Science.gov

Sample records for quantify oligopeptide acetylation

  1. Application of reverse-phase HPLC to quantify oligopeptide acetylation eliminates interference from unspecific acetyl CoA hydrolysis

    PubMed Central

    Evjenth, Rune; Hole, Kristine; Ziegler, Mathias; Lillehaug, Johan R

    2009-01-01

    Protein acetylation is a common modification that plays a central role in several cellular processes. The most widely used methods to study these modifications are either based on the detection of radioactively acetylated oligopetide products or an enzyme-coupled reaction measuring conversion of the acetyl donor acetyl CoA to the product CoASH. Due to several disadvantages of these methods, we designed a new method to study oligopeptide acetylation. Based on reverse phase HPLC we detect both reaction products in a highly robust and reproducible way. The method reported here is also fully compatible with subsequent product analysis, e.g. by mass spectroscopy. The catalytic subunit, hNaa30p, of the human NatC protein N-acetyltransferase complex was used for N-terminal oligopeptide acetylation. We show that unacetylated and acetylated oligopeptides can be efficiently separated and quantified by the HPLC-based analysis. The method is highly reproducible and enables reliable quantification of both substrates and products. It is therefore well-suited to determine kinetic parameters of acetyltransferases. PMID:19660098

  2. Oligopeptide-heavy metal interaction monitoring by hybrid gold nanoparticle based assay.

    PubMed

    Politi, Jane; Spadavecchia, Jolanda; Iodice, Mario; de Stefano, Luca

    2015-01-01

    Phytochelatins are small peptides that can be found in several organisms, which use these oligopeptides to handle heavy metal elements. Here, we report a method for monitoring interactions between lead(ii) ions in aqueous solutions and phytochelatin 6 oligopeptide bioconjugated onto pegylated gold nanorods (PEG-AuNrs). This study is the first step towards a high sensitive label free optical biosensor to quantify heavy metal pollution in water. PMID:25360445

  3. Dynamics of an antibiotic oligopeptide

    NASA Astrophysics Data System (ADS)

    Middendorf, H. D.; Alves, N.; Zanotti, J.-M.; Gomes, P.; Bastos, M.

    2006-11-01

    Neutron time-of-flight spectra were measured for an H 2O-hydrated and a nominally dry sample of a 15-residue antibacterial oligopeptide from 99 to 271 K. Proton mobilities, quasielastic broadenings, and changes in low-frequency inelastic intensities characterise the evolution of the peptide energy landscape as a function of momentum transfer and temperature.

  4. Electronic structure analysis of glycine oligopeptides and glycine-tryptophan oligopeptides

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yu, Shuai; Yang, Mengshi; Xu, Can; Wang, Yu; Chen, Liang

    2014-03-01

    Using the density functional theory (DFT), we have studied the energy gap, charge distribution, density of states and chemical activity of glycine (Gn) oligopeptides and glycine-tryptophan (GWn) oligopeptides. The results show that: (1) with the increasing of Gn residues, the chemical activity of Gn oligopeptides focuses on the terminal amino and carboxyl groups, which may be the main cause of self-assembly behaviors in Gn oligopeptide chains; (2) the chemical reaction activity has size effect. The size effect disappears when the residue number exceeds 7. The Gn oligopeptides with 7 residues is the shortest chain which has the same reaction activity as that of longer size peptide; (3) the activity of GWn oligopeptides presents size effect and odd-even effect. However, the size effect and odd-even effect both vanish when the chain of GWn oligopeptides is longer than 12 residues. (4) It is difficult in self-assembly for GWn oligopeptide chains, because its activity mainly focuses on the indole ring and the Gn residues at the end of oligopeptides. (5) The big side groups result in the very near energy level of LUMO and LUMO+1 of GWn oligopeptide chains. It shows that the electron-accepting ability of oligopeptide chainsis composed of two orbitals addition. The results in the paper may help us understand the changes of physical and chemical properties of peptide synthesis process.

  5. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.

    PubMed

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony

    2007-08-01

    The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller. PMID:17323349

  6. A toolbox of oligopeptide-modified polymers for tailored elastomers.

    PubMed

    Croisier, Emmanuel; Liang, Su; Schweizer, Thomas; Balog, Sandor; Mionić, Marijana; Snellings, Ruben; Cugnoni, Joël; Michaud, Véronique; Frauenrath, Holger

    2014-01-01

    Biomaterials are constructed from limited sets of building blocks but exhibit extraordinary and versatile properties, because hierarchical structure formation lets them employ identical supramolecular motifs for different purposes. Here we exert a similar degree of structural control in synthetic supramolecular elastomers and thus tailor them for a broad range of thermomechanical properties. We show that oligopeptide-terminated polymers selectively self-assemble into small aggregates or nanofibrils, depending on the length of the oligopeptides. This process is self-sorting if differently long oligopeptides are combined so that different nanostructures coexist in bulk mixtures. Blends of polymers with oligopeptides matching in length furnish reinforced elastomers that exhibit shear moduli one order of magnitude higher than the parent polymers. By contrast, novel interpenetrating supramolecular networks that display excellent vibration damping properties are obtained from blends comprising non-matching oligopeptides or unmodified polymers. Hence, blends of oligopeptide-modified polymers constitute a toolbox for tailored elastomers with versatile properties. PMID:25198134

  7. In Silico Approach towards Designing Virtual Oligopeptides for HRSV

    PubMed Central

    Jain, Ruchi; Piramanayagam, Shanmughavel

    2014-01-01

    HRSV (human respiratory syncytial virus) is a serious cause of lower respiratory tract illness in infants and young children. Designing inhibitors from the proteins involved in virus replication and infection process provides target for new therapeutic treatments. In the present study, in silico docking was performed using motavizumab as a template to design motavizumab derived oligopeptides for developing novel anti-HRSV agents. Additional simulations were conducted to study the conformational propensities of the oligopeptides and confirmed the hypothesis that the designed oligopeptide is highly flexible and capable of assuming stable confirmation. Our study demonstrated the best specific interaction of GEKKLVEAPKS oligopeptide for glycoprotein strain A among various screened oligopeptides. Encouraged by the results, we expect that the proposed scheme will provide rational choices for antibody reengineering which is useful for systematically identifying the possible ways to improve efficacy of existing antibody drugs. PMID:25525622

  8. Effect of grafted oligopeptides on friction.

    PubMed

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions. PMID:23594080

  9. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  10. Formation of oligopeptides in high yield under simple programmable conditions

    PubMed Central

    Rodriguez-Garcia, Marc; Surman, Andrew J.; Cooper, Geoffrey J.T.; Suárez-Marina, Irene; Hosni, Zied; Lee, Michael P.; Cronin, Leroy

    2015-01-01

    Many high-yielding reactions for forming peptide bonds have been developed but these are complex, requiring activated amino-acid precursors and heterogeneous supports. Herein we demonstrate the programmable one-pot dehydration–hydration condensation of amino acids forming oligopeptide chains in around 50% yield. A digital recursive reactor system was developed to investigate this process, performing these reactions with control over parameters such as temperature, number of cycles, cycle duration, initial monomer concentration and initial pH. Glycine oligopeptides up to 20 amino acids long were formed with very high monomer-to-oligomer conversion, and the majority of these products comprised three amino acid residues or more. Having established the formation of glycine homo-oligopeptides, we then demonstrated the co-condensation of glycine with eight other amino acids (Ala, Asp, Glu, His, Lys, Pro, Thr and Val), incorporating a range of side-chain functionality. PMID:26442968

  11. Characterization of the PT clade of oligopeptide transporters in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligopeptide transporters (OPTs) are a group of membrane-localized proteins with a broad range of substrate transport capabilities, and which are thought to contribute to many biological processes. Nine OPTs belonging to the peptide transport (PT) clade were identified in the rice (Oryza sativa L.) ...

  12. Oligopeptides as Biomarkers of Cyanobacterial Subpopulations. Toward an Understanding of Their Biological Role

    PubMed Central

    Agha, Ramsy; Quesada, Antonio

    2014-01-01

    Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria. PMID:24960202

  13. Gating Topology of the Proton-Coupled Oligopeptide Symporters

    PubMed Central

    Fowler, Philip W.; Orwick-Rydmark, Marcella; Radestock, Sebastian; Solcan, Nicolae; Dijkman, Patricia M.; Lyons, Joseph A.; Kwok, Jane; Caffrey, Martin; Watts, Anthony; Forrest, Lucy R.; Newstead, Simon

    2015-01-01

    Summary Proton-coupled oligopeptide transporters belong to the major facilitator superfamily (MFS) of membrane transporters. Recent crystal structures suggest the MFS fold facilitates transport through rearrangement of their two six-helix bundles around a central ligand binding site; how this is achieved, however, is poorly understood. Using modeling, molecular dynamics, crystallography, functional assays, and site-directed spin labeling combined with double electron-electron resonance (DEER) spectroscopy, we present a detailed study of the transport dynamics of two bacterial oligopeptide transporters, PepTSo and PepTSt. Our results identify several salt bridges that stabilize outward-facing conformations and we show that, for all the current structures of MFS transporters, the first two helices of each of the four inverted-topology repeat units form half of either the periplasmic or cytoplasmic gate and that these function cooperatively in a scissor-like motion to control access to the peptide binding site during transport. PMID:25651061

  14. Redox activity and multiple copper(I) coordination of 2His-2Cys oligopeptide.

    PubMed

    Choi, DongWon; Alshahrani, Aisha A; Vytla, Yashodharani; Deeconda, Manogna; Serna, Victor J; Saenz, Robert F; Angel, Laurence A

    2015-02-01

    Copper binding motifs with their molecular mechanisms of selective copper(I) recognition are essential molecules for acquiring copper ions, trafficking copper to specific locations and controlling the potentially damaging redox activities of copper in biochemical processes. The redox activity and multiple Cu(I) binding of an analog methanobactin peptide-2 (amb2) with the sequence acetyl-His1-Cys2-Tyr3-Pro4-His5-Cys6 was investigated using ion mobility-mass spectrometry (IM-MS) and UV-Vis spectrophotometry analyses. The Cu(II) titration of amb2 showed oxidation of amb2 via the formation of intra- and intermolecular Cys-Cys disulfide bridges and the multiple Cu(I) coordination by unoxidized amb2 or the partially oxidized dimer and trimer of amb2. The principal product of these reactions was [amb2 + 3Cu(I)](+) which probably coordinates the three Cu(I) ions via two bridging thiolate groups of Cys2 and Cys6 and the δN6 of the imidazole groups of His6, as determined by geometry optimized structures at the B3LYP/LanL2DZ level of theory. The products observed by IM-MS showed direct correlation to spectral changes associated with disulfide bond formation in the UV-Vis spectrophotometric study. The results show that IM-MS analysis is a powerful technique for unambiguously determining the major ion species produced during the redox and metal binding chemistry of oligopeptides. PMID:25800013

  15. Hypotensive and vasorelaxant effects of sericin-derived oligopeptides in rats.

    PubMed

    Onsa-Ard, Amnart; Shimbhu, Dawan; Tocharus, Jiraporn; Sutheerawattananonda, Manote; Pantan, Rungusa; Tocharus, Chainarong

    2013-01-01

    Sericin-derived oligopeptides obtained from silk cocoons were investigated for the in vivo hypotensive effect and investigated for the underlying mechanism involved in vasodilation in isolated rat thoracic aorta. In normotensive anesthetized rats, oligopeptides induced an immediate and transient hypotensive activity. In rat aortic rings, oligopeptides induced a concentration-dependent vasorelaxation in vessels precontracted with both KCl and phenylephrine (PE) with endothelium-intact or endothelium-denuded rings. In endothelium-intact rings, pretreatment with N ω -Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 µM), an inhibitor of the NO synthase (NOS) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 µM), a selective inhibitor of the guanylyl cyclase enzyme, significantly reduced the relaxant effect of oligopeptides. However, indomethacin, an inhibitor of the cyclooxygenase, had no effect on oligopeptides-induced relaxation. In addition, pretreatment with tetraethylammonium (TEA, 5 mM) reduced the maximal relaxant effect induced by oligopeptides. By contrast, relaxation was not affected by 4-aminopyridine (4-AP, 1 mM), glibenclamide (10 µM), or barium chloride (BaCl2, 1 mM). In depolarization Ca(2+)-free solution, oligopeptides inhibited calcium chloride- (CaCl2-) induced contraction in endothelium-denuded rings in a concentration-dependent manner. Nevertheless, oligopeptides attenuated transient contractions in Ca(2+)-free medium containing EGTA (1 mM) induced by 1 µM PE, but they were not affected by 20 mM caffeine. It is obvious that potent vasodilation effect of oligopeptides is mediated through both the endothelium and the vascular smooth muscle. PMID:24312733

  16. Evaluating the effects of charged oligopeptide motifs coupled with RGD on osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Cao, Feng-Yi; Yin, Wei-Na; Fan, Jin-Xuan; Tao, Li; Qin, Si-Yong; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2015-04-01

    Mesenchymal stem cells, due to their multilineage differentiation potential, have emerged as a promising cell candidate for cell-based therapy. In recent years, biomaterials were artificially synthesized to control the differentiation of mesenchymal stem cells. In this study, a series of charged or neutral oligopeptide motifs coupled with RGD were synthesized and used for surface modification using quartz substrates as model. Cell behaviors on the modified surfaces with different charged oligopeptide motifs were studied. It was found that these different charged oligopeptide motifs coupled with RGD were biocompatible for cell proliferation and adhesion. Moreover, it was demonstrated that the positively charged oligopeptide motif could inhibit osteogenic differentiation, while the negatively charged and neutral oligopeptide motifs could enhance osteogenic differentiation in the presence of RGD. This work may bring us enlightenment that different charged oligopeptide motifs coupled with RGD may be used for biomaterial surface modification for different stem cell-based therapies. PMID:25748883

  17. The Fasted/Fed Mouse Metabolic Acetylome: N6-Acetylation Differences Suggest Acetylation Coordinates Organ-Specific Fuel Switching

    PubMed Central

    Yang, Li; Vaitheesvaran, Bhavapriya; Hartil, Kirsten; Robinson, Alan J.; Hoopmann, Michael R.; Eng, Jimmy K.; Kurland, Irwin J.; Bruce, James E.

    2011-01-01

    The elucidation of extra-nuclear lysine acetylation has been of growing interest, as the co-substrate for acetylation, acetyl CoA, is at a key metabolic intersection. Our hypothesis was that mitochondrial and cytoplasmic protein acetylation may be part of a fasted/re-fed feedback control system for the regulation of the metabolic network in fuel switching, where acetyl CoA would be provided by fatty acid oxidation, or glycolysis, respectively. To test this we characterized the mitochondrial and cytoplasmic acetylome in various organs that have a high metabolic rate relative to their mass, and/or switch fuels, under fasted and re-fed conditions (brain, kidney, liver, skeletal muscle, heart muscle, white and brown adipose tissues). Using immunoprecipitation, coupled with LC-MSMS label free quantification, we show there is a dramatic variation in global quantitative profiles of acetylated proteins from different organs. In total, 733 acetylated peptides from 337 proteins were identified and quantified, out of which 31 acetylated peptides from the metabolic proteins that may play organ-specific roles were analyzed in detail. Results suggest that fasted/re-fed acetylation changes coordinated by organ-specific (de-)acetylases in insulin-sensitive versus insensitive organs may underlie fuel use and switching. Characterization of the tissue-specific acetylome should increase understanding of metabolic conditions wherein normal fuel switching is disrupted, such as in Type II diabetes. PMID:21728379

  18. Molecular interactions between dipeptides, drugs and the human intestinal H+ -oligopeptide cotransporter hPEPT1.

    PubMed

    Sala-Rabanal, Monica; Loo, Donald D F; Hirayama, Bruce A; Turk, Eric; Wright, Ernest M

    2006-07-01

    The human intestinal proton-coupled oligopeptide transporter hPEPT1 has been implicated in the absorption of pharmacologically active compounds. We have investigated the interactions between a comprehensive selection of drugs, and wild-type and variant hPEPT1s expressed in Xenopus oocytes, using radiotracer uptake and electrophysiological methods. The beta-lactam antibiotics ampicillin, amoxicillin, cephalexin and cefadroxil, the antineoplastics delta-aminolevulinic acid (delta-ALA) and bestatin, and the neuropeptide N-acetyl-Asp-Glu (NAAG), were transported, as judged by their ability to evoke inward currents. When the drugs were added in the presence of the typical substrate glycylsarcosine (Gly-Sar), the inward currents were equal or less than that induced by Gly-Sar alone. This suggests that the drugs are transported at a lower turnover rate than Gly-Sar, but may also point towards complex interactions between dipeptides, drugs and the transporter. Gly-Sar and the drugs also modified the kinetics of hPEPT1 presteady-state charge movement, by causing a reduction in maximum charge (Qmax) and a shift of the midpoint voltage (V0.5) to more negative potentials. Our results indicate that the substrate selectivity of hPEPT1 is: Gly-Sar > NAAG, delta-ALA, bestatin > cefadroxil, cephalexin > ampicillin, amoxicillin. Based on steady-state and presteady-state analysis of Gly-Sar and cefadroxil transport, we proposed an extension of the 6-state kinetic model for hPEPT1 function that globally accounts for the observed presteady-state and steady-state kinetics of neutral dipeptide and drug transport. Our model suggests that, under saturating conditions, the rate-limiting step of the hPEPT1 transport cycle is the reorientation of the empty carrier within the membrane. Variations in rates of drug cotransport are predicted to be due to differences in affinity and turnover rate. Oral availability of drugs may be reduced in the presence of physiological concentrations of dietary

  19. Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species.

    PubMed

    Oshiro, Elisa E; Tavares, Milene B; Suzuki, Celso F; Pimenta, Daniel C; Angeli, Claudia B; de Oliveira, Julio C F; Ferro, Maria I T; Ferreira, Luis C S; Ferreira, Rita C C

    2010-04-01

    In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis. PMID:21637492

  20. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix.

    PubMed

    Rohrlack, Thomas; Christiansen, Guntram; Kurmayer, Rainer

    2013-04-01

    Parasitic chytrid fungi can inflict significant mortality on cyanobacteria but frequently fail to keep cyanobacterial dominance and bloom formation in check. Our study tested whether oligopeptide production, a common feature in many cyanobacteria, can be a defensive mechanism against chytrid parasitism. The study employed the cyanobacterial strain Planktothrix NIVA-CYA126/8 and its mutants with knockout mutations for microcystins, anabaenopeptins, and microviridins, major oligopeptide classes to be found in NIVA-CYA126/8. Four chytrid strains were used as parasite models. They are obligate parasites of Planktothrix and are unable to exploit alternative food sources. All chytrid strains were less virulent to the NIVA-CYA126/8 wild type than to at least one of its oligopeptide knockout mutants. One chytrid strain even failed to infect the wild type, while exhibiting considerable virulence to all mutants. It is therefore evident that producing microcystins, microviridins, and/or anabaenopeptins can reduce the virulence of chytrids to Planktothrix, thereby increasing the host's chance of survival. Microcystins and anabaenopeptins are nonribosomal oligopeptides, while microviridins are produced ribosomally, suggesting that Planktothrix resists chytrids by relying on metabolites that are produced via distinct biosynthetic pathways. Chytrids, on the other hand, can adapt to the oligopeptides produced by Planktothrix in different ways. This setting most likely results in an evolutionary arms race, which would probably lead to Planktothrix and chytrid population structures that closely resemble those actually found in nature. In summary, the findings of the present study suggest oligopeptide production in Planktothrix to be part of a defensive mechanism against chytrid parasitism. PMID:23396340

  1. Electronic transport through oligopeptide chains: An artificial prototype of a molecular diode

    NASA Astrophysics Data System (ADS)

    Oliveira, J. I. N.; Albuquerque, E. L.; Fulco, U. L.; Mauriz, P. W.; Sarmento, R. G.

    2014-09-01

    Using an effective tight-binding model, together with a transfer matrix technique, we investigate the electronic transport through an oligopeptide chain composed by two amino acid pairs alanine-lysine (Ala-Lys) and threonine-alanine (Thr-Ala), respectively, sandwiched between two platinum electrodes. Our results show that factors such as the oligopeptide chain length and the possible combinations between the amino acids residues are crucial to the diode-like profile of the current-voltage (I-V) characteristics, whose asymmetric curves were analyzed using the inverted rectification ratio (IRR).

  2. Proline rich-oligopeptides: diverse mechanisms for antihypertensive action.

    PubMed

    Morais, Katia L P; Ianzer, Danielle; Miranda, José Rodolfo R; Melo, Robson L; Guerreiro, Juliano R; Santos, Robson A S; Ulrich, Henning; Lameu, Claudiana

    2013-10-01

    Bradykinin-potentiating peptides from Bothrops jararaca (Bj) discovered in the early 1960s, were the first natural inhibitors of the angiotensin-converting enzyme (ACE). These peptides belong to a large family of snake venom proline-rich oligopeptides (PROs). One of these peptides, Bj-PRO-9a, was essential for defining ACE as effective drug target and development of captopril, an active site-directed inhibitor of ACE used worldwide for the treatment of human arterial hypertension. Recent experimental evidences demonstrated that cardiovascular effects exerted by different Bj-PROs are due to distinct mechanisms besides of ACE inhibition. In the present work, we have investigated the cardiovascular actions of four Bj-PROs, namely Bj-PRO-9a, -11e, -12b and -13a. Bj-PRO-9a acts upon ACE and BK activities to promote blood pressure reduction. Although the others Bj-PROs are also able to inhibit the ACE activity and to potentiate the BK effects, our results indicate that antihypertensive effect evoked by them involve new mechanisms. Bj-PRO-11e and Bj-PRO-12b involves induction of [Ca(2+)]i transients by so far unknown receptor proteins. Moreover, we have suggested argininosuccinate synthetase and M3 muscarinic receptor as targets for cardiovascular effects elicited by Bj-PRO-13a. In summary, the herein reported results provide evidence that Bj-PRO-mediated effects are not restricted to ACE inhibition or potentiation of BK-induced effects and suggest different actions for each peptide for promoting arterial pressure reduction. The present study reveals the complexity of the effects exerted by Bj-PROs for cardiovascular control, opening avenues for the better understanding of blood pressure regulation and for the development of novel therapeutic approaches. PMID:23933300

  3. Effects of oligopeptide permease in group a streptococcal infection.

    PubMed

    Wang, Chih-Hung; Lin, Chia-Yu; Luo, Yueh-Hsia; Tsai, Pei-Jane; Lin, Yee-Shin; Lin, Ming T; Chuang, Woei-Jer; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2005-05-01

    The oligopeptide permease (Opp) of group A streptococci (GAS) is a membrane-associated protein and belongs to the ATP-binding cassette transporter family. It is encoded by a polycistronic operon containing oppA, oppB, oppC, oppD, and oppF. The biological function of these genes in GAS is poorly understood. In order to understand more about the effects of Opp on GAS virulence factors, an oppA isogenic mutant was constructed by using an integrative plasmid to disrupt the opp operon and confirmed by Southern blot hybridization. No transcript was detected in the oppA isogenic mutant by Northern blot analysis and reverse transcriptase PCR. The growth curve for the oppA isogenic mutant was similar to that for wild-type strain A-20. The oppA isogenic mutant not only decreased the transcription of speB, speX, and rofA but also increased the transcription of speF, sagA (streptolysin S-associated gene A), slo (streptolysin O), pel (pleotrophic effect locus), and dppA (dipeptide permease). No effects on the transcription of emm, sda, speJ, speG, rgg, and csrR were found. The phenotypes of the oppA mutant were restored by the oppA revertant and by the complementation strain. The oppA mutant caused less mortality and tissue damage than the wild-type strain when inoculated into BALB/c mice via an air pouch. Based on these data, we suggest that the opp operon plays an important role in the pathogenesis of GAS infection. PMID:15845494

  4. Solid-Phase Organic Synthesis and Combinatorial Chemistry: A Laboratory Preparation of Oligopeptides

    NASA Astrophysics Data System (ADS)

    Truran, George A.; Aiken, Karelle S.; Fleming, Thomas R.; Webb, Peter J.; Hodge Markgraf, J.

    2002-01-01

    The principles and practice of solid-phase organic synthesis and combinatorial chemistry are utilized in a laboratory preparation of oligopeptides. A parallel synthesis scheme is used to generate a series of tripeptides. A divergent synthesis scheme is used to prepare two pentapeptides, one of which is leucine enkephalin, a neurotransmitter known to be an analgesic agent.

  5. Influence of fermentation level and geographical origin on cocoa bean oligopeptide pattern.

    PubMed

    Caligiani, Augusta; Marseglia, Angela; Prandi, Barbara; Palla, Gerardo; Sforza, Stefano

    2016-11-15

    Peptides and amino acids generated during cocoa bean fermentation are the most important precursors for the development of cocoa aroma, however cocoa oligopeptide fraction is under-investigated. In this study, we perform a deep investigation of the presence of oligopeptides in unfermented, under fermented, and well-fermented cocoa beans from all of the main producing countries, with the aim to obtain a better definition of cocoa quality and a deeper comprehension of biochemical changes occurring during fermentation. Oligopeptides were determined by UPLC/ESI-MS and 35 low-molecular weight peptides were identified and subjected to semi-quantitative analysis. Results showed that fermented cocoas can be differentiated from unfermented cocoas by their possession of a higher total amount of oligopeptides and a lower ratio of vicilin to 21kDa cocoa seed albumin peptides. A variability in the peptide pattern was observed also among well-fermented cocoa samples of different geographical origin, suggesting diversified proteolytic activities. PMID:27283652

  6. Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast

    PubMed Central

    Galdieri, Luciano; Zhang, Tiantian; Rogerson, Daniella; Lleshi, Rron

    2014-01-01

    Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation. PMID:25326522

  7. Acetyl Radical Generation in Cigarette Smoke: Quantification and Simulations

    PubMed Central

    Hu, Na; Green, Sarah A.

    2014-01-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography–mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10–150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass filber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acealdehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke. PMID:25253993

  8. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  9. The world of protein acetylation.

    PubMed

    Drazic, Adrian; Myklebust, Line M; Ree, Rasmus; Arnesen, Thomas

    2016-10-01

    Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation. PMID:27296530

  10. Non-Statistical Oligopeptide Fragmentation by IR Photons with λ=16-18 μm

    NASA Astrophysics Data System (ADS)

    Jungclas, Hartmut; Komarov, Viacheslav V.; Popova, Anna M.; Schmidt, Lothar

    2015-12-01

    In this article we analyse the vibration excitation and following dissociation of protonated oligopeptide molecules induced by IR photons with λ=16-18 μm. The analysis is based on our previous works in which we considered a specific non-statistical dissociation process in organic molecules containing substructures consisting of chained identical diatomic dipoles such as (CH2)n. Such dipole chains can serve as IR antennas for external radiation in the IR frequency range. The acquired vibration energy accumulated in IR antennas can be large enough to dissociate molecules within a femtosecond time interval by a non-statistical process, which is driven by a radiationless low-energy transport mechanism inside the peptide molecules. We point out in this article that the suggested IR-induced dissociation mechanism can be applied to obtain sequence information of protonated oligopeptides.

  11. Inclusion of Cu nano-cluster 1D arrays inside a C3-symmetric artificial oligopeptide via co-assembly

    NASA Astrophysics Data System (ADS)

    Gong, Ruiying; Li, Fei; Yang, Chunpeng; Wan, Xiaobo

    2015-12-01

    A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside.A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside. Electronic

  12. Synthetic oligopeptide substrates: their diagnostic application in blood coagulation, fibrinolysis, and other pathologic states

    SciTech Connect

    Huseby, R.M.; Smith, R.E.

    1980-01-01

    This review article with 522 references, focuses on the use of synthetic oligopepide substrates to measure the activity of proteoytic enzymes in human physiology and pathology. A classification of proteinases based on their mechanism of action is presented. The application of these synthetic oligopeptide substrates to understand the disorders of the blood coagulation and fibrinolytic system is reviewed. Intracellular functioning proteinases were also assessed in relation to certain pathologies where their abnormal activity is recognized.

  13. The Ubiquitin Ligase Ubr11 Is Essential for Oligopeptide Utilization in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Nakase, Mai; Tohda, Hideki; Takegawa, Kaoru

    2012-01-01

    Uptake of extracellular oligopeptides in yeast is mediated mainly by specific transporters of the peptide transporter (PTR) and oligopeptide transporter (OPT) families. Here, we investigated the role of potential peptide transporters in the yeast Schizosaccharomyces pombe. Utilization of naturally occurring dipeptides required only Ptr2/SPBC13A2.04c and none of the other 3 OPT proteins (Isp4, Pgt1, and Opt3), whereas only Isp4 was indispensable for tetrapeptide utilization. Both Ptr2 and Isp4 localized to the cell surface, but under rich nutrient conditions Isp4 localized in the Golgi apparatus through the function of the ubiquitin ligase Pub1. Furthermore, the ubiquitin ligase Ubr11 played a significant role in oligopeptide utilization. The mRNA levels of both the ptr2 and isp4 genes were significantly reduced in ubr11Δ cells, and the dipeptide utilization defect in the ubr11Δ mutant was rescued by the forced expression of Ptr2. Consistent with its role in transcriptional regulation of peptide transporter genes, the Ubr11 protein was accumulated in the nucleus. Unlike the situation in Saccharomyces cerevisiae, the oligopeptide utilization defect in the S. pombe ubr11Δ mutant was not rescued by inactivation of the Tup11/12 transcriptional corepressors, suggesting that the requirement for the Ubr ubiquitin ligase in the upregulation of peptide transporter mRNA levels is conserved in both yeasts; however, the actual mechanism underlying the control appears to be different. We also found that the peptidomimetic proteasome inhibitor MG132 was still operative in a strain lacking all known PTR and OPT peptide transporters. Therefore, irrespective of its peptide-like structure, MG132 is carried into cells independently of the representative peptide transporters. PMID:22226946

  14. Mineral-Enhanced Hydrothermal Oligopeptide Formation at the Second Time Scale

    NASA Astrophysics Data System (ADS)

    Kawamura, Kunio; Takeya, Hitoshi; Kushibe, Takao; Koizumi, Yuka

    2011-06-01

    Accumulation of biopolymers should have been an essential step for the emergence of life on primitive Earth. However, experimental simulations for submarine hydrothermal vent systems in which high-temperature water spouts through minerals within a short time scale have not been attempted. Here, we show that enhancement of hydrothermal oligopeptide elongation by naturally occurring minerals was successfully verified for the first time by using a mineral-mediated hydrothermal flow reactor system (MMHF). MMHF consists of a narrow tubular reactor packed with mineral particles, and the enhancement or inhibitory activities of 10 types of naturally occurring minerals were successfully evaluated for an elongation reaction from (Ala)4 to (Ala)5 and higher oligopeptides in the absence of condensation reagents. It was unexpected that calcite and dolomite facilitated the elongation from (Ala)4 to (Ala)5 and higher oligopeptides with 28% yield at pH 7, while tourmaline, galena, apatite, mica, sphalerite, quartz, chalcopyrite, and pyrite did not show enhancement activities. These facts suggest the importance of carbonate minerals for the accumulation of peptide in primitive Earth environments.

  15. Mineral-enhanced hydrothermal oligopeptide formation at the second time scale.

    PubMed

    Kawamura, Kunio; Takeya, Hitoshi; Kushibe, Takao; Koizumi, Yuka

    2011-06-01

    Accumulation of biopolymers should have been an essential step for the emergence of life on primitive Earth. However, experimental simulations for submarine hydrothermal vent systems in which high-temperature water spouts through minerals within a short time scale have not been attempted. Here, we show that enhancement of hydrothermal oligopeptide elongation by naturally occurring minerals was successfully verified for the first time by using a mineral-mediated hydrothermal flow reactor system (MMHF). MMHF consists of a narrow tubular reactor packed with mineral particles, and the enhancement or inhibitory activities of 10 types of naturally occurring minerals were successfully evaluated for an elongation reaction from (Ala)(4) to (Ala)(5) and higher oligopeptides in the absence of condensation reagents. It was unexpected that calcite and dolomite facilitated the elongation from (Ala)(4) to (Ala)(5) and higher oligopeptides with 28% yield at pH 7, while tourmaline, galena, apatite, mica, sphalerite, quartz, chalcopyrite, and pyrite did not show enhancement activities. These facts suggest the importance of carbonate minerals for the accumulation of peptide in primitive Earth environments. PMID:21671764

  16. Characterization and Evaluation of the Moraxella catarrhalis Oligopeptide Permease A as a Mucosal Vaccine Antigen▿

    PubMed Central

    Yang, Min; Johnson, Antoinette; Murphy, Timothy F.

    2011-01-01

    Moraxella catarrhalis is a common cause of otitis media in children and of lower respiratory tract infections in adults with chronic obstructive pulmonary disease; therefore, these two groups would benefit from a vaccine to prevent M. catarrhalis infections. A genome mining approach for vaccine antigens identified oligopeptide permease protein A (OppA), an oligopeptide binding protein of an apparent oligopeptide transport system. Analysis of the oppA gene by PCR and sequence analysis revealed that OppA is highly conserved among clinical isolates of M. catarrhalis. Recombinant OppA was expressed as a lipoprotein and purified, and an oppA knockout mutant was constructed. Antiserum raised to recombinant purified OppA recognized epitopes on the bacterial surface of the wild type but not the OppA knockout mutant. Antibodies raised to purified recombinant OppA recognized native OppA in multiple strains. Intranasal immunization of mice induced systemic and mucosal antibodies to OppA and resulted in enhanced clearance of M. catarrhalis in a mouse pulmonary clearance model. OppA is a highly conserved, immunogenic protein that expresses epitopes on the bacterial surface and that induces potentially protective immune responses in a mouse model. OppA should be evaluated further as a vaccine antigen for M. catarrhalis. PMID:21134967

  17. Controlled trial of oligopeptide versus amino acid diet in treatment of active Crohn's disease.

    PubMed Central

    Mansfield, J C; Giaffer, M H; Holdsworth, C D

    1995-01-01

    Elemental diets are effective in inducing remission in active Crohn's disease, but how they exert this therapeutic effect is unclear. In a previous study a whole protein containing diet proved less effective than one in which food antigens were excluded, suggesting that exclusion of food antigens from the gut was a possible mechanism. This study was designed to test whether an oligopeptide diet of hydrolysed proteins was as effective as an amino acid based diet. These diets were equally antigen free but with different nitrogen sources. Forty four patients with active Crohn's disease were randomised in a controlled trial of amino acid versus oligopeptide diet. The feeds were given by nasogastric tube in equicaloric quantities and were the sole form of nutrition. Treatment was continued for four weeks although failure to improve by day 10 resulted in withdrawal. Quantitative leucocyte scintigraphy was used to investigate the effect of diet treatment on gut inflammation. Clinical and nutritional responses to treatment were also measured. Sixteen patients entered remission (including withdrawal of corticosteroids), six patients could not tolerate the nasogastric tube, and 22 patients failed to respond. The two diets were equally effective. Patients who responded had a rapid drop in clinical index of disease activity and a major reduction in the bowel uptake of leucocytes on scintigraphy. The oligopeptide and amino acid based enteral feeds were equally effective at inducing remission in active Crohn's disease. With both diets clinical improvement was accompanied by a reduction in intestinal inflammation. Images Figure 3 PMID:7890238

  18. H(+)/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport.

    PubMed

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko; Akagawa, Mitsugu; Tsuji-Naito, Kentaro

    2016-07-01

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H(+) gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. PMID:27216463

  19. Acetyl transfer in arylamine metabolism

    PubMed Central

    Booth, J.

    1966-01-01

    1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287

  20. Fatal Intoxication with Acetyl Fentanyl.

    PubMed

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  1. Quantifying resilience

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.

    2016-01-01

    Several frameworks to operationalize resilience have been proposed. A decade ago, a special feature focused on quantifying resilience was published in the journal Ecosystems (Carpenter, Westley & Turner 2005). The approach there was towards identifying surrogates of resilience, but few of the papers proposed quantifiable metrics. Consequently, many ecological resilience frameworks remain vague and difficult to quantify, a problem that this special feature aims to address. However, considerable progress has been made during the last decade (e.g. Pope, Allen & Angeler 2014). Although some argue that resilience is best kept as an unquantifiable, vague concept (Quinlan et al. 2016), to be useful for managers, there must be concrete guidance regarding how and what to manage and how to measure success (Garmestani, Allen & Benson 2013; Spears et al. 2015). Ideas such as ‘resilience thinking’ have utility in helping stakeholders conceptualize their systems, but provide little guidance on how to make resilience useful for ecosystem management, other than suggesting an ambiguous, Goldilocks approach of being just right (e.g. diverse, but not too diverse; connected, but not too connected). Here, we clarify some prominent resilience terms and concepts, introduce and synthesize the papers in this special feature on quantifying resilience and identify core unanswered questions related to resilience.

  2. Only One of Four Oligopeptide Transport Systems Mediates Nitrogen Nutrition in Staphylococcus aureus▿

    PubMed Central

    Hiron, Aurelia; Borezée-Durant, Elise; Piard, Jean-Christophe; Juillard, Vincent

    2007-01-01

    Oligopeptides internalized by oligopeptide permease (Opp) transporters play key roles in bacterial nutrition, signaling, and virulence. To date, two opp operons, opp-1 and opp-2, have been identified in Staphylococcus aureus. Systematic in silico analysis of 11 different S. aureus genomes revealed the existence of two new opp operons, opp-3 and opp-4, plus an opp-5A gene encoding a putative peptide-binding protein. With the exception of opp-4, the opp operons were present in all S. aureus strains. Within a single strain, the different opp operons displayed little sequence similarity and distinct genetic organization. Transcriptional studies showed that opp-1, opp-2, opp-3, and opp-4 operons were polycistronic and that opp-5A is monocistronic. We designed a minimal chemically defined medium for S. aureus RN6390 and showed that all opp genes were expressed but at different levels. Where tested, OppA protein production paralleled transcriptional profiles. opp-3, which encodes proteins most similar to known peptide transport proteins, displayed the highest expression level and was the only transporter to be regulated by specific amino acids, tyrosine and phenylalanine. Defined deletion mutants in one or several peptide permeases were constructed and tested for their capacity to grow in peptide-containing medium. Among the four putative Opp systems, Opp-3 was the only system able to provide oligopeptides for growth, ranging in length from 3 to 8 amino acids. Dipeptides were imported exclusively by DtpT, a proton-driven di- and tripeptide permease. These data provide a first complete inventory of the peptide transport systems opp and dtpT of S. aureus. Among them, the newly identified Opp-3 appears to be the main Opp system supplying the cell with peptides as nutritional sources. PMID:17496096

  3. Bacterial protein acetylation: new discoveries unanswered questions.

    PubMed

    Wolfe, Alan J

    2016-05-01

    Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering. PMID:26660885

  4. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    NASA Astrophysics Data System (ADS)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  5. Optimization of Enzymatic Production of Oligopeptides from Apricot Almonds Meal with Neutrase and N120P

    PubMed Central

    Wang, Chunyan; Wang, Qiang; Tian, Jinqiang

    2010-01-01

    Neutrase 0.8L and N120P proteases were used for oligopeptide production from apricot almonds meal, and response surface design was carried out to optimize the effect of hydrolysis conditions on hydrolysis degree (DH) and oligopeptide yield rate. Four independent variables were used to optimize the hydrolysis process: hydrolysis temperature (X1), enzyme-to substrate ratio (E/S) (X2), substrate concentration (X3) and reaction time (X4). Statistical analysis indicated that the four variables, quadratic terms of X1, X3, and X4, and the interaction terms with X1 had a significant (p < 0.05) effect on DH. The yield rate was also significantly affected by the four variables and quadratic terms of X1, X2 and X4. Two mathematical models with high determination coefficient were obtained and could be employed to optimize protein hydrolysis. The optimal hydrolysis conditions were determined as follows: hydrolysis temperature 52.5 °C; enzyme-to-substrate ratio (E/S) 7200 U/g; substrate concentration 2%; reaction time 173 min. The initial pH 6.5 and Neutrase-to-N120P dosage ratio 2:1 were fixed in this study according to the preliminary research. Under these conditions, the experimental DH and yield rate were 34.10 ± 5.25% and 72.42 ± 2.27%, respectively. PMID:21614184

  6. Directed self-assembly of π-conjugated oligopeptides for supramolecular electronics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Li, Songsong; Zhou, Yuecheng; Tovar, John; Wilson, William; Schroeder, Charles

    The directed mesoscale engineering of nanoscale building blocks holds enormous promise to catalyze a revolution in new functional materials for advanced electronics. Bio-inspired systems can play a key role in this effort due to their inherent ``programmable'' function. In this work, oligopeptide with defined flanking sequences was appended to π-conjugated units, thereby directing their assembly processes in a designed manner. By utilizing custom-designed microfluidic devices and controlled acid vapor diffusion, the self-assembly rate was directed and precisely tuned. Notably, the kinetics was found to play a key role in the morphology of self-assembled π-conjugated oligopeptides. The influence of flanking peptide sequences and π-conjugated core-core interactions on the self-assembly nanostructure was systematically investigated. Importantly, the electronic properties of the synthetic peptide assembly was explored by integration as the active layer of a field effect transistor. The presented study offers insights to the design and fabrication of supramolecular electronics.

  7. Viscoelastic properties and nanoscale structures of composite oligopeptide-polysaccharide hydrogels.

    PubMed

    Hyland, Laura L; Taraban, Marc B; Feng, Yue; Hammouda, Boualem; Yu, Y Bruce

    2012-03-01

    Biocompatible and biodegradable peptide hydrogels are drawing increasing attention as prospective materials for human soft tissue repair and replacement. To improve the rather unfavorable mechanical properties of our pure peptide hydrogels, in this work we examined the possibility of creating a double hydrogel network. This network was created by means of the coassembly of mutually attractive, but self-repulsive oligopeptides within an already-existing fibrous network formed by the charged, biocompatible polysaccharides chitosan, alginate, and chondroitin. Using dynamic oscillatory rheology experiments, it was found that the coassembly of the peptides within the existing polysaccharide network resulted in a less stiff material as compared to the pure peptide networks (the elastic modulus G' decreased from 90 to 10 kPa). However, these composite oligopeptide-polysaccharide hydrogels were characterized by a greater resistance to deformation (the yield strain γ grew from 4 to 100%). Small-angle neutron scattering (SANS) was used to study the 2D cross-sectional shapes of the fibers, their dimensional characteristics, and the mesh sizes of the fibrous networks. Differences in material structures found with SANS experiments confirmed rheology data, showing that incorporation of the peptides dramatically changed the morphology of the polysaccharide network. The resulting fibers were structurally very similar to those forming the pure peptide networks, but formed less stiff gels because of their markedly greater mesh sizes. Together, these findings suggest an approach for the development of highly deformation-resistant biomaterials. PMID:21994046

  8. Focal accumulation of an apolipoprotein B-based synthetic oligopeptide in the healing rabbit arterial wall

    SciTech Connect

    Shih, I.L.; Lees, R.S.; Chang, M.Y.; Lees, A.M. )

    1990-02-01

    The functions of surface-accessible domains of apolipoprotein (apo) B, the protein moiety of low density lipoprotein (LDL), are unknown, aside from the LDL receptor-binding domain, which lies toward the carboxyl-terminal end of apoB. Since LDL accumulation in arterial lesions does not depend on recognition of LDLs by a cell-surface receptor, we synthesized an oligopeptide with the sequence of the trypsin-accessible domain of apoB that lies closest to the amino-terminal end of the protein and compared its biological activity to that of another synthetic oligopeptide with the sequence of the heparin- and apoB/apoE receptor-binding domains of apoE. (Tyrosine was added at the amino-terminal end of each peptide to facilitate radiolabeling.) The 18-amino acid apoB-based peptide included residues 1000-1016 of apoB, for which no function has been previously described. In radioautographs, the 125I-labeled peptide accumulated focally at the healing edges of regenerating endothelial islands in the balloon-catheter deendothelialized rabbit aorta. In contrast, the 21-residue apoE-based peptide, which included residues 129-148 of apoE, accumulated diffusely and uniformly throughout the deendothelialized areas of the aorta. The data show that focal binding of the apoB-based peptide can delineate arterial lesions and suggest that this arterial wall-binding domain of apoB mediates accumulation of LDLs in arterial lesions.

  9. Prevention of skeletal muscle atrophy in vitro using anti-ubiquitination oligopeptide carried by atelocollagen.

    PubMed

    Kawai, Nobuhiko; Hirasaka, Katsuya; Maeda, Tasuku; Haruna, Marie; Shiota, Chieko; Ochi, Arisa; Abe, Tomoki; Kohno, Shohei; Ohno, Ayako; Teshima-Kondo, Sigetada; Mori, Hiroyo; Tanaka, Eiji; Nikawa, Takeshi

    2015-05-01

    Skeletal muscle atrophy occurs when the rate of protein degradation exceeds that of protein synthesis in various catabolic conditions, such as fasting, disuse, aging, and chronic diseases. Insulin-like growth factor-1 (IGF-1) signaling stimulates muscle growth and suppresses muscle protein breakdown. In atrophied muscles, ubiquitin ligase, Cbl-b, increases and stimulates the ubiquitination and degradation of IRS-1, an intermediate in IGF-1 signaling pathway, resulting in IGF-1 resistance. In this study, we evaluated the efficacy of atelocollagen (ATCOL)-transported anti-ubiquitination oligopeptide (Cblin: Cbl-b inhibitor) (consisting of tyrosine phosphorylation domain of IRS-1) in starved C2C12 myotubes. The amount of IRS-1 protein was lower in starved versus unstarved myotubes. The Cblin-ATCOL complex inhibited IRS-1 degradation in a concentration-dependent manner. Myotubes incubated with Cblin-ATCOL complex showed significant resistance to starvation-induced atrophy (p<0.01). Furthermore, the Cblin-ATCOL complex significantly inhibited any decrease in Akt phosphorylation (p<0.01) and localization of FOXO3a to the nucleus in starved myotubes. These results suggest that Cblin prevented starvation-induced C2C12 myotube atrophy by maintaining the IGF-1/Akt/FOXO signaling. Therefore, attachment of anti-ubiquitination oligopeptide, Cblin, to ATCOL enhances its delivery to myotubes and could be a potentially effective strategy in the treatment of atrophic myopathies. PMID:25667084

  10. Horizontally acquired oligopeptide transporters favour adaptation of Saccharomyces cerevisiae wine yeast to oenological environment.

    PubMed

    Marsit, Souhir; Sanchez, Isabelle; Galeote, Virginie; Dequin, Sylvie

    2016-04-01

    In the past decade, horizontal gene transfer (HGT) has emerged as a major evolutionary process that has shaped the genome of Saccharomyces cerevisiae wine yeasts. We recently showed that a large Torulaspora microellipsoides genomic island carrying two oligopeptide transporters encoded by FOT genes increases the fitness of wine yeast during fermentation of grape must. However, the impact of these genes on the metabolic network of S. cerevisiae remained uncharacterized. Here we show that Fot-mediated peptide uptake substantially affects the glutamate node and the NADPH/NADP(+) balance, resulting in the delayed uptake of free amino acids and altered profiles of metabolites and volatile compounds. Transcriptome analysis revealed that cells using a higher amount of oligopeptides from grape must are less stressed and display substantial variation in the expression of genes in the central pathways of carbon and nitrogen metabolism, amino acid and protein biosynthesis, and the oxidative stress response. These regulations shed light on the molecular and metabolic mechanisms involved in the higher performance and fitness conferred by the HGT-acquired FOT genes, pinpointing metabolic effects that can positively affect the organoleptic balance of wines. PMID:26549518

  11. Viscoelastic Properties and Nano-scale Structures of Composite Oligopeptide-Polysaccharide Hydrogels

    PubMed Central

    Hyland, Laura L.; Taraban, Marc B.; Feng, Yue; Hammouda, Boualem; Yu, Y. Bruce

    2012-01-01

    Biocompatible and biodegradable peptide hydrogels are drawing increasing attention as prospective materials for human soft tissue repair and replacement. To improve the rather unfavorable mechanical properties of our pure peptide hydrogels, in this work we examined the possibility of creating a double hydrogel network. This network was created by means of the co-assembly of mutually attractive but self-repulsive oligopeptides within an already existing fibrous network formed by the charged, biocompatible polysaccharides chitosan, alginate, and chondroitin. Using dynamic oscillatory rheology experiments, it was found that the co-assembly of the peptides within the existing polysaccharide network resulted in a less stiff material as compared to the pure peptide networks (the elastic modulus G′ decreased from 90 kPa to 10 kPa). However, these composite oligopeptide-polysaccharide hydrogels were characterized by a greater resistance to deformation (the yield strain γ grew from 4 % to 100 %). Small-angle neutron scattering (SANS) was used to study the 2D cross-sectional shapes of the fibers, their dimensional characteristics and the mesh sizes of the fibrous networks. Differences in material structures found with SANS experiments confirmed rheology data showing that incorporation of the peptides dramatically changed the morphology of the polysaccharide network. The resulting fibers were structurally very similar to those forming the pure peptide networks, but formedless stiff gels because of their markedly greater mesh sizes. Together, these findings suggest an approach for the development of highly deformation-resistant biomaterials. PMID:21994046

  12. Effects of phenylalanine and threonine oligopeptides on milk protein synthesis in cultured bovine mammary epithelial cells.

    PubMed

    Zhou, M M; Wu, Y M; Liu, H Y; Liu, J X

    2015-04-01

    This study was conducted to investigate the effects of phenylalanine (Phe) and threonine (Thr) oligopeptides on αs1 casein gene expression and milk protein synthesis in bovine mammary epithelial cells. Primary mammary epithelial cells were obtained from Holstein dairy cows and incubated in Dulbecco's modified Eagle's medium-F12 medium (DMEM/F12) containing lactogenic hormones (prolactin and glucocorticoids). Free Phe (117 μg/ml) was substituted partly with peptide-bound Phe (phenylalanylphenylalanine, phenylalanyl threonine, threonyl-phenylalanyl-phenylalanine) in the experimental media. After incubation with experimental medium, cells were collected for gene expression analysis and medium was collected for milk protein or amino acid determination. The results showed that peptide-bound Phe at 10% (11.7 μg/ml) significantly enhanced αs1 casein gene expression and milk protein synthesis as compared with equivalent amount of free Phe. When 10% Phe was replaced by phenylalanylphenylalanine, the disappearance of most essential amino acids increased significantly, and gene expression of peptide transporter 2 and some amino acid transporters was significantly enhanced. These results indicate that the Phe and Thr oligopeptides are important for milk protein synthesis, and peptide-bound amino acids could be utilised more efficiently in milk protein synthesis than the equivalent amount of free amino acids. PMID:25199802

  13. Intercalation of amino acids and oligopeptides into Zn Al layered double hydroxide by coprecipitation reaction

    NASA Astrophysics Data System (ADS)

    Aisawa, Sumio; Sasaki, Shuji; Takahashi, Satoshi; Hirahara, Hidetoshi; Nakayama, Hirokazu; Narita, Eiichi

    2006-05-01

    The coprecipitation of amino acids and oligopeptides with the Zn Al LDH was investigated using phenylalanine (Phe), phenylalanyl-phenylalanine (Phe-Phe), glycyl-phenylalanine (Gly Phe), glycine (Gly), glycyl-glycine (Gly Gly), glycyl-glycyl-glycine (Gly Gly Gly) and N-(N-γ-glutamyl-cysteinyl)-glycine (GSH) as guest species. The coprecipitation behavior of amino acids and oligopeptides was found to be influenced by the solution pH and the kind of their side chain groups, and reached the maximum at pH 8 or 9. The basal spacing, d003, of the Phe, Phe-Phe and GSH/LDH was 1.81, 2.41 and 1.64 nm, supporting that guests were arranged vertical to the LDH basal layer. Acceding to the basal spacing of the Gly, Gly Gly and Gly Gly Gly/LDH (d003=0.84 0.88 nm), these guests were oriented horizontal to the LDH basal layer with the co-intercalated NO3-. Moreover, the amount of Phe-Phe, Gly Gly and Gly Gly Gly intercalated was almost the same as that of Phe and Gly despite increasing the number peptide bond and the molecular size. GSH was intercalated into the LDH interlayer space as GSH oxidized form with bridged LDH layers by their carboxylate groups.

  14. Quantifying contextuality.

    PubMed

    Grudka, A; Horodecki, K; Horodecki, M; Horodecki, P; Horodecki, R; Joshi, P; Kłobus, W; Wójcik, A

    2014-03-28

    Contextuality is central to both the foundations of quantum theory and to the novel information processing tasks. Despite some recent proposals, it still faces a fundamental problem: how to quantify its presence? In this work, we provide a universal framework for quantifying contextuality. We conduct two complementary approaches: (i) the bottom-up approach, where we introduce a communication game, which grasps the phenomenon of contextuality in a quantitative manner; (ii) the top-down approach, where we just postulate two measures, relative entropy of contextuality and contextuality cost, analogous to existent measures of nonlocality (a special case of contextuality). We then match the two approaches by showing that the measure emerging from the communication scenario turns out to be equal to the relative entropy of contextuality. Our framework allows for the quantitative, resource-type comparison of completely different games. We give analytical formulas for the proposed measures for some contextual systems, showing in particular that the Peres-Mermin game is by order of magnitude more contextual than that of Klyachko et al. Furthermore, we explore properties of these measures such as monotonicity or additivity. PMID:24724629

  15. Quantifying entanglement

    NASA Astrophysics Data System (ADS)

    Thapliyal, Ashish Vachaspati

    Entanglement is an essential element of quantum mechanics. The aim of this work is to explore various properties of entanglement from the viewpoints of both physics and information science, thus providing a unique picture of entanglement from an interdisciplinary point of view. The focus of this work is on quantifying entanglement as a resource. We start with bipartite states, proposing a new measure of bipartite entanglement called entanglement of assistance, showing that bound entangled states of rank two cannot exist, exploring the number of members required in the ensemble achieving the entanglement of formation and the possibility of bound entangled states that are negative under partial transposition (NPT bound entangled states). For multipartite states we introduce the notions of reducibilities and equivalences under entanglement non-increasing operations and we study the relations between various reducibilities and equivalences such as exact and asymptotic LOCC, asymptotic LOCCq, cLOCC, LOc, etc. We use this new language to attempt to quantify entanglement for multiple parties. We introduce the idea of entanglement span and minimal entanglement generating set and entanglement coefficients associated with it which are the entanglement measures, thus proposing a multicomponent measure of entanglement for three or more parties. We show that the class of Schmidt decomposable states have only GHZM or Cat-like entanglement. Further we introduce the class of multiseparable states for quantification of their entanglement and prove that they are equivalent to the Schmidt decomposable states, and thus have only Cat-like entanglement. We further explore the conditions under which LOCO equivalences are possible for multipartite isentropic states. We define Cat-distillability, EPRB-distillability and distillability for multipartite mixed states and show that distillability implies EPRB-distillability. Further we show that all non-factorizable pure states are Cat

  16. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  17. An Acute Acetyl Fentanyl Fatality: A Case Report With Postmortem Concentrations.

    PubMed

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Malamatos, Mark; Lucas, Jonathan R

    2015-01-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of acetyl fentanyl in a fatality attributed to the drug. A young man who had a history of heroin abuse was found deceased at his parents' home. Toxicology testing, which initially screened positive for fentanyl by ELISA, subsequently confirmed acetyl fentanyl by gas chromatography-mass spectrometry specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. No other drugs or medications, including fentanyl, were detected. The acetyl fentanyl peripheral blood concentration was quantified at 260 ng/mL compared with the central blood concentration of 250 ng/mL. The liver concentration was 1,000 ng/kg, the vitreous was 240 ng/mL and the urine was 2,600 ng/mL. The cause of death was certified due to acute acetyl fentanyl intoxication, and the manner of death was certified as an accident. PMID:25917447

  18. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated. PMID:27423860

  19. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis.

    PubMed

    Sharma, Neha; Aduri, Nanda G; Iqbal, Anna; Prabhala, Bala K; Mirza, Osman

    2016-01-01

    Peptide transport in living organisms is facilitated by either primary transport, hydrolysis of ATP, or secondary transport, cotransport of protons. In this study, we focused on investigating the ligand specificity of the Neisseria meningitidis proton-coupled oligopeptide transporter (NmPOT). It has been shown that the gene encoding this transporter is upregulated during infection. NmPOT conformed to the typical chain length preference as observed in prototypical transporters of this family. In contrast to prototypical transporters, it was unable to accommodate a positively charged peptide residue at the C-terminus position of the substrate peptide. Sequence analysis of the active site of NmPOT displayed a distinctive aromatic patch, which has not been observed in any other transporters from this family. This aromatic patch may be involved in providing NmPOT with its atypical preferences. This study provides important novel information towards understanding how these transporters recognize their substrates. PMID:27438044

  20. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter.

    PubMed

    Samsudin, Firdaus; Parker, Joanne L; Sansom, Mark S P; Newstead, Simon; Fowler, Philip W

    2016-02-18

    Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the ?-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  1. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter

    PubMed Central

    Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.

    2016-01-01

    Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  2. Mitochondrial Acetylation and Diseases of Aging

    PubMed Central

    Wagner, Gregory R.; Payne, R. Mark

    2011-01-01

    In recent years, protein lysine acetylation has emerged as a prominent and conserved regulatory posttranslational modification that is abundant on numerous enzymes involved in the processes of intermediary metabolism. Well-characterized mitochondrial processes of carbon utilization are enriched in acetyl-lysine modifications. Although seminal discoveries have been made in the basic biology of mitochondrial acetylation, an understanding of how acetylation states influence enzyme function and metabolic reprogramming during pathological states remains largely unknown. This paper will examine our current understanding of eukaryotic acetate metabolism and present recent findings in the field of mitochondrial acetylation biology. The implications of mitochondrial acetylation for the aging process will be discussed, as well as its potential implications for the unique and localized metabolic states that occur during the aging-associated conditions of heart failure and cancer growth. PMID:21437190

  3. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  4. Stability, metabolism and transport of D-Asp(OBzl)-Ala--a model prodrug with affinity for the oligopeptide transporter.

    PubMed

    Steffansen, B; Lepist, E I; Taub, M E; Larsen, B D; Frokjaer, S; Lennernäs, H

    1999-04-01

    The model prodrug D-Asp(OBzl)-Ala has previously been shown to have affinity and to be transported by the oligopeptide transporter PepT1 expressed in Caco-2 cells. The main objective of the present study was to investigate the aqueous stability of D-Asp(OBzl)-Ala and its in vitro metabolism in different gastrointestinal media arising from rats and humans, as well as in human plasma. The second major aim of the study was to evaluate our previous study in Caco-2 cell culture, by determining the effective intestinal permeability (Peff) of D-Asp(OBzl)-Ala in situ using the single-pass rat perfusion model. The aqueous stability studies show water, general buffer, as well as specific acid and base catalysis of D-Asp(OBzl)-Ala. The degradation of the model prodrug was independent of ionic strength. The half-lives in rat jejunal fluid and homogenate were >3 h. In human gastric and intestinal fluids, the half-lives were >3 h and 2.3+/-0. 03 h, respectively. Using the rat single-pass perfusion technique, the effective jejunal permeability (Peff) of D-Asp(OBzl)-Ala was determined to be high (1.29+/-0.5.10-4 cm/s). The 32 times higher Peff value found in the perfusion model compared to Caco-2 cells is most likely due to a higher functional expression of the oligopeptide transporter. Rat jejuna Peff was reduced by approximately 50% in the presence of well known oligopeptide transporter substrates, such as Gly-Sar and cephalexin. It may be that D-Asp(OBzl)-Ala is primarily absorbed intact by the rat jejunal oligopeptide transporter, since the stability in the intestinal homogenate and fluids was rather high (t1/2>2.3 h). PMID:10072480

  5. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  6. Investigation Into Efficiency of a Novel Glycol Chitosan-Bestatin Conjugate to Protect Thymopoietin Oligopeptides From Enzymatic Degradation.

    PubMed

    Zhang, Yong; Feng, Jiao; Cui, Lili; Zhang, Yuebin; Li, Wenzhao; Li, Chunlei; Shi, Nianqiu; Chen, Yan; Kong, Wei

    2016-02-01

    In this study, a novel glycol chitosan (GCS)-bestatin conjugate was synthesized and evaluated to demonstrate its efficacy in protecting thymopoietin oligopeptides from aminopeptidase-mediated degradation. Moreover, the mechanism and relative susceptibility of three thymopoietin oligopeptides, thymocartin (TP4), thymopentin (TP5), and thymotrinan (TP3), to enzymatic degradation were investigated and compared at the molecular level. Initial investigations indicated that formation of the GCS-bestatin conjugate, with a substitution degree of 7.0% (moles of bestatin per mole of glycol glucosamine unit), could significantly protect all 3 peptides from aminopeptidase-mediated degradation in a concentration-dependent manner. The space hindrance and loss of one pair of hydrogen bonds, resulting from the covalent conjugation of chitosan with bestatin, did not affect the specific interaction between bestatin and aminopeptidase. Moreover, TP4 displayed a higher degradation clearance compared with those of TP5 and TP3 under the same experimental conditions. The varying levels of susceptibility of these 3 peptides to aminopeptidase (TP4 > TP5 > TP3) were closely related to differences in their binding energies to enzyme, which mainly involved Van der Waals forces and electrostatic interactions, as supported by the results of molecular dynamics simulations. These results suggest that GCS-bestatin conjugate might be useful in the delivery of thymopoietin oligopeptides by mucosal routes, and that TP3 and TP5 are better alternatives to TP4 for delivery because of their robust resistance against enzymatic degradation. PMID:26173563

  7. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4

    SciTech Connect

    Hagmann, W.; Denzlinger, C.; Rapp, S.; Weckbecker, G.; Keppler, D.

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of (/sup 3/H)LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  8. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins.

    PubMed

    Ouidir, Tassadit; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2015-07-01

    Protein lysine acetylation is a reversible and highly regulated post-translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology. PMID:25900529

  9. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    SciTech Connect

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang; and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  10. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGESBeta

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong-Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; et al

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  11. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  12. Histone Acetylation in Fungal Pathogens of Plants

    PubMed Central

    Jeon, Junhyun; Kwon, Seomun; Lee, Yong-Hwan

    2014-01-01

    Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed. PMID:25288980

  13. Expression of the Oligopeptide Permease Operon of Moraxella catarrhalis Is Regulated by Temperature and Nutrient Availability.

    PubMed

    Jones, Megan M; Murphy, Timothy F

    2015-09-01

    Moraxella catarrhalis causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults. Together, these two conditions contribute to enormous morbidity and mortality worldwide. The oligopeptide permease (opp) ABC transport system is a nutritional virulence factor important for the utilization of peptides. The substrate binding protein OppA, which binds peptides for uptake, is a potential vaccine antigen, but little was known about the regulation of gene expression. The five opp genes oppB, oppC, oppD, oppF, and oppA are in the same open reading frame. Sequence analysis predicted two promoters, one located upstream of oppB and one within the intergenic region between oppF and oppA. We have characterized the gene cluster as an operon with two functional promoters and show that cold shock at 26°C for ≤ 0.5 h and the presence of a peptide substrate increase gene transcript levels. Additionally, the putative promoter upstream of oppA contributes to the transcription of oppA but is not influenced by the same environmental cues as the promoter upstream of oppB. We conclude that temperature and nutrient availability contribute to the regulation of the Opp system, which is an important nutritional virulence factor in M. catarrhalis. PMID:26099587

  14. Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides.

    PubMed

    Reardon, Patrick N; Chacon, Stephany S; Walter, Eric D; Bowden, Mark E; Washton, Nancy M; Kleber, Markus

    2016-04-01

    The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response. PMID:26974439

  15. Polyamidoamine (PAMAM) dendrimers modified with short oligopeptides for early endosomal escape and enhanced gene delivery.

    PubMed

    Thuy, Le Thi; Mallick, Sudipta; Choi, Joon Sig

    2015-08-15

    Recently, non-viral vectors have become a popular research topic in the field of gene therapy. In this study, we conjugated short oligopeptides to polyamidoamine-generation 4 (PAMAM G4) to achieve higher transfection efficiency. Previous reports have shown that the PAMAM G4-histidine (H)-arginine (R) dendrimer enhances gene delivery by improving cell penetration and internalization mechanisms. Therefore, we synthesized PAMAM G4-H phenylalanine (F) R, PAMAM G4-FHR and PAMAM G4-FR derivatives to determine the best gene carrier with the lowest toxicity. Physicochemical studies were performed to determine mean diameters and surface charge of PAMAM derivatives/pDNA polyplexes. DNA condensation was confirmed using a gel retardation assay. Cytotoxicity and transfection efficiency were analyzed using human cervical carcinoma (HeLa) and human liver carcinoma (HepG2) cells. Similar levels of transfection were achieved in both cell lines by using gold standard transfection reagent PEI 25 kD. Therefore, our results show that these carriers are promising and may help achieve higher transfection with negligible cytotoxicity. PMID:26187169

  16. Crystal structure of a putative oligopeptide-binding periplasmic protein from a hyperthermophile.

    PubMed

    Yoon, Hye-Jin; Kim, Hee Jung; Mikami, Bunzo; Yu, Yeon Gyu; Lee, Hyung Ho

    2016-09-01

    Oligopeptide-binding proteins (Opps) are part of the ATP-binding cassette system, playing a crucial role in nutrient uptake and sensing the external environment in bacteria, including hyperthermophiles. Opps serve as a binding platform for diverse peptides; however, how these peptides are recognized by Opps is still largely unknown and few crystal structures of Opps from hyperthermophiles have been determined. To facilitate such an understanding, the crystal structure of a putative Opp, OppA from Thermotoga maritima (TmOppA), was solved at 2.6-Å resolution in the open conformation. TmOppA is composed of three domains. The N-terminal domain consists of twelve strands, nine helices, and four 310 helices, and the C-terminal domain consists of five strands, ten helices, and one 310 helix. These two domains are connected by the linker domain, which consists of two strands, three helices, and three 310 helices. Based on structural comparisons of TmOppA with other OppAs and binding studies, we suggest that TmOppA might be a periplasmic Opp. The most distinct feature of TmOppA is the insertion of two helices, which are lacking in other OppAs. A cavity volume between the N-terminal and C-terminal domains is suggested to be responsible for binding peptides of various lengths. PMID:27377296

  17. Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin

    PubMed Central

    Ma, Li-wen; Liu, Juan; Zhang, Jia-an; Xu, Yang; Wu, Di; Permatasari, Felicia

    2016-01-01

    Aim. We explored the effects of soy oligopeptides (SOP) in ultraviolet B- (UVB-) induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED) of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI), melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm2) for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs), p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage. PMID:27478534

  18. Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin.

    PubMed

    Zhou, Bing-Rong; Ma, Li-Wen; Liu, Juan; Zhang, Jia-An; Xu, Yang; Wu, Di; Permatasari, Felicia; Luo, Dan

    2016-01-01

    Aim. We explored the effects of soy oligopeptides (SOP) in ultraviolet B- (UVB-) induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED) of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI), melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm(2)) for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs), p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage. PMID:27478534

  19. Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells.

    PubMed Central

    Hahlbrock, K; Scheel, D; Logemann, E; Nürnberger, T; Parniske, M; Reinold, S; Sacks, W R; Schmelzer, E

    1995-01-01

    We have used suspension-cultured parsley cells (Petroselinum crispum) and an oligopeptide elicitor derived from a surface glycoprotein of the phytopathogenic fungus Phytophthora megasperma f.sp. glycinea to study the signaling pathway from elicitor recognition to defense gene activation. Immediately after specific binding of the elicitor by a receptor in the plasma membrane, large and transient increases in several inorganic ion fluxes (Ca2+, H+, K+, Cl-) and H2O2 formation are the first detectable plant cell responses. These are rapidly followed by transient changes in the phosphorylation status of various proteins and by the activation of numerous defense-related genes, concomitant with the inactivation of several other, non-defense-related genes. A great diversity of cis-acting elements and trans-acting factors appears to be involved in elicitor-mediated gene regulation, similar to the apparently complex nature of the signal transduced intracellularly. With few exceptions, all individual defense responses analyzed in fungus-infected parsley leaves have been found to be closely mimicked in elicitor-treated, cultured parsley cells, thus validating the use of the elicitor/cell culture system as a valuable model system for these types of study. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:7753777

  20. Thermodynamics, morphology, and kinetics of early- stage self-assembly of pi-conjugated oligopeptides

    NASA Astrophysics Data System (ADS)

    Thurston, Bryce; Tovar, John; Ferguson, Andrew

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate self-assembly. At low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ~ - 25kB T . Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini. We model simulations of hundereds of monomers as a continuous-time Markov process. We infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates. Supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Award DE-SC0004857. Molecular simulations partially conducted on University of Illinois Computational Science and Engineering Program parallel computing resources.

  1. Acetylation phenotypes in patients with bladder carcinoma.

    PubMed

    Bicho, M P; Breitenfeld, L; Carvalho, A A; Manso, C F

    1988-01-01

    The present study was done to evaluate the possible association of bladder carcinoma with the slow acetylator phenotype in a portuguese population. 49 patients with bladder carcinoma were compared to a normal control group of 84 individuals. No statistically significant association was detected. But when subdividing the group of slow acetylators it is found that in the subgroup with 12-36% acetylation there is a higher percentage of patients, which is statistically significant. These results are in agreement with two other studies, using populations of similar ethnic origin. PMID:3265609

  2. Impact of acetylation on tumor metabolism

    PubMed Central

    Zhao, Di; Li, Fu-Long; Cheng, Zhou-Li; Lei, Qun-Ying

    2014-01-01

    Acetylation of protein lysine residues is a reversible and dynamic process that is controlled by histone acetyltransferases (HATs) and deacetylases (HDACs and SIRTs). Recent studies have revealed that acetylation modulates not only nuclear proteins but also cytoplasmic or mitochondrial proteins, including many metabolic enzymes. In tumors, cellular metabolism is reprogrammed to provide intermediates for biosynthesis such as nucleotides, fatty acids, and amino acids, and thereby favor the rapid proliferation of cancer cells and tumor development. An increasing number of investigations have indicated that acetylation plays an important role in tumor metabolism. Here, we summarize the substrates that are modified by acetylation, especially oncogenes, tumor suppressor genes, and enzymes that are implicated in tumor metabolism. PMID:27308346

  3. Acetylator phenotypes in Papua New Guinea

    PubMed Central

    Penketh, R J A; Gibney, S F A; Nurse, G T; Hopkinson, D A

    1983-01-01

    Acetylator phenotypes have been determined in 139 unrelated subjects from the hitherto untested populations of Papua New Guinea, and their relevance to current antituberculous isoniazid chemotherapy is discussed. PMID:6842533

  4. Acetyl-L-carnitine increases mitochondrial protein acetylation in the aged rat heart.

    PubMed

    Kerner, Janos; Yohannes, Elizabeth; Lee, Kwangwon; Virmani, Ashraf; Koverech, Aleardo; Cavazza, Claudio; Chance, Mark R; Hoppel, Charles

    2015-01-01

    Previously we showed that in vivo treatment of elderly Fisher 344 rats with acetylcarnitine abolished the age-associated defect in respiratory chain complex III in interfibrillar mitochondria and improved the functional recovery of the ischemic/reperfused heart. Herein, we explored mitochondrial protein acetylation as a possible mechanism for acetylcarnitine's effect. In vivo treatment of elderly rats with acetylcarnitine restored cardiac acetylcarnitine content and increased mitochondrial protein lysine acetylation and increased the number of lysine-acetylated proteins in cardiac subsarcolemmal and interfibrillar mitochondria. Enzymes of the tricarboxylic acid cycle, mitochondrial β-oxidation, and ATP synthase of the respiratory chain showed the greatest acetylation. Acetylation of isocitrate dehydrogenase, long-chain acyl-CoA dehydrogenase, complex V, and aspartate aminotransferase was accompanied by decreased catalytic activity. Several proteins were found to be acetylated only after treatment with acetylcarnitine, suggesting that exogenous acetylcarnitine served as the acetyl-donor. Two-dimensional fluorescence difference gel electrophoresis analysis revealed that acetylcarnitine treatment also induced changes in mitochondrial protein amount; a two-fold or greater increase/decrease in abundance was observed for thirty one proteins. Collectively, our data provide evidence for the first time that in the aged rat heart in vivo administration of acetylcarnitine provides acetyl groups for protein acetylation and affects the amount of mitochondrial proteins. PMID:25660059

  5. Levels of histone acetylation in thyroid tumors.

    PubMed

    Puppin, Cinzia; Passon, Nadia; Lavarone, Elisa; Di Loreto, Carla; Frasca, Francesco; Vella, Veronica; Vigneri, Riccardo; Damante, Giuseppe

    2011-08-12

    Histone acetylation is a major mechanism to regulate gene transcription. This post-translational modification is modified in cancer cells. In various tumor types the levels of acetylation at several histone residues are associated to clinical aggressiveness. By using immunohistochemistry we show that acetylated levels of lysines at positions 9-14 of H3 histone (H3K9-K14ac) are significantly higher in follicular adenomas (FA), papillary thyroid carcinomas (PTC), follicular thyroid carcinomas (FTC) and undifferentiated carcinomas (UC) than in normal tissues (NT). Similar data have been obtained when acetylated levels of lysine 18 of H3 histone (H3K18ac) were evaluated. In this case, however, no difference was observed between NT and UC. When acetylated levels of lysine 12 of H4 histone (H4K12ac) were evaluated, only FA showed significantly higher levels in comparison with NT. These data indicate that modification histone acetylation is an early event along thyroid tumor progression and that H3K18 acetylation is switched off in the transition between differentiated and undifferentiated thyroid tumors. By using rat thyroid cell lines that are stably transfected with doxycyclin-inducible oncogenes, we show that the oncoproteins RET-PTC, RAS and BRAF increase levels of H3K9-K14ac and H3K18ac. In the non-tumorigenic rat thyroid cell line FRTL-5, TSH increases levels of H3K18ac. However, this hormone decreases levels of H3K9-K14ac and H4K12ac. In conclusion, our data indicate that neoplastic transformation and hormonal stimulation can modify levels of histone acetylation in thyroid cells. PMID:21763277

  6. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis. PMID:26503676

  7. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    PubMed

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires Júnior, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases. PMID:26661890

  8. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium

    PubMed Central

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases. PMID:26661890

  9. Supramolecular assemblies of histidinylated β-cyclodextrin for enhanced oligopeptide delivery into osteoclast precursors.

    PubMed

    Liu, Wei; Zhang, Xuejin; Wang, Rui; Xu, Hong; Chi, Bo

    2016-01-01

    Much attention has been given to the problem of drug delivery through the cell membrane in order to treat and manage bone diseases recently. The aim of this study was to develop nanoparticles made of amino- and histidinyl-modified amphiphilic β-cyclodextrins (β-CDs) entrapping osteoclast inhibitor, a hydrophobic oligopeptides drug, across the membrane of bone marrow-derived macrophages (BMMs). Drug-loaded β-CDs nanoparticles (NPs) were prepared by the emulsion solvent evaporation technique and fully characterized for size, zeta potential, and entrapment efficiency. Spherical NPs displaying a hydrodynamic radius of about 295 nm which did not change upon storage as an aqueous dispersion, a positive zeta potential, and entrapment efficiency of drug very close to 98% were produced. Flow cytometry and spectrofluorimetry analysis indicated that the model drug itself was not taken up by the BMMs; however, NP systems underwent significant cellular uptake. In particular, histidinyl group-modified CD (β-CD-H) NPs were taken up more efficiently than amino group-modified (β-CD-A) ones. Cellular uptake mechanism study demonstrated that the permeability of drug-loaded NPs across the membrane of BMMs is probably due to macropinocytosis pathway. Cell viability studies showed that both β-CD-A and β-CD-H exhibited no significant cytotoxicity up to 1.0 mg/ml against the cells. These results highlight the developed β-CD-H NPs have great potential in safely and effectively delivering osteoclast inhibitors and other therapeutic agents toward bone disease. PMID:26907470

  10. Binding capability of the enediyne-associated apoprotein to human tumors and constitution of a ligand oligopeptide-integrated protein.

    PubMed

    Cai, Lin; Chen, Hongxia; Miao, Qingfang; Wu, Shuying; Shang, Yue; Zhen, Yongsu

    2009-10-26

    The molecule of lidamycin that belongs to the chromoprotein family of antitumor antibiotics is composed of an apoprotein (LDP) and an enediyne chromophore. The enediyne moiety of the molecule is responsible for the potent cytotoxicity; however, the biological function of the apoprotein moiety, particularly its interaction with cancer cells, remains unclear. In present study, the binding capability of LDP to human tumors was detected for the first time by tissue microarray. LDP bound to various human tumors with significant difference from the corresponding normal tissues. Positive correlation between binding activity and the overexpression of VEGF and EGFR was confirmed by lung carcinoma tissue microarray. A fusion protein LG-LDP that consists of LDP and a ligand oligopeptide to EGFR was constructed by DNA recombination. LG-LDP showed augmented binding to EGFR-overexpressing cancer cells. Furthermore, an energized fusion protein LG-LDP-AE was prepared by integrating the active enediyne (AE) into LG-LDP molecule. By MTT assay, LG-LDP-AE displayed extremely potent cytotoxicity to cancer cells with IC50 approximate to 0.01nM. The results indicate that LDP binds to various human tumors and it might serve as a delivery carrier by integration of ligand oligopeptide to manufacture motif-based, targeted fusion proteins for cancer. PMID:19737585

  11. The identification of oppA gene homologues as part of the oligopeptide transport system in mycoplasmas.

    PubMed

    Wium, Martha; Botes, Annelise; Bellstedt, Dirk U

    2015-03-01

    The lack of an annotated oppA gene as part of many oligopeptide permease (opp) operons has questioned the necessity of the oligopeptide-binding domain (OppA) as a part of the Opp transport system in mycoplasmas. This study investigated the occurrence of an oppA gene as part of the oppBCDF operon in 42 mycoplasma genomes. Except for hemoplasma, all mycoplasmas were found to possess one or more copies of the oppBCDF operon and with the help of similarity searches their oppA genes could be identified. Phylogenetic analysis of the combined OppABCDF amino acid sequences allowed them to be grouped into three types. Each type has a unique set of conserved motifs, which are likely to reflect substrate preference and adaption strategies. Our approach allowed the identification of oppA gene homologues for all mycoplasma opp operons and thereby provides a method for re-evaluating the current annotation of oppA genes in mycoplasma genomes. PMID:25528211

  12. A genetic algorithm encoded with the structural information of amino acids and dipeptides for efficient conformational searches of oligopeptides.

    PubMed

    Ru, Xiao; Song, Ce; Lin, Zijing

    2016-05-15

    The genetic algorithm (GA) is an intelligent approach for finding minima in a highly dimensional parametric space. However, the success of GA searches for low energy conformations of biomolecules is rather limited so far. Herein an improved GA scheme is proposed for the conformational search of oligopeptides. A systematic analysis of the backbone dihedral angles of conformations of amino acids (AAs) and dipeptides is performed. The structural information is used to design a new encoding scheme to improve the efficiency of GA search. Local geometry optimizations based on the energy calculations by the density functional theory are employed to safeguard the quality and reliability of the GA structures. The GA scheme is applied to the conformational searches of Lys, Arg, Met-Gly, Lys-Gly, and Phe-Gly-Gly representative of AAs, dipeptides, and tripeptides with complicated side chains. Comparison with the best literature results shows that the new GA method is both highly efficient and reliable by providing the most complete set of the low energy conformations. Moreover, the computational cost of the GA method increases only moderately with the complexity of the molecule. The GA scheme is valuable for the study of the conformations and properties of oligopeptides. © 2016 Wiley Periodicals, Inc. PMID:26833761

  13. Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces.

    PubMed

    Vater, Svenja M; Finlay, John; Callow, Maureen E; Callow, James A; Ederth, Thomas; Liedberg, Bo; Grunze, Michael; Rosenhahn, Axel

    2015-01-01

    Interaction of zoospores of Ulva linza with cationic, arginine-rich oligopeptide self-assembled monolayers (SAMs) is characterized by rapid settlement. Some spores settle (ie permanently attach) in a 'normal' manner involving the secretion of a permanent adhesive, retraction of the flagella and cell wall formation, whilst others undergo 'pseudosettlement' whereby motile spores are trapped (attached) on the SAM surface without undergoing the normal metamorphosis into a settled spore. Holographic microscopy was used to record videos of swimming zoospores in the vicinity of surfaces with different cationic oligopeptide concentrations to provide time-resolved insights into processes associated with attachment of spores. The data reveal that spore attachment rate increases with increasing cationic peptide content. Accordingly, the decrease in swimming activity in the volume of seawater above the surface accelerated with increasing surface charge. Three-dimensional trajectories of individual swimming spores showed a 'hit and stick' motion pattern, exclusively observed for the arginine-rich peptide SAMs, whereby spores were immediately trapped upon contact with the surface. PMID:25875964

  14. Histone Acetylation Regulates Intracellular pH

    PubMed Central

    McBrian, Matthew A.; Behbahan, Iman Saramipoor; Ferrari, Roberto; Su, Trent; Huang, Ta-Wei; Li, Kunwu; Hong, Candice S.; Christofk, Heather R.; Vogelauer, Maria; Seligson, David B.; Kurdistani, Siavash K.

    2014-01-01

    SUMMARY Differences in global levels of histone acetylation occur in normal and cancer cells, although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pHi). As pHi decreases, histones are globally deacetylated by histone deacetylases (HDACs), and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs), preventing further reductions in pHi. Conversely, global histone acetylation increases as pHi rises, such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pHi, particularly compromising pHi maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus, acetylation of chromatin functions as a rheostat to regulate pHi with important implications for mechanism of action and therapeutic use of HDAC inhibitors. PMID:23201122

  15. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    PubMed

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism. PMID:23696451

  16. Effect of condensation agents and minerals for oligopeptide formation under mild and hydrothermal conditions in related to chemical evolution of proteins

    NASA Astrophysics Data System (ADS)

    Kawamura, Kunio; Takeya, Hitoshi; Kushibe, Takao

    2009-07-01

    The role of condensation agents and minerals for oligopeptide formation was inspected to see whether minerals possess catalytic activity under mild and hydrothermal conditions. Under mild conditions, oligopeptide formation from negatively charged amino acids (Asp and Glu) using different minerals and the elongation of alanine oligopeptides ((Ala) 2-(Ala) 5) were attempted using apatite minerals. Oligo(Asp) up to 10 amino acid units from Asp were observed in the presence of 1-ethyl-3-(3-dimethylaminopropyl carbodiimide (EDC). Notable influence of minerals was not detected for the oligo(Asp) formation. Oligo(Asp) was gradually degraded by the further incubation in the presence of EDC in both the absence and presence of minerals. The formation of oligo(Glu) was less efficient in the presence of carbonyldiimidazole. The elongation from (Ala) 3, (Ala) 4, and (Ala) 5 and the formation of diketopiperazine from (Ala) 2 proceeded immediately in the presence of EDC in the meantime of the sample preparations. In addition, it was unexpected that the disappearance of the products and the reformation of the reactants occurred by the further incubation for 24 h; for instance, (Ala) 5 decreased but (Ala) 4 increased with increasing the reaction time in the reaction of (Ala) 4 with EDC. These facts suggest that the activation of the reactant amino acids or peptides immediately occurs. Under the simulated hydrothermal conditions, EDC did not enhance the formation of oligopeptides from Asp, Glu or Ala nor the spontaneous formation of (Ala) 5 from (Ala) 4.

  17. Fluorescent monitoring of copper-occupancy in His-ended catalytic oligo-peptides.

    PubMed

    Inokuchi, Reina; Kawano, Tomonori

    2016-01-01

    Controlled generation of reactive oxygen species (ROS) is widely beneficial to various medical, environmental, and agricultural studies. As inspired by the functional motifs in natural proteins, our group has been engaged in development of catalytically active oligo-peptides as minimum-sized metalloenzymes for generation of superoxide anion, an active member of ROS. In such candidate molecules, catalytically active metal-binding minimal motif was determined to be X-X-H, where X can be most amino acids followed by His. Based on above knowledge, we have designed a series of minimal copper-binding peptides designated as G n H series peptides, which are composed of oligo-glycyl chains ended with C-terminal His residue such as GGGGGH sequence (G5H). In order to further study the role of copper binding to the peptidic catalysts sharing the X-X-H motif such as G5H-conjugated peptides, we should be able to score the occupancy of the peptide population by copper ion in the reaction mixture. Here, model peptides with Cu-binding affinity which show intrinsic fluorescence due to tyrosyl residue (Y) in the UV region (excitation at ca. 230 and 280 nm, and emission at ca. 320 nm) were synthesized to score the effect of copper occupancy. Synthesized peptides include GFP-derived fluorophore sequence, TFSYGVQ (designated as Gfp), and Gfp sequence fused to C-terminal G5H (Gfp-G5H). In addition, two Y-containing tri-peptides derived from natural GFP fluorophores, namely, TYG and SYG were fused to the G5H (TYG-G5H and SYG-G5H). Conjugation of metal-binding G5H sequence to GFP-fluorophore peptide enhanced the action of Cu(2+) on quenching of intrinsic fluorescence due to Y residue. Two other Y-containing peptides, TYG-G5H and SYG-G5H, also showed intrinsic fluorescence which is sensitive to addition of Cu(2+). There was linear relationship between the loading of Cu(2+) and the quenching of fluorescence in these peptide, suggesting that Cu(2+)-dependent quenching of Y

  18. Fluorescent monitoring of copper-occupancy in His-ended catalytic oligo-peptides

    PubMed Central

    Inokuchi, Reina; Kawano, Tomonori

    2016-01-01

    ABSTRACT Controlled generation of reactive oxygen species (ROS) is widely beneficial to various medical, environmental, and agricultural studies. As inspired by the functional motifs in natural proteins, our group has been engaged in development of catalytically active oligo-peptides as minimum-sized metalloenzymes for generation of superoxide anion, an active member of ROS. In such candidate molecules, catalytically active metal-binding minimal motif was determined to be X-X-H, where X can be most amino acids followed by His. Based on above knowledge, we have designed a series of minimal copper-binding peptides designated as GnH series peptides, which are composed of oligo-glycyl chains ended with C-terminal His residue such as GGGGGH sequence (G5H). In order to further study the role of copper binding to the peptidic catalysts sharing the X-X-H motif such as G5H-conjugated peptides, we should be able to score the occupancy of the peptide population by copper ion in the reaction mixture. Here, model peptides with Cu-binding affinity which show intrinsic fluorescence due to tyrosyl residue (Y) in the UV region (excitation at ca. 230 and 280 nm, and emission at ca. 320 nm) were synthesized to score the effect of copper occupancy. Synthesized peptides include GFP-derived fluorophore sequence, TFSYGVQ (designated as Gfp), and Gfp sequence fused to C-terminal G5H (Gfp-G5H). In addition, two Y-containing tri-peptides derived from natural GFP fluorophores, namely, TYG and SYG were fused to the G5H (TYG-G5H and SYG-G5H). Conjugation of metal-binding G5H sequence to GFP-fluorophore peptide enhanced the action of Cu2+ on quenching of intrinsic fluorescence due to Y residue. Two other Y-containing peptides, TYG-G5H and SYG-G5H, also showed intrinsic fluorescence which is sensitive to addition of Cu2+. There was linear relationship between the loading of Cu2+ and the quenching of fluorescence in these peptide, suggesting that Cu2+-dependent quenching of Y

  19. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates.

    PubMed

    Lin, Gang; Tsu, Christopher; Dick, Lawrence; Zhou, Xi K; Nathan, Carl

    2008-12-01

    The proteasome of Mycobacterium tuberculosis (Mtb) is a validated and drug-treatable target for therapeutics. To lay ground-work for developing peptide-based inhibitors with a useful degree of selectivity for the Mtb proteasome over those of the host, we used a library of 5,920 N-acetyl tripeptide-aminomethylcoumarins to contrast the substrate preferences of the recombinant Mtb proteasome wild type and open gate mutant, the Rhodococcus erythropolis proteasome, and the bovine proteasome with activator PA28. The Mtb proteasome was distinctive in strictly preferring P1 = tryptophan, particularly in combination with P3 = glycine, proline, lysine or arginine. Screening results were validated with Michalis-Menten kinetic analyses of 21 oligopeptide aminomethyl-coumarin substrates. Bortezomib, a proteasome inhibitor in clinical use, and 17 analogs varying only at P1 were used to examine the differential impact of inhibitors on human and Mtb proteasomes. The results with the inhibitor panel confirmed those with the substrate panel in demonstrating differential preferences of Mtb and mammalian proteasomes at the P1 amino acid. Changing P1 in bortezomib from Leu to m-CF(3)-Phe led to a 220-fold increase in IC(50) against the human proteasome, whereas changing a P1 Ala to m-F-Phe decreased the IC(50) 400-fold against the Mtb proteasome. The change of a P1 Ala to m-Cl-Phe led to an 8000-fold shift in inhibitory potency in favor of the Mtb proteasome, resulting in 8-fold selectivity. Combinations of preferred amino acids at different sites may thus improve the species selectivity of peptide-based inhibitors that target the Mtb proteasome. PMID:18829465

  20. Acetylation of bleached Kraft pulp: effect of xylan content on properties of acetylated compounds.

    PubMed

    Peredo, Karol; Reyes, Herna; Escobar, Danilo; Vega-Lara, Johana; Berg, Alex; Pereira, Miguel

    2015-03-01

    Bleached Kraft pulp (BKP) from Eucalyptus globulus and cotton xylan blends (CXB) was acetylated. The effects of xylan content on cellulose acetylation and the properties of the acetylated material were studied. An increase in xylan content caused a slight decrease in the degree of substitution (2.98 to 2.68 for CXB; 2.93 to 2.84 for BKP). Thermal analysis showed that the melting temperature also decreases from 268.0 to 188.8 °C for CXB and from 221.4 to 212.8 °C for BKP. Moreover, the solubility decreased due to the partial dissolution of acetylated xylans. The presence of xylans during Kraft pulp acetylation does not have a significant negative effect on the physical properties of the acetylated material, but the decrease in melting temperature was beneficial for the application of acetylated polymer as a natural internal plasticizer. This is considered to be an important argument for BKP utilization in the cellulose acetate manufacturing process. PMID:25498729

  1. N-acetyl-l-tryptophan, but not N-acetyl-d-tryptophan, rescues neuronal cell death in models of amyotrophic lateral sclerosis.

    PubMed

    Sirianni, Ana C; Jiang, Jiying; Zeng, Jiang; Mao, Lilly L; Zhou, Shuanhu; Sugarbaker, Peter; Zhang, Xinmu; Li, Wei; Friedlander, Robert M; Wang, Xin

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss. Evidence suggests that mitochondrial dysfunction, apoptosis, oxidative stress, inflammation, glutamate excitotoxicity, and proteasomal dysfunction are all responsible for ALS pathogenesis. N-acetyl-tryptophan has been identified as an inhibitor of mitochondrial cytochrome c release and therefore is a potential neuroprotective agent. By quantifying cell death, we demonstrate that N-acetyl-l-tryptophan (L-NAT) and N-acetyl-DL-tryptophan are neuroprotective in NSC-34 motor neuron-like cells and/or primary motor neurons, while their isomer N-acetyl-d-tryptophan has no protective effect. These findings are consistent with energy minimization and molecular modeling analysis, confirming that L-NAT generates the most stable complex with the neurokinin-1 receptor (NK-1R). L-NAT inhibits the secretion of Substance P and IL-1β (Enzyme-Linked Immunosorbent Assay and/or dot blots) and mitochondrial dysfunction by effectively inhibiting the release of cytochrome c/Smac/AIF from mitochondria into the cytoplasm and activation of apoptotic pathways, including the activation of caspase-1, -9, and -3, as well as proteasomal dysfunction through restoring chymotrypsin-like, trypsin-like, and caspase-like proteasome activity. These data provide insight into the molecular mechanisms by which L-NAT offers neuroprotection in models of ALS and suggest its potential as a novel therapeutic strategy for ALS. We demonstrate that L-NAT (N-acetyl-l-tryptophan), but not D-NAT, rescues NSC-34 cells and primary motor neurons from cell death. L-NAT inhibits the secretion of Substance P and IL-1β, and caspase-1 activation, the release of cytochrome c/Smac/AIF, and the activation of caspase -9, and -3, as well as proteasomal dysfunction. The data suggest the potential of L-NAT as a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS). AIF, apoptosis-inducing factor. PMID

  2. Structural Basis for Phosphorylation and Lysine Acetylation Cross-talk in a Kinase Motif Associated with Myocardial Ischemia and Cardioprotection*

    PubMed Central

    Parker, Benjamin L.; Shepherd, Nicholas E.; Trefely, Sophie; Hoffman, Nolan J.; White, Melanie Y.; Engholm-Keller, Kasper; Hambly, Brett D.; Larsen, Martin R.; James, David E.; Cordwell, Stuart J.

    2014-01-01

    Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility. PMID:25008320

  3. Lysine Acetylation and Succinylation in HeLa Cells and their Essential Roles in Response to UV-induced Stress.

    PubMed

    Xu, Hong; Chen, Xuanyi; Xu, Xiaoli; Shi, Rongyi; Suo, Shasha; Cheng, Kaiying; Zheng, Zhiguo; Wang, Meixia; Wang, Liangyan; Zhao, Ye; Tian, Bing; Hua, Yuejin

    2016-01-01

    Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions. PMID:27452117

  4. Lysine Acetylation and Succinylation in HeLa Cells and their Essential Roles in Response to UV-induced Stress

    PubMed Central

    Xu, Hong; Chen, Xuanyi; Xu, Xiaoli; Shi, Rongyi; Suo, Shasha; Cheng, Kaiying; Zheng, Zhiguo; Wang, Meixia; Wang, Liangyan; Zhao, Ye; Tian, Bing; Hua, Yuejin

    2016-01-01

    Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions. PMID:27452117

  5. Non-enzymatic protein acetylation detected by NAPPA protein arrays*

    PubMed Central

    Olia, Adam S.; Barker, Kristi; McCullough, Cheryl E.; Tang, Hsin-Yao; Speicher, David W.; Qiu, Ji; LaBaer, Joshua; Marmorstein, Ronen

    2015-01-01

    Acetylation is a post-translational modification that occurs on thousands of proteins located in many cellular organelles. This process mediates many protein functions and modulates diverse biological processes. In mammalian cells, where acetyl-CoA is the primary acetyl donor, acetylation in the mitochondria is thought to occur by chemical means due to the relatively high concentration of acetyl-CoA located in this organelle. In contrast, acetylation outside of the mitochondria is thought to be mediated predominantly by acetyltransferase enzymes. Here we address the possibility that non-enzymatic chemical acetylation outside of the mitochondria may be more common than previously appreciated. We employed the Nucleic Acid Programmable Protein Array platform to perform an unbiased screen for human proteins that undergo chemical acetylation, which resulted in the identification of a multitude of proteins with diverse functions and cellular localization. Mass spectrometry analysis revealed that basic residues typically precede the acetylated lysine in the −7 to −3 position, and we show by mutagenesis that these basic residues contribute to chemical acetylation capacity. We propose that these basic residues lower the pKa of the substrate lysine for efficient chemical acetylation. Many of the identified proteins reside outside of the mitochondria, and have been previously demonstrated to be acetylated in vivo. As such, our studies demonstrate that chemical acetylation occurs more broadly throughout the eukaryotic cell than previously appreciated, and suggests that this post-translational protein modification may have more diverse roles in protein function and pathway regulation. PMID:26083674

  6. Nucleosome structure incorporated histone acetylation site prediction in arabidopsis thaliana

    PubMed Central

    2010-01-01

    Abstract Background Acetylation is a crucial post-translational modification for histones, and plays a key role in gene expression regulation. Due to limited data and lack of a clear acetylation consensus sequence, a few researches have focused on prediction of lysine acetylation sites. Several systematic prediction studies have been conducted for human and yeast, but less for Arabidopsis thaliana. Results Concerning the insufficient observation on acetylation site, we analyzed contributions of the peptide-alignment-based distance definition and 3D structure factors in acetylation prediction. We found that traditional structure contributes little to acetylation site prediction. Identified acetylation sites of histones in Arabidopsis thaliana are conserved and cross predictable with that of human by peptide based methods. However, the predicted specificity is overestimated, because of the existence of non-observed acetylable site. Here, by performing a complete exploration on the factors that affect the acetylability of lysines in histones, we focused on the relative position of lysine at nucleosome level, and defined a new structure feature to promote the performance in predicting the acetylability of all the histone lysines in A. thaliana. Conclusion We found a new spacial correlated acetylation factor, and defined a ε-N spacial location based feature, which contains five core spacial ellipsoid wired areas. By incorporating the new feature, the performance of predicting the acetylability of all the histone lysines in A. Thaliana was promoted, in which the previous mispredicted acetylable lysines were corrected by comparing to the peptide-based prediction. PMID:21047388

  7. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  8. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  9. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  10. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  11. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  12. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  13. Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures.

    PubMed

    Mondal, Prakash Chandra; Roy, Partha; Kim, Dokyun; Fullerton, Eric E; Cohen, Hagai; Naaman, Ron

    2016-04-13

    The combination of photonics and spintronics opens new ways to transfer and process information. It is shown here that in systems in which organic molecules and semiconductor nanoparticles are combined, matching these technologies results in interesting new phenomena. We report on light induced and spin-dependent charge transfer process through helical oligopeptide-CdSe nanoparticles' (NPs) architectures deposited on ferromagnetic substrates with small coercive force (∼100-200 Oe). The spin control is achieved by the application of the chirality-induced spin-dependent electron transfer effect and is probed by two different methods: spin-controlled electrochemichemistry and photoluminescence (PL) at room temperature. The injected spin could be controlled by excitation of the nanoparticles. By switching the direction of the magnetic field of the substrate, the PL intensity could be alternated. PMID:27027885

  14. Separation of basic oligopeptides by ion-pairing reversed-phase chromatography

    NASA Astrophysics Data System (ADS)

    Xie, Wenchun

    The present thesis consist of five chapters. Chapter I introduces background information on the ion-pairing reversed-phase chromatography and liquid chromatography in the critical condition. Chapter II decribes our study on the isocratic separation of oligolysine (dp = 2 to 8) using a fixed content of acetonitrile (ACN) (23%) and different concentrations of HFBA in the mobile phase (0.6-30.6 mM) on a Waters XBridge Shield RP18® column. We found that the retention time of oligolysine increases as the dp increases, because of an increased number of HFBA bound to the peptides. Furthermore, when [HFBA] increased, the retention time increased at different rates. The greater the dp, the faster the rate. Based on a closed pairing model that presumes an equilibrium between an unpaired state and the paired state with a fixed number of HFBA molecules, an equation was derived for the retention factor of oligolysine. In Chapter III, we compare retention behaviors of oligolysine (dp = 2 to 8) and oligoarginine (dp = 2 to 8) when they are separated on the Waters XBridge Shield RP18® using fixed a ACN content (23%) and difference concentrations of HFBA (0.4-30.6 mM) in the mobile phase. The retention time of oligoarginine also increased at different rates as [HFBA] increased. The greater the dp, the faster the rate. The retention time of oligolysine is shorter than that of oligarginine having the dame dp. We applied Eq.1 to analyze the plot of ln k as a function of [HFBA] for each oligopeptide component to obtain the values for n, Kip,m, and βKd,ip. For oligolysine, n increases linearly as dp increase and oligoarginine exhibits an accelerated increase in n as dp rises. The plot of ln βKd,ip against dp followed a linear relationship for both peptides. In Chapter IV, we study the effect of mobile phase composition on the retention of oligolysine (dp = 2 to 8) on the Waters XBridge Shield RP18 ®. The ACN content was changed from 20% to 33% and the HFBA concentration from 0.7 to

  15. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  16. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    PubMed Central

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  17. The neurobiology of acetyl-L-carnitine.

    PubMed

    Traina, Giovanna

    2016-01-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system. PMID:27100509

  18. Fragrance material review on acetyl cedrene.

    PubMed

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. PMID:23907023

  19. Enhancement of lysine acetylation accelerates wound repair

    PubMed Central

    Spallotta, Francesco; Cencioni, Chiara; Straino, Stefania; Sbardella, Gianluca; Castellano, Sabrina; Capogrossi, Maurizio C; Martelli, Fabio; Gaetano, Carlo

    2013-01-01

    In physiopathological conditions, such as diabetes, wound healing is significantly compromised and chronic complications, including ulcers, may occur. In a mouse model of skin repair, we recently reported that wound treatment with Sirtuin activators and class I HDAC inhibitors induced keratinocyte proliferation and enhanced healing via a nitric oxide (NO) dependent mechanism. We observed an increase in total protein acetylation in the wound area, as determined by acetylation of α-tubulin and histone H3 Lysine 9. We reasoned that this process activated cell function as well as regulated gene expression to foster tissue repair. We report here that the direct activation of P300/CBP-associated factor (PCAF) by the histone acetylase activator pentadecylidenemalonate 1b (SPV-106) induced Lysine acetylation in the wound area. This intervention was sufficient to enhance repair process by a NO-independent mechanism. Hence, an impairment of PCAF and/or other GCN5 family acetylases may delay skin repair in physiopathological conditions. PMID:24265859

  20. Homochiral oligopeptides via surface recognition and enantiomeric cross impediment in the polymerization of racemic phenylalanine N-carboxyanhydride crystals suspended in water.

    PubMed

    Nery, Jose Geraldo; Eliash, Ran; Bolbach, Gerard; Weissbuch, Isabelle; Lahav, Meir

    2007-08-01

    As part of our program on the search of possible prebiotic routes for the formation of oligopeptides of homochiral sequence (isotactic) from racemic precursors in aqueous environment, we report the polymerization of racemic crystals of phenylalanine N-carboxyanhydrides, enantioselectively tagged with five deuterium atoms, suspended in water containing various amine initiators. Racemic mixtures of isotactic oligopeptides, comprising up to 25 repeat units of the same handedness, as the dominant component for each length, were observed in a MALDI-TOF mass spectrometry analysis. The racemic mixtures of the peptides could be desymmetrized by initiating the polymerization reaction with water-soluble methyl esters of either enantiopure alpha-amino acids or dipeptides. A three-step mechanism is proposed to account for these results: (i) Surface recognition of the chiral initiator by the chiral sites present at specific faces of the crystal; (ii) Oligopeptide elongation at the polymer/crystal interface; and (iii) Self-assembly of the short isotactic peptides into racemic antiparallel beta-sheets as templates followed by cross-enantiomeric impediment in the growth of enantiomeric chains at the peptide beta-sheet/crystal interface. PMID:17354263

  1. Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow.

    PubMed

    Svinkina, Tanya; Gu, Hongbo; Silva, Jeffrey C; Mertins, Philipp; Qiao, Jana; Fereshetian, Shaunt; Jaffe, Jacob D; Kuhn, Eric; Udeshi, Namrata D; Carr, Steven A

    2015-09-01

    Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics. PMID:25953088

  2. Multiple Sites of the Cleavage of 21- and 25-Mer Encephalytogenic Oligopeptides Corresponding to Human Myelin Basic Protein (MBP) by Specific Anti-MBP Antibodies from Patients with Systemic Lupus Erythematosus

    PubMed Central

    Timofeeva, Anna M.; Dmitrenok, Pavel S.; Konenkova, Ludmila P.; Buneva, Valentina N.; Nevinsky, Georgy A.

    2013-01-01

    IgGs from patients with multiple sclerosis and systemic lupus erythematosus (SLE) purified on MBP-Sepharose in contrast to canonical proteases hydrolyze effectively only myelin basic protein (MBP), but not many other tested proteins. Here we have shown for the first time that anti-MBP SLE IgGs hydrolyze nonspecific tri- and tetrapeptides with an extreme low efficiency and cannot effectively hydrolyze longer 20-mer nonspecific oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. At the same time, anti-MBP SLE IgGs efficiently hydrolyze oligopeptides corresponding to AGDs of MBP. All sites of IgG-mediated proteolysis of 21-and 25-mer encephalytogenic oligopeptides corresponding to two known AGDs of MBP were found by a combination of reverse-phase chromatography, TLC, and MALDI spectrometry. Several clustered major, moderate, and minor sites of cleavage were revealed in the case of 21- and 25-mer oligopeptides. The active sites of anti-MBP abzymes are localised on their light chains, while heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high affinity to MBP and specificity of this protein hydrolysis. The affinity of anti-MBP abzymes for intact MBP is approximately 1000-fold higher than for the oligopeptides. The data suggest that all oligopeptides interact mainly with the light chains of different monoclonal abzymes of total pool of IgGs, which possesses a lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific than globular protein and can occur in several sites. PMID:23520443

  3. Acetylation and characterization of spruce (Picea abies) galactoglucomannans.

    PubMed

    Xu, Chunlin; Leppänen, Ann-Sofie; Eklund, Patrik; Holmlund, Peter; Sjöholm, Rainer; Sundberg, Kenneth; Willför, Stefan

    2010-04-19

    Acetylated galactoglucomannans (GGMs) are the main hemicellulose type in most softwood species and can be utilized as, for example, bioactive polymers, hydrocolloids, papermaking chemicals, or coating polymers. Acetylation of spruce GGM using acetic anhydride with pyridine as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale, whereas, as a classic method, it can be potentially transferred to the industrial scale. The effects of the amount of catalyst and acetic anhydride, reaction time, temperature and pretreatment by acetic acid were investigated. A fully acetylated product was obtained by refluxing GGM for two hours. The structures of the acetylated GGMs were determined by SEC-MALLS/RI, (1)H and (13)C NMR and FTIR spectroscopy. NMR studies also indicated migration of acetyl groups from O-2 or O-3 to O-6 after a heating treatment in a water bath. The thermal stability of the products was investigated by DSC-TGA. PMID:20144827

  4. Determination of amphetamine by HPLC after acetylation.

    PubMed

    Veress, T

    2000-01-01

    An analytical procedure has been developed for the HPLC determination of amphetamine by off-line pre-column derivatization. The proposed procedure consists of sample preparation by acetylation of amphetamine with acetic anhydride and a subsequent reversed-phase HPLC separation on an octadecyl silica stationary phase with salt-free mobile phase (tetrahydrofuran, acetonitrile, 0.1% triethylamine in water, 15:15:70 v/v) applying UV-detection. The applicability of the elaborated procedure is demonstrated with results obtained by analysis of real samples seized in the Hungarian black market. PMID:10641931

  5. Interfacing protein lysine acetylation and protein phosphorylation

    PubMed Central

    Tran, Hue T.; Uhrig, R. Glen; Nimick, Mhairi; Moorhead, Greg B.

    2012-01-01

    Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature. PMID:22827947

  6. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  7. Probing the acetylation code of histone H4.

    PubMed

    Lang, Diana; Schümann, Michael; Gelato, Kathy; Fischle, Wolfgang; Schwarzer, Dirk; Krause, Eberhard

    2013-10-01

    Histone modifications play crucial roles in genome regulation with lysine acetylation being implicated in transcriptional control. Here we report a proteome-wide investigation of the acetylation-dependent protein-protein interactions of the N-terminal tail of histone H4. Quantitative peptide-based affinity MS experiments using the SILAC approach determined the interactomes of H4 tails monoacetylated at the four known acetylation sites K5, K8, K12, and K16, bis-acetylated at K5/K12, triple-acetylated at K8/12/16 and fully tetra-acetylated. A set of 29 proteins was found enriched on the fully acetylated H4 tail while specific binders of the mono and bis-acetylated tails were barely detectable. These observations are in good agreement with earlier reports indicating that the H4 acetylation state establishes its regulatory effects in a cumulative manner rather than via site-specific recruitment of regulatory proteins. PMID:23970329

  8. Protein lysine acetylation in bacteria: Current state of the art.

    PubMed

    Ouidir, Tassadit; Kentache, Takfarinas; Hardouin, Julie

    2016-01-01

    Post-translational modifications of proteins are key events in cellular metabolism and physiology regulation. Lysine acetylation is one of the best studied protein modifications in eukaryotes, but, until recently, ignored in bacteria. However, proteomic advances have highlighted the diversity of bacterial lysine-acetylated proteins. The current data support the implication of lysine acetylation in various metabolic pathways, adaptation and virulence. In this review, we present a broad overview of the current knowledge of lysine acetylation in bacteria. We emphasize particularly the significant contribution of proteomics in this field. PMID:26390373

  9. Determination of Acetylation of the Gli Transcription Factors.

    PubMed

    Coni, Sonia; Di Magno, Laura; Canettieri, Gianluca

    2015-01-01

    The Gli transcription factors (Gli1, Gli2, and Gli3) are the final effectors of the Hedgehog (Hh) signaling and play a key role in development and cancer. The activity of the Gli proteins is finely regulated by covalent modifications, such as phosphorylation, ubiquitination, and acetylation. Both Gli1 and Gli2 are acetylated at a conserved lysine, and this modification causes the inhibition of their transcriptional activity. Thus, the acetylation status of these proteins represents a useful marker to monitor Hh activation in pathophysiological conditions. Herein we describe the techniques utilized to detect in vitro and intracellular acetylation of the Gli transcription factors. PMID:26179046

  10. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. PMID:25172707

  11. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides

    PubMed Central

    Guan, Kun-Liang; Yu, Wei; Lin, Yan; Xiong, Yue; Zhao, Shimin

    2016-01-01

    Lysine acetylation has emerged as one of the major post-translational modifications, as indicated by its roles in chromatin remodeling, activation of transcription factors and, most recently, regulation of metabolic enzymes. Identification of acetylation sites in a protein is the first essential step for functional characterization of acetylation in physiological regulation. However, the study of the acetylome is hindered by the lack of suitable physical and biochemical properties of the acetyl group and existence of high-abundance acetylated histones in the cell, and needs a robust method to overcome these problems. Here we present protocols for (i) using chemically acetylated ovalbumin and synthetic acetylated peptide to generate a pan-acetyllysine antibody and a site-specific antibody to Lys288-acetylated argininosuccinate lyase, respectively; (ii) using subcellular fractionation to reduce highly abundant acetylated histones; and (iii) using acetyllysine antibody affinity purification and mass spectrometry to characterize acetylome of human liver tissue. The entire characterization procedure takes ~2–3 d to complete. PMID:21085124

  12. Sea cucumber (Codonopsis pilosula) oligopeptides: immunomodulatory effects based on stimulating Th cells, cytokine secretion and antibody production.

    PubMed

    He, Li-Xia; Zhang, Zhao-Feng; Sun, Bin; Chen, Qi-He; Liu, Rui; Ren, Jin-Wei; Wang, Jun-Bo; Li, Yong

    2016-02-01

    This study aimed to investigate the immunomodulating activity of small molecule oligopeptides from sea cucumber (Codonopsis pilosula) (SOP) in mice. Seven assays were performed to determine the immunomodulatory effects, including splenic lymphocyte proliferation and delayed-type hypersensitivity assays (cell-mediated immunity), IgM antibody response of spleen to sheep red blood cells (SRBC) and serum hemolysin level assays (humoral immunity), the carbon clearance assay and the phagocytic capacity of peritoneal cavity phagocytes assay (macrophage phagocytosis), and the NK cell activity assay. Spleen T lymphocyte subpopulations, multiplex sandwich immunoassays of serum cytokine and immunoglobulin levels and enzyme-linked immunosorbent assays for small intestinal secretory immunoglobulin were performed to study the mechanism by which SOP affects the immune system. We found that SOP could improve immune functions in mice, which may be due to the enhancement of the functions of cell-mediated immunity, humoral immunity, macrophage phagocytosis and NK cell activity. From the cellular and molecular assays, we postulated that the immunomodulatory effects are most likely attributed to the stimulation of Th cells, cytokine secretion and antibody production. PMID:26838796

  13. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  14. P2X7 receptor activation impairs exogenous MHC class I oligopeptides presentation in antigen presenting cells.

    PubMed

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8(+) T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5'-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8(+) T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8(+) T cell immunity. PMID:23940597

  15. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    PubMed

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-01-01

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data. PMID:27092480

  16. The Oligopeptide Permease Opp Mediates Illicit Transport of the Bacterial P-site Decoding Inhibitor GE81112 †

    PubMed Central

    Maio, Alessandro; Brandi, Letizia; Donadio, Stefano; Gualerzi, Claudio O.

    2016-01-01

    GE81112 is a tetrapeptide antibiotic that binds to the 30S ribosomal subunit and specifically inhibits P-site decoding of the mRNA initiation codon by the fMet-tRNA anticodon. GE81112 displays excellent microbiological activity against some Gram-positive and Gram-negative bacteria in both minimal and complete, chemically defined, broth, but is essentially inactive in complete complex media. This is due to the presence of peptides that compete with the antibiotic for the oligopeptide permease system (Opp) responsible for its illicit transport into the bacterial cells as demonstrated in the cases of Escherichia coli and Bacillus subtilis. Mutations that inactivate the Opp system and confer GE81112 resistance arise spontaneously with a frequency of ca. 1 × 10−6, similar to that of the mutants resistant to tri-l-ornithine, a known Opp substrate. On the contrary, cells expressing extrachromosomal copies of the opp genes are extremely sensitive to GE81112 in rich medium and GE81112-resistant mutations affecting the molecular target of the antibiotic were not detected upon examining >109 cells of this type. However, some mutations introduced in the 16S rRNA to confer kasugamycin resistance were found to reduce the sensitivity of the cells to GE81112. PMID:27231947

  17. Influence of Free Amino Acids, Oligopeptides, and Polypeptides on the Formation of Pyrazines in Maillard Model Systems.

    PubMed

    Scalone, Gustavo Luis Leonardo; Cucu, Tatiana; De Kimpe, Norbert; De Meulenaer, Bruno

    2015-06-10

    Pyrazines are specific Maillard reaction compounds known to contribute to the unique aroma of many products. Most studies concerning the generation of pyrazines in the Maillard reaction have focused on amino acids, while little information is available on the impact of peptides and proteins. The present study investigated the generation of pyrazines in model systems containing whey protein, hydrolyzed whey protein, amino acids, and glucose. The impact of thermal conditions, ratio of reagents, and water activity (a(w)) on pyrazine formation was measured by headspace solid-phase microextraction with gas chromatography/mass spectrometry (HS-SPME-GC/MS. The presence of oligopeptides from hydrolyzed whey protein contributed significantly to an increased amount of pyrazines, while in contrast free amino acids generated during protein hydrolysis contributed to a lesser extent. The generation of pyrazines was enhanced at low a(w) (0.33) and high temperatures (>120 °C). This study showed that the role of peptides in the generation of pyrazines in Maillard reaction systems has been dramatically underestimated. PMID:25971942

  18. Multi-responsive Hydrogels Derived from the Self-assembly of Tethered Allyl-functionalized Racemic Oligopeptides

    PubMed Central

    He, Xun; Fan, Jingwei; Zhang, Fuwu; Li, Richen; Pollack, Kevin A.; Raymond, Jeffery E.; Zou, Jiong; Wooley, Karen L.

    2014-01-01

    A multi-responsive triblock hydrogelator oligo(dl-allylglycine)-block-poly(ethylene glycol)-block-oligo(dl-allylglycine) (ODLAG-b-PEG-b-ODLAG) was synthesized facilely by ring-opening polymerization (ROP) of DLAG N-carboxyanhydride (NCA) with a diamino-terminated PEG as the macroinitiator. This system exhibited heat-induced sol-to-gel transitions and either sonication- or enzyme-induced gel-to-sol transitions. The β-sheeting of the oligopeptide segments was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and wide-angle X-ray scattering (WAXS). The β-sheets further displayed tertiary ordering into fibrillar structures that, in turn generated a porous and interconnected hydrogel matrix, as observed via transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The reversible macroscopic sol-to-gel transitions triggered by heat and gel-to-sol transitions triggered by sonication were correlated with the transformation of nanostructural morphologies, with fibrillar structures observed in gel and spherical aggregates in sol, respectively. The enzymatic breakdown of the hydrogels was also investigated. This allyl-functionalized hydrogelator can serve as a platform for the design of smart hydrogels, appropriate for expansion into biological systems as bio-functional and bio-responsive materials. PMID:25485113

  19. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity

    PubMed Central

    2009-01-01

    Background The fungus Colletotrichum gloeosporioides f. sp. aeschynomene produces high levels of indole-3-acetic acid (IAA) in axenic cultures and during plant infection. We generated a suppression subtractive hybridization library enriched for IAA-induced genes and identified a clone, which was highly expressed in IAA-containing medium. Results The corresponding gene showed similarity to oligopeptide transporters of the OPT family and was therefore named CgOPT1. Expression of CgOPT1 in mycelia was low, and was enhanced by external application of IAA. cgopt1-silenced mutants produced less spores, had reduced pigmentation, and were less pathogenic to plants than the wild-type strain. IAA enhanced spore formation and caused changes in colony morphology in the wild-type strain, but had no effect on spore formation or colony morphology of the cgopt1-silenced mutants. Conclusion Our results show that IAA induces developmental changes in C. gloeosporioides. These changes are blocked in cgopt1-silenced mutants, suggesting that this protein is involved in regulation of fungal response to IAA. CgOPT1 is also necessary for full virulence, but it is unclear whether this phenotype is related to auxin. PMID:19698103

  20. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (opp) and its effect on cysteine protease production.

    PubMed

    Podbielski, A; Pohl, B; Woischnik, M; Körner, C; Schmidt, K H; Rozdzinski, E; Leonard, B A

    1996-09-01

    Bacterial oligopeptide permeases are membrane-associated complexes of five proteins belonging to the ABC-transporter family, which have been found to be involved in obtaining nutrients, cell-wall metabolism, competence, and adherence to host cells. A lambda library of the strain CS101 group A streptococcal (GAS) genome was used to sequence 10,192 bp containing the five genes oppA to oppF of the GAS opp operon. The deduced amino acid sequences exhibited 50-84% homology to pneumococcal AmiA to AmiF sequences. The operon organization of the five genes was confirmed by transcriptional analysis and an additional shorter oppA transcript was detected. Insertional inactivation was used to create serotype M49 strains which did not express either the oppA gene or the ATPase genes, oppD and oppF. The mutation in oppA confirmed that the additional shorter oppA transcript originated from the opp operon and was probably due to an intra-operon transcription terminator site located downstream of oppA. While growth kinetics, binding of serum proteins, and attachment to eukaryotic cells were unaffected, the oppD/F mutants showed reduced production of the cysteine protease, SpeB, and a change in the pattern of secreted proteins. Thus, the GAS opp operon appears to contribute to both protease production and export/processing of secreted proteins. PMID:8885277

  1. The Oligopeptide Permease Opp Mediates Illicit Transport of the Bacterial P-site Decoding Inhibitor GE81112.

    PubMed

    Maio, Alessandro; Brandi, Letizia; Donadio, Stefano; Gualerzi, Claudio O

    2016-01-01

    GE81112 is a tetrapeptide antibiotic that binds to the 30S ribosomal subunit and specifically inhibits P-site decoding of the mRNA initiation codon by the fMet-tRNA anticodon. GE81112 displays excellent microbiological activity against some Gram-positive and Gram-negative bacteria in both minimal and complete, chemically defined, broth, but is essentially inactive in complete complex media. This is due to the presence of peptides that compete with the antibiotic for the oligopeptide permease system (Opp) responsible for its illicit transport into the bacterial cells as demonstrated in the cases of Escherichia coli and Bacillus subtilis. Mutations that inactivate the Opp system and confer GE81112 resistance arise spontaneously with a frequency of ca. 1 × 10(-6), similar to that of the mutants resistant to tri-l-ornithine, a known Opp substrate. On the contrary, cells expressing extrachromosomal copies of the opp genes are extremely sensitive to GE81112 in rich medium and GE81112-resistant mutations affecting the molecular target of the antibiotic were not detected upon examining >10⁸ cells of this type. However, some mutations introduced in the 16S rRNA to confer kasugamycin resistance were found to reduce the sensitivity of the cells to GE81112. PMID:27231947

  2. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes

    PubMed Central

    Prokesch, A.; Pelzmann, H. J.; Pessentheiner, A. R.; Huber, K.; Madreiter-Sokolowski, C. T.; Drougard, A.; Schittmayer, M.; Kolb, D.; Magnes, C.; Trausinger, G.; Graier, W. F.; Birner-Gruenberger, R.; Pospisilik, J. A.; Bogner-Strauss, J. G.

    2016-01-01

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes. PMID:27045997

  3. Quantifying Faculty Workloads.

    ERIC Educational Resources Information Center

    Archer, J. Andrew

    Teaching load depends on many variables, however most colleges define it strictly in terms of contact or credit hours. The failure to give weight to variables such as number of preparations, number of students served, committee and other noninstructional assignments is usually due to the lack of a formula that will quantify the effects of these…

  4. Catalysis: Quantifying charge transfer

    NASA Astrophysics Data System (ADS)

    James, Trevor E.; Campbell, Charles T.

    2016-02-01

    Improving the design of catalytic materials for clean energy production requires a better understanding of their electronic properties, which remains experimentally challenging. Researchers now quantify the number of electrons transferred from metal nanoparticles to an oxide support as a function of particle size.

  5. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies. PMID:26519524

  6. Thermochemical characteristics of cellulose acetates with different degrees of acetylation

    NASA Astrophysics Data System (ADS)

    Larina, V. N.; Ur'yash, V. F.; Kushch, D. S.

    2012-12-01

    The standard enthalpies of combustion and formation of cellulose acetates with different degrees of acetylation are determined. It is established that there is a proportional dependence of these thermochemical characteristics vs. the degree of acetylation, weight fraction of bonded acetic acid, and molar mass of the repeating unit of cellulose acetates.

  7. Emerging Functions for N-Terminal Protein Acetylation in Plants.

    PubMed

    Gibbs, Daniel J

    2015-10-01

    N-terminal (Nt-) acetylation is a widespread but poorly understood co-translational protein modification. Two reports now shed light onto the proteome-wide dynamics and protein-specific consequences of Nt-acetylation in relation to plant development, stress-response, and protein stability, identifying this modification as a key regulator of diverse aspects of plant growth and behaviour. PMID:26319188

  8. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  9. Medial temporal N-acetyl aspartate in pediatric major depression

    PubMed Central

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  10. Medial temporal N-acetyl-aspartate in pediatric major depression.

    PubMed

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  11. Global analysis of lysine acetylation in strawberry leaves

    PubMed Central

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  12. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    PubMed

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle. PMID:26920270

  13. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  14. Quantifying Health Across Populations.

    PubMed

    Kershnar, Stephen

    2016-07-01

    In this article, I argue that as a theoretical matter, a population's health-level is best quantified via averagism. Averagism asserts that the health of a population is the average of members' health-levels. This model is better because it does not fall prey to a number of objections, including the repugnant conclusion, and because it is not arbitrary. I also argue that as a practical matter, population health-levels are best quantified via totalism. Totalism asserts that the health of a population is the sum of members' health-levels. Totalism is better here because it fits better with cost-benefit analysis and such an analysis is the best practical way to value healthcare outcomes. The two results are compatible because the theoretical and practical need not always align, whether in general or in the context of population health. PMID:26766584

  15. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  16. SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation.

    PubMed

    Grishina, Inna; Debus, Katherina; García-Limones, Carmen; Schneider, Constanze; Shresta, Amit; García, Carlos; Calzado, Marco A; Schmitz, M Lienhard

    2012-12-01

    Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response. PMID:23044042

  17. Specific oligopeptides in fermented soybean extract inhibit NF-κB-dependent iNOS and cytokine induction by toll-like receptor ligands.

    PubMed

    Lee, Woo Hyung; Wu, Hong Min; Lee, Chan Gyu; Sung, Dae Il; Song, Hye Jung; Matsui, Toshiro; Kim, Han Bok; Kim, Sang Geon

    2014-11-01

    The ethanol extract of fermented soybean from Glycine max (chungkookjang, CHU) has been claimed to have chemopreventive and cytoprotective effects. In the present study, we examined the inhibitory effect of CHU on inducible nitric oxide synthase (iNOS) and cytokine induction by toll-like receptor (TLR) ligands treatment and attempted to identify the responsible active components. Nitric oxide (NO) content and iNOS levels in the media or RAW264.7 cells were measured using the Griess reagent and real-time polymerase chain reaction assays. CHU treatment inhibited NO production and iNOS induction elicited by lipopolysaccharide (LPS, TLR4L) in a concentration-dependent manner. Tumor necrosis factor-α and interleukin-6 productions were also diminished. Peptidoglycans (TLR2/6L) and CpG-oligodeoxynucleotides (TLR9L) from CHU inhibited iNOS induction, but not poly I:C (TLR3L) or loxoribine (TLF7L). The anti-inflammatory effect resulted from the inhibition of nuclear factor-kappa B (NF-κB) through the inhibition of inhibitory-κB degradation. Of the representative components in CHU, specific oligopeptides (AFPG and GVAWWMY) had the ability to inhibit iNOS induction by LPS, whereas others failed to do so. Daidzein, an isoflavone used for comparative purposes, was active at a relatively higher concentration. In an animal model, oral administration of CHU to rats significantly diminished carrageenan-induced paw edema and iNOS induction. Our results demonstrate that CHU has anti-inflammatory effects against TLR ligands by inhibiting NF-κB activation, which may result from specific oligopeptide components in CHU. Since CHU is orally effective, dietary applications of CHU and/or the identified oligopeptides may be of use in the prevention of inflammatory diseases. PMID:25184943

  18. Quantifying concordance in cosmology

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Grandis, Sebastian; Amara, Adam; Refregier, Alexandre

    2016-05-01

    Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between data sets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13, and Planck 15 constraints on the Λ CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S =17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Planck 15 constraints deviate from the Planck 13 results (S =56.3 bits), primarily due to a shift in the same direction. The Surprise between WMAP and Planck consequently disappears when moving to Planck 15 (S =-5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.

  19. XPS investigation on the structure of two dipeptides studied as models of self-assembling oligopeptides: comparison between experiments and theory

    NASA Astrophysics Data System (ADS)

    Battocchio, C.; Iucci, G.; Dettin, M.; Monti, S.; Carravetta, V.; Polzonetti, G.

    2008-03-01

    The adsorption on TiO2 surface of two dipeptides AE (L-alanine-L-glutamic acid) and AK (L-alanine-L-lysine), that are 'building blocks' of the more complex self-complementary amphiphilic oligopeptides and are therefore a good model in the interpretation of the complex peptide spectra, has been investigated both theoretically and experimentally. The chemical structure and composition of thin films of both dipeptides on TiO2 were investigated by XPS (X-ray photoelectron spectroscopy). Theoretical ab-initio calculations (ΔSCF) were also performed to simulate the spectra allowing a direct comparison between experiment and theory.

  20. Role of the Oligopeptide Permease ABC Transporter of Moraxella catarrhalis in Nutrient Acquisition and Persistence in the Respiratory Tract

    PubMed Central

    Jones, Megan M.; Johnson, Antoinette; Koszelak-Rosenblum, Mary; Kirkham, Charmaine; Brauer, Aimee L.; Malkowski, Michael G.

    2014-01-01

    Moraxella catarrhalis is a strict human pathogen that causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, resulting in significant worldwide morbidity and mortality. M. catarrhalis has a growth requirement for arginine; thus, acquiring arginine is important for fitness and survival. M. catarrhalis has a putative oligopeptide permease ABC transport operon (opp) consisting of five genes (oppB, oppC, oppD, oppF, and oppA), encoding two permeases, two ATPases, and a substrate binding protein. Thermal shift assays showed that the purified recombinant substrate binding protein OppA binds to peptides 3 to 16 amino acid residues in length regardless of the amino acid composition. A mutant in which the oppBCDFA gene cluster is knocked out showed impaired growth in minimal medium where the only source of arginine came from a peptide 5 to 10 amino acid residues in length. Whether methylated arginine supports growth of M. catarrhalis is important in understanding fitness in the respiratory tract because methylated arginine is abundant in host tissues. No growth of wild-type M. catarrhalis was observed in minimal medium in which arginine was present only in methylated form, indicating that the bacterium requires l-arginine. An oppA knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the Opp system mediates both uptake of peptides and fitness in the respiratory tract. PMID:25156736

  1. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  2. Characterization of O-Acetylation of N-Acetylglucosamine

    PubMed Central

    Bernard, Elvis; Rolain, Thomas; Courtin, Pascal; Guillot, Alain; Langella, Philippe; Hols, Pascal; Chapot-Chartier, Marie-Pierre

    2011-01-01

    Peptidoglycan (PG) N-acetyl muramic acid (MurNAc) O-acetylation is widely spread in Gram-positive bacteria and is generally associated with resistance against lysozyme and endogenous autolysins. We report here the presence of O-acetylation on N-acetylglucosamine (GlcNAc) in Lactobacillus plantarum PG. This modification of glycan strands was never described in bacteria. Fine structural characterization of acetylated muropeptides released from L. plantarum PG demonstrated that both MurNAc and GlcNAc are O-acetylated in this species. These two PG post-modifications rely on two dedicated O-acetyltransferase encoding genes, named oatA and oatB, respectively. By analyzing the resistance to cell wall hydrolysis of mutant strains, we showed that GlcNAc O-acetylation inhibits N-acetylglucosaminidase Acm2, the major L. plantarum autolysin. In this bacterial species, inactivation of oatA, encoding MurNAc O-acetyltransferase, resulted in marked sensitivity to lysozyme. Moreover, MurNAc over-O-acetylation was shown to activate autolysis through the putative N-acetylmuramoyl-l-alanine amidase LytH enzyme. Our data indicate that in L. plantarum, two different O-acetyltransferases play original and antagonistic roles in the modulation of the activity of endogenous autolysins. PMID:21586574

  3. Role of Histone Acetylation in Cell Cycle Regulation.

    PubMed

    Koprinarova, Miglena; Schnekenburger, Michael; Diederich, Marc

    2016-01-01

    Core histone acetylation is a key prerequisite for chromatin decondensation and plays a pivotal role in regulation of chromatin structure, function and dynamics. The addition of acetyl groups disturbs histone/DNA interactions in the nucleosome and alters histone/histone interactions in the same or adjacent nucleosomes. Acetyl groups can also provide binding sites for recruitment of bromodomain (BRD)-containing non-histone readers and regulatory complexes to chromatin allowing them to perform distinct downstream functions. The presence of a particular acetylation pattern influences appearance of other histone modifications in the immediate vicinity forming the "histone code". Although the roles of the acetylation of particular lysine residues for the ongoing chromatin functions is largely studied, the epigenetic inheritance of histone acetylation is a debated issue. The dynamics of local or global histone acetylation is associated with fundamental cellular processes such as gene transcription, DNA replication, DNA repair or chromatin condensation. Therefore, it is an essential part of the epigenetic cell response to processes related to internal and external signals. PMID:26303420

  4. Quantifying light pollution

    NASA Astrophysics Data System (ADS)

    Cinzano, P.; Falchi, F.

    2014-05-01

    In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information.

  5. Quantifying surface normal estimation

    NASA Astrophysics Data System (ADS)

    Reid, Robert B.; Oxley, Mark E.; Eismann, Michael T.; Goda, Matthew E.

    2006-05-01

    An inverse algorithm for surface normal estimation from thermal polarimetric imagery was developed and used to quantify the requirements on a priori information. Building on existing knowledge that calculates the degree of linear polarization (DOLP) and the angle of polarization (AOP) for a given surface normal in a forward model (from an object's characteristics to calculation of the DOLP and AOP), this research quantifies the impact of a priori information with the development of an inverse algorithm to estimate surface normals from thermal polarimetric emissions in long-wave infrared (LWIR). The inverse algorithm assumes a polarized infrared focal plane array capturing LWIR intensity images which are then converted to Stokes vectors. Next, the DOLP and AOP are calculated from the Stokes vectors. Last, the viewing angles, θ v, to the surface normals are estimated assuming perfect material information about the imaged scene. A sensitivity analysis is presented to quantitatively describe the a priori information's impact on the amount of error in the estimation of surface normals, and a bound is determined given perfect information about an object. Simulations explored the impact of surface roughness (σ) and the real component (n) of a dielectric's complex index of refraction across a range of viewing angles (θ v) for a given wavelength of observation.

  6. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate.

    PubMed

    Baumann, Anna-Maria T; Bakkers, Mark J G; Buettner, Falk F R; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A; de Groot, Raoul J; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host-pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1--a previously identified human candidate gene--is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  7. Evidence for N----O acetyl migration as the mechanism for O acetylation of peptidoglycan in Proteus mirabilis.

    PubMed Central

    Dupont, C; Clarke, A J

    1991-01-01

    O-acetylated peptidoglycan was purified from Proteus mirabilis grown in the presence of specifically radiolabelled glucosamine derivatives, and the migration of the radiolabel was monitored. Mild-base hydrolysis of the isolated peptidoglycan (to release ester-linked acetate) from cells grown in the presence of 40 microM [acetyl-3H]N-acetyl-D-glucosamine resulted in the release of [3H]acetate, as detected by high-pressure liquid chromatography. The inclusion of either acetate, pyruvate, or acetyl phosphate, each at 1 mM final concentration, did not result in a diminution of mild-base-released [3H]acetate levels. No such release of [3H]acetate was observed with peptidoglycan isolated from either Escherichia coli incubated with the same radiolabel or P. mirabilis grown with [1,6-3H]N-acetyl-D-glucosamine or D-[1-14C]glucosamine. These observations support a hypothesis that O acetylation occurs by N----O acetyl transfer within the sacculus. A decrease in [3H]acetate release by mild-base hydrolysis was observed with the peptidoglycan of P. mirabilis cultures incubated in the presence of antagonists of peptidoglycan biosynthesis, penicillin G and D-cycloserine. The absence of free-amino sugars in the peptidoglycan of P. mirabilis but the detection of glucosamine in spent culture broths implies that N----O transacetylation is intimately associated with peptidoglycan turnover. PMID:2066331

  8. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  9. Mass spectrometry of oligopeptides in the presence of large amounts of alkali halides using desorption/ionization induced by neutral cluster impact.

    PubMed

    Portz, André; Baur, Markus; Gebhardt, Christoph R; Dürr, Michael

    2016-06-01

    Oligopeptides in the presence of large amounts of salt were desorbed and ionized using desorption/ionization induced by neutral clusters (DINeC) for further analysis by means of mass spectrometry (MS). Using oligopeptides in alkali halide solutions as a model system, DINeC was shown to yield clear and fragmentation free mass spectra of the biomolecules even from environments with a large excess of salt. The results were traced back to a phase separation between salt and biomolecules during sample preparation. The ratio between alkali metal complexes [M+A](+) and bare biomolecules [M+H](+) was controlled using different preparation schemes. DINeC was applied to the products of a tryptic digest of bovine serum albumin in the presence of sodium chloride; the results of a mass fingerprint analysis did not show a major difference for the spectra with and without salt in the original solution. The metal-ion/peptide interaction was further investigated by means of tandem-MS. PMID:26825286

  10. Rapid test for acetyl-methyl-carbinol formation by Enterobacteriaceae.

    PubMed Central

    Qadri, S M; Nichols, C W; Qadri, S G; Villarreal, A

    1978-01-01

    A modified Voges-Proskauer test is described which distinguishes within 4 to 8 hours between organisms that can produce acetyl-methyl-carbinol (acetoin) from glucose fermentation and those that cannot. PMID:363745

  11. Acetylation of C/EBPα inhibits its granulopoietic function.

    PubMed

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S; Numata, Akihiko; Sárosi, Menyhárt B; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K; Gunaratne, Jayantha; Tenen, Daniel G

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  12. Acetylation of C/EBPα inhibits its granulopoietic function

    PubMed Central

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S.; Numata, Akihiko; Sárosi, Menyhárt B.; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K.; Gunaratne, Jayantha; Tenen, Daniel G.

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  13. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  14. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  15. Rapid test for acetyl-methyl-carbinol formation by Enterobacteriaceae.

    PubMed

    Qadri, S M; Nichols, C W; Qadri, S G; Villarreal, A

    1978-10-01

    A modified Voges-Proskauer test is described which distinguishes within 4 to 8 hours between organisms that can produce acetyl-methyl-carbinol (acetoin) from glucose fermentation and those that cannot. PMID:363745

  16. Data detailing the platelet acetyl-lysine proteome

    PubMed Central

    Aslan, Joseph E.; David, Larry L.; McCarty, Owen J.T.

    2015-01-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification – mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  17. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  18. On quantifying insect movements

    SciTech Connect

    Wiens, J.A.; Crist, T.O. ); Milne, B.T. )

    1993-08-01

    We elaborate on methods described by Turchin, Odendaal Rausher for quantifying insect movement pathways. We note the need to scale measurement resolution to the study insects and the questions being asked, and we discuss the use of surveying instrumentation for recording sequential positions of individuals on pathways. We itemize several measures that may be used to characterize movement pathways and illustrate these by comparisons among several Eleodes beetles occurring in shortgrass steppe. The fractal dimension of pathways may provide insights not available from absolute measures of pathway configuration. Finally, we describe a renormalization procedure that may be used to remove sequential interdependence among locations of moving individuals while preserving the basic attributes of the pathway.

  19. Determination of Oligopeptide Diversity within a Natural Population of Microcystis spp. (Cyanobacteria) by Typing Single Colonies by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Fastner, Jutta; Erhard, Marcel; von Döhren, Hans

    2001-01-01

    Besides the most prominent peptide toxin, microcystin, the cyanobacteria Microcystis spp. have been shown to produce a large variety of other bioactive oligopeptides. We investigated for the first time the oligopeptide diversity within a natural Microcystis population by analyzing single colonies directly with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). The results demonstrate a high diversity of known cyanobacterial peptides such as microcystins, anabaenopeptins, microginins, aeruginosins, and cyanopeptolins, but also many unknown substances in the Microcystis colonies. Oligopeptide patterns were mostly related to specific Microcystis taxa. Microcystis aeruginosa (Kütz.) Kütz. colonies contained mainly microcystins, occasionally accompanied by aeruginosins. In contrast, microcystins were not detected in Microcystis ichthyoblabe Kütz.; instead, colonies of this species contained anabaenopeptins and/or microginins or unknown peptides. Within a third group, Microcystis wesenbergii (Kom.) Kom. in Kondr., chiefly a cyanopeptolin and an unknown peptide were found. Similar patterns, however, were also found in colonies which could not be identified to species level. The significance of oligopeptides as a chemotaxonomic tool within the genus Microcystis is discussed. It could be demonstrated that the typing of single colonies by MALDI-TOF MS may be a valuable tool for ecological studies of the genus Microcystis as well as in early warning of toxic cyanobacterial blooms. PMID:11679328

  20. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false N-Acetyl-L-methionine. 172.372 Section 172.372 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine....

  1. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Jin, Weilin

    2015-01-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. SIGNIFICANCE STATEMENT The nuclear to cytoplasmic translocation of Olig1 protein has been observed during mouse and human brain development and in multiple sclerosis in several studies, but the detailed molecular mechanism of this translocation remains elusive. Here, we provide insight into the mechanism by which acetylation of Olig1 regulates its unique nuclear-cytoplasmic shuttling during oligodendrocyte development and how the acetylation status of Olig1 modulates its distinct function in the nucleus versus the cytoplasm. The current study provides a unique example of a lineage-specific transcription factor that is actively translocated from the nucleus to the cytoplasm as the cell differentiates. Importantly, we demonstrate that this process is tightly controlled by acetylation at a single

  2. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    PubMed Central

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  3. Nucleosome Dancing at the Tempo of Histone Tail Acetylation

    PubMed Central

    Galvani, Angélique; Thiriet, Christophe

    2015-01-01

    The impact of histone acetylation on transcription was revealed over 50 years ago by Allfrey and colleagues. However, it took decades for an understanding of the fine mechanism by which this posttranslational modification affects chromatin structure and promotes transcription. Here, we review breakthroughs linking histone tail acetylation, histone dynamics, and transcription. We also discuss the histone exchange during transcription and highlight the important function of a pool of non-chromatinized histones in chromatin dynamics. PMID:26184324

  4. Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin.

    PubMed

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Michalopoulou, Vasiliki A

    2016-03-01

    The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them. PMID:26015161

  5. Quantitative determination of sulfisoxazole and its three N-acetylated metabolites using HPLC-MS/MS, and the saturable pharmacokinetics of sulfisoxazole in mice.

    PubMed

    Oh, Kyungsoo; Baek, Moon-Chang; Kang, Wonku

    2016-09-10

    Sulfisoxazole (SFX) is still used in combination with trimethoprim in cattle despite adverse drug reactions (e.g., urolithiasis). Recently, SFX is known to be a promising repositioned drug candidate for pulmonary hypertension and cancer. We developed a simultaneous determination method of SFX and its N-acetylated metabolites (N(1)-acetyl SFX, N1AS; N(4)-acetyl SFX, N4AS; diacetyl SFX, DAS) using HPLC-MS/MS for the first time, and examined the pharmacokinetics of SFX in mice. N1AS and DAS were converted rapidly to SFX and N4AS, respectively, in mouse plasma. The time courses of plasma SFX and N4AS concentrations were well-characterised following the oral administration of SFX to mice. The absorption, metabolism, and/or excretion of SFX given at >700mg/kg may be saturable, and in contrast to humans and rats, the extent of systemic exposure of mice to N4AS was much greater than that of SFX. Interestingly, the acetyl groups at both N1- and N4-positions were degraded during the ionisation required to generate precursor ions. In additional experiments the carboxyl group of N-acetyl-5-aminosalicylic acid (NA5AS) was lost instead of the acetyl group during the ionisation, and acetaminophen (AAP) appeared. As the acetyl and carboxyl groups of some substances can be degraded during ionisation in the mass spectrometer, caution is appropriate when it is sought to simultaneously quantify similar structures containing these moieties; chromatographic separation is essential. PMID:27454084

  6. Effects of peptide acetylation and dimethylation on electrospray ionization efficiency.

    PubMed

    Cho, Kyung-Cho; Kang, Jeong Won; Choi, Yuri; Kim, Tae Woo; Kim, Kwang Pyo

    2016-02-01

    Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N-termini and the ε-amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC-ESI-MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two-fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26889926

  7. An acetylation switch controls TDP-43 function and aggregation propensity.

    PubMed

    Cohen, Todd J; Hwang, Andrew W; Restrepo, Clark R; Yuan, Chao-Xing; Trojanowski, John Q; Lee, Virginia M Y

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here, we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signalling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  8. Methods to detect NF-κB Acetylation and Methylation

    PubMed Central

    Chen, JinJing; Chen, Lin-Feng

    2015-01-01

    Summary Post-translational modifications of NF-κB, including acetylation and methylation, have emerged as an important regulatory mechanism for determining the duration and strength of NF-κB nuclear activity as well as its transcriptional output. Within the seven NF-κB family proteins, the RelA subunit of NF-κB is the most studied for its regulation by lysine acetylation and methylation. Acetylation or methylation at different lysine residues modulates distinct functions of NF-κB, including DNA binding and transcription activity, protein stability, and its interaction with NF-κB modulators. Here, we describe the experimental methods to monitor the in vitro and in vivo acetylated or methylated forms of NF-κB. These methods include radiolabeling the acetyl- or methyl- groups and immunoblotting with pan or site-specific acetyl- or methyl-lysine antibodies. Radiolabeling is useful in the initial validation of the modifications. Immunoblotting with antibodies provides a rapid and powerful approach to detect and analyze the functions of these modifications in vitro and in vivo. PMID:25736763

  9. An acetylation switch controls TDP-43 function and aggregation propensity

    PubMed Central

    Cohen, Todd J.; Hwang, Andrew W.; Restrepo, Clark R.; Yuan, Chao-Xing; Trojanowski, John Q.; Lee, Virginia M.Y.

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA-binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signaling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  10. Effects of acetyl-L-carnitine on lamb oocyte blastocyst rate, ultrastructure, and mitochondrial DNA copy number.

    PubMed

    Reader, Karen L; Cox, Neil R; Stanton, Jo-Ann L; Juengel, Jennifer L

    2015-06-01

    Viable lambs can be produced after transfer of in vitro-derived embryos from oocytes harvested from prepubertal lambs. However, this occurs at a much lower efficiency than from adult ewe oocyte donors. The reduced competence of prepubertal oocytes is believed to be due, at least in part, to deficiencies in cytoplasmic maturation. Differences in the cytoplasmic ultrastructure between prepubertal and adult oocytes have been described in the sheep, pig, and cow. Prepubertal lamb oocytes have been shown to have a different distribution of mitochondria and lipid droplets, and less mitochondria and storage vesicles than their adult counterparts. L-carnitine plays a role in supplying energy to the cell by transporting long-chain fatty acids into mitochondria for β-oxidation to produce ATP. Both L-carnitine and its derivative acetyl-L-carnitine have been reported to increase the blastocyst rate of oocytes from mice, cows, and pigs, treated during IVM. L-carnitine has also been shown to increase mitochondrial biogenesis in adipose cells. Therefore, the aims of this study were to determine if treatment of oocytes from prepubertal lambs with acetyl-L-carnitine during IVM could increase the blastocyst rate and alter mitochondria, vesicle, or lipid droplet number, volume, or distribution. The blastocyst rate was doubled in prepubertal lamb oocytes treated with acetyl-L-carnitine when compared to untreated oocytes (10.0% and 4.6%, respectively; P = 0.028). Light microscopy, scanning electron microscopy, and stereology techniques were used to quantify organelles in untreated and acetyl-L-carnitine-treated lamb oocytes, and quantitative polymerase chain reaction methods were used to measure the mitochondrial DNA copy number. There were no differences in mitochondrial volume, number, or mitochondrial DNA copy number. Acetyl-L-carnitine treatment increased the cytoplasmic volume (P = 0.015) of the oocytes, and there were trends toward an increase in the vesicle volume (P = 0

  11. Quantifier Comprehension in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    McMillan, Corey T.; Clark, Robin; Moore, Peachie; Grossman, Murray

    2006-01-01

    In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers.…

  12. Quantifying T Lymphocyte Turnover

    PubMed Central

    De Boer, Rob J.; Perelson, Alan S.

    2013-01-01

    Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2′-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling. We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4+ and CD8+ T cell pools in mice and men. PMID:23313150

  13. Quantifying the Adaptive Cycle

    PubMed Central

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  14. Quantifying solvated electrons' delocalization.

    PubMed

    Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J

    2015-07-28

    Delocalized, solvated electrons are a topic of much recent interest. We apply the electron delocalization range EDR(r;u) (J. Chem. Phys., 2014, 141, 144104) to quantify the extent to which a solvated electron at point r in a calculated wavefunction delocalizes over distance u. Calculations on electrons in one-dimensional model cavities illustrate fundamental properties of the EDR. Mean-field calculations on hydrated electrons (H2O)n(-) show that the density-matrix-based EDR reproduces existing molecular-orbital-based measures of delocalization. Correlated calculations on hydrated electrons and electrons in lithium-ammonia clusters illustrates how electron correlation tends to move surface- and cavity-bound electrons onto the cluster or cavity surface. Applications to multiple solvated electrons in lithium-ammonia clusters provide a novel perspective on the interplay of delocalization and strong correlation central to lithium-ammonia solutions' concentration-dependent insulator-to-metal transition. The results motivate continued application of the EDR to simulations of delocalized electrons. PMID:25994586

  15. Uncertainty quantified trait predictions

    NASA Astrophysics Data System (ADS)

    Fazayeli, Farideh; Kattge, Jens; Banerjee, Arindam; Schrodt, Franziska; Reich, Peter

    2015-04-01

    Functional traits of organisms are key to understanding and predicting biodiversity and ecological change, which motivates continuous collection of traits and their integration into global databases. Such composite trait matrices are inherently sparse, severely limiting their usefulness for further analyses. On the other hand, traits are characterized by the phylogenetic trait signal, trait-trait correlations and environmental constraints, all of which provide information that could be used to statistically fill gaps. We propose the application of probabilistic models which, for the first time, utilize all three characteristics to fill gaps in trait databases and predict trait values at larger spatial scales. For this purpose we introduce BHPMF, a hierarchical Bayesian extension of Probabilistic Matrix Factorization (PMF). PMF is a machine learning technique which exploits the correlation structure of sparse matrices to impute missing entries. BHPMF additionally utilizes the taxonomic hierarchy for trait prediction. Implemented in the context of a Gibbs Sampler MCMC approach BHPMF provides uncertainty estimates for each trait prediction. We present comprehensive experimental results on the problem of plant trait prediction using the largest database of plant traits, where BHPMF shows strong empirical performance in uncertainty quantified trait prediction, outperforming the state-of-the-art based on point estimates. Further, we show that BHPMF is more accurate when it is confident, whereas the error is high when the uncertainty is high.

  16. Quantifying Loopy Network Architectures

    PubMed Central

    Katifori, Eleni; Magnasco, Marcelo O.

    2012-01-01

    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs. PMID:22701593

  17. A SUMO-acetyl switch in PXR biology.

    PubMed

    Cui, Wenqi; Sun, Mengxi; Zhang, Shupei; Shen, Xunan; Galeva, Nadezhda; Williams, Todd D; Staudinger, Jeff L

    2016-09-01

    Post-translational modification (PTM) of nuclear receptor superfamily members regulates various aspects of their biology to include sub-cellular localization, the repertoire of protein-binding partners, as well as their stability and mode of degradation. The nuclear receptor pregnane X receptor (PXR, NR1I2) is a master-regulator of the drug-inducible gene expression in liver and intestine. The PXR-mediated gene activation program is primarily recognized to increase drug metabolism, drug transport, and drug efflux pathways in these tissues. The activation of PXR also has important implications in significant human diseases including inflammatory bowel disease and cancer. Our recent investigations reveal that PXR is modified by multiple PTMs to include phosphorylation, SUMOylation, and ubiquitination. Using both primary cultures of hepatocytes and cell-based assays, we show here that PXR is modified through acetylation on lysine residues. Further, we show that increased acetylation of PXR stimulates its increased SUMO-modification to support active transcriptional suppression. Pharmacologic inhibition of lysine de-acetylation using trichostatin A (TSA) alters the sub-cellular localization of PXR in cultured hepatocytes, and also has a profound impact upon PXR transactivation capacity. Both the acetylation and SUMOylation status of the PXR protein is affected by its ability to associate with the lysine de-acetylating enzyme histone de-acetylase (HDAC)3 in a complex with silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Taken together, our data support a model in which a SUMO-acetyl 'switch' occurs such that acetylation of PXR likely stimulates SUMO-modification of PXR to promote the active repression of PXR-target gene expression. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26883953

  18. Identification of cellular factors binding to acetylated HIV-1 integrase.

    PubMed

    Allouch, Awatef; Cereseto, Anna

    2011-11-01

    The viral protein integrase (IN) catalyzes the integration of the HIV-1 cDNA into the host cellular genome. We have recently demonstrated that IN is acetylated by a cellular histone acetyltransferase, p300, which modifies three lysines located in the C-terminus of the viral factor (Cereseto et al. in EMBO J 24:3070-3081, 2005). This modification enhances IN catalytic activity, as demonstrated by in vitro assays. Consistently, mutations introduced in the targeted lysines greatly decrease the efficiency of HIV-1 integration. Acetylation was proven to regulate protein functions by modulating protein-protein interactions. HIV-1 to efficiently complete its replication steps, including the integration reaction, requires interacting with numerous cellular factors. Therefore, we sought to investigate whether acetylation might modulate the interaction between IN and the cellular factors. To this aim we performed a yeast two-hybrid screening that differs from the screenings so far performed (Rain et al. in Methods 47:291-297, 2009; Studamire and Goff in Retrovirology 5:48, 2008) for using as bait IN constitutively acetylated. From this analysis we have identified thirteen cellular factors involved in transcription, chromatin remodeling, nuclear transport, RNA binding, protein synthesis regulation and microtubule organization. To validate these interactions, binding assays were performed showing that acetylation increases the affinity of IN with specific factors. Nevertheless, few two-hybrid hits bind with the same affinity the acetylated and the unmodified IN. These results further underlie the relevance of IN post-translational modification by acetylation in HIV-1 replication cycle. PMID:20016921

  19. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  20. Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites

    PubMed Central

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D. Ramesh; Alfonso, Lloyd F.; Marimuthu, Srinivasan; Bhat, G. Jayarama

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT-29 colorectal cancer cells, in order to compare aspirin-mediated acetylation of G6PD and its activity between HCT 116 and HT-29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT-29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin-acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  1. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development.

    PubMed

    Dai, Jinxiang; Bercury, Kathryn K; Jin, Weilin; Macklin, Wendy B

    2015-12-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. PMID:26631469

  2. Bioanalysis of N-acetyl-aspartyl-glutamate as a marker of glutamate carboxypeptidase II inhibition.

    PubMed

    Thomas, Ajit G; Rojas, Camilo J; Hill, Jeanette R; Shaw, Michael; Slusher, Barbara S

    2010-09-01

    We report the characterization of two methods for the analysis of N-acetyl-aspartyl-glutamate (NAAG) in biological fluids. In the first method, NAAG concentrations were calculated based on differences between glutamate concentrations before and after NAAG hydrolysis with exogenous glutamate carboxypeptidase II (GCP II) using high-performance liquid chromatography (HPLC) followed by fluorescence detection. In the second method, NAAG levels were quantified directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analyses of NAAG levels in human cerebrospinal fluid samples using either method gave similar results within experimental error, confirming the validity of the two independent measurements. These methods will be useful in future clinical trials to assess drug-induced GCP II inhibition in biological matrices. PMID:20434427

  3. On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation.

    PubMed

    Xue, Likun; Wang, Tao; Wang, Xinfeng; Blake, Donald R; Gao, Jian; Nie, Wei; Gao, Rui; Gao, Xiaomei; Xu, Zheng; Ding, Aijun; Huang, Yu; Lee, Shuncheng; Chen, Yizhen; Wang, Shulan; Chai, Fahe; Zhang, Qingzhu; Wang, Wenxing

    2014-12-01

    Peroxy acetyl nitrate (PAN) is a key component of photochemical smog and plays an important role in atmospheric chemistry. Though it has been known that PAN is produced via reactions of nitrogen oxides (NOx) with some volatile organic compounds (VOCs), it is difficult to quantify the contributions of individual precursor species. Here we use an explicit photochemical model--Master Chemical Mechanism (MCM) model--to dissect PAN formation and identify principal precursors, by analyzing measurements made in Beijing in summer 2008. PAN production was sensitive to both NOx and VOCs. Isoprene was the predominant VOC precursor at suburb with biogenic impact, whilst anthropogenic hydrocarbons dominated at downtown. PAN production was attributable to a relatively small class of compounds including NOx, xylenes, trimethylbenzenes, trans/cis-2-butenes, toluene, and propene. MCM can advance understanding of PAN photochemistry to a species level, and provide more relevant recommendations for mitigating photochemical pollution in large cities. PMID:25194270

  4. Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging.

    PubMed

    Sforza, S; Cavatorta, V; Lambertini, F; Galaverna, G; Dossena, A; Marchelli, R

    2012-07-01

    In this work, we performed a detailed evaluation of the evolution of the oligopeptide fractions in samples of Parmigiano-Reggiano cheese from the curd up to 24 mo of aging. The samples were taken from wheels produced the same day, in the same factory, from the same milk, during the same caseification process, thus simplifying the natural variability of a whey-based starter fermentation. This unique and homogeneous sampling plan, never reported before in the literature, provided a detailed study of the peptides produced by enzymatic events during Parmigiano-Reggiano aging. Given the large dimensions of the 35-kg wheels of Parmigiano-Reggiano, samples were taken from both the internal and external parts of the cheese, to evidence eventual differences in the oligopeptide composition of the different parts. Fifty-seven peptides were considered, being among the most abundant during at least one of the periods of ripening considered, and their semiquantification indicated that the peptide fraction of Parmigiano-Reggiano cheese constantly evolves during the aging period. Five trends in its evolution were outlined, which could be clearly correlated to the enzymatic activities present in the cheese, making it possible to discriminate cheeses according to their aging time. Several known bioactive peptides were also found to be present in Parmigiano-Reggiano cheese samples, and for the first time, the age at which they are most abundant has been identified. Aged cheeses have been shown to be dominated by nonproteolytic aminoacyl derivatives, a new class of peptide-like molecules recently reported. Finally, the changing peptide pattern may be related to the changing enzymatic activities occurring inside the cheeses during the aging period, which, in turn, are also related to the microbiological composition. PMID:22720910

  5. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.

    PubMed

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  6. Determination of NAT2 acetylation status in the Greenlandic population.

    PubMed

    Geller, Frank; Soborg, Bolette; Koch, Anders; Michelsen, Sascha Wilk; Bjorn-Mortensen, Karen; Carstensen, Lisbeth; Birch, Emilie; Nordholm, Anne Christine; Johansen, Marie Mila Broby; Børresen, Malene Landbo; Feenstra, Bjarke; Melbye, Mads

    2016-04-01

    N-acetyltransferase 2 (NAT2) is a well-studied phase II xenobiotic metabolizing enzyme relevant in drug metabolism and cancerogenesis. NAT2 activity is largely determined by genetic polymorphisms in the coding region of the corresponding gene. We investigated NAT2 acetylation status in 1556 individuals from Greenland based on four different single nucleotide polymorphism (SNP) panels and the tagging SNP rs1495741. There was good concordance between the NAT2 status inferred by the different SNP combinations. Overall, the fraction of slow acetylators was low with 17.5 % and varied depending on the degree of Inuit ancestry; in individuals with <50 % Inuit ancestry, we observed more than 25 % slow acetylators reflecting European ancestry. Greenland has a high incidence of tuberculosis, and individual dosing of isoniazid according to NAT2 status has been shown to improve treatment and reduce side effects. Our findings could be a first step in pharmacogenetics-based tuberculosis therapy in Greenland. PMID:25794903

  7. Synthesis of polyrotaxanes from acetyl-β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Ristić, I. S.; Nikolić, L.; Nikolić, V.; Ilić, D.; Budinski-Simendić, J.

    2011-12-01

    Polyrotaxanes are intermediary products in the synthesis of topological gels. They are created by inclusion complex formation of hydrophobic linear macromolecules with cyclodextrins or their derivatives. Then, pairs of cyclodextrin molecules with covalently linkage were practically forming the nodes of the semi-flexible polymer network. Such gels are called topological gels and they can absorb huge quantities of water due to the net flexibility allowing the poly(ethylene oxide) chains to slide through the cyclodextrin cavities, without being pulled out altogether. For polyrotaxane formation poly(ethylene oxide) was used like linear macromolecules. There are hydroxyl groups at poly(ethylene oxide) chains, whereby the linking of the voluminous molecules should be made. To avoid the reaction of cyclodextrin OH groups with stoppers, they should be protected by, e.g., acetylation. In this work, the acetylation of the OH groups of β-cyclodextrin was performed by acetic acid anhydride with iodine as the catalyst. The acetylation reaction was assessed by the FTIR and HPLC method. By the HPLC analysis was found that the acetylation was completed in 20 minutes. Inserting of poly(ethylene oxide) with 4000 g/mol molecule mass into acetyl-β-cyclodextrin with 2:1 poly(ethylene oxide) monomer unit to acetyl-β-cyclodextrin ratio was also monitored by FTIR, and it was found that the process was completed in 12 h at the temperature of 10°C. If the process is performed at temperatures above 10°C, or for periods longer than 12 hours, the process of uncontrolled hydrolysis of acetate groups was initiated.

  8. Histone acetylation: a switch between repressive and permissive chromatin

    PubMed Central

    Eberharter, Anton; Becker, Peter B.

    2002-01-01

    The organization of eukaryotic chromatin has a major impact on all nuclear processes involving DNA substrates. Gene expression is affected by the positioning of individual nucleosomes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization, it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation. PMID:11882541

  9. Interaction of RNA polymerase II with acetylated nucleosomal core particles

    SciTech Connect

    Pineiro, M.; Gonzalez, P.J.; Hernandez, F.; Palacian, E. )

    1991-05-31

    Chemical acetylation of nucleosomal cores is accompanied by an increase in their efficiency as in vitro transcription templates. Low amounts of acetic anhydride cause preferential modification of the amino-terminal tails of core histones. Modification of these domains, which causes moderate structural effects, is apparently correlated with the observed stimulation of RNA synthesis. In contrast, extensive modification of the globular regions of core histones, which is accompanied by a large structural relaxation of the particle, causes little additional effect on transcription. Acetylation of the amino-terminal domains of histones might stimulate transcription by changing the interaction of the histone tails with components of the transcriptional machinery.

  10. Molecular characterization of a new acetyl xylan esterase (AXEII) from edible straw mushroom Volvariella volvacea with both de-O-acetylation and de-N-acetylation activity.

    PubMed

    Liu, Xiufeng; Ding, Shaojun

    2009-06-01

    A new Volvariella volvacea gene encoding a carbohydrate esterase (CE) family 4 acetyl xylan esterase (AXE) (designated as VvaxeII) was cloned and characterized. The coded polypeptide had 253 amino acid residues, with the first 19 serving as a secretion signal peptide. The VvaxeII transcript levels were high when the fungus was grown on oat spelt xylan, cellobiose, microcrystalline cellulose, carboxymethyl-cellulose, lactose, galactose, and chitin from crab as carbon sources. The recombinant VvAXEII produced by expression of VvaxeII in Pichia pastoris exhibited activity toward acetylated oat spelt xylan and various chitinous substrates, but was totally inactive against artificial aromatic acetates such as beta-nitrophenyl, 4-methylumbelliferyl, and alpha-naphthyl acetates. Enzyme-catalyzed hydrolysis was maximal at pH 7.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 1.42 mg mL(-1) and a V(max) value of 833 IU micromol(-1) protein using glycol chitin as a substrate. The recombinant VvAXEII requires activation by bivalent cations such as Co2+ and Mg2+. Interestingly, the recombinant VvAXEII showed no deacetylation activity to fully acetylated monosaccharides such as xylose tetraacetate. PMID:19473250

  11. Acetylation regulates DNA repair mechanisms in human cells.

    PubMed

    Piekna-Przybylska, Dorota; Bambara, Robert A; Balakrishnan, Lata

    2016-06-01

    The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation. PMID:27104361

  12. Tubulin acetylation: responsible enzymes, biological functions and human diseases.

    PubMed

    Li, Lin; Yang, Xiang-Jiao

    2015-11-01

    Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function. PMID:26227334

  13. Mass spectrometry-based detection of protein acetylation

    PubMed Central

    Li, Yu; Silva, Jeffrey C.; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    Summary Improved sample preparation techniques and increasingly sensitive mass spectrometry (MS) analysis have revolutionized the study of protein post-translational modifications (PTMs). Here, we describe a general approach for immunopurification and MS-based identification of acetylated proteins in biological samples. This approach is useful characterizing changes in the acetylome in response to biological interventions (1). PMID:24014401

  14. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation

    NASA Astrophysics Data System (ADS)

    Bowler, Frank R.; Chan, Christopher K. W.; Duffy, Colm D.; Gerland, Béatrice; Islam, Saidul; Powner, Matthew W.; Sutherland, John D.; Xu, Jianfeng

    2013-05-01

    The recent synthesis of pyrimidine ribonucleoside-2‧,3‧-cyclic phosphates under prebiotically plausible conditions has strengthened the case for the involvement of ribonucleic acid (RNA) at an early stage in the origin of life. However, a prebiotic conversion of these weakly activated monomers, and their purine counterparts, to the 3‧,5‧-linked RNA polymers of extant biochemistry has been lacking (previous attempts led only to short oligomers with mixed linkages). Here we show that the 2‧-hydroxyl group of oligoribonucleotide-3‧-phosphates can be chemoselectively acetylated in water under prebiotically credible conditions, which allows rapid and efficient template-directed ligation. The 2‧-O-acetyl group at the ligation junction of the product RNA strand can be removed under conditions that leave the internucleotide bonds intact. Remarkably, acetylation of mixed oligomers that possess either 2‧- or 3‧-terminal phosphates is selective for the 2‧-hydroxyl group of the latter. This newly discovered chemistry thus suggests a prebiotic route from ribonucleoside-2‧,3‧-cyclic phosphates to predominantly 3‧,5‧-linked RNA via partially 2‧-O-acetylated RNA.

  15. Monitoring sterol uptake, acetylation, and export in yeast.

    PubMed

    Choudhary, Vineet; Schneiter, Roger

    2009-01-01

    Sterols are essential lipid components of eukaryotic membranes. They are synthesized in the endoplasmatic reticulum (ER) from where they are efficiently transported to the plasma membrane, which harbors ~90% of the free sterol pool of the cell. The molecular mechanisms that govern this lipid transport, however, are not well characterized and are challenging to analyze. Saccharomyces cerevisiae offers the opportunity to circumvent some of the technical limitations associated with studying this forward transport of sterols from the ER to the plasma membrane, because the organism can also take up sterols from the environment, incorporate them into the plasma membrane and transport them back to the ER, where the free sterol is converted to steryl esters. This reverse sterol transport, however, occurs only under anaerobic conditions, where the cells become sterol auxotroph, or in mutant cells that cannot synthesize heme. The reverse sterol transport pathway, however, is more amenable to experimental studies, because arrival of the sterol in the ER membrane can be monitored unambiguously by following the formation of steryl esters. Apart from sterol acylation, we have recently described a reversible sterol acetylation cycle that is operating in the lumen of the ER. Acetylation occurs on both cholesterol and pregnenolone, a steroid precursor, and serves as a signal for export of the acetylated sterols into the culture media. The time-dependent appearance of acetylated sterols in the culture supernatant thus provides a new means to monitor the forward transport of chemically modified sterols out of the ER. PMID:19784602

  16. Protein Acetylation Is Involved in Salmonella enterica Serovar Typhimurium Virulence.

    PubMed

    Sang, Yu; Ren, Jie; Ni, Jinjing; Tao, Jing; Lu, Jie; Yao, Yu-Feng

    2016-06-01

    Salmonella causes a range of diseases in different hosts, including enterocolitis and systemic infection. Lysine acetylation regulates many eukaryotic cellular processes, but its function in bacteria is largely unexplored. The acetyltransferase Pat and NAD(+)-dependent deacetylase CobB are involved in the reversible protein acetylation in Salmonella Typhimurium. Here, we used cell and animal models to evaluate the virulence of pat and cobB deletion mutants in S. Typhimurium and found that pat is critical for bacterial intestinal colonization and systemic infection. Next, to understand the underlying mechanism, genome-wide transcriptome was analyzed. RNA sequencing data showed that the expression of Salmonella pathogenicity island 1 (SPI-1) is partially dependent on pat In addition, we found that HilD, a key transcriptional regulator of SPI-1, is a substrate of Pat. The acetylation of HilD by Pat maintained HilD stability and was essential for the transcriptional activation of HilA. Taken together, these results suggest that a protein acetylation system regulates SPI-1 expression by controlling HilD in a posttranslational manner to mediate S. Typhimurium virulence. PMID:26810370

  17. An Acetylation Switch Regulates SUMO-Dependent Protein Interaction Networks

    PubMed Central

    Ullmann, Rebecca; Chien, Christopher D.; Avantaggiati, Maria Laura; Muller, Stefan

    2013-01-01

    SUMMARY The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions. PMID:22578841

  18. Children's interpretations of general quantifiers, specific quantifiers, and generics

    PubMed Central

    Gelman, Susan A.; Leslie, Sarah-Jane; Was, Alexandra M.; Koch, Christina M.

    2014-01-01

    Recently, several scholars have hypothesized that generics are a default mode of generalization, and thus that young children may at first treat quantifiers as if they were generic in meaning. To address this issue, the present experiment provides the first in-depth, controlled examination of the interpretation of generics compared to both general quantifiers ("all Xs", "some Xs") and specific quantifiers ("all of these Xs", "some of these Xs"). We provided children (3 and 5 years) and adults with explicit frequency information regarding properties of novel categories, to chart when "some", "all", and generics are deemed appropriate. The data reveal three main findings. First, even 3-year-olds distinguish generics from quantifiers. Second, when children make errors, they tend to be in the direction of treating quantifiers like generics. Third, children were more accurate when interpreting specific versus general quantifiers. We interpret these data as providing evidence for the position that generics are a default mode of generalization, especially when reasoning about kinds. PMID:25893205

  19. Nucleosome competition reveals processive acetylation by the SAGA HAT module.

    PubMed

    Ringel, Alison E; Cieniewicz, Anne M; Taverna, Sean D; Wolberger, Cynthia

    2015-10-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  20. Quantitative measurement of N-acetyl-aspartyl-glutamate at 3 T using TE-averaged PRESS spectroscopy and regularized lineshape deconvolution.

    PubMed

    Zhang, Yan; Li, Shizhe; Marenco, Stefano; Shen, Jun

    2011-08-01

    This article introduces regularized lineshape deconvolution in conjunction with TE-averaged PRESS spectroscopy to measure N-acetyl-aspartyl-glutamate (NAAG). Averaging different echo times suppressed the signals of multiplets from strongly coupled spin systems near 2 ppm; thus, minimizing the interfering signals to detect the acetyl proton signal of NAAG. Signal distortion was corrected by lineshape deconvolution, and Tikhonov regularization was introduced to reduce noise amplification arising from deconvolution; as a result, spectral resolution was enhanced without significantly sacrificing signal-to-noise ratio (SNR). This new approach was used to measure NAAG in the two regions of interest of healthy volunteers, dominated by gray matter and white matter, respectively. The acetyl proton signal of NAAG was directly quantified by fitting the deconvoluted spectra to a Voigt-lineshape spectral model function, yielding the NAAG-N-acetyl-aspartate (NAA) ratios of 0.11±0.02 for the gray matter voxels (n=8) and 0.18±0.02 for the white matter voxels (n=12). PMID:21656565

  1. Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome

    PubMed Central

    Wang, Tian-yun; Jia, Yan-long; Zhang, Xi; Sun, Qiu-li; Li, Yi-Chun; Zhang, Jun-he; Zhao, Chun-peng; Wang, Xiao-yin; Wang, Li

    2015-01-01

    The therapeutic value of FK228 as a cancer treatment option is well known, and various types of cancer have been shown to respond to this drug. However, the complete mechanism of FK228 and the affect it has on histone lysine acetylation and the colon cancer cell proteome are largely unknown. In the present study, we used stable isotope labeling by amino acids in cell culture (SILAC) and affinity enrichment followed by high-resolution liquid chromatograph-mass spectrometer (LC-MS)/MS analysis to quantitate the changes in the lysine acetylome in HCT-8 cells after FK228 treatment. A total of 1,194 lysine acetylation sites in 751 proteins were quantified, with 115 of the sites in 85 proteins being significantly upregulated and 38 of the sites in 32 proteins being significantly downregulated in response to FK228 treatment. Interestingly, 47 histone lysine acetylation sites were identified in the core histone proteins. We also found a novel lysine acetylation site on H2BK121. These significantly altered proteins are involved in multiple biological functions as well as a myriad of metabolic and enzyme-regulated pathways. Taken together, the link between FK228 function and the downstream changes in the HCT-8 cell proteome observed in response to FK228 treatment is established. PMID:26675280

  2. Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates.

    PubMed

    Iqbal, Aman; Clifton, Ian J; Chowdhury, Rasheduzzaman; Ivison, David; Domene, Carmen; Schofield, Christopher J

    2011-09-21

    Structural and biochemical analyses reveal how ornithine acetyl-transferases catalyse the reversible transfer of an acetyl-group from a basic (ornithine) to an acidic (glutamate) amino acid by employing a common mechanism involving an acetyl-enzyme intermediate but using different side chain binding modes. PMID:21796301

  3. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  4. Complex O-acetylation in non-typeable Haemophilus influenzae lipopolysaccharide: evidence for a novel site of O-acetylation.

    PubMed

    Yildirim, Håkan H; Li, Jianjun; Richards, James C; Hood, Derek W; Moxon, E Richard; Schweda, Elke K H

    2005-12-12

    The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS. PMID:16199021

  5. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex.

    PubMed

    Gebremedhin, Kibrom G; Rademacher, David J

    2016-08-01

    Although the role of epigenetics in Parkinson's disease (PD) has not been extensively studied, α-synuclein, the main component of Lewy bodies, decreased histone H3 acetylation. Here, we determined if there were histone acetylation changes in the primary motor cortex which, according to the Braak model, is one of the last brain regions affected in PD. Net histone H3 acetylation, histone H3 lysine 9 (H3K9), histone H3 lysine 14 (H3K14), histone H3 lysine 18 (H3K18), and histone H3 lysine 23 (H3K23) acetylation was assessed in the primary motor cortex of those affected and unaffected by PD. There was net increase in histone H3 acetylation due to increased H3K14 and H3K18 acetylation. There was a decrease in H3K9 acetylation. No between-groups difference was detected in H3K23 acetylation. Relationships between Unified Lewy Body Staging scores and histone H3 acetylation and substantia nigra depigmentation scores and histone H3 acetylation were observed. No relationships were detected between postmortem interval and histone H3 acetylation and expired age and histone H3 acetylation. These correlational data support the notion that the histone H3 acetylation changes observed here are not due to the postmortem interval or aging. Instead, they are due to PD and/or factors that covary with PD. The data suggest enhanced gene transcription in the primary motor cortex of the PD brain due to increase H3K14 and H3K18 acetylation. This effect is partially offset by a decreased H3K9 acetylation, which might repress gene transcription. PMID:27241718

  6. Role of Carnitine Acetyltransferases in Acetyl Coenzyme A Metabolism in Aspergillus nidulans ▿

    PubMed Central

    Hynes, Michael J.; Murray, Sandra L.; Andrianopoulos, Alex; Davis, Meryl A.

    2011-01-01

    The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced in the cytoplasm by acetyl-CoA synthetase during growth on acetate and ethanol while β-oxidation of fatty acids generates acetyl-CoA in peroxisomes. The acetyl-carnitine shuttle in which acetyl-CoA is reversibly converted to acetyl-carnitine by carnitine acetyltransferase (CAT) enzymes is important for intracellular transport of acetyl units. In the filamentous ascomycete Aspergillus nidulans, a cytoplasmic CAT, encoded by facC, is essential for growth on sources of cytoplasmic acetyl-CoA while a second CAT, encoded by the acuJ gene, is essential for growth on fatty acids as well as acetate. We have shown that AcuJ contains an N-terminal mitochondrial targeting sequence and a C-terminal peroxisomal targeting sequence (PTS) and is localized to both peroxisomes and mitochondria, independent of the carbon source. Mislocalization of AcuJ to the cytoplasm does not result in loss of growth on acetate but prevents growth on fatty acids. Therefore, while mitochondrial AcuJ is essential for the transfer of acetyl units to mitochondria, peroxisomal localization is required only for transfer from peroxisomes to mitochondria. Peroxisomal AcuJ was not required for the import of acetyl-CoA into peroxisomes for conversion to malate by malate synthase (MLS), and export of acetyl-CoA from peroxisomes to the cytoplasm was found to be independent of FacC when MLS was mislocalized to the cytoplasm. PMID:21296915

  7. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  8. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    PubMed Central

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  9. Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts

    PubMed Central

    Li, Qingling; Deng, Shuang; Ibarra, Rafael A.; Anderson, Vernon E.; Brunengraber, Henri; Zhang, Guo-Fang

    2015-01-01

    We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA. PMID:25645937

  10. Quantifying Electron Delocalization in Electrides.

    PubMed

    Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J

    2016-01-12

    Electrides are ionic solids whose anions are electrons confined to crystal voids. We show that our electron delocalization range function EDR(r;d), which quantifies the extent to which an electron at point r in a calculated wave function delocalizes over distance d, provides useful insights into electrides. The EDR quantifies the characteristic delocalization length of electride electrons and provides a chemically intuitive real-space picture of the electrons' distribution. It also gives a potential diagnostic for whether a given formula unit will form a solid electride at ambient pressure, quantifies the effects of electron-electron correlation on confined electrons' interactions, and highlights analogies between covalent bonding and the interaction of interstitial quasi-atoms in high-pressure electrides. These results motivate adding the EDR to the toolbox of theoretical methods applied to electrides. PMID:26652208

  11. [Spectrophotometric evaluation of N-acetyl-beta-glucosaminidase in urine].

    PubMed

    Potere, C; Di Cosmo, C; Riario-Sforza, G; Di Silverio, F; Albertazzi, A; Cappelli, P

    1982-01-01

    A spectrophotometric method for the assay of N-Acetyl-beta-Glucosaminidase activity in human undiluted urines is described. The application of this method is recommended for its sensitivity (2,6 X 10(-4)M) and its rapid performance, because it represents a good alternative to current methods and essentially to the fluorimetric technique with which it has a significant statistical correlation. Estimates of normal individuals aged between 1-70 years are reported. PMID:7168631

  12. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    SciTech Connect

    Arkowitz, R.A.; Abeles, R.H. )

    1991-04-23

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P{sub i} + 2e{sup {minus}} {yields} acetyl phosphate + NH{sub 4}{sup +}. Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of ({sup 32}P)P{sub i} into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P{sub i} to give acetyl phosphate. When ({sup 14}C)acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH{sub 4} removes all the radioactivity associated with protein C, resulting in the formation of ({sup 14}C)ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from ({sup 3}H)H{sub 2}O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence.

  13. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators

    PubMed Central

    Hassan, Ahmed H.; Awad, Salma; Al-Natour, Zeina; Othman, Samah; Mustafa, Farah; Rizvi, Tahir A.

    2006-01-01

    Bromodomains are present in many chromatin-associated proteins such as the SWI/SNF and RSC chromatin remodelling and the SAGA HAT (histone acetyltransferase) complexes, and can bind to acetylated lysine residues in the N-terminal tails of the histones. Lysine acetylation is a histone modification that forms a stable epigenetic mark on chromatin for bromodomain-containing proteins to dock and in turn regulate gene expression. In order to better understand how bromodomains read the ‘histone code’ and interact with acetylated histones, we have tested the interactions of several bromodomains within transcriptional co-activators with differentially acetylated histone tail peptides and HAT-acetylated histones. Using GST (glutathione S-transferase) pull-down assays, we show specificity of binding of some bromodomains to differentially acetylated H3 and H4 peptides as well as HAT-acetylated histones. Our results reveal that the Swi2/Snf2 bromodomain interacts with various acetylated H3 and H4 peptides, whereas the Gcn5 bromodomain interacts only with acetylated H3 peptides and tetra-acetylated H4 peptides. Additionally we show that the Spt7 bromodomain interacts with acetylated H3 peptides weakly, but not with acetylated H4 peptides. Some bromodomains such as the Bdf1-2 do not interact with most of the acetylated peptides tested. Results of the peptide experiments are confirmed with tests of interactions between these bromodomains and HAT-acetylated histones. Furthermore, we demonstrate that the Swi2/Snf2 bromodomain is important for the binding and the remodelling activity of the SWI/SNF complex on hyperacetylated nucleosomes. The selective recognition of the bromodomains observed in the present study accounts for the broad effects of bromodomain-containing proteins observed on binding to histones. PMID:17049045

  14. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  15. Carbon isotope fractionation and the acetyl-CoA pathway

    NASA Astrophysics Data System (ADS)

    Blaser, Martin; Conrad, Ralf

    2010-05-01

    Homoacetogenic bacteria can catalyze the reductive synthesis of acetate from CO2 via the acetyl-CoA pathway. Besides this unifying property homoacetogenic bacteria constitute a metabolically and phylogenetically diverse bacteriological group. Therefore their environmental role is difficult to address. It has been recognized that in methanogenic environments homoacetogenic bacteria contribute to the degradation of organic matter. The natural abundance of 13C may be used to understand the functional impact of homoacetogenic bacteria in the soil environment. To distinguish the acetyl-CoA pathway from other dominant processes, the isotopic composition of acetate and CO2 can be determined and the fractionation factors of the individual processes may be used to discriminate between the dominant pathways. To characterize the fractionation factor associated with the acetyl-CoA pathway the phylogenetic and metabolic diversity needs to be considered. Therefore the fractionation factor of substrate utilization and product formation of different homoacetogens (Acetobacterium woodii, Sporomusa ovata, Thermoanaerobacter kivui, Morella thermoautotrophica) has been studied under pure culture conditions in two defined minimal medium with H2/CO2 as sole source of carbon and energy. It became obvious that the cultivation conditions have a major impact on the obtained fractionation factors.

  16. Acetylation modification regulates GRP78 secretion in colon cancer cells

    PubMed Central

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  17. Acetylation modification regulates GRP78 secretion in colon cancer cells.

    PubMed

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  18. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription

    PubMed Central

    Verdone, Loredana; La Fortezza, Marco; Ciccarone, Fabio; Caiafa, Paola; Zampieri, Michele; Caserta, Micaela

    2015-01-01

    Poly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARylation regulates a wide variety of biological processes in most eukaryotic cells including energy metabolism and cell death, maintenance of genomic stability, chromatin structure and transcription. Inside the nucleus, cross-talk between PARylation and other epigenetic modifications, such as DNA and histone methylation, was already described. In the present work, using PJ34 or ABT888 to inhibit PARP activity or over-expressing poly(ADP-ribose) glycohydrolase (PARG), we show decrease of global histone H3 and H4 acetylation. This effect is accompanied by a reduction of the steady state mRNA level of p300, Pcaf, and Tnfα, but not of Dnmt1. Chromatin immunoprecipitation (ChIP) analyses, performed at the level of the Transcription Start Site (TSS) of these four genes, reveal that changes in histone acetylation are specific for each promoter. Finally, we demonstrate an increase of global deacetylase activity in nuclear extracts from cells treated with PJ34, whereas global acetyltransferase activity is not affected, suggesting a role for PARP in the inhibition of histone deacetylases. Taken together, these results show an important link between PARylation and histone acetylation regulated transcription. PMID:26636673

  19. Chromatin decondensed by acetylation shows an elevated radiation response

    SciTech Connect

    Nackerdien, Z.; Michie, J.; Boehm, L.

    1989-02-01

    V-79 Chinese hamster lung fibroblasts exposed to 5 mM n-sodium butyrate were irradiated with 60Co gamma rays and cell survival was determined by the cell colony assay. In a separate set of experiments the acetylated chromatin obtained from these cells was irradiated and the change of molecular weight of the DNA was evaluated by alkaline sucrose density centrifugation. At a survival level of 10(-2) to 10(-4) cells exposed to butyrate were found to be 1.3-1.4 times more radiosensitive than control cells. Exposure of isolated chromatin to 100 Gy of 60Co gamma irradiation generated 0.9 +/- 0.03 single-strand breaks (ssb) per 10 Gy per 10(8) Da and 2.0 +/- 0.3 ssb/10 Gy/10(8) Da for control and acetylated chromatin, respectively. The elevated radiation sensitivity of chromatin relaxed by acetylation is in good agreement with previous results on chromatin expanded by histone H1 depletion. Packing and accessibility of DNA in chromatin appear to be major factors which influence the radiation sensitivity. The intrinsic radiation sensitivity of chromatin in various packing states is discussed in light of the variation of radiation sensitivity of whole cells in the cell cycle which incorporates repair.

  20. Selective cleavage enhanced by acetylating the side chain of lysine.

    PubMed

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  1. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.

    PubMed

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  2. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    PubMed Central

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  3. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011.

    PubMed

    He, Hailun; Chen, Xiulan; Sun, Caiyun; Zhang, Yuzhong; Gao, Peiji

    2006-02-01

    Marine organisms are potentially an untapped source of drugs and value-added food production. Currently, Acetes chinensis is an underutilized shrimp species with low commercial value from the Bo Hai Gulf of China. In this paper, the shrimp was digested by a crude protease from Bacillus sp. SM98011 and filtered through a 3 kDa ultrafiltration membrane. Biological functions of the hydrolysate and ultrafiltrate were then assayed. The analyses showed that 41% of the oligopeptides in the ultrafiltrate had a molecular mass lower than 3 kDa. The antioxidant activities of the hydrolysate and ultrafiltrate were determined through the scavenger activity of the hydroxyl radical, with inhibitions of 42.38% and 67.95%, respectively. The hydrolysate and ultrafiltrate also had good Angiotensin-I-converting enzyme (ACE) inhibitory activity, with IC50 values of 0.98 mg/ml and 0.22 mg/ml, respectively. In addition, Chitin and chitosan were recovered from the hydrolytic sediment using a much smaller volume of strong acids and bases than is normally needed. With this method, we have shown that A. chinensis can be utilized to generate a high value-added product, and have revealed its hidden potential in the production of functional foods and ACE inhibitory peptides. PMID:15935656

  4. Molecular recognition between oligopeptides and nucleic acids: DNA binding specificity of a series of bis netropsin analogues deduced from footprinting analysis.

    PubMed

    Kissinger, K L; Dabrowiak, J C; Lown, J W

    1990-01-01

    A series of tether-linked bis netropsins have been synthesized in order to assess the phasing problem, which arises because of the lack of dimensional correspondence between oligopeptides and oligonucleotides in DNA binding characteristics. The consequences of incorporating variable-length flexible and rigid tethers [poly(methylene), Z and E ethylene, m- and p-phenylene] between the two netropsin-like moieties on the DNA binding properties were assessed by DNase I footprinting. The conformational freedom associated with two netropsins linked by a flexible methylene tether allows ligand binding in both a mono- and bidentate fashion, with bidentate binding requiring a minimum linker length of (CH2)3. For compounds possessing rigid tethers, for example, cis and trans ethylene moieties, the cis geometry excludes bidentate ligation while the trans structure favors it. Bis netropsins possessing aryl linking groups have reduced DNA binding affinities. This is most plausibly due to the aryl groups, which are not coplanar with the netropsin moieties, thus blocking the ligand from penetrating deeply into the minor groove of DNA. PMID:1966670

  5. In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla.

    PubMed

    Edden, Richard A E; Pomper, Martin G; Barker, Peter B

    2007-06-01

    A method is described that allows the in vivo differentiation of N-acetyl aspartate (NAA) from N-acetyl aspartyl glutamate (NAAG) by in vivo MR spectroscopy (MRS) at 3 Tesla (3T). The method, which is based on MEGA-point-resolved spectroscopy (PRESS) editing, selectively targets the aspartyl spin system of one species while deliberately removing the other species from the spectrum. This allows quantitative measurements of NAA and NAAG without the need for fitting of unresolved peaks. White matter concentrations of NAA (6.7 +/- 0.3 mM) and NAAG (2.2 +/- 0.3 mM) were measured in 10 healthy volunteers to demonstrate the method. PMID:17534922

  6. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    SciTech Connect

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  7. Leucine-684: A conserved residue of an AMP-acetyl CoA synthetase (AceCS) from Leishmania donovani is involved in substrate recognition, catalysis and acetylation.

    PubMed

    Soumya, Neelagiri; Tandan, Hitendra; Damre, Mangesh V; Gangwal, Rahul P; Sangamwar, Abhay T; Singh, Sushma

    2016-04-15

    AMP-acetyl CoA synthetase (AMP-AceCS) is a key enzyme which catalyzes the activation of acetate to acetyl CoA, an important intermediate at the cross roads of various anabolic and catabolic pathways. Multiple sequence alignment of Leishmania donovani AceCS with other organisms revealed the presence of a highly conserved leucine residue at 684 position which is known to be crucial for acetylation by protein acetyl transferases in other organisms. In an attempt to understand the role of leucine residue at 684 position in L. donovani acetyl CoA synthetase (LdAceCS), it was mutated to proline (P) by site directed mutagenesis. Kinetic analysis of the L684P-LdAceCS mutant revealed approximately two fold increased binding affinity with acetate, whereas fivefold decreased affinity was observed with ATP. There was insignificant change in secondary structure as revealed by CD however, two fold decreased fluorescence intensity was observed at an emission maxima of 340nm. Interestingly, L684P mutation abolished the acetylation of the mutant enzyme indicating the importance of L684 in acetylation of the enzyme. Changes in biochemical parameters of the mutant protein were validated by homology modeling of the wild type and mutant LdAceCS enzyme using Salmonella enterica AceCS crystal structure as template. Our data provides evidence for the role of leucine 684 residue in substrate recognition, catalysis and acetylation of the AceCS enzyme. PMID:26794803

  8. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  9. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo

    PubMed Central

    Gorsky, Marianna Karina; Burnouf, Sylvie; Dols, Jacqueline; Mandelkow, Eckhard; Partridge, Linda

    2016-01-01

    Dysfunction and accumulation of the microtubule-associated human Tau (hTau) protein into intraneuronal aggregates is observed in many neurodegenerative disorders including Alzheimer’s disease (AD). Reversible lysine acetylation has recently emerged as a post-translational modification that may play an important role in the modulation of hTau pathology. Acetylated hTau species have been observed within hTau aggregates in human AD brains and multi-acetylation of hTau in vitro regulates its propensity to aggregate. However, whether lysine acetylation at position 280 (K280) modulates hTau-induced toxicity in vivo is unknown. We generated new Drosophila transgenic models of hTau pathology to evaluate the contribution of K280 acetylation to hTau toxicity, by analysing the respective toxicity of pseudo-acetylated (K280Q) and pseudo-de-acetylated (K280R) mutant forms of hTau. We observed that mis-expression of pseudo-acetylated K280Q-hTau in the adult fly nervous system potently exacerbated fly locomotion defects and photoreceptor neurodegeneration. In addition, modulation of K280 influenced total hTau levels and phosphorylation without changing hTau solubility. Altogether, our results indicate that pseudo-acetylation of the single K280 residue is sufficient to exacerbate hTau neurotoxicity in vivo, suggesting that acetylated K280-hTau species contribute to the pathological events leading to neurodegeneration in AD. PMID:26940749

  10. Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite

    PubMed Central

    Cobbold, Simon A.; Santos, Joana M.; Ochoa, Alejandro; Perlman, David H.; Llinás, Manuel

    2016-01-01

    Lysine acetylation is a ubiquitous post-translational modification in many organisms including the malaria parasite Plasmodium falciparum, yet the full extent of acetylation across the parasite proteome remains unresolved. Moreover, the functional significance of acetylation or how specific acetyl-lysine sites are regulated is largely unknown. Here we report a seven-fold expansion of the known parasite ‘acetylome’, characterizing 2,876 acetylation sites on 1,146 proteins. We observe that lysine acetylation targets a diverse range of protein complexes and is particularly enriched within the Apicomplexan AP2 (ApiAP2) DNA-binding protein family. Using quantitative proteomics we determined that artificial perturbation of the acetate/acetyl-CoA balance alters the acetyl-lysine occupancy of several ApiAP2 DNA-binding proteins and related transcriptional proteins. This metabolic signaling could mediate significant downstream transcriptional responses, as we show that acetylation of an ApiAP2 DNA-binding domain ablates its DNA-binding propensity. Lastly, we investigated the acetyl-lysine targets of each class of lysine deacetylase in order to begin to explore how each class of enzyme contributes to regulating the P. falciparum acetylome. PMID:26813983