empower parents to make informed health-care decisions. To address these requirements, key web-application components were defined as: (i) Clinical care-giving support (information on treatment regimens, video-learning tools, condition-specific cartoons/puzzles, and a question and answer area) and (ii) Psychosocial support for care-giving (social-networking, case studies, managing stress, and enhancing families’ health-care experiences). Conclusions Developing a web-application that meets parents’ information and support needs will maximise its utility, thereby augmenting parents’ self-efficacy for CKD caregiving, and optimising outcomes. Self-efficacy theory provides a schema for how parents’ self-efficacy beliefs about management of their child’s CKD could potentially be promoted by OPIS. PMID:24548640

  1. Au nanorod helical superstructures with designed chirality.

    PubMed

    Lan, Xiang; Lu, Xuxing; Shen, Chenqi; Ke, Yonggang; Ni, Weihai; Wang, Qiangbin

    2015-01-14

    A great challenge for nanotechnology is to controllably organize anisotropic nanomaterials into well-defined three-dimensional superstructures with customized properties. Here we successfully constructed anisotropic Au nanorod (AuNR) helical superstructures (helices) with tailored chirality in a programmable manner. By designing the 'X' pattern of the arrangement of DNA capturing strands (15nt) on both sides of a two-dimensional DNA origami template, AuNRs functionalized with the complementary DNA sequences were positioned on the origami and were assembled into AuNR helices with the origami intercalated between neighboring AuNRs. Left-handed (LH) and right-handed (RH) AuNR helices were conveniently accomplished by solely tuning the mirrored-symmetric 'X' patterns of capturing strands on the origami. The inter-rod distance was precisely defined as 14 nm and inter-rod angle as 45°, thus a full helix contains 9 AuNRs with its length up to about 220 nm. By changing the AuNR/origami molar ratio in the assembly system, the average number of AuNR in the helices was tuned from 2 to 4 and 9. Intense chiroptical activities arose from the longest AuNR helices with a maximum anisotropy factor of ∼0.02, which is highly comparable to the reported macroscopic AuNR assemblies. We expect that our strategy of origami templated assembly of anisotropic chiral superstructures would inspire the bottom-up fabrication of optically active nanostructures and shed light on a variety of applications, such as chiral fluids, chiral signal amplification, and fluorescence combined chiral spectroscopy. PMID:25516475

  2. Application of fuzzy logic techniques for the qualitative interpretation of preferences in a collective questionnaire for users of wheelchairs.

    PubMed

    Lafuente, R; Page, A; Sánchez-Lacuesta, J; Tortosa, L

    1998-01-01

    Active participation of users in the evaluation of technical aids is essential, since they are part of the interface with the system and constitute a fundamental source of design criteria. In this study, 88 active users of wheelchairs were interviewed by means of a written questionnaire about their opinion concerning the adaptation of his/her wheelchair to the office workplace. A conceptual framework was introduced linking objective measurements of the user-wheelchair interface to the subjective preferences expressed by the user. Discriminant analysis was used in order to select and quantify the importance of the most significant factors influencing the user's opinions. Fuzzy logic was introduced for the qualitative interpretation of the relationship between those significant factors, based on an inductive algorithm for generating fuzzy rules. Fuzzy logic enables a person to model the uncertainty within the subjective formulation of knowledge or opinions. From the results, a mismatch between actual performance of conventional wheelchairs and requirements of office work became evident. The proposed methods make it possible to determine reliable rules explaining subjective preferences; thus, they provide a flexible means of interpreting user questionnaires and obtaining new design criteria. PMID:9505257

  3. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  4. High performance Au/PZT/TiOxNy/Si MFIS structure for next generation ferroelectric memory applications

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak K.; Khosla, Robin; Sharma, Satinder K.

    2015-05-01

    The Metal-Ferroelectric-Insulator-Semiconductor (MFIS) capacitors with thin 20 nm lead zirconate titanate (PZT) and titanium oxynitride (TiOxNy) buffer layer were fabricated by RF magnetron sputtering technique and characterized. TiOxNy as a buffer layer deposited for the first time for MFIS application at different thicknesses and fabricated structure was found to exhibit excellent electrical characteristics at 14 nm TiOxNy. Memory window of 0.4 V was found at low sweep voltage of ± 3 V which increases to 1.8 V at sweep voltage of ±14 V indicating multilevel data storage. Moreover the fabricated structure possesses low leakage current density of ˜4 µA/cm2 at 36 nm TiOxNy which increases to 12 µA/cm2 at 4 nm TiOxNy at 5 V, reasonable limit. Furthermore, the fabricated structure possesses outstanding data retention capability at 14 nm TiOxNy; the high and low capacitance becomes constant after few seconds and clearly distinguishable for 1h and 30 min. This shows that proposed MFIS structure is suitable for high performance ferroelectric memory applications.

  5. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy.

    PubMed

    Jang, Hongje; Kim, Young-Kwan; Huh, Hyun; Min, Dal-Hee

    2014-01-28

    Galvanic replacement reaction is a useful method to prepare various hollow nanostructures. We developed fast and facile preparation of biocompatible and structurally robust hollow Au-Ag nanostructures by using dextran-coated Ag nanoparticles. Oxidation of the surface dextran alcohols was enabled by catalytic activity of the core Au-Ag nanostructure, introducing carbonyl groups that are useful for further bioconjugation. Subsequent doxorubicin (Dox) conjugation via Schiff base formation was achieved, giving high payload of approximately 35 000 Dox per particle. Near-infrared-mediated photothermal conversion showed high efficacy of the Dox-loaded Au-Ag nanoshell as a combinational chemo-thermotherapy to treat cancer cells. PMID:24383549

  6. Preparation of Au Nanoparticles Immobilized Cross-Linked Poly(4-vinylpyridine) Nanofibers and Their Catalytic Application for the Reduction of 4-Nitrophenol.

    PubMed

    Qin, Qi-Hu; Na, Hui; Zhang, Chunyu; Yu, Qizhou; Zhang, Xue-Quan; Zhang, He-Xin

    2015-05-01

    Catalytic nanofibers are prepared by the immobilization of Au nanoparticles (AuNPs) onto the surface of cross-linked electrospun poly(4-vinylpyridine) (P4VP) nanofibers. The crosslinking of the P4VP nanofibers by 1,4-diiodobutane via quaternization reaction greatly enhances the stability of the nanofibers against the solvent dissolution, which can then be used as promising platform for the immobilization of catalytic metal nanoparticles. The AuNPs immobilized cross-linked P4VP nanofibers have shown a good catalytic activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). PMID:26505022

  7. A qualitative exploration of experiences of overweight young and older adults. An application of the integrated behaviour model.

    PubMed

    Robertson, Annaleise; Mullan, Barbara; Todd, Jemma

    2014-04-01

    While rates of obesity continue to increase, weight-loss interventions to date have not been hugely successful. The purpose of this study was to explore the specific factors that are relevant to weight control in overweight and obese young adults compared to older adults, within the context of the theory of planned behaviour (TPB). A qualitative methodology with purposive sampling was used. Semi-structured interviews were conducted with 23 young adults and older adults who were currently overweight or obese. The research was informed by thematic analysis. A mixed deductive-inductive approach that was structured around but not limited to TPB constructs was applied. Themes mapped onto the TPB behaviour well, with additional themes of motivation, and knowledge and experience emerging. Differences across groups included motivators to weight loss (e.g. appearance and confidence for young adults, health for older adults), importance of social influences, and perceptions of control (e.g. availability and cost for young adults, age and energy for older adults). Similarities across groups included attitudes towards being overweight and losing weight, and the value of preparation and establishment of a healthy routine. Finally, across both groups, knowledge and confidence in ability to lose weight appeared adequate, despite failed attempts to do so. The different experiences identified for younger and older adults can be used to inform future tailored weight-loss interventions that are relevant to these age groups, and the TPB could provide a useful framework. Additional intervention strategies, such as improving behavioural routine and improving self-regulation also warrant further investigation. PMID:24462493

  8. Publishing Qualitative Research.

    ERIC Educational Resources Information Center

    Smith, Mary Lee

    1987-01-01

    Article defines qualitative research and describes the form that an article based on qualitative research might take. Encourages readers to submit articles based on qualitative research to the American Educational Research Journal. (RB)

  9. Ultra-relativistic Au+Au and d+Au collisions:

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  10. Β-cyclodextrin polymer as a linker to fabricate ternary nanocomposites AuNPs/pATP-β-CDP/rGO and their electrochemical application.

    PubMed

    Chen, Ming; Shen, Xiao; Liu, Peipei; Wei, Ying; Meng, Yang; Zheng, Gang; Diao, Guowang

    2015-03-30

    Based on the self-assembly strategy, β-cyclodextrin polymer (β-CDP) was used as a linker to connect reduced graphene oxide (rGO) and p-aminothiophenol (pATP). Then, pre-prepared gold nanoparticles (AuNPs) can self-assemble onto the surface of pATP-β-CDP/rGO to obtain new ternary nanocomposites AuNPs/pATP-β-CDP/rGO. The amount or the density of AuNPs can be adjusted by changing the concentration of pATP. UV-vis and (1)H NMR spectra confirmed the formation of inclusion complex between pATP and β-CDP. β-CDP might improve the dispersity of rGO in aqueous and the surface property of rGO. AuNPs/pATP-β-CDP/rGO modified electrode displayed high electrochemical response toward a pesticide-imidacloprid (IDP). The enrichment capability and molecular recognition of β-CDP and the catalytic property of AuNPs for IDP molecules synergistically promoted the electrochemical response of rGO modified electrode. Additionally, ternary nanocomposites exhibited the good electrocatalytic performance for oxygen reduction in O2-saturated 0.1M H2SO4 solution. The proposed synthesis strategy provided a facile, feasible and effective method for development of electrochemical sensors and Au-based catalysts for fuel cells. PMID:25563941

  11. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  12. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water

    NASA Astrophysics Data System (ADS)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-07-01

    Nanostructured TiO2 thin films were deposited on indium tin oxide (ITO) substrate via sol-gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO2 (Au/TiO2) thin films were then irradiated with 500 keV Ar2+ ion beam at different ion fluences viz. 1 × 1016, 3 × 1016 and 1 × 1017 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV-visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO2 and Au/TiO2 thin film irradiated at 1 × 1016 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO2. The film irradiated at 1 × 1016 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (Voc) and reduced charge transfer resistance.

  13. Qualitative methods for assessing risk

    SciTech Connect

    Mahn, J.A.; Hannaman, G.W.; Kryska, P.

    1995-04-01

    The Department of Energy`s (DOE) non-nuclear facilities generally require only a qualitative accident analysis to assess facility risks in accordance with DOE Order 5481.1B, Safety Analysis and Review System. Achieving a meaningful qualitative assessment of risk necessarily requires the use of suitable non-numerical assessment criteria. Typically, the methods and criteria for assigning facility-specific accident scenarios to the qualitative severity and likelihood classification system in the DOE order requires significant judgment in many applications. Systematic methods for more consistently assigning the total accident scenario frequency and associated consequences are required to substantiate and enhance future risk ranking between various activities at Sandia National Laboratories (SNL). SNL`s Risk Management and National Environmental Policy Act (NEPA) Department has developed an improved methodology for performing qualitative risk assessments in accordance wi the DOE order requirements. Products of this effort are an improved set of qualitative description that permit (1) definition of the severity for both technical and programmatic consequences that may result from a variety of accident scenarios, and (2) qualitative representation of the likelihood of occurrence. These sets of descriptions are intended to facilitate proper application of DOE criteria for assessing facility risks.

  14. Identification of Au–S complexes on Au(100)

    DOE PAGESBeta

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; Yang, Hyun Jin; Kim, Yousoo; Thiel, P. A.

    2016-01-25

    In this study, using a combination of scanning tunneling microscopy and density functional theory (DFT) calculations, we have identified a set of related Au–S complexes that form on Au(100), when sulfur adsorbs and lifts the hexagonal surface reconstruction. The predominant complex is diamond-shaped with stoichiometry Au4S5. All of the complexes can be regarded as combinations of S–Au–S subunits. The complexes exist within, or at the edges of, p(2 × 2) sulfur islands that cover the unreconstructed Au regions, and are observed throughout the range of S coverage examined in this study, 0.009 to 0.12 monolayers. A qualitative model is developedmore » which incorporates competitive formation of complexes, Au rafts, and p(2 × 2) sulfur islands, as Au atoms are released by the surface structure transformation.« less

  15. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    NASA Astrophysics Data System (ADS)

    Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2016-05-01

    We present electronic properties of atomic layer of Au, Au2-N, Au2-O and Au2-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G0. Similarly, Au2-N and Au2-F monolayers show 4G0 and 2G0 quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au2-O monolayer. Most interestingly, half metalicity has been predicted for Au2-N and Au2-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.

  16. Initial-state geometry and fluctuations in Au + Au, Cu + Au, and U + U collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2014-06-01

    We study within the IP-Glasma and two-component MC-Glauber models the effects of initial-state geometry and fluctuations on multiplicities and eccentricities for several collision species at the Relativistic Heavy Ion Collider (RHIC). These include copper-gold (Cu + Au), gold-gold (Au + Au), and uranium-uranium (U + U) collisions. The multiplicity densities per participant pair are very similar in all systems studied. Ellipticities vary strongly between collision systems, most significantly for central collisions, while fluctuation driven odd moments vary little between systems. Event-by-event distributions of eccentricities in mid-central collisions are wider in Cu + Au relative to Au + Au and U + U systems. An anticorrelation between multiplicity and eccentricity is observed in ultracentral U + U collisions which is weaker in the IP-Glasma model than the two-component MC-Glauber model. In ultracentral Au + Au collisions the two models predict opposite signs for the slope of this correlation. Measurements of elliptic flow as a function of multiplicity in such central events can therefore be used to discriminate between models with qualitatively different particle production mechanisms.

  17. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.

    PubMed

    Han, Lei; Li, Cuncheng; Zhang, Tao; Lang, Qiaolin; Liu, Aihua

    2015-07-01

    As substitutes for natural peroxidases, most nanomaterial-based enzyme mimetics (nanozymes) have unique properties such as high stability, low-cost, large surface area, and high catalytic activity. However, they usually work in acidic conditions and thus impede their real applications. In this work, by modulating the nanostructure, composition, and surface property of the bimetallic materials, the positively charged poly(diallyldimethylammonium)-stabilized Au@Ag heterogeneous nanorods (NRs) were developed as synergistic peroxidase-like interfaces, which exhibited high activity over a wide pH range (pH 4.0-6.5) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the chromogenic substrate. At pH 6.5, the peroxidase-like activity for the Au@Ag heterogeneous NRs was stable and optimal within 20-40 °C. Moreover, the Au@Ag heterogeneous NRs showed excellent temperature stability and long-term storage stability. Given these characters, the detection of H2O2 at pH 6.5 was proposed on the basis of the Au@Ag heterogeneous NRs catalyzing the colorimetric reaction of H2O2 and ABTS, where the oxidized ABTS showed a typical absorption peak at 414 nm. The absorbance at 414 nm was linear with H2O2 concentration from 0.01 to 10 mM. Further, considering that Au@Ag heterogeneous NRs and glucose oxidase (GOx) have similar optimal pH for catalytic activities, a novel one-pot method for the detection of glucose was developed by the coupled catalytic reaction using GOx, Au@Ag heterogeneous NRs, and ABTS at nearly neutral pH (pH 6.5) and 37 °C. This proposed method had simple and rapid processes, wide linear range (0.05-20 mM), and reliability for the successful analysis of real samples. On the basis of these attractive and unique characteristics, Au@Ag heterogeneous NRs can become promising substitutes for peroxidase in analytical chemistry and environmental science. PMID:26076372

  18. Qualitative research: comments and controversies.

    PubMed

    Schutz, R W

    1989-03-01

    Larry Locke's timely and well-written introduction to qualitative research procedures will undoubtedly serve its purpose. It makes us reassess our traditional beliefs and practices, educates us on the rudiments of qualitative methodology, and, hopefully, makes us more tolerant and appreciative of alternate ways of conducting research. Although Locke focuses his paper on pedagogical research issues, it is important to realize that many other sub-disciplines within the general field of physical education also utilize qualitative procedures. For example, 10 years ago Martens (1979) called for a paradigm shift in sport psychology by appealing to researchers to abandon their labs and to embark on naturalistic field studies. While North American sport psychologists, and psychologists in general, have been slow to formalize qualitative techniques, the European psychology community has been much more active (e.g., Ashworth, Giorgi, & de Koning, 1986). Perhaps Locke's article will encourage researchers in all our sub-disciplines to consider the utility of qualitative research. Hopefully, readers will treat Locke's article as an introduction to the broad area of qualitative research and not as a rigorous set of procedures for conducting participant observation research in school physical education studies. Additionally, it must be recognized that there are other approaches and other applications, that the area has its critics and its unresolved methodological problems, and that qualitative research does not necessarily exclude the application of formalized data analyses. Keeping these issues in mind, the addition of qualitative approaches to our repetoire of research methodologies can only enhance the quality of research in physical education and exercise and sport science. PMID:2489822

  19. The Gap between Individual Perception and Compliance: A Qualitative Follow-Up Study of the Surgical Safety Checklist Application

    PubMed Central

    Sendlhofer, Gerald; Lumenta, David Benjamin; Leitgeb, Karina; Kober, Brigitte; Jantscher, Lydia; Schanbacher, Monika; Berghold, Andrea; Pregartner, Gudrun; Brunner, Gernot; Tax, Christa; Kamolz, Lars Peter

    2016-01-01

    Background “The Surgical Safety Checklist (SSC) is important, but we don’t use it adequately” is a well-suited statement that reflects the SSC's application in hospitals. Our aim was to follow up on our initial study on compliance (2014) by analysing differences between individual perception and compliance with the SSC. Methods We conducted a follow-up online survey to assess healthcare professionals’ individual perception of, as well as satisfaction and compliance with the SSC three years following its thorough implementation. Results 171 (19.5%) of 875 operating team members completed the online survey. 99.4% confirmed using the SSC. Self-estimated subjective knowledge about the intention of the checklist was high, whereas objective knowledge was moderate, but improved as compared to 2014. According to an independent audit the SSC was used in 93.1% of all operations and among the SSCs used the completion rate was 57.2%. The use of the SSC was rated as rather easy [median (IQR): 7 (6–7)], familiar [7 (6–7)], generally important [7 (7–7)], and good for patients [7 (6–7)] as well as for employees [7 (7–7)]. Only comfort of use was rated lower [6 (5–7)]. Conclusion There is a gap between individual perception and actual application of the SSC. Despite healthcare professionals confirming the importance of the SSC, compliance was moderate. The introduction of SSCs in the health care sector remains a constant challenge and requires continuous re-evaluation as well as a sensible integration into existing workflows in hospitals. PMID:26925579

  20. Collective flow in Au + Au collisions

    SciTech Connect

    Ritter, H.G.; EOS Collaboration

    1994-05-01

    Based on a preliminary sample of Au + Au collisions in the EOS time projection chamber at the Bevalac, we study sideward flow as a function of bombarding energy between 0.25A GeV and 1.2A GeV. We focus on the increase in in-plane transverse momentum per nucleon with fragment mass. We also find event shapes to be close to spherical in the most central collisions, independent of bombarding energy and fragment mass up to {sup 4}He.

  1. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use. PMID:20087729

  2. Au-Free GaN High-Electron-Mobility Transistor with Ti/Al/W Ohmic and WN X Schottky Metal Structures for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Chu, Chung-Ming; Chuang, Yu-Lin; Huang, Yu-Xiang; Shi, Wang-Cheng; Dee, Chang-Fu; Majlis, Burhanuddin Yeop; Lee, Wei-I.; Chang, Edward Yi

    2016-04-01

    In this study, an Au-free AlGaN/GaN high-electron-mobility transistor (HEMT) with Ti/Al/W ohmic and WNx Schottky metal structures is fabricated and characterized. The device exhibits smooth surface morphology after metallization and shows excellent direct-current (DC) characteristics. The device also demonstrates better performance than the conventional HEMTs under high voltage stress. Furthermore, the Au-free AlGaN/GaN HEMT shows stable device performance after annealing at 400°C. Thus, the Ti/Al/W ohmic and WN X Schottky metals can be applied in the manufacturing of GaN HEMT to replace the Au based contacts to reduce the manufacturing costs of the GaN HEMT devices with comparable device performance.

  3. Au-Free GaN High-Electron-Mobility Transistor with Ti/Al/W Ohmic and WN X Schottky Metal Structures for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Chu, Chung-Ming; Chuang, Yu-Lin; Huang, Yu-Xiang; Shi, Wang-Cheng; Dee, Chang-Fu; Majlis, Burhanuddin Yeop; Lee, Wei-I.; Chang, Edward Yi

    2016-07-01

    In this study, an Au-free AlGaN/GaN high-electron-mobility transistor (HEMT) with Ti/Al/W ohmic and WN x Schottky metal structures is fabricated and characterized. The device exhibits smooth surface morphology after metallization and shows excellent direct-current (DC) characteristics. The device also demonstrates better performance than the conventional HEMTs under high voltage stress. Furthermore, the Au-free AlGaN/GaN HEMT shows stable device performance after annealing at 400°C. Thus, the Ti/Al/W ohmic and WN X Schottky metals can be applied in the manufacturing of GaN HEMT to replace the Au based contacts to reduce the manufacturing costs of the GaN HEMT devices with comparable device performance.

  4. Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application.

    PubMed

    Gu, Wenling; Deng, Xi; Gu, Xiaoxiao; Jia, Xiaofang; Lou, Baohua; Zhang, Xiaowei; Li, Jing; Wang, Erkang

    2015-02-01

    Herein, a multifunctional nanoarchitecture has been developed by integrating the branched poly(ethylenimine) functionalized graphene/iron oxide hybrids (BGNs/Fe3O4) and luminol capped gold nanoparticles (luminol-AuNPs). The luminescent luminol-AuNPs as an electrochemiluminescence marker can be assembled on the nanocarrier of BGNs/Fe3O4 hybrids efficiently via the Au-N chemical bonds and electrostatic adsorption. Meanwhile, the multifunctional nanoarchitecture has been proved with excellent electron transfer, good stability, high emission intensity, etc. Furthermore, we successfully developed an ultrasensitive magnetically-controlled solid-state electrochemiluminescence (ECL) platform for label-free determination of HeLa cells using this multifunctional nanocomposite. Excellent performance of the magnetically-controlled ECL biosensing platform has been achieved including a high sensitivity for HeLa cells with a linear range from 20 to 1 × 10(4) cells/mL, good stability, and reproducibility. PMID:25541634

  5. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying; Li, Yancai; Li, Shunxing

    2016-08-01

    A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H2O2). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H2O2 reduction at 0.0 V and can be used as H2O2 sensor. The sensor displays two wide linear ranges towards H2O2 detection. The one is 9.0 μM-1.86 mM with high sensitivity of 144.7 μA mM-1 cm-2, and the other is 1.86 mM-7.11 mM with sensitivity of 80.1 μA mM-1 cm-2. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H2O2 detection. Additionally, the H2O2 sensor also displays good stability and reproducibility.

  6. Preparation and Characterization of Au-ZrO2-SiO2 Nanocomposite Spheres and Their Application in Enrichment and Detection of Organophosphorus Agents

    SciTech Connect

    Yang, Yuqi; Tu, Haiyang; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-03-01

    Au-ZrO{sub 2}-SiO{sub 2} nanocomposite spheres were synthesized and used as selective sorbents for the solid-phase extraction (SPE) of orananophosphorous agents. A non-enzymatic electrochemical sensor based on an Au-ZrO{sub 2}-SiO{sub 2} modified electrode was developed for selective detection of orananophosphorous pesticides (OPs). The Au-ZrO{sub 2}-SiO{sub 2} nanocomposite spheres were synthesized by hydrolysis and condensation of zirconia n-butoxide (TBOZ) on the surface of SiO{sub 2} spheres and then introduction of gold nanoparticles on the surface. Transmission electron microscope and X-ray photoelectron spectroscopy were performed to characterize the formation of the nanocomposite sphere. Fast extraction of OP was achieved by Au-ZrO{sub 2}-SiO{sub 2} modified electrode within 5 min via the specific affinity between zirconia and phosphoric group. The assay yields a broad concentration range of paraoxon-ethyl from 1.0 to 500 ng/mL{sup -1} with a detection limit 0.5 ng/mL{sup -1}. This selective and sensitive method holds great promise for the enrichment and detection of OPs.

  7. Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: characterization and the enhanced biosensing application.

    PubMed

    Tian, Juan; Deng, Sheng-Yuan; Li, Da-Li; Shan, Dan; He, Wei; Zhang, Xue-Ji; Shi, You

    2013-11-15

    We report here an efficient approach to enhance the performance of biosensing platform based on graphene or graphene derivate. Initially, graphene oxides (GO) nanosheets were reduced and surface functionalized by one-step oxidative polymerization of dopamine in basic solution at environment friendly condition to obtain the polydopamine (Pdop) modified reduced graphene oxides (PDRGO). The bioinspired surface was further used as a support to anchor active gold nanoparticles (AuNPs). The morphology and structure of the as-prepared AuNPs/PDRGO nanocomposite were investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FT-IR). Electrochemical studies demonstrate that the as-prepared AuNPs/PDRGO hybrid materials possess excellent electrochemical properties and electrocatalytic activity toward the oxidation of NADH at low potential (0.1 V vs. SCE) with the fast response (15s) and the broad linear range (5.0 × 10(-8)-4.2 × 10(-5)M). Thus, this AuNPs/PDRGO nanocomposite can be further used to fabricate a sensitive alcohol biosensor using alcohol dehydrogenase (ADH), by simply incorporating the specific enzyme within the composite matrix with the aid of chitosan (Chit). PMID:23811480

  8. A collection of research reporting, theoretical analysis, and practical applications in science education: Examining qualitative research methods, action research, educator-researcher partnerships, and constructivist learning theory

    NASA Astrophysics Data System (ADS)

    Hartle, R. Todd

    2007-12-01

    Educator-researcher partnerships are increasingly being used to improve the teaching of science. Chapter 1 provides a summary of the literature concerning partnerships, and examines the justification of qualitative methods in studying these relationships. It also justifies the use of Participatory Action Research (PAR). Empirically-based studies of educator-researcher partnership relationships are rare despite investments in their implementation by the National Science Foundation (NSF) and others. Chapter 2 describes a qualitative research project in which participants in an NSF GK-12 fellowship program were studied using informal observations, focus groups, personal interviews, and journals to identify and characterize the cultural factors that influenced the relationships between the educators and researchers. These factors were organized into ten critical axes encompassing a range of attitudes, behaviors, or values defined by two stereotypical extremes. These axes were: (1) Task Dictates Context vs. Context Dictates Task; (2) Introspection vs. Extroversion; (3) Internal vs. External Source of Success; (4) Prior Planning vs. Implementation Flexibility; (5) Flexible vs. Rigid Time Sense; (6) Focused Time vs. Multi-tasking; (7) Specific Details vs. General Ideas; (8) Critical Feedback vs. Encouragement; (9) Short Procedural vs. Long Content Repetition; and (10) Methods vs. Outcomes are Well Defined. Another ten important stereotypical characteristics, which did not fit the structure of an axis, were identified and characterized. The educator stereotypes were: (1) Rapport/Empathy; (2) Like Kids; (3) People Management; (4) Communication Skills; and (5) Entertaining. The researcher stereotypes were: (1) Community Collaboration; (2) Focus Intensity; (3) Persistent; (4) Pattern Seekers; and (5) Curiosity/Skeptical. Chapter 3 summarizes the research presented in chapter 2 into a practical guide for participants and administrators of educator-researcher partnerships

  9. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures

    NASA Astrophysics Data System (ADS)

    Ozoliņš, V.; Wolverton, C.; Zunger, Alex

    1998-03-01

    The classic metallurgical systems-noble-metal alloys-that have formed the benchmark for various alloy theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave (LAPW) total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties, and bond lengths in Cu-Au, Ag-Au, Cu-Ag, and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at T=0 K. (ii) Of all possible structures, Cu3Au (L12) and CuAu (L10) are found to be the most stable low-temperature phases of Cu1-xAux with transition temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and ~670 K. The significant improvement over previous first-principles studies is attributed to the more accurate treatment of atomic relaxations in the present work. (iii) LAPW formation enthalpies demonstrate that L12, the commonly assumed stable phase of CuAu3, is not the ground state for Au-rich alloys, but rather that ordered (100) superlattices are stabilized. (iv) We extract the nonconfigurational (e.g., vibrational) entropies of formation and obtain large values for the size-mismatched systems: 0.48 kB/atom in Ni0.5Au0.5 (T=1100 K), 0.37 kB/atom in Cu0.141Ag0.859 (T=1052 K), and 0.16 kB/atom in Cu0.5Au0.5 (T=800 K). (v) Using 8 atom/cell special quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good qualitative agreement with recent extended x-ray-absorption fine-structure measurements.

  10. Tunable VO2/Au hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Prayakarao, S.; Mendoza, B.; Devine, A.; Kyaw, C.; van Dover, R. B.; Liberman, V.; Noginov, M. A.

    2016-08-01

    Vanadium dioxide (VO2) is known to have a semiconductor-to-metal phase transition at ˜68 °C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial studied in this work is composed of subwavelength VO2 and Au layers and is designed to undergo a temperature controlled transition from the optical hyperbolic phase to the metallic phase. VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in electrical conductivity and optical (transmission and reflection) experiments. The observed temperature-dependent changes in the reflection and transmission spectra of the metamaterials and VO2 thin films are in a good qualitative agreement with theoretical predictions. The demonstrated optical hyperbolic-to-metallic phase transition is a unique physical phenomenon with the potential to enable advanced control of light-matter interactions.

  11. Effectively Communicating Qualitative Research

    ERIC Educational Resources Information Center

    Ponterotto, Joseph G.; Grieger, Ingrid

    2007-01-01

    This article is a guide for counseling researchers wishing to communicate the methods and results of their qualitative research to varied audiences. The authors posit that the first step in effectively communicating qualitative research is the development of strong qualitative research skills. To this end, the authors review a process model for…

  12. Qualitative Student Models.

    ERIC Educational Resources Information Center

    Clancey, William J.

    The concept of a qualitative model is used as the focus of this review of qualitative student models in order to compare alternative computational models and to contrast domain requirements. The report is divided into eight sections: (1) Origins and Goals (adaptive instruction, qualitative models of processes, components of an artificial…

  13. Requiem for Qualitative Analysis.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Five papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982) focused on qualitative analysis curricula and instruction. Topics included benefits of qualitative analysis, use of iodo/bromo-complexes in qualitative analysis schemes, lecture demonstrations, and brief descriptions of three courses. (JN)

  14. Qualitative methods for assessing risk

    SciTech Connect

    Mahn, J.A.; Hannaman, G.W.; Kryska, P.

    1995-03-01

    The purpose of this document is to describe a qualitative risk assessment process that supplements the requirements of DOE/AL 5481.1B. Although facility managers have a choice of assessing risk either quantitatively or qualitatively, trade offs are involved in making the most appropriate choice for a given application. The results that can be obtained from a quantitative risk assessment are significantly more robust than those results derived from a qualitative approach. However, the advantages derived from quantitative risk assessment are achieved at a greater expenditure of money, time and convenience. This document provides the elements of a framework for performing a much less costly qualitative risk assessment, while retaining the best attributes of quantitative methods. The approach discussed herein will; (1) provide facility managers with the tools to prepare consistent, site wide assessments, and (2) aid the reviewers who may be tasked to evaluate the assessments. Added cost/benefit measures of the qualitative methodology include the identification of mechanisms for optimally allocating resources for minimizing risk in an expeditious, and fiscally responsible manner.

  15. Au transport in catalyst coarsening and Si nanowire formation.

    PubMed

    Kim, B J; Tersoff, J; Kodambaka, S; Jang, Ja-Soon; Stach, E A; Ross, F M

    2014-08-13

    The motion of Au between AuSi liquid eutectic droplets, both before and during vapor-liquid-solid growth, is important in controlling tapering and diameter uniformity in Si nanowires. We measure the kinetics of coarsening of AuSi droplets on Si(001) and Si(111), quantifying the size evolution of droplets during annealing in ultrahigh vacuum using in situ transmission electron microscopy. For individual droplets, we show that coarsening kinetics are modified when disilane or oxygen is added: coarsening rates increase in the presence of disilane but decrease in oxygen. Matching droplet size measurements on Si(001) with coarsening models confirms that Au transport is driven by capillary forces and that the kinetic coefficients depend on the gas environment present. We suggest that the gas effects are qualitatively similar whether transport is attachment limited or diffusion limited. These results provide insight into manipulating nanowire morphologies for advanced device fabrication. PMID:25040757

  16. The study on the application of solid-state method for synthesizing the polyaniline/noble metal (Au or Pt) hybrid materials.

    PubMed

    Jamal, Ruxangul; Xu, Feng; Shao, Weiwei; Abdiryim, Tursun

    2013-01-01

    The solid-state method was applied for synthesizing polyaniline (PANI)/noble metal hybrid materials with the presence of HAuCl4·4H2O or H2PtCl6·6H2O in the reaction medium. The structure, morphology, and electrochemical activity of the composites were characterized by Fourier transform infrared (FTIR) spectra, UV-visible (vis) absorption spectra, energy dispersive spectrum (EDS), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry. The results from FTIR and UV-vis spectra showed that the oxidation degree and doping level of the PANI in composites can be influenced by HAuCl4·4H2O and H2PtCl6·6H2O. The EDS data demonstrated that the composites contain a certain amount of Au (or Pt) element. XRD analysis indicated the presence of crystalline-state Au particles in PANI matrix prepared from the presence of HAuCl4·4H2O and revealed that the H2PtCl6·6H2O cannot be converted into metal Pt. The TEM and SEM images implied that the Au particles did exist in the polymer matrix with the size of about 20 nm. The enzymeless H2O2 sensor constructed with PANI/Au composite from the presence of HAuCl4·4H2O showed a short response time (within 5 s) and displayed an excellent performance in wide linear range. PMID:23452667

  17. Codetermination of crystal structures at high pressure: Combined application of theory and experiment to the intermetallic compound AuGa2

    NASA Astrophysics Data System (ADS)

    Godwal, B. K.; Stackhouse, S.; Yan, J.; Speziale, S.; Militzer, Burkhard; Jeanloz, R.

    2013-03-01

    A combination of x-ray diffraction at high pressures and first-principles calculations reveals the sequence of crystal-structural phase transitions in AuGa2 from cubic (Fm3¯m) to orthorhombic (Pnma) at 10 (±4) GPa and then to monoclinic (P21/n) at 33 (±6) GPa. Neither theory nor experiment would have been adequate, on their own, in documenting this sequence of phases, but together they confirm a sequence differing from the Fm3¯m→Pnma→P63/mmc transitions predicted for CaF2 and Pnma → P1121/a transition reported for PbCl2 and SnCl2. The combined results from theory and experiment also allow us to constrain the equations of state of the three phases of AuGa2. Calculations on the analog PbCl2 predict a transition to the P21/n phase seen in AuGa2 that could, therefore, be a common high-pressure phase for PbCl2-structured compounds.

  18. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    NASA Astrophysics Data System (ADS)

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.

  19. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    DOE PAGESBeta

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-23

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DACmore » can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. In conclusion, the coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.« less

  20. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures.

    PubMed

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S; Weidner, Donald J

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source. PMID:26902122

  1. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    PubMed Central

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source. PMID:26902122

  2. Green synthesis, characterization of Au-Ag core-shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies

    NASA Astrophysics Data System (ADS)

    Kirubha, E.; Palanisamy, P. K.

    2014-12-01

    In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, eco-friendly synthesis of Au-Ag bimetallic core-shell nanoparticles using gripe water as reducing as well as stabilizing agent. The as-synthesized Au-Ag nanoparticles are characterized using UV-Vis spectroscopy to determine the surface plasmon resonance, and using transmission electron microscopy to study the morphology and the particle size. The optical nonlinearity of the bimetallic nanoparticles investigated by z-scan technique using femtosecond Ti:sapphire is in the order of 109. The nonlinear optical parameters such as the nonlinear refractive index n2, nonlinear absorption coefficient β and the third order nonlinear susceptibility χ3 are measured for various wavelengths from 700 nm to 950 nm. The Au-Ag nanoparticles are also used in surface enhanced Raman spectroscopic studies to enhance the Raman signals of rhodamine 6G.

  3. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    SciTech Connect

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-02-04

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.

  4. Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sqrt sNN = 200 GeV

    SciTech Connect

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p collisions at {radical}s{sub NN} = 200 GeV. Strong short and long range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in peripheral Au+Au collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate (CGC) predict the existence of the long range correlations. In the DPM the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is in qualitative agreement with the predictions from the DPM and indicates the presence of multiple parton interactions.

  5. Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sNN=200GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Calderón de La Barca Sánchez, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Silva, L. C.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lee, J. H.; Leight, W.; Levine, M. J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; van Buren, G.; van Leeuwen, M.; Vander Molen, A. M.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2009-10-01

    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p collisions at sNN=200GeV. Strong short- and long-range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au+Au collisions. Both the dual parton model (DPM) and the color glass condensate (CGC) predict the existence of the long-range correlations. In the DPM, the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC, longitudinal color flux tubes generate the LRC. The data are in qualitative agreement with the predictions of the DPM and indicate the presence of multiple parton interactions.

  6. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates.

    PubMed

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-07-14

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. PMID:27315144

  7. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-06-01

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03484e

  8. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion

    NASA Astrophysics Data System (ADS)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-01-01

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH-NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng mL-1 and a detection limit of 0.1 ng mL-1. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P-S containing pesticides and provides a promising strategy to construct a robust biosensor.A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH-NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike

  9. Perceptions of the feasibility and acceptability of a smartphone application for the treatment of binge eating disorders: Qualitative feedback from a user population and clinicians

    PubMed Central

    Goldstein, Stephanie P.; Manasse, Stephanie M.; Forman, Evan M.; Butryn, Meghan L.

    2016-01-01

    Background Binge eating, a major public health problem, is characterized by recurrent episodes of out-of-control eating in which an individual consumes an unusually large amount of food in a discrete time period. Limitations of existing treatments for binge eating (both in-person psychotherapy and guided self-help) indicate that smartphone applications (apps) may be an ideal alternative or enhancement. An app for binge eating could aid treatment dissemination, engagement, and/or compliance. However, no research to date has examined user perceptions of a therapeutic app for binge eating, which is critical for development. Objectives The purposes of the current study were to conceptualize a potential app for binge eating and obtain feedback regarding feasibility and acceptability from target users (i.e., individuals with binge eating) and clinicians specializing in the treatment of binge eating. Methods Our team conceptualized a smartphone app that contained self-help material, functions to monitor behavior, and provisions of in-the-moment interventions. We presented this app (e.g., feature explanations, mock screen shots) through phone interviews with clinicians who specialize in the treatment of binge eating (n=10), and focus groups with individuals experiencing binge eating (n=11). Participants were asked to discuss customization, user burden, terminology, attrition, data visualization, comprehensiveness, reminders, feasibility, acceptability, and perceived effectiveness of the proposed app. Thematic analyses were conducted from qualitative data (e.g., audio recordings and interview notes) obtained via the focus groups and interviews. Results Results indicated that our proposed app would be highly feasible and acceptable to users and clinicians, though concerns about the degree of personalization and customizability were noted. Conclusions The current study details highly specific feedback and ideas regarding essential app features from target users and clinicians

  10. Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer.

    PubMed

    Ahmed, Hanan B; Zahran, M K; Emam, Hossam E

    2016-10-01

    Due to its potency to utilize in enormous applications, preparation of nanogold is of interest. Moreover, getting of highly dispersed nanogold with small size is extremely needful in specific fields. Herein, Au nanocolloid was prepared using alkali catalyzed pectin biopolymer. Pectin was concurrently used as reductant for Au ions and stabilizer for the produced Au nanoparticles (AuNPs). Reducing sugars were evaluated in the colloidal solution reflecting the role alkali in catalytic degradation of pectin to produce much powerful reducing moieties. The obtained Au nanocolloid was monitored via changing in color, UV-visible spectral and transmission electron microscopy. Using of NaOH as strong alkali achieving rapid rate of degradation reaction, resulted in 0.45g/L reducing sugars from 0.2g/L pectin which produced AuNPs with mean size of 6.5nm. In case of Na2CO3 which attained slow degradation rate led to, slightly low reducing sugar content (0.41g/L), fabricated comparatively size of AuNPs (7.5nm). In both cases, well distributed AuNPs was obtained with suitable stabilization up to 5 months and Na2CO3 exhibited higher stability. The current successful method used to produce small sized AuNPs with high dispersion is an innovative, one-step, easily, costless, energy saving and eco-friendly method. PMID:27212212

  11. Reduction of graphene oxide by 100 MeV Au ion irradiation and its application as H2O2 sensor

    NASA Astrophysics Data System (ADS)

    Hareesh, K.; Joshi, R. P.; Shateesh, B.; Asokan, K.; Kanjilal, D.; Late, D. J.; Dahiwale, S. S.; Bhoraskar, V. N.; Haram, S. K.; Dhole, S. D.

    2015-09-01

    Graphene oxide (GO) synthesized from a modified Hummer’s method was reduced (referred, rGO) by using 100 MeV Au ion species and its response to the sense H2O2 was investigated. The changes in the atomic composition and structural properties of rGO after irradiation were studied using x-ray diffraction, Fourier transform infrared spectroscopy and x-ray photo-electron spectroscopy. These results suggested that the removal of the oxygen-containing functional groups and the improvement of the electrochemical performance of reduced graphene oxide (rGO) after ion irradiation. Raman spectroscopic results revealed the increase in the disorder parameter (I D/I G) after Au ion irradiation and also the formation of a large number of small sp2 domains due to the electronic energy loss of ion beam. The resultant rGO was investigated for H2O2 sensing using electrochemical techniques and it showed a good response.

  12. Novel photoswitchable dielectric properties on nanomaterials of electronic core-shell γ-FeOx@Au@fullerosomes for GHz frequency applications.

    PubMed

    Wang, Min; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Hu, Bin; Urbas, Augustine; Chiang, Long Y

    2016-03-28

    We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)](n)2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e(-)-polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Surface-stabilized 2 in a core-shell structure was found to be capable of photoinducing the surface plasmonic resonance (SPR) effect by white LED light. The accumulated SPR energy was subsequently transferred to the partially bilayered C60(>DPAF-C9) fullerosomic membrane layer in a near-field (∼1.5 nm) region without producing radiation heat. Since the monostatic SAR signal is dielectric property-dependent, we used these measurements to provide evidence of derived reflectivity changes on a surface coated with 2 at 0.5-4.0 GHz upon illumination of LED white light. We found that a high, >99%, efficiency of response amplification in image amplitude can be achieved. PMID:26936772

  13. M\\TiO₂ (M=Au, Ag) transparent aqueous sols and its application on polymeric surface antibacterial post-treatment.

    PubMed

    Wu, Liangzhuan; Yu, Yuan; Song, Le; Zhi, Jinfang

    2015-05-15

    In this paper, we reported a simple and mild chemical method for synthesis of crystalline metal\\TiO2 (M=Au, Ag) transparent aqueous sols at low temperature (80°C). It should be found that the as-synthesized metal\\TiO2 sols could easily be coated on the flexible PET surfaces of the through the as-developed electroless-plating-like solution deposition (EPLSD) procedure. The as-prepared metal\\TiO2 sols and related flexible thin film were characterized by TEM, SEM, XRD, UV-vis, and FTIR analysis. The results showed that the Au and Ag nanoparticles can significantly improve the optical absorption properties of TiO2 due to the surface plasmon generated by the noble metal, which in turn enhanced the photo-induced antibacterial performance of the as-prepared metal\\TiO2 flexible film. Moreover, the photo-generated electrons could transfer between the metal and titanium dioxide under different irradiation (ultraviolet or visible light), which could significantly reduce the recombination of photo-induced electrons and holes, resulting in the better photo-induced antibacterial performance. Therefore, the EPLSD procedure may be used as a general polymeric surface antibacterial post-treatment procedure for preparing the metal\\TiO2 flexible film because of the noble metal enhanced antibacterial performance. PMID:25678155

  14. Structure of SiAu16: can a silicon atom be stabilized in a gold cage?

    PubMed

    Sun, Qiang; Wang, Qian; Chen, Gang; Jena, Puru

    2007-12-01

    Nanostructures of Au and Si as well as Au-Si hybrid structures are topics of great current interest from both scientific and technological points of view. Recent discovery of Au clusters having fullerene-like geometries and the possibility of endohedral complexes with Si atoms inside the Au cage opens new possibilities for designing Au-Si nanostructures. Using ab initio simulated annealing method we have examined the stability of Si-Au16 endohedral complex. Contrary to what we believed, we find that the endohedral configuration is metastable and the structure where Si atom binds to the exterior surface of the Au16 cage is the lowest energy structure. The bonding of Si to Au cluster mimics its behavior of that in bulk and liquid phase of Au. In addition, doping of Si in high concentration would cause fracture and embrittlement in gold nanostructures just as it does in the bulk phase. Covalent bonding between Au-Au and Au-Si is found to be a dominant feature in the stability of the Au-Si nanostructures. Our study provides insight that may be useful in fabricating hybrid Au-Si nanostructures for applications microelectronics, catalysis, biomedicine, and jewelry industry. PMID:18067374

  15. Stability, structural and electronic properties of benzene molecule adsorbed on free standing Au layer

    NASA Astrophysics Data System (ADS)

    Katoch, Neha; Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2016-05-01

    We report stability and electronic properties of benzene molecule adsorbed on the Au atomic layer within the framework of density function theory (DFT). Horizontal configuration of benzene on the top site of Au monolayer prefers energetically over other studied configurations. On the adsorption of benzene, the ballistic conductance of Au monolayer is found to decrease from 4G0 to 2G0 suggesting its applications for the fabrications of organic sensor devices based on the Au atomic layers.

  16. Application of Criteria-Referenced Assessment and Qualitative Feedback to Develop Foreign Language Speaking Skills in the Context of E-Teaching/Learning

    ERIC Educational Resources Information Center

    Vitiene, Nijole; Miciuliene, Rita

    2008-01-01

    Responsive information is one of the factors that determine the quality of higher education. The factor is especially important for eLearning where a direct communication between a lecturer and a student is replaced with a virtual one. How may a qualitative responsive information, in other words feedback (see the definitions of key words), help…

  17. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  18. Teaching Qualitative Research

    ERIC Educational Resources Information Center

    Delyser, Dydia

    2008-01-01

    Explicitly qualitative research has never before been so popular in human geography, and this article hopes to encourage more graduate students and faculty members to undertake the teaching of qualitative geography. The article describes one such course for graduate students, highlighting its challenges and rewards, and focusing on exercises…

  19. Qualitative Studies: Historiographical Antecedents.

    ERIC Educational Resources Information Center

    Mills, Rilla Dean

    This paper provides an overview of qualitative studies' antecedents among historiographers and of the positivist tide which nearly engulfed them. Humans live by interpretations. The task of social science--the basic task of qualitative studies--is to study these interpretations so that we can better understand the meanings which people use to…

  20. Visualizing Qualitative Information

    ERIC Educational Resources Information Center

    Slone, Debra J.

    2009-01-01

    The abundance of qualitative data in today's society and the need to easily scrutinize, digest, and share this information calls for effective visualization and analysis tools. Yet, no existing qualitative tools have the analytic power, visual effectiveness, and universality of familiar quantitative instruments like bar charts, scatter-plots, and…

  1. Sampling in Qualitative Research

    PubMed Central

    LUBORSKY, MARK R.; RUBINSTEIN, ROBERT L.

    2011-01-01

    In gerontology the most recognized and elaborate discourse about sampling is generally thought to be in quantitative research associated with survey research and medical research. But sampling has long been a central concern in the social and humanistic inquiry, albeit in a different guise suited to the different goals. There is a need for more explicit discussion of qualitative sampling issues. This article will outline the guiding principles and rationales, features, and practices of sampling in qualitative research. It then describes common questions about sampling in qualitative research. In conclusion it proposes the concept of qualitative clarity as a set of principles (analogous to statistical power) to guide assessments of qualitative sampling in a particular study or proposal. PMID:22058580

  2. Electrochemistry of Au(II) and Au(III) pincer complexes: determination of the Au(II)-Au(II) bond energy.

    PubMed

    Dann, Thomas; Roşca, Dragoş-Adrian; Wright, Joseph A; Wildgoose, Gregory G; Bochmann, Manfred

    2013-10-01

    The bond energy of the unsupported Au-Au bond in the Au(ii) dimer [(C(∧)N(∧)C)Au]2 and the difference between Au(III)-OH and Au(III)-H bond enthalpies have been determined experimentally by electrochemical methods, with Au-OH and Au-H complexes showing unexpected differences in their reduction pathways, supported by DFT modelling. PMID:24051607

  3. Novel photoswitchable dielectric properties on nanomaterials of electronic core-shell γ-FeOx@Au@fullerosomes for GHz frequency applications

    NASA Astrophysics Data System (ADS)

    Wang, Min; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Hu, Bin; Urbas, Augustine; Chiang, Long Y.

    2016-03-01

    We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)]n2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e--polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Surface-stabilized 2 in a core-shell structure was found to be capable of photoinducing the surface plasmonic resonance (SPR) effect by white LED light. The accumulated SPR energy was subsequently transferred to the partially bilayered C60(>DPAF-C9) fullerosomic membrane layer in a near-field (~1.5 nm) region without producing radiation heat. Since the monostatic SAR signal is dielectric property-dependent, we used these measurements to provide evidence of derived reflectivity changes on a surface coated with 2 at 0.5-4.0 GHz upon illumination of LED white light. We found that a high, >99%, efficiency of response amplification in image amplitude can be achieved.We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)]n2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e--polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@Au

  4. The transport of gold and molybdenum through hydration in aqueous vapor and vapor-like fluids: Application to porphyry Au and Mo deposits

    NASA Astrophysics Data System (ADS)

    Hurtig, N. C.; Williams-Jones, A. E.

    2013-12-01

    The hypothesis that vapor is a viable medium for the transport of gold and molybdenum in ore forming magmatic-hydrothermal systems is supported by fluid inclusion data, analyses of volcanic gas condensates and the occurrence of metal-rich incrustations around fumaroles. Experiments have shown that hydration of metal species in water vapor is an essential factor in making such transport possible [1,2,3]. Indeed, hydration has been shown to increase concentrations of Au and Mo in the aqueous vapor phase by several orders of magnitude over those calculated using volatility data. Nevertheless metal concentrations determined experimentally in previous studies are substantially lower than those reported for vapor inclusions in magmatic hydrothermal systems, and are limited to one or two dominant hydrated metal species. To bridge this gap, we performed a series of new experiments extending the density-range to near critical vapor density, and intermediate-density in the case of supercritical fluids. Experiments were carried out in batch-type Ti autoclaves at temperatures between 300 and 500 °C and pressures up to 366 bar in HCl-bearing water vapor. Oxygen fugacity was buffered either by the assemblage MoO2/MoO3 or WO2/WO3 or graphite. Gold and molybdenum concentrations measured in the experimental condensates ranged from 0.9 ppb and 3 ppm in low-density vapor at 300 °C to 4.6 ppm and 481 ppm at 297 bar and 400 °C, respectively. The fugacity of both metals increased exponentially with increasing water fugacity, resulting in an increase in metal solubility between 1 and 3 orders of magnitude from the lowest pressures investigated. Curves representing the experimentally determined relationship between metal fugacity and fH2O were fitted to a step-wise hydration model to extract a set of logarithmic equilibrium constants for P and T extrapolation. We have used the above data to model Au and Mo mobilization in magmatic-hydrothermal vapor plumes. This modeling shows that the

  5. 15-µm-pitch Cu/Au interconnections relied on self-aligned low-temperature thermosonic flip-chip bonding technique for advanced chip stacking applications

    NASA Astrophysics Data System (ADS)

    Thanh Tung, Bui; Kato, Fumiki; Watanabe, Naoya; Nemoto, Shunsuke; Kikuchi, Katsuya; Aoyagi, Masahiro

    2014-01-01

    In this paper, we report the development of reliable fine-pitch micro bump interconnections that used a high-precision room-temperature bonding approach. The accuracy of the bonding process is improved by modifying conventional bump/planar-bonding-pad interconnections to form self-aligned micro bumps/truncated inverted pyramid (TIP) bonding pads, i.e., misalignment self-correction elements (MSCEs). Thermosonic flip-chip bonding (FCB) is utilized to form reliable bonds between these MSCEs at acceptable low temperatures. By applying the proposed bonding approach, the demonstration of fine-pitch Cu bump to Au bonding pad interconnects chip stacking has been realized. Microstructure analyses reveal that 15-µm-pitch micro bump joints are fabricated at room temperature.

  6. Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications

    DOE PAGESBeta

    Kuykendall, Tevye; Aloni, Shaul; Jen-La Plante, Ilan; Mokari, Taleb

    2009-01-01

    We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD). Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL), energy dispersive x-ray spectroscopy (EDS), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD).

  7. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  8. Knowledge representation and qualitative simulation of salmon redd functioning. Part I: qualitative modeling and simulation.

    PubMed

    Guerrin, F; Dumas, J

    2001-02-01

    This work aims at representing empirical knowledge of freshwater ecologists on the functioning of salmon redds (spawning areas of salmon) and its impact on mortality of early stages. For this, we use Qsim, a qualitative simulator. In this first part, we provide unfamiliar readers with the underlying qualitative differential equation (QDE) ontology of Qsim: representing quantities, qualitative variables, qualitative constraints, QDE structure. Based on a very simple example taken of the salmon redd application, we show how informal biological knowledge may be represented and simulated using an approach that was first intended to analyze qualitatively ordinary differential equations systems. A companion paper (Part II) gives the full description and simulation of the salmon redd qualitative model. This work was part of a project aimed at assessing the impact of the environment on salmon populations dynamics by the use of models of processes acting at different levels: catchment, river, and redds. Only the latter level is dealt with in this paper. PMID:11267737

  9. Magnetoresistance of Au films

    SciTech Connect

    Zhang, D. L.; Song, X. H.; Zhang, X; Zhang, Xiaoguang

    2014-01-01

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  10. Magnetoresistance of Au films

    DOE PAGESBeta

    Zhang, D. L.; Song, X. H.; Zhang, X.; Zhang, Xiaoguang

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  11. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). PMID:22071516

  12. Computers and Qualitative Research.

    ERIC Educational Resources Information Center

    Willis, Jerry; Jost, Muktha

    1999-01-01

    Discusses the use of computers in qualitative research, including sources of information; collaboration; electronic discussion groups; Web sites; Internet search engines; electronic sources of data; data collection; communicating research results; desktop publishing; hypermedia and multimedia documents; electronic publishing; holistic and…

  13. HCG blood test - qualitative

    MedlinePlus

    ... qualitative Images Blood test References Lee P, Pincus MR, McPherson RA. Diagnosis and management of cancer using serologic tumor markers. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory ...

  14. Qualitative model-based diagnosis using possibility theory

    NASA Technical Reports Server (NTRS)

    Joslyn, Cliff

    1994-01-01

    The potential for the use of possibility in the qualitative model-based diagnosis of spacecraft systems is described. The first sections of the paper briefly introduce the Model-Based Diagnostic (MBD) approach to spacecraft fault diagnosis; Qualitative Modeling (QM) methodologies; and the concepts of possibilistic modeling in the context of Generalized Information Theory (GIT). Then the necessary conditions for the applicability of possibilistic methods to qualitative MBD, and a number of potential directions for such an application, are described.

  15. Qualitative models for space system engineering

    NASA Technical Reports Server (NTRS)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  16. Dynamic features of rod-shaped Au nanoclusters

    NASA Astrophysics Data System (ADS)

    So, Woong Young; Das, Anindita; Wang, Shuxin; Zhao, Shuo; Byun, Hee Young; Lee, Dana; Kumar, Santosh; Jin, Rongchao; Peteanu, Linda A.

    2015-08-01

    Gold nanoclusters hold many potential applications such as biosensing and optics due to their emission characteristics, small size, and non-toxicity. However, their low quantum yields remain problematic for further applications, and their fluorescence mechanism is still unclear. To increase the low quantum yields, various methods have been performed: doping, tuning structures, and changing number of gold atoms. In the past, most characterizations have been performed on spherical shaped nanoclusters; in this paper, several characterizations of various rod-shaped Au nanoclusters specifically on Au25 are shown. It has been determined that the central gold atom in Au25 nano-rod is crucial in fluorescence. Furthermore, single molecule analysis of silver doped Au25 nano-rod revealed that it has more photo-stability than conjugated polymers and quantum dots.

  17. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  18. Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Pizzo, V.; Lazarus, A.; Gazis, P. R.

    1984-01-01

    A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment.

  19. [Sb4Au4Sb4]2-: A designer all-metal aromatic sandwich

    NASA Astrophysics Data System (ADS)

    Tian, Wen-Juan; Guo, Jin-Chang; Li, Da-Zhi; You, Xue-Rui; Wang, Ying-Jin; Sun, Zhong-Ming; Zhai, Hua-Jin

    2016-07-01

    We report on the computational design of an all-metal aromatic sandwich, [Sb4Au4Sb4]2-. The triple-layered, square-prismatic sandwich complex is the global minimum of the system from Coalescence Kick and Minima Hopping structural searches. Following a standard, qualitative chemical bonding analysis via canonical molecular orbitals, the sandwich complex can be formally described as [Sb4]+[Au4]4-[Sb4]+, showing ionic bonding characters with electron transfers in between the Sb4/Au4/Sb4 layers. For an in-depth understanding of the system, one needs to go beyond the above picture. Significant Sb → Au donation and Sb ← Au back-donation occur, redistributing electrons from the Sb4/Au4/Sb4 layers to the interlayer Sb-Au-Sb edges, which effectively lead to four Sb-Au-Sb three-center two-electron bonds. The complex is a system with 30 valence electrons, excluding the Sb 5s and Au 5d lone-pairs. The two [Sb4]+ ligands constitute an unusual three-fold (π and σ) aromatic system with all 22 electrons being delocalized. An energy gap of ˜1.6 eV is predicted for this all-metal sandwich. The complex is a rare example for rational design of cluster compounds and invites forth-coming synthetic efforts.

  20. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems

    NASA Astrophysics Data System (ADS)

    Kalachyova, Yevgeniya; Lyutakov, Oleksiy; Solovyev, Andrey; Slepička, Petr; Švorčík, Vaclav

    2013-12-01

    Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of as-prepared and annealed samples were measured. Annealing leads to disintegration of the initially continuous gold layer and formation of gold nanoclusters. An amplification of Soret band magnitude was observed on the Au/meso-tetraphenyl porphyrin (TPP) system in comparison with mere TPP. Additional enhancement of luminescence was observed after the sample annealing. In the case of sandwich Au/porphyrin/Au structure, suppression of one of the two porphyrins' luminescence maxima and sufficient enhancement of the second one were observed.

  1. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods. PMID:27497571

  2. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  3. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. PMID:26648134

  4. Comparison of photoluminescence properties of HSA-protected and BSA-protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Masato; Kawasaki, Hideya; Saitoh, Tadashi; Inada, Mitsuru; Kansai Univ. Collaboration

    Gold nanoclusters (NCs) have attracted great interest for a wide range of applications. In particular, red light-emitting Au25 NCs have been prepared with various biological ligands. It has been shown that Au25 NCs have Au13-core/6Au2(SR)3-semiring structure. The red luminescence thought to be originated from both core (670 nm) and semiring (625 nm). It is important to reveal a structure of Au25 NCs to facilitate the progress of applications. However, the precise structure of Au25 NCs has not been clarified. There is a possibility of obtaining structural information about Au25 NCs to compare optical properties of the NCs that protected by slightly different molecules. Bovine and human serum albumin (BSA, HSA) are suitable one for this purpose. It has been suggested that rich tyrosine and cysteine residues in these molecules are important to produce the thiolate-protected Au NCs. If Au25 NCs have core/shell structure, only the luminescence of the semiring will be affected by the difference of the albumin molecules. We carefully compared PL characteristics of BSA- and HSA- protected Au25 NCs. As a result, there was no difference in the PL at 670 nm (core), while differences were observed in the PL at 625 nm (semiring). The results support that Au25 NCs have core/semiring structure.

  5. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    NASA Astrophysics Data System (ADS)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  6. Studies of the structure and phase transitions of nano-confined pentanedithiol and its application in directing hierarchical molecular assemblies on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Pawlicki, Alison; Avery, Erin; Jurow, Matthew; Ewers, Bradley; Vilan, Ayelet; Drain, Charles Michael; Batteas, James

    2016-03-01

    Directing molecular devices into pre-designed integrated electronic circuits while enforcing selectivity and hierarchy is an inherent challenge for molecular electronics. Here we explore ways to direct the assembly of electrically-active molecular monolayers into specific locations as well as controlling their internal organization. We have accomplished this by two consecutive surface reactions: (1) forming pentanedithiol (C5DT) domains within an inert alkanethiol self-assembled monolayer (SAM) on Au; and (2) selectively binding porphyrin derivatives to the C5DT domains. The C5DT domains were fabricated by phase segregation during co-adsorption from a mixed C5DT/dodecanethiol (C12) solution and nanografting with Atomic Force Microscopy (AFM). AFM revealed that co-absorbed and nanografted C5DT domains were in a standing-up phase and scanning tunneling microscopy (STM) showed that their molecular organization within about 5 nm, 40 nm, 50 nm and 120 nm domains, was dependent upon the size of the domain, such that structure of the C5DT transitions from (\\sqrt{3}   ×  \\sqrt{3} ) R30°, to (2  ×  2), and ultimately to a disordered phase with increasing domain size. This is due to the varying degrees of influence of the surrounding C12; providing sufficient van der Waals interactions as well as a geometric confinement to stabilize the standing-up phase of the C5DT. Understanding the molecular configuration of dithiol SAMs affords their use as a reactive template to subsequently bind active head groups. As a proof of principle, porphyrins with a pendant pentafluorophenyl ring were attached to the C5DT domains by a ‘click’ reaction between the fluorinated ring and the free thiol on the surface. From AFM and STM, these porphyrin derivatives reacted selectively with the C5DT domains with some porphyrins binding directly to the C5DT, subsequently allowing additional localized porphyrin deposition through pi-stacking.

  7. Qualitative Assertions as Prescriptive Statements

    ERIC Educational Resources Information Center

    Nolen, Amanda; Talbert, Tony

    2011-01-01

    The primary question regarding prescriptive appropriateness is a difficult one to answer for the qualitative researcher. While there are certainly qualitative researchers who have offered prescriptive protocols to better define and describe the terrain of qualitative research design and there are qualitative researchers who offer research…

  8. Disciplining Qualitative Research

    ERIC Educational Resources Information Center

    Denzin, Norman K.; Lincoln, Yvonna S.; Giardina, Michael D.

    2006-01-01

    Qualitative research exists in a time of global uncertainty. Around the world, governments are attempting to regulate scientific inquiry by defining what counts as "good" science. These regulatory activities raise fundamental, philosophical epistemological, political and pedagogical issues for scholarship and freedom of speech in the academy. This…

  9. Entropy Is Simple, Qualitatively.

    ERIC Educational Resources Information Center

    Lambert, Frank L.

    2002-01-01

    Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)

  10. Demystifying Interdisciplinary Qualitative Research

    ERIC Educational Resources Information Center

    Greckhamer, Thomas; Koro-Ljungberg, Mirka; Cilesiz, Sebnem; Hayes, Sharon

    2008-01-01

    This article seeks to demystify, through deconstruction, the concept of "interdisciplinarity" in the context of qualitative research to contribute to a new praxis of knowledge production through reflection on the possibilities and impossibilities of interdisciplinarity. A review and discussion of disciplinarity and interdisciplinarity leads the…

  11. [Qualitative case study].

    PubMed

    Debout, Christophe

    2016-06-01

    The qualitative case study is a research method which enables a complex phenomenon to be explored through the identification of different factors interacting with each other. The case observed is a real situation. In the field of nursing science, it may be a clinical decision-making process. The study thereby enables the patient or health professional experience to be conceptualised. PMID:27338694

  12. Bookstart: A Qualitative Evaluation.

    ERIC Educational Resources Information Center

    Moore, Maggie; Wade, Barrie

    2003-01-01

    A qualitative study of Bookstart, which gave free children's books and support to British inner-city families, collected data from librarians, health visitors, and nursery school staff. Bookstart increased positive attitudes toward and interest in books. Health visitors' support was crucial in helping parents use the books to support children's…

  13. The Qualitative Similarity Hypothesis

    ERIC Educational Resources Information Center

    Paul, Peter V.; Lee, Chongmin

    2010-01-01

    Evidence is presented for the qualitative similarity hypothesis (QSH) with respect to children and adolescents who are d/Deaf or hard of hearing. The primary focus is on the development of English language and literacy skills, and some information is provided on the acquisition of English as a second language. The QSH is briefly discussed within…

  14. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-03-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.

  15. Propagating Qualitative Values Through Quantitative Equations

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    1992-01-01

    In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.

  16. A Quantitative Assessment of the Size-Frequency Distribution of Terrestrial Dust Devils, Comparison with Qualitative Estimates, and Applications to Mars

    NASA Astrophysics Data System (ADS)

    Pathare, A.; Balme, M. R.; Metzger, S.; Towner, M.; Spiga, A.; Renno, N. O.; Elliott, H. M.; Russell, P. S.; Fenton, L. K.; Michaels, T. I.

    2011-12-01

    Dust devils are particle-loaded vertical convective vortices commonly observed on Earth and especially Mars. Qualitative estimates of terrestrial dust devil frequency based upon visual field surveys have varied by several orders of magnitude. We will present the results of our quantitative characterization of the size-frequency distribution (SFD) of terrestrial dust devils, which utilizes stereo photography to calculate dust devil diameters via parallax displacement. In 2009, we conducted field campaigns in Eloy, Arizona and Eldorado Valley, Nevada to survey terrestrial dust devils: the latter site was revisited in 2010. During each survey period, at least two and usually three observers were positioned at spotter stations located approximately 100 m apart, thereby allowing triangular study areas (bounded by three meteorological masts) of A = 0.83 sq. km and A = 0.55 sq. km to be surveyed in Eloy and Eldorado Valley, respectively. Each spotter station was equipped with a tripod-mounted, weatherproof digital camera: whenever possible, any dust devils observed within the study area were photographed simultaneously by camera operators in radio contact. All dust devils observed within the survey sites were assigned a qualitative diameter estimate (i.e., Tiny/Small/Medium/Large) by a third spotter positioned near the center of the study area. Thus even if small dust devils occurred that existed too fleetingly to be photographed, they were still recorded. Methodology: The positions of both survey tripods were measured to ~ 0.5 m precision using GPS. In addition, a full 360-degree panorama was generated from each survey position, corrected for lens distortion, and then imported into a GIS. The photographs of dust devils from each camera are then also incorporated into the GIS and aligned against the corresponding background panorama. The width and center points of each dust devil are then digitized and its bearings and angular width outputted from the GIS, together with

  17. Enhanced strange baryon production in Au+Au collisions compared to p+p at {radical}{ovr s}{sub NN} = 200 GeV.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; STAR Collaboration; McClain, C. J.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.

    2008-01-01

    We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at {radical}s{sub NN} = 200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy {radical}s{sub NN} = 17.3 GeV. The previous observations are for the bulk production, while at intermediate p{sub T},1 < p{sub T} < 4 GeV/c, the strange baryons even exceed binary scaling from p+p yields.

  18. Enhanced strange baryon production in Au+Au collisions compared to p+p at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Souza, R. Derradi De; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. G.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jin, F.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Toledo, A. Szanto De; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2008-04-01

    We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at sNN=200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy sNN=17.3 GeV. The previous observations are for the bulk production, while at intermediate pT,1

  19. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  20. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction.

    PubMed

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-18

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells. PMID:26585310

  1. Multiplicities in Au-Au and Cu-Cu collisions at sNN=62.4 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Prorok, Dariusz

    2013-09-01

    Likelihood ratio tests are performed for the hypothesis that charged particle multiplicities measured in Au-Au and Cu-Cu collisions at sNN=62.4 and 200 GeV are distributed according to the negative binomial form. Results suggest that the hypothesis should be rejected in all classes of collision systems and centralities of Pioneering High-Energy Nuclear Interaction Experiment Relativistic Heavy Ion Collider measurements. However, the application of the least-squares test statistic with systematic errors included shows that for the collision system Au-Au at sNN=62.4 GeV the hypothesis could not be rejected in general.

  2. Qualitative and quantitative analysis of felbinac and its major metabolites in human plasma and urine by liquid chromatography tandem mass spectrometry and its application after intravenous administration of felbinac trometamol injection.

    PubMed

    Zheng, Yunliang; Hu, Xingjiang; Liu, Jian; Wu, Guolan; Zhai, You; Wu, Lihua; Shentu, Jianzhong

    2015-04-01

    We present a method for the qualitative and quantitative analysis of felbinac and its major metabolites in human plasma and urine by HPLC-MS/MS and its application. Qualitative analysis through LC-Triple-TOF-MS/MS indicated that oxidization was the main phase-I metabolic pathway of felbinac in human, conjugation with sulfate and glucuronide groups produced at least 7 phase-II metabolites. Quantitative analysis through HPLC-MS/MS in MRM mode was developed and validated for the quantification of felbinac and its major metabolite (4'-hydroxyfelbinac) in human plasma and urine. Linear calibration curves were obtained for felbinac and 4'-hydroxyfelbinac in plasma and urine (r>0.996); intra- and inter-day precision values (RSD%) obtained were ranged from 1.13 to 6.49%, and the accuracy were between 95.9% and 108.6% for the two analytes. The pharmacokinetics and excretion analysis showed that the t1/2 of 4'-hydroxyfelbinac (8.25 ± 4.15 h) is a litter longer than that of felbinac (6.13 ± 2.01 h), but the mean AUC(0-t) value of felbinac was about 20 times higher than that of 4'-hydroxyfelbinac; excretion of felbinac and 4'-hydroxyfelbinac reached their peak values at about 3-6h after intravenous administration of felbinac trometamol in human. PMID:25706568

  3. Efficient synthesis of core@shell Fe3O4@Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Alonso-Cristobal, Paulino; Laurenti, Marco; Lopez-Cabarcos, Enrique; Rubio-Retama, Jorge

    2015-07-01

    The synthesis of Fe3O4@Au nanoparticles has received much attention due to promising applications in the biomedical field. In this work, we produced Fe3O4@Au nanoparticles by using a two-step solvothermal route that employed Fe3O4 nanoparticles as seeds for the Au deposition. Although this protocol leads to highly monodisperse and reproducible Fe3O4@Au nanoparticles it was necessary to perform a systematic study to have a better understanding, improve the yield and allow us to obtain a tunable result. We demonstrated that the Au:Fe3O4 ratio is a key parameter that, contrary to what could be expected, does not influence the Au shell thickness. However, this parameter should be optimized because it strongly influences the yield. When the Au:Fe3O4 ratio was low there were plenty of uncoated Fe3O4 nanoparticles, whereas when the Au:Fe3O4 ratio was high there could be some pure Au nanoparticles together with the desired Fe3O4@Au nanoparticles. Furthermore we demonstrated that the Au shell thickness can be tuned by varying the reaction temperature. This paper describes the influence of both parameters and proposes a mechanism of the synthetic process by studying parametrically the morphological and structural evolution of the nanoparticles by TEM, DLS, SQUID and UV-vis spectroscopy.

  4. Preparation of Nanoscrolls by Rolling up Graphene Oxide-Polydopamine-Au Sheets using Lyophilization Method.

    PubMed

    Yang, Yongfang; Zhang, Xiaolu; Wang, Hefang; Tang, Honghao; Xu, Lidong; Li, Hua; Zhang, Lei

    2016-06-21

    Graphene oxide-polydopamine-Au (GO-PDA-Au) nanoscrolls were prepared by rolling up GO-PDA-Au sheets through a simple lyophilization method. The structure of GO-PDA-Au nanoscrolls and GO-PDA-Au sheets were compared by powder X-ray diffraction, Raman spectra, transmission electron microscopy, and scanning electron microscopy. The results demonstrated that the heterogeneous GO-PDA-Au nanoscrolls were synthesized successfully. Polydopamine (PDA) attached at the surface of GO sheets served as binding reagents to anchor and disperse Au nanoparticles (NPs). The electrocatalytic activity of methanol with GO-PDA-Au nanoscrolls and GO-PDA-Au sheets as electrodes were conducted. Compared to GO-PDA-Au sheets, GO-PDA-Au nanoscrolls showed better electrocatalytic activity and electrochemical stability owing to their scrolled structure. This article provides a simple and effective method to prepare GO nanoscrolls containing metal NPs that broadens the applications of the graphene-based materials in optical, magnetic, and catalytic fields. PMID:27124218

  5. Qualitative and quantitative analysis of a group of volatile organic compounds in biological samples by HS-GC/FID: application in practical cases.

    PubMed

    Monteiro, C; Franco, J M; Proença, P; Castañera, A; Claro, A; Vieira, D N; Corte-Real, F

    2014-10-01

    A simple and sensitive procedure, using n-propanol as internal standard (IS), was developed and validated for the qualitative and quantitative analysis of a group of 11 volatile organic substances with different physicochemical properties (1-butanol, 2-propanol, acetaldehyde, ethyl acetate, acetone, acetonitrile, chloroform, diethyl ether, methanol, toluene and p-xylene) in whole blood, urine and vitreous humor. Samples were prepared by dilution with an aqueous solution of internal standard followed by Headspace Gas Chromatography with a Flame-ionization Detector (HS GC-FID) analysis. Chromatographic separation was performed using two capillary columns with different polarities (DB-ALC2: 30m×0.320mm×1.2μm and DB-ALC1: 30m×0.320mm×1.8μm), thus providing a change in the retention and elution order of volatiles. This dual column confirmation increases the specificity, since the risk of another substance co-eluting at the same time in both columns is very small. The method was linear from 5 to 1000mg/L for toluene and p-xylene, 50-1000mg/L for chloroform, and 50-2000mg/L for the remaining substances, with correlation coefficients of over 0.99 for all compounds. The limits of detection (LOD) ranged 1 to 10mg/L, while the limits of quantification (LOQ) ranged from 2 to 31mg/L. The intra-day precision (CV<6.4%), intermediate precision (CV<7.0%) and accuracy (relative error ±10%) of the method were in conformity with the criteria normally accepted in bioanalytical method validation. The method developed has been applied to forensic cases, with the advantages that it uses a small sample volume and does not require any extraction procedure as it makes use of a headspace injection technique. PMID:25124884

  6. State-Sensitive Monitoring of Active and Promoter Sites. Applications to Au/Titania and Pt-Sn/Silica Catalysts by XAFS Combined with X-Ray Fluorescence Spectrometry

    SciTech Connect

    Izumi, Yasuo; Masih, Dilshad; Candy, Jean-Pierre; Yoshitake, Hideaki; Terada, Yasuko; Tanida, Hajime; Uruga, Tomoya

    2007-02-02

    State-sensitive XAFS was enabled combined with high-energy-resolution ({delta}E = 0.3 eV-5.5 keV) X-ray fluorescence spectrometry and applied to Au sites of Au/TiO2 and Sn promoter sites of Pt-Sn/SiO2. Each state of interfacial Au sites located on Ti/O atoms and negatively/positively charged Aun clusters was discriminated. Feasibility of more direct information of on-site catalysis via frontier orbital-sensitive XAFS was demonstrated.

  7. Photoionization of Au+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Bogolub, Kyren; Macaluso, David; Mueller, Allison; Johnson, Andrea; Müller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Anders, Andre; Aguilar, Alex; Kilcoyne, A. L. David

    2014-05-01

    Single photoionization of Au+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The relative single photoionization yield was measured as a function of photon energy in the 45 eV to 120 eV energy range. These measurements were made in preparation for future photoionization studies of the endohedral metallofullerene Au@C60, the production of which was also investigated. In proof-of-principle measurements a mass-resolved beam of Au@C60+was produced with a primary ion beam current in the single picoamp range without optimization of the ion source or synthesis parameters. Plans are presented for improved metallofullere production yield to be used in photoionization measurements of the endohedral fullerene ions in conjunction with the continuing study of pure Au. We would like to acknowledge the generous sharing of equipment vital to this work by Andre Anders, the Plasma Applications group leader at the Advanced Light Source, LBNL.

  8. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Liao, Zhi-Min; Sofin, R G Sumesh; Feng, Gen; Ma, Xiu-Mei; Shick, Alexander B; Mryasov, Oleg N; Shvets, Igor V

    2012-12-11

    Mn(2)Au, a layered bimetal, is successfully grown using molecular beam epitaxy (MBE). The experiments and theoretical calculations presented suggest that Mn(2)Au film is antiferromagnetic with a very low critical temperature. The antiferromagnetic nature is demonstrated by measuring the exchange-bias effect of Mn(2)Au/Fe bilayers. This study establishes a primary basis for further research of this new antiferromagnet in spin-electronic device applications. PMID:22996352

  9. Reasoning about energy in qualitative simulation

    NASA Technical Reports Server (NTRS)

    Fouche, Pierre; Kuipers, Benjamin J.

    1992-01-01

    While possible behaviors of a mechanism that are consistent with an incomplete state of knowledge can be predicted through qualitative modeling and simulation, spurious behaviors corresponding to no solution of any ordinary differential equation consistent with the model may be generated. The present method for energy-related reasoning eliminates an important source of spurious behaviors, as demonstrated by its application to a nonlinear, proportional-integral controlled. It is shown that such qualitative properties of such a system as stability and zero-offset control are captured by the simulation.

  10. Qualitative Research: Comments and Controversies.

    ERIC Educational Resources Information Center

    Schutz, Robert W.

    1989-01-01

    This article comments upon the use of qualitative research in physical education, exercise, and sport science. Topics include unresolved methodological problems, data analysis, and the scope of qualitative research. (IAH)

  11. Au20: A Tetrahedral Cluster

    SciTech Connect

    Li, Jun; Li, Xi; Zhai, Hua Jin; Wang, Lai S.

    2003-02-07

    Photoelectron spectroscopy revealed that a 20 atom gold cluster has an extremely large energy gap, which is even greater than that of C60, and an electron affinity comparable with that of C60. This observation suggests that the Au20 cluster must be extremely stable and chemically inert. Using relativistic density functional calculations, we found that Au20 possesses a remarkable tetrahedral structure, which is a fragment of the bulk face-centered cubic lattice of gold with a small structural relaxation. Au20 is thus a true cluster molecule, while at the same time it is exactly part of the bulk, but with very different properties. The tetrahedral Au20 may possess interesting catalytic properties and may be synthesized in bulk quantity or assembled on non-interacting surfaces.

  12. Incorporating Translation in Qualitative Studies: Two Case Studies in Education

    ERIC Educational Resources Information Center

    Sutrisno, Agustian; Nguyen, Nga Thanh; Tangen, Donna

    2014-01-01

    Cross-language qualitative research in education continues to increase. However, there has been inadequate discussion in the literature concerning the translation process that ensures research trustworthiness applicable for bilingual researchers. Informed by the literature on evaluation criteria for qualitative data translation, this paper…

  13. Using Blogs in Qualitative Educational Research: An Exploration of Method

    ERIC Educational Resources Information Center

    Harricharan, Michelle; Bhopal, Kalwant

    2014-01-01

    When compared with wider social research, qualitative educational research has been relatively slow to take up online research methods (ORMs). There is some very notable research in the area but, in general, ORMs have not achieved wide applicability in qualitative educational contexts apart from research that is inherently linked to the Internet,…

  14. Emerging Uses of Computer Technology in Qualitative Research.

    ERIC Educational Resources Information Center

    Parker, D. Randall

    The application of computer technology in qualitative research and evaluation ranges from simple word processing to doing sophisticated data sorting and retrieval. How computer software can be used for qualitative research is discussed. Researchers should consider the use of computers in data analysis in light of their own familiarity and comfort…

  15. Preparing a Qualitative Research-Based Dissertation: Lessons Learned

    ERIC Educational Resources Information Center

    Bowen, Glenn A.

    2005-01-01

    In this article, a newly minted Ph.D. shares seven lessons learned during the process of preparing a dissertation based on qualitative research methods. While most of the lessons may be applicable to any kind of research, the writer focuses on the special challenges of employing a qualitative methodology. The lessons are: (1) Read, read, read; (2)…

  16. Electrografting of thionine diazonium cation onto the graphene edges and decorating with Au nano-dendrites or glucose oxidase: Characterization and electrocatalytic applications.

    PubMed

    Shervedani, Reza Karimi; Amini, Akbar; Sadeghi, Nima

    2016-03-15

    Thionine (Th) diazonium cation is covalently attached onto the glassy carbon (GC) electrode via graphene nanosheets (GNs) (GC-GNs-Th). The GC-GNs-Th electrode is subjected to further modifications to fabricate (i) glucose and (ii) nitrite sensors. Further modifications include: (i) direct immobilization of glucose oxidase (GOx) and (ii) electrodeposition of gold dendrite-like nanostructures (DGNs) on the GC-GNs-Th surface, constructing GC-GNs-Th-GOx and GC-GNs-Th-DGNs modified electrodes, respectively. The GC-GNs-Th-GOx biosensor exhibited a linear response range to glucose, from 0.5 to 6.0mM, with a limit of detection (LOD) of 9.6 μM and high sensitivity of 43.2 µAcm(-2)mM(-1). Also, the GC-GNs-Th-DGNs sensor showed a wide dynamic response range for NO2(-) ion with two linear parts, from 0.05 μM to 1.0 μM and 30.0 μM to 1.0mM, a sensitivity of 263.2 μAmM(-1) and a LOD of 0.01 μM. Applicability of the modified electrodes was successfully tested by determination of glucose in human blood serum and nitrite in water based on addition/recovery tests. PMID:26454830

  17. Catching goldfish: quality in qualitative research.

    PubMed

    Dingwall, R; Murphy, E; Watson, P; Greatbatch, D; Parker, S

    1998-07-01

    This paper reviews the contribution of qualitative methods to health services research (HSR) and discusses some of the issues involved in recognizing quality in such work. The place of qualitative work is first defined by reference to Archie Cochrane's agenda for HSR and the limitations of the recent focus on randomized trials as the standard method. Health care practice involves large elements of improvisation which cannot be captured by evidence-based approaches. Qualitative methods offer ways of understanding this improvisation and of identifying more efficient and effective practices, as well as considering the traditional topics of equity and humanity. The methodological procedures of qualitative work reflect a long-established inductive tradition in scientific practice. The logic of grounded theory provides a contemporary specification. In its application, it is quite different from the methodological anarchy of postmodernism. The use of qualitative research and the theoretically stated generalizations which arise from it inform reflective work by health service managers, planners and clinicians. PMID:10185376

  18. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    SciTech Connect

    Reddy, K. M. Punnoose, Alex; Hanna, Charles; Padture, Nitin P.

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.

  19. Controlled electrodeposition of Au monolayer film on ionic liquid

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  20. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes.

    PubMed

    Cui, Chun-Hua; Yu, Jin-Wen; Li, Hui-Hui; Gao, Min-Rui; Liang, Hai-Wei; Yu, Shu-Hong

    2011-05-24

    The interface, which formed in a bimetallic system, is a critical issue to investigate the fundamental mechanism of enhanced catalytic activity. Here, we designed unsupported Pd-Au bimetallic nanoparticle tubes with a tunable interface, which was qualitatively controlled by the proportion of Pd and Au nanoparticles (NPs), to demonstrate the remarkably enhanced effect of Pd and Au NPs in electro-oxidation of ethanol. The results demonstrated that the electrocatalytic activity is highly relative to the interface and has no direct relation with individual metal component in the Pd-Au system. This effect helps us in achieving a fundamental understanding of the relationship between their activity and the interface structure and chemical properties and, consequently, is helpful in designing new catalysts with high performances. PMID:21506570

  1. Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au+Au collisions.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Levine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-04-25

    Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations. PMID:24815640

  2. Interface effects on tunneling magnetoresistance in organic spintronics with flexible amine-Au links.

    PubMed

    Gorjizadeh, Narjes; Quek, Su Ying

    2013-10-18

    Organic spintronics is a promising emerging field, but the sign of the tunneling magnetoresistance (TMR) is highly sensitive to interface effects, a crucial hindrance to applications. A key breakthrough in molecular electronics was the discovery of amine-Au link groups that give a reproducible conductance. Using first-principles calculations, we predict that amine-Au links give improved reproducibility in organic spintronics junctions with Au-covered Fe leads. The Au layers allow only states with sp character to tunnel into the molecule, and the flexibility of amine-Au links results in a narrow range of TMR for a fixed number of Au layers. Even as the Au thickness changes, the TMR remains positive as long as the number of Au layers is the same on both sides of the junction. Since the number of Au layers on Fe surfaces or Fe nanoparticles can now be experimentally controlled, amine-Au links provide a route towards robust TMR in organic spintronics. PMID:24060599

  3. Mechanical Properties and Fracture Behavior of Nanoporous Au

    SciTech Connect

    Biener, J; Hodge, A M; Wang, Y M; Hayes, J R; Hamza, A V

    2005-06-16

    Nanoporous metals have recently attracted considerable interest fueled by potential sensor and actuator applications. From a material science point of view, one of the key issues in this context is the synthesis of nanoporous metals with both high tensile and compressive strength. Nanoporous gold (np-Au) has been suggested as a candidate material for this application due to its monolithic character. The material can be synthesized by electrochemically-driven dealloying of Ag-Au alloys, and exhibits an open sponge-like structure of interconnecting ligaments with a typical pore size distribution on the nanometer length scale. However, besides the observation of a ductile-brittle transition very little is known about the mechanical behavior of this material. Here, we present our results regarding the mechanical properties and the fracture behavior of np-Au. Depth-sensing nanoindentation reveals that the yield strength of np-Au is almost one order of magnitude higher than the value predicted by scaling laws developed for macroscopic open-cell foams. The unexpectedly high value of the yield strength indicates the presence of a distinct size effect of the mechanical properties due to the sub-micron dimensions of the ligaments, thus potentially opening a door to a new class of high yield strength--low density materials. The failure mechanism of np-Au under tensile stress was evaluated by microscopic examination of fracture surfaces using scanning electron microscopy. On a macroscopic level, np-Au is a very brittle material. However, microscopically np-Au is very ductile as ligaments strained by as much as 200% can be observed in the vicinity of crack tips. Cell-size effects on the microscopic failure mechanism were studied by annealing experiments whereby increasing the typical pore size/ligament diameter from {approx}100 nm to {approx}1{micro}m.

  4. High-yield halide-free synthesis of biocompatible Au nanoplates.

    PubMed

    Wang, Guoqing; Tao, Shengyang; Liu, Yiding; Guo, Lei; Qin, Guohui; Ijiro, Kuniharu; Maeda, Mizuo; Yin, Yadong

    2016-01-01

    We communicate an unconventional synthesis of Au nanoplates with high yield and excellent reproducibility through polyvinylpyrrolidone (PVP)-assisted H2O2 reduction. Unlike the ones prepared using halide-based surfactants, the PVP-capped Au nanoplates are found to afford fairly easy bio-functionalization, suggesting a vastly expanded spectrum of applications in bio-related fields. PMID:26524080

  5. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Rich, Ryan; Fudala, Rafal; Butler, Susan; Kokate, Rutika; Gryczynski, Zygmunt; Luchowski, Rafal; Gryczynski, Ignacy

    2013-12-01

    Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to

  6. Photoluminescence enhancement in few-layer WS{sub 2} films via Au nanoparticles

    SciTech Connect

    Choi, Sin Yuk; Yip, Cho Tung; Li, Guang-Can; Lei, Dang Yuan; Fung, Kin Hung; Yu, Siu Fung E-mail: jh.hao@polyu.edu.hk; Hao, Jianhua E-mail: jh.hao@polyu.edu.hk

    2015-06-15

    Nano-composites of two-dimensional atomic layered WS{sub 2} and Au nanoparticles (AuNPs) have been fabricated by sulfurization of sputtered W films followed by immersing into HAuCl{sub 4} aqueous solution. The morphology, structure and AuNPs distribution have been characterized by electron microscopy. The decorated AuNPs can be more densely formed on the edge and defective sites of triangle WS{sub 2}. We have compared the optical absorption and photoluminescence of bare WS{sub 2} and Au-decorated WS{sub 2} layers. Enhancement in the photoluminescence is observed in the Au-WS{sub 2} nano-composites, attributed to localized surface plasmonic effect. This work provides the possibility to develop photonic application in two-dimensional materials.

  7. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    PubMed Central

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-01-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol. PMID:24797697

  8. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts.

    PubMed

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-01-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol. PMID:24797697

  9. Qualitative Research Methods in Special Education: Ethnography, Microethnography, and Ethology.

    ERIC Educational Resources Information Center

    Murray, Carola; And Others

    1986-01-01

    Three qualitative research methodologies (ethnography, microethnography, and ethology) are contrasted according to their disciplinary origins, methods for data collection and analysis, and use of audiovisual technology. Studies that exemplify the special education applications of these methodologies are summarized. (Author)

  10. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  11. Symmetry energy from elliptic flow in 197Au + 197Au

    NASA Astrophysics Data System (ADS)

    Russotto, P.; Wu, P. Z.; Zoric, M.; Chartier, M.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Pagano, A.; Pawłowski, P.; Trautmann, W.

    2011-03-01

    The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of neutron-rich systems at relativistic energies is proposed as an observable sensitive to the strength of the symmetry term in the equation of state at supra-normal densities. The results obtained from the existing FOPI/LAND data for 197Au + 197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model favor a moderately soft symmetry term with a density dependence of the potential term proportional to (ρ /ρ0) γ with γ = 0.9 ± 0.4.

  12. Flow in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Belt Tonjes, Marguerite; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{s_{{\\rm NN}}} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  13. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.

    PubMed

    Philip, Daizy

    2009-07-15

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size approximately 15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (111) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications. PMID:19324587

  14. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  15. The qualitative similarity hypothesis.

    PubMed

    Paul, Peter V; Lee, Chongmin

    2010-01-01

    Evidence is presented for the qualitative similarity hypothesis (QSH) with respect to children and adolescents who are d/Deaf or hard of hearing. The primary focus is on the development of English language and literacy skills, and some information is provided on the acquisition of English as a second language. The QSH is briefly discussed within the purview of two groups of cognitive models: those that emphasize the cognitive development of individuals and those that pertain to disciplinary or knowledge structures. It is argued that the QSH has scientific merit with implications for classroom instruction. Future research should examine the validity of the QSH in other disciplines such as mathematics and science and should include perspectives from social as well as cognitive models. PMID:20415280

  16. Nitrogen mineralization from 'AU Golden' sunn hemp residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tropical legume sunn hemp (Crotalaria juncea) cultivar ‘AU Golden’ has the potential to provide substantial amounts of nitrogen (N) to subsequent crops that could reduce recommended application rates of synthetic N fertilizers. Nitrogen fertilization problems via legumes are often due to asynch...

  17. Au/Si Nanorod-Based Biosensor for Salmonella Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and quality measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si/ nanorods. The Si nanorods were fabricated by glancing angle depositi...

  18. Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Xu, Ling; Zhang, Renqi; Ge, Zhaoyun; Zhang, Wenping; Xu, Jun; Ma, Zhongyuan; Chen, Kunji

    2015-03-01

    Au nanoparticles (Au NPs)/CdTe/CdS QDs nanocomposite films were fabricated by deposition of Au NPs and layer-by-layer self-assembly of colloidal CdTe/CdS QDs. Photoluminescence (PL) spectra showed that Au NPs incorporation resulted in an increase of PL intensity about 16-fold compared with that of the samples without Au NPs. PL enhancement of Au NPs/CdTe/CdS QDs nanocomposite films can be controlled by tuning the thickness of spacer layer between the metal nanoparticles (MNPs) and QDs. Optical absorption spectra exhibited the incorporation of Au NPs boosted the absorption of Au NPs/CdTe/CdS QDs nanocomposite films. The results of finite-difference time-domain (FDTD) simulation indicated that the increased sizes of Au NPs resulted in stronger localization of electric field, which boosted the PL intensity of QDs in the vicinity of Au NPs. We thought that these were mainly attributed to localized SP enhancement effects of the Au NPs. Our experiment results demonstrated that Au NPs/QDs nanocomposite films would be a promising candidate for optoelectronic devices application.

  19. Common Perspectives in Qualitative Research.

    PubMed

    Flannery, Marie

    2016-07-01

    The primary purpose of this column is to focus on several common core concepts that are foundational to qualitative research. Discussion of these concepts is at an introductory level and is designed to raise awareness and understanding of several conceptual foundations that undergird qualitative research. Because of the variety of qualitative approaches, not all concepts are relevant to every design and tradition. However, foundational aspects were selected for highlighting. PMID:27314194

  20. Graphene nanoribbons synthesized from molecular precursor polymerization on Au(110)

    SciTech Connect

    Massimi, Lorenzo; Ourdjini, Oualid; Della Pia, Ada; Mariani, Carlo; Betti, Maria Grazia; Cavaliere, Emanuele; Gavioli, Luca

    2015-06-23

    A spectroscopic study of 10,10-dibromo-9,9 bianthracene (DBBA) molecules deposited on the Au(110) surface is presented, by means of ultraviolet and X-ray photoemission, and X-ray absorption spectroscopy. Through a thermally activated procedure, these molecular precursors polymerize and eventually form graphene nanoribbons (GNRs) with atomically controlled shape and width, very important building blocks for several technological applications. The GNRs observed by scanning tunneling microscopy (STM) appear as short segments on top of the gold surface reconstruction, pointing out the delicate balance among surface diffusion and surface corrugation in their synthesis on the Au(110) surface.

  1. Reliable methods for silica coating of Au nanoparticles.

    PubMed

    Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2013-01-01

    The inherent properties of silica, such as optical transparency, high biocompatibility, chemical and colloidal stability, controllable porosity, and easy surface modification, provide silica materials with a tremendous potential in biomedicine. Therefore, the coating of Au nanoparticles with silica largely contributes to enhance the important applications of metal nanoparticles in biomedicine. We describe in this chapter a number of reliable strategies that have been reported for silica coating of different types of Au nanoparticles. All descriptions are based on tested protocols and are expected to provide a reference for scientists with an interest in this field. PMID:23918330

  2. Slow Relaxation of Surface Plasmon Excitations in Au55: The Key to Efficient Plasmonic Heating in Au/TiO2.

    PubMed

    Ranasingha, Oshadha; Wang, Hong; Zobač, Vladimír; Jelínek, Pavel; Panapitiya, Gihan; Neukirch, Amanda J; Prezhdo, Oleg V; Lewis, James P

    2016-04-21

    Gold nanoparticles distinguish themselves from other nanoparticles due to their unique surface plasmon resonance properties that can be exploited for a multiplicity of applications. The promise of plasmonic heating in systems of Au nanoparticles on transition metal oxide supports, for example, Au/TiO2, rests with the ability of the surface plasmon in Au nanoparticles to effectively transfer energy into the transition metal oxide. Here, we report a critical observation regarding Au nanoparticle (Au55) surface plasmon excitations, that is, the relaxation of the surface plasmon excitation is very slow, on the order of several picoseconds. Starting from five plasmon states in Au55 nanoparticles using nonadiabatic molecular dynamics simulations, we find that the relaxation time constant resulting from these simulations is ∼6.8 ps, mainly resulting from a long-lived intermediate state found at around -0.8 eV. This long-lived intermediate state aligns with the conduction band edge of TiO2, thereby facilitating energy transfer injection from the Au55 nanoparticle into the TiO2. The current results rule out the previously reported molecular-like relaxation dynamics for Au55. PMID:27043706

  3. Plasmonic Fano resonances in compositional heterogenous Al- Au nanorod dimers

    NASA Astrophysics Data System (ADS)

    Wu, Botao; Xue, Yingxian; Ma, Qiang; Ding, Chengjie; Rong, Youying; Liu, Yan; Chen, Lingxiao; Wu, E.; Zeng, Heping

    2016-01-01

    We have investigated theoretically the plasmon resonance coupling in compositional heterogenous Al-Au nanorod dimers organized in a close proximity by end-to-end. It has been proved that the destructive interference between the bright dipole mode from Al nanorod and the dark quadrupole mode from Au nanorod nearby results in the appearance of apparent Fano resonance in the extinction spectra. The Fano resonance response on the structural dimension modifications in the proposed nanorod dimers have been estimated and determined. The Al-Au heterogeneous nanorod dimer shows a high sensitivity to the surrounding environment with a local surface plasmon resonance figure of merit of 7.6, which enables its promising applications in plasmonic sensing and detection.

  4. CeO2-modified Au@SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Wang, Tuo; Yuan, Xiang; Li, Shuirong; Zeng, Liang; Gong, Jinlong

    2015-04-01

    Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts exhibited higher catalytic activity compared with Au@SBA-15 and Au/CeO2 catalysts under identical conditions along with the high selectivity towards benzaldehyde (>99%). The turnover frequency of benzyl alcohol over the Au-100CeO2@SBA-15 catalyst is about nine-fold and four-fold higher than those of Au@SBA-15 and Au/CeO2 catalysts, respectively. The supported catalysts were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive spectrometry, and X-ray photoelectron spectroscopy. It was found that the Au and small CeO2 nanoparticles (~5 nm) were homogeneously mixed in the channels of SBA-15, which led to an increase in the interfacial area between Au and CeO2 and consequently a better catalytic performance of Au-CeO2@SBA-15 catalysts for the selective oxidation of benzyl alcohol to benzaldehyde compared with that of Au/CeO2. The prevention of agglomeration and leaching of Au nanoparticles by restricting them inside the mesopores of SBA-15 was conducive to the stable existence of large quantities of Au-CeO2 interface, which leads to high stability of the Au-CeO2@SBA-15 catalyst.Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts

  5. Large current difference in Au-coated vertical silicon nanowire electrode array with functionalization of peptides

    PubMed Central

    2013-01-01

    Au-coated vertical silicon nanowire electrode array (VSNEA) was fabricated using a combination of bottom-up and top-down approaches by chemical vapor deposition and complementary metal-oxide-semiconductor process for biomolecule sensing. To verify the feasibility for the detection of biomolecules, Au-coated VSNEA was functionalized using peptides having a fluorescent probe. Cyclic voltammograms of the peptide-functionalized Au-coated VSNEA show a steady-state electrochemical current behavior. Because of the critically small dimension and vertically aligned nature of VSNEA, the current density of Au-coated VSNEA was dramatically higher than that of Au film electrodes. Au-coated VSNEA further showed a large current difference with and without peptides that was nine times more than that of Au film electrodes. These results indicate that Au-coated VSENA is highly effective device to detect peptides compared to conventional thin-film electrodes. Au-coated VSNEA can also be used as a divergent biosensor platform in many applications. PMID:24279451

  6. Large current difference in Au-coated vertical silicon nanowire electrode array with functionalization of peptides

    NASA Astrophysics Data System (ADS)

    Kim, Ilsoo; Kim, So-Eun; Han, Sanghun; Kim, Hyungsuk; Lee, Jaehyung; Jeong, Du-Won; Kim, Ju-Jin; Lim, Yong-beom; Choi, Heon-Jin

    2013-11-01

    Au-coated vertical silicon nanowire electrode array (VSNEA) was fabricated using a combination of bottom-up and top-down approaches by chemical vapor deposition and complementary metal-oxide-semiconductor process for biomolecule sensing. To verify the feasibility for the detection of biomolecules, Au-coated VSNEA was functionalized using peptides having a fluorescent probe. Cyclic voltammograms of the peptide-functionalized Au-coated VSNEA show a steady-state electrochemical current behavior. Because of the critically small dimension and vertically aligned nature of VSNEA, the current density of Au-coated VSNEA was dramatically higher than that of Au film electrodes. Au-coated VSNEA further showed a large current difference with and without peptides that was nine times more than that of Au film electrodes. These results indicate that Au-coated VSENA is highly effective device to detect peptides compared to conventional thin-film electrodes. Au-coated VSNEA can also be used as a divergent biosensor platform in many applications.

  7. Synthesis of Au-SiO2 Composite Nanospheres and Their Catalytic Activity.

    PubMed

    Dexuan, Wang; Guian, Li; Qingyan, Han; Ziqiang, Wang; Liping, Pan; Zhonayue, Zhang; Hairong, Zhenq

    2016-04-01

    We report a simple and environmentally friendly approach to the synthesis of Au-SiC2 composite nanospheres. Our method presents a route for the decoration of preformed amine functionalized SiO2 nanospheres by in situ formation of Au nanoparticles at three different concentrations of Au precursor (HAuCl4). Herein, the silane coupling agent (KH-550) is used as an intermediary to connect the Au nanoparticles to the surfaces of the SiO2 nanospheres, which helps avoid the aggregation of Au nanoparticles. The crystal structure, chemical elements, morphology and catalytic properties of the Au-SiO2 composite nanospheres were analyzed by transmission electron microscopy (TEM), X-Ray powder diffraction (XRD), UV-vis-spectrophotometer (UV-vis) and X-ray photoelectron spectroscopy (XPS). The analytical results demonstrate that the Au nanoparticles (4-9 nm) were homogeneously distributed on the surface of the SiO2 nanospheres, which had a good FCC crystal structure. Moreover, the Au-SiO2 composite nanospheres exhibited good catalytic properties, measured by their ability to reduce organic dyes. The Au-SiO2 composite nanospheres are promising candidates for applications in catalysis and wastewater treatment. PMID:27451717

  8. Size-tunable Au nanoparticles on MoS2(0001)

    NASA Astrophysics Data System (ADS)

    Chu, Xinjun; Yao, Guanggeng; Thye Shen Wee, Andrew; Wang, Xue-Sen

    2012-09-01

    Ultra-fine Au nanoparticles (NPs) show great application potential in catalysis. Size-tunable Au NPs have been fabricated on MoS2 covered with monolayer 3,4,5,10-perylene tetracarboxylic dianhydride (PTCDA), and the morphological evolution as a function of Au deposition amount was investigated using scanning tunneling microscopy (STM). The PTCDA molecules act as a surfactant to stabilize ultra-fine Au NPs. Molecular scale STM images show that on MoS2 the Au NPs with PTCDA molecules on top can be formed with height and lateral size down to 1.3 nm and 3.5 nm, respectively. By controlling the deposition amount and annealing temperature, the size of Au NPs can be tuned. After annealing at 270 °C to remove PTCDA, Au NPs with a linear size ≤5 nm can be obtained on MoS2(0001), facilitating the characterization of their intrinsic physical and chemical properties using various analytical techniques. In addition, photoemission spectroscopy data reveal charge transfer from Au NPs to PTCDA, indicating that the NPs possess more reactive chemical properties than bulk Au.

  9. Size-tunable Au nanoparticles on MoS2(0001).

    PubMed

    Chu, Xinjun; Yao, Guanggeng; Wee, Andrew Thye Shen; Wang, Xue-Sen

    2012-09-21

    Ultra-fine Au nanoparticles (NPs) show great application potential in catalysis. Size-tunable Au NPs have been fabricated on MoS(2) covered with monolayer 3,4,5,10-perylene tetracarboxylic dianhydride (PTCDA), and the morphological evolution as a function of Au deposition amount was investigated using scanning tunneling microscopy (STM). The PTCDA molecules act as a surfactant to stabilize ultra-fine Au NPs. Molecular scale STM images show that on MoS(2) the Au NPs with PTCDA molecules on top can be formed with height and lateral size down to 1.3 nm and 3.5 nm, respectively. By controlling the deposition amount and annealing temperature, the size of Au NPs can be tuned. After annealing at 270 °C to remove PTCDA, Au NPs with a linear size ≤5 nm can be obtained on MoS(2)(0001), facilitating the characterization of their intrinsic physical and chemical properties using various analytical techniques. In addition, photoemission spectroscopy data reveal charge transfer from Au NPs to PTCDA, indicating that the NPs possess more reactive chemical properties than bulk Au. PMID:22922593

  10. Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties.

    PubMed

    Haldar, Krishna Kanta; Sinha, Godhuli; Lahtinen, Jouko; Patra, Amitava

    2012-11-01

    In this report, we present a self-driven chemical process to design exclusive Au/CdSe pentapod heterostructures with Au core and CdSe arms. We have analyzed these heterostructures using high-resolution transmission electron microscope (HRTEM), high angle annular dark field-scanning transmission electron microscopic (HAADF-STEM), X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) studies. Microscopic studies suggest that pentapod arms of CdSe are nucleated on the (111) facets of Au and linearly grown only along the [001] direction. From the XPS study, the shifting of peak positions in the higher binding energy region for Au/CdSe heterostructures compared to Au nanoparticles has been found which indicates the charge transfer from CdSe to Au in heterostructures. The steady state and time resolved spectroscopic studies unambiguously confirm the electron transfer from photoexcited CdSe to Au, and the rate of electron transfer is found to be 3.58×10⁸ s⁻¹. It is interesting to note that 87.2% of R6G dye is degraded by the Au/CdSe heterostructures after 150 min UV irradiation, and the apparent rate constant for Au/CdSe heterostructures is found to be 0.013 min⁻¹. This new class of metal-semiconductor heterostructures opens up new possibilities in photocatalytic, solar energy conversion, photovoltaic, and other new emerging applications. PMID:23113704

  11. Qualitative interviewing as measurement.

    PubMed

    Paley, John

    2010-04-01

    The attribution of beliefs and other propositional attitudes is best understood as a form of measurement, however counter-intuitive this may seem. Measurement theory does not require that the thing measured should be a magnitude, or that the calibration of the measuring instrument should be numerical. It only requires a homomorphism between the represented domain and the representing domain. On this basis, maps measure parts of the world, usually geographical locations, and 'belief' statements measure other parts of the world, namely people's aptitudes. Having outlined an argument for this view, I deal with an obvious objection to it: that self-attribution of belief cannot be an exercise in measurement, because we are all aware, from introspection, that our beliefs have an intrinsically semantic form. Subsequently, I turn to the philosophical and methodological ramifications of the measurement theoretic view. I argue, first, that it undermines at least one version of constructivism and, second, that it provides an effective alternative to the residually Cartesian philosophy that underpins much qualitative research. Like other anti-Cartesian strategies, belief-attribution-as-measurement implies that the objective world is far more knowable than the subjective one, and that reality is ontologically prior to meaning. I regard this result as both plausible and welcome. PMID:20415963

  12. Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (nTP).

    PubMed

    Niskala, Jeremy R; Rice, William C; Bruce, Robert C; Merkel, Timothy J; Tsui, Frank; You, Wei

    2012-07-25

    Construction of permanent metal-molecule-metal (MMM) junctions, though technically challenging, is desirable for both fundamental investigations and applications of molecule-based electronics. In this study, we employed the nanotransfer printing (nTP) technique using perfluoropolyether (PFPE) stamps to print Au thin films onto self-assembled monolayers (SAMs) of alkanedithiol formed on Au thin films. We show that the resulting MMM junctions form permanent and symmetrical tunnel junctions, without the need for an additional protection layer between the top metal electrode and the molecular layer. This type of junction makes it possible for direct investigations into the electrical properties of the molecules and the metal-molecule interfaces. Dependence of transport properties on the length of the alkane molecules and the area of the printed Au electrodes has been examined systematically. From the analysis of the current-voltage (I-V) curves using the Simmons model, the height of tunneling barrier associated with the molecule (alkane) has been determined to be 3.5 ± 0.2 eV, while the analysis yielded an upper bound of 2.4 eV for the counterpart at the interface (thiol). The former is consistent with the theoretical value of ~3.5-5.0 eV. The measured I-V curves show scaling with respect to the printed Au electrode area with lateral dimensions ranging from 80 nm to 7 μm. These results demonstrate that PFPE-assisted nTP is a promising technique for producing potentially scalable and permanent MMM junctions. They also demonstrate that MMM structures (produced by the unique PFPE-assisted nTP) constitute a reliable test bed for exploring molecule-based electronics. PMID:22720785

  13. Biological synthesis of Au nanoparticles using liquefied mash of cassava starch and their functionalization for enhanced hydrolysis of xylan by recombinant xylanase.

    PubMed

    Zeng, Sumei; Du, Liangwei; Huang, Meiying; Feng, Jia-Xun

    2016-05-01

    Au nanoparticles (AuNPs) have shown the potential for a variety of applications due to their unique physical and chemical properties. In this study, a facile and affordable method for the synthesis of AuNPs via the liquefied mash of cassava starch has been described and the functionalized AuNPs by L-cysteine improved activity of recombinant xylanase was demonstrated. UV-Vis absorption spectroscopy, transmission electron microscopy, and zeta potential measurements were performed to characterize the AuNPs and monitor their synthesis. The presence of Au was confirmed by energy-dispersive X-ray spectroscopy (EDX) and the X-ray diffraction patterns showed that Au nanocrystals were face-centered cubic. The C=O stretching vibration in the Fourier transform infrared spectrum of AuNPs suggested that the hemiacetal C-OH of sugar molecules performed the reduction of Au³⁺ to Au⁰. The presence of C and O in the EDX spectrum and the negative zeta potential of AuNPs suggested that the biomolecules present in liquefied cassava mash were responsible for the stabilization of AuNPs. The surface of AuNPs was easily functionalized by L-cysteine, which improved the stability of AuNPs. Moreover, cysteine-functionalized AuNPs could significantly improve recombinant xylanase efficiency and stability. PMID:26864877

  14. Evolution of the multiscale statistical properties of corotating streams from 1 to 95 AU

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Wang, C.; Richardson, J. D.; Ness, N. F.

    2003-07-01

    This paper discusses the multiscale structure of the large-scale speed fluctuations between 1 and 95 AU during the declining phase of the solar cycle, when corotating streams are dominant structures close to the Sun. A deterministic, multifluid, one-dimensional MHD model with the WIND data at 1 AU during 1995 as input was used to compute the time series of daily averages of speed, V(ti), with a length on the order of 1 year at R = 5, 10, … 95 AU, from which we calculated various statistical functions describing the solar wind speed. The probability distribution functions (PDFs) of the running speed differences dVn(ti) were calculated at scales τ from 1 to 64 days. The theoretical PDFs at 50 AU have the same qualitative forms as those observed by Voyager 2 (V2) between 46 and 49 AU. The theoretical PDF at a scale of 1 day at 15 AU agrees with the corresponding PDF observed by V2 between 13 and 16 AU. With increasing distance from the Sun, the width of the predicted PDF with τ = 1 decreases and the tail becomes more prominent. The standard deviation of dVn(ti) at various R computed from the model, SD(τ, R), decreases nearly exponentially with increasing R, and it is consistent with the observations of SD(τ, R) made by V2 near 15 and 50 AU. The skewness at a scale of 1 day increases almost linearly with R beyond ≈35 AU, but it shows structure between 5 and 35 AU; it is consistent with the observations of V2 near 15 and 50 AU. The theoretical power spectral density of the speed fluctuations, PSD(f, R), agrees with the observations of V2 near 15 and 50 AU. For frequencies f > 8.5 × 10-7 Hz, PSD(f, R) ∝ f-s(R). The observed and predicted s are ≤-2 beyond 40 AU, consistent with the jump-ramp structure of V(t) in the distant heliosphere. We predict that the PDF for τ = 1 which will be observed by V2 at 70 AU in 2003 will have a core whose width is only ≈5 km/s and a tail extending up to 60 km/s that represents the major jumps in the speed profile. The

  15. Using Numbers in Qualitative Research

    ERIC Educational Resources Information Center

    Maxwell, Joseph A.

    2010-01-01

    The use of numerical/quantitative data in qualitative research studies and reports has been controversial. Prominent qualitative researchers such as Howard Becker and Martyn Hammersley have supported the inclusion of what Becker called "quasi-statistics": simple counts of things to make statements such as "some," "usually," and "most" more…

  16. Qualitative Science in Experimental Time

    ERIC Educational Resources Information Center

    Eisenhart, Margaret

    2006-01-01

    This article addresses the "state of qualitative inquiry" in the sense of how that inquiry is being positioned in the current construction of a US national policy agenda for "scientifically based" education research. In the author's view, qualitative inquiry is being drowned out in the national agenda despite its ability to provide the kinds of…

  17. Final Technical Report: First Principles Investigations for the Ensemble Effects of PdAu and PtAu Bimetallic Nanocatalysts

    SciTech Connect

    Ruqian Wu

    2012-05-18

    Bimetallic surfaces with tunable chemical properties have attracted broad attention in recent years due to their ample potential for heterogeneous catalysis applications. The local chemical properties of constituents are strongly altered from their parent metals by 'ligand effect', a term encompassing the influences of charge transfer, orbital rehybridization and lattice strain. In comparison to the aforementioned, the 'ensemble effect' associated with particular arrangements of the active constituents have received much less attention, despite their notable importance towards the determination of reactivity and selectivity of bimetallic catalysts. We performed theoretical studies for understanding the ensemble effects on bimetallic catalysis: (i) simulations for the formation of different ensembles on PdAu and PtAu nanoclusters; (ii) studies of the size, shape, and substrate dependence of their electronic properties; and (iii) simulations for model reactions such as CO oxidation, methanol, ethylene and water dehydrogenation on PdAu and PtAu nanoclusters. In close collaboration with leading experimental groups, our theoretical research elucidated the fundamentals of Au based bimetallic nanocatalysts.

  18. Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites

    PubMed Central

    Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

    2014-01-01

    In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10−5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10−6 to 5×10−3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464

  19. Application of multivariate optimization procedures for preconcentration and determination of Au(III) and Pt(IV) in aqueous samples with graphene oxide by X-ray fluorescence spectrometry.

    PubMed

    Rofouei, Mohammad K; Amiri, Nayereh; Ghasemi, Jahan B

    2015-03-01

    A simple method was developed for the determination of Au(III) and Pt(IV) contents in aqueous samples after preconcentration. The method was based on the sorption of analytes as 2-amino-5-mercapto-1,3,4-thiadiazol complexes onto graphene oxide and subsequent direct determination by wavelength dispersive X-ray fluorescence (WDXRF). The optimization step was carried out using two-level full-factorial and Box-Behnken designs. The effects of four variables (pH, ligand mass, sonication time, and temperature) were studied by a full-factorial design to find significant variables and their interactions. Results of two-level full-factorial design for Au extraction showed that the factors: pH, ligand mass, temperature of sonication beside the interaction of pH-ligand mass, and interaction sonication temperature-ligand mass were significant. For Pt, the results revealed pH, ligand mass, sonication time, and interaction of pH-ligand mass were statistically significant. Box-Behnken matrix design was applied to determine the optimum level of significant parameters for extraction of two analytes simultaneously. The optimum values of the factors were pH 2.5, 0.9 mL ligand solution, 56 min sonication time and 15 °C temperature. The limits of detection (LOD) were found to be 8 ng mL(-1) for Au and 6 ng mL(-1) for Pt. The adsorption capacity for Au and Pt were 115 and 169 μg mg(-1), respectively. The relative standard deviation (RSD) was lower than 1.4 % (n = 5), and the extraction percentage was more than 95 % for both elements. The method was validated by determination of Au and Pt in spiked water samples and certified reference standard materials. PMID:25720970

  20. Near-Infrared Electrogenerated Chemiluminescence from Aqueous Soluble Lipoic Acid Au Nanoclusters.

    PubMed

    Wang, Tanyu; Wang, Dengchao; Padelford, Jonathan W; Jiang, Jie; Wang, Gangli

    2016-05-25

    Strong electrogenerated chemiluminescence (ECL) is detected from dithiolate Au nanoclusters (AuNCs) in aqueous solution under ambient conditions. A novel mechanism to drastically enhance the ECL is established by covalent attachment of coreactants N,N-diethylethylenediamine (DEDA) onto lipoic acid stabilized Au (Au-LA) clusters with matching redox activities. The materials design reduces the complication of mass transport between the reactants during the lifetime of radical intermediates involved in conventional ECL generation pathway. The intracluster reactions are highly advantageous for applications by eliminating additional and high excess coreactants otherwise needed. The enhanced ECL efficiency also benefits uniquely from the multiple energy states per Au cluster and multiple DEDA ligands in the monolayer. Potential step and sweeping experiments reveal an onset potential of 0.78 V for oxidative-reduction ECL generation. Multifolds higher efficiency is found for the Au clusters alone in reference to the standard Rubpy with high excess TPrA. The ECL in near-IR region (beyond 700 nm) is highly advantageous with drastically reduced interference signals over visible ones. The features of ECL intensity responsive to electrode potential and solution pH under ambient conditions make Au-LA-DEDA clusters promising ECL reagents for broad applications. The strategy to attach coreactants on Au clusters is generalizable for other nanomaterials. PMID:27172252

  1. Chemically linked AuNP-alkane network for enhanced photoemission and field emission.

    PubMed

    Xie, Xian Ning; Gao, Xingyu; Qi, Dongchen; Xie, Yilin; Shen, Lei; Yang, Shuo-Wang; Sow, Chorng Haur; Wee, Andrew Thye Shen

    2009-09-22

    Size and ligand effects are the basis for the novel properties and applications of metallic nanoparticles (NPs) in nanoelectronics, optoelectronics, and biotechnology. This work reports the first observation of enhanced photoelectron emission from metallic Au NPs ligated by alkanethiols. The enhancement is based on a conceptually new mechanism: the AuNP provides electrons while the alkane ligand emits electrons due to its low or negative electron affinity. Moreover, the AuNP-ligand chemical bonding is found to significantly facilitate the transmission of photoexcited electrons from the AuNP to the ligand emitter. Consequently the smooth NP film, which is a typical low-aspect-ratio two-dimensional structure, exhibits strong and stable field emission behavior under photoillumination conditions. The photoenhanced field emission is related to the interband and surface plasmon transitions in AuNPs, and a photoenhancement factor of up to approximately 300 is observed for the AuNP-based field emission. This is highly remarkable because field emission is often based on one-dimensional, high-aspect-ratio nanostructures (e.g., nanotubes and nanowires) with geometrical field enhancement effect. The chemical linkage of electron-supplying AuNP and electron-emitting alkane ligand represents a fundamentally new mechanism for efficient photoexcitation and emission. Being low-temperature/solution processable, and inkjet printable, AuNPs may be a flexible material system for optoelectronic applications such as photodetection and photoenhanced field emission. PMID:19769404

  2. Evolution of Self-Assembled Au NPs by Controlling Annealing Temperature and Dwelling Time on Sapphire (0001).

    PubMed

    Lee, Jihoon; Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar

    2015-12-01

    Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C. PMID:26704710

  3. Evolution of Self-Assembled Au NPs by Controlling Annealing Temperature and Dwelling Time on Sapphire (0001)

    NASA Astrophysics Data System (ADS)

    Lee, Jihoon; Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar

    2015-12-01

    Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C.

  4. Universality in fragment inclusive yields from Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Insolia, A.; Tuvè, C.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Elliott, J. B.; Gilkes, M.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Justice, M.; Keane, D.; Kintner, J.; Lisa, M.; Matis, H. S.; McMahan, M.; McParland, C.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romero, J. L.; Russo, G. V.; Scharenberg, R.; Scott, A.; Shao, Y.; Srivastava, B. K.; Symons, T. J. M.; Tincknell, M. L.; Wang, S.; Warren, P. G.; Wieman, H. H.; Wolf, K. L.

    2001-11-01

    The inclusive light fragment (Z⩽7) yield data in Au+Au reactions, measured by the EOS Collaboration at the LBNL Bevalac, are presented and discussed. For peripheral collisions the measured charge distributions develop progressively according to a power law which can be fitted by a single τ exponent independently of the bombarding energy in the range 250-1200 A MeV. In addition to this universal feature, we observe that the location of the maximum in the individual yields of different charged fragments shift towards lower multiplicity as the fragment charge increases from Z=3 to Z=7. This trend is common to all six measured beam energies. Moments of charge distributions and correlations among different moments are reported. Finally, the THe,DT thermometer has been constructed for central and peripheral collisions using the double yield ratios of He and D, T projectile fragments. The measured nuclear temperatures are in agreement with experimental findings in other fragmentation reactions.

  5. Global polarization measurement in Au+Au collisions

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev,V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2007-08-02

    The system created in non-central relativisticnucleus-nucleus collisions possesses large orbital angular momentum. Dueto spin-orbit coupling, particles produced in such a system could becomeglobally polarized along the direction of the system angular momentum. Wepresent the results of Lambda and anti-Lambda hyperon global polarizationmeasurements in Au+Au collisions at sqrt sNN=62.4 GeV and 200 GeVperformed with the STAR detector at RHIC. The observed globalpolarization of Lambda and anti-Lambda hyperons in the STAR acceptance isconsistent with zero within the precision of the measurements. Theobtained upper limit, lbar P Lambda, anti-Lambda rbar<= 0.02, iscompared to the theoretical values discussed recently in theliterature.

  6. Nuclear Modification of Jet Fragmentation in Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Rowan, Zachary; Phenix Collaboration

    2015-10-01

    The characterization of energy in the quark gluon plasma is facilitated by measurements of modifications to the observed jet fragmentation. A favorable channel of study relies on direct photons created in the initial parton interactions of heavy ion collisions. Such a photon traverses the created medium unscathed and grants us a proxy for the transverse momentum of an away side jet. PHENIX Au+Au data recorded at √{sNN} = 200 GeV during RHIC run 14 benefit from the background rejection capability of the silicon vertex detector, enabling the extraction of a higher purity hadron signal. This advantage, combined with a larger integrated luminosity, allows previous PHENIX measurements of fragmentation functions to be extended to greater jet energies. In this talk, the status of the analysis of direct photon hadron correlations with the new data set will be discussed.

  7. Global polarization measurement in Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kurnadi, P.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Toledo, A. Szanto De; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Yurevich, V. I.; Zawisza, M.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-08-01

    The system created in noncentral relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Because of spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Λ and Λ¯ hyperon global polarization measurements in Au+Au collisions at sNN=62.4 and 200 GeV performed with the STAR detector at the BNL Relativistic Heavy Ion Collider (RHIC). The observed global polarization of Λ and Λ¯ hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |PΛ,Λ¯|⩽0.02, is compared with the theoretical values discussed recently in the literature.

  8. Rational design and synthesis of excavated trioctahedral Au nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Qiaoli; Jia, Yanyan; Shen, Wei; Xie, Shuifen; Yang, Yanan; Cao, Zhenming; Xie, Zhaoxiong; Zheng, Lansun

    2015-06-01

    Excavated polyhedral nanostructures, possessing the features of high surface area and well-defined surface structure with a specific crystal facet and avoidance of aggregation, could be one of the best choices for the purpose of reducing consumption and improving performance of noble metals in many application fields. However, the formation of the excavated structures is thermodynamically unfavourable and its rational synthesis is far beyond our knowledge. In this work, taking overgrowth of Pd onto trioctahedral Au nanocrystals as a model, we present a deep insight study for synthesizing an excavated structure relying on the protection role of surfactants under suitable crystal growth kinetics. Based on the abovementioned understanding, we designed a simple and effective strategy to synthesize Au nanocrystals with excavated trioctahedral structure in one step. Due to the novel feature of the excavated structure and exposed high energy {110} facets, excavated trioctahedral Au NCs exhibited optical extinction at the near-infrared region and showed high catalytic activity towards the reduction of p-nitrophenol. Moreover, the synthetic strategy can be extended to the synthesis of excavated Au-Pd alloys.Excavated polyhedral nanostructures, possessing the features of high surface area and well-defined surface structure with a specific crystal facet and avoidance of aggregation, could be one of the best choices for the purpose of reducing consumption and improving performance of noble metals in many application fields. However, the formation of the excavated structures is thermodynamically unfavourable and its rational synthesis is far beyond our knowledge. In this work, taking overgrowth of Pd onto trioctahedral Au nanocrystals as a model, we present a deep insight study for synthesizing an excavated structure relying on the protection role of surfactants under suitable crystal growth kinetics. Based on the abovementioned understanding, we designed a simple and effective

  9. Managing occurrence branching in qualitative simulation

    SciTech Connect

    Tokuda, L.

    1996-12-31

    Qualitative simulators can produce common sense abstractions of complex behaviors given only partial knowledge about a system. One of the problems which limits the applicability of qualitative simulators is the intractable branching of successor states encountered with model of even modest size. Some branches may be unavoidable due to the complex nature of a system. Other branches may be accidental results of the model chosen. A common source of intractability is occurrence branching. Occurrence branching occurs when the state transitions of two variables are unordered with respect to each other. This paper extends the QSIM model to distinguish between interesting occurrence branching and uninteresting occurrence branching. A representation, algorithm, and simulator for efficiently handling uninteresting branching is presented.

  10. Positivism and qualitative nursing research.

    PubMed

    Paley, J

    2001-01-01

    Despite the hostility to positivism shown by qualitative methodologists in nursing, as in other disciplines, the epistemological and ontological instincts of qualitative researchers seem to coincide with those of the positivists, especially Bayesian positivists. This article suggests that positivists and qualitative researchers alike are pro-observation, proinduction, pro-plausibility and pro-subjectivity. They are also anti-cause, anti-realist, anti-explanation, anti-correspondence, anti-truth. In only one respect is there a significant difference between positivist and qualitative methodologists: most positivists have believed that, methodologically, the natural sciences and the social sciences are the same; most qualitative researchers are adamant that they are not. However, if positivism fails as a philosophy of the natural sciences (which it probably does), it might well succeed as a philosophy of the social sciences, just because there is a methodological watershed between the two. Reflex antagonism to positivism might therefore be a major obstacle to understanding the real reasons why qualitative research and the natural sciences are methodologically divergent; and less hostility on the part of qualitative nurse researchers might bring certain advantages in its wake. PMID:11885869

  11. d + Au hadron correlation measurements at PHENIX

    SciTech Connect

    Anne M. Sickles

    2014-05-13

    In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v2 at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v2 in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.

  12. Understanding Qualitative Research: A Strategic Approach to Qualitative Methodology.

    ERIC Educational Resources Information Center

    Husband, Robert; Foster, William

    1987-01-01

    Discusses the basic character of qualitative, humanistic research, identifying its philosophical and theoretical commitments. Provides a taxonomy of investigative strategies employed, including naturalistic inquiry, contextualization, maximized comparisons, sensitizing concepts, and analytic induction. Classifies methods employed as participant…

  13. Writing qualitative article: It is time to quality improvement

    PubMed Central

    Sanjari, Mahnaz; Jafaraghayee, Fatemeh; Aalaa, Maryam; Mehrdad, Neda

    2016-01-01

    Précis: This debate article highlights some questions from critics of qualitative research. Planning for proper design, philosophical background, researcher as a research instrument in the study, trustworthiness and application of findings are main debates in this field. One of the issues that have been received little attention is report of qualitative inquiry. A qualified report can answer the critics. This requires that the qualitative articles cover all points about the selected method and rigourness of study conduct to convince policy makers, managers and all readers in different level. PMID:27390715

  14. A comparison of risk assessment techniques from qualitative to quantitative

    SciTech Connect

    Altenbach, T.J.

    1995-02-13

    Risk assessment techniques vary from purely qualitative approaches, through a regime of semi-qualitative to the more traditional quantitative. Constraints such as time, money, manpower, skills, management perceptions, risk result communication to the public, and political pressures all affect the manner in which risk assessments are carried out. This paper surveys some risk matrix techniques, examining the uses and applicability for each. Limitations and problems for each technique are presented and compared to the others. Risk matrix approaches vary from purely qualitative axis descriptions of accident frequency vs consequences, to fully quantitative axis definitions using multi-attribute utility theory to equate different types of risk from the same operation.

  15. Trajectory constraints in qualitative simulation

    SciTech Connect

    Brajnik, G.; Clancy, D.J.

    1996-12-31

    We present a method for specifying temporal constraints on trajectories of dynamical systems and enforcing them during qualitative simulation. This capability can be used to focus a simulation, simulate non-autonomous and piecewise-continuous systems, reason about boundary condition problems and incorporate observations into the simulation. The method has been implemented in TeQSIM, a qualitative simulator that combines the expressive power of qualitative differential equations with temporal logic. It interleaves temporal logic model checking with the simulation to constrain and refine the resulting predicted behaviors and to inject discontinuous changes into the simulation.

  16. Work function tuning at Au-HfO2 interfaces using organophosphonate monolayers

    NASA Astrophysics Data System (ADS)

    Kwan, Matthew; Cardinal, Thomas; Mutin, P. Hubert; Ramanath, Ganpati

    2016-05-01

    We show that introducing organophosphonate nanomolecular monolayers (NMLs) at Au-HfO2 interfaces shift the effective work function by 0.2 eV ≥ ΔΦeff ≥ -0.6 eV, due to NML body and bonding dipoles. Electron spectroscopy of NML-Au, NML-HfO2, and Au-NML-HfO2 structures indicate that the Au-NML bond strength is the major factor. Au-NML covalent bonding yields ΔΦeff ˜ - 0.2 eV, while weak bonding yields ΔΦeff ˜ 0.6 eV. In contrast, NMLs on HfO2 decrease Φeff by ˜0.4 eV due to competing contributions from NML-HfO2 bonding strength and NML orientation. These findings are relevant for nanomolecularly tailoring the electronic properties of metal-ceramic interfaces for applications.

  17. The development of a quantitative and qualitative method based on UHPLC-QTOF MS/MS for evaluation paclitaxel-tetrandrine interaction and its application to a pharmacokinetic study.

    PubMed

    Li, Dan; Cao, Zhonglian; Liao, Xueling; Yang, Ping; Liu, Li

    2016-11-01

    Paclitaxel is a broad-spectrum anti-cancer drug by targeting microtubulin. However, multidrug resistant (MDR) makes its clinical application more difficult and results in failure of chemotherapy. Tetrandrine as a potential multidrug resistant modulator could be combined with other anti-cancer drugs. In this study, ultra-performance liquid chromatography (UHPLC) combined with quadrupole time-of-flight mass spectrometry (QTOF) was applied to simultaneously qualitative and quantitative analysis of paclitaxel for the pharmacokinetic studies while combined with tetrandrine. This method was developed based on non-target screening mode IDA (Information Dependent Acquisition). As a result, the validated range was 0.25-64ng/ml (30µl plasma) for paclitaxel. Totally 33 metabolites of paclitaxel and tetrandine were identified in vivo and in vitro. The main metabolites of PTX were dose-dependent decreased with different amounts of tetrandine co-administration no matter in vivo and in vitro, the exposure of PTX increased in pharmacokinetic study. The verified method is sensitive accurate and effective for the simultaneous determination of paclitaxel and its metabolites in blood, urine and live microsome incubation samples and it was successfully applied to evaluate the pharmacokinetics and drug-drug interaction between paclitaxel and tetrandine. Furthermore, a biosensor technology, surface plasmon resonance (SPR) analysis was applied to preliminary evaluate the competitive protein binding of multiple components. The SPR analysis indicated that the affinity between 6-hydroxy-paclitaxel and micotubulin is similar to that between paclitaxel and micotubulin, and tetrandrine also does not form a competitive combination with paclitaxel. For human, 6-hydroxy-paclitaxel is the one of main metabolites of paclitaxel, so the results suggested that tetrandine has an influence on the metabolite of paclitaxel, but tetrandine and the main metabolites of PTX probably do not affect PTX

  18. Cometary Activity Beyond 4 AU

    NASA Astrophysics Data System (ADS)

    Womack, M.

    2000-10-01

    Recent observations of the distantly active comets 29 P/Schwassmann-Wachmann 1, 2060 Chiron, and C/1995 O1 (Hale-Bopp) are consistent with models that predict that the activity beyond 4 AU is dominated by outgassing of CO and CO2 molecules trapped in an amorphous water ice surface undergoing crystallization. The nominal CO production rates in Hale-Bopp, SW 1 and Chiron over the range of r = 4 to 9 AU are consistent with Q(CO) = (2.9+/-0.5)x1030r{(-2.5 +/- 0.1)}, with sporadic outbursts superimposed. The data indicate that the gas production rates in distant comets are primarily determined by the composition, and not the size, of the nucleus. The dust production rates, however, are very different among these comets and are not well-correlated with heliocentric distance. Thus, the gas and dust mixtures may not be uniform amongst these comets, nor in an individual comet. Development and sublimation of an icy grain coma at ~ 5 AU appears to be a common feature in distantly active comets. Sublimation of such icy grains is probably the main source of emission of OH, CH3OH, HCN, and H2S in comets beyond 4 AU. Studying the energetics of these phenomena provides an excellent opportunity to learn more about the composition and physical behavior of comet nuclei, as well as other icy bodies in the outer solar system, such as moons and Kuiper Belt Objects. This work was funded by the NSF CAREER Program.

  19. Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Liu, Zeke; Zhang, Han; Cheng, Si; Fan, Li-Juan; Ma, Wanli

    2014-10-01

    Au nanorods have been extensively explored in various applications as the template for heterogeneous metallic nanostructures. However, Au bipyramids (AuBPs) have been paid much less attention although they possess an intriguing crystalline structure and extremely superior plasmonic properties which are absent in AuNRs. The state-of-the-art synthesis cannot produce pure AuBPs, which has become a major barrier to their various applications like catalysis since purity is often critical for achieving the desired performance. Herein, we have shown a facile approach to obtain large-scale high-purity AuBPs. The purity of AuBPs can be improved from 30 to 50% for the as-synthesized AuBP solution to over 95% for the purified solution. Site-specific growth of AgPd nanodendrites on multiply twinned AuBPs from core-shell to tipped nanostructures was achieved for the first time by coupling a galvanic replacement with a co-reduction process, which show remarkable catalytic activity in the reduction reaction of 4-nitrophenol (4-NP) by NaBH4. The use of ascorbic acid (AA) as a reductant in the co-reduction process and the intriguing crystalline structure of AuBPs play a critical role in forming these unique structures. We believe that this work would provide a general strategy to prepare high-purity AuBP based trimetallic nanostructures, which offers the opportunity for AuBPs to be widely used in catalysis or other plasmonic-effect related applications in the near future.Au nanorods have been extensively explored in various applications as the template for heterogeneous metallic nanostructures. However, Au bipyramids (AuBPs) have been paid much less attention although they possess an intriguing crystalline structure and extremely superior plasmonic properties which are absent in AuNRs. The state-of-the-art synthesis cannot produce pure AuBPs, which has become a major barrier to their various applications like catalysis since purity is often critical for achieving the desired

  20. Qualitative perspectives in translational research.

    PubMed

    Tripp-Reimer, Toni; Doebbeling, Bradley

    2004-01-01

    The rapid uptake of qualitative approaches in translational research can be best understood in the context of recent innovations in health services research, as well as an overarching concern with improving the quality of health care. Qualitative approaches highlight the human dimension in health care by foregrounding the perceptions, experiences, and behaviors of both consumers and providers of care. As such, these methods are particularly useful for addressing the complex issues related to improving health care quality and implementing system change. This overview traces a brief history of the factors contributing to the recent and rapid growth of qualitative methods in health research in general and translational research in particular; describes the varieties of qualitative approaches employed in this research; and illustrates the utility of these approaches for variable identification, instrument development, description/explanation of patient/provider perceptions and behaviors, individual/organizational change, and theory refinement. PMID:17129338

  1. Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures

    PubMed Central

    Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco

    2016-01-01

    Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood. PMID:27514638

  2. A study of Au adsorption on yttrium disilicide nanowires on Si (001) substrate from first principles

    NASA Astrophysics Data System (ADS)

    Ouyang, Wenjie; Shinde, Aniketa; Cao, Juexian; Wu, Ruqian

    2010-03-01

    Core-shell nanoclusters with Au coating layer on uniformly dispersed rear-earth disilicide nanowires are very promising for various applications such as nanocatalysis. Using the first principles approach, we studied the structure and electronic properties of a single Au atatom on yttrium disilicide nanowires on the Si(100) substrate. A series of possible adsorption sites were explored and we found that the ``hollow'' site on the YSi2 nanowire is the most preferential one, where the Au adatom binds to two Si atoms and an Y atom underneath. The most stable site for Au on Si(001) is the ``cave'' site, but the binding energy is 0.11 eV higher than that on the wire. This indicates that the Au atoms tend to aggregate toward nanowires, which leads to growth of core-shell metallic structures. Electrons deplete from Au adatom and accumulated in regions between Au and Si. The chemical activity of Au/YSi2 will be discussed in light of charge density, density of states and adsorption energy of CO molecules.

  3. Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures.

    PubMed

    Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco

    2016-01-01

    Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood. PMID:27514638

  4. Au@TiO2 double-shelled octahedral nanocages with improved catalytic properties.

    PubMed

    Lv, Xiaoming; Zhu, Yihua; Jiang, Hongliang; Zhong, Hua; Yang, Xiaoling; Li, Chunzhong

    2014-10-28

    A novel and facile strategy has been successfully developed to synthesize uniform gold@titanium dioxide octahedral nanocages (Au@TiO2), which have a well-defined double-shelled structure with Au as the internal shell and TiO2 as the external shell. The unique Au@TiO2 double-shelled octahedral nanocages were elaborately fabricated by a Cu2O-templated strategy combining with spatially confined galvanic replacement. The formation process of these delicate hierarchical octahedral architectures is discussed in detail. The catalytic performance of the Au@TiO2 double-shelled octahedral nanocages was investigated using the reduction of 4-nitrophenol as a model reaction. The mesoporous structure of both the Au and TiO2 shells provides direct access for the reactant molecules to diffuse and subsequently interact with the Au shell. This novel catalyst shows excellent and stable activity for the catalytic reduction of 4-nitrophenol, which can be recycled for ten successive cycles of the reaction with a conversion efficiency of more than 90%. The superior catalytic activity attributes to mesoporous double shells, enhanced synergistic effects between the Au and TiO2 shells and the unique properties of the octahedral structure. More importantly, the as-obtained Au@TiO2 double-shelled octahedral nanocages also show potential applications in solar cells, organocatalysis and water splitting. PMID:25166883

  5. Effect of composite SiO₂@AuNPs on wound healing: in vitro and vivo studies.

    PubMed

    Li, Xiaoqin; Wang, Haifei; Rong, Huilin; Li, Wanhua; Luo, Yuan; Tian, Kai; Quan, Dongqin; Wang, Yongan; Jiang, Long

    2015-05-01

    Recently gold nanomaterials have been widely applied in the biomedical field, but their biosafety is still controversial. We immobilized small gold nanoparticles (AuNPs) on a large silica substrate to form silica-gold core-shell materials (SiO2@AuNPs) via classical seed-mediated growth. In vitro, 500 nm-SiO2@AuNPs could promote the proliferation of mouse embryonic fibroblast cells (NIH/3T3). The results of transmission electron microscope (TEM) showed that the vast majority of particles did not enter cells and that the morphology of microtubules experienced no change as observed in the confocal microscope images. The mechanism may be that the large silica substrate kept AuNPs outside the cells and the nano-size concavo-convex gold shell facilitated to cell adhesion, resulting in the proliferation. In vivo, a cutaneous full-thickness excisional wound rat model was applied to assess the healing efficiency of 500 nm-SiO2@AuNPs. The results indicated that SiO2@AuNPs could promote wound healing, which was potentially related to the anti-inflammatory and antioxidation of AuNPs. The pathological finding showed that the healing levels of SiO2@AuNPs were significantly better than those of the control groups. Our study may provide insight into the application of silica-gold core-shell materials in the treatment of cutaneous wounds. PMID:25635605

  6. Polarization properties of fluorescent BSA protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Chib, Rahul; Rich, Ryan; Shumilov, Dmytro; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2013-03-01

    BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and studied their steady state and time resolved fluorescence properties including polarization behavior in different solvents: glycerol, propylene glycol and water. We demonstrated that the nanocluster absorption spectrum can be separated from the extinction spectrum by subtraction of Rayleigh scattering. The nanocluster absorption spectrum is well approximated by three Gaussian components. By a comparison of the emissions from BSA Au25 clusters and rhodamine B in water, we estimated the quantum yield of nanoclusters to be higher than 0.06. The fluorescence lifetime of BSA Au25 clusters is long and heterogeneous with an average value of 1.84 μs. In glycerol at -20 °C the anisotropy is high, reaching a value of 0.35. However, the excitation anisotropy strongly depends on the excitation wavelengths indicating a significant overlap of the different transition moments. The anisotropy decay in water reveals a correlation time below 0.2 μs. In propylene glycol the measured correlation time is longer and the initial anisotropy depends on the excitation wavelength. BSA Au25 clusters, due to long lifetime and high polarization, can potentially be used in studying large macromolecules such as protein complexes with large molecular weight.BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and

  7. Synthesis and optical property characterization of elongated AuPt and Pt@Au metal nanoframes

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Hong, Soonchang; Moh, Sang Hyun; Park, Sungho

    2016-02-01

    We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges.We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08200e

  8. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    PubMed

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors. PMID:22352760

  9. Qualitative and quantitative descriptions of glenohumeral motion.

    PubMed

    Hill, A M; Bull, A M J; Wallace, A L; Johnson, G R

    2008-02-01

    Joint modelling plays an important role in qualitative and quantitative descriptions of both normal and abnormal joints, as well as predicting outcomes of alterations to joints in orthopaedic practice and research. Contemporary efforts in modelling have focussed upon the major articulations of the lower limb. Well-constrained arthrokinematics can form the basis of manageable kinetic and dynamic mathematical predictions. In order to contain computation of shoulder complex modelling, glenohumeral joint representations in both limited and complete shoulder girdle models have undergone a generic simplification. As such, glenohumeral joint models are often based upon kinematic descriptions of inadequate degrees of freedom (DOF) for clinical purposes and applications. Qualitative descriptions of glenohumeral motion range from the parody of a hinge joint to the complex realism of a spatial joint. In developing a model, a clear idea of intention is required in order to achieve a required application. Clinical applicability of a model requires both descriptive and predictive output potentials, and as such, a high level of validation is required. Without sufficient appreciation of the clinical intention of the arthrokinematic foundation to a model, error is all too easily introduced. Mathematical description of joint motion serves to quantify all relevant clinical parameters. Commonly, both the Euler angle and helical (screw) axis methods have been applied to the glenohumeral joint, although concordance between these methods and classical anatomical appreciation of joint motion is limited, resulting in miscommunication between clinician and engineer. Compounding these inconsistencies in motion quantification is gimbal lock and sequence dependency. PMID:17509885

  10. Investigation of Metal Free Naphthalocyanine Vapor Deposited on Au(111)

    SciTech Connect

    Wiggins, Bryan C.; Hipps, Kerry W.

    2014-02-27

    Naphthalocyanines (Ncs) are promising candidates for future components in electronic devices and applications. To maximize the efficiency of Nc devices, it is critical to understand their structural and electronic properties and how these are impacted by deposition methods. The formation of a metal free naphthalocyanine (H2Nc) self-assembled monolayer on a Au(111) crystal was investigated by scanning tunneling microscopy under ultra-high-vacuum conditions at room temperature. A rigorous purification and processing procedure was developed to produce high purity, low defect, and well-ordered monolayers. High-resolution STM images reveal epitaxial growth of H2Nc on Au(111) with the observed structure having a molecular spacing of 1.6 ± 0.05 nm, with molecules orientated slightly off (roughly 2.5°) the low density packing direction of Au(111). A commensurate structure having 4 molecules per unit cell and unit cell parameters of A = 3.25 ± 0.05 nm, B = 3.17 ± 0.05 nm, and α = 87.5 ± 2° is proposed. Orbital-mediated tunneling spectroscopy was used to examine the electronic properties of individual molecules within the thin film. The first ionization potential and electron affinity of H2Nc adsorbed on Au(111) were measured to be -0.68 ± 0.03 and 1.12 ± 0.02 eV, relative to the Fermi energy.

  11. Au nanoparticles improve amorphous carbon to be gas sensors

    NASA Astrophysics Data System (ADS)

    Liu, Keng-Wen; Lee, Jian-Heng; Chou, Hsiung; Lin, Tzu-Ching; Lin, Si-Ting; Shih-Jye Sun Collaboration

    In order to make the amorphous carbon possess the gas sensing capability transferring some sp3 orbits to sp2 is necessary. It is proposed that the metallic materials having a large charge exchange with sp3 carbon orbits are being catalysts to transfer the carbon orbits. We found embedding gold nanoparticles to the amorphous carbon will induce many compact sp2 orbits around the nanoparticles, which make the amorphous carbon be the candidate material for the gas sensors. The orbits of amorphous carbon near the interface of Au nanoparticles can be changed from sp3 to compact sp2 to reduce the surface energy of Au nanoparticles. Meanwhile, our molecular dynamics simulation has confirmed the fact, when an Au nanoparticle is embedded in the amorphous carbon system the ratio of sp2 orbits increases dramatically. Similar results also have been confirmed from the Raman spectrum measurements. We controlled the carrier transport by changing the hopping barriers formed by amorphous carbon matrix between the Au nanoparticles to modify the resistance. These nanocomposites exhibit a superior sensitivity to NH3 at room temperature as well as good reproducibility and short response/recovery times, which could have potential applications in gas sensors. Dept. of Applied Physics,NUK, Kaohsiung, Taiwan.

  12. Qualitative Inquiry in Athletic Training: Principles, Possibilities, and Promises

    PubMed Central

    Parker, Jenny

    2001-01-01

    Objective: To discuss the principles of qualitative research and provide insights into how such methods can benefit the profession of athletic training. Background: The growth of a profession is influenced by the type of research performed by its members. Although qualitative research methods can serve to answer many clinical and professional questions that help athletic trainers navigate their socioprofessional contexts, an informal review of the Journal of Athletic Training reveals a paucity of such methods. Description: We provide an overview of the characteristics of qualitative research and common data collection and analysis techniques. Practical examples related to athletic training are also offered. Applications: Athletic trainers interact with other professionals, patients, athletes, and administrators and function in a larger society. Consequently, they are likely to face critical influences and phenomena that affect the meaning they give to their experiences. Qualitative research facilitates a depth of understanding related to our contexts that traditional research may not provide. Furthermore, qualitative research complements traditional ways of thinking about research itself and promotes a greater understanding related to specific phenomena. As the profession of athletic training continues to grow, qualitative research methods will assume a more prominent role. Thus, it will be necessary for consumers of athletic training research to understand the functional aspects of the qualitative paradigm. PMID:12937461

  13. Joint association analysis of bivariate quantitative and qualitative traits.

    PubMed

    Yuan, Mengdie; Diao, Guoqing

    2011-01-01

    Univariate genome-wide association analysis of quantitative and qualitative traits has been investigated extensively in the literature. In the presence of correlated phenotypes, it is more intuitive to analyze all phenotypes simultaneously. We describe an efficient likelihood-based approach for the joint association analysis of quantitative and qualitative traits in unrelated individuals. We assume a probit model for the qualitative trait, under which an unobserved latent variable and a prespecified threshold determine the value of the qualitative trait. To jointly model the quantitative and qualitative traits, we assume that the quantitative trait and the latent variable follow a bivariate normal distribution. The latent variable is allowed to be correlated with the quantitative phenotype. Simultaneous modeling of the quantitative and qualitative traits allows us to make more precise inference on the pleiotropic genetic effects. We derive likelihood ratio tests for the testing of genetic effects. An application to the Genetic Analysis Workshop 17 data is provided. The new method yields reasonable power and meaningful results for the joint association analysis of the quantitative trait Q1 and the qualitative trait disease status at SNPs with not too small MAF. PMID:22373162

  14. Qualitative model-based diagnostics for rocket systems

    NASA Technical Reports Server (NTRS)

    Maul, William; Meyer, Claudia; Jankovsky, Amy; Fulton, Christopher

    1993-01-01

    A diagnostic software package is currently being developed at NASA LeRC that utilizes qualitative model-based reasoning techniques. These techniques can provide diagnostic information about the operational condition of the modeled rocket engine system or subsystem. The diagnostic package combines a qualitative model solver with a constraint suspension algorithm. The constraint suspension algorithm directs the solver's operation to provide valuable fault isolation information about the modeled system. A qualitative model of the Space Shuttle Main Engine's oxidizer supply components was generated. A diagnostic application based on this qualitative model was constructed to process four test cases: three numerical simulations and one actual test firing. The diagnostic tool's fault isolation output compared favorably with the input fault condition.

  15. A novel method to encapsulate a Au nanorod array in 15 nm radius multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liao, Gaomin; Pan, Yuanyuan; Wu, Qiang; Li, Shaoyun; Weng, Yuyan; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Tsui, Ophelia K. C.

    2014-11-01

    In this paper we demonstrate a novel complex array structure comprising well-aligned Au nanorods (10 nm in diameter) encapsulated inside 15 nm radius multiwalled carbon nanotubes (MWCNTs). A pre-aligned and open-ended nanoporous MWCNT membrane is used as the starting material. Au nanorods are precisely deposited and aligned inside the hollow channels of CNTs by inter-diffusing the HAuCl4 precursor and the reductant solution. Ultra-long Au nanowires and spherical Au nanoparticles are also observed in the CNT cavity with the same diameter in special cases. Using high-resolution TEM (HRTEM), scanning transmission electron microscopy (STEM), 3-dimensional TEM (3D-TEM) and energy dispersive X-ray spectroscopy (EDX), the precise location and composition of the encapsulated Au components with various structures are confirmed. This aligned Au@CNT endohedral material has important potential applications in nanocatalysis, waveguides, as well as in novel plasmonic devices.In this paper we demonstrate a novel complex array structure comprising well-aligned Au nanorods (10 nm in diameter) encapsulated inside 15 nm radius multiwalled carbon nanotubes (MWCNTs). A pre-aligned and open-ended nanoporous MWCNT membrane is used as the starting material. Au nanorods are precisely deposited and aligned inside the hollow channels of CNTs by inter-diffusing the HAuCl4 precursor and the reductant solution. Ultra-long Au nanowires and spherical Au nanoparticles are also observed in the CNT cavity with the same diameter in special cases. Using high-resolution TEM (HRTEM), scanning transmission electron microscopy (STEM), 3-dimensional TEM (3D-TEM) and energy dispersive X-ray spectroscopy (EDX), the precise location and composition of the encapsulated Au components with various structures are confirmed. This aligned Au@CNT endohedral material has important potential applications in nanocatalysis, waveguides, as well as in novel plasmonic devices. Electronic supplementary information (ESI

  16. Wetting and energetics of solid Au and Au-Ge/SiC interfaces

    SciTech Connect

    Wang, Z.; Wynblatt, P.

    1998-09-01

    A solid state wetting technique has been used to investigate the effects of alloying Au with Ge on the wetting and energetics of Au/SiC interfaces at 1123 K. Germanium was found to segregate to the Au/SiC interface, thereby lowering the contact angle of Au on SiC from 133 to 110, and doubling the work of adhesion of Au on SiC. Calculations based on a monolayer model predict a segregation of 0.89 monolayers of Ge at the Au/SiC interface for Au containing 2.3 at.% Ge. This agrees reasonably well with a coverage of 0.6 monolayers Ge at the Au/SiC interface obtained by direct measurements based on the crater edge profiling technique. The work also demonstrates that simple models of interfacial composition can be combined with the Gibbs adsorption isotherm to provide reliable estimates of interfacial composition at complex four-component interfaces.

  17. Pt{sub 3}Au and PtAu clusters: Electronic states and potential energy surfaces

    SciTech Connect

    Dai, D.; Balasubramanian, K.

    1994-03-15

    We carried out complete active space multiconfiguration self-consistent-field calculations followed by multireference singles+doubles configuration interaction with the Davidson correction which included up to 3.55 million configurations employing relativistic effective core potentials on Pt{sub 3}+Au and PtAu clusters. Four low-lying electronic states were identified for Pt{sub 3}+Au. The {sup 2}{ital A}{sub 2} electronic state ({ital C}{sub 3{ital v}}) was found to be the ground state of Pt{sub 3}Au. Spin--orbit effects were found to be significant. We also computed six low-lying electronic states of PtAu and four low-lying electronic states of PtAu{sup +}. The 5/2 ({sup 2}{Delta}) and 0{sup +}({sup 1}{Sigma}{sup +}) states were found to be the ground states of PtAu and PtAu{sup +}, respectively.

  18. Interplanetary dust between 1 and 5 AU

    NASA Technical Reports Server (NTRS)

    Stanley, J. E.; Singer, S. F.; Alvarez, J. M.

    1979-01-01

    Analyses of data from the Meteoroid Detection Experiment (MDE) and the Imaging Photopolarimeter (IPP) aboard Pioneer 10 and 11 have led to contradictory conclusions. While the MDE indicates a significant particle environment in the outer solar system (out to at least 5 AU), the IPP sees no zodiacal light (therefore implying no small particles) past 3.3 AU. These two results are reconciled by noting that the spectral index p (relating particle radius and particle concentration) is not a constant in the solar system but changes from less than 2 near 1 AU to more than 2.5 at 5 AU for particles in the range of 10 microns.

  19. The shape of Au8: gold leaf or gold nugget?

    NASA Astrophysics Data System (ADS)

    Serapian, Stefano A.; Bearpark, Michael J.; Bresme, Fernando

    2013-06-01

    The size at which nonplanar isomers of neutral, pristine gold nanoclusters become energetically favored over planar ones is still debated amongst theoreticians and experimentalists. Spectroscopy confirms planarity is preferred at sizes up to Au7, however, starting with Au8, the uncertainty remains for larger nanoclusters. Au8 computational studies have had different outcomes: the planar D4h ``cloverleaf'' isomer competes with the nonplanar Td, C2v and D2d ``nugget'' isomers for greatest energetic stability. We here examine the 2D vs. 3D preference in Au8 by presenting our own B2PLYP, MP2 and CCSD(T) calculations on these isomers: these methods afford a better treatment of long-range correlation, which is at the root of gold's characteristic aurophilicity. We then use findings from these high-accuracy computations to evaluate two less expensive DFT approaches, applicable to much larger nanoclusters: alongside the standard functional PBE, we consider M06-L (highly parametrized to incorporate long-range dispersive interactions). We find that increasing basis set size within the B2PLYP framework has a greater destabilizing effect on the nuggets than it has on the Au8 cloverleaf. Our CCSD(T) and B2PLYP predictions, replicated by DFT-PBE, all identify the cloverleaf as the most stable isomer; MP2 and DFT-M06-L show overestimation of aurophilicity, and favor, respectively, the nonplanar D2d and Td nuggets in its stead. We conclude that PBE, which more closely reproduces CCSD(T) findings, may be a better candidate density functional for the simulation of gold nanoclusters in this context.The size at which nonplanar isomers of neutral, pristine gold nanoclusters become energetically favored over planar ones is still debated amongst theoreticians and experimentalists. Spectroscopy confirms planarity is preferred at sizes up to Au7, however, starting with Au8, the uncertainty remains for larger nanoclusters. Au8 computational studies have had different outcomes: the planar D4

  20. Centrality Dependence of Charged-Hadron Transverse-Momentum Spectra in d+Au Collisions at (sNN)=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2003-08-01

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at (sNN)=200 GeV. The spectra were obtained for transverse momenta 0.25qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-pT hadrons observed in Au+Au collisions.

  1. Centrality dependence of charged-hadron transverse-momentum spectra in d+Au collisions at sqrt[s(NN)]=200 GeV.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Becker, B; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Harrington, A S; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Khan, N; Kulinich, P; Kuo, C M; Lee, J W; Lin, W T; Manly, S; Mignerey, A C; Noell, A; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Roland, C; Roland, G; Sagerer, J; Sarin, P; Sawicki, P; Sedykh, I; Skulski, W; Smith, C E; Steinberg, P; Stephans, G S F; Sukhanov, A; Teng, R; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Veres, G I; Wadsworth, B; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B; Zhang, J

    2003-08-15

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt[s(NN)]=200 GeV. The spectra were obtained for transverse momenta 0.25qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p(T) hadrons observed in Au+Au collisions. PMID:12935007

  2. Chitosan-induced Au/Ag nanoalloy dispersed in IL and application in fabricating an ultrasensitive glucose biosensor based on luminol-H₂O₂-Cu²⁺/IL chemiluminescence system.

    PubMed

    Chaichi, M J; Alijanpour, S O

    2014-11-01

    A novel glucose biosensor based on the chemiluminescence (CL) detection of enzymatically generated hydrogen peroxide (H₂O₂) was constructed by one covalent immobilization of glucose oxidase (GOD) in glutaraldehyde-functionalized glass cell. In following, chitosan-induced Au/Ag nanoparticles dispersed in ion liquid (IL) were synthesised and immobilized on it. Herein, chitosan molecules acted as both the reducing and stabilizing agent for the preparation of NPs and also, as a coupling agent GOD and Au/Ag alloy NPs. In addition to catalyze luminol CL reaction, these NPs offered excellent catalytic activity toward hydrogen peroxide generation in enzymatic reaction between GOD and glucose. The used IL in fabrication of biosensor increased its stability. Also, IL alongside Cu(2+) accelerated enzymatic and CL reaction kinetic, and decreased luminol CL reaction optimum pH to 7.5 which would enable sensitive and precision determination of glucose. Under optimum condition, linear response range of glucose was found to be 1.0 × 10(-6)-7.5 × 10(-3)M, and detection limit was 4.0 × 10(-7)M. The CL biosensor exhibited good storage stability, i.e., 90% of its initial response was retained after 2 months storage at pH 7.0. The present CL biosensor has been applied satisfactory to analysis of glucose in real serum and urine samples. PMID:25086323

  3. Phospholipid Encapsulated AuNR@Ag/Au Nanosphere SERS Tags with Environmental Stimulus Responsive Signal Property.

    PubMed

    Su, Xueming; Wang, Yunqing; Wang, Wenhai; Sun, Kaoxiang; Chen, Lingxin

    2016-04-27

    Surface-enhanced Raman scattering (SERS) tags draw much attention due to the ultrasensitivity and multiplex labeling capability. Recently, a new kind of SERS tags was rationally designed by encapsulating metal nanoparticles with phospholipid bilayers, showing great potential in theranostics. The lipid bilayer coating confers biocompatibility and versatility to changing surface chemistry of the tag; however, its "soft" feature may influence SERS signal stability, which is rarely investigated. Herein, we prepared phospholipid-coated AuNR@Ag/Au nanosphere SERS tags by using three different kinds of Raman reporters, i.e., thio-containing 4-nitrothiophenol (NT), nitrogen-containing hydrophobic chromophore cyanine 7 monoacid (Cy7), and alkyl chain-chromophore conjugate 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD). It was found that signal responses were different upon additional stimulation which the tags may encounter in theranostic applications including the presence of detergent Triton X-100, lipid membrane, and photothermal treatment. Living-cell imaging also showed signal changing distinction. The different SERS signal performances were attributed to the different Raman reporter releasing behaviors from the tags. This work revealed that Raman reporter structure determined signal stability of lipid-coated SERS tags, providing guidance for the design of stimulus responsive tags. Moreover, it also implied the potential of SERS technique for real time drug release study of lipid based nanomedicine. PMID:27052206

  4. The Electronic Properties and L3 XANES of Au and Nano-Au

    SciTech Connect

    Yiu, Y.M.; Zhang, P.; Sham, T.K.

    2004-04-20

    The electronic properties of Au crystal and nano Au have been investigated by theory and experiment. Molecularly capped nano-Au was synthesized using the two-phase method. Au nano-particles have been characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). They retain the fcc crystal structure. Their sizes have been determined to be in a range from 5.5 nm to 1.7 nm. The L3 X-ray Absorption Near Edge Structure (XANES) of nano-Au and Au foil have been recorded using synchrotron radiation, and examined by theoretical calculation based on the first principles. Both theory and experiment show that the nano-Au particles have essentially all the Au L3 XANES features of bulk Au in the near edge region with less pronounced resonance peaks. It is also shown that nano Au exhibits lower 4f binding energy than bulk Au in good agreement with quantum confined Au systems reported previously.

  5. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing.

    PubMed

    Shan, Changsheng; Yang, Huafeng; Han, Dongxue; Zhang, Qixian; Ivaska, Ari; Niu, Li

    2010-01-15

    A novel glucose biosensor based on immobilization of glucose oxidase in thin films of chitosan containing nanocomposites of graphene and gold nanoparticles (AuNPs) at a gold electrode was developed. The resulting graphene/AuNPs/chitosan composites film exhibited good electrocatalytical activity toward H(2)O(2) and O(2). The wide linear response to H(2)O(2) ranging from 0.2 to 4.2 mM (R=0.998) at -0.2V, high sensitivity of 99.5 microA mM(-1) cm(-2) and good reproducibility were obtained. The good electrocatalytical activity might be attributed to the synergistic effect of graphene and AuNPs. With glucose oxidase (GOD) as a model, the graphene/AuNPs/GOD/chitosan composite-modified electrode was constructed through a simple casting method. The resulting biosensor exhibited good amperometric response to glucose with linear range from 2 to 10 mM (R=0.999) at -0.2V and from 2 to 14 mM (R=0.999) at 0.5 V, good reproducibility and detection limit of 180 microM. Glucose concentration in human blood was studied preliminarily. From 2.5 to 7.5 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations. The graphene/AuNPs/GOD/chitosan composites film shows prominent electrochemical response to glucose, which makes a promising application for electrochemical detection of glucose. PMID:19883999

  6. Commentary: Writing and evaluating qualitative research reports

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview of qualitative methods is provided, particularly for reviewers and authors who may be less familiar with qualitative research. A question and answer format is used to address considerations for writing and evaluating qualitative research. When producing qualitative research, individuals ...

  7. Qualitative Research Articles: Guidelines, Suggestions and Needs

    ERIC Educational Resources Information Center

    Crescentini, Alberto; Mainardi, Giuditta

    2009-01-01

    Purpose: The purpose of this paper is to give ideas and suggestions to avoid some typical problems of qualitative articles. The aim is not to debate quality in qualitative research but to indicate some practical solutions. Design/methodology/approach: The paper discusses the design of qualitative research and the structure of a qualitative article…

  8. Enhancing near IR luminescence of thiolate Au nanoclusters by thermo treatments and heterogeneous subcellular distributions.

    PubMed

    Conroy, Cecil V; Jiang, Jie; Zhang, Chen; Ahuja, Tarushee; Tang, Zhenghua; Prickett, Cherish A; Yang, Jenny J; Wang, Gangli

    2014-07-01

    A five-to-ten fold enhancement, up to ca. 5-10% quantum efficiency, of near IR luminescence from monothiolate protected gold nanoclusters was achieved by heating in the presence of excess ligand thiols. An emission maximum in the 700-900 nm range makes these Au nanoclusters superior for bioimaging applications over other emissions centered below 650 nm due to reduced background interference, albeit visible emissions could have higher quantum efficiency. The heating procedure is shown to be effective to improve the luminescence of Au nanoclusters synthesized under a variety of conditions using two types of monothiols: mercaptosuccinic acid and tiopronin. Therefore, this heating method is believed to be a generalizable approach to improve the near IR luminescence of aqueous soluble Au nanoclusters, which enables better bioimaging applications. The high quantum yield is found relatively stable over a wide pH range. PEGylation of the Au nanoclusters reduces their quantum efficiency but improves their permeation into the cytoplasm. Interestingly, z-stack confocal analysis clearly reveals the presence of Au nanoclusters inside the cell nucleus in single cell imaging. The finding addresses controversial literature reports and demonstrates the internalization and heterogeneous subcellular distributions, particularly inside the nucleus. The high luminescence intensity, small overall dimension, cell and nuclear distribution, chemical stability and low-to-non toxicity make these Au nanoclusters promising probes for broad cell dynamics and imaging applications. PMID:24879334

  9. Enhanced production of direct photons in Au + Au collisions at square root(S(NN)) = 200 GeV and implications for the initial temperature.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chang, B S; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Masek, L; Masui, H; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2010-04-01

    The production of e+ e- pairs for m(e+ e-)<0.3 GeV/c2 and 1Au+Au collisions at square root(S(NN))=200 GeV. An enhanced yield above hadronic sources is observed. Treating the excess as photon internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of the direct photon yield over p+p is exponential in transverse momentum, with an inverse slope T=221+/-19(stat)+/-19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T(init) approximately 300-600 MeV at times of approximately 0.6-0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at approximately 170 MeV. PMID:20481877

  10. Enhanced Production of Direct Photons in Au+Au Collisions at {radical}(s{sub NN})=200 GeV and Implications for the Initial Temperature

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kelly, S.; Kinney, E.; Nagle, J. L.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Bjorndal, M. T.; Chi, C. Y.; Cole, B. A.; D'Enterria, D.

    2010-04-02

    The production of e{sup +}e{sup -} pairs for m{sub e}{sup +}{sub e}{sup -}<0.3 GeV/c{sup 2} and 1Au+Au collisions at {radical}(s{sub NN})=200 GeV. An enhanced yield above hadronic sources is observed. Treating the excess as photon internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of the direct photon yield over p+p is exponential in transverse momentum, with an inverse slope T=221{+-}19{sup stat{+-}}19{sup syst} MeV. Hydrodynamical models with initial temperatures ranging from T{sub init{approx}}300-600 MeV at times of {approx}0.6-0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at {approx}170 MeV.

  11. Oxygen-assisted reduction of Au species on Au/SiO2 catalyst in room temperature CO oxidation

    SciTech Connect

    Wu, Zili; Zhou, Shenghu; Zhu, Haoguo; Dai, Sheng; Overbury, Steven {Steve} H

    2008-01-01

    An unexpected oxygen-assisted reduction of cationic Au species by CO was found on a Au/SiO2 catalyst at room temperature; CO oxidation activity increases simultaneously with the reduction of Au species, suggesting the key role of metallic Au played in CO oxidation on Au/SiO2.

  12. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    PubMed Central

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-01-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap. PMID:26997140

  13. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.

    PubMed

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P; Alford, Neil M; Riley, D Jason; Xie, Fang

    2016-01-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap. PMID:26997140

  14. Residue-Free Solder Bumping Using Small AuSn Particles by Hydrogen Radicals

    NASA Astrophysics Data System (ADS)

    Higurashi, Eiji; Chino, Daisuke; Suga, Tadatomo

    An AuSn reflow process using hydrogen radicals as a way to avert the cleaning of flux residues was investigated for its application to solder bumping. AuSn particles (manufactured by a gas atomizer) smaller than 5µm, which are difficult to reflow by conventional methods that use rosin mildly activated (RMA) flux, were used for the experiments. In this process, the reduction effect by the hydrogen radicals removes the surface oxides of the AuSn particles. Excellent wetting between 1-µm-diameter AuSn particles and Ni metallization occurred in hydrogen plasma. Using hydrogen radicals, 100µm-diameter AuSn bumps without voids were successfully formed at a peak temperature of 300°C. The average bump shear strength was approximately 73gf/bump. Bump inspection after shear testing showed that a fracture had occurred between the Au/Ni/Cr under bump metallurgy (UBM) and Si substrate, suggesting sufficient wetting between the AuSn bump and the UBM.

  15. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-12-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM-1 cm-2 to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application.

  16. a High-Performance Glucose Biosensor Based on Zno Nanorod Arrays Modified with AU Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Gong; Lei, Yang; Yan, Xiaoqin

    2012-08-01

    An amperometric glucose biosensor based on vertically aligned ZnO nanorod (NR) arrays modified with Au nanoparticles (NPs) was constructed in a channel-limited way. Au NPs with diameters in the range of 8-10 nm have been successfully synthesized by photoreduction method and were uniformly loaded onto the surface of ZnO NRs that was hydrothermally deposited on the Fluorine doped SnO2 conductive glass (FTO) via electrostatic self-assembly technique. The morphology and structure of Au/ZnO NR arrays were characterized by field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectrum analyzer (XPS). The electrocatalytic properties of glucose oxidase (GOD)- immobilized Au/ZnO NR arrays were evaluated by amperometry. Compared with the biosensor based on ZnO NR arrays, the resulting Au/ZnO NR arrays modified biosensor exhibited an expanded linear range from 3 μM to 3 mM with the detection limit of 30 nM and a smaller Michaelis-Menten constant of 0.7836 mM. All these results suggest that the Au NPs can greatly improve the biosensing properties of ZnO NR arrays and therefore Au/ZnO NR arrays provide a promising material for the biosensor designs and other biological applications.

  17. Luminescent, bimetallic AuAg alloy quantum clusters in protein templates.

    PubMed

    Mohanty, Jyoti Sarita; Xavier, P Lourdu; Chaudhari, Kamalesh; Bootharaju, M S; Goswami, N; Pal, S K; Pradeep, T

    2012-07-21

    We report the synthesis of luminescent AuAg alloy quantum clusters (QCs) in bovine serum albumin (BSA), for the first time, with experimentally determined atomic composition. Mixing of the as-synthesized protein-protected Au and Ag clusters resulted in the formation of alloy AuAg clusters within the BSA. Mass spectrometric analysis of the product of a 1 : 1 molar ratio reaction mixture of Au(QC)@BSA and Ag(QC)@BSA suggested that the alloy clusters could be Au(38-x)Ag(x)@BSA. Further analyses by standard techniques revealed that the alloy cluster core of ∼1.2 nm diameter is composed of nearly zero valent Au and Ag atoms that exhibit distinctly different steady state and time resolved excited state luminescence profiles compared to the parent clusters. Tuning of the alloy composition was achieved by varying the molar ratio of the parent species in the reaction mixture and compositional changes were observed by mass spectrometry. In another approach, mixing of Au(3+) ions with the as-synthesized Ag(QC)@BSA also resulted in the formation of alloy clusters through galvanic exchange reactions. We believe that alloy clusters with the combined properties of the constituents in versatile protein templates would have potential applications in the future. The work presents interesting aspects of the reactivity of the protein-protected clusters. PMID:22684267

  18. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid

    PubMed Central

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-01-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM−1 cm−2 to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application. PMID:25515430

  19. Large extrinsic spin Hall effect in Au-Cu alloys by extensive atomic disorder scattering

    NASA Astrophysics Data System (ADS)

    Zou, L. K.; Wang, S. H.; Zhang, Y.; Sun, J. R.; Cai, J. W.; Kang, S. S.

    2016-01-01

    Spin Hall angle, which denotes the conversion efficiency between spin and charge current, is a key parameter in the pure spin current phenomenon. The search for materials with large spin Hall angle is indeed important for scientific interest and potential application in spintronics. Here the large enhanced spin Hall effect (SHE) of Au-Cu alloy is reported by investigating the spin Seebeck effect, spin Hall anomalous Hall effect, and spin Hall magnetoresistance of the Y3F e5O12 (YIG)/A uxC u1 -x hybrid structure over the full composition. At the near equiatomic Au-Cu composition with maximum atomic disorder scattering, the spin Hall angle of the Au-Cu alloy increases by two to three times together with a moderate spin diffusion length in comparison with Au. The longitudinal spin Seebeck voltage and the spin Hall magnetoresistance ratio also increase by two to three times. More importantly, no evidence of anomalous Hall effect is observed in all YIG/Au-Cu samples, in contrast to the cases of other giant SHE materials Pt(Pd), Ta, and W. This behavior makes Au-Cu free from any suspicion of the magnetic proximity effect involved in the hybrid structure, and thus the Au-Cu alloy can be an ideal material for pure spin current study.

  20. First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Yu, Lei; Gui, Yingang; Hu, Weihua

    2016-03-01

    We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF6), namely, H2S, SO2, SOF2, and SO2F2, adsorbed on pristine and Au-embedded graphene based on the revised Perdew-Burke-Ernzerhof calculation, which empirically includes a dispersion correction (DFT-D) for van der Waals interaction with standard generalized gradient approximation. Pristine graphene exhibits weak adsorption and absence of charge transfer, which indicates barely satisfactory sensing for decomposed components. The Au atom introduces magnetism to the pristine graphene after metal-embedded decoration as well as enhances conductivity. All four molecules induce certain hybridization between the molecules and Au-graphene, which results in chemical interactions. SOF2 and SO2F2 exhibit a strong chemisorption interaction with Au-graphene, while H2S and SO2 exhibit quasi-molecular binding effects. Only H2S exhibits n-type doping to Au-graphene, whereas the rest gases exhibit p-type doping. Magnetic moments fluctuate substantially in the original Au-graphene when H2S and SO2 are adsorbed. While the adsorption effects of SOF2 and SO2F2 generate magnetism quenching. The charge transfer mechanism is also discussed in this paper. These results will shed light on the valuable application of Au-embedded graphene for selective gas sensing and spintronics.

  1. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles. PMID:25456348

  2. Control of the spatial distribution and crystal orientation of self-organized Au nanoparticles.

    PubMed

    Yasukawa, Yukiko; Liu, Xiaoxi; Shirsath, Sagar E; Suematsu, Hisayuki; Kotaki, Yukio; Nemoto, Yoshihiro; Takeguchi, Masaki; Morisako, Akimitsu

    2016-09-23

    Ordered, two-dimensional, self-organized Au nanoparticles were fabricated using radiofrequency (RF) magnetron sputtering. The particles were uniformly spherical in shape and ultrafine in size (3-7 nm) and showed an ultrahigh density in the order of ∼10(12) inch(-2). A custom-developed sputtering apparatus that employs low sputtering power density and a minimized sputtering time (1 min) was used to markedly simplify the preparation conditions for Au nanoparticle fabrication. The spatial distribution of Au nanoparticles was rigorously controlled by placing a Ta interfacial layer between the Au nanoparticles and substrate as well as by post-annealing samples in an Ar atmosphere after the formation of Au nanoparticles. The interfacial layer and the post-annealing step caused approximately 40% of the Au nanoparticles on the substrate surface to orient in the (111) direction. This method was shown to produce ultrafine Au nanoparticles showing an ultrahigh surface density. The crystal orientation of the nanoparticles can be precisely controlled with respect to the substrate surface. Therefore, this technique promises to deliver tunable nanostructures for applications in the field of high-performance electronic devices. PMID:27528598

  3. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001).

    PubMed

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature. PMID:26354098

  4. Optical properties of Au-core Pt-shell nanorods studied using FDTD simulations

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Bo; Long, Lin; Zhang, Yu-Shi; Wang, Yue-Ping; Liu, Feng-Shou; Xu, Wei-Yao; Zong, Ming-Ji; Ma, Lei; Liu, Wen-Qi; Zhang, Hui; Yan, Jiao; Chen, Jia-Qi; Ji, Ying-Lu; Wu, Xiao-Chun

    2016-06-01

    Au-core/Pt-shell nanorods (Au@Pt NRs) have been prepared by a Au nanorod-mediated growth method, and they exhibit high electromagnetic field enhancements under coupling conditions. Boosted by a long-range effect of the high electromagnetic field generated by the Au core, the electromagnetic field enhancement can be controlled by changing the morphology of the nanostructures. In this study, we report the results on the simulations of the electromagnetic field enhancement using a finite difference time domain (FDTD) method, taking the real shapes of the Au@Pt NRs into account. Due to the "hot spot" effect, the electromagnetic field can be localized between the Pt nanodots. The electromagnetic field enhancement is found to be rather independent of the Pt content, whereas the local roughness and small sharp features might significantly modify the near-field. As the electromagnetic field enhancement can be tuned by the distribution of Pt nanodots over the Au-core, Au@Pt NRs can find potential applications in related areas.

  5. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001)

    NASA Astrophysics Data System (ADS)

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-09-01

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature.

  6. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001)

    PubMed Central

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature. PMID:26354098

  7. Discourse Tracing as Qualitative Practice

    ERIC Educational Resources Information Center

    LeGreco, Marianne; Tracy, Sarah J.

    2009-01-01

    This article introduces a qualitative research method called "discourse tracing". Discourse tracing draws from contributions made by ethnographers, discourse critics, case study scholars, and process tracers. The approach offers new insights and an attendant language about how we engage in research designed specifically for the…

  8. Qualitative Research in Rehabilitation Counseling

    ERIC Educational Resources Information Center

    Hanley-Maxwell, Cheryl; Al Hano, Ibrahim; Skivington, Michael

    2007-01-01

    Qualitative research approaches offer rehabilitation scholars and practitioners avenues into understanding the lives and experiences of people with disabilities and those people and systems with whom they interact. The methods used often parallel those used in counseling and appear to be well matched with the field of rehabilitation counseling.…

  9. Reconsidering Constructivism in Qualitative Research

    ERIC Educational Resources Information Center

    Lee, Cheu-Jey George

    2012-01-01

    This article examines constructivism, a paradigm in qualitative research that has been propagated by Egon Guba, Yvonna Lincoln, and Norman Denzin. A distinction is made between whether the basic presuppositions of constructivism are credible compared to those of a competing paradigm and whether constructivism's beliefs are internally consistent.…

  10. Qualitative Research in Educational Gerontology.

    ERIC Educational Resources Information Center

    Applewhite, Steven Lozano

    1997-01-01

    Quantitative methods such as logical positivism often view nondominant groups as deviant and purport to be objective. Qualitative methods such as ethnography help educational gerontologists understand diverse elderly populations and allow elders to participate in the process of defining reality and producing knowledge. (SK)

  11. Historical Perspectives toward Qualitative Research

    ERIC Educational Resources Information Center

    Watras, Joseph

    2009-01-01

    The keynote address on which this article is based considers four stages or types of studies that qualitative researchers undertake in the field of education. The reason that I explored this focus was to illustrate the benefits and the dangers of designing studies to serve policy makers. The research that I selected sought to uncover information…

  12. [Quantitative and qualitative nursing research].

    PubMed

    Nieminen, H; Sansoni, J

    1998-01-01

    The aim of this article is to open a discussion on Nursing research methods. Authors give some thoughts on qualitative nursing research and underlining the difference between positivistic and teleological vision. Relationship between inductive and deductive thinking is discussed. PMID:10474458

  13. Caregiving: A Qualitative Concept Analysis

    ERIC Educational Resources Information Center

    Hermanns, Melinda; Mastel-Smith, Beth

    2012-01-01

    A common definition of caregiving does not exist. In an attempt to define the concept of caregiving, the authors used a hybrid qualitative model of concept development to analyze caregiving. The model consists of three phases: (a) theoretical, (b) fieldwork, and (c) analytical. The theoretical phase involves conducting an interdisciplinary…

  14. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties.

    PubMed

    Du, Jingshan; Yu, Junjie; Xiong, Yalin; Lin, Zhuoqing; Zhang, Hui; Yang, Deren

    2015-01-14

    Anisotropic Au nanoparticles show unique localized surface plasmon resonance (LSPR) properties, which make them attractive in optical, sensing, and biomedical applications. In this contribution, we report a general and facile strategy towards aqueous synthesis of Au and M@Au (M = Pd, CuPt) hybrid nanostars by reducing HAuCl4 with ethanolamine in the presence of cetyltrimethylammonium bromide (CTAB). According to electron microscopic observations and spectral monitoring, we found that the layered epitaxial growth mode (i.e., the Frank-van der Merwe mechanism) contributes to the enlargement of the core, while the random attachment of Au nanoclusters onto the cores accounts for the formation of the branches. Both of them are indispensable to the formation of the nanostars. The LSPR properties of the Au nanoparticles have been well investigated with morphology control via the precursor amount and growth temperature. The Au nanostars showed improved surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G due to their sharp edges and tips, which were therefore confirmed as good SERS substrates to detect trace amounts of molecules. PMID:25420730

  15. Philosophical foundations of qualitative research.

    PubMed

    Boyd, C O

    1993-08-01

    Although new and still emerging for us, qualitative research approaches have been receiving considerable attention for some time in other disciplines. Along with philosophical debates, there are debates about whether there needs to be a debate. On a philosophical level, there is irreconcilable conflict between the quantitative and qualitative paradigms. It is important to recognize this conflict, avoiding illogical compromise. Yet, proponents of each paradigm need to applaud both the existence of the other and the hybrid paradigms that inevitably are born of conflict. An apt beginning would be broader definitions of what constitutes science and research in nursing, eliminating the sense-organ bias that is so contrary to our philosophy for practice. This alone would provide qualitative nurse researchers with the sanction they need to progress in their exploration of various approaches to creating a science and a body of knowledge in, for, and about nursing practice. In the chapters to follow, readers will be introduced to several qualitative research approaches. Each approach represents an interpretation of the qualitative paradigm in nursing research, grounded in the general perspective of phenomenological philosophy. This perspective focuses on phenomena as they appear and recognizes that reality is subjective and a matter of appearances for us in our social world. Subjectivity means that the world becomes real through our contact with it and acquires meaning through our interpretations of that contact. Truth, then, is a composite of realities, and access to truth is a problem of access to human subjectivity. This perspective guides the qualitative researcher in nursing to the subject matter of lived experiences, which are the original contacts with a world, and of the processes and content of interpretation--the meaning attributions that constitute realities and perspectives for a future of possibilities in the world. Other consequences of a phenomenological

  16. Efficient H{sub 2} production over Au/graphene/TiO{sub 2} induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2}

    SciTech Connect

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-11-15

    Highlights: • Both surface plasmon resonance and band-gap excitation were used for H{sub 2} production. • Au/Gr/TiO{sub 2} composite photocatalyst was synthesized. • Au/Gr/TiO{sub 2} exhibited enhancement of light absorption and charge separation. • H{sub 2} production rate of Au/Gr/TiO{sub 2} was about 2 times as high as that of Au/TiO{sub 2}. - Abstract: H{sub 2} production over Au/Gr/TiO{sub 2} composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2} using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO{sub 2} with band-gap excitation. Surface photovoltage and UV–vis absorption measurements revealed that compared with Au/TiO{sub 2}, Au/Gr/TiO{sub 2} displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H{sub 2} production rate of Au/Gr/TiO{sub 2} composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO{sub 2}. This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy.

  17. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Xingliang; Yang, Yun; Zhou, Guangju; Han, Shuhua; Wang, Wenfang; Zhang, Lijie; Chen, Wei; Zou, Chao; Huang, Shaoming

    2013-05-01

    Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate amount of AgNO3 facilitates the formation of Au nanorods. A large amount of AgNO3 completely blocks the growth of nanorods and favors the formation of high quality decahedra (decahedra can be considered as nanorods with 0 nm longitudinal length). Besides, this blocking effect also allows preparation of different high-index-faceted Au nanobipyramids. These prepared Au nanostructures further serve as starting templates to fabricate other heterostructured Au/Ag nanomaterials, such as Ag-Au-Ag segmental nanorods, Au@Ag core-shelled nanostructures. The prepared nanostructures exhibit size- and structure-dependent catalytic performance in the reduction of p-nitrophenol to p-aminophenol by sodium borohydride.Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate

  18. Au25(SG)18 as a fluorescent iodide sensor

    NASA Astrophysics Data System (ADS)

    Wang, Man; Wu, Zhikun; Yang, Jiao; Wang, Guozhong; Wang, Hongzhi; Cai, Weiping

    2012-06-01

    The recently emerging gold nanoclusters (GNC) are of major importance for both basic science studies and practical applications. Based on its surface-induced fluorescence properties, we investigated the potential use of Au25(SG)18 (GSH: glutathione) as a fluorescent iodide sensor. The current detection limit of 400 nM, which can possibly be further enhanced by optimizing the conditions, and excellent selectivity among 12 types of anion (F-, Cl-, Br-, I-, NO3-, ClO4-, HCO3-, IO3-, SO42-, SO32-, CH3COO- and C6H5O73-) make Au25(SG)18 a good candidate for iodide sensing. Furthermore, our work has revealed the particular sensing mechanism, which was found to be affinity-induced ratiometric and enhanced fluorescence (abbreviated to AIREF), which has rarely been reported previously and may provide an alternative strategy for devising nanoparticle-based sensors.The recently emerging gold nanoclusters (GNC) are of major importance for both basic science studies and practical applications. Based on its surface-induced fluorescence properties, we investigated the potential use of Au25(SG)18 (GSH: glutathione) as a fluorescent iodide sensor. The current detection limit of 400 nM, which can possibly be further enhanced by optimizing the conditions, and excellent selectivity among 12 types of anion (F-, Cl-, Br-, I-, NO3-, ClO4-, HCO3-, IO3-, SO42-, SO32-, CH3COO- and C6H5O73-) make Au25(SG)18 a good candidate for iodide sensing. Furthermore, our work has revealed the particular sensing mechanism, which was found to be affinity-induced ratiometric and enhanced fluorescence (abbreviated to AIREF), which has rarely been reported previously and may provide an alternative strategy for devising nanoparticle-based sensors. Electronic supplementary information (ESI) available: fluorescence spectra of Au25(SG)18 (1.6 μM in H2O) with successive titration of I- and the time-dependent fluorescence of Au25(SG)18. See DOI: 10.1039/c2nr30169e.

  19. Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √sNN = 200 GeV

    DOE PAGESBeta

    Adare, A.

    2015-09-23

    We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √sNN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-massmore » dependence of the oscillations.« less

  20. Systematic study of charged-pion and kaon femtoscopy in Au + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, D.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Hartouni, E. P.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Leitner, E.; Lenzi, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Zou, L.; Phenix Collaboration

    2015-09-01

    We present a systematic study of charged-pion and kaon interferometry in Au +Au collisions at √{s NN}=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

  1. Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √sNN = 200 GeV

    SciTech Connect

    Adare, A.

    2015-09-23

    We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √sNN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

  2. Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Yuanyuan; Wang, Xuemei

    2014-08-01

    Ultra-small metallic nanoparticles, or so-called ``nanoclusters'' (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications.Ultra-small metallic nanoparticles, or so-called ``nanoclusters'' (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple

  3. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  4. Qualitative GIS and the Visualization of Narrative Activity Space Data

    PubMed Central

    Mennis, Jeremy; Mason, Michael J.; Cao, Yinghui

    2012-01-01

    Qualitative activity space data, i.e. qualitative data associated with the routine locations and activities of individuals, are recognized as increasingly useful by researchers in the social and health sciences for investigating the influence of environment on human behavior. However, there has been little research on techniques for exploring qualitative activity space data. This research illustrates the theoretical principles of combining qualitative and quantitative data and methodologies within the context of GIS, using visualization as the means of inquiry. Through the use of a prototype implementation of a visualization system for qualitative activity space data, and its application in a case study of urban youth, we show how these theoretical methodological principles are realized in applied research. The visualization system uses a variety of visual variables to simultaneously depict multiple qualitative and quantitative attributes of individuals’ activity spaces. The visualization is applied to explore the activity spaces of a sample of urban youth participating in a study on the geographic and social contexts of adolescent substance use. Examples demonstrate how the visualization may be used to explore individual activity spaces to generate hypotheses, investigate statistical outliers, and explore activity space patterns among subject subgroups. PMID:26190932

  5. [(CF3)4Au2(C5H5N)2]--a new alkyl gold(II) derivative with a very short Au-Au bond.

    PubMed

    Zopes, David; Hegemann, Corinna; Tyrra, Wieland; Mathur, Sanjay

    2012-09-11

    A new gold(II) species [(CF(3))(4)Au(2)(C(5)H(5)N)(2)] with a very short unsupported Au-Au bond (250.62(9) pm) was generated by photo irradiation of a silver aurate, [Ag(Py)(2)][Au(CF(3))(2)], unambiguously characterized by (19)F and (109)Ag NMR studies. PMID:22836874

  6. Synthesis and Characterization of Au@Cu Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Velazquez-Salazar, Jesus; Yacaman, Miguel Jose

    2011-10-01

    The synthesis of bimetallic nanoparticles has become so important in present times due to its diverse applications of nanotechnology. Particularly most of the bimetallic nanoparticles are focused to use in catalysis, plasmonic, magnetic, sensors, and many other applications. In Au/Cu case, the bulk Au and Cu are soluble at all compositions. But the structure of Au/Cu nanoparticles depends on the preparation methods. The structure might be the core shell, alloys or other morphology. Au- Cu core-shell nanocrystals were prepared using a two-step polyol reduction method. First, Au core seeds were prepared by reducing HAuCl4. 4H2O in ethylene glycol (EG) using oil-bath heating in the presence of polyvinylpyrrolidone (PVP) as a polymer surfactant. Then Cu shells were overgrown on Au core seeds by reducing Cu2(OAc)4 in EG with PVP again using oil-bath heating. The morphology is studied by STEM HITACHI S-5500.The resultant crystal structures were characterized using TEM, high-resolution (HR)-TEM and the STEM were using for the study of micro analysis.

  7. Cu-Au Alloys Using Monte Carlo Simulations and the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Good, Brian; Ferrante, John

    1996-01-01

    Semi empirical methods have shown considerable promise in aiding in the calculation of many properties of materials. Materials used in engineering applications have defects that occur for various reasons including processing. In this work we present the first application of the BFS method for alloys to describe some aspects of microstructure due to processing for the Cu-Au system (Cu-Au, CuAu3, and Cu3Au). We use finite temperature Monte Carlo calculations, in order to show the influence of 'heat treatment' in the low-temperature phase of the alloy. Although relatively simple, it has enough features that could be used as a first test of the reliability of the technique. The main questions to be answered in this work relate to the existence of low temperature ordered structures for specific concentrations, for example, the ability to distinguish between rather similar phases for equiatomic alloys (CuAu I and CuAu II, the latter characterized by an antiphase boundary separating two identical phases).

  8. Supported Pd-Au Membrane Reactor for Hydrogen Production: Membrane Preparation, Characterization and Testing.

    PubMed

    Iulianelli, Adolfo; Alavi, Marjan; Bagnato, Giuseppe; Liguori, Simona; Wilcox, Jennifer; Rahimpour, Mohammad Reza; Eslamlouyan, Reza; Anzelmo, Bryce; Basile, Angelo

    2016-01-01

    A supported Pd-Au (Au 7wt%) membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H₂, H₂, N₂, CO₂, CH₄) for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H₂/N₂ ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h(-1), 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al₂O₃ catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane. PMID:27171067

  9. Formation and Stabilization of Single-Crystalline Metastable AuGe Phases in Ge Nanowires

    SciTech Connect

    Sutter, E.; Sutter, P.

    2011-07-22

    We use in situ observations by variable temperature transmission electron microscopy on AuGe alloy drops at the tips of Ge nanowires (NWs) with systematically varying composition to demonstrate the controlled formation of metastable solid phases integrated in NWs. The process, which operates in the regime of vapor-liquid-solid growth, involves a size-dependent depression of the alloy liquidus at the nanoscale that leads to extremely Ge-rich AuGe melts at low temperatures. During slow cooling, these liquid AuGe alloy drops show pronounced departures from equilibrium, i.e., a frustrated phase separation of Ge into the adjacent solid NW, and ultimately crystallize as single-crystalline segments of metastable {gamma}-AuGe. Our findings demonstrate a general avenue for synthesizing NW heterostructures containing stable and metastable solid phases, applicable to a wide range of materials of which NWs form by the vapor-liquid-solid method.

  10. Contributors to Enhanced CO2 Electroreduction Activity and Stability in a Nanostructured Au Electrocatalyst.

    PubMed

    Kim, Haeri; Jeon, Hyo Sang; Jee, Michael Shincheon; Nursanto, Eduardus Budi; Singh, Jitendra Pal; Chae, Keunhwa; Hwang, Yun Jeong; Min, Byoung Koun

    2016-08-23

    The formation of a nanostructure is a popular strategy for catalyst applications because it can generate new surfaces that can significantly improve the catalytic activity and durability of the catalysts. However, the increase in the surface area resulting from nanostructuring does not fully explain the substantial improvement in the catalytic properties of the CO2 electroreduction reaction, and the underlying mechanisms have not yet been fully understood. Here, based on a combination of extended X-ray absorption fine structure analysis, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy, we observed a contracted Au-Au bond length and low work function with the nanostructured Au surface that had enhanced catalytic activity for electrochemical CO2 reduction. The results may improve the understanding of the enhanced stability of the nanostructured Au electrode based on the resistance of cation adhesion during the CO2 reduction reaction. PMID:27466025

  11. Ballistic-electron-emission microscopy of subsurface defects at the Au-GaAs(100) interface

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Bell, L. D.; Kaiser, W. J.

    1989-01-01

    The application of ballistic-electron-emission microscopy (BEEM) to a study of the influence of GaAs(100) substrate conditions on the formation of a multidefect structure at the Au-GaAs(100) Schottky barrier interface is described. Interfaces prepared on both melt-grown GaAs(100) wafer substrates and MBF-deposited GaAs(100) buffer layers are considered. As a comparison to the study of Au-GaAs(100) interfaces, BEEM imaging is performed on Au-Si(100) interfaces. It is noted that Au-GaAs(100) interface formation is relatively insensitive to the effects of substrate surface condition and substrate bulk defect density, and that the combination of BEEM imaging and BEEM spectroscopy indicates that the heterogeneous interface defects are the result of diffusion between the Schottky barrier electrodes.

  12. Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles

    SciTech Connect

    Zhang S.; Su D.; Guo, S.; Zhu, H.; Sun, S.

    2012-03-21

    Using FePtAu nanoparticles (NPs) as an example, this Communication demonstrates a new structure-control strategy to tune and optimize NP catalysis. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face-centered cubic (fcc) structure to chemically ordered face-centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu NPs have mass activity as high as 2809.9 mA/mg Pt and retain 92.5% of this activity after a 13 h stability test. They become the most efficient NP catalyst ever reported for FAOR. This structure-control strategy can be extended to other multimetallic NP systems, providing a general approach to advanced NP catalysts with desired activity and durability control for practical applications.

  13. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis.

    PubMed

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-19

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants. PMID:27160795

  14. Dimensional Analysis and Qualitative Methods in Problem Solving

    ERIC Educational Resources Information Center

    Pescetti, D.

    2008-01-01

    The primary application of dimensional analysis (DA) is in problem solving. Typically, the problem description indicates that a physical quantity Y(the unknown) is a function f of other physical quantities A[subscript 1], ..., A[subscript n] (the data). We propose a qualitative problem-solving procedure which consists of a parallel decomposition…

  15. Hyper-authoring for Education: A Qualitative Evaluation.

    ERIC Educational Resources Information Center

    Mendes, Maria Emilia Xavier; Hall, Wendy

    1999-01-01

    Describes a qualitative evaluation that analyzed the processes involved in the authoring of hypermedia applications for education by interviewing both researchers and lecturers from the University of Southampton involved in the development of hypermedia. Considers the quality characteristics of reusability of information, maintainability of…

  16. Evaluating Rigor in Qualitative Methodology and Research Dissemination

    ERIC Educational Resources Information Center

    Trainor, Audrey A.; Graue, Elizabeth

    2014-01-01

    Despite previous and successful attempts to outline general criteria for rigor, researchers in special education have debated the application of rigor criteria, the significance or importance of small n research, the purpose of interpretivist approaches, and the generalizability of qualitative empirical results. Adding to these complications, the…

  17. Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles.

    PubMed

    Yin, Yongguang; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2014-01-01

    Naturally occurring Au nanoparticles (AuNPs) have been widely observed in ore deposits, coal, soil, and environmental water. Identifying the source of these naturally occurring AuNPs could be helpful for not only the discovery of Au deposits through advanced exploration methods, but also the elucidation of the biogeochemical cycle and environmental toxicity of ionic Au and engineered AuNPs. Here, we investigated the effect of natural/simulated sunlight and heating on the reduction of ionic Au by ubiquitous dissolved organic matter (DOM) in river water. The reductive process probed by X-ray photoelectron spectroscopy revealed that phenolic, alcoholic, and aldehyde groups in DOM act as reductive sites. Long-time exposure with thermal and photoirradiation induced the further fusion and growth of AuNPs to branched Au nanostructure as precipitation. The formation processes and kinetics of AuNPs were further investigated using humic acid (HA) as the DOM model, with comprehensive characterizing methods. We have observed that HA can reduce ionic Au(III) complex (as chloride or hydroxyl complex) to elemental Au nanoparticles under sunlight or heating. In this process, nearly all of the Au(III) could be reduced to AuNPs, in which HA serves as not only the reductive agent, but also the coating agent to stabilize and disperse AuNPs. The size and stability of AuNPs were highly dependent on the concentration ratio of Au(III) to HA. These results imply that, besides biological processes, this thermal or photochemical reduction process is another possible source of naturally occurring AuNPs in natural environments, which possibly has critical impacts on the transport and transformation of Au and engineered AuNPs. PMID:24471802

  18. Obstructions to Sampling Qualitative Properties

    PubMed Central

    Reimers, Arne C.

    2015-01-01

    Background Sampling methods have proven to be a very efficient and intuitive method to understand properties of complicated spaces that cannot easily be computed using deterministic methods. Therefore, sampling methods became a popular tool in the applied sciences. Results Here, we show that sampling methods are not an appropriate tool to analyze qualitative properties of complicated spaces unless RP = NP. We illustrate these results on the example of the thermodynamically feasible flux space of genome-scale metabolic networks and show that with artificial centering hit and run (ACHR) not all reactions that can have variable flux rates are sampled with variables flux rates. In particular a uniform sample of the flux space would not sample the flux variabilities completely. Conclusion We conclude that unless theoretical convergence results exist, qualitative results obtained from sampling methods should be considered with caution and if possible double checked using a deterministic method. PMID:26287384

  19. Photoionization of Au+, Au2+, and Au3+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Kilcoyne, A. L. David; Muller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Mueller, Allison; Gross, Dylan; Johnson, Andrea; Macaluso, David; A. L. D. Kilcoyne Collaboration

    2015-05-01

    Absolute single photoionization of Au+, Au2+, and Au3+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The absolute single photoionization yield was measured as a function of photon energy for each species from the metastable state ionization threshold region to well above the ground state ionization potential. Additional high-resolution measurements were performed for Au+ and Au2+ ions in the region of the ground and metastable state ionization thresholds to better resolve the detailed resonant structure found therein. This structure was used, along with the reported excited state energy levels of Au+, to preliminarily identify previously unreported excitation levels in all three ions. In addition and as a component of the same program, photoionization studies of the endohedral metallofullerene Au@C60+were performed using endohedral fullerene samples synthesized on-site at Beamline 10.0.1.2 of the ALS.

  20. The Use of a Checklist and Qualitative Notebooks for an Interactive Process of Teaching and Learning Qualitative Research

    ERIC Educational Resources Information Center

    Frels, Rebecca K.; Sharma, Bipin; Onwuegbuzie, Anthony J.; Leech, Nancy L.; Stark, Marcella D.

    2011-01-01

    From the perspective of doctoral students and instructors, we explain a developmental, interactive process based upon the Checklist for Qualitative Data Collection, Data Analysis, and Data Interpretation (Onwuegbuzie, 2010) for students' writing assignments regarding: (a) the application of conceptual knowledge for collecting, analyzing, and…

  1. Controlled Synthesis of Au@AgAu Yolk-Shell Cuboctahedra with Well-Defined Facets.

    PubMed

    Londono-Calderon, Alejandra; Bahena, Daniel; Yacaman, Miguel J

    2016-08-01

    The synthesis of Au@AgAu yolk-shell cuboctahedra nanoparticles formed by galvanic replacement in a seed-mediated method is described. Initially, single-crystal Au seeds are used for the formation of Au@Ag core-shell nanocubes, which serve as the template material for the deposition of an external Au layer. The well-controlled synthesis yields the formation of cuboctahedra nanoparticles with smooth inner and outer Au/Ag surfaces. The deposition/oxidation process is described to understand the formation of cuboctahedra and octahedra nanoparticles. The Au core maintains the initial morphology of the seed and remains static at the center of the yolk-shell because of residual Ag. Structural analysis of the shell indicates intrinsic stacking faults (SFs) near the surface. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) compositional analysis show an Au-Ag nonordered alloy forming the shell. The three-dimensional structure of the nanoparticles presented open facets on the [111] as observed by electron tomography SIRT reconstruction over a stack of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The geometrical model was validated by analyzing the direction of streaks in coherent nanobeam diffraction (NBD). The catalytic activity was evaluated using a model reaction based on the reduction of 4-nitrophenol (4-NTP) by NaBH4 in the presence of Au@AgAu yolk-shell nanoparticles. PMID:27385583

  2. A further insight into the biosorption mechanism of Au(III) by infrared spectrometry

    PubMed Central

    2011-01-01

    Background The interactions of microbes with metal ions form an important basis for our study of biotechnological applications. Despite the recent progress in studying some properties of Au(III) adsorption and reduction by Bacillus megatherium D01 biomass, there is still a need for additional data on the molecular mechanisms of biosorbents responsible for their interactions with Au(III) to have a further insight and to make a better exposition. Results The biosorption mechanism of Au(III) onto the resting cell of Bacillus megatherium D01 biomass on a molecular level has been further studied here. The infrared (IR) spectroscopy on D01 biomass and that binding Au(III) demonstrates that the molecular recognition of and binding to Au(III) appear to occur mostly with oxygenous- and nitrogenous-active groups of polysaccharides and proteins in cell wall biopolymers, such as hydroxyl of saccharides, carboxylate anion of amino-acid residues (side-chains of polypeptide backbone), peptide bond (amide I and amide II bands), etc.; and that the active groups must serve as nucleation sites for Au(0) nuclei growth. A further investigation on the interactions of each of the soluble hydrolysates of D01, Bacillus licheniformis R08, Lactobacillus sp. strain A09 and waste Saccharomyces cerevisiae biomasses with Au(III) by IR spectrometry clearly reveals an essential biomacromolecule-characteristic that seems the binding of Au(III) to the oxygen of the peptide bond has caused a significant, molecular conformation-rearrangement in polypeptide backbones from β-pleated sheet to α-helices and/or β-turns of protein secondary structure; and that this changing appears to be accompanied by the occurrence, in the peptide bond, of much unbound -C=O and H-N- groups, being freed from the inter-molecular hydrogen-bonding of the β-pleated sheet and carried on the helical forms, as well as by the alternation in side chain steric positions of protein primary structure. This might be reasonably

  3. Au40: A large tetrahedral magic cluster

    NASA Astrophysics Data System (ADS)

    Jiang, De-En; Walter, Michael

    2011-11-01

    40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au40 could be such a a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au40 has a twisted pyramid structure, reminiscent of the famous tetrahedral Au20, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.

  4. Au40: A Large Tetrahedral Magic Cluster

    SciTech Connect

    Jiang, Deen; Walter, Michael

    2011-01-01

    40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au{sub 40} could be such a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au{sub 40} has a twisted pyramid structure, reminiscent of the famous tetrahedral Au{sub 20}, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.

  5. d + Au hadron correlation measurements from PHENIX

    NASA Astrophysics Data System (ADS)

    Sickles, Anne M.

    2015-01-01

    Recent observations of extended pseudorapidity correlations at the LHC in p+p and p+Pb collisions are of great interest. Here we present related results from d+Au collisions at PHENIX. We present the observed v2 and discuss the possible origin in the geometry of the collision region. We also present new measurements of the pseudorapidity dependence of the ridge in d+Au collision. Future plans to clarify the role of geometry in small collision systems using 3 He + Au collisions are discussed.

  6. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology

    PubMed Central

    Yeh, Yi-Cheun; Creran, Brian; Rotello, Vincent M.

    2014-01-01

    Gold nanoparticles (AuNPs) are important components for biomedical applications. AuNPs have been widely employed for diagnostics, and have seen increasing use in the area of therapeutics. In this mini-review, we present fabrication strategies for AuNPs and highlight a selection of recent applications of these materials in bionanotechnology. PMID:22076024

  7. Rhodamine B immobilized on hollow Au-HMS material for naked-eye detection of Hg2+ in aqueous media.

    PubMed

    Zhang, Na; Li, Gang; Cheng, Zhuhong; Zuo, Xiujin

    2012-08-30

    A simple, effective method has been demonstrated to immobilize Rhodamine B (RhB) probes on mesoporous silica (Au-HMS). The prepared chemosensor (Au-HMS-Probe) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectrum and Fourier transform infrared spectroscopy (FT-IR). Further application of Au-HMS-Probe in sensing Hg(2+) was confirmed by fluorescence titration experiment. Au-HMS-Probe afforded "turn-on" fluorescence enhancement and displayed high brightness in water, and it also showed excellent selectivity for Hg(2+) over alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)) and other heavy metal ions (Ag(+), Cd(2+), Co(2+), Pb(2+), Ni(2+), Cu(2+), Fe(2+)). Importantly, Au-HMS-Probe could be regenerated by treatment with tetrapropylammonium hydroxide solution. PMID:22771346

  8. Interaction of Mesotetrakis (2,6,dimethoxyphenol) Porphyrin with AuTiO2 Nanoparticles: A Spectroscopic Approach.

    PubMed

    Revathi, R; Rameshkumar, A; Sivasudha, T

    2016-06-01

    The combination of nanoparticles with the photosensitizing molecules will assist in developing new approach for their biological applications. In this paper work, we have studied the interaction of photosensitising mesotetrakis (2,6,dimethoxyphenol) porphyrin molecule (P1) with AuTiO2 nanoparticles using absorption, fluorescence and time resolved measurements. An isosbestic point is appeared in the absorption spectrum of P1 on increasing the concentration of AuTiO2 nanoparticles indicates the interaction of P1 with AuTiO2 nanoparticles. Static type of quenching is observed in the fluorescence quenching measurement which is confirmed through lifetime measurements. Energy level calculations and Rehm Weller methods confirms the electron transfer mechanism from the excited P1 to the AuTiO2 nanoparticles. The observed effective binding and electron transfer property of porphyrin with AuTiO2 nanoparticles has great potential to be applied in the field of photodynamic therapy. PMID:27427692

  9. Characterization of single 1.8-nm Au nanoparticle attachments on AFM tips for single sub-4-nm object pickup

    PubMed Central

    2013-01-01

    This paper presents a novel method for the attachment of a 1.8-nm Au nanoparticle (Au-NP) to the tip of an atomic force microscopy (AFM) probe through the application of a current-limited bias voltage. The resulting probe is capable of picking up individual objects at the sub-4-nm scale. We also discuss the mechanisms involved in the attachment of the Au-NP to the very apex of an AFM probe tip. The Au-NP-modified AFM tips were used to pick up individual 4-nm quantum dots (QDs) using a chemically functionalized method. Single QD blinking was reduced considerably on the Au-NP-modified AFM tip. The resulting AFM tips present an excellent platform for the manipulation of single protein molecules in the study of single protein-protein interactions. PMID:24237663

  10. The Kura files: qualitative social survey.

    PubMed

    Pande, Madhukar; Naiker, Mani; Mills, Graham; Singh, Narendra; Voro, Tevita

    2005-09-01

    The widespread use of Kura/Noni came to the attention of researchers from both the University of the South Pacific and the Fiji School of Medicine. Amongst other associated research undertakings to better understand the use and potential benefits of this herbal medicine, a nationwide qualitative research was undertaken from September 2002-February 2004. Interviews, participant observation and participatory activities involved over 400 respondents. These research activities showed Kura is thought to be beneficial for a large number of ailments that ranged from skin conditions to high blood pressure. In total Kura has been reported to be useful for 66 medical conditions and 1 spiritual application. Based on the findings of the Research Team, it is concluded that there is sufficient grounds to proceed further with the next two phases of this research project: biochemical analysis to identify the active ingredients in the different parts of the plant, and later clinical trials to determine opportunities for developing pharmaceutical drugs. PMID:18181498

  11. Qualitative Change to 3-Valued Regions

    NASA Astrophysics Data System (ADS)

    Duckham, Matt; Stell, John; Vasardani, Maria; Worboys, Michael

    Regions which evolve over time are a significant aspect of many phenomena in the natural sciences and especially in geographic information science. Examples include areas in which a measured value (e.g. temperature, salinity, height, etc.) exceeds some threshold, as well as moving crowds of people or animals. There is already a well-developed theory of change to regions with crisp boundaries. In this paper we develop a formal model of change for more general 3-valued regions. We extend earlier work which used trees to represent the topological configuration of a system of crisp regions, by introducing trees with an additional node clustering operation. One significant application for the work is to the decentralized monitoring of changes to uncertain regions by wireless sensor networks. Decentralized operations required for monitoring qualitative changes to 3-valued regions are determined and the complexity of the resulting algorithms is discussed.

  12. A qualitative method for analysing multivoicedness

    PubMed Central

    Aveling, Emma-Louise; Gillespie, Alex; Cornish, Flora

    2015-01-01

    ‘Multivoicedness’ and the ‘multivoiced Self’ have become important theoretical concepts guiding research. Drawing on the tradition of dialogism, the Self is conceptualised as being constituted by a multiplicity of dynamic, interacting voices. Despite the growth in literature and empirical research, there remains a paucity of established methodological tools for analysing the multivoiced Self using qualitative data. In this article, we set out a systematic, practical ‘how-to’ guide for analysing multivoicedness. Using theoretically derived tools, our three-step method comprises: identifying the voices of I-positions within the Self’s talk (or text), identifying the voices of ‘inner-Others’, and examining the dialogue and relationships between the different voices. We elaborate each step and illustrate our method using examples from a published paper in which data were analysed using this method. We conclude by offering more general principles for the use of the method and discussing potential applications. PMID:26664292

  13. One-pot synthesis of M (M = Ag, Au)@SiO2 yolk-shell structures via an organosilane-assisted method: preparation, formation mechanism and application in heterogeneous catalysis.

    PubMed

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-05-21

    We demonstrate the fabrication of yolk-shell catalysts consisting of a single M (M = Ag, Au) nanoparticle encapsulated within a hollow mesoporous organosilica shell via an organosilane-assisted strategy. The advantages of our method lie in its good controllability of the void space as well as the thickness of the mesoporous shell. The M@CTAB/SiO2 synthesized through a modified Stöber method can transform to yolk-shell structures after adding (3-aminopropyl)trimethoxysilane (APTMS)/TEOS or (3-aminopropyl)triethoxysilane (APTES)/TEOS into the synthetic medium. We give unambiguous evidence that the middle CTAB/SiO2 layer transforms into a less dense APTMS-rich organic-inorganic layer which was selectively removed in alkaline aqueous solution, while the amino-functionalized hybrid shells remain intact. Moreover, we discuss the role of alkylamino groups in the shell in the transformation from Ag@SiO2 nanorattles to hollow structures when impregnating the as-synthesized Ag@SiO2 nanorattles in HAuCl4 aqueous solution. The nanorattles also exhibit high catalytic activity for the catalytic reduction of p-nitrophenol. PMID:25869174

  14. Au, Ge and AuGe Nanoparticles Fabricated by Laser Ablation

    SciTech Connect

    Musaev, O.R.; Sutter, E.; Wrobel, J.M.; Kruger, M.B.

    2012-02-01

    A eutectic AuGe target immersed in distilled water was ablated by pulsed ultraviolet laser light. The structure of the ablated material was investigated by high-resolution transmission electron microscopy (HRTEM). The images show formation of nanowire structures of AuGe up to 100 nm in length, with widths of 5-10 nm. These nanostructures have Ge content significantly lower than the target material. Electron diffraction demonstrates that they crystallize in the {alpha}-AuGe structure. For comparison, laser ablation of pure Au and pure Ge targets was also performed under the same conditions. HRTEM shows that Ge forms spherical nanoparticles with a characteristic size of {approx}30 nm. Au forms spherical nanoparticles with diameters of {approx}10 nm. Similar to AuGe, it also forms chainlike structures with substantially lower aspect ratio.

  15. Ir-induced activation of Au towards CO adsorption: Ir films deposited on Au{111}

    NASA Astrophysics Data System (ADS)

    Zhang, Tianfu; Driver, Stephen M.; Pratt, Stephanie J.; Jenkins, Stephen J.; King, David A.

    2016-06-01

    We have investigated the interaction of CO with Ir/Au{111} bimetallic surfaces, and the influence of morphology changes as Ir moves sub-surface into the Au bulk, using reflection-absorption infrared spectroscopy (RAIRS). The presence of Ir stabilises CO on exposed regions of the Au surface at temperatures up to around 200 K: we attribute this to low-coordinated Au sites, probably associated with lifting of the clean-surface 'herringbone' reconstruction by Ir deposition. The highest density of active Au sites is obtained after annealing the bimetallic surface to 500-600 K: we attribute this to morphology changes associated with the movement of Ir into bulk Au.

  16. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  17. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    SciTech Connect

    Laczkowski, P.; Rojas-Sánchez, J.-C.

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  18. Using Generic Inductive Approach in Qualitative Educational Research: A Case Study Analysis

    ERIC Educational Resources Information Center

    Liu, Lisha

    2016-01-01

    Qualitative research strategy has been widely adopted by educational researchers in order to improve the quality of their empirical studies. This paper aims to introduce a generic inductive approach, pragmatic and flexible in qualitative theoretical support, by describing its application in a study of non-English major undergraduates' English…

  19. Infusing Qualitative Traditions in Counseling Research Designs

    ERIC Educational Resources Information Center

    Hays, Danica G.; Wood, Chris

    2011-01-01

    Research traditions serve as a blueprint or guide for a variety of design decisions throughout qualitative inquiry. This article presents 6 qualitative research traditions: grounded theory, phenomenology, consensual qualitative research, ethnography, narratology, and participatory action research. For each tradition, the authors describe its…

  20. Teaching Qualitative Research to Practitioner-Researchers

    ERIC Educational Resources Information Center

    Cox, Rebecca D.

    2012-01-01

    Practitioner-researchers are well-positioned to apply qualitative methods to the study of significant problems of educational practice. However, while learning the skills of qualitative inquiry, practitioners may be compelled by forces outside of qualitative research classrooms to think quantitatively. In this article, the author considers two…

  1. Publishing Qualitative Research in Counseling Journals

    ERIC Educational Resources Information Center

    Hunt, Brandon

    2011-01-01

    This article focuses on the essential elements to be included when developing a qualitative study and preparing the findings for publication. Using the sections typically found in a qualitative article, the author describes content relevant to each section, with additional suggestions for publishing qualitative research.

  2. Strategies of Qualitative Inquiry. Third Edition

    ERIC Educational Resources Information Center

    Denzin, Norman K., Ed.; Lincoln, Yvonna S., Ed.

    2007-01-01

    "Strategies of Qualitative Inquiry, Third Edition," the second volume in the paperback version of "The SAGE Handbook of Qualitative Research, 3rd Edition," consists of Part III of the handbook ("Strategies of Inquiry"). "Strategies of Qualitative Inquiry, Third Edition" presents the major tactics--historically, the research methods--that…

  3. Using Qualitative Research Methods in Higher Education

    ERIC Educational Resources Information Center

    Savenye, Wilhelmina C.; Robinson, Rhonda S.

    2005-01-01

    Researchers investigating issues related to computing in higher education are increasingly using qualitative research methods to conduct their investigations. However, they may have little training or experience in qualitative research. The purpose of this paper is to introduce researchers to the appropriate use of qualitative methods. It begins…

  4. Quantifying Qualitative Data Using Cognitive Maps

    ERIC Educational Resources Information Center

    Scherp, Hans-Ake

    2013-01-01

    The aim of the article is to show how substantial qualitative material consisting of graphic cognitive maps can be analysed by using digital CmapTools, Excel and SPSS. Evidence is provided of how qualitative and quantitative methods can be combined in educational research by transforming qualitative data into quantitative data to facilitate…

  5. Possible evidence for radial flow of heavy mesons in d + Au collisions

    NASA Astrophysics Data System (ADS)

    Sickles, Anne M.

    2014-04-01

    Recent measurements of particle correlations and the spectra of hadrons at both RHIC and the LHC are suggestive of hydrodynamic behavior in very small collision systems (p + Pb, d + Au and possibly high multiplicity p + p collisions at the LHC). The measurements in p + Pb and d + Au collisions are both qualitatively and quantitatively similar to what is seen in heavy ion collisions where low viscosity hot nuclear matter is formed. While light quarks and gluons are thought to make up the bulk matter, one of the most surprising results in heavy ion collisions is that charm quarks also have a large v2. Measurements of the transverse momentum spectra of electrons from the decay of D and B mesons in d + Au collisions show an enhancement in central collisions relative to p + p collisions. We employ the blast-wave model to determine if the flow of heavy quarks in d + Au and p + Pb collisions is able to explain the enhancement observed in the data. We find a reasonable description of the data with blast-wave parameters extracted from fits to the light hadron spectra, suggesting hydrodynamics as a possible explanation.

  6. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  7. Using checklists and algorithms to improve qualitative exposure judgment accuracy.

    PubMed

    Arnold, Susan F; Stenzel, Mark; Drolet, Daniel; Ramachandran, Gurumurthy

    2016-01-01

    Most exposure assessments are conducted without the aid of robust personal exposure data and are based instead on qualitative inputs such as education and experience, training, documentation on the process chemicals, tasks and equipment, and other information. Qualitative assessments determine whether there is any follow-up, and influence the type that occurs, such as quantitative sampling, worker training, and implementing exposure and risk management measures. Accurate qualitative exposure judgments ensure appropriate follow-up that in turn ensures appropriate exposure management. Studies suggest that qualitative judgment accuracy is low. A qualitative exposure assessment Checklist tool was developed to guide the application of a set of heuristics to aid decision making. Practicing hygienists (n = 39) and novice industrial hygienists (n = 8) were recruited for a study evaluating the influence of the Checklist on exposure judgment accuracy. Participants generated 85 pre-training judgments and 195 Checklist-guided judgments. Pre-training judgment accuracy was low (33%) and not statistically significantly different from random chance. A tendency for IHs to underestimate the true exposure was observed. Exposure judgment accuracy improved significantly (p <0.001) to 63% when aided by the Checklist. Qualitative judgments guided by the Checklist tool were categorically accurate or over-estimated the true exposure by one category 70% of the time. The overall magnitude of exposure judgment precision also improved following training. Fleiss' κ, evaluating inter-rater agreement between novice assessors was fair to moderate (κ = 0.39). Cohen's weighted and unweighted κ were good to excellent for novice (0.77 and 0.80) and practicing IHs (0.73 and 0.89), respectively. Checklist judgment accuracy was similar to quantitative exposure judgment accuracy observed in studies of similar design using personal exposure measurements, suggesting that the tool could be useful in

  8. 3D Interdigital Au/MnO2 /Au Stacked Hybrid Electrodes for On-Chip Microsupercapacitors.

    PubMed

    Hu, Haibo; Pei, Zhibin; Fan, Hongjin; Ye, Changhui

    2016-06-01

    On-chip microsupercapacitors (MSCs) have application in powering microelectronic devices. Most of previous MSCs are made from carbon materials, which have high power but low energy density. In this work, 3D interdigital Au/MnO2 /Au stacked MSCs have been fabricated based on laser printed flexible templates. This vertical-stacked electrode configuration can effectively increase the contact area between MnO2 active layer and Au conductive layer, and thus improve the electron transport and electrolyte ion diffusion, resulting in enhanced pseudocapacitive performance of MnO2 . The stacked electrode can achieve an areal capacitance up to 11.9 mF cm(-2) . Flexible and all-solid-state MSCs are assembled based on the sandwich hybrid electrodes and PVA/LiClO4 gel electrolyte and show outstanding high-rate capacity and mechanical flexibility. The laser printing technique in this work combined with the physical sputtering and electrodeposition allows fabrication of MSC array with random sizes and patterns, making them promising power sources for small-scale flexible microelectronic energy storage systems (e.g., next-generation smart phones). PMID:27116677

  9. Counterion-Mediated Assembly of Spherical Nucleic Acid-Au Nanoparticle Conjugates (SNA-AuNPs)

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Moreau, Liane; Guerrero-García, Guillermo; Mirkin, Chad; Olvera de La Cruz, Monica; Bedzyk, Michael; Afosr Muri Team

    2015-03-01

    Controlled crystallization of colloids from solution has been a goal of material scientists for decades. Recently, nucleic acid functionalized spherical Au nanoparticles (SNA-AuNPs) have been programmed to assemble in a wide variety of crystal structures. In this approach, the assembly is driven by Watson-Crick hybridization between DNAs coating the AuNPs. Here, we show that counterions can induce ordered assembly of SNA-AuNPs in bulk solutions, even in the absence of base pairing interactions. The electrostatics-driven assembly of spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is probed as a function of counterion concentration and counterion valency [ +1 (Na+) or +2 (Ca2+) ] by in situ solution X-ray scattering. Assemblies of AuNPs capped with single-stranded (ss-) or double-stranded (ds-) DNA are examined. SAXS reveals disordered (gas-like) --> face-centered-cubic (FCC) --> glass-like phase transitions with increasing solution ionic strength. These studies demonstrate how non-base-pairing interactions can be tuned to create crystalline assemblies of SNA-AuNPs. The dependence of the inter-SNA-AuNP interactions on counterion valency and stiffness of the DNA corona will be discussed.

  10. Sclerometric study of galvanic AuNi and AuCo coatings

    NASA Astrophysics Data System (ADS)

    Shugurov, A. R.; Panin, A. V.; Shesterikov, E. V.

    2011-03-01

    Mechanisms of wear in galvanic AuNi and AuCo coatings have been studied using the methods of sclerometry and atomic force microscopy. It is demonstrated that the scratch test at a small load can be used for a comparative analysis of the resistance of metal coatings to abrasive wear. It is established that a developed surface relief related to the formation of grain agglomerates provides for a higher wear resistance of AuCo coatings as compared to that of smooth AuNi films, which is explained by dissipation of the elastic energy of the contact interaction of the sclerometric indenter with the sample surface.

  11. DFT study on cysteine adsorption mechanism on Au(111) and Au(110)

    SciTech Connect

    Buimaga-Iarinca, Luiza; Floare, Calin G.; Calborean, Adrian; Turcu, Ioan

    2013-11-13

    Periodic density functional theory calculations were used to investigate relevant aspects of adsorption mechanisms of cysteine dimers in protonated form on Au(111) and Au(110) surfaces. The projected densities of states are explicitly discussed for all main chemical groups of cysteine, i.e. the amino group (NH2), the thiol group (SH) and the carboxylic group (COOH) to identify differences in adsorption mechanism. Special emphasis is put on the analysis of changes in the electronic structure of molecules adsorbed on Au(111) and Au(110) surfaces as well as the accompanying charge transfer mechanisms at molecule-substrate interaction.

  12. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.

    PubMed

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  13. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells

    PubMed Central

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  14. Alloyed Crystalline Au-Ag Hollow Nanostructures with High Chemical Stability and Catalytic Performance.

    PubMed

    Liu, Renxiao; Guo, Jianhua; Ma, Gang; Jiang, Peng; Zhang, Donghui; Li, Dexing; Chen, Lan; Guo, Yuting; Ge, Guanglu

    2016-07-01

    For bimetallic nanoparticles (NPs), the degree of alloying is beginning to be recognized as a significant factor affecting the NP properties. Here, we report an alloyed crystalline Au-Ag hollow nanostructure that exhibits a high catalytic performance, as well as structural and chemical stability. The Au-Ag alloyed hollow and porous nanoshell structures (HPNSs) with different morphologies and subnanoscale crystalline structures were synthesized by adjusting the size of the sacrificial Ag NPs via a galvanic replacement reaction. The catalytic activities of the nanomaterials were evaluated by the model reaction of the catalytic reduction of p-nitrophenol by NaBH4 to p-aminophenol. The experimental results show that the subnanoscale crystalline structure of the Au-Ag bimetallic HPNSs has much greater significance than the apparent morphology does in determining the catalytic ability of the nanostructures. The Au-Ag alloyed HPNSs with better surface crystalline alloying microstructures and open morphologies were found to exhibit much higher catalytic reaction rates and better cyclic usage efficiencies, probably because of the better dispersion of active Au atoms within these materials. These galvanic replacement-synthesized alloyed Au-Ag HPNSs, fabricated by a facile method that avoids Ag degradation, have potential applications in catalysis, nanomedicine (especially in drug/gene delivery and cancer theranostics), and biosensing. PMID:27268019

  15. Spherical and polygonal shape of Au nanoparticles coated functionalized polymer microspheres

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Li, Yingzhi; Zhang, Junxian; Qi, Yalong; Zhao, Xin; Zhang, Qinghua

    2015-08-01

    Uniform polystyrene (PS)/polypyrrole (PPy) composite microspheres with well-defined core/shell structures are synthesized by chemical oxidative polymerization. Gold nanoparticles (Au NPs) are successfully coated on the surface of PS/PPy microspheres by means of electrostatic interactions due to the functionalized PPy coatings supplying sufficient amino groups and the additive of mercapto acetic acid. Furthermore, the as-prepared PS/PPy/Au microspheres serving as seeds facilitate Au NPs further growth by in situ reduction in HAuCl4 solution to obtain PS/PPy/Au spheres with the core/shell/shell structure. Morphology observation demonstrates that the monodisperse PS/PPy/Au microspheres compose of uniform cores and the compact coatings containing distinct two layers. X-ray diffraction and X-ray photoelectron spectroscope confirm the existence of PPy and Au on the surface of the composite spheres. This facile approach to preparing metal-coated polymer spheres supplies the potential applications in biosensors, electronics and medical diagnosis.

  16. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida).

    PubMed

    Unrine, Jason M; Hunyadi, Simona E; Tsyusko, Olga V; Rao, William; Shoults-Wilson, W Aaron; Bertsch, Paul M

    2010-11-01

    Because Au nanoparticles (NPs) are resistant to oxidative dissolution and are easily detected, they have been used as stable probes for the behavior of nanomaterials within biological systems. Previous studies provide somewhat limited evidence for bioavailability of Au NPs in food webs, because the spatial distribution within tissues and the speciation of Au was not determined. In this study, we provide multiple lines of evidence, including orthogonal microspectroscopic techniques, as well as evidence from biological responses, that Au NPs are bioavailable from soil to a model detritivore (Eisenia fetida). We also present limited evidence that Au NPs may cause adverse effects on earthworm reproduction. This is perhaps the first study to demonstrate that Au NPs can be taken up by detritivores from soil and distributed among tissues. We found that primary particle size (20 or 55 nm) did not consistently influence accumulated concentrations on a mass concentration basis; however, on a particle number basis the 20 nm particles were more bioavailable. Differences in bioavailability between the treatments may have been explained by aggregation behavior in pore water. The results suggest that nanoparticles present in soil from activities such as biosolids application have the potential to enter terrestrial food webs. PMID:20879765

  17. Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Nemat; Mahdavi, Seyed Mohammad

    2015-11-01

    In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au3+ ions were reduced to decorate gold metallic state (Au0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV-Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms formation of gold state. Moreover, X-ray photoelectron spectroscopy reveals that Au ions' reduction happens after adding HAuCl4 solution into as-prepared colloidal tungsten oxide nanoparticles. Transmission electron microscope shows that an Au shell has been decorated onto colloidal WO3 nanoparticles. Noble metal decorated tungsten oxide nanostructure could be an excellent candidate for photocatalysis, gas sensing and gasochromic applications. Finally, the gasochromic behavior of the synthesized samples was investigated by H2 and O2 gases bubbling into the produced colloidal Au/WO3 nanoparticles. Synthesized colloidal nanoparticles show excellent coloration contrast (∼80%) through NIR spectra.

  18. Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites.

    PubMed

    Yan, Pengcheng; Xu, Li; Xia, Jiexiang; Huang, Yan; Qiu, Jingxia; Xu, Qian; Zhang, Qi; Li, Huaming

    2016-08-15

    The Au/BiOCl composites have been prepared by a facile one-pot ethylene glycol (EG) assisted solvothermal reaction in the presence of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl). During the synthesis procedure, the [C16mim]Cl has been used as Cl source, solvent of this system, and dispersing agent to effectively disperse Au on the surface of BiOCl. The as-prepared samples have been systematically characterized by multiple instruments to investigate the structure, morphology, and photoelectrochemical properties. According to the photoelectrochemical data, the Au/BiOCl composites exhibit better photoelectrochemical performance toward the detection of 4-chlorophenol than that of the pure BiOCl. The photocurrent response of Au/BiOCl modified electrode is high and stable under light irradiation. The proposed Au/BiOCl modified electrode shows a wide linear response ranging from 0.16 to 20mgL(-1) with detection limit of 0.05mgL(-1). It indicates a dramatically promising application of bismuth oxyhalides in photoelectrochemical detection. It will be expected that the present study may be lightly extended to the monitor of other organic pollutants by photoelectrochemical detection of the Au/BiOCl composites. PMID:27260461

  19. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida)

    SciTech Connect

    J Unrine; S Hunyadi; O Tsyusko; W Rao; A Shoults-Wilson; P Bertsch

    2011-12-31

    Because Au nanoparticles (NPs) are resistant to oxidative dissolution and are easily detected, they have been used as stable probes for the behavior of nanomaterials within biological systems. Previous studies provide somewhat limited evidence for bioavailability of Au NPs in food webs, because the spatial distribution within tissues and the speciation of Au was not determined. In this study, we provide multiple lines of evidence, including orthogonal microspectroscopic techniques, as well as evidence from biological responses, that Au NPs are bioavailable from soil to a model detritivore (Eisenia fetida). We also present limited evidence that Au NPs may cause adverse effects on earthworm reproduction. This is perhaps the first study to demonstrate that Au NPs can be taken up by detritivores from soil and distributed among tissues. We found that primary particle size (20 or 55 nm) did not consistently influence accumulated concentrations on a mass concentration basis; however, on a particle number basis the 20 nm particles were more bioavailable. Differences in bioavailability between the treatments may have been explained by aggregation behavior in pore water. The results suggest that nanoparticles present in soil from activities such as biosolids application have the potential to enter terrestrial food webs.

  20. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate

    NASA Astrophysics Data System (ADS)

    Jun Yin, Hong; Yang Chen, Zhao; Mei Zhao, Yong; Yang Lv, Ming; An Shi, Chun; Long Wu, Zheng; Zhang, Xin; Liu, Luo; Li Wang, Ming; Jun Xu, Hai

    2015-09-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br- and I-), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd2+ at 10-8  M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface.

  1. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate.

    PubMed

    Yin, Hong Jun; Chen, Zhao Yang; Zhao, Yong Mei; Lv, Ming Yang; Shi, Chun An; Wu, Zheng Long; Zhang, Xin; Liu, Luo; Wang, Ming Li; Xu, Hai Jun

    2015-01-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br(-) and I(-)), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd(2+) at 10(-8) M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface. PMID:26412773

  2. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate

    PubMed Central

    Jun Yin, Hong; Yang Chen, Zhao; Mei Zhao, Yong; Yang Lv, Ming; An Shi, Chun; Long Wu, Zheng; Zhang, Xin; Liu, Luo; Li Wang, Ming; Jun Xu, Hai

    2015-01-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br– and I–), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd2+ at 10−8  M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface. PMID:26412773

  3. Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity.

    PubMed

    Kauffman, Douglas R; Alfonso, Dominic; Matranga, Christopher; Qian, Huifeng; Jin, Rongchao

    2012-06-20

    Atomically precise, inherently charged Au(25) clusters are an exciting prospect for promoting catalytically challenging reactions, and we have studied the interaction between CO(2) and Au(25). Experimental results indicate a reversible Au(25)-CO(2) interaction that produced spectroscopic and electrochemical changes similar to those seen with cluster oxidation. Density functional theory (DFT) modeling indicates these changes stem from a CO(2)-induced redistribution of charge within the cluster. Identification of this spontaneous coupling led to the application of Au(25) as a catalyst for the electrochemical reduction of CO(2) in aqueous media. Au(25) promoted the CO(2) → CO reaction within 90 mV of the formal potential (thermodynamic limit), representing an approximate 200-300 mV improvement over larger Au nanoparticles and bulk Au. Peak CO(2) conversion occurred at -1 V (vs RHE) with approximately 100% efficiency and a rate 7-700 times higher than that for larger Au catalysts and 10-100 times higher than those for current state-of-the-art processes. PMID:22616945

  4. Testing for spatial association of qualitative data using symbolic dynamics

    NASA Astrophysics Data System (ADS)

    Ruiz, Manuel; López, Fernando; Páez, Antonio

    2010-09-01

    Qualitative spatial variables are important in many fields of research. However, unlike the decades-worth of research devoted to the spatial association of quantitative variables, the exploratory analysis of spatial qualitative variables is relatively less developed. The objective of the present paper is to propose a new test ( Q) for spatial independence. This is a simple, consistent, and powerful statistic for qualitative spatial independence that we develop using concepts from symbolic dynamics and symbolic entropy. The Q test can be used to detect, given a spatial distribution of events, patterns of spatial association of qualitative variables in a wide variety of settings. In order to enable hypothesis testing, we give a standard asymptotic distribution of an affine transformation of the symbolic entropy under the null hypothesis of independence in the spatial qualitative process. We include numerical experiments to demonstrate the finite sample behaviour of the test, and show its application by means of an empirical example that explores the spatial association of fast food establishments in the Greater Toronto Area in Canada.

  5. Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

    SciTech Connect

    STAR Coll

    2009-04-11

    Identified charged particle spectra of {pi}{sup {+-}}, K{sup {+-}}, p and {bar p} at mid-rapidity (|y| < 0.1) measured by the dE/dx method in the STAR-TPC are reported for pp and d + Au collisions at {radical}s{sub NN} = 200 GeV and for Au + Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm{sub 3} for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters due to the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase

  6. Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the star detector.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.; STAR Collaboration

    2009-01-01

    Identified charged-particle spectra of {pi}{sup {+-}}, K{sup {+-}}, p, and {bar p} at midrapidity (|y|<0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d+Au collisions at {radical}s{sub NN} = 200 GeV and for Au+Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm{sup 3} for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au+Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au+Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of

  7. Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Silva, C. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jin, F.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Levine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Molnar, L.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van Leeuwen, M.; Molen, A. M. Vander; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2009-03-01

    Identified charged-particle spectra of π±, K±, p, and pmacr at midrapidity (|y|<0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d+Au collisions at sNN=200 GeV and for Au+Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm3 for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au+Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au+Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close

  8. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. PMID:27524041

  9. Enhancement of the thermal transport in a culture medium with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, J. L.; Fuentes, R. Gutierrez; Alvarado, E. Maldonado; Ramón-Gallegos, E.; Cruz-Orea, A.; Tánori-Cordova, J.; Mendoza-Alvarez, J. G.

    2008-11-01

    In this work, it is reported the gold nanoparticles synthesis, their characterization, and their application to the enhancement of the thermal transport in a cellular culture medium. The Au nanoparticles (NPs), with average size of 10 nm, contained into a culture medium (DMEM (1)/F12(1)) (CM) increased considerably the heat transfer in the medium. Thermal lens spectrometry (TLS) was used to measure the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression, for transient thermal lens, to the experimental data. Our results show that the thermal diffusivity of the culture medium is highly sensitive to the Au nanoparticle concentration and size. The ability to modify the thermal properties to nanometer scale becomes very important in medical applications as in the case of cancer treatment by using photodynamic therapy (PDT). A complementary study with UV-vis and TEM techniques was performed to characterize the Au nanoparticles.

  10. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  11. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  12. Chemical stability and degradation mechanisms of triangular Ag, Ag@Au, and Au nanoprisms.

    PubMed

    Lee, Kee Eun; Hesketh, Amelia V; Kelly, Timothy L

    2014-06-28

    Anisotropic metal nanoparticles have found use in a variety of plasmonic applications because of the large near-field enhancements associated with them; however, the very features that give rise to these enhancements (e.g., sharply curved edges and tips) often have high surface energies and are easily degraded. This paper describes the stability and degradation mechanisms of triangular silver, gold-coated silver, and gold nanoprisms upon exposure to a wide variety of adverse conditions, including halide ions, thiols, amines and elevated temperatures. The silver nanoprisms were immediately and irreversibly degraded under all of the conditions studied. In contrast, the core-shell Ag@Au nanoprisms were less susceptible to etching by chlorides and bromides, but were rapidly degraded by iodides, amines and thiols by a different degradation pathway. Only the pure gold nanoprisms were stable to all of the conditions tested. These results have important implications for the suitability of triangular nanoprisms in many applications; this is particularly true in biological or environmental fields, where the nanoparticles would inevitably be exposed to a wide variety of chemical stimuli. PMID:24827005

  13. 100-MeV proton beam intensity measurement by Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, Leila; Jung, Nam-Suk; Oh, Joo-Hee; Lee, Hee-Seock

    2016-05-01

    The proton beam intensity of a 100-MeV proton linac at the Korea Multi-purpose Accelerator Complex (KOMAC) was measured by an Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions to determine the accuracy and precision of beam intensity measurement using Gafchromic film dosimetry method. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of Au, Al foils and Pb plates. The yields of produced radio-nuclei in Au foils were obtained by gamma-ray spectroscopy. The FLUKA code was employed to calculate the energy spectrum of protons onto the front surface of Au foils located at three different depth points of the target and also to investigate the condition of incident beam on the target. A good agreement was found between the beam intensity measurements using the activation analysis method at three different depth points of the target. An excellent agreement was also observed between the beam intensity measurements using the Au activation analysis method and the dosimetry method using Gafchromic film.

  14. System monitoring and diagnosis with qualitative models

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin

    1991-01-01

    A substantial foundation of tools for model-based reasoning with incomplete knowledge was developed: QSIM (a qualitative simulation program) and its extensions for qualitative simulation; Q2, Q3 and their successors for quantitative reasoning on a qualitative framework; and the CC (component-connection) and QPC (Qualitative Process Theory) model compilers for building QSIM QDE (qualitative differential equation) models starting from different ontological assumptions. Other model-compilers for QDE's, e.g., using bond graphs or compartmental models, have been developed elsewhere. These model-building tools will support automatic construction of qualitative models from physical specifications, and further research into selection of appropriate modeling viewpoints. For monitoring and diagnosis, plausible hypotheses are unified against observations to strengthen or refute the predicted behaviors. In MIMIC (Model Integration via Mesh Interpolation Coefficients), multiple hypothesized models of the system are tracked in parallel in order to reduce the 'missing model' problem. Each model begins as a qualitative model, and is unified with a priori quantitative knowledge and with the stream of incoming observational data. When the model/data unification yields a contradiction, the model is refuted. When there is no contradiction, the predictions of the model are progressively strengthened, for use in procedure planning and differential diagnosis. Only under a qualitative level of description can a finite set of models guarantee the complete coverage necessary for this performance. The results of this research are presented in several publications. Abstracts of these published papers are presented along with abtracts of papers representing work that was synergistic with the NASA grant but funded otherwise. These 28 papers include but are not limited to: 'Combined qualitative and numerical simulation with Q3'; 'Comparative analysis and qualitative integral representations

  15. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.

    PubMed

    Jin, Yongdong

    2014-01-21

    Gold nanoshells (AuNSs) with tunable localized surface plasmon resonance (LSPR) peaks in the near-infrared (NIR) region possess unique optical properties-particularly that soft tissues are "transparent" at these wavelengths-making them of great interest in cancer diagnosis and treatment. Since 1998 when Halas and co-workers invented the first generation of AuNS, with a silica core and Au shell, researchers have studied and designed AuNSs for theranostic-individualized, combination diagnosis and therapy-nanomedicine. As demand has increased for more powerful and practical theranostic applications, so has demand for the next generation of AuNSs-compact yet complex multifunctional AuNSs with finely integrated plasmonic and nonplasmonic inorganic components. For in vivo biomedical applications, such a hybrid AuNS offers the desirable optical properties of NIR LSPR. Size, however, has proved a more challenging parameter to control in hybrid AuNSs. The ideal size of therapeutic NPs is 10-100 nm. Larger particles have limited diffusion in the extracellular space, while particles less than 5 nm are rapidly cleared from the circulation through extravasation or renal clearance. Conventional methods of preparing AuNS have failed to obtain small-sized hybrid AuNSs with NIR LSPR responses. In this Account, we present a new class of multifunctional hybrid AuNSs with ultrathin AuNSs and varied, functional (nonplasmonic) core components ranging from "hard" semiconductor quantum dots (QDs), to superparamagnetic NPs, to "soft" liposomes made using poly-l-histidine as a template to direct Au deposition. The resultant hybrid AuNSs are uniform and compact (typically 15-60 nm) but also preserve the optical properties and shell-type NIR response necessary for biomedical use. We also demonstrate these particles' innovative plasmonic applications in biosensing, multimodal imaging and controlled release. More importantly, the magnetic-plasmonic Fe3O4/Au core-shell NP enables a new

  16. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling.

    PubMed

    Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Mao, Li; Niu, Huan; Liu, Huijing; Zhuo, Ying

    2012-01-15

    In this study, an ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed using carboxyl group functionalized multi-walled carbon nanotubes (MWCNTs) as platform and glucose oxidase (GOD) supported on Au nanoparticles (AuNPs) decorated MWCNTs (AuNPs@MWCNTs-GOD) as labels. Firstly, using poly(ethylenimine) (PEI) as linkage reagents, AuNPs@MWCNTs were prepared and introduced for binding of the secondary antibody (Ab(2)) and glucose oxidase (GOD) with high loading amount and good biological activity due to the improved surface area of AuNPs@MWCNTs and excellent biocompatibility of AuNPs. Then the GOD and Ab(2) labeled AuNPs@MWCNTs were linked to the electrode surface via sandwich immunoreactions. These localized GOD and AuNPs amplified luminol ECL signals dramatically, which was achieved by efficient catalysis of the GOD and AuNPs towards the oxidation of glucose to in situ generate improved amount of hydrogen peroxide (H(2)O(2)) as coreactant and the enhancement of AuNPs to the ECL reaction of luminol-H(2)O(2). The experimental results demonstrated that the proposed immunosensor exhibited sensitive and stable response for the detection of α-1-fetoprotein (AFP), ranging from 0.0001 to 80 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (S/N=3). With excellent stability, sensitivity, selectivity and simplicity, the proposed luminol ECL immunosensor showed great potential in clinical applications. PMID:22088259

  17. Composition-Structure-Property Relations in Au35-68Cu49-15Al16-17 Shape Memory Thin Films

    NASA Astrophysics Data System (ADS)

    Buenconsejo, Pio John S.; Pfetzing-Micklich, Janine; Paulus, Michael; Sternemann, Christian; Ludwig, Alfred

    2016-03-01

    The phase transformation behaviour, structure and mechanical properties of Au35-68Cu49-15Al16-17 thin film shape memory alloys (SMA) have been investigated, with emphasis on the effects of Au content. The results revealed the underlying composition-structure-property relations. The thermal transformation hysteresis (Δ T) is wide (~55 K) for thin films with Au <50 at.%, while it is narrow (~15 K) for thin films with Au >50 at.%. This behaviour is correlated with the change in lattice constant of β-(Au-Cu-Al) (a β ), suggesting a structural origin on the Δ T behaviour. The mechanical properties, such as hardness and elastic modulus, varied in the range of 2-4 and 70-120 GPa, respectively. The optimum Au composition range for tuning the functional property is between 43 and 55 at.% Au, where the least amount of non-transforming phases form and Δ T can be tailored between 55 K (43 at.% Au) and 17 K (55 at.% Au). This is important for the development and practical application of Au-Cu-Al based thin film SMA.

  18. Transparent, conductive, and SERS-active Au nanofiber films assembled on an amphiphilic peptide template

    NASA Astrophysics Data System (ADS)

    Vinod, T. P.; Zarzhitsky, Shlomo; Morag, Ahiud; Zeiri, Leila; Levi-Kalisman, Yael; Rapaport, Hanna; Jelinek, Raz

    2013-10-01

    The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications.The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications. Electronic supplementary information (ESI) available: AFM analysis of the

  19. A Manual Retrieval System Using Computer Punch Cards for Qualitative Historical Research

    ERIC Educational Resources Information Center

    Feldman, Robert S.

    1973-01-01

    Detailed examples illustrate one of the possible applications for using the computer punch card for information retrieval in qualitative historical research, suggesting a time-saving method of organization for research data. (SM)

  20. Supramolecular functionalization and concomitant enhancement in properties of Au(25) clusters.

    PubMed

    Mathew, Ammu; Natarajan, Ganapati; Lehtovaara, Lauri; Häkkinen, Hannu; Kumar, Ravva Mahesh; Subramanian, Venkatesan; Jaleel, Abdul; Pradeep, Thalappil

    2014-01-28

    We present a versatile approach for tuning the surface functionality of an atomically precise 25 atom gold cluster using specific host-guest interactions between β-cyclodextrin (CD) and the ligand anchored on the cluster. The supramolecular interaction between the Au25 cluster protected by 4-(t-butyl)benzyl mercaptan, labeled Au25SBB18, and CD yielding Au25SBB18∩CDn (n = 1, 2, 3, and 4) has been probed experimentally using various spectroscopic techniques and was further analyzed by density functional theory calculations and molecular modeling. The viability of our method in modifying the properties of differently functionalized Au25 clusters is demonstrated. Besides modifying their optoelectronic properties, the CD moieties present on the cluster surface provide enhanced stability and optical responses which are crucial in view of the potential applications of these systems. Here, the CD molecules act as an umbrella which protects the fragile cluster core from the direct interaction with many destabilizing agents such as metal ions, ligands, and so on. Apart from the inherent biocompatibility of the CD-protected Au clusters, additional capabilities acquired by the supramolecular functionalization make such modified clusters preferred materials for applications, including those in biology. PMID:24313537

  1. EVENT STRUCTURE AT RHIC FROM P-P TO AU-AU.

    SciTech Connect

    TRAINOR,T.A.

    2004-03-15

    Several correlation analysis techniques are applied to p-p and Au-Au collisions at RHIC. Strong large-momentum-scale correlations are observed which can be related to local charge and momentum conservation during hadronization and to minijet (minimum-bias parton fragment) correlations.

  2. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  3. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces.

    PubMed

    Trzeciakiewicz, Hanna; Esteves-Villanueva, Jose; Soudy, Rania; Kaur, Kamaljit; Martic-Milne, Sanela

    2015-01-01

    The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6](3-/4-). The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers) in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides. PMID:26262621

  4. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    NASA Astrophysics Data System (ADS)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  5. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces

    PubMed Central

    Trzeciakiewicz, Hanna; Esteves-Villanueva, Jose; Soudy, Rania; Kaur, Kamaljit; Martic-Milne, Sanela

    2015-01-01

    The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3−/4−. The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers) in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides. PMID:26262621

  6. Identified particles in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Wosiek, Barbara; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The yields of identified particles have been measured at RHIC for Au+Au collisions at S=200 GeV using the PHOBOS spectrometer. The ratios of antiparticle to particle yields near mid-rapidity are presented. The first measurements of the invariant yields of charged pions, kaons and protons at very low transverse momenta are also shown.

  7. Observation of anisotropic event shapes and transverse flow in ultrarelativistic Au+Au collisions

    SciTech Connect

    Barrette, J.; Bellwied, R.; Bennett, S.; Braun-Munzinger, P.; Cleland, W.E.; Clemen, M.; Cole, J.; Cormier, T.M.; David, G.; Dee, J.; Dietzsch, O.; Drigert, M.; Gilbert, S.; Hall, J.R.; Hemmick, T.K.; Herrmann, N.; Hong, B.; Jiang, C.L.; Kwon, Y.; Lacasse, R.; Lukaszew, A.; Li, Q.; Ludlam, T.W.; McCorkle, S.; Mark, S.K.; Matheus, R.; O'Brien, E.; Panitkin, S.; Piazza, T.; Pruneau, C.; Rao, M.N.; Rosati, M.; daSilva, N.C.; Sedykh, S.; Sonnadara, U.; Stachel, J.; Takai, H.; Takagui, E.M.; Voloshin, S.; Wang, G.; Wessels, J.P.; Woody, C.L.; Xu, N.; Zhang, Y.; Zhang, Z.; Zou, C. Gesellschaft fuer Schwerionenforschung, Darmstadt Idaho National Engineering Laboratory, Idaho Falls, Idaho 83402 McGill Univesity, Montreal, H3A 2T8 University of Pittsburgh, Pittsburgh, Pennsylvania 15260 SUNY, Stony Brook, New York, 11794 University of Sao Paulo, Sao Paulo

    1994-11-07

    Event shapes for Au + Au collisions at 11.4 GeV/[ital c] per nucleon were studied over nearly the full solid angle with the E877 apparatus. The analysis was performed by Fourier expansion of azimuthal distributions of the transverse energy ([ital E][sub [ital T

  8. Multifunctional pDNA-Conjugated Polycationic Au Nanorod-Coated Fe3 O4 Hierarchical Nanocomposites for Trimodal Imaging and Combined Photothermal/Gene Therapy.

    PubMed

    Hu, Yang; Zhou, Yiqiang; Zhao, Nana; Liu, Fusheng; Xu, Fu-Jian

    2016-05-01

    It is very desirable to design multifunctional nanocomposites for theranostic applications via flexible strategies. The synthesis of one new multifunctional polycationic Au nanorod (NR)-coated Fe3 O4 nanosphere (NS) hierarchical nanocomposite (Au@pDM/Fe3 O4 ) based on the ternary assemblies of negatively charged Fe3 O4 cores (Fe3 O4 -PDA), polycation-modified Au nanorods (Au NR-pDM), and polycations is proposed. For such nanocomposites, the combined near-infrared absorbance properties of Fe3 O4 -PDA and Au NR-pDM are applied to photoacoustic imaging and photothermal therapy. Besides, Fe3 O4 and Au NR components allow the nanocomposites to serve as MRI and CT contrast agents. The prepared positively charged Au@pDM/Fe3 O4 also can complex plasmid DNA into pDNA/Au@pDM/Fe3 O4 and efficiently mediated gene therapy. The multifunctional applications of pDNA/Au@pDM/Fe3 O4 nanocomposites in trimodal imaging and combined photothermal/gene therapy are demonstrated using a xenografted rat glioma nude mouse model. The present study demonstrates that the proper assembly of different inorganic nanoparticles and polycations is an effective strategy to construct new multifunctional theranostic systems. PMID:26996155

  9. A 60-nm-thick enhancement mode In0.65Ga0.35As/InAs/In0.65Ga0.35As high-electron-mobility transistor fabricated using Au/Pt/Ti non-annealed ohmic technology for low-power logic applications

    NASA Astrophysics Data System (ADS)

    Aizad Fatah, Faiz; Lin, Yueh-Chin; Liu, Ren-Xuan; Yang, Kai-Chun; Lin, Tai-We; Hsu, Heng-Tung; Yang, Jung-Hsiang; Miyamoto, Yasuyuki; Iwai, Hiroshi; Calvin Hu, Chenming; Salahuddin, Sayeef; Chang, Edward Yi

    2016-02-01

    A 60-nm-thick E-mode In0.65Ga0.35As/InAs/In0.65Ga0.35As high-electron-mobility transistor (HEMT) was successfully fabricated and evaluated by using Au/Pt/Ti-based non-annealed ohmic technology for high-speed and low-power logic applications. The device exhibited a minimal SS of 69 mV/decade, a lower DIBL of 30 mV/V, an ION/IOFF ratio above 1.2 × 104 at VDS = 0.5 V and a high fT of 378 GHz and fmax of 214 GHz at VDS = 1.0 V. These results demonstrate that non-annealed ohmic contacts can be used for fabricating E-mode In0.65Ga0.35As/InAs/In0.65Ga0.35As HEMTs with excellent electrical characteristics. The fabricated HEMTs are likely to find use in future high-speed and low-power logic applications.

  10. The role of plasmons and interband transitions in the color of AuAl2, AuIn2, and AuGa2

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Birt, K.; Koch, C. T.; Supansomboon, S.; Cortie, M. B.

    2011-09-01

    First principles calculations of the optical properties of the intermetallic compounds AuAl2, AuIn2, and AuGa2 have been performed. Analysis of the dielectric functions showed that AuAl2 is unique because a bulk plasmon is seen in the optical region and contributes to the purple color of this material. An experimental electron energy-loss spectrum showed excellent agreement with the theoretical prediction and confirmed the presence of the bulk plasmon.

  11. Breastfeeding Twins: A Qualitative Study

    PubMed Central

    Alvur, Tuncay Muge; Kose, Dilek; Nemut, Tijen

    2013-01-01

    The purpose of this qualitative research was to explore the needs and difficulties of mothers who had multiple babies at Sakarya County by focusing on their breastfeeding experience. Ten mothers who gave birth to multiple infants participated in the study voluntarily. The framework method of data analysis was applied systematically both within and across cases, with categories and themes identified by reading transcripts of interviews. Major themes generated from focus narrative interviews are described. These themes are: willingness of mothers to breastfeed and continue, management of breastfeeding, use of pacifier, daily life, ınstructions of healthcare personnel, and advices from practice of experienced mothers. This study showed that women were aware of the importance of mother's milk for their babies. They all, somehow, made intensive efforts to breastfeed their twins. Women who expect and/or have multiple babies need much more support and guidance, which may include advice for nutritional and daily care. PMID:24592592

  12. Jets and dijets in Au+Au and p+p collisions at RHIC

    SciTech Connect

    Hardtke, D.; STAR Collaboration

    2002-12-09

    Recent data from RHIC suggest novel nuclear effects in the production of high p{sub T} hadrons. We present results from the STAR detector on high p{sub T} angular correlations in Au+Au and p+p collisions at {radical}S = 200 GeV/c. These two-particle angular correlation measurements verify the presence of a partonic hard scattering and fragmentation component at high p{sub T} in both central and peripheral Au+Au collisions. When triggering on a leading hadron with p{sub T}>4 GeV, we observe a quantitative agreement between the jet cone properties in p+p and all centralities of Au+Au collisions. This quantitative agreement indicates that nearly all hadrons with p{sub T}>4 GeV/c come from jet fragmentation and that jet fragmentation properties are not substantially modified in Au+Au collisions. STAR has also measured the strength of back-to-back high p{sub T} charged hadron correlations, and observes a small suppression of the back-to-back correlation strength in peripheral collisions, and a nearly complete disappearance o f back-to-back correlations in central Au+Au events. These phenomena, together with the observed strong suppression of inclusive yields and large value of elliptic flow at high p{sub T}, are consistent with a model where high p{sub T} hadrons come from partons created near the surface of the collision region, and where partons that originate or propagate towards the center of the collision region are substantially slowed or completely absorbed.

  13. Enhancing near IR luminescence of thiolate Au nanoclusters by thermo treatments and heterogeneous subcellular distributions

    NASA Astrophysics Data System (ADS)

    Conroy, Cecil V.; Jiang, Jie; Zhang, Chen; Ahuja, Tarushee; Tang, Zhenghua; Prickett, Cherish A.; Yang, Jenny J.; Wang, Gangli

    2014-06-01

    A five-to-ten fold enhancement, up to ca. 5-10% quantum efficiency, of near IR luminescence from monothiolate protected gold nanoclusters was achieved by heating in the presence of excess ligand thiols. An emission maximum in the 700-900 nm range makes these Au nanoclusters superior for bioimaging applications over other emissions centered below 650 nm due to reduced background interference, albeit visible emissions could have higher quantum efficiency. The heating procedure is shown to be effective to improve the luminescence of Au nanoclusters synthesized under a variety of conditions using two types of monothiols: mercaptosuccinic acid and tiopronin. Therefore, this heating method is believed to be a generalizable approach to improve the near IR luminescence of aqueous soluble Au nanoclusters, which enables better bioimaging applications. The high quantum yield is found relatively stable over a wide pH range. PEGylation of the Au nanoclusters reduces their quantum efficiency but improves their permeation into the cytoplasm. Interestingly, z-stack confocal analysis clearly reveals the presence of Au nanoclusters inside the cell nucleus in single cell imaging. The finding addresses controversial literature reports and demonstrates the internalization and heterogeneous subcellular distributions, particularly inside the nucleus. The high luminescence intensity, small overall dimension, cell and nuclear distribution, chemical stability and low-to-non toxicity make these Au nanoclusters promising probes for broad cell dynamics and imaging applications.A five-to-ten fold enhancement, up to ca. 5-10% quantum efficiency, of near IR luminescence from monothiolate protected gold nanoclusters was achieved by heating in the presence of excess ligand thiols. An emission maximum in the 700-900 nm range makes these Au nanoclusters superior for bioimaging applications over other emissions centered below 650 nm due to reduced background interference, albeit visible emissions

  14. Interaction of HNCO with Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Farkas, A. P.; Berkó, A.; Solymosi, F.

    2012-08-01

    The surface chemistry of isocyanic acid, HNCO, and its dissociation product, NCO, was studied on clean, O-dosed and Ar ion bombarded Au(111) surfaces. The techniques used are high resolution energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). The structure of Ar ion etched surface is explored by scanning tunneling microscopy (STM). HNCO adsorbs molecularly on Au(111) surface at 100 K yielding strong losses at 1390, 2270 and 3230 cm- 1. The weakly adsorbed HNCO desorbs in two peaks characterized by Tp = 130 and 145 K. The dissociation of the chemisorbed HNCO occurs at 150 K to give NCO species characterized by a vibration at 2185 cm- 1. The dissociation process is facilitated by the presence of preadsorbed O and by defect sites on Au(111) produced by Ar ion bombardment. In the latter case the loss feature of NCO appeared at 2130 cm- 1. Isocyanate on Au(111) surface was found to be more stable than on the single crystal surfaces of Pt-group metals. Results are compared with those obtained on supported Au catalysts.

  15. Isolation of atomically precise mixed ligand shell PdAu24 clusters.

    PubMed

    Sels, Annelies; Barrabés, Noelia; Knoppe, Stefan; Bürgi, Thomas

    2016-06-01

    Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1,1-binaphthyl-2,2-dithiol) leads to species of composition PdAu24(2-PET)18-2x(BINAS)x due to ligand exchange reactions. The BINAS adsorbs in a specific mode that bridges the apex and one core site of two adjacent S(R)-Au-S(R)-Au-S(R) units. Species with different compositions of the ligand shell can be separated by HPLC. Furthermore, site isomers can be separated. For the cluster with exactly one BINAS in its ligand shell only one isomer is expected due to the symmetry of the cluster, which is confirmed by High-Performance Liquid Chromatography (HPLC). Addition of a second BINAS to the ligand shell leads to several isomers. In total six distinguishable isomers are possible for PdAu24(2-PET)14(BINAS)2 including two pairs of enantiomers concerning the adsorption pattern. At least four distinctive isomers are separated by HPLC. Calculations indicate that one of the six possibilities is energetically disfavoured. Interestingly, diastereomers, which have an enantiomeric relationship concerning the adsorption pattern of chiral BINAS, have significantly different stabilities. The relative intensity of the observed peaks in the HPLC does not reflect the statistical weight of the different isomers. This shows, as supported by the calculations, that the first adsorbed BINAS molecule influences the adsorption of the second incoming BINAS ligand. In addition, experiments with the corresponding Pt doped gold cluster reveal qualitatively the same behaviour, however with slightly different relative abundances of the corresponding isomers. This finding points towards the influence of electronic effects on the isomer distribution. Even for clusters containing more than two BINAS ligands a limited number of isomers were found, which is in contrast to the corresponding situation for monothiols, where the number of possible isomers is much larger. PMID:27180647

  16. Au/Si Hetero-Nanorod-based Biosensor for Salmonella Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and biosecurity measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by...

  17. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    EPA Science Inventory

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  18. Au/Si nanorod-based biosensor for food pathogen detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and quality measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by gla...

  19. Au/Si Hetero-nanorod-based Biosensor for Salmonella Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and biosecurity measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by glancing angle depo...

  20. Synthesis and characterization in AuCu–Si nanostructures

    SciTech Connect

    Novelo, T.E.; Amézaga-Madrid, P.; Maldonado, R.D.; Oliva, A.I.; Alonzo-Medina, G.M.

    2015-03-15

    Au/Cu bilayers with different Au:Cu concentrations (25:75, 50:50 and 75:25 at.%) were deposited on Si(100) substrates by thermal evaporation. The thicknesses of all Au/Cu bilayers were 150 nm. The alloys were prepared by thermal diffusion into a vacuum oven with argon atmosphere at 690 K during 1 h. X-ray diffraction analysis revealed different phases of AuCu and CuSi alloys in the samples after annealing process. CuSi alloys were mainly obtained for 25:75 at.% samples, meanwhile the AuCuII phase dominates for samples prepared with 50:50 at.%. Additionally, the Au:Cu alloys with 75:25 at.%, produce Au{sub 2}Cu{sub 3} and Au{sub 3}Cu phases. The formed alloys were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to study the morphology and the elemental concentration of the formed alloys. - Highlights: • AuCu/Si alloy thin films were prepared by thermal diffusion. • Alloys prepared with 50 at.% of Au produce the AuCuII phase. • Alloys prepared with 75 at.% of Au produce Au{sub 3}Cu and Au{sub 2}Cu{sub 3} phases. • All alloys present diffusion of Si and Cu through the CuSi alloy formation.

  1. On the nature of chemical bonding in the all-metal aromatic [Sb3Au3Sb3](3-) sandwich complex.

    PubMed

    You, Xue-Rui; Tian, Wen-Juan; Li, Da-Zhi; Wang, Ying-Jin; Li, Rui; Feng, Lin-Yan; Zhai, Hua-Jin

    2016-05-21

    In a recent communication, an all-metal aromatic sandwich [Sb3Au3Sb3](3-) was synthesized and characterized. We report herein a density-functional theory (DFT) study on the chemical bonding of this unique cluster, which makes use of a number of computational tools, including the canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), Wiberg bond index, and orbital composition analyses. The 24-electron, triangular prismatic sandwich is intrinsically electron-deficient, being held together via six Sb-Sb, three Au-Au, and six Sb-Au links. A standard, qualitative bonding analysis suggests that all CMOs are primarily located on the three Sb3/Au3/Sb3 layers, three Au 6s based CMOs are fully occupied, and the three extra charges are equally shared by the two cyclo-Sb3 ligands. This bonding picture is referred to as the zeroth order model, in which the cluster can be formally formulated as [Sb3(1.5+)Au3(3-)Sb3(1.5+)](3-) or [Sb3(0)Au3(3-)Sb3(0)]. However, the system is far more complex and covalent than the above picture. Seventeen CMOs out of 33 in total involve remarkable Sb → Au electron donation and Sb ← Au back-donation, which are characteristic of covalent bonding and effectively redistribute electrons from the Sb3 and Au3 layers to the interlayer edges. This effect collectively leads to three Sb-Au-Sb three-center two-electron (3c-2e) σ bonds as revealed in the AdNDP analyses, despite the fact that not a single such bond can be identified from the CMOs. Orbital composition analyses for the 17 CMOs allow a quantitative understanding of how electron donation and back-donation redistribute the charges within the system from the formal Sb3(0)/Au3(3-) charge states in the zeroth order model to the effective Sb3(1.5-)/Au3(0) charge states, the latter being revealed from the natural bond orbital analysis. PMID:27124821

  2. Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at sNN=62 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Anson, C. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Beavis, D. R.; Behera, N. K.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bueltmann, S.; Bunzarov, I.; Burton, T. P.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Daugherity, M. S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Didenko, L.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Estienne, M.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Geurts, F.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O. G.; Grosnick, D.; Gupta, A.; Gupta, S.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Huang, B.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, W. W.; Jena, C.; Joseph, J.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kettler, D.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Kizka, V.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Lukashov, E. V.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Morozov, D. A.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nayak, T. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pei, H.; Peitzmann, T.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Powell, C. B.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schaub, J.; Schmah, A. M.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Witzke, W.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, J. B.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.

    2012-12-01

    We present two-dimensional (2D) two-particle angular correlations measured with the STAR detector on relative pseudorapidity η and azimuth ϕ for charged particles from Au-Au collisions at sNN=62 and 200 GeV with transverse momentum pt≥0.15 GeV/c, |η|≤1, and 2π in azimuth. Observed correlations include a same-side (relative azimuth <π/2) 2D peak, a closely related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until midcentrality, where a transition to a qualitatively different centrality trend occurs within one 10% centrality bin. Above the transition point the number of same-side and away-side correlated pairs increases rapidly relative to binary-collision scaling, the η width of the same-side 2D peak also increases rapidly (η elongation), and the ϕ width actually decreases significantly. Those centrality trends are in marked contrast with conventional expectations for jet quenching in a dense medium. The observed centrality trends are compared to perturbative QCD predictions computed in hijing, which serve as a theoretical baseline, and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium predicted by theoretical calculations and phenomenological models. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy-ion collision scenarios that invoke rapid parton thermalization. If the collision system turns out to be effectively opaque to few-GeV partons the present observations would be inconsistent with the minijet picture discussed here.

  3. Luminescent, bimetallic AuAg alloy quantum clusters in protein templates

    NASA Astrophysics Data System (ADS)

    Mohanty, Jyoti Sarita; Xavier, P. Lourdu; Chaudhari, Kamalesh; Bootharaju, M. S.; Goswami, N.; Pal, S. K.; Pradeep, T.

    2012-06-01

    We report the synthesis of luminescent AuAg alloy quantum clusters (QCs) in bovine serum albumin (BSA), for the first time, with experimentally determined atomic composition. Mixing of the as-synthesized protein-protected Au and Ag clusters resulted in the formation of alloy AuAg clusters within the BSA. Mass spectrometric analysis of the product of a 1 : 1 molar ratio reaction mixture of AuQC@BSA and AgQC@BSA suggested that the alloy clusters could be Au38-xAgx@BSA. Further analyses by standard techniques revealed that the alloy cluster core of ~1.2 nm diameter is composed of nearly zero valent Au and Ag atoms that exhibit distinctly different steady state and time resolved excited state luminescence profiles compared to the parent clusters. Tuning of the alloy composition was achieved by varying the molar ratio of the parent species in the reaction mixture and compositional changes were observed by mass spectrometry. In another approach, mixing of Au3+ ions with the as-synthesized AgQC@BSA also resulted in the formation of alloy clusters through galvanic exchange reactions. We believe that alloy clusters with the combined properties of the constituents in versatile protein templates would have potential applications in the future. The work presents interesting aspects of the reactivity of the protein-protected clusters.We report the synthesis of luminescent AuAg alloy quantum clusters (QCs) in bovine serum albumin (BSA), for the first time, with experimentally determined atomic composition. Mixing of the as-synthesized protein-protected Au and Ag clusters resulted in the formation of alloy AuAg clusters within the BSA. Mass spectrometric analysis of the product of a 1 : 1 molar ratio reaction mixture of AuQC@BSA and AgQC@BSA suggested that the alloy clusters could be Au38-xAgx@BSA. Further analyses by standard techniques revealed that the alloy cluster core of ~1.2 nm diameter is composed of nearly zero valent Au and Ag atoms that exhibit distinctly different

  4. Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai

    2015-12-01

    Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to

  5. Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering.

    PubMed

    Wei, Xinyu; Fan, Qikui; Liu, Hongpo; Bai, Yaocai; Zhang, Lei; Zheng, Haoquan; Yin, Yadong; Gao, Chuanbo

    2016-08-25

    Plasmonic noble metal nanocrystals with interior nanogaps have attracted great attention in surface-enhanced Raman scattering (SERS) applications due to the presence of built-in hotspots. Herein, we report a synthesis route to holey Au-Ag alloy nanoplates by controlled galvanic replacement with Ag nanoplates as the sacrificial template, a sulfite-coordinated Au(i) salt as the Au source, and polyvinylpyrrolidone (PVP) as the capping agent. PVP helps regulate the anisotropic growth of nanopores on the Ag nanoplates to afford a highly holey nanostructure, and the monovalent Au(i) salt plays a critical role in stabilizing these holey nanoplates by rapidly enriching Au in the alloy nanostructures. Numerical simulations and experimental results suggest that these holey Au-Ag alloy nanoplates possess enormous internal hotspots for high sensitivity in the SERS analysis, and high stability for excellent reliability of the analysis under many harsh conditions. We believe that this strategy is potentially applicable to the synthesis of many other types of plasmonic nanostructures with inherent nanogaps for many sensing and imaging applications. PMID:27524663

  6. Au nanoparticles films used in biological sensing

    NASA Astrophysics Data System (ADS)

    Rosales Pérez, M.; Delgado Macuil, R.; Rojas López, M.; Gayou, V. L.; Sánchez Ramírez, J. F.

    2009-05-01

    Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm-1 due to surface enhancement infrared absorption.

  7. Increasingly mobile: How new technologies can enhance qualitative research

    PubMed Central

    Moylan, Carrie Ann; Derr, Amelia Seraphia; Lindhorst, Taryn

    2015-01-01

    Advances in technology, such as the growth of smart phones, tablet computing, and improved access to the internet have resulted in many new tools and applications designed to increase efficiency and improve workflow. Some of these tools will assist scholars using qualitative methods with their research processes. We describe emerging technologies for use in data collection, analysis, and dissemination that each offer enhancements to existing research processes. Suggestions for keeping pace with the ever-evolving technological landscape are also offered. PMID:25798072

  8. Meta-Study as Diagnostic: Toward Content Over Form in Qualitative Synthesis.

    PubMed

    Frost, Julia; Garside, Ruth; Cooper, Chris; Britten, Nicky

    2016-02-01

    Having previously conducted qualitative syntheses of the diabetes literature, we wanted to explore the changes in theoretical approaches, methodological practices, and the construction of substantive knowledge which have recently been presented in the qualitative diabetes literature. The aim of this research was to explore the feasibility of synthesizing existing qualitative syntheses of patient perspectives of diabetes using meta-study methodology. A systematic review of qualitative literature, published between 2000 and 2013, was conducted. Six articles were identified as qualitative syntheses. The meta-study methodology was used to compare the theoretical, methodological, analytic, and synthetic processes across the six studies, exploring the potential for an overarching synthesis. We identified that while research questions have increasingly concentrated on specific aspects of diabetes, the focus on systematic review processes has led to the neglect of qualitative theory and methods. This can inhibit the production of compelling results with meaningful clinical applications. Although unable to produce a synthesis of syntheses, we recommend that researchers who conduct qualitative syntheses pay equal attention to qualitative traditions and systematic review processes, to produce research products that are both credible and applicable. PMID:26667881

  9. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  10. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  11. Conducting shrinkable nanocomposite based on au-nanoparticle implanted plastic sheet: tunable thermally induced surface wrinkling.

    PubMed

    Greco, Francesco; Bellacicca, Andrea; Gemmi, Mauro; Cappello, Valentina; Mattoli, Virgilio; Milani, Paolo

    2015-04-01

    A thermally shrinkable and conductive nanocomposite material is prepared by supersonic cluster beam implantation (SCBI) of neutral Au nanoparticles (Au NPs) into a commercially available thermo-retractable polystyrene (PS) sheet. Micronanowrinkling is obtained during shrinking, which is studied by means of SEM, TEM and AFM imaging. Characteristic periodicity is determined and correlated with nanoparticle implantation dose, which permits us to tune the topographic pattern. Remarkable differences emerged with respect to the well-known case of wrinkling of bilayer metal-polymer. Wrinkled composite surfaces are characterized by a peculiar multiscale structuring that promises potential technological applications in the field of catalytic surfaces, sensors, biointerfaces, and optics, among others. PMID:25811100

  12. The role of interfaces in the magnetoresistance of Au/Fe/Au/Fe/GaAs(001)

    SciTech Connect

    Enders, A.; Monchesky, T. L.; Myrtle, K.; Urban, R.; Heinrich, B.; Kirschner, J.; Zhang, X.-G.; Butler, W. H.

    2001-06-01

    The electron transport and magnetoresistance (MR) were investigated in high quality crystalline epitaxial Fe(001) and Au(001) films and exchange coupled Au/Fe/Au/Fe/GaAs(001) trilayer structures. Fits to the experimental data were based on the semiclassical Boltzmann equation, which incorporates the electronic properties obtained from first-principles local density functional calculations. The fits require a surprisingly high asymmetry for the spin dependent electron lifetimes in Fe, {tau}{sup {down_arrow}}/{tau}{sup {up_arrow}}=10 at room temperature. Despite the large atomic terraces at the Au/vacuum and Fe/GaAs interfaces the scattering at the outer interfaces was found to be diffuse. The origin of MR in Au/Fe/Au/Fe/GaAs(001) structures is due to electron channeling in the Au spacer layer. The measured MR is consistent with the diffusivity parameters s{sup {up_arrow}}=0.55, s{sup {down_arrow}}=0.77 at the metal{endash}metal interfaces. {copyright} 2001 American Institute of Physics.

  13. Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka.

    PubMed

    Liaw, Jiunn-Woei; Chen, Huang-Chih; Kuo, Mao-Kuen

    2013-01-01

    This study theoretically investigates Fano resonances and dips of an Au-SiO2-Au nanomatryoshka that is excited by a nearby electric dipole. An analytical solution of dyadic Green's functions is used to analyze the radiative and nonradiative power spectra of a radial dipole in the proximity of a nanomatryoshka. From these spectra, the plasmon modes and Fano resonances that accompany the Fano dips are identified. In addition, the scattering and absorption spectra of a nanomatryoshka that is illuminated by a plane wave are investigated to confirm these modes and Fano dips. Our results reveal that a Fano dip splits each of the dipole and quadrupole modes into bonding and anti-bonding modes. The Fano dip and resonance result from the destructive interference of the plasmon modes of the Au shell and the Au core. The Fano factors that are obtained from the nonradiative power spectra of the Au shell and the Au core of a nanomatryoshka are in accordance with those obtained from the absorption cross section spectra. Moreover, these Fano factors increase as the plasmonic coupling of the Au shell with the core increases for both dipole and quadrupole modes. PMID:24206789

  14. Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka

    PubMed Central

    2013-01-01

    This study theoretically investigates Fano resonances and dips of an Au-SiO2-Au nanomatryoshka that is excited by a nearby electric dipole. An analytical solution of dyadic Green's functions is used to analyze the radiative and nonradiative power spectra of a radial dipole in the proximity of a nanomatryoshka. From these spectra, the plasmon modes and Fano resonances that accompany the Fano dips are identified. In addition, the scattering and absorption spectra of a nanomatryoshka that is illuminated by a plane wave are investigated to confirm these modes and Fano dips. Our results reveal that a Fano dip splits each of the dipole and quadrupole modes into bonding and anti-bonding modes. The Fano dip and resonance result from the destructive interference of the plasmon modes of the Au shell and the Au core. The Fano factors that are obtained from the nonradiative power spectra of the Au shell and the Au core of a nanomatryoshka are in accordance with those obtained from the absorption cross section spectra. Moreover, these Fano factors increase as the plasmonic coupling of the Au shell with the core increases for both dipole and quadrupole modes. PMID:24206789

  15. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF. PMID:26035249

  16. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells.

    PubMed

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2014-09-21

    Gold nanoparticles with varying sizes were prepared by the spray process under an electric field (DC voltages of 0 V and 1 kV applied to the nozzle) for studying their role in inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag). The application of electric field during the spray process resulted in a smaller size (35 nm as compared to 70 nm without the electric field) of the nanoparticles with more uniform distribution. This gave rise to a difference in the surface plasmon resonance (SPR) effect created by the gold nanoparticles (Au NPs), which then affected the solar cell performance. The photovoltaic performances of plasmonic inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag) using spray-deposited Au and ZnO layers (both at 1 kV) showed improved efficiency. Fast exciton quenching in the P3HT:PCBM layer was achieved by using a spray-deposited Au layer in between ITO and ZnO layers. The absorption spectra and internal power conversion efficiency (IPCE) curve showed that the Au nanoparticles provide significant plasmonic broadband light absorption enhancement which resulted in the enhancement of the JSC value. Maximum efficiency of 3.6% was achieved for the inverted organic solar cell (IOSC) with an exceptionally high short circuit current density of ∼15 mA cm(-2) which is due to the additional photon absorption and the corresponding increase observed in the IPCE spectrum. The spray technique can be easily applied for the direct formation of Au nanoparticles in the fabrication of IOSC with improved performance over a large area. PMID:25100621

  17. Tailoring the Electronic and Catalytic Properties of Au25 Nanoclusters via Ligand Engineering.

    PubMed

    Li, Gao; Abroshan, Hadi; Liu, Chong; Zhuo, Shuo; Li, Zhimin; Xie, Yan; Kim, Hyung J; Rosi, Nathaniel L; Jin, Rongchao

    2016-08-23

    To explore the electronic and catalytic properties of nanoclusters, here we report an aromatic-thiolate-protected gold nanocluster, [Au25(SNap)18](-) [TOA](+), where SNap = 1-naphthalenethiolate and TOA = tetraoctylammonium. It exhibits distinct differences in electronic and catalytic properties in comparison with the previously reported [Au25(SCH2CH2Ph)18](-), albeit their skeletons (i.e., Au25S18 framework) are similar. A red shift by ∼10 nm in the HOMO-LUMO electronic absorption peak wavelength is observed for the aromatic-thiolate-protected nanocluster, which is attributed to its dilated Au13 kernel. The unsupported [Au25(SNap)18](-) nanoclusters show high thermal and antioxidation stabilities (e.g., at 80 °C in the present of O2, excess H2O2, or TBHP) due to the effects of aromatic ligands on stabilization of the nanocluster's frontier orbitals (HOMO and LUMO). Furthermore, the catalytic activity of the supported Au25(SR)18/CeO2 (R = Nap, Ph, CH2CH2Ph, and n-C6H13) is examined in the Ullmann heterocoupling reaction between 4-methyl-iodobenzene and 4-nitro-iodobenzene. Results show that the activity and selectivity of the catalysts are largely influenced by the chemical nature of the protecting thiolate ligands. This study highlights that the aromatic ligands not only lead to a higher conversion in catalytic reaction but also markedly increase the yield of the heterocoupling product (4-methyl-4'-nitro-1,1'-biphenyl). Through a combined approach of experiment and theory, this study sheds light on the structure-activity relationships of the Au25 nanoclusters and also offers guidelines for tailoring nanocluster properties by ligand engineering for specific applications. PMID:27442235

  18. Behaviour of `free-standing' hollow Au nanocages at finite temperatures: a BOMD study

    NASA Astrophysics Data System (ADS)

    Joshi, Krati; Krishnamurty, Sailaja

    2015-10-01

    Finite-temperature behaviour of a hollow golden cage (HGC) plays a crucialrole in its potential applications as a catalyst, drug delivery agent, contrasting agent and so on. This physico-chemical property of HGCs is not well understood so far. In that context, Born-Oppenheimer molecular dynamics (BOMD) simulations are performed on a well-known 'free-standing' HGC. The cluster considered in this study is the ground state Au18 cluster (a cage with a diameter of about >5.5 Å). The results thus obtained are compared with the BOMD simulation results reported earlier on Au32 icosahedron cage, a conformation with a diameter of nearly. The sphericity of both the clusters is studied using a shape deformation parameter as a function of time and temperature. These results are supplemented by radial distribution function at various temperatures. The observations and analysis of results indicate that, both the clusters retain an HGC conformation from 300 to 400 K, admitting structural fluxionality by the Au18 cluster. Remarkably, the Au18 cluster is able to maintain its hollowness and sphericity up to a high temperature of 1000 K. Underlying structural and electronic properties influencing the individualistic behaviour of cages are highlighted. Composition of the frontier molecular orbitals and the charge distribution play a crucial role in the finite-temperature behaviour of the Au cages. The conclusions are supplemented by supporting calculations on another degenerate ground state Au18 hollow cage and a well-known pyramidal Au18 cage at 300 and 400 K.

  19. Photoreduction of Au(III) to form Au(0) nanoparticles using ferritin as a photocatalyst

    NASA Astrophysics Data System (ADS)

    Hilton, Robert J.; Keyes, Jeremiah D.; Watt, Richard K.

    2010-04-01

    Gold metal nanoparticles have applications in bio sensing technology, nano-tube formation, and cancer therapy. We report attempts to synthesize gold nanoparticles within the ferritin cavity (8 nm) or to use ferritin as a scaffold for coating gold on the outside surface (12 nm). The intrinsic iron oxide core of ferritin is a semi-conductor and light can excite electrons to a conduction band producing a powerful reductant when a sacrificial electron donor fills the electron hole. We present a method using ferritin to photo chemically reduce Au(III) to metallic gold nanoparticles. During initial studies we observed that the choice of buffers influenced the products that formed as evidenced by a red product formed in TRIS and a purple produce formed in MOPS. Gold nanoparticles formed in MOPS buffer in the absence of illumination have diameters of 15-30 nm whereas illumination in TRIS buffer produced 5-10 nm gold nanoparticles. Increases in temperature cause the gold nanoparticles to form more rapidly. Chemical reduction and photochemical reduction methods have very different reaction profiles with photochemical reduction possessing a lag phase prior to the formation of gold nanoparticles.

  20. Fabrication of segmented Au/Co/Au nanowires: insights in the quality of Co/Au junctions.

    PubMed

    Jang, Bumjin; Pellicer, Eva; Guerrero, Miguel; Chen, Xiangzhong; Choi, Hongsoo; Nelson, Bradley J; Sort, Jordi; Pané, Salvador

    2014-08-27

    Electrodeposition is a versatile method, which enables the fabrication of a variety of wire-like nanoarchitectures such as nanowires, nanorods, and nanotubes. By means of template-assisted electrodeposition, segmented Au/Co/Au nanowires are grown in anodic aluminum oxide templates from two different electrolytes. To tailor the properties of the cobalt segments, several electrochemical conditions are studied as a function of current density, pulse deposition, and pH. The morphology, crystal structure, and magnetic properties are accordingly investigated. Changes in the deposition conditions affect the cobalt electrocrystallization process directly. Cobalt tends to crystallize mainly in the hexagonal close-packed structure, which is the reason cobalt might not accommodate satisfactorily on the face-centered cubic Au surface or vice versa. We demonstrate that by modifying the electrolyte and the applied current densities, changes in the texture and the crystalline structure of cobalt lead to a good quality connection between dissimilar segments. In particular, lowering the bath pH, or using pulse plating at a high overpotential, produces polycrystalline fcc Co and thus well-connected Co/Au bimetallic junctions with smooth interface. These are crucial factors to be carefully considered taking into account that nanowires are potential building blocks in micro- and nanoelectromechanical systems. PMID:25025496