Mesh quality control for multiply-refined tetrahedral grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1994-01-01
A new algorithm for controlling the quality of multiply-refined tetrahedral meshes is presented in this paper. The basic dynamic mesh adaption procedure allows localized grid refinement and coarsening to efficiently capture aerodynamic flow features in computational fluid dynamics problems; however, repeated application of the procedure may significantly deteriorate the quality of the mesh. Results presented show the effectiveness of this mesh quality algorithm and its potential in the area of helicopter aerodynamics and acoustics.
Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality
Wang, Jun; Yu, Zeyun
2012-01-01
Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is provably guaranteed: the smallest dihedral angle is always greater than 5.71°. The meshes generated by our method are not only adaptive from the interior to the boundary, but also feature-sensitive on the surface with denser elements in high-curvature regions where geometric feature most likely reside. A variety of experimental results are presented to demonstrate the effectiveness and robustness of this algorithm. PMID:22328787
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation.
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-12-01
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing "bad" triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-01-01
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing “bad” triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522
Lattice Cleaving: Conforming Tetrahedral Meshes of Multimaterial Domains with Bounded Quality
Bronson, Jonathan R.; Levine, Joshua A.; Whitaker, Ross T.
2013-01-01
Summary We introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, in order to reduce element counts in regions of homogeneity. PMID:25309969
Optimization of tetrahedral meshes
Briere De L`Isle, E.; George, P.L.
1995-12-31
Finite element computations are all the more exact if we start from {open_quotes}good{close_quotes} elements. We are interested in meshes where the elements are tetrahedra and we shall develop utilities allowing us to improve the quality of these meshes.
Kuprat, A.; George, D.
1998-12-01
When modeling deformation of geometrically complex regions, unstructured tetrahedral meshes provide the flexibility necessary to track interfaces as they change geometrically and topologically. In the class of time-dependent simulations considered in this paper, multimaterial interfaces are represented by sets of triangular facets, and motion of the interfaces is controlled by physical considerations. The motion of interior points in the conforming tetrahedral mesh (i.e., points not on interfaces) is arbitrary and may be chosen to produce good element shapes. In the context of specified boundary motion driven by physical considerations, they have found that a rather large glossary of mesh changes is required to allow the simulation to survive all the transitions of interface geometry and topology that occur during time evolution. This paper will describe mesh changes required to maintain good element quality as the geometry evolves, as well as mesh changes required to capture changes i n topology that occur when material regions collapse or pinch off. This paper will present a detailed description of mesh changes necessary for capturing the aforementioned geometrical and topological changes, as implemented in the code GRAIN3D, and will provide examples from a metallic grain growth simulation in which the normal velocity of the grain boundary is proportional to mean curvature.
Lattice Cleaving: A Multimaterial Tetrahedral Meshing Algorithm with Guarantees
Bronson, Jonathan; Levine, Joshua A.; Whitaker, Ross
2014-01-01
We introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, to reduce element counts in regions of homogeneity. Additionally, we provide proofs showing that both element quality and geometric fidelity are bounded using this approach. PMID:24356365
Details of tetrahedral anisotropic mesh adaptation
NASA Astrophysics Data System (ADS)
Jensen, Kristian Ejlebjerg; Gorman, Gerard
2016-04-01
We have implemented tetrahedral anisotropic mesh adaptation using the local operations of coarsening, swapping, refinement and smoothing in MATLAB without the use of any for- N loops, i.e. the script is fully vectorised. In the process of doing so, we have made three observations related to details of the implementation: 1. restricting refinement to a single edge split per element not only simplifies the code, it also improves mesh quality, 2. face to edge swapping is unnecessary, and 3. optimising for the Vassilevski functional tends to give a little higher value for the mean condition number functional than optimising for the condition number functional directly. These observations have been made for a uniform and a radial shock metric field, both starting from a structured mesh in a cube. Finally, we compare two coarsening techniques and demonstrate the importance of applying smoothing in the mesh adaptation loop. The results pertain to a unit cube geometry, but we also show the effect of corners and edges by applying the implementation in a spherical geometry.
Tetrahedral mesh improvement via optimization of the element condition number
FREITAG,LORI A.; KNUPP,PATRICK
2000-05-22
The authors present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, they formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. They review the optimization techniques used with each objective function and presents experimental results that demonstrate the effectiveness of the mesh improvement methods. They show that a combined optimization approach that uses both objective functions obtains the best-quality meshes for several complex geometries.
Parallel tetrahedral mesh refinement with MOAB.
Thompson, David C.; Pebay, Philippe Pierre
2008-12-01
In this report, we present the novel functionality of parallel tetrahedral mesh refinement which we have implemented in MOAB. This report details work done to implement parallel, edge-based, tetrahedral refinement into MOAB. The theoretical basis for this work is contained in [PT04, PT05, TP06] while information on design, performance, and operation specific to MOAB are contained herein. As MOAB is intended mainly for use in pre-processing and simulation (as opposed to the post-processing bent of previous papers), the primary use case is different: rather than refining elements with non-linear basis functions, the goal is to increase the number of degrees of freedom in some region in order to more accurately represent the solution to some system of equations that cannot be solved analytically. Also, MOAB has a unique mesh representation which impacts the algorithm. This introduction contains a brief review of streaming edge-based tetrahedral refinement. The remainder of the report is broken into three sections: design and implementation, performance, and conclusions. Appendix A contains instructions for end users (simulation authors) on how to employ the refiner.
A comparison of tetrahedral mesh improvement techniques
Freitag, L.A.; Ollivier-Gooch, C.
1996-12-01
Automatic mesh generation and adaptive refinement methods for complex three-dimensional domains have proven to be very successful tools for the efficient solution of complex applications problems. These methods can, however, produce poorly shaped elements that cause the numerical solution to be less accurate and more difficult to compute. Fortunately, the shape of the elements can be improved through several mechanisms, including face-swapping techniques that change local connectivity and optimization-based mesh smoothing methods that adjust grid point location. The authors consider several criteria for each of these two methods and compare the quality of several meshes obtained by using different combinations of swapping and smoothing. Computational experiments show that swapping is critical to the improvement of general mesh quality and that optimization-based smoothing is highly effective in eliminating very small and very large angles. The highest quality meshes are obtained by using a combination of swapping and smoothing techniques.
Novel biomedical tetrahedral mesh methods: algorithms and applications
NASA Astrophysics Data System (ADS)
Yu, Xiao; Jin, Yanfeng; Chen, Weitao; Huang, Pengfei; Gu, Lixu
2007-12-01
Tetrahedral mesh generation algorithm, as a prerequisite of many soft tissue simulation methods, becomes very important in the virtual surgery programs because of the real-time requirement. Aiming to speed up the computation in the simulation, we propose a revised Delaunay algorithm which makes a good balance of quality of tetrahedra, boundary preservation and time complexity, with many improved methods. Another mesh algorithm named Space-Disassembling is also presented in this paper, and a comparison of Space-Disassembling, traditional Delaunay algorithm and the revised Delaunay algorithm is processed based on clinical soft-tissue simulation projects, including craniofacial plastic surgery and breast reconstruction plastic surgery.
Streaming Compression of Tetrahedral Volume Meshes
Isenburg, M; Lindstrom, P; Gumhold, S; Shewchuk, J
2005-11-21
Geometry processing algorithms have traditionally assumed that the input data is entirely in main memory and available for random access. This assumption does not scale to large data sets, as exhausting the physical memory typically leads to IO-inefficient thrashing. Recent works advocate processing geometry in a 'streaming' manner, where computation and output begin as soon as possible. Streaming is suitable for tasks that require only local neighbor information and batch process an entire data set. We describe a streaming compression scheme for tetrahedral volume meshes that encodes vertices and tetrahedra in the order they are written. To keep the memory footprint low, the compressor is informed when vertices are referenced for the last time (i.e. are finalized). The compression achieved depends on how coherent the input order is and how many tetrahedra are buffered for local reordering. For reasonably coherent orderings and a buffer of 10,000 tetrahedra, we achieve compression rates that are only 25 to 40 percent above the state-of-the-art, while requiring drastically less memory resources and less than half the processing time.
Boundary Recovery For Delaunay Tetrahedral Meshes Using Local Topological Transformations
Ghadyani, Hamid; Sullivan, John; Wu, Ziji
2009-01-01
Numerous high-quality, volume mesh-generation systems exist. However, no strategy can address all geometry situations without some element qualities being compromised. Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which frequently fails to preserve the input boundary surface topology. For biomedical applications, this surface preservation can be critical as they usually contain multiple material regions of interest coherently connected. In this paper we present an algorithm as a post-processing method that optimizes local regions of compromised element quality and recovers the original boundary surface facets (triangles) regardless of the original mesh generation strategy. The algorithm carves out a small sub-volume in the vicinity of the missing boundary facet or compromised element, creating a cavity. If the task is to recover a surface boundary facet, a natural exit hole in the cavity will be present. This hole is patched with the missing boundary surface face first followed by other patches to seal the cavity. If the task was to improve a compromised region, then the cavity is already sealed. Every triangular facet of the cavity shell is classified as an active face and can be connected to another shell node creating a tetrahedron. In the process the base of the tetrahedron is removed from the active face list and potentially 3 new active faces are created. This methodology is the underpinnings of our last resort method. Each active face can be viewed as the trunk of a tree. An exhaustive breath and depth search will identify all possible tetrahedral combinations to uniquely fill the cavity. We have streamlined this recursive process reducing the time complexity by orders of magnitude. The original surfaces boundaries (internal and external) are fully restored and the quality of compromised regions improved. PMID:20305743
THE GENERATION OF TETRAHEDRAL MESH MODELS FOR NEUROANATOMICAL MRI
Lederman, Carl; Joshi, Anand; Dinov, Ivo; Vese, Luminita; Toga, Arthur; Van Horn, John Darrell
2010-01-01
In this article, we describe a detailed method for automatically generating tetrahedral meshes from 3D images having multiple region labels. An adaptively sized tetrahedral mesh modeling approach is described that is capable of producing meshes conforming precisely to the voxelized regions in the image. Efficient tetrahedral construction is performed minimizing an energy function containing three terms: a smoothing term to remove the voxelization, a fidelity term to maintain continuity with the image data, and a novel elasticity term to prevent the tetrahedra from becoming flattened or inverted as the mesh deforms while allowing the voxelization to be removed entirely. The meshing algorithm is applied to structural MR image data that has been automatically segmented into 56 neuroanatomical sub-divisions as well as on two other examples. The resulting tetrahedral representation has several desirable properties such as tetrahedra with dihedral angles away from 0 and 180 degrees, smoothness, and a high resolution. Tetrahedral modeling via the approach described here has applications in modeling brain structure in normal as well as diseased brain in human and non-human data and facilitates examination of 3D object deformations resulting from neurological illness (e.g. Alzheimer’s Disease), development, and/or aging. PMID:21073968
Selective refinement queries for volume visualization of unstructured tetrahedral meshes.
Cignoni, Paolo; De Floriani, Leila; Magillo, Paola; Puppo, Enrico; Scopigno, Roberto
2004-01-01
In this paper, we address the problem of the efficient visualization of large irregular volume data sets by exploiting a multiresolution model based on tetrahedral meshes. Multiresolution models, also called Level-Of-Detail (LOD) models, allow encoding the whole data set at a virtually continuous range of different resolutions. We have identified a set of queries for extracting meshes at variable resolution from a multiresolution model, based on field values, domain location, or opacity of the transfer function. Such queries allow trading off between resolution and speed in visualization. We define a new compact data structure for encoding a multiresolution tetrahedral mesh built through edge collapses to support selective refinement efficiently and show that such a structure has a storage cost from 3 to 5.5 times lower than standard data structures used for tetrahedral meshes. The data structures and variable resolution queries have been implemented together with state-of-the art visualization techniques in a system for the interactive visualization of three-dimensional scalar fields defined on tetrahedral meshes. Experimental results show that selective refinement queries can support interactive visualization of large data sets. PMID:15382696
Dynamic mesh adaption for triangular and tetrahedral grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.
Motion compensation for PET image reconstruction using deformable tetrahedral meshes
NASA Astrophysics Data System (ADS)
Manescu, P.; Ladjal, H.; Azencot, J.; Beuve, M.; Shariat, B.
2015-12-01
Respiratory-induced organ motion is a technical challenge to PET imaging. This motion induces displacements and deformation of the organs tissues, which need to be taken into account when reconstructing the spatial radiation activity. Classical image-based methods that describe motion using deformable image registration (DIR) algorithms cannot fully take into account the non-reproducibility of the respiratory internal organ motion nor the tissue volume variations that occur during breathing. In order to overcome these limitations, various biomechanical models of the respiratory system have been developed in the past decade as an alternative to DIR approaches. In this paper, we describe a new method of correcting motion artefacts in PET image reconstruction adapted to motion estimation models such as those based on the finite element method. In contrast with the DIR-based approaches, the radiation activity was reconstructed on deforming tetrahedral meshes. For this, we have re-formulated the tomographic reconstruction problem by introducing a time-dependent system matrix based calculated using tetrahedral meshes instead of voxelized images. The MLEM algorithm was chosen as the reconstruction method. The simulations performed in this study show that the motion compensated reconstruction based on tetrahedral deformable meshes has the capability to correct motion artefacts. Results demonstrate that, in the case of complex deformations, when large volume variations occur, the developed tetrahedral based method is more appropriate than the classical DIR-based one. This method can be used, together with biomechanical models controlled by external surrogates, to correct motion artefacts in PET images and thus reducing the need for additional internal imaging during the acquisition.
NASA Astrophysics Data System (ADS)
Lian, Y.-Y.; Hsu, K.-H.; Shao, Y.-L.; Lee, Y.-M.; Jeng, Y.-W.; Wu, J.-S.
2006-12-01
The development of a parallel three-dimensional (3-D) adaptive mesh refinement (PAMR) scheme for an unstructured tetrahedral mesh using dynamic domain decomposition on a memory-distributed machine is presented in detail. A memory-saving cell-based data structure is designed such that the resulting mesh information can be readily utilized in both node- or cell-based numerical methods. The general procedures include isotropic refinement from one parent cell into eight child cells and then followed by anisotropic refinement which effectively removes hanging nodes. A simple but effective mesh-quality control mechanism is employed to preserve the mesh quality. The resulting parallel performance of this PAMR is found to scale approximately as N for N⩽32. Two test cases, including a particle method (parallel DSMC solver for rarefied gas dynamics) and an equation-based method (parallel Poisson-Boltzmann equation solver for electrostatic field), are used to demonstrate the generality of the PAMR module. It is argued that this PAMR scheme can be applied in any numerical method if the unstructured tetrahedral mesh is adopted.
A mesh generator for tetrahedral elements using Delaunay triangulation
Yuan, J.S.; Fitzsimons, C.J. )
1993-03-01
A tetrahedral mesh generator has been developed. The generator is based on the Delaunay triangulation which is implemented by employing the insertion polyhedron algorithm. In this paper some new methods to deal with the problems associated with the three-dimensional Delaunay triangulation and the insertion polyhedron algorithm are presented: degeneracy, the crossing situation, identification of the internal elements and internal point generation. The generator works both for convex and non-convex domains, including those with high aspect-ratio subdomains. Some examples are given in this paper to illustrate the capability of the generator.
NASA Astrophysics Data System (ADS)
Zehner, Björn; Börner, Jana H.; Görz, Ines; Spitzer, Klaus
2015-06-01
Subsurface processing numerical simulations require accurate discretization of the modeling domain such that the geological units are represented correctly. Unstructured tetrahedral grids are particularly flexible in adapting to the shape of geo-bodies and are used in many finite element codes. In order to generate a tetrahedral mesh on a 3D geological model, the tetrahedrons have to belong completely to one geological unit and have to describe geological boundaries by connected facets of tetrahedrons. This is especially complicated at the contact points between several units and for irregular sharp-shaped bodies, especially in case of faulted zones. This study develops, tests and validates three workflows to generate a good tetrahedral mesh from a geological basis model. The tessellation of the model needs (i) to be of good quality to guarantee a stable calculation, (ii) to include certain nodes to apply boundary conditions for the numerical solution, and (iii) support local mesh refinement. As a test case we use the simulation of a transient electromagnetic measurement above a salt diapir. We can show that the suggested workflows lead to a tessellation of the structure on which the simulation can be run robustly. All workflows show advantages and disadvantages with respect to the workload, the control the user has over the resulting mesh and the skills in software handling that are required.
Mesh Quality Improvement Toolkit
Energy Science and Technology Software Center (ESTSC)
2002-11-15
MESQUITE is a linkable software library to be used by simulation and mesh generation tools to improve the quality of meshes. Mesh quality is improved by node movement and/or local topological modifications. Various aspects of mesh quality such as smoothness, element shape, size, and orientation are controlled by choosing the appropriate mesh qualtiy metric, and objective function tempate, and a numerical optimization solver to optimize the quality of meshes, MESQUITE uses the TSTT mesh interfacemore » specification to provide an interoperable toolkit that can be used by applications which adopt the standard. A flexible code design makes it easy for meshing researchers to add additional mesh quality metrics, templates, and solvers to develop new quality improvement algorithms by making use of the MESQUITE infrastructure.« less
Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.
1999-01-01
This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.
A boundary recovery algorithm for Delaunay tetrahedral meshing
Sharov, D.; Nakahashi, K.
1996-12-31
A method for automatic generation of unstructured grids comprised of tetrahedra is discussed. Delaunay approach for tetrahedral grid generation is used. Particular attention is given to the boundary constraining problem. A simple and robust algorithm for the boundary constraining by successive use of boundary edge swapping, tetrahedral edge swapping and direct subdivision of tetrahedra is used. Small modifications allow to apply the method for viscous grid generation as well. Grid examples demonstrate efficiency of the method.
Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Jeong, Jong Hwi; Han, Min Cheol; Kim, Chan Hyeong
2014-06-01
Although polygonal-surface computational human phantoms can address several critical limitations of conventional voxel phantoms, their Monte Carlo simulation speeds are much slower than those of voxel phantoms. In this study, we sought to overcome this problem by developing a new type of computational human phantom, a tetrahedral mesh phantom, by converting a polygonal surface phantom to a tetrahedral mesh geometry. The constructed phantom was implemented in the Geant4 Monte Carlo code to calculate organ doses as well as to measure computation speed, the values were then compared with those for the original polygonal surface phantom. It was found that using the tetrahedral mesh phantom significantly improved the computation speed by factors of between 150 and 832 considering all of the particles and simulated energies other than the low-energy neutrons (0.01 and 1 MeV), for which the improvement was less significant (17.2 and 8.8 times, respectively).
Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
1999-01-01
The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.
Parallel tetrahedral mesh adaptation with dynamic load balancing
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
2000-06-28
The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D-TAG, using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However, performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region, creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D-TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes
Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.; Witkowski, W.R.
1999-03-02
A family of uniform strain elements is presented for three-node triangular and four-node tetrahedral meshes. The elements use the linear interpolation functions of the original mesh, but each element is associated with a single node. As a result, a favorable constraint ratio for the volumetric response is obtained for problems in solid mechanics. The uniform strain elements do not require the introduction of additional degrees of freedom and their performance is shown to be significantly better than that of three-node triangular or four-node tetrahedral elements. In addition, nodes inside the boundary of the mesh are observed to exhibit superconvergent behavior for a set of example problems.
Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.
2015-01-01
Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the
A first collision source method for ATTILA, an unstructured tetrahedral mesh discrete ordinates code
Wareing, T.A.; Morel, J.E.; Parsons, D.K.
1998-12-01
A semi-analytic first collision source method is developed for the transport code, ATTILA, a three-dimensional, unstructured tetrahedral mesh, discrete-ordinates code. This first collision source method is intended to mitigate ray effects due to point sources. The method is third-order accurate, which is the same order of accuracy as the linear-discontinuous spatial differencing scheme used in ATTILA. Numerical results are provided to demonstrate the accuracy and efficiency of the first collision source method.
Wareing, T.A.; Parsons, D.K.; Pautz, S.
1997-12-31
Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. In this paper we describe the application of ATTILA to a 3-D reactor pressure vessel dosimetry problem. We provide numerical results from ATTILA and the Monte Carlo code, MCNP. The results demonstrate the effectiveness and efficiency of ATTILA for such calculations.
ATTILA: A three-dimensional, unstructured tetrahedral mesh discrete ordinates transport code
Wareing, T.A.; McGhee, J.M.; Morel, J.E.
1996-12-31
Many applications of radiation transport require the accurate modeling of complex three-dimensional geometries. Historically, Monte Carlo codes have been used for such applications. Existing deterministic transport codes were not applied to such problems because of the difficulties of modeling complex three-dimensional geometries with rectangular meshes. The authors have developed a three-dimensional discrete ordinates (S{sub n}) code, ATTILA, which uses linear-discontinuous finite element spatial differencing in conjunction with diffusion-synthetic acceleration (DSA) on an unstructured tetrahedral mesh. This tetrahedral mesh capability enables the authors to efficiently model complex three-dimensional geometries. One interesting and challenging application of neutron and/or gamma-ray transport is nuclear well-logging applications. Nuclear well-logging problems usually involve a complex geometry with fixed sources and one or more detectors. Detector responses must generally be accurate to within {approx}1%. The combination of complex three-dimensional geometries and high accuracy requirements makes it difficult to perform logging problems with traditional S{sub n} differencing schemes and rectangular meshes. Hence, it is not surprising that deterministic S{sub n} codes have seen limited use in nuclear well-logging applications. The geometric modeling capabilities and the advanced spatial differencing of ATTILA give it a significant advantage, relative to traditional S{sub n} codes, for performing nuclear well-logging calculations.
A New Poisson Solver PIC Simulations on Arbitrary Unstructured Tetrahedral Meshes
NASA Astrophysics Data System (ADS)
Averkin, Sergey; Gatsonis, Nikolaos
2015-11-01
A new node-based algorithm is developed for the solution of Poisson's equation in PIC simulations on arbitrary unstructured tetrahedral meshes. The algorithm is derived by applying the integral form of the Gauss law to the indirect dual mesh constructed by connecting the centroids of edges to the centroids of faces and centroids of faces with the centroids of tetrahedral cells for each tetrahedron. The potential variation is assumed linear inside every cell and allows to estimate the potential gradient in each cell from the nodal values. The obtained sparse linear system is solved with the GMRES solver combined with the ILU(0) preconditioner. The new algorithm is verified with the simulation of the current collection by cylindrical Langmuire probes in the collisionless regime for a wide range of probe to Debye length ratios. The computed electron and ion number density variations as well as electric potential and collected currents compare well with the simulation results of Laframboise. AFOSR-FA9550-14-1-0366 Computational Mathematics Program.
Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W
2015-02-21
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient's 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry. PMID:25615567
A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.
2015-02-24
We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved at the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.
A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.
2015-02-24
We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less
Adaptive Skin Meshes Coarsening for Biomolecular Simulation
Shi, Xinwei; Koehl, Patrice
2011-01-01
In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry. PMID:21779137
Adaptive Skin Meshes Coarsening for Biomolecular Simulation.
Shi, Xinwei; Koehl, Patrice
2011-06-01
In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry. PMID:21779137
Fonseca, Gabriel Paiva; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank
2014-10-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for (192)Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator. PMID
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank
2014-10-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.
NASA Astrophysics Data System (ADS)
Mazzia, Annamaria; Putti, Mario
2005-09-01
Two-dimensional Godunov mixed methods have been shown to be effective for the numerical solution of density-dependent flow and transport problems in groundwater even when concentration gradients are high and the process is dominated by density effects. This class of discretization approaches solves the flow equation by means of the mixed finite element method, thus guaranteeing mass conserving velocity fields, and discretizes the transport equation by mixed finite element and finite volumes techniques combined together via appropriate time splitting. In this paper, we extend this approach to three dimensions employing tetrahedral meshes and introduce a spatially variable time stepping procedure that improves computational efficiency while preserving accuracy by adapting the time step size according to the local Courant-Friedrichs-Lewy (CFL) constraint. Careful attention is devoted to the choice of a truly three-dimensional limiter for the advection equation in the time-splitting technique, so that to preserve second order accuracy in space (in the sense that linear functions are exactly interpolated). The three-dimensional Elder problem and the saltpool problem, recently introduced as a new benchmark for testing three-dimensional density models, provide assessments with respect to accuracy and reliability of this numerical approach.
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung
2016-01-01
Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.
New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2013-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469
Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1993-01-01
Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. A detailed description of the enrichment and coarsening procedures are presented and comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.
NASA Astrophysics Data System (ADS)
Hepburn, I.; Chen, W.; De Schutter, E.
2016-08-01
Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realistic biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.
Hepburn, I; Chen, W; De Schutter, E
2016-08-01
Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realistic biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification. PMID:27497550
Knupp, P.M.
1999-03-26
Three-dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2 x 2 matrices do not hold for 3 x 3 matrices. significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equivalence in two-dimensions of the Smoothness and Condition Number of the Jacobian matrix objective functions does not extend to three dimensions and further. that the equivalence of the Oddy and Condition Number of the Metric Tensor objective functions in two-dimensions also fails to extend to three-dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non-dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all-hexahedral ''whisker-weaved'' meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure.
Matrix Norms and the Condition Number: A General Framework to Improve Mesh Quality via Node-Movement
KNUPP,PATRICK
1999-09-27
Objective functions for unstructured hexahedral and tetrahedral mesh optimization are analyzed using matrices and matrix norms. Mesh untangling objective functions that create valid meshes are used to initialize the optimization process. Several new objective functions to achieve element invertibility and quality are investigated, the most promising being the ''condition number''. The condition number of the Jacobian matrix of an element forms the basis of a barrier-based objective function that measures the distance to the set of singular matrices and has the ideal matrix as a stationary point. The method was implemented in the Cubit code, with promising results.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.
2013-01-01
In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.
NASA Astrophysics Data System (ADS)
Tavelli, Maurizio; Dumbser, Michael
2016-08-01
In this paper we propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual grid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes is still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this paper could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method. The flexibility and accuracy of high order space-time DG methods on curved
Adaptive and Unstructured Mesh Cleaving
Bronson, Jonathan R.; Sastry, Shankar P.; Levine, Joshua A.; Whitaker, Ross T.
2015-01-01
We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of proper size and shape from the problem of conforming to complex, non-manifold boundaries. This approach is motivated by the observation that while several methods exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The proposed strategy avoids this conflict by extracting the boundary conforming constraint into a secondary step. We first build a background mesh having a desired set of tetrahedral properties, and then use a generalized stenciling method to divide, or “cleave”, these elements to get a set of conforming tetrahedra, while limiting the impacts cleaving has on element quality. In developing this new framework, we make several technical contributions including a new method for building graded tetrahedral meshes as well as a generalization of the isosurface stuffing and lattice cleaving algorithms to unstructured background meshes. PMID:26137171
Cardiovascular and lung mesh generation based on centerlines.
Marchandise, E; Geuzaine, C; Remacle, J F
2013-06-01
We present a fully automatic procedure for the mesh generation of tubular geometries such as blood vessels or airways. The procedure is implemented in the open-source Gmsh software and relies on a centerline description of the input geometry. The presented method can generate different type of meshes: isotropic tetrahedral meshes, anisotropic tetrahedral meshes, and mixed hexahedral/tetrahedral meshes. Additionally, a multiple layered arterial wall can be generated with a variable thickness. All the generated meshes rely on a mesh size field and a mesh metric that is based on centerline descriptions, namely the distance to the centerlines and a local reference system based on the tangent and the normal directions to the centerlines. Different examples show that the proposed method is very efficient and robust and leads to high quality computational meshes. PMID:23606344
Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data⋆
Zhang, Yongjie; Bajaj, Chandrajit
2009-01-01
This paper describes an algorithm to extract adaptive and quality quadrilateral/hexahedral meshes directly from volumetric data. First, a bottom-up surface topology preserving octree-based algorithm is applied to select a starting octree level. Then the dual contouring method is used to extract a preliminary uniform quad/hex mesh, which is decomposed into finer quads/hexes adaptively without introducing any hanging nodes. The positions of all boundary vertices are recalculated to approximate the boundary surface more accurately. Mesh adaptivity can be controlled by a feature sensitive error function, the regions that users are interested in, or finite element calculation results. Finally, a relaxation based technique is deployed to improve mesh quality. Several demonstration examples are provided from a wide variety of application domains. Some extracted meshes have been extensively used in finite element simulations. PMID:19750180
Cubit Adaptive Meshing Algorithm Library
Energy Science and Technology Software Center (ESTSC)
2004-09-01
CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMALs triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandias patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less
Miller, R.L.
1998-11-01
A numerically stable, accurate, and robust form of the exponential characteristic (EC) method, used to solve the time-independent linearized Boltzmann Transport Equation, is derived using direct affine coordinate transformations on unstructured meshes of tetrahedra. This quadrature, as well as the linear characteristic (LC) spatial quadrature, is implemented in the transport code, called TETRAN. This code solves multi-group neutral particle transport problems with anisotropic scattering and was parallelized using High Performance Fortran and angular domain decomposition. A new, parallel algorithm for updating the scattering source is introduced. The EC source and inflow flux coefficients are efficiently evaluated using Broyden`s rootsolver, started with special approximations developed here. TETRAN showed robustness, stability and accuracy on a variety of challenging test problems. Parallel speed-up was observed as the number of processors was increased using an IBM SP computer system.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with
Quality mesh generation in higher dimensions.
Mitchell, S. A.; Vavasis, S. A.; SNL; Cornell Univ.
2000-03-06
We consider the problem of triangulating a d-dimensional region. Our mesh generation algorithm, called QMG, is a quadtree-based algorithm that can triangulate any polyhedral region including nonconvex regions with holes. Furthermore, our algorithm guarantees a bounded aspect ratio triangulation provided that the input domain itself has no sharp angles. Finally, our algorithm is guaranteed never to overrefine the domain, in the sense that the number of simplices produced by QMG is bounded above by a factor times the number produced by any competing algorithm, where the factor depends on the aspect ratio bound satisfied by the competing algorithm. The QMG algorithm has been implemented in C++ and is used as a mesh generator for the finite element method.
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
Key, S.W.; Heinstein, M.W.; Stone, C.M.
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.
A Program to Improve the Triangulated Surface Mesh Quality Along Aircraft Component Intersections
NASA Technical Reports Server (NTRS)
Cliff, Susan E.
2005-01-01
A computer program has been developed for improving the quality of unstructured triangulated surface meshes in the vicinity of component intersections. The method relies solely on point removal and edge swapping for improving the triangulations. It can be applied to any lifting surface component such as a wing, canard or horizontal tail component intersected with a fuselage, or it can be applied to a pylon that is intersected with a wing, fuselage or nacelle. The lifting surfaces or pylon are assumed to be aligned in the axial direction with closed trailing edges. The method currently maintains salient edges only at leading and trailing edges of the wing or pylon component. This method should work well for any shape of fuselage that is free of salient edges at the intersection. The method has been successfully demonstrated on a total of 125 different test cases that include both blunt and sharp wing leading edges. The code is targeted for use in the automated environment of numerical optimization where geometric perturbations to individual components can be critical to the aerodynamic performance of a vehicle. Histograms of triangle aspect ratios are reported to assess the quality of the triangles attached to the intersection curves before and after application of the program. Large improvements to the quality of the triangulations were obtained for the 125 test cases; the quality was sufficient for use with an automated tetrahedral mesh generation program that is used as part of an aerodynamic shape optimization method.
Mesh quality effects on the accuracy of CFD solutions on unstructured meshes
NASA Astrophysics Data System (ADS)
Katz, Aaron; Sankaran, Venkateswaran
2011-08-01
The order of accuracy and error magnitude of node- and cell-centered schemes are examined on representative unstructured meshes and flowfield solutions for computational fluid dynamics. Specifically, we investigate the properties of inviscid and viscous flux discretizations for isotropic and highly stretched meshes using the Method of Manufactured Solutions. Grid quality effects are studied by randomly perturbing the base meshes and cataloguing the error convergence as a function of grid size. For isotropic grids, node-centered approaches produce less error than cell-centered approaches. Moreover, a corrected node-centered scheme is shown to maintain third order accuracy for the inviscid terms on arbitrary triangular meshes. In contrast, for stretched meshes, cell-centered schemes are favored, with cell-centered prismatic approaches in particular showing the lowest levels of error. In three dimensions, simple flux integrations on non-planar control volume faces lead to first-order solution errors, while second-order accuracy is recovered by triangulation of the non-planar faces.
A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment
NASA Technical Reports Server (NTRS)
Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott
1995-01-01
The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.
Graphical postprocessing for 3-D mesh quality evaluation
NASA Technical Reports Server (NTRS)
Panthaki, M. J.; Abel, J. F.; Wawrzynek, P. A.
1989-01-01
An important objective of three-dimensional graphical finite-element postprocessing is to indicate to the engineer the accuracy of analysis results. The inclusion of mesh quality sensors permits a subjective evaluation of the adequacy of a single analysis being interpreted. For graphical approaches, both strain-energy-density gradients and discontinuities of unsmoothed responses and their gradients have proved to be effective sensors. Interactive graphical tools which can display discontinuity information effectively are described; these are essentially different from the ordinary methods used for the viewing of smoothed results.
A computational study of the effect of unstructured mesh quality on solution efficiency
Batdorf, M.; Freitag, L.A.; Ollivier-Gooch, C.
1997-09-01
It is well known that mesh quality affects both efficiency and accuracy of CFD solutions. Meshes with distorted elements make solutions both more difficult to compute and less accurate. We review a recently proposed technique for improving mesh quality as measured by element angle (dihedral angle in three dimensions) using a combination of optimization-based smoothing techniques and local reconnection schemes. Typical results that quantify mesh improvement for a number of application meshes are presented. We then examine effects of mesh quality as measured by the maximum angle in the mesh on the convergence rates of two commonly used CFD solution techniques. Numerical experiments are performed that quantify the cost and benefit of using mesh optimization schemes for incompressible flow over a cylinder and weakly compressible flow over a cylinder.
An Improved Linear Tetrahedral Element for Plasticity
Puso, M
2005-04-25
A stabilized, nodally integrated linear tetrahedral is formulated and analyzed. It is well known that linear tetrahedral elements perform poorly in problems with plasticity, nearly incompressible materials, and acute bending. For a variety of reasons, linear tetrahedral elements are preferable to quadratic tetrahedral elements in most nonlinear problems. Whereas, mixed methods work well for linear hexahedral elements, they don't for linear tetrahedrals. On the other hand, automatic mesh generation is typically not feasible for building many 3D hexahedral meshes. A stabilized, nodally integrated linear tetrahedral is developed and shown to perform very well in problems with plasticity, nearly incompressible materials and acute bending. Furthermore, the formulation is analytically and numerically shown to be stable and optimally convergent. The element is demonstrated to perform well in several standard linear and nonlinear benchmarks.
A comparison of mesh morphing methods for shape optimization.
Staten, Matthew L.; Owen, Steven James
2010-08-01
The ability to automatically morph an existing mesh to conform to geometry modifications is a necessary capability to enable rapid prototyping of design variations. This paper compares six methods for morphing hexahedral and tetrahedral meshes, including the previously published FEMWARP and LBWARP methods as well as four new methods. Element quality and performance results show that different methods are superior on different models. We recommend that designers of applications that use mesh morphing consider both the FEMWARP and a linear simplex based method.
Quality Partitioned Meshing of Multi-Material Objects
Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit
2016-01-01
We present a simple but effective algorithm for generating topologically and geometrically consistent quality triangular surface meshing of compactly packed multiple heterogeneous domains in R3. By compact packing we imply that adjacent homogeneous domains or materials share some 0, 1, and/or 2 dimensional boundary. Such packed multiple material (or multi-material) solids arise naturally from classification/partitioning/segmentation of homogeneous domains in R3 into different sub-regions. The multi-materials may also represent separate functionally classified sections or just be multiple component copies tightly fused together as perhaps by layered manufacturing processes. The input to our algorithm is a geometric representation of the entire multi-material solid, and a volumetric classification map identifying the individual materials. As output, each individual material region is represented by a triangulated 2-manifold boundary, with adjacent material regions having shared boundaries. Our algorithm has been implemented, and applied to different multi-material solids, and the results are additionally presented with quantitative analysis of detection and cure of non-manifold interfaces as well as spurious small components. These meshes are useful for combined boundary element analysis, however these simulation results are not presented.
Tetrahedral element shape optimization via the Jacobian determinant and condition number.
Freitag, L. A.; Knupp, P. M.
1999-07-30
We present a new shape measure for tetrahedral elements that is optimal in the sense that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. We use this shape measure to formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. Because the element condition number is not defined for tetrahedral with negative volume, these objective functions can be used only when the initial mesh is valid. Therefore, we formulate a third objective function using the determinant of the element Jacobian that is suitable for mesh untangling. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement and untangling methods. We show that a combined optimization approach that uses both condition number objective functions obtains the best-quality meshes.
Production-quality Tools for Adaptive Mesh RefinementVisualization
Weber, Gunther H.; Childs, Hank; Bonnell, Kathleen; Meredith,Jeremy; Miller, Mark; Whitlock, Brad; Bethel, E. Wes
2007-10-25
Adaptive Mesh Refinement (AMR) is a highly effectivesimulation method for spanning a large range of spatiotemporal scales,such as astrophysical simulations that must accommodate ranges frominterstellar to sub-planetary. Most mainstream visualization tools stilllack support for AMR as a first class data type and AMR code teams usecustom built applications for AMR visualization. The Department ofEnergy's (DOE's) Science Discovery through Advanced Computing (SciDAC)Visualization and Analytics Center for Enabling Technologies (VACET) isextending and deploying VisIt, an open source visualization tool thataccommodates AMR as a first-class data type, for use asproduction-quality, parallel-capable AMR visual data analysisinfrastructure. This effort will help science teams that use AMR-basedsimulations and who develop their own AMR visual data analysis softwareto realize cost and labor savings.
NASA Astrophysics Data System (ADS)
Papadakis, A. P.; Georghiou, G. E.; Metaxas, A. C.
2008-12-01
A new adaptive mesh generator has been developed and used in the analysis of high-pressure gas discharges, such as avalanches and streamers, reducing computational times and computer memory needs significantly. The new adaptive mesh generator developed, uses normalized error indicators, varying from 0 to 1, to guarantee optimal mesh resolution for all carriers involved in the analysis. Furthermore, it uses h- and r-refinement techniques such as mesh jiggling, edge swapping and node addition/removal to develop an element quality improvement algorithm that improves the mesh quality significantly and a fast and accurate algorithm for interpolation between meshes. Finally, the mesh generator is applied in the characterization of the transition from a single electron to the avalanche and streamer discharges in high-voltage, high-pressure gas discharges for dc 1 mm gaps, RF 1 cm point-plane gaps and parallel-plate 40 MHz configurations, in ambient atmospheric air.
Performance of a streaming mesh refinement algorithm.
Thompson, David C.; Pebay, Philippe Pierre
2004-08-01
In SAND report 2004-1617, we outline a method for edge-based tetrahedral subdivision that does not rely on saving state or communication to produce compatible tetrahedralizations. This report analyzes the performance of the technique by characterizing (a) mesh quality, (b) execution time, and (c) traits of the algorithm that could affect quality or execution time differently for different meshes. It also details the method used to debug the several hundred subdivision templates that the algorithm relies upon. Mesh quality is on par with other similar refinement schemes and throughput on modern hardware can exceed 600,000 output tetrahedra per second. But if you want to understand the traits of the algorithm, you have to read the report!
Topology, accuracy, and quality of isosurface meshes using dynamic particles.
Meyer, Miriah; Kirby, Robert M; Whitaker, Ross
2007-01-01
This paper describes a method for constructing isosurface triangulations of sampled, volumetric, three-dimensional scalar fields. The resulting meshes consist of triangles that are of consistently high quality, making them well suited for accurate interpolation of scalar and vector-valued quantities, as required for numerous applications in visualization and numerical simulation. The proposed method does not rely on a local construction or adjustment of triangles as is done, for instance, in advancing wavefront or adaptive refinement methods. Instead, a system of dynamic particles optimally samples an implicit function such that the particles' relative positions can produce a topologically correct Delaunay triangulation. Thus, the proposed method relies on a global placement of triangle vertices. The main contributions of the paper are the integration of dynamic particles systems with surface sampling theory and PDE-based methods for controlling the local variability of particle densities, as well as detailing a practical method that accommodates Delaunay sampling requirements to generate sparse sets of points for the production of high-quality tessellations. PMID:17968128
A computational study of nodal-based tetrahedral element behavior.
Gullerud, Arne S.
2010-09-01
This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.
6th International Meshing Roundtable '97
White, D.
1997-09-01
The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.
Assessing the quality of curvilinear coordinate meshes by decomposing the Jacobian matrix
NASA Technical Reports Server (NTRS)
Kerlick, G. D.; Klopfer, G. H.
1982-01-01
An algebraic decomposition of the Jacobian matrix which relates physical and computational variables is presented. This invertible decomposition parameterizes the mesh by the physically intuitive qualities of cell orientation, cell orthogonality, cell volume, and cell aspect ratio. The decomposition can be used to analyze numerically generated curvilinear coordinate meshes and to assess the contribution of the mesh to the truncation error for any specific differential operator and algorithm. This is worked out in detail for Laplace's equation in nonconservative and conservative forms. The analysis is applied to the solution of the full potential code TAIR, showing grid plots, carpet plots, and truncation error for a NACA 0012 airfoil.
Edge groups: an approach to understanding the mesh quality of marching methods.
Dietrich, Carlos A; Scheidegger, Carlos E; Comba, João L D; Nedel, Luciana P; Silva, Cláudio T
2008-01-01
Marching Cubes is the most popular isosurface extraction algorithm due to its simplicity, efficiency and robustness. It has been widely studied, improved, and extended. While much early work was concerned with efficiency and correctness issues, lately there has been a push to improve the quality of Marching Cubes meshes so that they can be used in computational codes. In this work we present a new classification of MC cases that we call Edge Groups, which helps elucidate the issues that impact the triangle quality of the meshes that the method generates. This formulation allows a more systematic way to bound the triangle quality, and is general enough to extend to other polyhedral cell shapes used in other polygonization algorithms. Using this analysis, we also discuss ways to improve the quality of the resulting triangle mesh, including some that require only minor modifications of the original algorithm. PMID:18989022
A priori mesh quality metrics for three-dimensional hybrid grids
Kallinderis, Y. Fotia, S.
2015-01-01
Use of general hybrid grids to attain complex-geometry field simulations poses a challenge on estimation of their quality. Apart from the typical problems of non-uniformity and non-orthogonality, the change in element topology is an extra issue to address. The present work derives and evaluates an a priori mesh quality indicator for structured, unstructured, as well as hybrid grids consisting of hexahedra, prisms, tetrahedra, and pyramids. Emphasis is placed on deriving a direct relation between the quality measure and mesh distortion. The work is based on use of the Finite Volume discretization for evaluation of first order spatial derivatives. The analytic form of the truncation error is derived and applied to elementary types of mesh distortion including typical hybrid grid interfaces. The corresponding analytic expressions provide relations between the truncation error and the degree of stretching, skewness, shearing, torsion, expansion, as well as the type of grid interface.
Building Tetrahedral Kites. Grades 6-8.
ERIC Educational Resources Information Center
Rushton, Erik; Ryan, Emily; Swift, Charles
Working in teams of four, students build a tetrahedral kite following a specific set of directions and using specific provided materials. Students use basic processes of manufacturing systems-- cutting, shaping, forming, conditioning, assembling, joining, finishing, and quality control--to manufacture a complete tetrahedral kite within a given…
An Automatic 3D Mesh Generation Method for Domains with Multiple Materials.
Zhang, Yongjie; Hughes, Thomas J R; Bajaj, Chandrajit L
2010-01-01
This paper describes an automatic and efficient approach to construct unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous) domain with manifold boundary. In this paper, we introduce the notion of a material change edge and use it to identify the interface between two or several different materials. A novel method to calculate the minimizer point for a cell shared by more than two materials is provided, which forms a non-manifold node on the boundary. We then mesh all the material regions simultaneously and automatically while conforming to their boundaries directly from volumetric data. Both material change edges and interior edges are analyzed to construct tetrahedral meshes, and interior grid points are analyzed for proper hexahedral mesh construction. Finally, edge-contraction and smoothing methods are used to improve the quality of tetrahedral meshes, and a combination of pillowing, geometric flow and optimization techniques is used for hexahedral mesh quality improvement. The shrink set of pillowing schemes is defined automatically as the boundary of each material region. Several application results of our multi-material mesh generation method are also provided. PMID:20161555
Knupp, P.M.
1999-01-18
Structured mesh quality optimization methods are extended to optimization of unstructured triangular, quadrilateral, and mixed finite element meshes. N"ew interpretations of well-known nodally-bssed objective functions are made possible using matrices and matrix norms. The matrix perspective also suggests several new objective functions. Particularly significant is the interpretation of the Oddy metric and the Smoothness objective functions in terms of the condition number of the metric tensor and Jacobian matrix, respectively. Objective functions are grouped according to dimensionality to form weighted combinations. A simple unconstrained local optimum is computed using a modiiied N-ewton iteration. The optimization approach was implemented in the CUBIT mesh generation code and tested on several problems. Results were compared against several standard element-based quaIity measures to demonstrate that good mesh quality can be achieved with nodally-based objective functions.
Local meshing plane analysis as a source of information about the gear quality
NASA Astrophysics Data System (ADS)
Mączak, Jędrzej
2013-07-01
In the paper the application of the local meshing plane concept is discussed and applied for detecting of tooth degradation due to fatigue, and for overall gear quality assessment. Knowing the kinematic properties of the machine (i.e. gear tooth numbers) it is possible to modify the diagnostic signal in such a manner that its fragments will be linked to different rotating parts. This allows for presentation of either raw or processed gearbox signal in a form of three dimensional map on the plane "pinion teeth×gear teeth", called local meshing plane. The meshing plane in Cartesian coordinates z1×z2 allows for precise location and assessment of gear faults in terms of meshing quality of consecutive tooth pairs. Although the method was applied to simulated signals generated by the gearbox model, similar results were obtained for the measurement signals recorded during the back-to-back test stand experiment. The described method could be used for assessing the manufacturing quality of gears, the assembly quality as well as for the gear failure evaluation during normal exploitation.
Automatic MeSH term assignment and quality assessment.
Kim, W.; Aronson, A. R.; Wilbur, W. J.
2001-01-01
For computational purposes documents or other objects are most often represented by a collection of individual attributes that may be strings or numbers. Such attributes are often called features and success in solving a given problem can depend critically on the nature of the features selected to represent documents. Feature selection has received considerable attention in the machine learning literature. In the area of document retrieval we refer to feature selection as indexing. Indexing has not traditionally been evaluated by the same methods used in machine learning feature selection. Here we show how indexing quality may be evaluated in a machine learning setting and apply this methodology to results of the Indexing Initiative at the National Library of Medicine. PMID:11825203
Moriconi, S; Scalco, E; Broggi, S; Avuzzi, B; Valdagni, R; Rizzo, G
2015-08-01
A novel approach for three-dimensional (3D) surface reconstruction of anatomical structures in radiotherapy (RT) is presented. This is obtained from manual cross-sectional contours by combining both image voxel segmentation processing and implicit surface streaming methods using wavelets. 3D meshes reconstructed with the proposed approach are compared to those obtained from traditional triangulation algorithm. Qualitative and quantitative evaluations are performed in terms of mesh quality metrics. Differences in smoothness, detail and accuracy are observed in the comparison, considering three different anatomical districts and several organs at risk in radiotherapy. Overall best performances were recorded for the proposed approach, regardless the complexity of the anatomical structure. This demonstrates the efficacy of the proposed approach for the 3D surface reconstruction in radiotherapy and allows for further specific image analyses using real biomedical data. PMID:26737226
2011-01-01
Background Mesh repair of incisional hernia is superior to the conventional technique. From all available materials for open surgery polypropylene (PP) is the most widely used. Development resulted in meshes with larger pore size, decreased mesh surface and lower weight. The aim of this retrospective non randomized study was to compare the quality of life in the long term follow up (> 72 month) after incisional hernia repair with "light weight"(LW) and "heavy weight"(HW) PP meshes. Methods 12 patients who underwent midline open incisional hernia repair with a HW-PP mesh (Prolene® 109 g/m2 pore size 1.6 mm) between January 1996 and December 1997 were compared with 12 consecutive patients who underwent the same procedure with a LW-PP mesh (Vypro® 54 g/m2, pore size 4-5 mm) from January 1998. The standard technique was the sublay mesh-plasty with the retromuscular positioning of the mesh. The two groups were equal in BMI, age, gender and hernia size. Patients were routinely seen back in the clinic. Results In the long term run (mean follow up 112 ± 22 months) patients of the HW mesh group revealed no significant difference in the SF-36 Health Survey domains compared to the LW group (mean follow up 75 ± 16 months). Conclusions In this study the health related quality of life based on the SF 36 survey after open incisional hernia repair with light or heavy weight meshes is not related to the mesh type in the long term follow up. PMID:21917180
Loderer, Christian; Wörle, Anna; Fuchs, Werner
2012-04-01
Recently, a new type of wastewater treatment system became the focus of scientific research: the mesh filter activated sludge system. It is a modification of the membrane bioreactor (MBR), in which a membrane filtration process serves for sludge separation. The main difference is that a mesh filter is used instead of the membrane. The effluent is not of the same excellent quality as with membrane bioreactors due to the much lager pore sizes of the mesh. Nevertheless, it still resembles the quality of currently used standard treatment system, the activated sludge process. The new process shows high future potential as an alternative where a small footprint of these plants is required (3 times lower footprint than conventional activated sludge systems because of neglecting the secondary clarifier and reducing the biological stage). However, so far only limited information on this innovative process is available. In this study, the effect of different pore sizes and different mesh module configurations on the effluent quality was investigated varying the parameters cross-flow velocity (CFV) and flux rate. Furthermore the long-term filtration performance was studied in a pilot reactor system and results were compared to the full-scale conventional activated sludge process established at the same site. The results demonstrate that the configuration of the filter module has little impact on effluent quality and is only of importance with regard to engineering aspects. Most important for a successful operation are the hydrodynamic conditions within the filter module. The statement "the higher the pore size the higher the effluent turbidity" was verified. Excellent effluent quality with suspended solids between 5 and 15 mg L(-1) and high biological elimination rates (chemical oxygen demand (COD) 90-95%, biological oxygen demand (BOD5) 94-98%, total nitrogen (TN) 70-80%, and ammonium nitrogen (NH(4)-N) 95-99%) were achieved and also compared to those of conventional
Spherical geodesic mesh generation
Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich
2015-02-27
In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2009-01-01
The quality of simulated hypersonic stagnation region heating on tetrahedral meshes is investigated by using a three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. Two test problems are investigated: hypersonic flow over a three-dimensional cylinder with special attention to the uniformity of the solution in the spanwise direction and hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problem provides a sensitive test for algorithmic effects on heating. This investigation is believed to be unique in its focus on three-dimensional, rotated upwind schemes for the simulation of hypersonic heating on tetrahedral grids. This study attempts to fill the void left by the inability of conventional (quasi-one-dimensional) approaches to accurately simulate heating in a tetrahedral grid system. Results show significant improvement in spanwise uniformity of heating with some penalty of ringing at the captured shock. Issues with accuracy near the peak shear location are identified and require further study.
Curved mesh generation and mesh refinement using Lagrangian solid mechanics
Persson, P.-O.; Peraire, J.
2008-12-31
We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.
Mesh generation from 3D multi-material images.
Boltcheva, Dobrina; Yvinec, Mariette; Boissonnat, Jean-Daniel
2009-01-01
The problem of generating realistic computer models of objects represented by 3D segmented images is important in many biomedical applications. Labelled 3D images impose particular challenges for meshing algorithms because multi-material junctions form features such as surface pacthes, edges and corners which need to be preserved into the output mesh. In this paper, we propose a feature preserving Delaunay refinement algorithm which can be used to generate high-quality tetrahedral meshes from segmented images. The idea is to explicitly sample corners and edges from the input image and to constrain the Delaunay refinement algorithm to preserve these features in addition to the surface patches. Our experimental results on segmented medical images have shown that, within a few seconds, the algorithm outputs a tetrahedral mesh in which each material is represented as a consistent submesh without gaps and overlaps. The optimization property of the Delaunay triangulation makes these meshes suitable for the purpose of realistic visualization or finite element simulations. PMID:20426123
NASA Astrophysics Data System (ADS)
Jermyn, Michael; Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.
2013-08-01
Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform.
Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.
2013-01-01
Abstract. Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform. PMID:23942632
Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2010-01-01
The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the
Dubai 3d Textuerd Mesh Using High Quality Resolution Vertical/oblique Aerial Imagery
NASA Astrophysics Data System (ADS)
Tayeb Madani, Adib; Ziad Ahmad, Abdullateef; Christoph, Lueken; Hammadi, Zamzam; Manal Abdullah Sabeal, Manal Abdullah x.
2016-06-01
Providing high quality 3D data with reasonable quality and cost were always essential, affording the core data and foundation for developing an information-based decision-making tool of urban environments with the capability of providing decision makers, stakeholders, professionals, and public users with 3D views and 3D analysis tools of spatial information that enables real-world views. Helps and assist in improving users' orientation and also increase their efficiency in performing their tasks related to city planning, Inspection, infrastructures, roads, and cadastre management. In this paper, the capability of multi-view Vexcel UltraCam Osprey camera images is examined to provide a 3D model of building façades using an efficient image-based modeling workflow adopted by commercial software's. The main steps of this work include: Specification, point cloud generation, and 3D modeling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on the images to generate point cloud. Then, a mesh model of points is calculated using and refined to obtain an accurate model of buildings. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough LoD2 details of the building based on visual assessment. The objective of this paper is neither comparing nor promoting a specific technique over the other and does not mean to promote a sensor-based system over another systems or mechanism presented in existing or previous paper. The idea is to share experience.
A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes
NASA Technical Reports Server (NTRS)
Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.
1999-01-01
The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.
Quality-of-service-based protection in MPLS control WDM mesh networks
NASA Astrophysics Data System (ADS)
Wen, Wushao; Mukherjee, Biswanath; Yoo, S. J. B.
2001-10-01
Intelligent methods for automatic protection and restoration are critical in optical transport mesh networks. This paper discusses the problem of quality of service (QoS)-based protection in term of the protection-switching time and availability for end-to-end lightpaths in a WDM mesh network. We analyze the backup lightpath-sharing problem in such networks and study the correlation of the working lightpaths and its impact to the sharing of their backup lightpaths. We present a multi-protocol-label-switching (MPLS) control-based fully distributed algorithm to solve the protection problem. The proposed algorithm includes intelligent and fully automatic procedures to set up, take down, activate, restore, and manage backup lightpaths. It greatly reduces the required resources for protection by allowing the sharing of network resources by multiple backup lightpaths. At the same time, it guarantees, if possible, to satisfy the availability requirement even with resource sharing by taking the correlation of working lightpaths into consideration when deciding backup lightpaths. A simple analysis of the proposed algorithm in terms of computation, time, and message complexity indicates that the implementation of the algorithm is practical. The illustrative studies that compare the performance of 1:1, unlimited sharing, and QoS-based sharing backup algorithms indicates that QoS-based sharing achieves comparable performance as unlimited sharing, which is much better than the 1:1 backup scheme in terms of connection blocking probability, average number of connections in the network for a given offered load, and network-resource utilization.
A suitable low-order, eight-node tetrahedral finite element for solids
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes.
Misztal, Marek K; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, J Andreas; Bridson, Robert
2013-07-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:23836703
Multiphase flow of immiscible fluids on unstructured moving meshes.
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, Jakob Andreas; Bridson, Robert
2014-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:24201322
Parallel Anisotropic Tetrahedral Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.
H-Morph: An indirect approach to advancing front hex meshing
OWEN,STEVEN J.; SAIGAL,SUNIL
2000-05-30
H-Morph is a new automatic algorithm for the generation of a hexahedral-dominant finite element mesh for arbitrary volumes. The H-Morph method starts with an initial tetrahedral mesh and systematically transforms and combines tetrahedral into hexahedra. It uses an advancing front technique where the initial front consists of a set of prescribed quadrilateral surface facets. Fronts are individually processed by recovering each of the six quadrilateral faces of a hexahedron from the tetrahedral mesh. Recovery techniques similar to those used in boundary constrained Delaunay mesh generation are used. Tetrahedral internal to the six hexahedral faces are then removed and a hexahedron is formed. At any time during the H-Morph procedure a valid mixed hexahedral-tetrahedral mesh is in existence within the volume. The procedure continues until no tetrahedral remain within the volume, or tetrahedral remain which cannot be transformed or combined into valid hexahedral elements. Any remaining tetrahedral are typically towards the interior of the volume, generally a less critical region for analysis. Transition from tetrahedral to hexahedra in the final mesh is accomplished through pyramid shaped elements. Advantages of the proposed method include its ability to conform to an existing quadrilateral surface mesh, its ability to mesh without the need to decompose or recognize special classes of geometry, and its characteristic well-aligned layers of elements parallel to the boundary. Example test cases are presented on a variety of models.
Longest, P Worth; Vinchurkar, Samir
2007-04-01
A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes that employ tetrahedral elements can be constructed much faster but may increase levels of numerical diffusion, especially in tubular flow systems with a primary flow direction. The objective of this study is to better establish the effects of mesh generation techniques and grid convergence on velocity fields and particle deposition patterns in bifurcating respiratory models. In order to achieve this objective, four widely used mesh styles including structured hexahedral, unstructured tetrahedral, flow adaptive tetrahedral, and hybrid grids have been considered for two respiratory airway configurations. Initial particle conditions tested are based on the inlet velocity profile or the local inlet mass flow rate. Accuracy of the simulations has been assessed by comparisons to experimental in vitro data available in the literature for the steady-state velocity field in a single bifurcation model as well as the local particle deposition fraction in a double bifurcation model. Quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The hexahedral mesh was observed to have GCI values that were an order of magnitude below the unstructured tetrahedral mesh values for all resolutions considered. Moreover, the hexahedral mesh style provided GCI values of approximately 1% and reduced run times by a factor of 3. Based on comparisons to empirical data, it was shown that inlet particle seedings should be consistent with the local inlet mass flow rate. Furthermore, the mesh style was found to have an observable
Variational Generation of Prismatic Boundary-Layer Meshes for Biomedical Computing
Dyedov, Volodymyr; Einstein, Daniel; Jiao, Xiangmin; Kuprat, Andrew; Carson, James; Pin, Facundo del
2009-01-01
SUMMARY Boundary-layer meshes are important for numerical simulations in computational fluid dynamics, including computational biofluid dynamics of air flow in lungs and blood flow in hearts. Generating boundary-layer meshes is challenging for complex biological geometries. In this paper, we propose a novel technique for generating prismatic boundary-layer meshes for such complex geometries. Our method computes a feature size of the geometry, adapts the surface mesh based on the feature size, and then generates the prismatic layers by propagating the triangulated surface using the face-offsetting method. We derive a new variational method to optimize the prismatic layers to improve the triangle shapes and edge orthogonality of the prismatic elements and also introduce simple and effective measures to guarantee the validity of the mesh. Coupled with a high-quality tetrahedral mesh generator for the interior of the domain, our method generates high-quality hybrid meshes for accurate and efficient numerical simulations. We present comparative study to demonstrate the robustness and quality of our method for complex biomedical geometries. PMID:20161102
Methods for prismatic/tetrahedral grid generation and adaptation
NASA Astrophysics Data System (ADS)
Kallinderis, Y.
1995-10-01
The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.
PLUM: Parallel Load Balancing for Unstructured Adaptive Meshes
NASA Technical Reports Server (NTRS)
Oliker, Leonid
1998-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for computing large-scale problems that require grid modifications to efficiently resolve solution features. Unfortunately, an efficient parallel implementation is difficult to achieve, primarily due to the load imbalance created by the dynamically-changing nonuniform grid. To address this problem, we have developed PLUM, an automatic portable framework for performing adaptive large-scale numerical computations in a message-passing environment. First, we present an efficient parallel implementation of a tetrahedral mesh adaption scheme. Extremely promising parallel performance is achieved for various refinement and coarsening strategies on a realistic-sized domain. Next we describe PLUM, a novel method for dynamically balancing the processor workloads in adaptive grid computations. This research includes interfacing the parallel mesh adaption procedure based on actual flow solutions to a data remapping module, and incorporating an efficient parallel mesh repartitioner. A significant runtime improvement is achieved by observing that data movement for a refinement step should be performed after the edge-marking phase but before the actual subdivision. We also present optimal and heuristic remapping cost metrics that can accurately predict the total overhead for data redistribution. Several experiments are performed to verify the effectiveness of PLUM on sequences of dynamically adapted unstructured grids. Portability is demonstrated by presenting results on the two vastly different architectures of the SP2 and the Origin2OOO. Additionally, we evaluate the performance of five state-of-the-art partitioning algorithms that can be used within PLUM. It is shown that for certain classes of unsteady adaption, globally repartitioning the computational mesh produces higher quality results than diffusive repartitioning schemes. We also demonstrate that a coarse starting mesh produces high quality load balancing, at
NASA Astrophysics Data System (ADS)
Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.
2015-10-01
An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.
Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.
2013-01-01
The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031
Full-hexahedral structured meshing for image-based computational vascular modeling.
De Santis, Gianluca; De Beule, Matthieu; Van Canneyt, Koen; Segers, Patrick; Verdonck, Pascal; Verhegghe, Benedict
2011-12-01
Image-based computational modeling offers a virtual access to spatially and temporally high resolution flow and structural mechanical data in vivo. Due to inter-subject morphological variability, mesh generation represents a critical step in modeling the patient-specific geometry and is usually performed using unstructured tetrahedral meshing algorithms. Although hexahedral structured meshes are known to provide higher accuracy and reduce the computational costs both for Finite Element Analysis and Computational Fluid Dynamics, their application in computational cardiovascular studies is challenging due to the complex 3D and branching topology of vascular territories. In this study, we propose a robust procedure for structured mesh generation, tailoring the mesh structure to the subject-specific vessel topology. The proposed methodology is based on centerline-based synthetic descriptors (i.e. centerlines, radii and centerlines' normals) which are used to solve the meshing problem following a bottom-up approach. First, topologically equivalent block-structures are placed inside and outside the lumen domain. Then, a projection operation is performed, returning a parametric volume mesh which fits the original triangulated model with sub-micrometric accuracy. Additionally, a three-layered arterial wall (resembling the intima, media and adventitia) is artificially generated, with the possibility of setting variable thickness (e.g. proximal-to-distal tapering) and material anisotropy (e.g. position-dependent collagen-fibers' orientation). This new meshing procedure, implemented using open-source software packages only, is demonstrated on two challenging human cases, being an aortic arch and an abdominal aortic aneurysm. High-quality meshes are generated in both cases, according to shape-quality metrics. By increasing the computation accuracy, the developed meshing tool has the potential to further add "confidence" to the use of computational methods in vascular
Mesh Excision: Is Total Mesh Excision Necessary?
Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M
2016-04-01
Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement. PMID:26905696
An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data.
Kuprat, Andrew P; Einstein, Daniel R
2009-02-20
We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local feature size. Given an input triangulated surface mesh, a feature size field is determined by casting rays normal to the surface and into the geometry and then performing gradient-limiting operations to enforce continuity of the resulting field. Surface mesh density is adjusted to be proportional to the feature size field and then a layered anisotropic volume mesh is generated. This mesh is "scale-invariant" in that roughly the same number of layers of mesh exist in mesh cross-sections, between a minimum scale size L(min) and a maximum scale size L(max). We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex biological surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[14]. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1. PMID:19784397
An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data
Kuprat, Andrew P.; Einstein, Daniel R.
2009-01-01
We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local feature size. Given an input triangulated surface mesh, a feature size field is determined by casting rays normal to the surface and into the geometry and then performing gradient-limiting operations to enforce continuity of the resulting field. Surface mesh density is adjusted to be proportional to the feature size field and then a layered anisotropic volume mesh is generated. This mesh is “scale-invariant” in that roughly the same number of layers of mesh exist in mesh cross-sections, between a minimum scale size Lmin and a maximum scale size Lmax. We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex biological surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[14]. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1. PMID:19784397
Prakash, Pradeep; Bansal, Virinder Kumar; Misra, Mahesh Chandra; Babu, Divya; Sagar, Rajesh; Krishna, Asuri; Kumar, Subodh; Rewari, Vimi; Subramaniam, Rajeshwari
2016-01-01
BACKGROUND: The aim of our study was to compare chronic groin pain and quality of life (QOL) after laparoscopic lightweight (LW) and heavyweight (HW) mesh repair for groin hernia. MATERIALS AND METHODS: One hundred and forty adult patients with uncomplicated inguinal hernia were randomised into HW mesh group or LW mesh group. Return to activity, chronic groin pain and recurrence rates were assessed. Short form-36 v2 health survey was used for QOL analysis. RESULTS: One hundred and thirty-one completed follow-up of 3 months, 66 in HW mesh group and 65 in LW mesh group. Early post-operative convalescence was better in LW mesh group in terms of early return to walking (P = 0.01) and driving (P = 0.05). The incidence of early post-operative pain, chronic groin pain and QOL and recurrences were comparable. CONCLUSION: Outcomes following laparoscopic inguinal hernia repair using HW and LW mesh are comparable in the short-term as well as long-term. PMID:27073309
NASA Technical Reports Server (NTRS)
Panthaki, Malcolm J.
1987-01-01
Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.
Refining quadrilateral and brick element meshes
Schneiders, R.; Debye, J.
1995-12-31
We consider the problem of refining unstructured quadrilateral and brick element meshes. We present an algorithm which is a generalization of an algorithm developed by Cheng et. al. for structured quadrilateral element meshes. The problem is solved for the two-dimensional case. Concerning three dimensions we present a solution for some special cases and a general solution that introduces tetrahedral and pyramidal transition elements.
Darmoni, S J; Thirion, B; Leroyt, J P; Douyère, M; Lacoste, B; Godard, C; Rigolle, I; Brisou, M; Videau, S; Goupyt, E; Piott, J; Quéré, M; Ouazir, S; Abdulrab, H
2001-01-01
In the year 2001, the Internet has become a major source of health information for the health professional and the Netizen. The objective of Doc' CISMeF (D'C) was to create a powerful generic search tool based on a structured information model which 'encapsulates' the MeSH thesaurus to index and retrieve quality health resources on the Internet. To index resources, D'C uses four sections in its information model: 'meta-term', keyword, subheading, and resource type. Two search options are available: simple and advanced. The simple search requires the end-user to input a single term or expression. If this term belongs to the D'C information structure model, it will be exploded. If not, a full-text search is performed. In the advanced search, complex searches are possible combining Boolean operators with meta-terms, keywords, subheadings and resource types. D'C uses two standard tools for organising information: the MeSH thesaurus and the Dublin Core metadata format. Resources included in D'C are described according to the following elements: title, author or creator, subject and keywords, description, publishers, date, resource type, format, identifier, and language. PMID:11706927
Conservation properties of unstructured staggered mesh schemes
Perot, B.
2000-03-20
Classic Cartesian staggered mesh schemes have a number of attractive properties. They do not display spurious pressure modes and they have been shown to locally conserve, mass, momentum, kinetic energy, and circulation to machine precision. Recently, a number of generalizations of the staggered mesh approach have been proposed for unstructured (triangular or tetrahedral) meshes. These unstructured staggered mesh methods have been created to retain the attractive pressure aspects and mass conservation properties of the classic Cartesian mesh method. This work addresses the momentum, kinetic energy, and circulation conservation properties of unstructured staggered mesh methods. It is shown that with certain choices of the velocity interpolation, unstructured staggered mesh discretization of the divergence form of the Navier-Stokes equations can conserve kinetic energy and momentum both locally and globally. In addition, it is shown that unstructured staggered mesh discretization of the rotational form of the Navier-Stokes equations can conserve kinetic energy and circulation both locally and globally. The analysis includes viscous terms and a generalization of the concept of conservation in the presence of viscosity to include a negative definite dissipation term in the kinetic energy equation. These novel conserving unstructured staggered mesh schemes have not been previously analyzed. It is shown that they are first-order accurate on nonuniform two-dimensional unstructured meshes and second-order accurate on uniform unstructured meshes. Numerical confirmation of the conservation properties and the order of accuracy of these unstructured staggered mesh methods is presented.
Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1997-01-01
An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.
Hex-dominant mesh generation using 3D constrained triangulation
OWEN,STEVEN J.
2000-05-30
A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.
Li, Jun; Li, Xi; Zhai, Hua Jin; Wang, Lai S.
2003-02-07
Photoelectron spectroscopy revealed that a 20 atom gold cluster has an extremely large energy gap, which is even greater than that of C60, and an electron affinity comparable with that of C60. This observation suggests that the Au20 cluster must be extremely stable and chemically inert. Using relativistic density functional calculations, we found that Au20 possesses a remarkable tetrahedral structure, which is a fragment of the bulk face-centered cubic lattice of gold with a small structural relaxation. Au20 is thus a true cluster molecule, while at the same time it is exactly part of the bulk, but with very different properties. The tetrahedral Au20 may possess interesting catalytic properties and may be synthesized in bulk quantity or assembled on non-interacting surfaces.
A tetrahedral entropy for water.
Kumar, Pradeep; Buldyrev, Sergey V; Stanley, H Eugene
2009-12-29
We introduce the space-dependent correlation function C (Q)(r) and time-dependent autocorrelation function C (Q)(t) of the local tetrahedral order parameter Q identical with Q(r,t). By using computer simulations of 512 waterlike particles interacting through the transferable interaction potential with five points (TIP5 potential), we investigate C (Q)(r) in a broad region of the phase diagram. We find that at low temperatures C (Q)(t) exhibits a two-step time-dependent decay similar to the self-intermediate scattering function and that the corresponding correlation time tau(Q) displays a dynamic cross-over from non-Arrhenius behavior for T > T (W) to Arrhenius behavior for T < T (W), where T (W) denotes the Widom temperature where the correlation length has a maximum as T is decreased along a constant-pressure path. We define a tetrahedral entropy S (Q) associated with the local tetrahedral order of water molecules and find that it produces a major contribution to the specific heat maximum at the Widom line. Finally, we show that tau(Q) can be extracted from S (Q) by using an analog of the Adam-Gibbs relation. PMID:20018692
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
Physician autonomy vs. accountability: making quality standards and medical style mesh.
Larson, Laurie
2007-01-01
As hospitals endeavor to follow more evidence-based care protocols for improving quality and patient safety, their biggest challenge may be the historic independence of physicians' medical practices. PMID:17685362
Henchman, Richard H; Cockram, Stuart J
2013-01-01
The case for liquid water having non-tetrahedral as well as tetrahedral coordination is put forward. Given the dependence of structure on the hydrogen bond definition, a recent conceptual breakthrough has been the topological hydrogen bond definition which overcomes the shortcomings of traditional cut-off-based hydrogen bond definitions. It identifies the hydrogen bonds in water's first coordination shell using assumed transition states as boundaries instead of fixed cut-offs. Here, the topological definition is applied to liquid water to characterise the distances, angles and energies of the hydrogen bonds for the different types of coordinations found. These coordinations include bent, trigonal, tetrahedral, trigonal bipyramidal, and octahedral structures, as well as bifurcated hydrogens, bifurcated oxygens and cyclic dimers, and larger polygons. All species are shown to have properties consistent with their classification, justifying their assignments, and supporting the structure of water as a continuous, single phase mixture. However, a detailed analysis to assess the existence of the assumed transition states reveals the remarkable finding that hydrogen bond switching via a bifurcated hydrogen under certain circumstances is a barrierless process. The likelihood of a switch depends on both the acceptor numbers and on the proximity of a donor to its acceptor. Specifically, a donor in an acceptor's outermost subshell switches uphill to an acceptor of the same or higher coordination to the starting acceptor, downhill to an acceptor of lower coordination by two or more, or sits bifurcated between two acceptors if the new acceptor has a coordination lower by only one. Which it is depends intimately on the donor molecule's oscillations and on other hydrogen bond switches that control the nearby acceptors' coordinations. Finally, a search is conducted for long-range structure in water in terms of asymmetry in the distribution of the donor-acceptor bias but none is
... Device Safety Safety Communications Surgical Mesh: FDA Safety Communication Share Tweet Linkedin Pin it More sharing options ... Prolapse and Stress Urinary Incontinence More in Safety Communications Information About Heparin Preventing Tubing and Luer Misconnections ...
Resolvability and the Tetrahedral Configuration of Carbon.
ERIC Educational Resources Information Center
Kauffman, George B.
1983-01-01
Discusses evidence for the tetrahedral configuration of the carbon atom, indicating that three symmetrical configurations are theoretically possible for coordination number four. Includes table indicating that resolvability of compounds of type CR'R"R"'R"" is a necessary but not sufficient condition for proving tetrahedral configuration. (JN)
Adaptive hybrid prismatic-tetrahedral grids for viscous flows
NASA Technical Reports Server (NTRS)
Kallinderis, Yannis; Khawaja, Aly; Mcmorris, Harlan
1995-01-01
The paper presents generation of adaptive hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is an Automatic Receding Method (ARM) for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples division of tetrahedra, as well as 2-D directional division of prisms.
Adaptive hybrid prismatic-tetrahedral grids for viscous flows
NASA Astrophysics Data System (ADS)
Kallinderis, Yannis; Khawaja, Aly; McMorris, Harlan
1995-03-01
The paper presents generation of adaptive hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is an Automatic Receding Method (ARM) for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples division of tetrahedra, as well as 2-D directional division of prisms.
SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method
Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X
2015-06-15
Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.
Sequentially deployable maneuverable tetrahedral beam
NASA Technical Reports Server (NTRS)
Mikulas, M. M., Jr.; Crawford, R. F. (Inventor)
1985-01-01
A tetrahedral beam that can be compactly stowed, sequentially deployed, and widely manipulated to provide a structurally sound yet highly maneuverable truss structure is comprised of a number of repeating units of tandem tetralhedral sharing common sides. Fixed length battens are jointed into equilateral triangles called batten frames. Apexes of adjacent triangles are interconnected by longerons having a mid-point folding hinge. Joints, comprised of gussets pivotabley connected by links, permit two independent degrees of rotational freedom between joined adjacent batten frames, and provide a stable structure from packaged configuration to complete deployment. The longerons and joints can be actuated in any sequence, independently of one another. The beam is suited to remote actuation. Longerons may be provided with powered mid-point hinges enabling beam erection and packaging under remote control. Providing one or more longerons with powered telescoping segments permits the shape of the beam central axis to be remotely manipulated so that the beam may function as a remote manipulator arm.
Sequentially deployable maneuverable tetrahedral beam
NASA Astrophysics Data System (ADS)
Mikulas, M. M., Jr.; Crawford, R. F.
1985-12-01
A tetrahedral beam that can be compactly stowed, sequentially deployed, and widely manipulated to provide a structurally sound yet highly maneuverable truss structure is comprised of a number of repeating units of tandem tetralhedral sharing common sides. Fixed length battens are jointed into equilateral triangles called batten frames. Apexes of adjacent triangles are interconnected by longerons having a mid-point folding hinge. Joints, comprised of gussets pivotabley connected by links, permit two independent degrees of rotational freedom between joined adjacent batten frames, and provide a stable structure from packaged configuration to complete deployment. The longerons and joints can be actuated in any sequence, independently of one another. The beam is suited to remote actuation. Longerons may be provided with powered mid-point hinges enabling beam erection and packaging under remote control. Providing one or more longerons with powered telescoping segments permits the shape of the beam central axis to be remotely manipulated so that the beam may function as a remote manipulator arm.
Improvements to the Unstructured Mesh Generator MESH3D
NASA Technical Reports Server (NTRS)
Thomas, Scott D.; Baker, Timothy J.; Cliff, Susan E.
1999-01-01
The AIRPLANE process starts with an aircraft geometry stored in a CAD system. The surface is modeled with a mesh of triangles and then the flow solver produces pressures at surface points which may be integrated to find forces and moments. The biggest advantage is that the grid generation bottleneck of the CFD process is eliminated when an unstructured tetrahedral mesh is used. MESH3D is the key to turning around the first analysis of a CAD geometry in days instead of weeks. The flow solver part of AIRPLANE has proven to be robust and accurate over a decade of use at NASA. It has been extensively validated with experimental data and compares well with other Euler flow solvers. AIRPLANE has been applied to all the HSR geometries treated at Ames over the course of the HSR program in order to verify the accuracy of other flow solvers. The unstructured approach makes handling complete and complex geometries very simple because only the surface of the aircraft needs to be discretized, i.e. covered with triangles. The volume mesh is created automatically by MESH3D. AIRPLANE runs well on multiple platforms. Vectorization on the Cray Y-MP is reasonable for a code that uses indirect addressing. Massively parallel computers such as the IBM SP2, SGI Origin 2000, and the Cray T3E have been used with an MPI version of the flow solver and the code scales very well on these systems. AIRPLANE can run on a desktop computer as well. AIRPLANE has a future. The unstructured technologies developed as part of the HSR program are now targeting high Reynolds number viscous flow simulation. The pacing item in this effort is Navier-Stokes mesh generation.
Au40: A Large Tetrahedral Magic Cluster
Jiang, Deen; Walter, Michael
2011-01-01
40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au{sub 40} could be such a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au{sub 40} has a twisted pyramid structure, reminiscent of the famous tetrahedral Au{sub 20}, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.
Au40: A large tetrahedral magic cluster
NASA Astrophysics Data System (ADS)
Jiang, De-En; Walter, Michael
2011-11-01
40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au40 could be such a a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au40 has a twisted pyramid structure, reminiscent of the famous tetrahedral Au20, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.
3D Mesh optimization methods for unstructured polyhedra: A progress report
Miller, D.S.; Burton, D.E.
1994-11-22
A mesh optimization scheme allows a Lagrangian code to run problems with extreme mesh distortion by reconfiguring node and zone connectivity as the problem evolves. We have developed some 3D mesh optimization operations and criteria for applying them. These are demonstrated in a 3D Free Lagrange code being developed at LLNL. In the simplest case of a mesh or mesh subregion composed purely of tetrahedra we can maintain a Delaunay tetrahedralization. For more interesting meshes, made up of general polyhedra, a suite of optimization operations and their respective application criteria have been developed.
Douyère, Magaly; Soualmia, Lina F; Névéol, Aurélie; Rogozan, Alexandrina; Dahamna, Badisse; Leroy, Jean-Philippe; Thirion, Benoît; Darmoni, Stefan J
2004-12-01
The amount of health information available on the Internet is considerable. In this context, several health gateways have been developed. Among them, CISMeF (Catalogue and Index of Health Resources in French) was designed to catalogue and index health resources in French. The goal of this article is to describe the various enhancements to the MeSH thesaurus developed by the CISMeF team to adapt this terminology to the broader field of health Internet resources instead of scientific articles for the medline bibliographic database. CISMeF uses two standard tools for organizing information: the MeSH thesaurus and several metadata element sets, in particular the Dublin Core metadata format. The heterogeneity of Internet health resources led the CISMeF team to enhance the MeSH thesaurus with the introduction of two new concepts, respectively, resource types and metaterms. CISMeF resource types are a generalization of the publication types of medline. A resource type describes the nature of the resource and MeSH keyword/qualifier pairs describe the subject of the resource. A metaterm is generally a medical specialty or a biological science, which has semantic links with one or more MeSH keywords, qualifiers and resource types. The CISMeF terminology is exploited for several tasks: resource indexing performed manually, resource categorization performed automatically, visualization and navigation through the concept hierarchies and information retrieval using the Doc'CISMeF search engine. The CISMeF health gateway uses several MeSH thesaurus enhancements to optimize information retrieval, hierarchy navigation and automatic indexing. PMID:15606883
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS
Fu, Zhisong; Kirby, Robert M.; Whitaker, Ross T.
2014-01-01
Generating numerical solutions to the eikonal equation and its many variations has a broad range of applications in both the natural and computational sciences. Efficient solvers on cutting-edge, parallel architectures require new algorithms that may not be theoretically optimal, but that are designed to allow asynchronous solution updates and have limited memory access patterns. This paper presents a parallel algorithm for solving the eikonal equation on fully unstructured tetrahedral meshes. The method is appropriate for the type of fine-grained parallelism found on modern massively-SIMD architectures such as graphics processors and takes into account the particular constraints and capabilities of these computing platforms. This work builds on previous work for solving these equations on triangle meshes; in this paper we adapt and extend previous two-dimensional strategies to accommodate three-dimensional, unstructured, tetrahedralized domains. These new developments include a local update strategy with data compaction for tetrahedral meshes that provides solutions on both serial and parallel architectures, with a generalization to inhomogeneous, anisotropic speed functions. We also propose two new update schemes, specialized to mitigate the natural data increase observed when moving to three dimensions, and the data structures necessary for efficiently mapping data to parallel SIMD processors in a way that maintains computational density. Finally, we present descriptions of the implementations for a single CPU, as well as multicore CPUs with shared memory and SIMD architectures, with comparative results against state-of-the-art eikonal solvers. PMID:25221418
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS.
Fu, Zhisong; Kirby, Robert M; Whitaker, Ross T
2013-01-01
Generating numerical solutions to the eikonal equation and its many variations has a broad range of applications in both the natural and computational sciences. Efficient solvers on cutting-edge, parallel architectures require new algorithms that may not be theoretically optimal, but that are designed to allow asynchronous solution updates and have limited memory access patterns. This paper presents a parallel algorithm for solving the eikonal equation on fully unstructured tetrahedral meshes. The method is appropriate for the type of fine-grained parallelism found on modern massively-SIMD architectures such as graphics processors and takes into account the particular constraints and capabilities of these computing platforms. This work builds on previous work for solving these equations on triangle meshes; in this paper we adapt and extend previous two-dimensional strategies to accommodate three-dimensional, unstructured, tetrahedralized domains. These new developments include a local update strategy with data compaction for tetrahedral meshes that provides solutions on both serial and parallel architectures, with a generalization to inhomogeneous, anisotropic speed functions. We also propose two new update schemes, specialized to mitigate the natural data increase observed when moving to three dimensions, and the data structures necessary for efficiently mapping data to parallel SIMD processors in a way that maintains computational density. Finally, we present descriptions of the implementations for a single CPU, as well as multicore CPUs with shared memory and SIMD architectures, with comparative results against state-of-the-art eikonal solvers. PMID:25221418
MMS Spacecraft Transition to Tetrahedral Flying Formation
In the latter half of July 2015, the four satellites of the Magnetosphere Multi-scale (MMS) mission move into their tetrahedral formation flying configuration as part of the checkout for the scienc...
Tetrahedrality and hydrogen bonds in water
NASA Astrophysics Data System (ADS)
Székely, Eszter; Varga, Imre K.; Baranyai, András
2016-06-01
We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.
An Anisotropic Scale-Invariant Unstructured Mesh Generator Auitable for Volumetric Imaging Data
Kuprat, Andrew P.; Einstein, Daniel R.
2009-02-20
Mesh generation algorithms must consider the computational physics schemes to be adopted insomuch as tessellation should attempt to minimize discretization error metrics a priori, while placing elements judiciously yet economically. Basing local element size and shape on local geometric feature size is a promising approach, as the underlying physics may either be scale-invariant or may vary with scale in a predictable way. We present a boundary-fitted scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local geometric scale, given a triangulated mesh surface. The resulting tetrahedra are well-shaped and nearly orthogonal to the boundary. Unlike previous feature-based approaches, our algorithm does not require a background mesh, nor does it rely on the medial-axis. In contrast, as a first step, our algorithm produces a gradientlimited feature-size field over the input surface based on efficient ray casting. We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[6].
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A
2016-03-21
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037
An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Erickson, Larry L.
1994-01-01
A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.
Nonzero Quadrupole Moments of Candidate Tetrahedral Bands
Bark, R. A.; Lawrie, E. A.; Lawrie, J. J.; Mullins, S. M.; Murray, S. H. T.; Ncapayi, N. J.; Smit, F. D.; Sharpey-Schafer, J. F.; Lindsay, R.
2010-01-15
Negative-parity bands in the vicinity of {sup 156}Gd and {sup 160}Yb have been suggested as candidates for the rotation of tetrahedral nuclei. We report the observation of the odd and even-spin members of the lowest energy negative-parity bands in {sup 160}Yb and {sup 154}Gd. The properties of these bands are similar to the proposed tetrahedral band of {sup 156}Gd and its even-spin partner. Band-mixing calculations are performed and absolute and relative quadrupole moments deduced for {sup 160}Yb and {sup 154}Gd. The values are inconsistent with zero, as required for tetrahedral shape, and the bands are interpreted as octupole vibrational bands. The failure to observe the in-band E2 transitions of the bands at low spins can be understood using the measured B(E1) and B(E2) values.
Energy Science and Technology Software Center (ESTSC)
2010-10-05
MeshKit is an open-source library of mesh generation functionality. MeshKit has general mesh manipulation and generation functions such as Copoy, Move, Rotate and Extrude mesh. In addition, new quad mesh and embedded boundary Cartesian mesh algorithm (EB Mesh) are included. Interfaces to several public domain meshing algorithms (TetGen, netgen, triangle, Gmsh, camal) are also offered. This library interacts with mesh data mostly through iMesh including accessing the mesh in parallel. It also can interact withmore » iGeom interface to provide geometry functionality such as importing solid model based geometries. iGeom and IMesh are implemented in the CGM and MOAB packages, respectively. For some non-existing function in iMesh such as tree-construction and ray-tracing, MeshKit also interacts with MOAB functions directly.« less
2010-10-05
MeshKit is an open-source library of mesh generation functionality. MeshKit has general mesh manipulation and generation functions such as Copoy, Move, Rotate and Extrude mesh. In addition, new quad mesh and embedded boundary Cartesian mesh algorithm (EB Mesh) are included. Interfaces to several public domain meshing algorithms (TetGen, netgen, triangle, Gmsh, camal) are also offered. This library interacts with mesh data mostly through iMesh including accessing the mesh in parallel. It also can interact with iGeom interface to provide geometry functionality such as importing solid model based geometries. iGeom and IMesh are implemented in the CGM and MOAB packages, respectively. For some non-existing function in iMesh such as tree-construction and ray-tracing, MeshKit also interacts with MOAB functions directly.
An Interpreted Language and System for the Visualization of Unstructured Meshes
NASA Technical Reports Server (NTRS)
Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)
1998-01-01
We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.
Local, Optimization-based Simplicial Mesh Smoothing
Energy Science and Technology Software Center (ESTSC)
1999-12-09
OPT-MS is a C software package for the improvement and untangling of simplicial meshes (triangles in 2D, tetrahedra in 3D). Overall mesh quality is improved by iterating over the mesh vertices and adjusting their position to optimize some measure of mesh quality, such as element angle or aspect ratio. Several solution techniques (including Laplacian smoothing, "Smart" Laplacian smoothing, optimization-based smoothing and several combinations thereof) and objective functions (for example, element angle, sin (angle), and aspectmore » ratio) are available to the user for both two and three-dimensional meshes. If the mesh contains invalid elements (those with negative area) a different optimization algorithm for mesh untangling is provided.« less
Evidence for tetrahedral symmetry in (16)O.
Bijker, R; Iachello, F
2014-04-18
We derive the rotation-vibration spectrum of a 4α configuration with tetrahedral symmetry Td and show evidence for the occurrence of this symmetry in the low-lying spectrum of (16)O. All vibrational states with A, E, and F symmetry appear to have been observed as well as the rotational bands with LP=0+, 3-, 4+, 6+ on the A states and part of the rotational bands built on the E, F states. We derive analytic expressions for the form factors and B(EL) values of the ground-state rotational band and show that the measured values support the tetrahedral symmetry of this band. PMID:24785032
The NASA Tetrahedral Unstructured Software System (TETRUSS)
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Pirzadeh, Shahyar Z.; Parikh, Paresh C.; Pandya, Mohagna J.; Bhat, M. K.
2000-01-01
The NASA Tetrahedral Unstructured Software System (TetrUSS) was developed during the 1990's to provide a rapid aerodynamic analysis and design capability to applied aerodynamicists. The system is comprised of loosely integrated, user-friendly software that enables the application of advanced Euler and Navier-Stokes tetrahedral finite volume technology to complex aerodynamic problems. TetrUSS has matured well because of the generous feedback from many willing users representing a broad cross-section of background and skill levels. This paper presents an overview of the current capabilities of the TetrUSS system along with some representative results from selected applications.
Tetrahedral boron in naturally occurring tourmaline
Tagg, S.L.; Cho, H.; Dyar, M.D.; Grew, E.S.
1999-09-01
Evidence for boron in both trigonal and tetrahedral coordination has been found in {sup 11}B magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectra of natural, inclusion-free specimens of aluminum-rich lithian tourmaline from granitic pregmatites.
Near-field testing of the 5-meter model of the tetrahedral truss antenna
NASA Technical Reports Server (NTRS)
Kefauver, Neill; Cencich, Tom; Osborn, Jim; Osmanski, J. T.
1986-01-01
This report documents the technical results from near-field testing of the General Dynamics 5-meter model of the tetrahedral truss antenna at the Martin Marietta Denver Aerospace facility. A 5-meter square side of the tetrahedral served as the perimeter of the antenna, and a mesh surface and extensive surface contouring cord network was used to create a parabolic aperture shape to within an rms accuracy of 30 mils or better. Pattern measurements were made with offset feed systems radiating at frequencies of 7.73, 11.60, 2.27, and 4.26 (all in GHz). This report discusses the method of collecting the data, system measurement accuracy, the test data compiled, and diagostics and isolation of causes of pattern results. The technique of using near-field phase for measuring surface mechanical tolerances is included. Detailed far field antenna patterns and their implications are provided for all tests conducted.
Search for Tetrahedral Symmetry in 70Ge
NASA Astrophysics Data System (ADS)
Le, Khanh; Haring-Kaye, R. A.; Elder, R. M.; Jones, K. D.; Morrow, S. I.; Tabor, S. L.; Tripathi, V.; Bender, P. C.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Doring, J.
2014-09-01
The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition of 20 new transitions and the rearrangement of five others based on the measured coincidence relations and relative intensities. Lifetimes of 24 states were measured using the Doppler-shift attenuation method, from which transition quadrupole moments were inferred. These results will be compared with those obtained from cranked Woods-Saxon calculations. The even-even Ge isotopes have recently become an active testing ground for a variety of exotic structural characteristics, including the existence of tetrahedral symmetry (pyramid-like shapes). Although theoretical shape calculations predict the onset of tetrahedral symmetry near 72Ge, the experimental signatures (including vanishing quadrupole moments within high-spin bands) remain elusive. This study searched for possible experimental evidence of tetrahedral symmetry in 70Ge. Excited states in 70Ge were populated at Florida State University using the 55Mn(18O,p2n) fusion-evaporation reaction at 50 MeV. Prompt γ- γ coincidences were measured with a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. The existing level scheme was enhanced through the addition
Parallel, Gradient-Based Anisotropic Mesh Adaptation for Re-entry Vehicle Configurations
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Gnoffo, Peter A.; Park, Michael A.; Jones, William T.
2006-01-01
Two gradient-based adaptation methodologies have been implemented into the Fun3d refine GridEx infrastructure. A spring-analogy adaptation which provides for nodal movement to cluster mesh nodes in the vicinity of strong shocks has been extended for general use within Fun3d, and is demonstrated for a 70 sphere cone at Mach 2. A more general feature-based adaptation metric has been developed for use with the adaptation mechanics available in Fun3d, and is applicable to any unstructured, tetrahedral, flow solver. The basic functionality of general adaptation is explored through a case of flow over the forebody of a 70 sphere cone at Mach 6. A practical application of Mach 10 flow over an Apollo capsule, computed with the Felisa flow solver, is given to compare the adaptive mesh refinement with uniform mesh refinement. The examples of the paper demonstrate that the gradient-based adaptation capability as implemented can give an improvement in solution quality.
Vervisch, Luc; Domingo, Pascale; Lodato, Guido; Veynante, Denis
2010-04-15
Large-Eddy Simulation (LES) provides space-filtered quantities to compare with measurements, which usually have been obtained using a different filtering operation; hence, numerical and experimental results can be examined side-by-side in a statistical sense only. Instantaneous, space-filtered and statistically time-averaged signals feature different characteristic length-scales, which can be combined in dimensionless ratios. From two canonical manufactured turbulent solutions, a turbulent flame and a passive scalar turbulent mixing layer, the critical values of these ratios under which measured and computed variances (resolved plus sub-grid scale) can be compared without resorting to additional residual terms are first determined. It is shown that actual Direct Numerical Simulation can hardly accommodate a sufficiently large range of length-scales to perform statistical studies of LES filtered reactive scalar-fields energy budget based on sub-grid scale variances; an estimation of the minimum Reynolds number allowing for such DNS studies is given. From these developments, a reliability mesh criterion emerges for scalar LES and scaling for scalar sub-grid scale energy is discussed. (author)
Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis.
Lee, Semin; Yang, Anna; Moneypenny, Timothy P; Moore, Jeffrey S
2016-02-24
In dynamic covalent synthesis, kinetic traps are perceived as disadvantageous, hindering the system from reaching its thermodynamic equilibrium. Here we present the near-quantitative preparation of tetrahedral cages from simple tritopic precursors using alkyne metathesis. While the cages are the presumed thermodynamic sink, we experimentally demonstrate that the products no longer exchange their vertices once they have formed. The example reported here illustrates that kinetically trapped products may facilitate high yields of complex products from dynamic covalent synthesis. PMID:26854552
Tetrahedrally coordinated carbonates in Earth's lower mantle.
Boulard, Eglantine; Pan, Ding; Galli, Giulia; Liu, Zhenxian; Mao, Wendy L
2015-01-01
Carbonates are the main species that bring carbon deep into our planet through subduction. They are an important rock-forming mineral group, fundamentally distinct from silicates in the Earth's crust in that carbon binds to three oxygen atoms, while silicon is bonded to four oxygens. Here we present experimental evidence that under the sufficiently high pressures and high temperatures existing in the lower mantle, ferromagnesian carbonates transform to a phase with tetrahedrally coordinated carbons. Above 80 GPa, in situ synchrotron infrared experiments show the unequivocal spectroscopic signature of the high-pressure phase of (Mg,Fe)CO3. Using ab-initio calculations, we assign the new infrared signature to C-O bands associated with tetrahedrally coordinated carbon with asymmetric C-O bonds. Tetrahedrally coordinated carbonates are expected to exhibit substantially different reactivity than low-pressure threefold coordinated carbonates, as well as different chemical properties in the liquid state. Hence, this may have significant implications for carbon reservoirs and fluxes, and the global geodynamic carbon cycle. PMID:25692448
Enhanced temperature uniformity by tetrahedral laser heating
Schroers, Jan; Bossuyt, Sven; Rhim, Won-Kyu; Li Jianzhong; Zhou Zhenhua; Johnson, William L.
2004-11-01
Temperature profile on a spherical sample that is heated by laser beams in various geometries while processed in vacuum is analyzed. Sample heating by one or four laser beams was considered. An analytical expression was derived for directional sample heating cases. It suggests an enhanced temperature uniformity over the samples when heated with four diffuse laser beams arranged in a tetrahedral geometry. This was experimentally verified by heating a spherical stainless steel sample by laser beams. Both the calculated and experimentally determined temperature variations over the sample suggest that use of diffuse four beams arranged in tetrahedral geometry would be effective in reducing temperature variation to within 1 K. The enhancement in the temperature uniformity for four diffuse beams arranged in a tetrahedral geometry by a factor of 50 over a single focused beam is promising to accurately measure of thermophysical properties. This drastic improvement in temperature uniformity might even enable atomic diffusion measurements in the undercooled liquid states of the bulk glass forming alloys since Marangoni and gravity driven convection will be substantially reduced.
On combining Laplacian and optimization-based mesh smoothing techniques
Freitag, L.A.
1997-07-01
Local mesh smoothing algorithms have been shown to be effective in repairing distorted elements in automatically generated meshes. The simplest such algorithm is Laplacian smoothing, which moves grid points to the geometric center of incident vertices. Unfortunately, this method operates heuristically and can create invalid meshes or elements of worse quality than those contained in the original mesh. In contrast, optimization-based methods are designed to maximize some measure of mesh quality and are very effective at eliminating extremal angles in the mesh. These improvements come at a higher computational cost, however. In this article the author proposes three smoothing techniques that combine a smart variant of Laplacian smoothing with an optimization-based approach. Several numerical experiments are performed that compare the mesh quality and computational cost for each of the methods in two and three dimensions. The author finds that the combined approaches are very cost effective and yield high-quality meshes.
NASA Astrophysics Data System (ADS)
Danilov, A. A.; Salamatova, V. Yu; Vassilevski, Yu V.
2012-12-01
Here, a workflow for high-resolution efficient numerical modeling of bioimpedance measurements is suggested that includes 3D image segmentation, adaptive mesh generation, finite-element discretization, and the analysis of simulation results. Using the adaptive unstructured tetrahedral meshes enables to decrease significantly a number of mesh elements while keeping model accuracy. The numerical results illustrate current, potential, and sensitivity field distributions for a conventional Kubicek-like scheme of bioimpedance measurements using segmented geometric model of human torso based on Visible Human Project data. The whole body VHP man computational mesh is constructed that contains 574 thousand vertices and 3.3 million tetrahedrons.
A unified multigrid solver for the Navier-Stokes equations on mixed element meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Venkatakrishnan, V.
1995-01-01
A unified multigrid solution technique is presented for solving the Euler and Reynolds-averaged Navier-Stokes equations on unstructured meshes using mixed elements consisting of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms, and tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea, the contribution of the paper lies in the formulation of a complete solution technique which can handle structured grids, block structured grids, and unstructured grids of tetrahedra or mixed elements without any modification. This is achieved by discretizing the full Navier-Stokes equations on tetrahedral elements, and the thin layer version of these equations on other types of elements, while using a single edge-based data-structure to construct the discretization over all element types. An agglomeration multigrid algorithm, which naturally handles meshes of any types of elements, is employed to accelerate convergence. An automatic algorithm which reduces the complexity of a given triangular or tetrahedral mesh by merging candidate triangular or tetrahedral elements into quadrilateral or prismatic elements is also described. The gains in computational efficiency afforded by the use of non-simplicial meshes over fully tetrahedral meshes are demonstrated through several examples.
Conformal refinement of unstructured quadrilateral meshes
Garmella, Rao
2009-01-01
We present a multilevel adaptive refinement technique for unstructured quadrilateral meshes in which the mesh is kept conformal at all times. This means that the refined mesh, like the original, is formed of only quadrilateral elements that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral element do not lie in an edge of another quadrilateral. Elements are refined using templates based on 1:3 refinement of edges. We demonstrate that by careful design of the refinement and coarsening strategy, we can maintain high quality elements in the refined mesh. We demonstrate the method on a number of examples with dynamically changing refinement regions.
Mesh for prolapse surgery: Why the fuss?
Rajshekhar, Smita; Mukhopadhyay, Sambit; Klinge, Uwe
2015-06-01
Pelvic organ prolapse is a common gynaecological problem. Surgical techniques to repair prolapse have been constantly evolving to reduce the recurrence of prolapse and need for reoperation. Grafts made of synthetic and biological materials became popular in the last decade as they were intended to provide extra support to native tissue repairs. However, serious complications related to use of synthetic meshes have been reported and there is increasing medico-legal concern about mesh use in prolapse surgery. Some mesh products already have been withdrawn from the market and the FDA has introduced stricter surveillance of new and existing products. Large randomized studies comparing mesh with non-mesh procedures are lacking which creates uncertainty for the surgeon and their patients.The small cohorts of the RCTs available with short follow-up periods just allow the conclusion that the mesh repair can be helpful in the short to medium term but unfortunately are not able to prove safety for all patients. In particular, current clinical reports cannot define for which indication what material may be superior compared to non-mesh repair.Quality control through long-term individual and national mesh registries is needed to keep a record of all surgeons using mesh and all devices being used, monitoring their effectiveness and safety data. Meshes with better biocompatibility designed specifically for use in vaginal surgery may provide superior clinical results, where the reduction of complications may allow a wider range of indications. PMID:25952907
GPU-accelerated discontinuous Galerkin methods on hybrid meshes
NASA Astrophysics Data System (ADS)
Chan, Jesse; Wang, Zheng; Modave, Axel; Remacle, Jean-Francois; Warburton, T.
2016-08-01
We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics Processing Units.
Small Power Technology for Tetrahedral Rovers
NASA Astrophysics Data System (ADS)
Clark, P. E.; Floyd, S. R.; Butler, C. D.; Flom, Y.
2006-01-01
The Small Power Technology (SPOT) being studied at GSFC has the potential to be an efficient and compact radioisotope based electrical power system. Such a system would provide power for innovative tetrahedral robotic arms and walkers to support the lunar exploration initiative within the next decade. Presently, NASA has designated two flight qualified Radioisotope Power Supplies (RPS): the Multi-Mission RTG (MMRTG) which uses thermocouple technology and the more efficient but more massive Stirling RTG (SRTG) which uses a mechanical heat (Stirling) engine technology. With SPOT, thermal output from a radioisotope source is converted to electrical power using a combination of shape memory material and piezoelectric crystals. The SPOT combined energy conversion technologies are potentially more efficient than thermocouples and do not require moving parts, thus keeping efficiency high with an excellent mass to power ratio. Applications of particular interest are highly modular, addressable, reconfigurable arrays of tetrahedral structural components designed to be arms or rovers with high mobility in rough terrain. Such prototypes are currently being built at GSFC. Missions requiring long-lived operation in unilluminated environments preclude the use of solar cells as the main power source and must rely on the use of RPS technology. The design concept calls for a small motor and battery assembly for each strut, and thus a distributed power system. We estimate, based on performance of our current tetrahedral prototypes and power scaling for small motors, that such devices require tens of watts of power output per kilogram of power supply. For these reasons, SPOT is a good candidate for the ART (addressable Reconfigurable Technology) baseline power system.
Extreme Mobility: Next Generation Tetrahedral Rovers
NASA Astrophysics Data System (ADS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C. Y.; Wesenberg, R.; Brown, G.; Cooperrider, C.
2007-01-01
This paper describes the development and testing of a patented rover concept called Tetrahedral Explorer Technologies (TET), designed to provide extreme mobility and plug-and-play utility through reconfigurable addressable architecture. Here, we present the results of preliminary lab and field tests of Prototype III. Reconfigurable architecture is essential in exploration because reaching features of the great potential interest will require crossing a wide range of terrains largely inaccessible to permanently appendaged vehicles. One surface might be relatively flat and navigable, while another could be rough, variably sloping, broken, or dominated by unconsolidated debris. To be totally functional, structures must form pseudo-appendages varying in size, rate, and manner of deployment (gait) and moving at a speed approaching that of a human in rugged terrain. TET architecture is based on the tetrahedron, the basic space-filling shape, as building block. Tetrahedra are interconnected, their apices acting as nodes from which struts reversibly deploy. The tetrahedral framework acts as a simple skeletal muscular structure. Two simple robotic walker prototypes have already been developed from a single reconfigurable tetrahedron capable of tumbling. This paper presents the results of our attempts to simulate motions, improve the hardware, and develop gaits for a more evolved 12Tetrahedral Walker (Prototype 3) which high degrees of freedom locomotion commandable through a user friendly interface. Our rover is an early level mission concept, realized as an electromechanical system at present, which would allow autonomous in situ exploration of lunar sites when we return to the Moon. Such a rover could carry into inaccessible terrain an in situ analysis payload designed to provide not only details of composition of traversed terrain, but the identification of sites with resources useful for permanent bases, including water and high Ti glass.
Update on Development of Mesh Generation Algorithms in MeshKit
Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay
2015-09-30
MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.
Dark Matter from Binary Tetrahedral Flavor Symmetry
NASA Astrophysics Data System (ADS)
Eby, David; Frampton, Paul
2012-03-01
Binary Tetrahedral Flavor Symmetry, originally developed as a quark family symmetry and later adapted to leptons, has proved both resilient and versatile over the past decade. In 2008 a minimal T' model was developed to accommodate quark and lepton masses and mixings using a family symmetry of (T'xZ2). We examine an expansion of this earlier model using an additional Z2 group that facilitates predictions of WIMP dark matter, the Cabibbo angle, and deviations from Tribimaximal Mixing, while giving hints at the nature of leptogenesis.
NASA Astrophysics Data System (ADS)
Usui, Yoshiya
2015-08-01
A 3-D magnetotelluric (MT) inversion code using unstructured tetrahedral elements has been developed in order to correct the topographic effect by directly incorporating it into computational grids. The electromagnetic field and response functions get distorted at the observation sites of MT surveys because of the undulating surface topography, and without correcting this distortion, the subsurface structure can be misinterpreted. Of the two methods proposed to correct the topographic effect, the method incorporating topography explicitly in the inversion is applicable to a wider range of surveys. For forward problems, it has been shown that the finite element method using unstructured tetrahedral elements is useful for the incorporation of topography. Therefore, this paper shows the applicability of unstructured tetrahedral elements in MT inversion using the newly developed code. The inversion code is capable of using the impedance tensor, the vertical magnetic transfer function (VMTF), and the phase tensor as observational data, and it estimates the subsurface resistivity values and the distortion tensor of each observation site. The forward part of the code was verified using two test models, one incorporating topographic effect and one without, and the verifications showed that the results were almost the same as those of previous works. The developed inversion code was then applied to synthetic data from a MT survey, and was verified as being able to recover the resistivity structure as well as other inversion codes. Finally, to confirm its applicability to the data affected by topography, inversion was performed using the synthetic data of the model that included two overlapping mountains. In each of the cases using the impedance tensor, the VMTF and the phase tensor, by including the topography in the mesh, the subsurface resistivity was determined more proficiently than in the case using the flat-surface mesh. Although the locations of the anomalies were
KNUPP,PATRICK
2000-12-13
We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.
FEATURE-BASED MULTIBLOCK FINITE ELEMENT MESH GENERATION
Shivanna, Kiran H.; Tadepalli, Srinivas C.; Grosland, Nicole M.
2010-01-01
Hexahedral finite element mesh development for anatomic structures and biomedical implants can be cumbersome. Moreover, using traditional meshing techniques, detailed features may be inadequately captured. In this paper, we describe methodologies to handle multi-feature datasets (i.e., feature edges and surfaces). Coupling multi-feature information with multiblock meshing techniques has enabled anatomic structures, as well as orthopaedic implants, to be readily meshed. Moreover, the projection process, node and element set creation are automated, thus reducing the user interaction during model development. To improve the mesh quality, Laplacian- and optimization-based mesh improvement algorithms have been adapted to the multi-feature datasets. PMID:21076650
The generation of hexahedral meshes for assembly geometries: A survey
TAUTGES,TIMOTHY J.
2000-02-14
The finite element method is being used today to model component assemblies in a wide variety of application areas, including structural mechanics, fluid simulations, and others. Generating hexahedral meshes for these assemblies usually requires the use of geometry decomposition, with different meshing algorithms applied to different regions. While the primary motivation for this approach remains the lack of an automatic, reliable all-hexahedral meshing algorithm, requirements in mesh quality and mesh configuration for typical analyses are also factors. For these reasons, this approach is also sometimes required when producing other types of unstructured meshes. This paper will review progress to date in automating many parts of the hex meshing process, which has halved the time to produce all-hex meshes for large assemblies. Particular issues which have been exposed due to this progress will also be discussed, along with their applicability to the general unstructured meshing problem.
Removal of line artifacts on mesh boundary in computer generated hologram by mesh phase matching.
Park, Jae-Hyeung; Yeom, Han-Ju; Kim, Hee-Jae; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo
2015-03-23
Mesh-based computer generated hologram enables realistic and efficient representation of three-dimensional scene. However, the dark line artifacts on the boundary between neighboring meshes are frequently observed, degrading the quality of the reconstruction. In this paper, we propose a simple technique to remove the dark line artifacts by matching the phase on the boundary of neighboring meshes. The feasibility of the proposed method is confirmed by the numerical and optical reconstruction of the generated hologram. PMID:25837138
Christon, M.; Hardin, D.; Compton, J.; Zosel, M.
1994-08-29
Building complex meshes for large-scale numerical simulations presents immense difficulties in exploiting high-performance computers. Industry and research leaders will describe the current state of the art for generating meshes for such large scientific problems. This will be followed by a panel and general audience discussion of the algorithmic and architectural issues surrounding the generation of meshes with10{sup 7} to 10{sup 9} grid points. (Note: The terms ``mesh`` and ``grid`` are used interchangeably in the literature.)
Energy Science and Technology Software Center (ESTSC)
2007-02-02
The CMG is a small, lightweight, structured mesh generation code. It features a simple text input parser that allows setup of various meshes via a small set of text commands. Mesh generation data can be output to text, the silo file format, or the API can be directly queried by applications. It can run serially or in parallel via MPI. The CMG includes the ability to specify varius initial conditions on a mesh via meshmore » tags.« less
Low-dispersion meshes for scattering problems
Hakula, H.
1996-12-31
For scattering problems, e.g. the Helmholtz equation, the ideal mesh in 2D is a structured mesh of equilateral triangles, since the numerical dispersion and internal reflections caused by the mesh are then minimal. However, if the scattering body does not conform to the mesh, one has to add unstructured elements to the mesh. In this paper we describe a simple modification to the Rebay`s method which leads to meshes of high quality in the context of the application. Even though the Rebay`s method is a variant of Delaunay algorithms, it does include the concept of a front. By controlling the generation of fronts in the mesh we can always choose the outer boundary of the computational domain so that the mesh will be structured far from the scattering body and the only anisotropic elements are close to the body. As a result of this, one can use the same generator both for electromagnetic and flow simulations in 2D. In multi-body configurations the meshes are intimately dependent on the relative distances between the bodies.
Choosing corners of rectangles for mapped meshing
Mitchell, S.A.
1996-12-16
Consider mapping a regular i x j quadrilateral mesh of a rectangle onto a surface. The quality of the mapped mesh of the surface depends heavily on which vertices of the surface correspond to corners of the rectangle. The authors problem is, given an n-sided surface, chose as corners four vertices such that the surface resembles a rectangle with corners at those vertices. Note that n could be quite large, and the length and width of the rectangle, i and j, are not prespecified. In general, there is either a goal number or a prescribed number of mesh edges for each bounding curve of the surface. The goals affect the quality of the mesh, and the prescribed edges may make finding a feasible set of corners difficult. The algorithm need only work for surfaces that are roughly rectangular, particular those without large reflex angles, as otherwise an unstructured meshing algorithm is used instead. The authors report on the theory and implementation of algorithms for this problem. They also given an overview of a solution to a related problem called interval assignment: given a complex of surfaces sharing curves, globally assign the number of mesh edges or intervals for each curve such that it is possible to mesh each surface according to its prescribed quadrilateral meshing algorithm, and assigned and user-prescribed boundary mesh edges and corners. They also note a practical, constructive technique that relies on interval assignment that can generate a quadrilateral mesh of a complex of surfaces such that a compatible hexahedral mesh of the enclosed volume exists.
An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution
NASA Astrophysics Data System (ADS)
Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K.
2015-08-01
The paper advances the limited-area anelastic model (Smolarkiewicz et al. (2013) [45]) for investigation of nonhydrostatic dynamics in mesoscale atmospheric flows. New developments include the extension to a tetrahedral-based median-dual option for unstructured meshes and a static mesh adaptivity technique using an error indicator based on inherent properties of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The model employs semi-implicit nonoscillatory forward-in-time integrators for soundproof PDEs, built on MPDATA and a robust non-symmetric Krylov-subspace elliptic solver. Finite-volume spatial discretisation adopts an edge-based data structure. Simulations of stratified orographic flows and the associated gravity-wave phenomena in media with uniform and variable dispersive properties verify the advancement and demonstrate the potential of heterogeneous anisotropic discretisation with large variation in spatial resolution for study of complex stratified flows that can be computationally unattainable with regular grids.
Phase diagram of a truncated tetrahedral model.
Krcmar, Roman; Gendiar, Andrej; Nishino, Tomotoshi
2016-08-01
Phase diagram of a discrete counterpart of the classical Heisenberg model, the truncated tetrahedral model, is analyzed on the square lattice, when the interaction is ferromagnetic. Each spin is represented by a unit vector that can point to one of the 12 vertices of the truncated tetrahedron, which is a continuous interpolation between the tetrahedron and the octahedron. Phase diagram of the model is determined by means of the statistical analog of the entanglement entropy, which is numerically calculated by the corner transfer matrix renormalization group method. The obtained phase diagram consists of four different phases, which are separated by five transition lines. In the parameter region, where the octahedral anisotropy is dominant, a weak first-order phase transition is observed. PMID:27627273
A Triangle Mesh Standardization Method Based on Particle Swarm Optimization
Duan, Liming; Bai, Yang; Wang, Haoyu; Shao, Hui; Zhong, Siyang
2016-01-01
To enhance the triangle quality of a reconstructed triangle mesh, a novel triangle mesh standardization method based on particle swarm optimization (PSO) is proposed. First, each vertex of the mesh and its first order vertices are fitted to a cubic curve surface by using least square method. Additionally, based on the condition that the local fitted surface is the searching region of PSO and the best average quality of the local triangles is the goal, the vertex position of the mesh is regulated. Finally, the threshold of the normal angle between the original vertex and regulated vertex is used to determine whether the vertex needs to be adjusted to preserve the detailed features of the mesh. Compared with existing methods, experimental results show that the proposed method can effectively improve the triangle quality of the mesh while preserving the geometric features and details of the original mesh. PMID:27509129
Mesh deformation based on artificial neural networks
NASA Astrophysics Data System (ADS)
Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej
2011-09-01
In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.
KNUPP,PATRICK; MITCHELL,SCOTT A.
1999-11-01
In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set of hex reconnection primitives. We improved the optimization algorithms so they can untangle a negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the condition number of elements in an untangled mesh. However, even after applying both the primitives and optimization we were unable to produce high-quality meshes in certain regions. Our experiences suggest that many boundary configurations of quadrilaterals admit no hexahedral mesh with positive Jacobians, although we have no proof of this.
A flexible unstructured mesh generation algorithm suitable for block partitioning
Karamete, B.K.
1996-12-31
This paper describes the logic of a dynamic algorithm for an arbitrarily prescribed geometry. The generated meshes show Delaunay property both in 2D and 3D. The algorithm requires minimal surface information in 3D. The surface triangles appear as the direct consequence of interior tetrahedration. The adopted successive refinement scheme results in such a node distribution that it is not needed to check boundary conformity. Further computational saving is provided by using a special binary tree (ADT). The generating front can not be determined a-priori as opposed to the moving front techniques. This feature can effectively be used to partition the geometry into equal element sized blocks while generating the mesh for parallel computing purposes. The algorithm shows flexibility to split the geometry into blocks at mesh generation time.
Automated hexahedral meshing of anatomic structures using deformable registration.
Grosland, Nicole M; Bafna, Ritesh; Magnotta, Vincent A
2009-02-01
This work introduces a novel method of automating the process of patient-specific finite element (FE) model development using a mapped mesh technique. The objective is to map a predefined mesh (template) of high quality directly onto a new bony surface (target) definition, thereby yielding a similar mesh with minimal user interaction. To bring the template mesh into correspondence with the target surface, a deformable registration technique based on the FE method has been adopted. The procedure has been made hierarchical allowing several levels of mesh refinement to be used, thus reducing the time required to achieve a solution. Our initial efforts have focused on the phalanx bones of the human hand. Mesh quality metrics, such as element volume and distortion were evaluated. Furthermore, the distance between the target surface and the final mapped mesh were measured. The results have satisfactorily proven the applicability of the proposed method. PMID:18688764
Energy Science and Technology Software Center (ESTSC)
2008-01-01
Parallel Heterogeneous Dynamic unstructured Mesh (phdMesh) data structure library and integration testing code that performs dynamic load balancing of the data structure and parallel geometric proximity search on a contrived test problem. The phdMesh library is intended to be module within a finite element or finite volume library or code. The integration testing code is intended to provide a compact and highly portable performance evaluation code for parallel computing systems.
NASA Technical Reports Server (NTRS)
Savage, M.; Caldwell, R. J.; Wisor, G. D.; Lewicki, D. G.
1986-01-01
A computer model has been constructed to simulate the compliance and load sharing in a spur gear mesh. The model adds the effect of rim deflections to previously developed state-of-the-art gear tooth deflection models. The effects of deflections on mesh compliance and load sharing are examined. The model can treat gear meshes composed to two external gears or an external gear driving an internal gear. The model includes deflection contributions from the bending and shear in the teeth, the Hertzian contact deformations, and primary and secondary rotations of the gear rims. The model shows that rimmed gears increase mesh compliance and, in some cases, improve load sharing.
NASA Technical Reports Server (NTRS)
Savage, M.; Caldwell, R. J.; Wisor, G. D.; Lewicki, D. G.
1987-01-01
A computer model has been constructed to simulate the compliance and load sharing in a spur gear mesh. The model adds the effect of rim deflections to previously developed state-of-the-art gear tooth deflection models. The effects of deflections on mesh compliance and load sharing are examined. The model can treat gear meshes composed of two external gears or an external gear driving an internal gear. The model includes deflection contributions from the bending and shear in the teeth, the Hertzian contact deformations, and primary and secondary rotations of the gear rims. The model shows that rimmed gears increase mesh compliance and, in some cases, improve load sharing.
More About the Tetrahedral Unstructured Software System
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Frink, Neal T.; Hunter, Craig A.; Parikh, Paresh C.; Pizadeh, Shalyar Z.; Samareh, Jamshid A.; Bhat, Maharaj K.; Pandya, Mohagna J.; Grismer, Matthew J.
2006-01-01
TetrUSS is a comprehensive suite of computational fluid dynamics (CFD) programs that won the Software of the Year award in 1996 and has found increasing use in government, academia, and industry for solving realistic flow problems (especially in aerodynamics and aeroelastics of aircraft having complex shapes). TetrUSS includes not only programs for solving basic equations of flow but also programs that afford capabilities for efficient generation and utilization of computational grids and for graphical representation of computed flows (see figure). The 2004 version of the Tetrahedral Unstructured Software System (TetrUSS), which is one of two software systems reported in "NASA s 2004 Software of the Year," NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 18, has been improved greatly since 1996. These improvements include (1) capabilities to simulate viscous flow by solving the Navier-Stokes equations on unstructured grids, (2) portability to personal computers from diverse manufacturers, (3) advanced models of turbulence, (4) a parallel-processing version of one of the unstructured-grid Navier-Stokes-equation-solving programs, and (5) advanced programs for generating unstructured grids.
A finite-element mesh generator based on growing neural networks.
Triantafyllidis, D G; Labridis, D P
2002-01-01
A mesh generator for the production of high-quality finite-element meshes is being proposed. The mesh generator uses an artificial neural network, which grows during the training process in order to adapt itself to a prespecified probability distribution. The initial mesh is a constrained Delaunay triangulation of the domain to be triangulated. Two new algorithms to accelerate the location of the best matching unit are introduced. The mesh generator has been found able to produce meshes of high quality in a number of classic cases examined and is highly suited for problems where the mesh density vector can be calculated in advance. PMID:18244543
Parallel adaptive mesh refinement within the PUMAA3D Project
NASA Technical Reports Server (NTRS)
Freitag, Lori; Jones, Mark; Plassmann, Paul
1995-01-01
To enable the solution of large-scale applications on distributed memory architectures, we are designing and implementing parallel algorithms for the fundamental tasks of unstructured mesh computation. In this paper, we discuss efficient algorithms developed for two of these tasks: parallel adaptive mesh refinement and mesh partitioning. The algorithms are discussed in the context of two-dimensional finite element solution on triangular meshes, but are suitable for use with a variety of element types and with h- or p-refinement. Results demonstrating the scalability and efficiency of the refinement algorithm and the quality of the mesh partitioning are presented for several test problems on the Intel DELTA.
MEDICAL SUBJECTS HEADING (MESH)
MeSH is the National Library of Medicine's controlled vocabulary thesaurus. It consists of sets of terms naming descriptors in a hierarchical structure that permits searching at various levels of specificity. MeSH descriptors are arranged in both an alphabetic and a hierarchical ...
Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures.
Song, Ping; Li, Min; Shen, Juwen; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Wang, Lihua; Shi, Jiye; Song, Shiping; Wang, Lianhui; Fan, Chunhai; Zuo, Xiaolei
2016-08-16
The fixed dynamic range of traditional biosensors limits their utility in several real applications. For example, viral load monitoring requires the dynamic range spans several orders of magnitude; whereas, monitoring of drugs requires extremely narrow dynamic range. To overcome this limitation, here, we devised tunable biosensing interface using allosteric DNA tetrahedral bioprobes to tune the dynamic range of DNA biosensors. Our strategy takes the advantage of the readily and flexible structure design and predictable geometric reconfiguration of DNA nanotechnology. We reconfigured the DNA tetrahedral bioprobes by inserting the effector sequence into the DNA tetrahedron, through which, the binding affinity of DNA tetrahedral bioprobes can be tuned. As a result, the detection limit of DNA biosensors can be programmably regulated. The dynamic range of DNA biosensors can be tuned (narrowed or extended) for up to 100-fold. Using the regulation of binding affinity, we realized the capture and release of biomolecules by tuning the binding behavior of DNA tetrahedral bioprobes. PMID:27435955
A parallel algorithm for mesh smoothing
Freitag, L.; Jones, M.; Plassmann, P.
1999-07-01
Maintaining good mesh quality during the generation and refinement of unstructured meshes in finite-element applications is an important aspect in obtaining accurate discretizations and well-conditioned linear systems. In this article, the authors present a mesh-smoothing algorithm based on nonsmooth optimization techniques and a scalable implementation of this algorithm. They prove that the parallel algorithm has a provably fast runtime bound and executes correctly for a parallel random access machine (PRAM) computational model. They extend the PRAM algorithm to distributed memory computers and report results for two-and three-dimensional simplicial meshes that demonstrate the efficiency and scalability of this approach for a number of different test cases. They also examine the effect of different architectures on the parallel algorithm and present results for the IBM SP supercomputer and an ATM-connected network of SPARC Ultras.
Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation
Yao, Ruoyang; Intes, Xavier; Fang, Qianqian
2015-01-01
Monte Carlo methods are commonly used as the gold standard in modeling photon transport through turbid media. With the rapid development of structured light applications, an accurate and efficient method capable of simulating arbitrary illumination patterns and complex detection schemes over large surface area is in great need. Here we report a generalized mesh-based Monte Carlo algorithm to support a variety of wide-field illumination methods, including spatial-frequency-domain imaging (SFDI) patterns and arbitrary 2-D patterns. The extended algorithm can also model wide-field detectors such as a free-space CCD camera. The significantly enhanced flexibility of source and detector modeling is achieved via a fast mesh retessellation process that combines the target domain and the source/detector space in a single tetrahedral mesh. Both simulations of complex domains and comparisons with phantom measurements are included to demonstrate the flexibility, efficiency and accuracy of the extended algorithm. Our updated open-source software is provided at http://mcx.space/mmc. PMID:26819826
NASA Technical Reports Server (NTRS)
Malek, Miroslaw; Ozden, Banu
1990-01-01
Efficient testing techniques for two-dimensional mesh interconnection networks are presented. The tests cover faults in the arbitration logic of the switches; this includes an examination of fault detection in the data paths, routing, and control circuitry, including the conflict resolution capabilities of mesh interconnection networks using topological test methods. The proposed methods are not implementation specific and can be applied to any design with a mesh topology. The topology and behavior of the network are described and definitions are presented. The fault model is defined and parallel testing methods for the entire network are given.
3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes
Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun
2016-01-01
By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849
Mesh implants: An overview of crucial mesh parameters
Zhu, Lei-Ming; Schuster, Philipp; Klinge, Uwe
2015-01-01
Hernia repair is one of the most frequently performed surgical interventions that use mesh implants. This article evaluates crucial mesh parameters to facilitate selection of the most appropriate mesh implant, considering raw materials, mesh composition, structure parameters and mechanical parameters. A literature review was performed using the PubMed database. The most important mesh parameters in the selection of a mesh implant are the raw material, structural parameters and mechanical parameters, which should match the physiological conditions. The structural parameters, especially the porosity, are the most important predictors of the biocompatibility performance of synthetic meshes. Meshes with large pores exhibit less inflammatory infiltrate, connective tissue and scar bridging, which allows increased soft tissue ingrowth. The raw material and combination of raw materials of the used mesh, including potential coatings and textile design, strongly impact the inflammatory reaction to the mesh. Synthetic meshes made from innovative polymers combined with surface coating have been demonstrated to exhibit advantageous behavior in specialized fields. Monofilament, large-pore synthetic meshes exhibit advantages. The value of mesh classification based on mesh weight seems to be overestimated. Mechanical properties of meshes, such as anisotropy/isotropy, elasticity and tensile strength, are crucial parameters for predicting mesh performance after implantation. PMID:26523210
Urogynecologic Surgical Mesh Implants
... Boston Scientific's urogynecologic surgical mesh may contain counterfeit raw material. We are examining these allegations to determine any ... are currently not aware that the alleged counterfeit raw material contributes to adverse events associated with these products. ...
Pascucci, V
2004-02-18
This paper presents a simple approach for rendering isosurfaces of a scalar field. Using the vertex programming capability of commodity graphics cards, we transfer the cost of computing an isosurface from the Central Processing Unit (CPU), running the main application, to the Graphics Processing Unit (GPU), rendering the images. We consider a tetrahedral decomposition of the domain and draw one quadrangle (quad) primitive per tetrahedron. A vertex program transforms the quad into the piece of isosurface within the tetrahedron (see Figure 2). In this way, the main application is only devoted to streaming the vertices of the tetrahedra from main memory to the graphics card. For adaptively refined rectilinear grids, the optimization of this streaming process leads to the definition of a new 3D space-filling curve, which generalizes the 2D Sierpinski curve used for efficient rendering of triangulated terrains. We maintain the simplicity of the scheme when constructing view-dependent adaptive refinements of the domain mesh. In particular, we guarantee the absence of T-junctions by satisfying local bounds in our nested error basis. The expensive stage of fixing cracks in the mesh is completely avoided. We discuss practical tradeoffs in the distribution of the workload between the application and the graphics hardware. With current GPU's it is convenient to perform certain computations on the main CPU. Beyond the performance considerations that will change with the new generations of GPU's this approach has the major advantage of avoiding completely the storage in memory of the isosurface vertices and triangles.
NASA Astrophysics Data System (ADS)
Cheng, Jiahao; Shahba, Ahmad; Ghosh, Somnath
2016-05-01
Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.
Simulation of Stagnation Region Heating in Hypersonic Flow on Tetrahedral Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2007-01-01
Hypersonic flow simulations using the node based, unstructured grid code FUN3D are presented. Applications include simple (cylinder) and complex (towed ballute) configurations. Emphasis throughout is on computation of stagnation region heating in hypersonic flow on tetrahedral grids. Hypersonic flow over a cylinder provides a simple test problem for exposing any flaws in a simulation algorithm with regard to its ability to compute accurate heating on such grids. Such flaws predominantly derive from the quality of the captured shock. The importance of pure tetrahedral formulations are discussed. Algorithm adjustments for the baseline Roe / Symmetric, Total-Variation-Diminishing (STVD) formulation to deal with simulation accuracy are presented. Formulations of surface normal gradients to compute heating and diffusion to the surface as needed for a radiative equilibrium wall boundary condition and finite catalytic wall boundary in the node-based unstructured environment are developed. A satisfactory resolution of the heating problem on tetrahedral grids is not realized here; however, a definition of a test problem, and discussion of observed algorithm behaviors to date are presented in order to promote further research on this important problem.
Finite element simulation of a local scale air quality model over complex terrain
NASA Astrophysics Data System (ADS)
Oliver, A.; Montero, G.; Montenegro, R.; Rodríguez, E.; Escobar, J. M.; Perez-Foguet, A.
2012-05-01
In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. We apply our methodology to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain).
Blacker, Teddy Dean; Staten, Matthew L.; Kerr, Robert A.; Owen, Steven James
2010-03-01
The generation of all-hexahedral finite element meshes has been an area of ongoing research for the past two decades and remains an open problem. Unconstrained plastering is a new method for generating all-hexahedral finite element meshes on arbitrary volumetric geometries. Starting from an unmeshed volume boundary, unconstrained plastering generates the interior mesh topology without the constraints of a pre-defined boundary mesh. Using advancing fronts, unconstrained plastering forms partially defined hexahedral dual sheets by decomposing the geometry into simple shapes, each of which can be meshed with simple meshing primitives. By breaking from the tradition of previous advancing-front algorithms, which start from pre-meshed boundary surfaces, unconstrained plastering demonstrates that for the tested geometries, high quality, boundary aligned, orientation insensitive, all-hexahedral meshes can be generated automatically without pre-meshing the boundary. Examples are given for meshes from both solid mechanics and geotechnical applications.
Airplane Mesh Development with Grid Density Studies
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Baker, Timothy J.; Thomas, Scott D.; Lawrence, Scott L.; Rimlinger, Mark J.
1999-01-01
Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum
Particle systems for adaptive, isotropic meshing of CAD models
Levine, Joshua A.; Whitaker, Ross T.
2012-01-01
We present a particle-based approach for generating adaptive triangular surface and tetrahedral volume meshes from computer-aided design models. Input shapes are treated as a collection of smooth, parametric surface patches that can meet non-smoothly on boundaries. Our approach uses a hierarchical sampling scheme that places particles on features in order of increasing dimensionality. These particles reach a good distribution by minimizing an energy computed in 3D world space, with movements occurring in the parametric space of each surface patch. Rather than using a pre-computed measure of feature size, our system automatically adapts to both curvature as well as a notion of topological separation. It also enforces a measure of smoothness on these constraints to construct a sizing field that acts as a proxy to piecewise-smooth feature size. We evaluate our technique with comparisons against other popular triangular meshing techniques for this domain. PMID:23162181
Unstructured mesh generation and adaptivity
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.
Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation.
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2013-01-01
A method of triangular surface mesh smoothing is presented to improve angle quality by extending the original optimal Delaunay triangulation (ODT) to surface meshes. The mesh quality is improved by solving a quadratic optimization problem that minimizes the approximated interpolation error between a parabolic function and its piecewise linear interpolation defined on the mesh. A suboptimal problem is derived to guarantee a unique, analytic solution that is significantly faster with little loss in accuracy as compared to the optimal one. In addition to the quality-improving capability, the proposed method has been adapted to remove noise while faithfully preserving sharp features such as edges and corners of a mesh. Numerous experiments are included to demonstrate the performance of the method. PMID:23580890
Franssen, Frits; van Andel, Esther; Swart, Arno; van der Giessen, Joke
2016-02-01
The performance of a 400-μm-mesh-size sieve (sieve400) has not previously been compared with that of a 180-μm-mesh-size sieve (sieve180). Using pork samples spiked with 0 to 10 Trichinella muscle larvae and an artificial digestion method, sieve performance was evaluated for control of Trichinella in meat-producing animals. The use of a sieve400 resulted in 12% lower larval counts, 147% more debris, and 28% longer counting times compared with the use of a sieve180. Although no false-negative results were obtained, prolonged counting times with the sieve400 may have an impact on performance in a high-throughput environment such as a slaughterhouse laboratory. Based on our results, the sieve180 remains the sieve of choice for Trichinella control in meat in slaughterhouse laboratories, according to the European Union reference method (European Commission regulation 2075/2005). Furthermore, the results of the present study contribute to the discussion of harmonization of meat inspection requirements among countries. PMID:26818995
Molecular origin of auxetic behavior in tetrahedral framework silicates.
Alderson, Andrew; Evans, Kenneth E
2002-11-25
Recent analytical models for the Poisson's ratios (nu(ij)) of tetrahedral frameworks are applied to alpha-cristobalite and alpha-quartz for the first time. Rotation and dilation of the SiO4 tetrahedral subunits are considered. Each mechanism leads to negative nu(31) values, whereas negative and positive values are possible when they act concurrently. The concurrent model is in excellent agreement with experiment and explains the dichotomy between negative and positive nu(31) values in alpha-cristobalite and alpha-quartz, respectively. The predicted strain-dependent trends confirm those from molecular modeling. PMID:12485081
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaptation on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load inbalances among processors on a parallel machine. This paper described the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution coast is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35 percent of the mesh is randomly adapted. For large scale scientific computations, our load balancing strategy gives an almost sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remappier yields processor assignments that are less than 3 percent of the optimal solutions, but requires only 1 percent of the computational time.
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.
CAD and mesh repair with Radial Basis Functions
NASA Astrophysics Data System (ADS)
Marchandise, E.; Piret, C.; Remacle, J.-F.
2012-03-01
In this paper we present a process that includes both model/mesh repair and mesh generation. The repair algorithm is based on an initial mesh that may be either an initial mesh of a dirty CAD model or STL triangulation with many errors such as gaps, overlaps and T-junctions. This initial mesh is then remeshed by computing a discrete parametrization with Radial Basis Functions (RBF's). We showed in [1] that a discrete parametrization can be computed by solving Partial Differential Equations (PDE's) on an initial correct mesh using finite elements. Paradoxically, the meshless character of the RBF's makes it an attractive numerical method for solving the PDE's for the parametrization in the case where the initial mesh contains errors or holes. In this work, we implement the Orthogonal Gradients method to be described in [2], as a RBF solution method for solving PDE's on arbitrary surfaces. Different examples show that the presented method is able to deal with errors such as gaps, overlaps, T-junctions and that the resulting meshes are of high quality. Moreover, the presented algorithm can be used as a hole-filling algorithm to repair meshes with undesirable holes. The overall procedure is implemented in the open-source mesh generator Gmsh [3].
Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis
2005-12-01
This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.
Evaluation of Different Meshing Techniques for the Case of a Stented Artery.
Lotfi, Azadeh; Simmons, Anne; Barber, Tracie
2016-03-01
The formation and progression of in-stent restenosis (ISR) in bifurcated vessels may vary depending on the technique used for stenting. This study evaluates the effect of a variety of mesh styles on the accuracy and reliability of computational fluid dynamics (CFD) models in predicting these regions, using an idealized stented nonbifurcated model. The wall shear stress (WSS) and the near-stent recirculating vortices are used as determinants. The meshes comprise unstructured tetrahedral and polyhedral elements. The effects of local refinement, as well as higher-order elements such as prismatic inflation layers and internal hexahedral core, have also been examined. The uncertainty associated with individual mesh style was assessed through verification of calculations using the grid convergence index (GCI) method. The results obtained show that the only condition which allows the reliable comparison of uncertainty estimation between different meshing styles is that the monotonic convergence of grid solutions is in the asymptotic range. Comparisons show the superiority of a flow-adaptive polyhedral mesh over the commonly used adaptive and nonadaptive tetrahedral meshes in terms of resolving the near-stent flow features, GCI value, and prediction of WSS. More accurate estimation of hemodynamic factors was obtained using higher-order elements, such as hexahedral or prismatic grids. Incorporating these higher-order elements, however, was shown to introduce some degrees of numerical diffusion at the transitional area between the two meshes, not necessarily translating into high GCI value. Our data also confirmed the key role of local refinement in improving the performance and accuracy of nonadaptive mesh in predicting flow parameters in models of stented artery. The results of this study can provide a guideline for modeling biofluid domain in complex bifurcated arteries stented in regards to various stenting techniques. PMID:26784359
NASA Astrophysics Data System (ADS)
Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.
2003-04-01
An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.
Documentation for MeshKit - Reactor Geometry (&mesh) Generator
Jain, Rajeev; Mahadevan, Vijay
2015-09-30
This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.
Geometric approaches to mesh generation
Hoffmann, C.M.
1995-12-31
We review three approaches to mesh generation that axe based on analyzing and accounting for the geometric structure of the domain. In the first approach, due to Armstrong, the domain is partitioned into subdomains based on the medial-axis transform, a tool for analyzing spatial structures. In the second approach, due to Cox, the design history defines a geometric structure of the domain. The design primitives of that structure are meshed separately, and mesh overlap is accounted for by coupling equations. The third approach argues that mesh generation ought to be integrated into the shape design process, by meshing design features separately and resolving overlapping meshes by standard geometric computations.
Tetrahedral Models of Learning: Application to College Reading.
ERIC Educational Resources Information Center
Nist, Sherrie L.
J. D. Bransford's tetrahedral model of learning considers four variables: (1) learning activities, (2) characteristics of the learner, (3) criterial tasks, and (4) the nature of the materials. Bransford's model provides a research-based theoretical framework that can be used to teach, model, and have students apply a variety of study strategies to…
Hinge specification for a square-faceted tetrahedral truss
NASA Technical Reports Server (NTRS)
Adams, L. R.
1984-01-01
A square-faceted tetrahedral truss is geometrically analyzed. Expressions are developed for single degree of freedom hinges which allow packaging of the structure into a configuration in which all members are parallel and closely packed in a square pattern. Deployment is sequential, thus providing control over the structure during deployment.
Multigrid Methods for Mesh Relaxation
O'Brien, M J
2006-06-12
When generating a mesh for the initial conditions for a computer simulation, you want the mesh to be as smooth as possible. A common practice is to use equipotential mesh relaxation to smooth out a distorted computational mesh. Typically a Laplace-like equation is set up for the mesh coordinates and then one or more Jacobi iterations are performed to relax the mesh. As the zone count gets really large, the Jacobi iteration becomes less and less effective and we are stuck with our original unrelaxed mesh. This type of iteration can only damp high frequency errors and the smooth errors remain. When the zone count is large, almost everything looks smooth so relaxation cannot solve the problem. In this paper we examine a multigrid technique which effectively smooths out the mesh, independent of the number of zones.
Application of Quaternions for Mesh
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2002-01-01
A new three dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.
Toward An Unstructured Mesh Database
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter Peter
2014-05-01
Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi
Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation
NASA Astrophysics Data System (ADS)
Wang, Yibin; Qin, Ning; Zhao, Ning
2016-06-01
A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.
Hexahedral mesh generation via the dual arrangement of surfaces
Mitchell, S.A.; Tautges, T.J.
1997-12-31
Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatible hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.
Surgical mesh for ventral incisional hernia repairs: Understanding mesh design.
Rastegarpour, Ali; Cheung, Michael; Vardhan, Madhurima; Ibrahim, Mohamed M; Butler, Charles E; Levinson, Howard
2016-01-01
Surgical mesh has become an indispensable tool in hernia repair to improve outcomes and reduce costs; however, efforts are constantly being undertaken in mesh development to overcome postoperative complications. Common complications include infection, pain, adhesions, mesh extrusion and hernia recurrence. Reducing the complications of mesh implantation is of utmost importance given that hernias occur in hundreds of thousands of patients per year in the United States. In the present review, the authors present the different types of hernia meshes, discuss the key properties of mesh design, and demonstrate how each design element affects performance and complications. The present article will provide a basis for surgeons to understand which mesh to choose for patient care and why, and will explain the important technological aspects that will continue to evolve over the ensuing years. PMID:27054138
To mesh or not to mesh: a review of pelvic organ reconstructive surgery
Dällenbach, Patrick
2015-01-01
Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324
NASA Astrophysics Data System (ADS)
Ivey, Christopher B.; Moin, Parviz
2015-11-01
This paper presents a framework for extending the height-function technique for the calculation of interface normals and curvatures to unstructured non-convex polyhedral meshes with application to the piecewise-linear interface calculation volume-of-fluid method. The methodology is developed with reference to a collocated node-based finite-volume two-phase flow solver that utilizes the median-dual mesh, requiring a set of data structures and algorithms for non-convex polyhedral operations: truncation of a polyhedron by a plane, intersection of two polyhedra, joining of two convex polyhedra, volume enforcement of a polyhedron by a plane, and volume fraction initialization by a signed-distance function. By leveraging these geometric tools, a geometric interpolation strategy for embedding structured height-function stencils in unstructured meshes is developed. The embedded height-function technique is tested on surfaces with known interface normals and curvatures, namely cylinder, sphere, and ellipsoid. Tests are performed on the median duals of a uniform cartesian mesh, a wedge mesh, and a tetrahedral mesh, and comparisons are made with conventional methods. Across the tests, the embedded height-function technique outperforms contemporary methods and its accuracy approaches the accuracy that the traditional height-function technique exemplifies on uniform cartesian meshes.
Compressive VOF method with skewness correction to capture sharp interfaces on arbitrary meshes
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend G. M.
2014-12-01
The accurate and efficient modelling of two-phase flows is at present mostly limited to structured, unskewed meshes, due to the additional topological and numerical complexity of arbitrary, unstructured meshes. Compressive VOF methods which discretize the interface advection with algebraic differencing schemes are computationally efficient and inherently applicable to arbitrary meshes. However, compressive VOF methods evidently suffer severely from numerical diffusion on meshes with topological skewness. In this paper we present a compressive VOF method using a state-of-the-art donor-acceptor advection scheme which includes novel modifications to substantially reduce numerical diffusion on arbitrary meshes without adding computational complexity. The new methodology accurately captures evolving interfaces on any arbitrary, non-overlapping mesh and conserves mass within the limits of the applied solver tolerance. A thorough validation of the presented methods is conducted, examining the pure advection of the interface indicator function as well as the application to evolving interfaces with surface tension. Crucially, the results on equidistant Cartesian and arbitrary tetrahedral meshes are shown to be comparable and accurate.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
Energy Science and Technology Software Center (ESTSC)
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
SUPERIMPOSED MESH PLOTTING IN MCNP
J. HENDRICKS
2001-02-01
The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.
NASA Technical Reports Server (NTRS)
Macneice, Peter
1995-01-01
This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.
Parallel Adaptive Mesh Refinement
Diachin, L; Hornung, R; Plassmann, P; WIssink, A
2005-03-04
As large-scale, parallel computers have become more widely available and numerical models and algorithms have advanced, the range of physical phenomena that can be simulated has expanded dramatically. Many important science and engineering problems exhibit solutions with localized behavior where highly-detailed salient features or large gradients appear in certain regions which are separated by much larger regions where the solution is smooth. Examples include chemically-reacting flows with radiative heat transfer, high Reynolds number flows interacting with solid objects, and combustion problems where the flame front is essentially a two-dimensional sheet occupying a small part of a three-dimensional domain. Modeling such problems numerically requires approximating the governing partial differential equations on a discrete domain, or grid. Grid spacing is an important factor in determining the accuracy and cost of a computation. A fine grid may be needed to resolve key local features while a much coarser grid may suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and, at worst, may make an adequately resolved simulation impractical. Moreover, the location and resolution of fine grid required for an accurate solution is a dynamic property of a problem's transient features and may not be known a priori. Adaptive mesh refinement (AMR) is a technique that can be used with both structured and unstructured meshes to adjust local grid spacing dynamically to capture solution features with an appropriate degree of resolution. Thus, computational resources can be focused where and when they are needed most to efficiently achieve an accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows two example computations using AMR; on the left is a structured mesh calculation of a impulsively-sheared contact surface and on the right is the fuselage and volume discretization of an RAH-66 Comanche helicopter [35]. Note the
Transition Strength Ratios in the Tetrahedral Candidate ^156Dy
NASA Astrophysics Data System (ADS)
Hartley, D. J.; Riedinger, L. L.; Curien, D.; Dudek, J.; Gall, B.; Allmond, J. M.; Beausang, C. W.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; McCutchan, E. A.; Stefanescu, I.; Zhu, S.; Garrett, P. E.; Kulp, W. D.; Wood, J. L.; Mazurek, K.; Riley, M. A.; Wang, X.; Schunck, N.; Yu, C.-H.; Sharpey-Schafer, J.; Simpson, J.
2009-10-01
A new symmetry has been recently proposed where nuclei may stabilize in a tetrahedral (pyramid) shape. One of the consequences of this symmetry is that the transition strength, B(E2), of the inband transitions should approach zero in the ideal case. Thus, one signal of this exotic shape would be a rotational band where the inband E2 transitions are extremely weak or nonexistent. Such bands exist in many of the lowest negative-parity bands in the N 90 nuclei, which is also a predicted ``magic" region for tetrahedral symmetry. A Gammasphere experiment was performed to measure the B(E2)/B(E1) ratios of such a negative-parity band in ^156Dy. The results (which are consistent with the theory) will be presented, as well as a discussion of the proposed follow-up experiment to directly measure the B(E2) rates.
Coarse-grained theory of a realistic tetrahedral liquid model
NASA Astrophysics Data System (ADS)
Procaccia, I.; Regev, I.
2012-02-01
Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.
A novel three-dimensional mesh deformation method based on sphere relaxation
Zhou, Xuan; Li, Shuixiang
2015-10-01
In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.
On Optimal Bilinear Quadrilateral Meshes
D'Azevedo, E.
1998-10-26
The novelty of this work is in presenting interesting error properties of two types of asymptotically optimal quadrilateral meshes for bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation error is asymptotically the same over all elements. The second type has faster than expected super-convergence property for certain saddle-shaped data functions. The super-convergent mesh may be an order of magnitude more accurate than the error equidistributing mesh. Both types of mesh are generated by a coordinate transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian matrix of a data function as a metric tensor. The insights in this work may have application in mesh design near known corner or point singularities.
On Optimal Bilinear Quadrilateral Meshes
D'Azevedo, E
2000-03-17
The novelty of this work is in presenting interesting error properties of two types of asymptotically ''optimal'' quadrilateral meshes for bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation error is asymptotically the same over all elements. The second type has faster than expected ''super-convergence'' property for certain saddle-shaped data functions. The ''superconvergent'' mesh may be an order of magnitude more accurate than the error equidistributing mesh. Both types of mesh are generated by a coordinate transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian matrix of a data function as a metric tensor. The insights in this work may have application in mesh design near corner or point singularities.
Mesh Algorithms for PDE with Sieve I: Mesh Distribution
Knepley, Matthew G.; Karpeev, Dmitry A.
2009-01-01
We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less
Energy Science and Technology Software Center (ESTSC)
2004-04-01
MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individualmore » entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a tanslator between mesh formats, using readers and writers included with MOAB.« less
Tautges, Timothy J.
2004-04-01
MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a tanslator between mesh formats, using readers and writers included with MOAB.
Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.
X-ray topography of a natural twinned diamond of unusual pseudo-tetrahedral morphology
NASA Astrophysics Data System (ADS)
Fritsch, Emmanuel; Moore, Moreton; Rondeau, Benjamin; Waggett, Richard G.
2005-06-01
The internal morphology of a natural twinned diamond was investigated using X-ray section topography. The diamond consisted of two crystals joined along a {1 1 1} plane whose remote ends were triangular {1 1 1} faces with sizes approximately 4 mm on the edge. A coating of fibrous growth obscured the morphology of the good quality diamond inside. Although the coat displayed re-entrant surfaces near the twin plane along three edges of the crystal, X-ray topography showed the inner crystal to protrude outwards along these same edges. The good quality inner core displayed the classical "spinel law" twinned octahedral morphology whereas the fibrous rim showed a typical sphalerite-like twinned tetrahedral morphology. A possible growth mechanism which could account for this is discussed.
Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation
GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.
1999-09-27
Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
In numerical simulations involving boundaries that evolve in time, the primary challenge is updating the computational mesh to reflect the physical changes in the domain. In particular, the fundamental objective for any such \\mesh motion" scheme is to maintain mesh quality and suppress unphysical geometric anamolies and artifacts. External to a physical process of interest, mesh motion is an added component that determines the specifics of how to move the mesh given certain limited information from the main system. This paper develops a set of boundary conditions designed to eliminate tangling and internal collision within the context of PDE-based mesh motion (linear elasticity). These boundary conditions are developed for two- and three-dimensional meshes. The paper presents detailed algorithms for commonly occuring topological scenarios and explains how to apply them appropriately. Notably, the techniques discussed herein make use of none of the specifics of any particular formulation of mesh motion and thus are more broadly applicable. The two-dimensional algorithms are validated by an extensive verification procedure. Finally, many examples of diverse geometries in both two- and three-dimensions are shown to showcase the capabilities of the tangle-free boundary conditions.
Constrained CVT Meshes and a Comparison of Triangular Mesh Generators
Nguyen, Hoa; Burkardt, John; Gunzburger, Max; Ju, Lili; Saka, Yuki
2009-01-01
Mesh generation in regions in Euclidean space is a central task in computational science, and especially for commonly used numerical methods for the solution of partial differential equations, e.g., finite element and finite volume methods. We focus on the uniform Delaunay triangulation of planar regions and, in particular, on how one selects the positions of the vertices of the triangulation. We discuss a recently developed method, based on the centroidal Voronoi tessellation (CVT) concept, for effecting such triangulations and present two algorithms, including one new one, for CVT-based grid generation. We also compare several methods, including CVT-based methods, for triangulating planar domains. To this end, we define several quantitative measures of the quality of uniform grids. We then generate triangulations of several planar regions, including some having complexities that are representative of what one may encounter in practice. We subject the resulting grids to visual and quantitative comparisons and conclude that all the methods considered produce high-quality uniform grids and that the CVT-based grids are at least as good as any of the others.
toolkit computational mesh conceptual model.
Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.
2010-03-01
The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.
PMESH: A parallel mesh generator
Hardin, D.D.
1994-10-21
The Parallel Mesh Generation (PMESH) Project is a joint LDRD effort by A Division and Engineering to develop a unique mesh generation system that can construct large calculational meshes (of up to 10{sup 9} elements) on massively parallel computers. Such a capability will remove a critical roadblock to unleashing the power of massively parallel processors (MPPs) for physical analysis. PMESH will support a variety of LLNL 3-D physics codes in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics.
NASA Astrophysics Data System (ADS)
Ha, Manh Hung; Cauvin, Ludovic; Rassineux, Alain
2016-04-01
We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.
Multigrid for locally refined meshes
Shapira, Y.
1999-12-01
A multilevel method for the solution of finite element schemes on locally refined meshes is introduced. For isotropic diffusion problems, the condition number of the two-level method is bounded independently of the mesh size and the discontinuities in the diffusion coefficient. The curves of discontinuity need not be aligned with the coarse mesh. Indeed, numerical applications with 10 levels of local refinement yield a rapid convergence of the corresponding 10-level, multigrid V-cycle and other multigrid cycles which are more suitable for parallelism even when the discontinuities are invisible on most of the coarse meshes.
Multigrid techniques for unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.