These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II  

PubMed Central

We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using both ordinary least squares regression (OLS) and partial least squares regression (PLS). In particular, we show that IRS provides a robust calibration model that does not increase in error when applied to samples with optical properties outside the range of calibration. PMID:18711512

Bechtel, Kate L.; Shih, Wei-Chuan; Feld, Michael S.

2009-01-01

2

Quantitative biological Raman spectroscopy for non-invasive blood analysis  

E-print Network

The long term goal of this project is the measurement of clinically-relevant analytes in the blood tissue matrix of human subjects using near-infrared Raman spectroscopy, with the shorter term research directed towards ...

Shih, Wei-Chuan

2007-01-01

3

Recapturing Quantitative Biology.  

ERIC Educational Resources Information Center

Presents a classroom activity on estimating animal populations. Uses shoe boxes and candies to emphasize the importance of mathematics in biology while introducing the methods of quantitative ecology. (JRH)

Pernezny, Ken; And Others

1996-01-01

4

Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology  

PubMed Central

A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250??m thick and 750??m in radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to derive quantities for sub-cellular units. Clausius-Mossotti factor of Jurkat cells is extracted from the impedance spectrum. Effects of cellular heterogeneity are discussed and parameterized. Jurkat cells are also tested with a time domain reflectometry system for verification of the microfluidic device. Results indicate good agreement of values obtained with both techniques. The device can be used as a unique cell diagnostic tool to yield information on sub-cellular units. PMID:23853680

Sabuncu, Ahmet C.; Zhuang, Jie; Kolb, Juergen F.; Beskok, Ali

2012-01-01

5

Princeton Diversity Programs in Molecular Biology and Quantitative & Computational Biology  

E-print Network

CASE STUDY Princeton Diversity Programs in Molecular Biology and Quantitative & Computational Biology Author Princeton University Acknowledgments. Vides estius moluptaquis aut maxime vitin peroribus: Diversity Programs in Molecular Biology and Quantitative & Computational Biology Founded in 2007 in response

6

Quantitative Biology Modules in Mathcad  

NSDL National Science Digital Library

These instructional exercises (modules) are part of a series of quantitative biology courses (Q courses) developed and taught at UC Davis. The main files are written as MathCad 13 documents and require a copy of MathCad 13, or higher, to run. The downloadable MathCad documents are unanswered versions suitable for distribution to students.

Eric Leaver (University of California, Davis;); Carole Hom (University of California, Davis;); Martin Wilson (University of California, Davis;)

2009-04-16

7

Investigation of noise-induced instabilities in quantitative biological spectroscopy and its implications for non-invasive glucose monitoring  

PubMed Central

Over the past decade, optical spectroscopy has been employed in combination with multivariate chemometric models to investigate a wide variety of diseases and pathological conditions, primarily due to its excellent chemical specificity and lack of sample preparation requirements. Despite promising results in several proof-of-concept studies, its translation to the clinical setting has often been hindered by inadequate accuracy of the conventional spectroscopic models. To address this issue and the possibility of curved (non-linear) effects in the relationship between the concentrations of the analyte of interest and the mixture spectra (due to fluctuations in sample and environmental conditions), support vector machine-based least squares non-linear regression (LS-SVR) has been recently proposed. In this paper, we investigate the robustness of this methodology to noise-induced instabilities and present an analytical formula for estimating modeling precision as a function of measurement noise and model parameters. This formalism can be readily used to evaluate uncertainty in information extracted from spectroscopic measurements, particularly important for rapid-acquisition biomedical applications. Subsequently, using field data (Raman spectra) acquired from glucose clamping study on an animal model subject, we perform the first systematic investigation of the relative effect of additive interference components (namely, noise in prediction spectra, calibration spectra and calibration concentrations) on the prediction error of non-linear spectroscopic models. Our results show that LS-SVR method gives more accurate results and is substantially more robust to additive noise when compared with conventional regression methods such as partial least-squares regression (PLS), when careful selection of the LS-SVR model parameters are performed. We anticipate that these results will be useful for uncertainty estimation in similar biomedical applications where the precision of measurements and its response to noise in the dataset is as important, if not more so, than the generic accuracy level. PMID:22950485

Barman, Ishan; Dingari, Narahara Chari; Singh, Gajendra Pratap; Soares, Jaqueline S.; Dasari, Ramachandra R.; Smulko, Janusz M.

2014-01-01

8

Degree: Bachelor of Science Major: Quantitative Biology  

E-print Network

Degree: Bachelor of Science Major: Quantitative Biology The College of Arts and Sciences administers an interdisciplinary major pro- gram in Quantitative Biology leading to the Bachelor of Science degree. The major provides a strong background in mathematics, biology, chemistry and physics appro

Cakoni, Fioralba

9

QUANTITATIVE 15N NMR SPECTROSCOPY  

EPA Science Inventory

Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

10

A flow system for the on-line quantitative measurement of the retention of dosage forms on biological surfaces using spectroscopy and image analysis.  

PubMed

Measuring the retention, or residence time, of dosage forms to biological tissue is commonly a qualitative measurement, where no real values to describe the retention can be recorded. The result of this is an assessment that is dependent upon a user's interpretation of visual observation. This research paper outlines the development of a methodology to quantitatively measure, both by image analysis and by spectrophotometric techniques, the retention of material to biological tissues, using the retention of polymer solutions to ocular tissue as an example. Both methods have been shown to be repeatable, with the spectrophotometric measurement generating data reliably and quickly for further analysis. PMID:22425677

Cave, Richard A; Cook, Joseph P; Connon, Che J; Khutoryanskiy, Vitaliy V

2012-05-30

11

Quantitative tunneling spectroscopy of nanocrystals  

SciTech Connect

The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics

First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

2007-05-25

12

Teaching quantitative biology: goals, assessments, and resources.  

PubMed

More than a decade has passed since the publication of BIO2010, calling for an increased emphasis on quantitative skills in the undergraduate biology curriculum. In that time, relatively few papers have been published that describe educational innovations in quantitative biology or provide evidence of their effects on students. Using a "backward design" framework, we lay out quantitative skill and attitude goals, assessment strategies, and teaching resources to help biologists teach more quantitatively. Collaborations between quantitative biologists and education researchers are necessary to develop a broader and more appropriate suite of assessment tools, and to provide much-needed evidence on how particular teaching strategies affect biology students' quantitative skill development and attitudes toward quantitative work. PMID:25368425

Aikens, Melissa L; Dolan, Erin L

2014-11-01

13

Toward Quantitative "In Vivo Biochemistry" with Fluorescence Fluctuation Spectroscopy  

PubMed Central

Quantitative description of protein dynamics and interactions in vivo with temporal and spatial resolution is a key step in dissecting molecular mechanisms in cell biology. Fluorescence fluctuation spectroscopy (FFS) has recently emerged as a powerful in vivo tool for assessing molecular concentration and movement and formation of hetero- and homo-oligomeric complexes. This article discusses point FFS-based analysis methods that have proven useful to cell biologists, focusing on the kinds of information they provide, their pros and cons, and the basic instrumentation required. Along the way, we describe briefly a few recent examples where these analyses have helped address important biological questions. PMID:21160072

2010-01-01

14

Quantitative biology: where modern biology meets physical sciences.  

PubMed

Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines. PMID:25368426

Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E; Fai, Thomas G; Podolski, Marija

2014-11-01

15

Informatics and Quantitative Analysis in Biological Imaging  

NSDL National Science Digital Library

Biological imaging is now a quantitative technique for probing cellular structure and dynamics and is increasingly used for cell-based screens. However, the bioinformatics tools required for hypothesis-driven analysis of digital images are still immature. We are developing the Open Microscopy Environment (OME) as an informatics solution for the storage and analysis of optical microscope image data. OME aims to automate image analysis, modeling, and mining of large sets of images and specifies a flexible data model, a relational database, and an XML-encoded file standard that is usable by potentially any software tool. With this design, OME provides a first step toward biological image informatics.

Jason Swedlow (University of Dundee;); Ilya Goldberg (National Institutes of Health;Laboratory of Genetics, National Institute on Aging); Erik Brauner (Harvard Medical School;Institute of Chemistry and Cell Biology); Peter K. Sorger (Harvard Medical School/Massachusetts Institute of Technology;)

2003-04-04

16

Quantitative Photoacoustic Spectroscopy in the Frequency Domain  

NASA Astrophysics Data System (ADS)

In this paper, the development of a new methodology for the quantitative determination of the optical absorption coefficient in simple systems in which the light absorption follows Beer’s law is described. An approximation of the heat diffusion model of the photoacoustic effect for thermally thick samples is explored. It was found that we could combine the amplitude and the phase of the photoacoustic signal to obtain a new analytical expression for the optical absorption coefficient. This expression is directly proportional to the normalized photoacoustic signal amplitude, the sine of the phase difference, and the heat capacity per unit of volume of the sample. The theoretical results were experimentally verified in the visible range (300 nm to 700 nm). The optical absorption coefficient obtained with this methodology was comparable to that obtained by UV-Vis spectroscopy.

Gutiérrez-Juárez, G.; Vela-Lira, H. A.; Yánez-Limón, J. M.; García-Rodríguez, F. J.; Polo-Parada, L.

2013-09-01

17

Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy  

NASA Astrophysics Data System (ADS)

The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

2007-09-01

18

Effect of photobleaching on calibration model development in biological Raman spectroscopy  

E-print Network

A major challenge in performing quantitative biological studies using Raman spectroscopy lies in overcoming the influence of the dominant sample fluorescence background. Moreover, the prediction accuracy of a calibration ...

Barman, Ishan

19

Unraveling pancreatic islet biology by quantitative proteomics  

SciTech Connect

The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.

Zhou, Jianying; Dann, Geoffrey P.; Liew, Chong W.; Smith, Richard D.; Kulkarni, Rohit N.; Qian, Weijun

2011-08-01

20

Quantitative cell biology: the essential role of theory.  

PubMed

Quantitative biology is a hot area, as evidenced by the recent establishment of institutes, graduate programs, and conferences with that name. But what is quantitative biology? What should it be? And how can it contribute to solving the big questions in biology? The past decade has seen very rapid development of quantitative experimental techniques, especially at the single-molecule and single-cell levels. In this essay, I argue that quantitative biology is much more than just the quantitation of these experimental results. Instead, it should be the application of the scientific method by which measurement is directed toward testing theories. In this view, quantitative biology is the recognition that theory and models play critical roles in biology, as they do in physics and engineering. By tying together experiment and theory, quantitative biology promises a deeper understanding of underlying mechanisms, when the theory works, or to new discoveries, when it does not. PMID:25368416

Howard, Jonathon

2014-11-01

21

RIKEN Quantitative Biology Center Cell Dynamics Research Core  

E-print Network

Regulation Laboratory for Biomolecular Structure and Dynamics Computational Biology Research Core LaboratoryRIKEN Quantitative Biology Center Cell Dynamics Research Core Laboratory for Cell Dynamics for Computational Molecular Design Drug Discovery Molecular Simulation Platform Unit Laboratory for Biomolecular

Fukai, Tomoki

22

Photon-tissue interaction model for quantitative assessment of biological tissues  

NASA Astrophysics Data System (ADS)

In this study, we describe a direct fit photon-tissue interaction model to quantitatively analyze reflectance spectra of biological tissue samples. The model rapidly extracts biologically-relevant parameters associated with tissue optical scattering and absorption. This model was employed to analyze reflectance spectra acquired from freshly excised human pancreatic pre-cancerous tissues (intraductal papillary mucinous neoplasm (IPMN), a common precursor lesion to pancreatic cancer). Compared to previously reported models, the direct fit model improved fit accuracy and speed. Thus, these results suggest that such models could serve as real-time, quantitative tools to characterize biological tissues assessed with reflectance spectroscopy.

Lee, Seung Yup; Lloyd, William R.; Wilson, Robert H.; Chandra, Malavika; McKenna, Barbara; Simeone, Diane; Scheiman, James; Mycek, Mary-Ann

2014-02-01

23

Ministry of Fisheries Undergraduate Scholarships in Quantitative Marine Biology  

E-print Network

/Marine Biology. The Ministry of Fisheries wishes to support the study of mathematics/statistics and marineMinistry of Fisheries Undergraduate Scholarships in Quantitative Marine Biology Ministry of Fisheries/NIWA Postgraduate Scholarships in Quantitative Fisheries Science Scholarships available: PhD ­ up

Auckland, University of

24

1, 2, 3, 4: infusing quantitative literacy into introductory biology.  

PubMed

Biology of the twenty-first century is an increasingly quantitative science. Undergraduate biology education therefore needs to provide opportunities for students to develop fluency in the tools and language of quantitative disciplines. Quantitative literacy (QL) is important for future scientists as well as for citizens, who need to interpret numeric information and data-based claims regarding nearly every aspect of daily life. To address the need for QL in biology education, we incorporated quantitative concepts throughout a semester-long introductory biology course at a large research university. Early in the course, we assessed the quantitative skills that students bring to the introductory biology classroom and found that students had difficulties in performing simple calculations, representing data graphically, and articulating data-driven arguments. In response to students' learning needs, we infused the course with quantitative concepts aligned with the existing course content and learning objectives. The effectiveness of this approach is demonstrated by significant improvement in the quality of students' graphical representations of biological data. Infusing QL in introductory biology presents challenges. Our study, however, supports the conclusion that it is feasible in the context of an existing course, consistent with the goals of college biology education, and promotes students' development of important quantitative skills. PMID:20810965

Speth, Elena Bray; Momsen, Jennifer L; Moyerbrailean, Gregory A; Ebert-May, Diane; Long, Tammy M; Wyse, Sara; Linton, Debra

2010-01-01

25

Photoacoustic resonance spectroscopy for biological tissue characterization  

NASA Astrophysics Data System (ADS)

By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated laser, the photoacoustic resonance effect is observed experimentally on phantoms and porcine tissues. Experimental results demonstrate different spectra for each phantom and tissue sample to show significant potential for spectroscopic analysis, fusing optical absorption and mechanical vibration properties. Unique RLC circuit parameters are extracted to quantitatively characterize phantom and biological tissues.

Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin; Ohl, Claus-Dieter

2014-06-01

26

Journal of Quantitative Spectroscopy & Radiative Transfer 101 (2006) 488497  

E-print Network

and by reflecting and absorbing incoming short-wave solar radiation. However, cirrus clouds remain a significantJournal of Quantitative Spectroscopy & Radiative Transfer 101 (2006) 488­497 Modeling single thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice

27

Journal of Quantitative Spectroscopy & Radiative Transfer 101 (2006) 404410  

E-print Network

a well-collimated detector of electromagnetic radiation located at a distance r from the scatteringJournal of Quantitative Spectroscopy & Radiative Transfer 101 (2006) 404­410 The electromagnetic, New York, NY 10025, USA Abstract We revisit the optical theorem relevant to the far-field

28

Features of the Quantitative Analysis in Moessbauer Spectroscopy  

SciTech Connect

The results describing the effect of different factors on errors in quantitative determination of the phase composition of studied substances by Moessbauer spectroscopy absorption are presented, and the ways of using them are suggested. The effectiveness of the suggested methods is verified by an example of analyzing standard and unknown compositions.

Semenov, V. G.; Panchuk, V. V. [St. Petersburg State University, St. Petersburg (Russian Federation); Irkaev, S. M. [Institute for Analytical Instrumentation RAS, St. Petersburg (Russian Federation)

2010-07-13

29

An Introduction to Biological NMR Spectroscopy*  

PubMed Central

NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

Marion, Dominique

2013-01-01

30

A Transformative Model for Undergraduate Quantitative Biology Education  

PubMed Central

The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions. PMID:20810949

Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

2010-01-01

31

Quantitative microbeam analysis of biological samples  

Microsoft Academic Search

In order to accurately determine the elemental concentration maps of thin biological samples, simultaneous PIXE and STIM measurement were performed on our microbeam experimental station. The results of the STIM were used to take into account the local mass density of the samples which can change dramatically within a distances of few microns. New software was developed to evaluate the

P. Pelicon; M. Budnar; T. Mrak

32

Quantitative and Rapid DNA Detection by Laser Transmission Spectroscopy  

PubMed Central

Laser transmission spectroscopy (LTS) is a quantitative and rapid in vitro technique for measuring the size, shape, and number of nanoparticles in suspension. Here we report on the application of LTS as a novel detection method for species-specific DNA where the presence of one invasive species was differentiated from a closely related invasive sister species. The method employs carboxylated polystyrene nanoparticles functionalized with short DNA fragments that are complimentary to a specific target DNA sequence. In solution, the DNA strands containing targets bind to the tags resulting in a sizable increase in the nanoparticle diameter, which is rapidly and quantitatively measured using LTS. DNA strands that do not contain the target sequence do not bind and produce no size change of the carboxylated beads. The results show that LTS has the potential to become a quantitative and rapid DNA detection method suitable for many real-world applications. PMID:22195026

Li, Frank; Mahon, Andrew R.; Barnes, Matthew A.; Feder, Jeffery; Lodge, David M.; Hwang, Ching-Ting; Schafer, Robert; Ruggiero, Steven T.; Tanner, Carol E.

2011-01-01

33

APD detectors for biological fluorescence spectroscopy  

NASA Astrophysics Data System (ADS)

Fluorescence spectroscopy is a very convenient and widely used method for studying the molecular background of biological processes [L. Salomé, J.L. Cazeil, A. Lopez, J.F. Tocanne, Eur. Biophys. J. 27 (1998) 391-402]. Chromophores are included in the structure under study and a flash of laser light induces fluorescence (Fluorescence Recovery After Photo-bleaching), the decay of which yields information on the polarity, the speed of rotation, and the speed of diffusion as well as on the temporal and spatial evolution of interactions between molecular species. The method can even be used to study living cells [J.F. Tocanne, L. Cézanne, A. Lopez, Prog. Lipid Res. 33 (1994) 203-237, L. Cezanne, A. Lopez, F. Loste, G. Parnaud, O. Saurel, P. Demange, J.F. Tocanne, Biochemistry 38 (1999) 2779-2786]. This is classically performed with a PM-based system. For biological reasons a decrease of the excitation of the cells is highly desirable. Because the fluorescence response then becomes fainter a significant improvement in detector capability would be welcome. We present here results obtained with an Avalanche Photo Diode (APD)-based system. The small sensitive area of detection allows a very significant improvement in signal/noise ratio, improvement in gain, and the opening-up of a new parameter space. With these new detectors we can begin the study of information transmission between cells through morphine receptors. This work involves both electronics engineers and biophysicists, so results and techniques in both fields will be presented here.

Mazères, S.; Borrel, V.; Magenc, C.; Courrech, J. L.; Bazer-Bachi, R.

2006-11-01

34

Quantum integrable systems. Quantitative methods in biology  

E-print Network

Quantum integrable systems have very strong mathematical properties that allow an exact description of their energetic spectrum. From the Bethe equations, I formulate the Baxter "T-Q" relation, that is the starting point of two complementary approaches based on nonlinear integral equations. The first one is known as thermodynamic Bethe ansatz, the second one as Kl\\"umper-Batchelor-Pearce-Destri- de Vega. I show the steps toward the derivation of the equations for some of the models concerned. I study the infrared and ultraviolet limits and discuss the numerical approach. Higher rank integrals of motion can be obtained, so gaining some control on the eigenvectors. After, I discuss the Hubbard model in relation to the N = 4 supersymmetric gauge theory. The Hubbard model describes hopping electrons on a lattice. In the second part, I present an evolutionary model based on Turing machines. The goal is to describe aspects of the real biological evolution, or Darwinism, by letting evolve populations of algorithms. Particularly, with this model one can study the mutual transformation of coding/non coding parts in a genome or the presence of an error threshold. The assembly of oligomeric proteins is an important phenomenon which interests the majority of proteins in a cell. I participated to the creation of the project "Gemini" which has for purpose the investigation of the structural data of the interfaces of such proteins. The objective is to differentiate the role of amino acids and determine the presence of patterns characterizing certain geometries.

Giovanni Feverati

2011-01-19

35

Integrating Quantitative Thinking into an Introductory Biology Course Improves Students' Mathematical Reasoning in Biological Contexts  

PubMed Central

Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

2014-01-01

36

Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.  

PubMed

Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning. PMID:24591504

Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

2014-01-01

37

Quantitative imaging strategies pave the way for testable biological concepts  

PubMed Central

In developmental biology, the accumulation of qualitative phenotypic descriptions has fueled the need for testable parsimonious hypotheses, giving a fresh impetus to quantitative strategies. As an illustration, thanks to the precise quantification of cell growth and microtubule behavior in a study published in BMC Plant Biology, Zhang and collaborators have identified sequential phases of polarized and isotropic growth in puzzle-shaped leaf epidermal cells, thus providing new clues to explore how growth coordination occurs in this tissue. PMID:21352557

2011-01-01

38

Quantitative polarized Raman spectroscopy in highly turbid bone tissue  

PubMed Central

Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim?oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim?oim bones (28±3 deg) compared to wild-type bones (22±3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76±2 deg and in oim?oim mice, it is 72±4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy. PMID:20615030

Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

2010-01-01

39

Quantitative polarized Raman spectroscopy in highly turbid bone tissue  

NASA Astrophysics Data System (ADS)

Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

2010-05-01

40

Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy  

PubMed Central

We have demonstrated that spatially modulated quantitative spectroscopy (SMoQS) is capable of extracting absolute optical properties from homogeneous tissue simulating phantoms that span both the visible and near-infrared wavelength regimes. However, biological tissue, such as skin, is highly structured, presenting challenges to quantitative spectroscopic techniques based on homogeneous models. In order to more accurately address the challenges associated with skin, we present a method for depth-resolved optical property quantitation based on a two layer model. Layered Monte Carlo simulations and layered tissue simulating phantoms are used to determine the efficacy and accuracy of SMoQS to quantify layer specific optical properties of layered media. Initial results from both the simulation and experiment show that this empirical method is capable of determining top layer thickness within tens of microns across a physiological range for skin. Layer specific chromophore concentration can be determined to <±10% the actual values, on average, whereas bulk quantitation in either visible or near infrared spectroscopic regimes significantly underestimates the layer specific chromophore concentration and can be confounded by top layer thickness. PMID:21806282

Saager, Rolf B.; Truong, Alex; Cuccia, David J.; Durkin, Anthony J.

2011-01-01

41

Toward Integration: From Quantitative Biology to Mathbio-Biomath?  

ERIC Educational Resources Information Center

In response to the call of "BIO2010" for integrating quantitative skills into undergraduate biology education, 30 Howard Hughes Medical Institute (HHMI) Program Directors at the 2006 HHMI Program Directors Meeting established a consortium to investigate, implement, develop, and disseminate best practices resulting from the integration of math and…

Marsteller, Pat; de Pillis, Lisette; Findley, Ann; Joplin, Karl; Pelesko, John; Nelson, Karen; Thompson, Katerina; Usher, David; Watkins, Joseph

2010-01-01

42

SHORT REVIEW Quantitative and evolutionary biology of alternative  

E-print Network

to environmental variables has been aimed at changes in gene expression levels (i.e. quantitative polymerase chain of alternative transcripts affects phenotypic plasticity and reaction norms JH Marden Department of Biology, 208 al., 2005) understanding of the evolution of phenotypic plasticity and reaction norms

Marden, James

43

Nanoliter Scale Microbioreactor Array for Quantitative Cell Biology  

Microsoft Academic Search

A nanoliter scale microbioreactor array was designed for multiplexed quantitative cell biology. An addressable 8 ? 8 array of three nanoliter chambers was demonstrated for observing the serum response of HeLa human cancer cells in 64 parallel cultures. The individual culture unit was designed with a ''C'' shaped ring that effectively decoupled the central cell growth regions from the outer

Philip J. Lee; Paul J. Hung; Vivek M. Rao; Luke P. Lee

2005-01-01

44

Quantitative analysis of gallstones using laser-induced breakdown spectroscopy  

SciTech Connect

The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

Singh, Vivek K.; Singh, Vinita; Rai, Awadhesh K.; Thakur, Surya N.; Rai, Pradeep K.; Singh, Jagdish P

2008-11-01

45

Optical spectroscopy for quantitative sensing in human pancreatic tissues  

NASA Astrophysics Data System (ADS)

Pancreatic adenocarcinoma has a five-year survival rate of only 6%, largely because current diagnostic methods cannot reliably detect the disease in its early stages. Reflectance and fluorescence spectroscopies have the potential to provide quantitative, minimally-invasive means of distinguishing pancreatic adenocarcinoma from normal pancreatic tissue and chronic pancreatitis. The first collection of wavelength-resolved reflectance and fluorescence spectra and time-resolved fluorescence decay curves from human pancreatic tissues was acquired with clinically-compatible instrumentation. Mathematical models of reflectance and fluorescence extracted parameters related to tissue morphology and biochemistry that were statistically significant for distinguishing between pancreatic tissue types. These results suggest that optical spectroscopy has the potential to detect pancreatic disease in a clinical setting.

Wilson, Robert H.; Chandra, Malavika; Lloyd, William; Chen, Leng-Chun; Scheiman, James; Simeone, Diane; McKenna, Barbara; Mycek, Mary-Ann

2011-07-01

46

Fourier transform raman spectroscopy of synthetic and biological calcium phosphates  

Microsoft Academic Search

Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence

G. R. Sauer; W. B. Zunic; J. R. Durig; R. E. Wuthier

1994-01-01

47

Quantum dot thermal spectroscopy for biological optical tweezer applications  

E-print Network

Quantum dot thermal spectroscopy for biological optical tweezer applications William T Ramsay1. Quantum dots can be fabricated to hold particular emission properties and can be labelled to target specific binding sites in biological samples to act as biomarkers [1]. Many quantum dots have been observed

Greenaway, Alan

48

Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment  

PubMed Central

Measurements of Cherenkov emission in tissue during radiation therapy are shown to enable estimation of hemoglobin oxygen saturation non-invasively, through spectral fitting of the spontaneous emissions from the treated tissue. Tissue oxygenation plays a critical role in the efficacy of radiation therapy to kill tumor tissue. Yet in-vivo measurement of this has remained elusive in routine use because of the complexity of oxygen measurement techniques. There is a spectrally broad emission of Cherenkov light that is induced during the time of irradiation, and as this travels through tissue from the point of the radiation deposition, the tissue absorption and scatter impart spectral changes. These changes can be quantified by diffuse spectral fitting of the signal. Thus Cherenkov emission spectroscopy is demonstrated for the first time quantitatively in vitro and qualitatively in vivo, and has potential for real-time online tracking of tissue oxygen during radiation therapy when fully characterized and developed. PMID:22418319

Axelsson, Johan; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

2012-01-01

49

Absolute Quantitation of Bacterial Biofilm Adhesion and Viscoelasticity by Microbead Force Spectroscopy  

E-print Network

Absolute Quantitation of Bacterial Biofilm Adhesion and Viscoelasticity by Microbead Force in biofilms. By performing microbead force spectroscopy with a closed-loop atomic force microscope, we developed standardized conditions for microbead force spectroscopy to enable meaningful comparison of data

Dutcher, John

50

Quantitative analysis of ceramics by laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

A quantitative elemental analysis of ceramics was carried out with laser-induced breakdown spectroscopy. A Q-switched Nd:YAG laser was focused on ceramic targets in an argon atmosphere at reduced pressure, and the emission spectra from laser-induced plasma were measured using time-resolved spectroscopy. The experimental results showed that in argon at approximately 200 Torr, the spectral line intensity and the line-to-background ratio were maximized by observing the laser plasma with a time delay of 0.4 ?s. Also, time-resolved measurement of a spectrum in the initial stage of plasma generation (˜1 ?s) was effective for improving the slope of the calibration curve. Based on the results, standard ceramic samples were analyzed for magnesium, aluminum, calcium, iron and titanium, and linear calibration curves with a slope of unity were obtained by measuring spectra with a gate width of 0.4 ?s at a delay time of 0.4 ?s after the laser pulse in argon at 200 Torr.

Kuzuya, M.; Murakami, M.; Maruyama, N.

2003-05-01

51

Toward Integration: From Quantitative Biology to Mathbio-Biomath?  

PubMed Central

In response to the call of BIO2010 for integrating quantitative skills into undergraduate biology education, 30 Howard Hughes Medical Institute (HHMI) Program Directors at the 2006 HHMI Program Directors Meeting established a consortium to investigate, implement, develop, and disseminate best practices resulting from the integration of math and biology. With the assistance of an HHMI-funded mini-grant, led by Karl Joplin of East Tennessee State University, and support in institutional HHMI grants at Emory and University of Delaware, these institutions held a series of summer institutes and workshops to document progress toward and address the challenges of implementing a more quantitative approach to undergraduate biology education. This report summarizes the results of the four summer institutes (2007–2010). The group developed four draft white papers, a wiki site, and a listserv. One major outcome of these meetings is this issue of CBE—Life Sciences Education, which resulted from proposals at our 2008 meeting and a January 2009 planning session. Many of the papers in this issue emerged from or were influenced by these meetings. PMID:20810946

de Pillis, Lisette; Findley, Ann; Joplin, Karl; Pelesko, John; Nelson, Karen; Thompson, Katerina; Usher, David; Watkins, Joseph

2010-01-01

52

Positron annihilation spectroscopy of biological tissue in (11)C irradiation.  

PubMed

Positron annihilation spectroscopy (PAS) spectra of biological tissue in (11)C irradiation are reported and spatial resolution coefficient of positron emission tomography (PET) obtained from the PAS spectrum is discussed for (11)C irradiation. A PAS spectrum of the biological tissue with water is the same as that of the water pool phantom in (11)C irradiation. However, a PAS spectrum of the biological tissue with less water differs from that of the water pool phantom. The PET spatial resolution coefficient depends on the kind of biological tissue. However, the PET spatial resolution coefficient, 0.00243? ± ?0.00014, can be used as a common value of maximum limit. PMID:25360543

Sakurai, Hiroshi; Itoh, Fumitake; Hirano, Yoshiyuki; Nitta, Munetaka; Suzuki, Kosuke; Kato, Daisuke; Yoshida, Eiji; Nishikido, Fumihiko; Wakizaka, Hidekatsu; Kanai, Tatsuaki; Yamaya, Taiga

2014-11-21

53

A Method for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy  

E-print Network

A Method for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy By Roger N. Clark (AVIRIS) Team, 2010, A method for quantitative mapping of thick oil spills using imaging spectroscopy: U ....................................................................................................................................................14 Figures 1. Image of oil emulsion from the Deepwater Horizon oil spill in the Gulf of Mexico off

Torgersen, Christian

54

Nanomechanical spectroscopy of synthetic and biological membranes.  

PubMed

We report that atomic force microscopy based high-speed nanomechanical analysis can identify components of complex heterogeneous synthetic and biological membranes from the measured spectrum of nanomechanical properties. We have investigated phase separated ternary lipid bilayers and purple membranes of Halobacterium salinarum. The nanomechanical spectra recorded on these samples identify all membrane components, some of which are difficult to resolve in conventional phase images. This non-destructive approach can aid the design of synthetic lipid bilayers and studies lateral organization of complex heterogeneous cellular membranes. PMID:24895687

Lü, Junhong; Yang, Ju; Dong, Mingdong; Sahin, Ozgur

2014-07-01

55

Computational Laser Spectroscopy in a Biological Tissue  

PubMed Central

We present a numerical spectroscopic study of visible and infrared laser radiation in a biological tissue. We derive a solution of a general two-dimensional time dependent radiative transfer equation in a tissue-like medium. The used model is suitable for many situations especially when the external source is time-dependent or continuous. We use a control volume-discrete ordinate method associated with an implicit three-level second-order time differencing scheme. We consider a very thin rectangular biological-tissue-like medium submitted to a visible or a near infrared light sources. The RTE is solved for a set of different wavelength source. All sources are assumed to be monochromatic and collimated. The energetic fluence rate is computed at a set of detector points on the boundaries. According to the source type, we investigate either the steady-state or transient response of the medium. The used model is validated in the case of a heterogeneous tissue-like medium using referencing experimental results from the literature. Also, the developed model is used to study changes on transmitted light in a rat-liver tissue-like medium. Optical properties depend on the source wavelength and they are taken from the literature. In particular, light-transmission in the medium is studied for continuous wave and for short pulse. PMID:20396377

Gantri, M.; Trabelsi, H.; Sediki, E.; Ben Salah, R.

2010-01-01

56

Computational laser spectroscopy in a biological tissue.  

PubMed

We present a numerical spectroscopic study of visible and infrared laser radiation in a biological tissue. We derive a solution of a general two-dimensional time dependent radiative transfer equation in a tissue-like medium. The used model is suitable for many situations especially when the external source is time-dependent or continuous. We use a control volume-discrete ordinate method associated with an implicit three-level second-order time differencing scheme. We consider a very thin rectangular biological-tissue-like medium submitted to a visible or a near infrared light sources. The RTE is solved for a set of different wavelength source. All sources are assumed to be monochromatic and collimated. The energetic fluence rate is computed at a set of detector points on the boundaries. According to the source type, we investigate either the steady-state or transient response of the medium. The used model is validated in the case of a heterogeneous tissue-like medium using referencing experimental results from the literature. Also, the developed model is used to study changes on transmitted light in a rat-liver tissue-like medium. Optical properties depend on the source wavelength and they are taken from the literature. In particular, light-transmission in the medium is studied for continuous wave and for short pulse. PMID:20396377

Gantri, M; Trabelsi, H; Sediki, E; Ben Salah, R

2010-01-01

57

Coherent two-dimensional infrared spectroscopy: Quantitative analysis of protein secondary structure in solution  

E-print Network

We present a method to quantitatively determine the secondary structure composition of globular proteins using coherent two-dimensional infrared (2DIR) spectroscopy of backbone amide I vibrations (1550–1720 cm?1). Sixteen ...

Baiz, Carlos

58

Ultrafast two-photon absorption in organic molecules| Quantitative spectroscopy and applications.  

E-print Network

?? This dissertation explores quantitative two-photon absorption spectroscopy to relate molecular structure with optical properties of organic chromophores. The dissertation describes an advanced fluorescence-based technique… (more)

Makarov, Nikolay Sergeevich

2010-01-01

59

Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.  

ERIC Educational Resources Information Center

Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

Hill, Devon W.; And Others

1988-01-01

60

Quantitative Determination of DNA-Ligand Binding Using Fluorescence Spectroscopy  

ERIC Educational Resources Information Center

The effective use of fluorescence spectroscopy for determining the binding of the intercalcating agent crhidium bromide to DNA is being described. The analysis used simple measurement techniques and hence can be easily adopted by the students for a better understanding.

Healy, Eamonn F.

2007-01-01

61

Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy  

E-print Network

Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy sulfur functionalities in natural organic matter from S K-edge XANES spectroscopy are presented-induced errors, inherent to the choice of a particular curve, are typically lower than 5% of total sulfur

62

Quantitative characterization of catalyst layer degradation in PEM fuel cells by X-ray photoelectron spectroscopy  

Microsoft Academic Search

A quantitative analysis of catalyst layer degradation was performed with X-ray photoelectron spectroscopy (XPS). XPS is quantitative, surface-sensitive, and is able to distinguish different bonding environments or chemical states of fuel cell catalyst layers and polymer electrolyte membrane. These capabilities have allowed us to explore the complex mechanisms of degradation during fuel cell operation. The elemental surface concentrations of carbon,

Feng-Yuan Zhang; Suresh G. Advani; Ajay K. Prasad; Mary E. Boggs; Shawn P. Sullivan; Thomas P. Beebe Jr.

2009-01-01

63

Identification and Quantitative Determination of Dipropylene Glycol in Terpene Mixtures Using 13C NMR Spectroscopy  

Microsoft Academic Search

A method that allows direct identification and quantitative determination of dipropylene glycol (DPG) using C NMR spectroscopy was developed. The quantitative procedure was checked and validated with commercially available DPG, controlled with two DPG-added essential oils, and then applied to commercial “Extraits de parfum” (perfume extracts).

Josephine Ottavioli; Joseph Casanova; Ange Bighelli

2011-01-01

64

Direct and quantitative broadband absorptance micro/nano spectroscopy using FTIR and bilayer cantilever probes  

E-print Network

Optical properties of micro/nano materials are important for many applications in biology, optoelectronics, and energy. In this thesis, a method is described to directly measure the quantitative absorptance spectra of ...

Hsu, Wei-Chun

2012-01-01

65

Gas-Phase Database for Quantitative Infrared Spectroscopy  

Microsoft Academic Search

The National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) are each creating quantitative databases containing the vapor-phase infrared spectra of pure chemicals. The digital databases have been created with both laboratory and remote-sensing applications in mind. A spectral resolution of 0.1 cm¹ was selected to avoid degrading sharp spectral features, while also realizing that

Steven W. Sharpe; Timothy J. Johnson; Robert L. Sams; Pamela M. Chu; George C. Rhoderick; Patricia A. Johnson

2004-01-01

66

Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology  

SciTech Connect

This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

Watson, J.D.; Siniscalco, M.

1986-01-01

67

Sub-terahertz resonance spectroscopy of biological macromolecules and cells  

NASA Astrophysics Data System (ADS)

Recently we introduced a Sub-THz spectroscopic system for characterizing vibrational resonance features from biological materials. This new, continuous-wave, frequency-domain spectroscopic sensor operates at room temperature between 315 and 480 GHz with spectral resolution of at least 1 GHz and utilizes the source and detector components from Virginia Diode, Inc. In this work we present experimental results and interpretation of spectroscopic signatures from bacterial cells and their biological macromolecule structural components. Transmission and absorption spectra of the bacterial protein thioredoxin, DNA and lyophilized cells of Escherichia coli (E. coli), as well as spores of Bacillus subtillis and B. atrophaeus have been characterized. Experimental results for biomolecules are compared with absorption spectra calculated using molecular dynamics simulation, and confirm the underlying physics for resonance spectroscopy based on interactions between THz radiation and vibrational modes or groups of modes of atomic motions. Such interactions result in multiple intense and narrow specific resonances in transmission/absorption spectra from nano-gram samples with spectral line widths as small as 3 GHz. The results of this study indicate diverse relaxation dynamic mechanisms relevant to sub-THz vibrational spectroscopy, including long-lasting processes. We demonstrate that high sensitivity in resolved specific absorption fingerprints provides conditions for reliable detection, identification and discrimination capability, to the level of strains of the same bacteria, and for monitoring interactions between biomaterials and reagents in near real-time. Additionally, it creates the basis for the development of new types of advanced biological sensors through integrating the developed system with a microfluidic platform for biomaterial samples.

Globus, Tatiana; Moyer, Aaron; Gelmont, Boris; Khromova, Tatyana; Sizov, Igor; Ferrance, Jerome

2013-05-01

68

Quantitative determination of cephalexin in cephradine by NMR spectroscopy.  

PubMed

An NMR method to determine quantitatively the presence of cephalexin in cephradine was developed. The method is applicable to the chemical itself as well as to capsules and oral suspension formulations. The determination is based on the NMR signal arising from the five aromatic protons of the cephalexin molecule. Integration of this signal relative to a signal from cephradine provides the data necessary to determine the percentage of cephalexin present. The precision at the 2% cephalexin levels is +/- 0.18%. The time required to carry out a single analysis is about 10 min, and five analyses can be done in about 0.5 hr. PMID:702311

Warren, R J; Zarembo, J E; Staiger, D B; Post, A

1978-10-01

69

Quantitative Remote Laser-Induced Breakdown Spectroscopy by Multivariate Analysis  

NASA Astrophysics Data System (ADS)

The ChemCam instrument selected for the Mars Science Laboratory (MSL) rover includes a remote Laser- Induced Breakdown Spectrometer (LIBS) that will quantitatively probe samples up to 9m from the rover mast. LIBS is fundamentally an elemental analysis technique. LIBS involves focusing a Nd:YAG laser operating at 1064 nm onto the surface of the sample. The laser ablates material from the surface, generating an expanding plasma containing electronically excited ions, atoms, and small molecules. As these electronically excited species relax back to the ground state, they emit light at wavelengths characteristic of the species present in the sample. Some of this emission is directed into one of three dispersive spectrometers. In this paper, we studied a suite of 18 igneous and highly-metamorphosed samples from a wide variety of parageneses for which chemical analyses by XRF were already available. Rocks were chosen to represent a range of chemical composition from basalt to rhyolite, thus providing significant variations in all of the major element contents (Si, Fe, Al, Ca, Na, K, O, Ti, Mg, and Mn). These samples were probed at a 9m standoff distance under experimental conditions that are similar to ChemCam. Extracting quantitative elemental concentrations from LIBS spectra is complicated by the chemical matrix effects. Conventional methods for obtaining quantitative chemical data from LIBS analyses are compared with new multivariate analysis (MVA) techniques that appear to compensate for these chemical matrix effects. The traditional analyses use specific elemental peak heights or areas, which compared with calibration curves for each element at one or more emission lines for a series of standard samples. Because of matrix effects, the calibration standards generally must have similar chemistries to the unknown samples, and thus this conventional approach imposes severe limitations on application of the technique to remote analyses. In this suite of samples, the use of traditional methods results in chemical analyses with significant uncertainties. Alternatively, greatly-improved quantitative elemental analysis was accomplished by using a Partial Least Squares (PLS) calibration model for all of the major elements of interest. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are then employed to predict the rock-type of the sample. These MVA techniques appear to compensate for these matrix effects because the analysis finds correlations between the spectra (independent variables), the individual elements of interest (dependent variables such as Si) as well as the other elements in the matrix.

Clegg, S. M.; Sklute, E. C.; Dyar, M. D.; Barefield, J. E.; Wiens, R. C.

2007-12-01

70

Machine learning methods for quantitative analysis of Raman spectroscopy data  

NASA Astrophysics Data System (ADS)

The automated identification and quantification of illicit materials using Raman spectroscopy is of significant importance for law enforcement agencies. This paper explores the use of Machine Learning (ML) methods in comparison with standard statistical regression techniques for developing automated identification methods. In this work, the ML task is broken into two sub-tasks, data reduction and prediction. In well-conditioned data, the number of samples should be much larger than the number of attributes per sample, to limit the degrees of freedom in predictive models. In this spectroscopy data, the opposite is normally true. Predictive models based on such data have a high number of degrees of freedom, which increases the risk of models over-fitting to the sample data and having poor predictive power. In the work described here, an approach to data reduction based on Genetic Algorithms is described. For the prediction sub-task, the objective is to estimate the concentration of a component in a mixture, based on its Raman spectrum and the known concentrations of previously seen mixtures. Here, Neural Networks and k-Nearest Neighbours are used for prediction. Preliminary results are presented for the problem of estimating the concentration of cocaine in solid mixtures, and compared with previously published results in which statistical analysis of the same dataset was performed. Finally, this paper demonstrates how more accurate results may be achieved by using an ensemble of prediction techniques.

Madden, Michael G.; Ryder, Alan G.

2003-03-01

71

Quantitative Raman spectroscopy for the analysis of carrot bioactives.  

PubMed

Rapid quantitative near-infrared Fourier transform Raman analyses of the key phytonutrients in carrots, polyacetylenes and carotenoids, are reported here for the first time. Solvent extracts of 31 carrot lines were analyzed for these phytonutrients by conventional methods, polyacetylenes by GC-FID and carotenoids by visible spectrophotometry. Carotenoid concentrations were 0-5586 ?g g(-1) dry weight (DW). Polyacetylene concentrations were 74-4846 ?g g(-1) DW, highest in wild carrots. The polyacetylenes were falcarinol, 6-1237 ?g g(-1) DW; falcarindiol, 42-3475 ?g g(-1) DW; and falcarindiol 3-acetate, 27-649 ?g g(-1) DW. Strong Raman bands for carotenoids gave good correlation to results by visible spectrophotometry. A chemometric model capable of quantitating carotenoids from Raman data was developed. A classification model for rapidly distinguishing carrots with high and low polyacetylene (limit of detection = 1400 ?g g(-1)) concentrations based on Raman spectral intensity in the region of 2250 cm(-1) was produced. PMID:23441972

Killeen, Daniel P; Sansom, Catherine E; Lill, Ross E; Eason, Jocelyn R; Gordon, Keith C; Perry, Nigel B

2013-03-20

72

Ultrafast two-photon absorption in organic molecules: Quantitative spectroscopy and applications  

NASA Astrophysics Data System (ADS)

This dissertation explores quantitative two-photon absorption spectroscopy to relate molecular structure with optical properties of organic chromophores. The dissertation describes an advanced fluorescence-based technique for reliable measurements of the two-photon spectra and cross sections. To facilitate the measurements it establishes a set of reference compounds measured with a 15% absolute accuracy covering a broad range of excitation and fluorescence wavelengths. The dissertation shows that in many cases the few-essential-levels model can be successfully applied for the description and interpretation of two-photon absorption spectra and cross sections, at least for the low-energy transitions. The dissertation presents examples of applications of two-photon absorption for volumetric optical storage and cancer tumor detection. It describes the basic principles of the two-photon absorption-based optical memory and limitations imposed on two-photon sensitivity of photochromic materials by a necessity of fast access to the data. It also proposes a novel technique for sensitive detection of cancer cells by using two-photon excitation of near-IR fluorescence of a commercial dye and discusses the mechanisms responsible for differentiation between the normal and the cancer cells. The methods described in this dissertation can be applied to understanding the relations between structure and two-photon absorption strength of individual transitions of organic and biological chromophores, which can be used for design of new materials, maximally adapted for particular applications.

Makarov, Nikolay Sergeevich

73

Quantitative multiplex CARS spectroscopy in congested spectral regions  

NASA Astrophysics Data System (ADS)

A novel procedure is developed to describe and reproduce experimental coherent anti-Stokes Raman scattering (CARS) data, with particular emphasis on highly congested spectral regions. The approach - exemplified here with high-quality multiplex CARS data - makes use the maximum entropy method for phase retrieval. The retrieved imaginary part of the nonlinear susceptibility is shown to be equal to the spontaneous Raman spectrum. The phase retrieval procedure does not influence the noise contained in the spectra. The conversion of CARS to Raman data permits a quantitative interpretation of CARS spectra. This novel approach is demonstrated for highly congested multiplex CARS spectra of sucrose, fructose and glucose. This novel procedures enables extraction of vibrational information from multiplex CARS data without the use of a priori information of the sample.

Müller, Michiel; Rinia, Hilde A.; Bonn, Mischa; Vartiainen, Erik M.; Lisker, Melanie; van Bel, Aart

2007-02-01

74

Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves  

NASA Astrophysics Data System (ADS)

Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

2010-03-01

75

Exploration of Quantitative Scoring Metrics to Compare Systems Biology Modeling Approaches  

Microsoft Academic Search

In this paper, we report a focused case study to assess whether quantitative metrics are useful to evaluate molecular-level system biology models on cellular metabolism. Ideally, the bio-modeling community shall be able assess systems biology models based on objective and quantitative metrics. This is because metric-based model design not only can accelerate the validation process, but also can improve the

Chanchala Kaddi; Erica D. Oden; Chang F. Quo; May D. Wang

2007-01-01

76

Quantitative analysis of water-soluble vitamins by ATR-FTIR spectroscopy  

Microsoft Academic Search

HPLC and microbiology are the methods traditionally employed to control the vitamin content in food mixtures. However, considerations of cost, time of analysis per sample and complexities involved in the technique have hampered the acceptance of those methods for raw materials analysis. Fourier Transform Infrared (FTIR) spectroscopy has substantial potential as a quantitative quality control tool for the food industry.

C. Wojciechowski; N. Dupuy; C. D. Ta; J. P. Huvenne; P. Legrand

1998-01-01

77

Quantitative analysis of urinary stone composition with micro-Raman spectroscopy  

Microsoft Academic Search

Urolithiasis is a common, disturbing disease with high recurrent rate (60% in five years). Accurate identification of urinary stone composition is important for treatment and prevention purpose. Our previous studies have demonstrated that micro-Raman spectroscopy (MRS)-based approach successfully detects the composition of tiny stone powders after minimal invasive urological surgery. But quantitative analysis of urinary stones was not established yet.

Yi-Yu Huang; Yi-Chun Chiu; Huihua Kenny Chiang; Y. H. Jet Chou; Shing-Hwa Lu; Allen W. Chiu

2010-01-01

78

Inflammatory CNS Demyelination: Histopathologic Correlation with In Vivo Quantitative Proton MR Spectroscopy  

Microsoft Academic Search

BACKGROUND AND PURPOSE: The mechanisms behind the demyelination that is char- acteristic of multiple sclerosis (MS) are still poorly understood. The purpose of this study was to compare immunopathologic findings in demyelinating lesions of three patients with in vivo assessments obtained by quantitative proton MR spectroscopy (MRS). METHODS: Between four and seven stereotactic needle brain biopsies were performed in three

Andreas Bitsch; Harald Bruhn; Vassilios Vougioukas; Argyris Stringaris; Hans Lassmann; Jens Frahm; Wolfgang Bruck

1999-01-01

79

Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology.  

PubMed

In the last decade emerging single-molecule fluorescence-spectroscopy tools have been developed and adapted to analyze individual molecules under various conditions. Single-molecule-sensitive optical techniques are now well established and help to increase our understanding of complex problems in different disciplines ranging from materials science to cell biology. Previous dreams, such as the monitoring of the motility and structural changes of single motor proteins in living cells or the detection of single-copy genes and the determination of their distance from polymerase molecules in transcription factories in the nucleus of a living cell, no longer constitute unsolvable problems. In this Review we demonstrate that single-molecule fluorescence spectroscopy has become an independent discipline capable of solving problems in molecular biology. We outline the challenges and future prospects for optical single-molecule techniques which can be used in combination with smart labeling strategies to yield quantitative three-dimensional information about the dynamic organization of living cells. PMID:15849689

Tinnefeld, Philip; Sauer, Markus

2005-04-29

80

Rapid identification and accurate quantitation of biological oligosaccharide mixtures  

PubMed Central

Structure-specific characterization and quantitation is often required for effective functional studies of oligosaccharides. Inside the gut, HMOs are preferentially bound and catabolized by the beneficial bacteria. HMO utility by these bacteria employs structure-specific catabolism based on a number glycosidases. Determining the activity of these enzymes requires accurate quantitation of a large number of structures. In this study, we describe a method for the quantitation of human milk oligosaccharide (HMO) structures employing LC/MS and isotopically labeled internal standards. Data analysis was accomplished with a newly developed software tool, LC/MS Searcher, that employs a reference structure library to process LC/MS data yielding structural identification with accurate quantitation. The method was used to obtain a meta-enzyme analysis of bacteria, the simultaneous characterization of all glycosidases employed by bacteria for the catabolism of milk oligosaccharides. Analysis of consumed HMO structures confirmed the utility of a ?-1,3-galactosidase in Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis). In comparison, Bifidobacterium breve ATCC 15700 showed significantly less HMO catabolic activity compared to B. Infantis. PMID:22897719

Strum, John S.; Kim, Jaehan; Wu, Shuai; De Leoz, Maria Lorna A.; Peacock, Kyle; Grimm, Rudolf; German, J. Bruce; Mills, David A.; Lebrilla, Carlito B.

2012-01-01

81

Using Fourier transform IR spectroscopy to analyze biological materials.  

PubMed

IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

2014-08-01

82

Advances in Quantitative UV-Visible Spectroscopy for Clinical and Pre-clinical Application in Cancer  

PubMed Central

Summary Methods of optical spectroscopy which provide quantitative, physically or physiologically meaningful measures of tissue properties are an attractive tool for the study, diagnosis, prognosis, and treatment of various cancers. Recent development of methodologies to convert measured reflectance and fluorescence spectra from tissue to cancer-relevant parameters such as vascular volume, oxygenation, extracellular matrix extent, metabolic redox states, and cellular proliferation have significantly advanced the field of tissue optical spectroscopy. The number of publications reporting quantitative tissue spectroscopy results in the UV-visible wavelength range has increased sharply in the last 3 years, and includes new and emerging studies which correlate optically-measured parameters with independent measures such as immunohistochemistry, which should aid in increased clinical acceptance of these technologies. PMID:19268567

Brown, J. Quincy; Vishwanath, Karthik; Palmer, Gregory M.; Ramanujam, Nirmala

2009-01-01

83

Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences (Invited)  

Microsoft Academic Search

The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space

T. Hoehler

2009-01-01

84

Online Interactive Teaching Modules Enhance Quantitative Proficiency of Introductory Biology Students  

ERIC Educational Resources Information Center

There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry.…

Thompson, Katerina V.; Nelson, Karen C.; Marbach-Ad, Gili; Keller, Michael; Fagan, William F.

2010-01-01

85

Stochastic modelling for quantitative description of heterogeneous biological systems  

Microsoft Academic Search

Two related developments are currently changing traditional approaches to computational systems biology modelling. First, stochastic models are being used increasingly in preference to deterministic models to describe biochemical network dynamics at the single-cell level. Second, sophisticated statistical methods and algorithms are being used to fit both deterministic and stochastic models to time course and other experimental data. Both frameworks are

Darren J. Wilkinson

2009-01-01

86

Combinatorial epigenetic patterns as quantitative predictors of chromatin biology  

PubMed Central

Background Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is the most widely used method for characterizing the epigenetic states of chromatin on a genomic scale. With the recent availability of large genome-wide data sets, often comprising several epigenetic marks, novel approaches are required to explore functionally relevant interactions between histone modifications. Computational discovery of "chromatin states" defined by such combinatorial interactions enabled descriptive annotations of genomes, but more quantitative approaches are needed to progress towards predictive models. Results We propose non-negative matrix factorization (NMF) as a new unsupervised method to discover combinatorial patterns of epigenetic marks that frequently co-occur in subsets of genomic regions. We show that this small set of combinatorial "codes" can be effectively displayed and interpreted. NMF codes enable dimensionality reduction and have desirable statistical properties for regression and classification tasks. We demonstrate the utility of codes in the quantitative prediction of Pol2-binding and the discrimination between Pol2-bound promoters and enhancers. Finally, we show that specific codes can be linked to molecular pathways and targets of pluripotency genes during differentiation. Conclusions We have introduced and evaluated a new computational approach to represent combinatorial patterns of epigenetic marks as quantitative variables suitable for predictive modeling and supervised machine learning. To foster widespread adoption of this method we make it available as an open-source software-package – epicode at https://github.com/mcieslik-mctp/epicode. PMID:24472558

2014-01-01

87

Quantitative Imaging of Single Upconversion Nanoparticles in Biological Tissue  

PubMed Central

The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs), enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (?1 cm) depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein) dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement. PMID:23691012

Nadort, Annemarie; Sreenivasan, Varun K. A.; Song, Zhen; Grebenik, Ekaterina A.; Nechaev, Andrei V.; Semchishen, Vladimir A.; Panchenko, Vladislav Y.; Zvyagin, Andrei V.

2013-01-01

88

[Quantitative analysis model of multi-component complex oil spill source based on near infrared spectroscopy].  

PubMed

Near infrared spectroscopy technology was used for quantitative analysis of the simulation of complex oil spill source. Three light petroleum products, i. e. gasoline, diesel fuel and kerosene oil, were selected and configured as simulated mixture of oil spill samples in accordance with different concentrations proportion, and their near infrared spectroscopy in the range of 8 000 -12 000 cm(-1) was collected by Fourier transform near infrared spectrometer. After processing the NIR spectra with different pretreatment methods, partial least squares method was used to establish quantitative analysis model for the mixture of oil spill samples. For gasoline, diesel fuel and kerosene oil, the second derivative method is the optimal pretreatment method, and for these three oil components in the ranges of 8 501.3-7 999.8 and 6 102.1-4 597.8 cm(-1); 6 549.5-4 597.8; 7 999.8-7 498.4 and 102.1-4 597.8 cm(-1), the correlation coefficients R2 of the prediction model are 0.998 2, 0.990 2 and 0.993 6 respectively, while the forecast RMSEP indicators are 0.474 7, 0.936 1 and 1.013 1 respectively; The experimental results show that using near infrared spectroscopy can quantitatively determine the content of each component in the simulated mixed oil spill samples, thus this method can provide effective means for the quantitative detection and analysis of complex marine oil spill source. PMID:23427535

Tan, Ai-Ling; Bi, Wei-Hong

2012-12-01

89

P-31 magnetic resonance spectroscopy and near-infrared spectroscopy provide unique quantitative data for evaluation of exercising muscles  

NASA Astrophysics Data System (ADS)

P-31 magnetic resonance spectroscopy (MRS) and near-infra spectroscopy (NIRS) have been used to characterize the dynamic aspects of human muscle contraction. P-31 MRS is a non- invasive method for measuring ATP, phosphocreatine (PCr), and pH in exercising muscles and thereby provides information regarding oxidative and glycolytic capacities for generating high energy phosphate compounds. NIRS evaluates kinetic changes in oxygen levels in muscles during exercise and recovery. These two methods provide unique quantitative data for studies of normal muscle contraction and for more complex investigations of muscle diseases. Non-invasive MRS and NIRS examinations are readily repeatable and yield important data for longitudinal patient evaluation and therapeutic management.

Park, Jane H.; Golwyn, Daniel; Olsen, Nancy J.; Newman, John H.; Powers, Alvin C.; Davis, Beverly C.; Rader, Kara; Chance, Britton

1994-09-01

90

Light Scattering and Absorption Spectroscopy in Three Dimensions Using Quantitative Low Coherence Interferometry for Biomedical Applications  

NASA Astrophysics Data System (ADS)

The behavior of light after interacting with a biological medium reveals a wealth of information that may be used to distinguish between normal and disease states. This may be achieved by simply imaging the morphology of tissues or individual cells, and/or by more sophisticated methods that quantify specific surrogate biomarkers of disease. To this end, the work presented in this dissertation demonstrates novel tools derived from low coherence interferometry (LCI) that quantitatively measure wavelength-dependent scattering and absorption properties of biological samples, with high spectral resolution and micrometer spatial resolution, to provide insight into disease states. The presented work first describes a dual window (DW) method, which decomposes a signal sampled in a single domain (in this case the frequency domain) to a distribution that simultaneously contains information from both the original domain and the conjugate domain (here, the temporal or spatial domain). As the name suggests, the DW method utilizes two independently adjustable windows, each with different spatial and spectral properties to overcome limitations found in other processing methods that seek to obtain the same information. A theoretical treatment is provided, and the method is validated through simulations and experiments. With this tool, the spatially dependent spectral behavior of light after interacting with a biological medium may be analyzed to extract parameters of interest, such as the scattering and absorption properties. The DW method is employed to investigate scattering properties of samples using Fourier domain LCI (fLCI). In this method, induced temporal coherence effects provide insight into structural changes in dominant scatterers, such as cell nuclei within tissue, which can reveal the early stages of cancerous development. fLCI is demonstrated in complex, three-dimensional samples using a scattering phantom and an ex-vivo animal model. The results from the latter study show that fLCI is able to detect changes in the morphology of tissues undergoing precancerous development. The DW method is also employed to enable a novel form of optical coherence tomography (OCT), an imaging modality that uses coherence gating to obtain micrometer-scale, cross-sectional information of tissues. The novel method, named molecular imaging true color spectroscopic OCT (METRiCS OCT), analyses the depth dependent absorption of light to ascertain quantitative information of chromophore concentration, such as hemoglobin. The molecular information is also processed to yield a true color representation of the sample, a unique capability of this approach. A number of experiments, including hemoglobin absorbing phantoms and in-vivo imaging of a chick embryo model and dorsal skinfold window chamber model, demonstrate the power of the method. The final method presented in this dissertation, consists of a spectroscopic approach that interrogates the dispersive biochemical properties of samples to independently probe the scattering and absorption coefficients. To demonstrate this method, named non-linear phase dispersion spectroscopy (NLDS), a careful analysis of LCI signals is presented. The method is verified using measurements from samples that scatter and absorb light. Lastly, NLDS is combined with phase microscopy to achieve molecular imaging with sub-micron spatial resolution. Imaging of red blood cells (RBCs) shows that the method enables highly sensitive measurements that can quantify hemoglobin content from single RBCs.

Robles, Francisco E.

91

Characterization and quantitative analysis of single-walled carbon nanotubes in the aquatic environment using near-infrared fluorescence spectroscopy.  

PubMed

Near infrared fluorescence (NIRF) spectroscopy is capable of sensitive and selective detection of semiconductive, single-walled carbon nanotubes (SWNT) using the unique electronic bandgap properties of these carbon allotropes. We reported here the first detection and quantitation of SWNT in sediment and biota at environmentally relevant concentrations using NIRF spectroscopy. In addition, we utilized this technique to qualitatively characterize SWNT samples before and after ecotoxicity, bioavailability and fate studies in the aquatic environment. Sample preparation prior to NIRF analysis consisted of surfactant-assisted high power ultrasonication. The bile salt sodium deoxycholate (SDC) enabled efficient extraction and disaggregation of SWNT prior to NIRF analysis. The method was validated using standard-addition experiments in two types of estuarine sediments, yielding recoveries between 66 ± 7% and 103 ± 10% depending on SWNT type and coating used, demonstrating the ability to isolate SWNT from complex sediment matrices. Instrument detection limits were determined to be 15 ng mL(-1) SWNT in 2% SDC solution and method detection limits (including a concentration step) were 62 ng g(-1) for estuarine sediment, and 1.0 ?g L(-1) for water. Our work has shown that NIRF spectroscopy is highly sensitive and selective for SWNT and that this technique can be applied to track the environmental and biological fate of this important class of carbon nanomaterial in the aquatic environment. PMID:22970987

Schierz, Ariette; Parks, Ashley N; Washburn, Kathryn M; Chandler, G Thomas; Ferguson, P Lee

2012-11-20

92

Quantitative multivoxel 1 H MR spectroscopy of the brain in children with acute liver failure  

Microsoft Academic Search

Acute liver failure (ALF)-related encephalopathy was previously characterized by MR spectroscopy of single voxels containing\\u000a both grey and white matter brain tissue. Quantitative multivoxel MRS was used here to compare grey and white matter brain\\u000a tissue concentrations of glutamate\\/glutamine (Glx) and lactate in ALF and associate the results with other liver function\\u000a parameters. Five pediatric patients with ALF-related encephalopathy and

Paul E. Sijens; Heyder Alkefaji; Roelineke J. Lunsing; Francjan J. van Spronsen; Linda C. Meiners; Matthijs Oudkerk; Henkjan J. Verkade

2008-01-01

93

Qualitative and Quantitative Detection of Pesticides With Terahertz Time-Domain Spectroscopy  

Microsoft Academic Search

This paper used the newly developed terahertz time-domain spectroscopy (THz-TDS) to detect pesticides, especially imidacloprid, qualitatively and quantitatively in the frequency range of 0.5-1.6 THz. All together, four pesticides and three food powders, as well as polyethylene, were investigated. Different weight ratios of imidacloprid in polyethylene and in sticky rice powder were detected and analyzed with the partial least squares

Yuefang Hua; Hongjian Zhang

2010-01-01

94

Detection of Biological Materials Using Ion Mobility Spectroscopy  

SciTech Connect

Traditionally, Ion Mobility Spectroscopy has been used to examine ions of relatively low molecular weight and high ion mobility. In recent years, however, biomolecules such as bradykinin, cytochrome c, bovine pancreatic trypsin inhibitor (BPTI), apomyoglobin, and lysozyme, have been successfully analyzed, but studies of whole bio-organisms have not been performed. In this study an attempt was made to detect and measure the mobility of two bacteriophages, {lambda}-phage and MS2 using electrospray methods to inject the viruses into the ion mobility spectrometer. Using data from Yeh, et al., which makes a comparison between the diameter of non-biologic particles and the specific particle mobility, the particle mobility for the MS2 virus was estimated to be 10{sup {minus}2} cm{sup 2}/volt-sec. From this mobility the drift time of these particles in our spectrometer was calculated to be approximately 65 msec. The particle mobility for the {lambda}-phage virus was estimated to be 10{sup {minus}3} cm{sup 2}/volt-sec. which would result in a drift time of 0.7 sec. Spectra showing the presence of a viral peak at the expected drift time were not observed. However, changes in the reactant ion peak that could be directly attributed to the presence of the viruses were observed. Virus clustering, excessive collisions, and the electrospray injection method limited the performance of this IMS. However, we believe that an instrument specifically designed to analyze such bioagents and utilizing other injection and ionization methods will succeed in directly detecting viruses and bacteria.

Rodacy, P.J.; Sterling, J.P.; Butler, M.A.

1999-03-01

95

Fluorescence correlation spectroscopy: Statistical analysis and biological applications  

NASA Astrophysics Data System (ADS)

The experimental design and realization of an apparatus which can be used both for single molecule fluorescence detection and also fluorescence correlation and cross correlation spectroscopy is presented. A thorough statistical analysis of the fluorescence correlation functions including the analysis of bias and errors based on analytical derivations has been carried out. Using the methods developed here, the mechanism of binding and cleavage site recognition of matrix metalloproteinases (MMP) for their substrates has been studied. We demonstrate that two of the MMP family members, Collagenase (MMP-1) and Gelatinase A (MMP-2) exhibit diffusion along their substrates, the importance of this diffusion process and its biological implications are discussed. We show through truncation mutants that the hemopexin domain of the MMP-2 plays and important role in the substrate diffusion of this enzyme. Single molecule diffusion of the collagenase MMP-1 has been observed on collagen fibrils and shown to be biased. The discovered biased diffusion would make the MMP-1 molecule an active motor, thus making it the first active motor that is not coupled to ATP hydrolysis. The possible sources of energy for this enzyme and their implications are discussed. We propose that a possible source of energy for the enzyme can be in the rearrangement of the structure of collagen fibrils. In a separate application, using the methods developed here, we have observed an intermediate in the intestinal fatty acid binding protein folding process through the changes in its hydrodynamic radius also the fluctuations in the structure of the IFABP in solution were measured using FCS.

Saffarian, Saveez

2002-01-01

96

[Quantitative analysis of two-component polymer blends (PEG/PE) by infrared spectroscopy].  

PubMed

The concentration of the camponent of PEG/PE blends was analyzed quantitatively by infrared spectroscopy. The absorption peak area ratio of the selected mixture peaks used as the calibrating basis for the quantitative analysis was more reasonable than the peak area ratio of the pure peaks. The theoretical equation deducted by Beer-Lamber law was used to establish the working curve to calculate the composition of the responding functional groups in the film of the PEG/PE blends. The characteristic peaks of the crystal can not be selected as the calibrating basis for the quantitative measurement, because the crystallization has a great effect on the intensity of the absorption peaks. PMID:16827348

Wu, Hong; Lin, Zhi-yong; Qian, Hao

2006-01-01

97

Quantitative {sup 29}Si MAS NMR spectroscopy of cement and silica fume containing paramagnetic impurities  

SciTech Connect

The low natural abundance and the long spin lattice relaxation time of {sup 29}Si lead to long measurement times and/or low signal-to-noise ratios using {sup 29}Si magic angle spinning NMR spectroscopy. By contrast, samples containing paramagnetic iron ions have much shorter relaxation times, making measurements up to seven times more efficient, but at the same time making quantitative analysis unreliable. To solve the problem, the spin-lattice relaxation times of ordinary Portland cement (opc) and silica fume with and without iron content has been determined with inversion recovery experiments. The effect of varying the spectrum repetition time on the quantitative analysis is demonstrated for mixtures of opc with silica fume. For opc and silica fume with iron impurities repetition times as short as 5 s has permitted accurate quantitative analysis of the silicates present in these materials.

Hilbig, H. [Center of Building Materials (CBM), Technische Universitaet Muenchen, Baumbachstr. 7, D-81245 Munich (Germany)]. E-mail: hilbig@cbm.bv.tum.de; Koehler, F.H. [Department Chemie, Technische Universitaet Muenchen, D-85747 Garching (Germany); Schiessl, P. [Center of Building Materials (CBM), Technische Universitaet Muenchen, Baumbachstr. 7, D-81245 Munich (Germany)

2006-02-15

98

Quantitative Comparison of Commercial CCD and Custom-Designed CMOS Camera for Biological  

E-print Network

Quantitative Comparison of Commercial CCD and Custom-Designed CMOS Camera for Biological and systems where even the smallest details have a meaning, CCD cameras are mostly preferred and they hold camera to compete with the default CCD camera of an inverted microscope for fluorescence imaging

De Micheli, Giovanni

99

A simple quantitative method to determine short chain fatty acid levels in biological fluids.  

PubMed

A simple method has been developed for quantitative acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic, and caproic acids in intestinal fluids, feces and blood. The method utilizes extraction with ether and gas chromatography. It is accurate over a wide range of SCFA concentrations and appears to be applicable to any biological fluid. PMID:975584

Whitehead, J S; Kim, Y S; Prizont, R

1976-11-01

100

Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course  

ERIC Educational Resources Information Center

An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

2004-01-01

101

Quantitative characterization of individual microdroplets using surface-enhanced resonance Raman scattering spectroscopy.  

PubMed

Surface-enhanced resonance Raman scattering (SERRS) spectroscopy is a highly sensitive optical technique capable of detecting multiple analytes rapidly and simultaneously. There is significant interest in SERRS detection in micro- and nanotechnologies, as it can be used to detect extremely low analyte concentrations in small volumes of fluids, particularly in microfluidic systems. There is also rapidly growing interest in the field of microdroplets, which promises to offer the analyst many potential advantages over existing technologies for both design and control of microfluidic assays. While there have been rapid advances in both fields in recent years, the literature on SERRS-based detection of individual microdroplets remains lacking. In this paper, we demonstrate the ability to quantitatively detect multiple variable analyte concentrations from within individual microdroplets in real time using SERRS spectroscopy. We also demonstrate the use of a programmable pump control algorithm to generate concentration gradients across a chain of droplets. PMID:22243139

Syme, Christopher D; Martino, Chiara; Yusvana, Rama; Sirimuthu, Narayana M S; Cooper, Jonathan M

2012-02-01

102

Quantitative and qualitative analysis of urine component in the toilet set using Raman spectroscopy  

NASA Astrophysics Data System (ADS)

As a part of non-invasive and unaware measurement of physiological signal in the house of live-alone person, Raman spectroscopy was applied for urine component analysis in the toilet set. 785nm, 250-300mW output solid state diode laser and 2048 element linear silicon TE cooled CCD array were incorporated for this system. Several tests were performed for setting up Raman spectroscopy in non-constrained situation: toilet set in the house. The effect of dark current, integration time, warming up time of laser, property of probe and interference of water in the toilet were tested and controlled for appropriate measurement in this environment. The spectra were obtained immediately when the subject uses the toilet set, and they can be transmitted to the server though Bluetooth. Those spectra were pre-processed for removing or correcting the effect of undesired light scattering, sample path-length difference and baseline-effect. The preprocessed data were enhanced for more exact result of multivariate analysis. The training data was prepared for predicting unknown component and its concentration by using multivariate methods. Several kinds of multivariate methods: PCA, PCR, PLS were performed to validate what is the fittest method in this environment. Through quantitative and qualitative analysis of Raman spectroscopy"s spectra obtained in the house's toilet set, we could know the component and its concentration of urine which can be index of disease.

Chung, So Hyun; Park, Kwang Suk; Choi, Jong Min; Lee, Won Jin

2004-07-01

103

13C NMR spectroscopy for the quantitative determination of compound ratios and polymer end groups.  

PubMed

(13)C NMR spectroscopic integration employing short relaxation delays was evaluated as a quantitative tool to obtain ratios of diastereomers, regioisomers, constitutional isomers, mixtures of unrelated compounds, peptoids, and sugars. The results were compared to established quantitative methods such as (1)H NMR spectroscopic integration, gas chromatography, and high-performance liquid chromatography and were found to be within <3.4% of (1)H NMR spectroscopic values (most examples give results within <2%). Acquisition of the spectra took 2-30 min on as little as 10 mg of sample, proving the general utility of the technique. The simple protocol was extended to include end group analysis of low molecular weight polymers, which afforded results in accordance with (1)H NMR spectroscopy and matrix-assisted laser desorption-ionization time-of-flight spectrometry. PMID:24601654

Otte, Douglas A L; Borchmann, Dorothee E; Lin, Chin; Weck, Marcus; Woerpel, K A

2014-03-21

104

Quantitative analysis of iobitridol in an injectable preparation by 1H NMR spectroscopy.  

PubMed

Nuclear magnetic resonance spectroscopy was used for direct quantitative determination of iobitridol in an injectable formulation. The method was developed on a medium field strength magnet (400MHz) and validation was performed by assessing specificity, accuracy, precision, linearity, stability of samples and robustness. Validation data confirm that the method is highly appropriate for direct quantification of iobitridol in the final formulation. Moreover the method has a good potential for rapid screening analyses due to straightforward experimental setup and lack of any sample pretreatment. PMID:24531005

Borioni, Anna; Gostoli, Gianluca; Bossù, Elena; Sestili, Isabella

2014-06-01

105

Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy  

Microsoft Academic Search

Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4\\/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing its fundamental ro-vibrational transitions. The flat sooty C2H4\\/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug McKenna type

Z. W. Sun; Z. S. Li; B. Li; Z. T. Alwahabi; M. Aldén

2010-01-01

106

Quantitative C 2 H 2 measurements in sooty flames using mid-infrared polarization spectroscopy  

Microsoft Academic Search

Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4\\/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing\\u000a its fundamental ro-vibrational transitions. The flat sooty C2H4\\/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug\\u000a McKenna type

Z. W. Sun; Z. S. Li; B. Li; Z. T. Alwahabi; M. Aldén

2010-01-01

107

Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

An ongoing study of the scaling of Laser-Induced Breakdown Spectroscopy (LIBS) to microjoule pulse energies is being conducted to quantify the LIBS process. The use of microplasmas for LIBS requires good understanding of the emission scaling in order to maximize the sensitivity of the LIBS technique at low energies. The quantitative scaling of emission of Al, Cu and Si microplasmas from 100 ?J down to 100 nJ is presented. The scaling of line emission from major and minor constituents in Al 5052 alloy is investigated and evaluated for analytical LIBS. Ablated crater volume scaling and emission efficiency for Si microplasmas are investigated.

Taschuk, M. T.; Kirkwood, S. E.; Tsui, Y. Y.; Fedosejevs, R.

2007-04-01

108

Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores  

NASA Astrophysics Data System (ADS)

In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis.

Po?ízka, P.; Demidov, A.; Kaiser, J.; Keivanian, J.; Gornushkin, I.; Panne, U.; Riedel, J.

2014-11-01

109

Quantitative analyses of tartaric acid based on terahertz time domain spectroscopy  

NASA Astrophysics Data System (ADS)

Terahertz wave is the electromagnetic spectrum situated between microwave and infrared wave. Quantitative analysis based on terahertz spectroscopy is very important for the application of terahertz techniques. But how to realize it is still under study. L-tartaric acid is widely used as acidulant in beverage, and other food, such as soft drinks, wine, candy, bread and some colloidal sweetmeats. In this paper, terahertz time-domain spectroscopy is applied to quantify the tartaric acid. Two methods are employed to process the terahertz spectra of different samples with different content of tartaric acid. The first one is linear regression combining correlation analysis. The second is partial least square (PLS), in which the absorption spectra in the 0.8-1.4THz region are used to quantify the tartaric acid. To compare the performance of these two principles, the relative error of the two methods is analyzed. For this experiment, the first method does better than the second one. But the first method is suitable for the quantitative analysis of materials which has obvious terahertz absorption peaks, while for material which has no obvious terahertz absorption peaks, the second one is more appropriate.

Cao, Binghua; Fan, Mengbao

2010-10-01

110

Quantitation of crystalline and amorphous forms of anhydrous neotame using 13C CPMAS NMR spectroscopy.  

PubMed

Although most drugs are formulated in the crystalline state, amorphous or other crystalline forms are often generated during the formulation process. The presence of other forms can dramatically affect the physical and chemical stability of the drug. The identification and quantitation of different forms of a drug is a significant analytical challenge, especially in a formulated product. The ability of solid-state 13C NMR spectroscopy with cross polarization (CP) and magic-angle spinning (MAS) to quantify the amounts of three of the multiple crystalline and amorphous forms of the artificial sweetener neotame is described. It was possible to quantify, in a mixture of two anhydrous polymorphic forms of neotame, the amount of each polymorph within 1-2%. In mixtures of amorphous and crystalline forms of neotame, the amorphous content could be determined within 5%. It was found that the crystalline standards that were used to prepare the mixtures were not pure crystalline forms, but rather a mixture of crystalline and amorphous forms. The effect of amorphous content in the crystalline standards on the overall quantitation of the two crystalline polymorphic forms is discussed. The importance of differences in relaxation parameters and CP efficiencies on quantifying mixtures of different forms using solid-state NMR spectroscopy is also addressed. PMID:16258988

Offerdahl, Thomas J; Salsbury, Jonathon S; Dong, Zedong; Grant, David J W; Schroeder, Stephen A; Prakash, Indra; Gorman, Eric M; Barich, Dewey H; Munson, Eric J

2005-12-01

111

Quantitative analysis of multi-component gas mixture based on AOTF-NIR spectroscopy  

NASA Astrophysics Data System (ADS)

Near Infrared (NIR) spectroscopy analysis technology has attracted many eyes and has wide application in many domains in recent years because of its remarkable advantages. But the NIR spectrometer can only be used for liquid and solid analysis by now. In this paper, a new quantitative analysis method of gas mixture by using new generation NIR spectrometer is explored. To collect the NIR spectra of gas mixtures, a vacuumable gas cell was designed and assembled to Luminar 5030-731 Acousto-Optic Tunable Filter (AOTF)-NIR spectrometer. Standard gas samples of methane (CH 4), ethane (C IIH 6) and propane (C 3H 8) are diluted with super pure nitrogen via precision volumetric gas flow controllers to obtain gas mixture samples of different concentrations dynamically. The gas mixtures were injected into the gas cell and the spectra of wavelength between 1100nm-2300nm were collected. The feature components extracted from gas mixture spectra by using Partial Least Squares (PLS) were used as the inputs of the Support Vector Regress Machine (SVR) to establish the quantitative analysis model. The effectiveness of the model is tested by the samples of predicting set. The prediction Root Mean Square Error (RMSE) of CH 4, C IIH 6 and C 3H 8 is respectively 1.27%, 0.89%, and 1.20% when the concentrations of component gas are over 0.5%. It shows that the AOTF-NIR spectrometer with gas cell can be used for gas mixture analysis. PLS combining with SVR has a good performance in NIR spectroscopy analysis. This paper provides the bases for extending the application of NIR spectroscopy analysis to gas detection.

Hao, Huimin; Zhang, Yong; Liu, Junhua

2007-12-01

112

Quantitative detection of astaxanthin and cantaxanthin in Atlantic salmon by resonance Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Two major carotenoids species found in salmonids muscle tissues are astaxanthin and cantaxanthin. They are taken up from fish food and are responsible for the attractive red-orange color of salmon filet. Since carotenoids are powerful antioxidants and biomarkers of nutrient consumption, they are thought to indicate fish health and resistance to diseases in fish farm environments. Therefore, a rapid, accurate, quantitative optical technique for measuring carotenoid content in salmon tissues is of economic interest. We demonstrate the possibility of using fast, selective, quantitative detection of astaxanthin and cantaxanthin in salmon muscle tissues, employing resonance Raman spectroscopy. Analyzing strong Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue laser excitation, we are able to characterize quantitatively the concentrations of carotenoids in salmon muscle tissue. To validate the technique, we compared Raman data with absorption measurements of carotenoid extracts in acetone. A close correspondence was observed in absorption spectra for tissue extract in acetone and a pure astaxanthin solution. Raman results show a linear dependence between Raman and absorption data. The proposed technique holds promise as a method of rapid screening of carotenoid levels in fish muscle tissues and may be attractive for the fish farm industry to assess the dietary status of salmon, risk for infective diseases, and product quality control.

Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

2006-02-01

113

Attenuated Total Internal Reflectance Infrared Spectroscopy (ATR-FTIR): A Quantitative Approach for Kidney Stone Analysis  

PubMed Central

The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflectance infrared spectroscopy (ATR-FTIR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 ± 0.02% COM/HAP where COM is the analyte and HAP the matrix to 0.26 ± 0.07% HAP/COM where HAP is the analyte and COM the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size. PMID:19589213

Gulley-Stahl, Heather J.; Haas, Jennifer A.; Schmidt, Katherine A.; Evan, Andrew P.; Sommer, André J.

2011-01-01

114

Feasibility Study of Using Short Wave Infrared Cavity Ringdown Spectroscopy (SWIR-CRDS) for Biological Agent Detection  

SciTech Connect

This project focused on determining the feasibility of using short wave infrared (SWIR) cavity ring down spectroscopy (CRDS) as a means for real-time detection of biological aerosols. The first part of the project involved identifying biological agent signatures that could be detected with SWIR CRDS. After an exhaustive search of the open literature it was determined that whole biological spores and/or cells would not be good candidates for direct SWIR CRDS probing because they have no unique SWIR signatures. It was postulated that while whole cells or spores are not good candidates for SWIR CRDS detection, their pyrolysis break-down products might be. A literature search was then conducted to find biological pyrolysis products with low molecular weights and high symmetry since these species most likely would have overtone and combination vibrational bands that can be detected in the SWIR. It was determined that pyrrole, pyridine and picolinamide were good candidates for evaluation. These molecules are formed when proteins and porphyrins, proteins and dipicolinic acid, and dipicolinic acid are pyrolyzed, respectively. The second part of the project involved measuring quantitative SWIR spectra of pyrrole, pyridine and picolinamide in PNNL’s FTIR Spectroscopy Laboratory. Spectral information about these molecules, in the vapor phase is sparse – there were only a few prior studies that measured line positions and no information on absorption cross sections. Absorption cross sections are needed in order to estimate the SWIR CRDS detection sensitivity, and line position determines what type of laser will be needed for the sensor. The results of the spectroscopy studies allowed us to estimate the SWIR CRDS detection sensitivity for pyrrole to be 3 x 1012 molec cm-3 or 0.1 ppmv, and for pyridine it was 1.5 x 1015 molec cm-3 or 0.6 ppmv. These detection sensitivity limits are close what we have measured for ammonia. Given these detection limits we then estimated the amount of biological material that would have to be collected for analysis in a sensor that combined pyrolysis with SWIR CRDS. Using conservative estimates of pyrolysis yields and precursor species concentration we determined that it would be necessary to collect and pyrolyze biological aerosol samples in the 10’s of mg. This is a large amount and is far larger than required for current sensors. It is therefore concluded that while possible, the large amounts of material required preclude using SWIR CRDS for detecting biological agents at this time.

Aker, Pam M.; Johnson, Timothy J.; Williams, Richard M.; Valentine, Nancy B.

2007-10-01

115

A reusable electrochemical proximity assay for highly selective, real-time protein quantitation in biological matrices.  

PubMed

Rapid and specific quantitation of a variety of proteins over a wide concentration range is highly desirable for biosensing at the point-of-care, in clinical laboratories, and in research settings. Our recently developed electrochemical proximity assay (ECPA) is a target-flexible, DNA-directed, direct-readout protein quantitation method with detection limits in the low femtomolar range, making it particularly amenable to point-of-care detection. However, consistent quantitation in more complex matrices is required at the point-of-care, and improvements in measurement speed are needed for clinical and research settings. Here, we address these concerns with a reusable ECPA, where a gentle regeneration of the surface DNA monolayer (used to capture the proximity complex) is achieved enzymatically through a novel combination of molecular biology and electrochemistry. Strategically placed uracils in the DNA sequence trigger selective cleavage of the backbone, releasing the assembled proximity complex. This allows repeated protein quantitation by square-wave voltammetry (SWV)-as quickly as 3 min between runs. The process can be repeated up to 19 times on a single electrode without loss of assay sensitivity, and currents are shown to be highly repeatable with similar calibrations using seven different electrodes. The utility of reusable ECPA is demonstrated through two important applications in complex matrices: (1) direct, quantitative monitoring of hormone secretion in real time from as few as five murine pancreatic islets and (2) standard addition experiments in unspiked serum for direct quantitation of insulin at clinically relevant levels. Results from both applications distinguish ECPA as an exceptional tool in protein quantitation. PMID:24827871

Hu, Jiaming; Yu, Yajiao; Brooks, Jessica C; Godwin, Leah A; Somasundaram, Subramaniam; Torabinejad, Ferdous; Kim, Joonyul; Shannon, Curtis; Easley, Christopher J

2014-06-11

116

CMOS based sensor for dielectric spectroscopy of biological cell suspension  

NASA Astrophysics Data System (ADS)

In this work we investigate the use of microwave frequency range to measure the concentration of cells in a biological cell suspension. A theoretical model is discussed and the advantage of high frequency, which is to avoid dispersion mechanisms due to the cell parameters at lower frequencies (for example membrane capacitance), has been described. Interdigitated capacitor (IDC) has been proposed as the sensor for analysing the concentration of a cell species in the suspension. The read-out circuit is a VCO using the IDC and a pair of inductors as resonator. The capacitance of the IDC which is the function of the permittivity of the biological cell suspension determines the resonant frequency of the LC tank oscillator. Thus the concentration of cells in a solution, affecting its permittivity, is read out as the frequency of the oscillator.

Guha, S.; Schmalz, K.; Meliani, C.; Wenger, Ch

2013-04-01

117

Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy.  

PubMed

(1)H NMR spectroscopy was used as a method for quantitative analysis of sesquiterpene lactones present in a crude lactone fraction isolated from Arnica montana. Eight main components - tigloyl-, methacryloyl-, isobutyryl- and 2-methylbutyryl-esters of helenalin (H) and 11?,13-dihydrohelenalin (DH) were identified in the studied sample. The method allows the determination of the total amount of sesquiterpene lactones and the quantity of both type helenalin and 11?,13-dihydrohelenalin esters separately. Furthermore, 6-O-tigloylhelenalin (HT, 1), 6-O-methacryloylhelenalin (HM, 2), 6-O-tigloyl-11?,13-dihydrohelenalin (DHT, 5), and 6-O-methacryloyl-11?,13-dihydrohelenalin (DHM, 6) were quantified as individual components. PMID:20837387

Staneva, Jordanka; Denkova, Pavletta; Todorova, Milka; Evstatieva, Ljuba

2011-01-01

118

TOPICAL REVIEW: Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes  

NASA Astrophysics Data System (ADS)

In MgB2 the correlation of microstructure with superconducting properties, in particular the critical current density, requires powerful analytical tools. Critical current densities and electrical resistivities of different MgB2 superconductors differ by orders of magnitudes and the current limiting mechanisms have not been fully understood. Granularity of MgB2 is one significant reason for reduced critical current densities and is introduced intrinsically by the anisotropy of Bc2 but also extrinsically by the microstructure of the material. Bc2 enhancement by doping is another important challenge for chemical analysis and, at present, doping levels are not well controlled on the sub-µm scale. In this paper the quantitative electron microscopy and spectroscopy methods essential for the microstructural analysis of MgB2 are described. By quantitative electron microscopy and spectroscopy we mean a combined SEM and TEM analysis that covers various length scales from µm to nm. Contamination-free sample preparation, chemical mapping including B, and advanced chemical quantification using x-ray microanalysis were essential elements of the applied methodology. The methodology was applied to in situ and ex situ MgB2 wires and tapes with and without SiC additives. Quantitative B analysis by EDX spectroscopy was applied quantitatively in the SEM and TEM, which is a major achievement. Although MgB2 is a binary system, the thermodynamics of phase formation is complex, and the complexity is dramatically increased if additives like SiC are used. The small, sub-µm grain sizes of the matrix and secondary phases require TEM methods. However, granularity on the µm scale was also identified and underlines the importance of the combined SEM and TEM studies. Significant differences in the microstructure were observed for in situ and ex situ samples. This holds particularly if SiC was added and yielded Mg2Si for in situ samples annealed at 600-650 °C and Mg-Si-O phases for ex situ samples annealed between 900-1050 °C. Only with such a systematic approach combining a large number of microscopy and spectroscopy methods, could a microstructure critical current density model be established that will be presented in another paper. Four microstructural parameters were identified as relevant for the critical current density of wires and tapes and these were: (1) MgB2 grain size, (2) colony size (a colony is a dense arrangement of MgB2 grains), (3) oxygen content and (4) volume fraction of B-rich secondary phases. MgB2 grain size can only be determined by TEM, while colony size, oxygen content and volume fraction of B-rich secondary phases were determined by SEM methods. The formation of oxides was also studied in detail by TEM methods. The importance of electron microscopy methods in the understanding of the thermodynamics of phase formation in MgB2 as well as in improving the synthesis technology and the superconducting properties of MgB2 wires and tapes is described.

Birajdar, B.; Peranio, N.; Eibl, O.

2008-07-01

119

Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy.  

PubMed

In the field of composite materials, natural fibres appear to be a viable replacement for glass fibres. However, in humid conditions, strong hydrophilic behaviour of such materials can lead to their structural modification. Then, understanding moisture sorption mechanisms in these materials is an important issue for their efficient use. In this work, the water sorption on three natural fibres (flax, hemp and sisal) was studied using Fourier transformed infrared spectroscopy. The spectral information allowed both qualitative and quantitative analyses of the moisture absorption mechanisms. The main chemical functions involved in the water sorption phenomenon were identified. The absolute water content of the fibres was also determined by using a partial least square regression (PLS-R) approach. Moreover, typical sorption isotherm curves described by Park model were fitted as well as water diffusion kinetics. These last applications confirmed the validity of the FTIR spectra based predictive models. PMID:24299761

Célino, Amandine; Gonçalves, Olivier; Jacquemin, Frédéric; Fréour, Sylvain

2014-01-30

120

Artificial neural network for Cu quantitative determination in soil using a portable Laser Induced Breakdown Spectroscopy system  

NASA Astrophysics Data System (ADS)

Laser Induced Breakdown Spectroscopy (LIBS) is an advanced analytical technique for elemental determination based on direct measurement of optical emission of excited species on a laser induced plasma. In the realm of elemental analysis, LIBS has great potential to accomplish direct analysis independently of physical sample state (solid, liquid or gas). Presently, LIBS has been easily employed for qualitative analysis, nevertheless, in order to perform quantitative analysis, some effort is still required since calibration represents a difficult issue. Artificial neural network (ANN) is a machine learning paradigm inspired on biological nervous systems. Recently, ANNs have been used in many applications and its classification and prediction capabilities are especially useful for spectral analysis. In this paper an ANN was used as calibration strategy for LIBS, aiming Cu determination in soil samples. Spectra of 59 samples from a heterogenic set of reference soil samples and their respective Cu concentration were used for calibration and validation. Simple linear regression (SLR) and wrapper approach were the two strategies employed to select a set of wavelengths for ANN learning. Cross validation was applied, following ANN training, for verification of prediction accuracy. The ANN showed good efficiency for Cu predictions although the features of portable instrumentation employed. The proposed method presented a limit of detection (LOD) of 2.3 mg dm - 3 of Cu and a mean squared error (MSE) of 0.5 for the predictions.

Ferreira, Edilene C.; Milori, Débora M. B. P.; Ferreira, Ednaldo J.; Da Silva, Robson M.; Martin-Neto, Ladislau

2008-10-01

121

Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping  

PubMed Central

Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars is functionalized with aptamers for sensitive and specific detection of target molecules. In this study, TAMRA-labeled vasopressin molecules in the picomolar regime (1 pM to 1 nM) are specifically captured by aptamers on the nanostructured SERS substrate and monitored by using an automated SERS signal mapping technique. From the experimental results, we show concentration-dependent SERS responses in the picomolar range by integrating SERS signal intensities over a scanning area. It is also noted that our signal mapping approach significantly improves statistical reproducibility and accounts for spot-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient and reliable analysis of each measurement. Combining our SERS mapping analysis with an aptamer-functionalized nanopillar substrate is found to be extremely efficient for detection of low-abundance biomolecules. PMID:23713574

Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo Giacomo; Rindzevicius, Tomas; Alstr?m, Tommy Sonne; Schmidt, Michael Stenbaek; Boisen, Anja; Ju, Jingyue; Lin, Qiao

2013-01-01

122

Quantitative classification of cryptosporidium oocysts and giardia cysts in water using UV/vis spectroscopy  

NASA Astrophysics Data System (ADS)

Cryptosporidium and Giardia are enteric protozoa which cause waterborne diseases. To date, the detection of these organisms in water has relied upon microscopic immunofluorescent assay technology which uses antibodies directed against the cyst and oocyst forms of the protozoa. In this paper, the uv/vis extinction spectra of aqueous dispersions of Cryptosporidium and Giardia have been studied to investigate the potential use of light scattering-spectral deconvolution techniques as a rapid method for the identification and quantification of protozoa in water. Examination of purified samples of Cryptosporidium and Giardia suggests that spectral features apparent in the short wavelength region of the uv/vis spectra contain information that may be species specific for each protozoa. The spectral characteristics, as well as the particle size analysis, determined from the same spectra, allow for the quantitative classification, identification, and possibly, the assessment of the viability of the protozoa. To further increase the sensitivity of this technique, specific antibodies direction against these organisms, labelled with FITC and rhodamine are being used. It is demonstrated that uv/vis spectroscopy provides an alternative method for the characterization of Giardia and Cryptosporidium. The simplicity and reproducibility of uv/vis spectroscopy measurements makes this technique ideally suited for the development of on-line instrumentation for the rapid detection of microorganisms in water supplies.

Bacon, Christina P.; Rose, J. B.; Patten, K.; Garcia-Rubio, Luis H.

1995-05-01

123

Characterization of geometrical factors for quantitative angle-resolved photoelectron spectroscopy  

SciTech Connect

For conventional angle-resolved x-ray photoelectron spectroscopy (ARXPS), the area under the core-level peaks depends mainly on the in-depth distribution of chemical species at the top surface of a specimen. But the x-ray photoelectron spectroscopy (XPS) intensity is also affected by tool-related geometrical factors such as the shape of the x-ray beam, the spectrometer analysis volume, and the manipulator rotation axis. Data analysis is therefore typically based on normalization with respect to the signal from the substrate. Here, we present an original method to perform quantitative ARXPS without normalization, involving evaluation of these geometrical factors. The method is illustrated for a multiprobe XPS system using a methodology based on a specific software (XPSGeometry{sup Registered-Sign }), but is a general process that can be adapted to all types of XPS equipment, even those not specifically designed for ARXPS. In that case, this method enables bringing the sample as close as possible to the manipulator axis of rotation in order to perform automatic acquisitions.

Martinez, Eugenie; Herrera-Gomez, Alberto; Allain, Mickael; Renault, Olivier; Faure, Alain; Chabli, Amal; Bertin, Francois [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, F-38054 Grenoble Cedex 9 (France); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Real de Juriquilla, Queretaro, 76000 (Mexico); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, F-38054 Grenoble Cedex 9 (France)

2012-07-15

124

Is there any measurable benefit in publishing preprints in the arXiv section Quantitative Biology?  

E-print Network

A public preprint server such as arXiv allows authors to publish their manuscripts before submitting them to journals for peer review. It offers the chance to establish priority by making the results available upon completion. This article presents the arXiv section Quantitative Biology and investigates the advantages of preprint publications in terms of reception, which can be measured by means of citations. This paper focuses on the publication and citation delay, citation counts and the authors publishing their e-prints on arXiv. Moreover, the paper discusses the benefit for scientists as well as publishers. The results that are based on 12 selected journals show that submitting preprints to arXiv has become more common in the past few years, but the number of papers submitted to Quantitative Biology is still small and represents only a fraction of the total research output in biology. An immense advantage of arXiv is to overcome the long publication delay resulting from peer review. Although preprints are...

Aman, Valeria

2014-01-01

125

Abstracts of papers presented at the LVIII Cold Spring Harbor Symposium on quantitative Biology: DNA and chromosomes  

SciTech Connect

This volume contains the abstracts of oral and poster presentations made at the LVIII Cold Spring Harbor Symposium on Quantitative Biology entitles DNA & Chromosomes. The meeting was held June 2--June 9, 1993 at Cold Spring Harbor, New York.

Not Available

1993-12-31

126

Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.  

PubMed

The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more accurate QPI measurements with less number of computational operations. PMID:24781590

Doblas, Ana; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Saavedra, Genaro; Garcia-Sucerquia, Jorge

2014-04-01

127

Spectroscopy of Multilayered Biological Tissues for Diabetes Care  

NASA Astrophysics Data System (ADS)

Neurological and vascular complications of diabetes mellitus are known to cause foot ulceration in diabetic patients. Present clinical screening techniques enable the diabetes care provider to triage treatment by identifying diabetic patients at risk of foot ulceration. However, these techniques cannot effectively identify specific areas of the foot at risk of ulceration. This study aims to develop non-invasive optical techniques for accurate assessment of tissue health and viability with spatial resolution on the order of 1 mm². The thesis can be divided into three parts: (1) the use of hyperspectral tissue oximetry to detect microcirculatory changes prior to ulcer formation, (2) development of a two-layer tissue spectroscopy algorithm and its application to detection of callus formation or epidermal degradation prior to ulceration, and (3) multi-layered tissue fluorescence modeling for identification of bacterial growth in existing diabetic foot wounds. The first part of the dissertation describes a clinical study in which hyperspectral tissue oximetry was performed on multiple diabetic subjects at risk of ulceration. Tissue oxyhemoglobin and deoxyhemoglobin concentrations were estimated using the Modified Beer-Lambert law. Then, an ulcer prediction algorithm was developed based on retrospective analysis of oxyhemoglobin and deoxyhemoglobin concentrations in sites that were known to ulcerate. The ulcer prediction algorithm exhibited a large sensitivity but low specificity of 95 and 80%, respectively. The second part of the dissertation revisited the hyperspectral data presented in part one with a new and novel two-layer tissue spectroscopy algorithm. This algorithm was able to detect not only oxyhemoglobin and deoxyhemoglobin concentrations, but also the thickness of the epidermis, and the tissue's scattering coefficient. Specifically, change in epidermal thickness provided insight into the formation of diabetic foot ulcers over time. Indeed, callus formation or the thickening of the epidermis which preempts ulcer formation was detectable prior to ulceration. This added dimension of information increased the specificity of the ulcer prediction algorithm by 7% without reducing the sensitivity. Finally, the third part of the dissertation describes the feasibility of detecting bacteria in open ulcers. First, a semi-empirical model of multi-layered tissue fluorescence was developed. Then, an inverse method was developed and applied to simulated fluorescence emission spectra of diabetic foot wounds infected with Staphylococcus aureus and stained with indocyanine green dye (ICG). The inverse method was able to detect the blood volume fraction, oxygen saturation, and the intrinsic fluorescence spectrum of the ICG dye from simulated fluorescence emission spectra.

Yudovsky, Dmitry

128

Detection of trace Al in model biological tissue with laser-induced breakdown spectroscopy  

E-print Network

Detection of trace Al in model biological tissue with laser-induced breakdown spectroscopy Marian D; accepted 29 May 2007; posted 20 June 2007 (Doc. ID 78984); published 9 August 2007 Laser-induced breakdown was modeled using a 2% agarose gelatin doped with an Al2O3 nanoparticle suspension. A calibration curve

Rehse, Steven J.

129

Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution  

NASA Astrophysics Data System (ADS)

We demonstrate time-domain attenuated total reflection spectroscopy in terahertz frequency region. Geometry of the reflection measurement is well optimized to obtain accurate optical constants of water or aqueous biomolecular system. We determine the dielectric constants of distilled water and sucrose solutions with this technique. This technique will open new aspects in the research field of biological systems in water.

Nagai, Masaya; Yada, Hiroyuki; Arikawa, Takashi; Tanaka, Koichiro

2006-04-01

130

Mapping biological composition through quantitative phase and absorption X-ray ptychography.  

PubMed

Isolating compositional information in biological X-ray imaging can be problematic as such information is conflated with thickness and density variations when viewing in projection through a sample. We demonstrate an effective method for identifying variations in material composition by simultaneously using the quantitative phase and magnitude images provided through soft X-ray ptychography. Using this approach we show significantly increased contrast and improved reliability of the identification of intracellular features from uncharacterised samples. While demonstrated for X-ray ptychography, this method is immediately applicable to electron and optical microscopy methods where the complex transmission function of the sample is recovered. PMID:25348877

Jones, Michael W M; Elgass, Kirstin; Junker, Mark D; Luu, Mac B; Ryan, Michael T; Peele, Andrew G; van Riessen, Grant A

2014-01-01

131

Dynamic quantitative phase imaging for biological objects using a pixelated phase mask  

PubMed Central

This paper describes research in developing a dynamic quantitative phase imaging microscope providing instantaneous measurements of dynamic motions within and among live cells without labels or contrast agents. It utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns derived using the polarization properties of light to track dynamic motions and morphological changes. Optical path difference (OPD) and optical thickness (OT) data are obtained from phase images. Two different processing routines are presented to remove background surface shape to enable quantification of changes in cell position and volume over time. Data from a number of different moving biological organisms and cell cultures are presented. PMID:23162725

Creath, Katherine; Goldstein, Goldie

2012-01-01

132

Dynamic quantitative phase imaging for biological objects using a pixelated phase mask.  

PubMed

This paper describes research in developing a dynamic quantitative phase imaging microscope providing instantaneous measurements of dynamic motions within and among live cells without labels or contrast agents. It utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns derived using the polarization properties of light to track dynamic motions and morphological changes. Optical path difference (OPD) and optical thickness (OT) data are obtained from phase images. Two different processing routines are presented to remove background surface shape to enable quantification of changes in cell position and volume over time. Data from a number of different moving biological organisms and cell cultures are presented. PMID:23162725

Creath, Katherine; Goldstein, Goldie

2012-11-01

133

Mapping biological composition through quantitative phase and absorption X-ray ptychography  

PubMed Central

Isolating compositional information in biological X-ray imaging can be problematic as such information is conflated with thickness and density variations when viewing in projection through a sample. We demonstrate an effective method for identifying variations in material composition by simultaneously using the quantitative phase and magnitude images provided through soft X-ray ptychography. Using this approach we show significantly increased contrast and improved reliability of the identification of intracellular features from uncharacterised samples. While demonstrated for X-ray ptychography, this method is immediately applicable to electron and optical microscopy methods where the complex transmission function of the sample is recovered. PMID:25348877

Jones, Michael W. M.; Elgass, Kirstin; Junker, Mark D.; Luu, Mac B.; Ryan, Michael T.; Peele, Andrew G.; van Riessen, Grant A.

2014-01-01

134

A method for operative quantitative interpretation of multispectral images of biological tissues  

NASA Astrophysics Data System (ADS)

A method for operative retrieval of spatial distributions of biophysical parameters of a biological tissue by using a multispectral image of it has been developed. The method is based on multiple regressions between linearly independent components of the diffuse reflection spectrum of the tissue and unknown parameters. Possibilities of the method are illustrated by an example of determining biophysical parameters of the skin (concentrations of melanin, hemoglobin and bilirubin, blood oxygenation, and scattering coefficient of the tissue). Examples of quantitative interpretation of the experimental data are presented.

Lisenko, S. A.; Kugeiko, M. M.

2013-10-01

135

NIR Raman spectroscopy in medicine and biology: results and aspects  

NASA Astrophysics Data System (ADS)

Analyses of biomaterial by 'classical' Raman spectroscopy with excitation in the visible range has not been possible since the fluorescence of many essential constituents of all animal and plant cells and tissues overlays the Raman spectra completely. Fluorescence, however, is virtually avoided, when Raman spectra are excited with the Nd : YAG laser line at 1064 nm. Within seven dissertations we explored different fields of potential applications to medical diagnostics. Identification and qualification of tissues and cells is possible. Tumors show small but significant differences to normal tissues; in order to develop a reliable tool for tumor diagnostics more research is necessary, especially a collection of reference spectra in a data bank is needed. Raman spectra of biomineralization structures in teeth and bones show pathological tissues as well as the development of new mineralized structures. NIR Raman spectra of flowers, leaves, and fruit show, without special preparation, their constituents: alkaloids, the essential oils, natural dyes, flavors, spices and drugs. They allow application to taxonomy, optimizing plant breeding and control of food.

Schrader, B.; Dippel, B.; Erb, I.; Keller, S.; Löchte, T.; Schulz, H.; Tatsch, E.; Wessel, S.

1999-05-01

136

Qualitative and quantitative study of polymorphic forms in drug formulations by near infrared FT-Raman spectroscopy  

Microsoft Academic Search

Near infrared FT-Raman spectroscopy was applied for the determination of polymorphic forms in a number of commercial drug products containing the polymorphic drug compounds sorbitol, mannitol, famotidine, acemetacin, carbamazepine, meprobamate and phenylbutazone. The crystal forms present in the drug products were identified based on the position, intensity and shape of characteristic bands. Quantitative analysis of a mixture of two crystal

Martin E. Auer; Ulrich J. Griesser; Juergen Sawatzki

2003-01-01

137

Social inclusion enhances biological motion processing: A functional near-infrared spectroscopy study  

PubMed Central

Humans are especially tuned to the movements of other people. Neural correlates of this social attunement have been proposed to lie in and around the right posterior superior temporal sulcus (STS) region, which robustly responds to biological motion in contrast to a variety of non-biological motions. This response persists even when no form information is provided, as in point-light displays (PLDs). The aim of the current study was to assess the ability of functional near-infrared spectroscopy (fNIRS) to reliably measure brain responses to PLDs of biological motion, and determine the sensitivity of these responses to interpersonal contextual factors. To establish reliability, we measured brain activation to biological motion with fNIRS and functional magnetic resonance imaging (fMRI) during two separate sessions in an identical group of 12 participants. To establish sensitivity, brain responses to biological motion measured with fNIRS were subjected to an additional social manipulation where participants were either socially included or excluded before viewing PLDs of biological motion. Results revealed comparable brain responses to biological motion using fMRI and fNIRS in the right supramarginal gyrus. Further, social inclusion increased brain responses to biological motion in right supramarginal gyrus and posterior STS. Thus, fNIRS can reliably measure brain responses to biological motion and can detect social experience-dependent modulations of these brain responses. PMID:22941501

Bolling, Danielle Z.; Pelphrey, Kevin A.; Kaiser, Martha D.

2012-01-01

138

Social inclusion enhances biological motion processing: a functional near-infrared spectroscopy study.  

PubMed

Humans are especially tuned to the movements of other people. Neural correlates of this social attunement have been proposed to lie in and around the right posterior superior temporal sulcus (STS) region, which robustly responds to biological motion in contrast to a variety of non-biological motions. This response persists even when no form information is provided, as in point-light displays (PLDs). The aim of the current study was to assess the ability of functional near-infrared spectroscopy (fNIRS) to reliably measure brain responses to PLDs of biological motion, and determine the sensitivity of these responses to interpersonal contextual factors. To establish reliability, we measured brain activation to biological motion with fNIRS and functional magnetic resonance imaging (fMRI) during two separate sessions in an identical group of 12 participants. To establish sensitivity, brain responses to biological motion measured with fNIRS were subjected to an additional social manipulation where participants were either socially included or excluded before viewing PLDs of biological motion. Results revealed comparable brain responses to biological motion using fMRI and fNIRS in the right supramarginal gyrus. Further, social inclusion increased brain responses to biological motion in right supramarginal gyrus and posterior STS. Thus, fNIRS can reliably measure brain responses to biological motion and can detect social experience-dependent modulations of these brain responses. PMID:22941501

Bolling, Danielle Z; Pelphrey, Kevin A; Kaiser, Martha D

2013-04-01

139

Influence of drinking water composition on quantitation and biological activity of dissolved microcystin (cyanotoxin).  

PubMed

Toxic cyanobacteria in aquatic environments have been implicated in many poisoning incidents of livestock, wildlife, and domestic animals. Microcystins (MCYSTs) in water supplies represent a risk to public health. This work investigated the effect of water composition on the quantitation and biological activity of MCYSTs analyzed by different methods (HPLC, ELISA, and protein phosphatase 1 inhibition assay). Different MCYST concentrations were added to deionized water and quantified, confirming the efficiency of these analytical methods. MCYST concentrations diluted in drinking water had reduced detection by all methods tested. The drinking water used contained a free chlorine concentration of 2.5 mg/L and an Fe concentration of 0.45 mg/L, and the conductivity was 69.8 microS cm(-1), whereas in deionized water, free chlorine and Fe were not detectable, and the conductivity was 1.6 microS cm(-1). Drinking water also interfered with the biological activity of MYCSTs, as these toxins showed reduced protein phosphatase-1 inhibition. A free chlorine concentration of 2.5 mg/L in deionized water was completely effective in preventing any detection of 10 microg/L of added MCYSTs. Fe and Al ions also were very effective in reducing MCYST detection. The chemical composition of drinking water thus affected MCYST detection, indicating a significant reduction in quantitation of this molecule either because of its decomposition or through complexation with metal ions. PMID:15793828

Oliveira, Ana C P; Magalhães, Valéria F; Soares, Raquel M; Azevedo, Sandra M F O

2005-04-01

140

Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy  

NASA Astrophysics Data System (ADS)

Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing its fundamental ro-vibrational transitions. The flat sooty C2H4/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug McKenna type burner at atmospheric pressure, and all measurements were performed at a height of 8.5 mm above the burner surface. IRPS excitation scans in different flame conditions were performed and rotational line-resolved spectra were recorded. Spectral features of acetylene molecules were readily recognized in the spectral ranges selected, with special attention to avoid the spectral interference from the large amount of coexisting hot water and other hydrocarbon molecules. On-line calibration of the optical system was performed in a laminar C2H2/N2 gas flow at ambient conditions. Using the flame temperatures measured by coherent anti-Stokes Raman spectroscopy in a previous work, C2H2 mole fractions in different flames were evaluated with collision effects and spectral overlap between molecular line and laser source being analyzed and taken into account. C2H2 IRPS signals in two different buffering gases, N2 and CO2, had been investigated in a tube furnace in order to estimate the spectral overlap coefficients and collision effects at different temperatures. The soot-volume fractions (SVF) in the studied flames were measured using a He-Ne laser-extinction method, and no obvious degrading of the IRPS technique due to the sooty environment has been observed in the flame with SVF up to ˜2×10-7. With the increase of flame equivalence ratios not only the SVF but also the C2H2 mole fractions increased.

Sun, Z. W.; Li, Z. S.; Li, B.; Alwahabi, Z. T.; Aldén, M.

2010-10-01

141

Development of a Univariate Membrane-Based Mid-Infrared Method for Protein Quantitation and Total Lipid Content Analysis of Biological Samples  

PubMed Central

Biological samples present a range of complexities from homogeneous purified protein to multicomponent mixtures. Accurate qualification of such samples is paramount to downstream applications. We describe the development of an MIR spectroscopy-based analytical method offering simultaneous protein quantitation (0.25–5?mg/mL) and analysis of total lipid or detergent species, as well as the identification of other biomolecules present in biological samples. The method utilizes a hydrophilic PTFE membrane engineered for presentation of aqueous samples in a dried format compatible with fast infrared analysis. Unlike classical quantification techniques, the reported method is amino acid sequence independent and thus applicable to complex samples of unknown composition. By comparison to existing platforms, this MIR-based method enables direct quantification using minimal sample volume (2?µL); it is well-suited where repeat access and limited sample size are critical parameters. Further, accurate results can be derived without specialized training or knowledge of IR spectroscopy. Overall, the simplified application and analysis system provides a more cost-effective alternative to high-throughput IR systems for research laboratories with minimal throughput demands. In summary, the MIR-based system provides a viable alternative to current protein quantitation methods; it also uniquely offers simultaneous qualification of other components, notably lipids and detergents. PMID:25371845

Cappione, Amedeo; Lento, Joseph; Chernokalskaya, Elena

2014-01-01

142

Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

In order to simulate coal combustion and develop optimal and stable boiler control systems in real power plants, it is imperative to obtain the detailed information in coal combustion processes as well as to measure species contents in fly ash, which should be controlled and analyzed for enhancing boiler efficiency and reducing environmental pollution. The fly ash consists of oxides (SiO2, Al2O3, Fe2O3, CaO, and so on), unburned carbon, and other minor elements. Recently laser-induced breakdown spectroscopy (LIBS) technique has been applied to coal combustion and other industrial fields because of the fast response, high sensitivity, real-time and non-contact features. In these applications it is important to measure controlling factors without any sample preparation to maintain the real-time measurement feature. The relation between particle content and particle diameter is also one of the vital researches, because compositions of particles are dependent on their diameter. In this study, we have detected the contents of size-segregated particles using LIBS. Particles were classified by an Anderson cascade impactor and their contents were measured using the output of 1064 nm YAG laser, a spectrograph and an ICCD camera. The plasma conditions such as plasma temperature are dependent on the size of particles and these effects must be corrected to obtain quantitative information. The plasma temperature was corrected by the emission intensity ratio from the same atom. Using this correction method, the contents of particles can be measured quantitatively in fixed experimental parameters. This method was applied to coal and fly ash from a coal-fired burner to measure unburned carbon and other contents according to the particle diameter. The acquired results demonstrate that the LIBS technique is applicable to measure size-segregated particle contents in real time and this method is useful for the analysis of coal combustion and its control because of its sensitive and fast analysis features.

Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Taira, Takuya; Zhang, Xiao Bo; Yan, Jun Jie; Liu, Ji Ping; Watanabe, Hiroaki; Kurose, Ryoichi

2013-09-01

143

Quantitative measurement of AMS and orange mixtures by terahertz time-domain spectroscopy  

NASA Astrophysics Data System (ADS)

Terahertz time domain spectroscopy (THz-TDS) is a new kind of nondestructive detection method, frequency of terahertz wave spans from a few tens of GHz to several THz, which is used to detect material because of its strong identification, it can supply rich vibration information caused by intermolecular and large intra-molecular. Ammonium sulfamate (AMS) is a kind of herbicide, it has special value for many woody plants, which can prevent annual weeds. The excess use of pesticide is a huge threaten for human health in recent years, thus the research on detection of pesticide has absolutely important meaning, in this paper, pure AMS and mixture samples of AMS and orange are measured using THz-TDS, and their absorption coefficient are calculated by the model, which is put forward based on Fresnel equation. We qualitatively analyze the absorption coefficient spectra of pure AMS, which is useful for us to identify the pesticide in agriculture products. Meanwhile, we measured 14 mixture samples of AMS and orange, the weight ratio of mixtures are from 0% to 59.9%. Nine samples are considered as calibration set and the other five samples are regarded as prediction set, to quantitatively analyze the concentration of AMS by the partial least squares (PLS), the result shows that the prediction error is less then 4.5%, in addition, the relationship of the average absorption and weight ratio are absolutely linear. The experiment demonstrates that THz-TDS is promising and efficient to quantitatively detect the component of mixtures, and it has important reference value for the detection of pesticide in agriculture food.

Wang, Qiang; Ma, Yehao; Wang, Xiaowei

2012-06-01

144

Quantitative FT-IR spectroscopy of gypsum raw material for industry  

NASA Astrophysics Data System (ADS)

Today quality control (QC) is a big issue for being competitive in the gypsum industry. Knowledge and understanding of the raw material help to enhance the quality and permanence of products. Therefore a rapid, precise and user-friendly FT-IR spectroscopic method for quantitative analysis of gypsum, anhydrite, magnesite and dolomite from the gypsum deposit of Puchberg, Austria is being developed. There are decisive advantages of FT-IR spectroscopy compared to thermogravimetric methods (TG, DTA, DSC) or XRD, which are commonly used for QC, e.g. it is frequently available in industry labs and a spectrum can be obtained in a few minutes, with a minimum of sample preparation. The effects of particle size and ratio of dilution with KBr were investigated in transmission mode, using KBr pellets, as well as in diffuse reflexion mode. Little differences in particle size lead to enormous differences in peak height in transmission mode, but show only little effects in diffuse reflexion. The small amounts of sample used in KBr pellets (e.g. 2 mg sample : 500 mg KBr) also turned out to be disadvantageous, just like the time consuming sample preparation. Measurements in diffuse reflexion with a sample to KBr ratio of 1:10 show promising results for use in standardization, whereas higher dilutions hardly improve the quality, and ratios of 1:5 still show components of specular reflection. The calibration model for quantitative analysis is being constructed measuring various defined mixtures of >98% pure natural minerals (gypsum, magnesite, dolomite), and synthetic materials (anhydrite). The latter was obtained by heating gypsum at 350^oC for 10 h. The synthetic material was chosen, because natural material was not available in sufficient amounts with high purity. The IR method is compared with results achieved with XRD-Rietveld and thermogravimetric methods. Advantages of chemometrical software based on multivariate statistical techniques will be investigated and compared with standard techniques using simple peak fitting methods.

Schwendtner, K.; Libowitzky, E.; Götzinger, M. A.; Koss, S.

2003-04-01

145

An integrative strategy for quantitative analysis of the N-glycoproteome in complex biological samples  

PubMed Central

Background The complexity of protein glycosylation makes it difficult to characterize glycosylation patterns on a proteomic scale. In this study, we developed an integrated strategy for comparatively analyzing N-glycosylation/glycoproteins quantitatively from complex biological samples in a high-throughput manner. This strategy entailed separating and enriching glycopeptides/glycoproteins using lectin affinity chromatography, and then tandem labeling them with 18O/16O to generate a mass shift of 6 Da between the paired glycopeptides, and finally analyzing them with liquid chromatography-mass spectrometry (LC-MS) and the automatic quantitative method we developed based on Mascot Distiller. Results The accuracy and repeatability of this strategy were first verified using standard glycoproteins; linearity was maintained within a range of 1:10–10:1. The peptide concentration ratios obtained by the self-build quantitative method were similar to both the manually calculated and theoretical values, with a standard deviation (SD) of 0.023–0.186 for glycopeptides. The feasibility of the strategy was further confirmed with serum from hepatocellular carcinoma (HCC) patients and healthy individuals; the expression of 44 glycopeptides and 30 glycoproteins were significantly different between HCC patient and control serum. Conclusions This strategy is accurate, repeatable, and efficient, and may be a useful tool for identification of disease-related N-glycosylation/glycoprotein changes. PMID:24428921

2014-01-01

146

Quantitation of biological retinoids by high-pressure liquid chromatography: primary internal standardization using tritiated retinoids  

SciTech Connect

A single method is described for quantitation of 14 retinoids found in biological material. The method consists of reversed-phase HPLC, internal standardization, and carrier extraction procedures with three synthetic retinoids. Primary standardization of HPLC uv detector is achieved using tritiated all-trans-retinoic acid, all-trans-retinol, all-trans-retinyl palmitate, and all-trans-retinyl acetate. Extraction methods are standardized by correlating the uv absorbance of retinoids at 340 nm with radioactivity of tritiated retinoids of known specific activity. Quantitation of 10 pg of tritiated or 5 ng of nonradioactive retinoid per 0.1 g sample in a polarity range from 4-oxo-retinoic acid to retinyl stearate can be achieved in a single, 50-min chromatographic run. A single HPLC pump, a C/sub 18/ reversed-phased analytical column, a multistep three-solvent gradient, and inexpensive solvents based on methanol, water, and chloroform comprise this cost-effective chromatographic system. Our primary standardization method allows investigators employing different procedures to compare results between laboratories by standardizing the HPLC uv detector with commercially available tritiated retinoids. With this method we were able to quantitate nanomolar amounts of endogenous retinoic acids and retinyl esters, that HPLC uv only conditions usually would not detect in the circulation and liver of rats under physiological conditions.

Cullum, M.E.; Zile, M.H.

1986-02-15

147

Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

The penetration profile of chlorine in a reinforced concrete (RC) specimen was determined by laser-induced breakdown spectroscopy (LIBS). The concrete core was prepared from RC beams with cracking damage induced by bending load and salt water spraying. LIBS was performed using a specimen that was obtained by splitting the concrete core, and the line scan of laser pulses gave the two-dimensional emission intensity profiles of 100 × 80 mm2 within one hour. The two-dimensional profile of the emission intensity suggests that the presence of the crack had less effect on the emission intensity when the measurement interval was larger than the crack width. The chlorine emission spectrum was measured without using the buffer gas, which is usually used for chlorine measurement, by collinear double-pulse LIBS. The apparent diffusion coefficient, which is one of the most important parameters for chloride penetration in concrete, was estimated using the depth profile of chlorine emission intensity and Fick's law. The carbonation depth was estimated on the basis of the relationship between carbon and calcium emission intensities. When the carbon emission intensity was statistically higher than the calcium emission intensity at the measurement point, we determined that the point was carbonated. The estimation results were consistent with the spraying test results using phenolphthalein solution. These results suggest that the quantitative estimation by LIBS of carbonation depth and chloride penetration can be performed simultaneously.

Eto, Shuzo; Matsuo, Toyofumi; Matsumura, Takuro; Fujii, Takashi; Tanaka, Masayoshi Y.

2014-11-01

148

Quantitative hydrogen analysis of zircaloy-4 in laser-induced breakdown spectroscopy with ambient helium gas  

SciTech Connect

This experiment was carried out to address the need for overcoming the difficulties encountered in hydrogen analysis by means of plasma emission spectroscopy in atmospheric ambient gas. The result of this study on zircaloy-4 samples from a nuclear power plant demonstrates the possibility of attaining a very sharp emission line from impure hydrogen with a very low background and practical elimination of spectral contamination of hydrogen emission arising from surface water and water vapor in atmospheric ambient gas. This was achieved by employing ultrapure ambient helium gas as well as the proper defocusing of the laser irradiation and a large number of repeated precleaning laser shots at the same spot of the sample surface. Further adjustment of the gating time has led to significant reduction of spectral width and improvement of detection sensitivity to {approx}50 ppm. Finally, a linear calibration curve was also obtained for the zircaloy-4 samples with zero intercept. These results demonstrate the feasibility of this technique for practical in situ and quantitative analysis of hydrogen impurity in zircaloy-4 tubes used in a light water nuclear power plant.

Ramli, Muliadi; Fukumoto, Ken-ichi; Niki, Hideaki; Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Maruyama, Tadashi; Kagawa, Kiichiro; Tjia, May On; Pardede, Marincan; Kurniawan, Koo Hendrik; Hedwig, Rinda; Lie, Zener Sukra; Lie, Tjung Jie; Kurniawan, Davy Putra

2007-12-01

149

Quantitative analysis of metformin in antidiabetic tablets by laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Nowadays the production of counterfeit and low quality drugs affects human health and generates losses to pharmaceutical industries and tax revenue losses to government. Currently there are several methods for pharmaceutical product analysis; nevertheless, most of them depend on complex and time consuming steps such as sample preparation. In contrast to conventional methods, Laser-induced breakdown spectroscopy (LIBS) is evaluated as a potential analytical technique for the rapid screening and quality control of anti-diabetic solid formulations. In this paper authors propose a simple method to analyze qualitatively and quantitatively Active Pharmaceutical Ingredients (APIs) such as Metformin hydrochloride. The authors used ten nanosecond duration pulses (FWHM) from a Nd:YAG laser produces the induced breakdown for the analysis. Light is collected and focused into a Cerny-Turner spectrograph and dispersed into an ICCD camera for its detection. We used atomic emissions from Chlorine atoms present only in APIs as analyte signal. The analysis was improved using Bromine as internal standard. Linear calibration curves from synthetic samples were prepared achieving linearity higher than 99%. Our results were compared with HPLC results and validation was performed by statistical methods. The validation analysis suggests that both methods have no significant differences i.e., the proposed method can be implemented for monitoring the pharmaceutical production process in-situ in real time or for inspection and recognition of authenticity.

Contreras, U.; Ornelas-Soto, N.; Meneses-Nava, M. A.; Barbosa-García, O.; López-de-Alba, P. L.; López-Martínez, L.

2011-09-01

150

ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials.  

PubMed

The applicability of ATR-FTIR spectroscopy with partial least squares (PLS) data analysis was evaluated for quantifying the components of mixtures of paint binding media and pigments, and alkyd resins. PLS methods were created using a number of standard mixtures. Validation and measurement uncertainty estimation was carried out. Binary, ternary and quaternary mixtures of several common binding media and pigments were quantified, with standard measurement uncertainties in most cases below 3g/100g. Classes of components - aromatic anhydrides and alcohols - used in alkyd resin synthesis were also successfully quantified, with standard uncertainties in the range of 2-3g/100g. This is a more demanding application because in alkyd resins aromatic anhydrides and alcohols have reacted to form a polyester, and are not present in their original forms. Once a PLS method has been calibrated, analysis time and cost are significantly reduced from typical quantitative methods such as GC/MS. This is beneficial in the case of routine analysis where the components are known. PMID:24945861

Hayes, Philippa Alice; Vahur, Signe; Leito, Ivo

2014-12-10

151

Quantitative analysis and detection of adulteration in pork using near-infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Authenticity is an important food quality criterion. Rapid methods for confirming authenticity or detecting adulteration are increasingly demanded by food processors and consumers. Near infrared (NIR) spectroscopy has been used to detect economic adulteration in pork . Pork samples were adulterated with liver and chicken in 10% increments. Prediction and quantitative analysis were done using raw data and pretreatment spectra. The optimal prediction result was achieved by partial least aquares(PLS) regression with standard normal variate(SNV) pretreatment for pork adulterated with liver samples, and the correlation coefficient(R value), the root mean square error of calibration(RMSEC) and the root mean square error of prediction (RMSEP) were 0.97706, 0.0673 and 0.0732, respectively. The best model for pork meat adulterated with chicken samples was obtained by PLS with the raw spectra, and the correlation coefficient(R value), RMSEP and RMSEC were 0.98614, 0.0525, and 0.122, respectively. The result shows that NIR technology can be successfully used to detect adulteration in pork meat adulterated with liver and chicken.

Fan, Yuxia; Cheng, Fang; Xie, Lijuan

2010-04-01

152

Quantitative characterisation of pigment mixtures used in art by fibre-optics diffuse-reflectance spectroscopy  

NASA Astrophysics Data System (ADS)

Fibre-optics diffuse reflectance spectroscopy (FORS) was used to characterise pigment mixtures in paints used in art. Measurements are non invasive, without any contact with the sample. The experimental device is portable, therefore measurements can be performed in situ, without moving the work of art under investigation from its conservation place. The protocol was validated thanks to modern gouache paints: 10 pure gouaches were used as references and 27 binary mixtures of these pure gouaches were studied. Reflectance spectra are processed using the Kubelka-Munk theory in order to get scattering and absorption coefficients of the references. Assuming a linear dependance of these optical properties with the pigment volume concentration (PVC) of the components of paint layers, the protocol enables qualitative as well as quantitative interpretation of the reflectance spectra measured on binary mixtures of references. Indeed, for most cases, numerical processing of FORS-measurements performed on a mixture leads to the identification of its components. Besides, once the components are identified, it is possible to compute their respective proportions with an accuracy of 5%.

Dupuis, G.; Menu, M.

2006-06-01

153

Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.  

DOEpatents

A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

2003-05-06

154

High-throughput screening of optimal solution conditions for structural biological studies by fluorescence correlation spectroscopy  

PubMed Central

Protein aggregation is an essential molecular event in a wide variety of biological situations, and is a causal factor in several degenerative diseases. The aggregation of proteins also frequently hampers structural biological analyses, such as solution NMR studies. Therefore, precise detection and characterization of protein aggregation are of crucial importance for various research fields. In this study, we demonstrate that fluorescence correlation spectroscopy (FCS) using a single-molecule fluorescence detection system enables the detection of otherwise invisible aggregation of proteins at higher protein concentrations, which are suitable for structural biological experiments, and consumes relatively small amounts of protein over a short measurement time. Furthermore, utilizing FCS, we established a method for high-throughput screening of protein aggregation and optimal solution conditions for structural biological experiments. PMID:19388076

Sugiki, Toshihiko; Yoshiura, Chie; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio; Takahashi, Hideo

2009-01-01

155

Feasibility Study of Using Short Wave Infrared Cavity Ringdown Spectroscopy (SWIR-CRDS) for Biological Agent Detection  

Microsoft Academic Search

This project focused on determining the feasibility of using short wave infrared (SWIR) cavity ring down spectroscopy (CRDS) as a means for real-time detection of biological aerosols. The first part of the project involved identifying biological agent signatures that could be detected with SWIR CRDS. After an exhaustive search of the open literature it was determined that whole biological spores

Pam M. Aker; Timothy J. Johnson; Richard M. Williams; Nancy B. Valentine

2007-01-01

156

Quantitative assay of element mass inventories in single cell biological systems with micro-PIXE  

NASA Astrophysics Data System (ADS)

Elemental concentrations in micro-PIXE (Particle Induced X-ray Emission) maps of elements in biological tissue slices have been determined using auxiliary information on the sample matrix composition from EBS (Elastic Backscattering Spectroscopy) and STIM (Scanning Transmission Ion Microscopy). The thin sample approximation may be used for evaluating micro-PIXE data in cases, where X-ray absorption in the sample can be neglected and the mass of elements in a selected area can be estimated. The resulting sensitivity amounts to an impressive 10-12 g of the selected elements. Two cases are presented as examples. In the first, we determined the total mass of gold nanoparticles internalized by human monocyte-derived dendritic cells (MDDC). In the second, an inventory of the mass of elements in the micro-particulate material adsorbed at the wall of the lorica of the microzooplankton species Tintinnopsis radix has been created.

Ogrinc, Nina; Pelicon, Primož; Vavpeti?, Primož; Kelemen, Mitja; Grlj, Nataša; Jeromel, Luka; Tomi?, Sergej; ?oli?, Miodrag; Beran, Alfred

2013-07-01

157

Heterogeneous nanostructures for plasmonic interaction with luminescence and quantitative surface-enhanced Raman spectroscopy  

NASA Astrophysics Data System (ADS)

NIR-to-visible up-conversion nanomaterials have been investigated in many promising applications including nextgeneration displays, solar cells, and biological labels. When doped with different trivalent lanthanide ions, NaYF4 nanoparticles can produce up-converted emission from visible to infra-red wavelengths. However, the quantum yield of this class of materials is low. Noble metals in the vicinity of the phosphor can increase the phosphorescence by local field enhancement due to plasmonic resonances, and by modification of the radiative rate of the phosphor. Most previous studies have investigated the phenomenon by placing nanophosphors onto a metal substrate, or by fabrication of nano structures with spacers such as polymers, dielectric materials (silica). By contrast, we have studied the interaction between the luminescence and the surface plasmon using a core-shell type nanostructure where a uniform shell of silver is shown to grown on doped-NaYF4 nanophosphors by Ostwald ripening. We further demonstrate the proximity effect of metal-enhanced luminescence by exciting an undoped NaYF4 shell. The result shows a significant synergistic enhancement of up-conversion luminescence due to the active shell as spacer layer. In addition, we have shown this novel nanostructure may be useful in surface-enhanced Raman spectroscopy (SERS).

Das, Gautom K.; Sudheendra, L.; Kennedy, Ian M.

2014-03-01

158

Quantitative Determination of 3-Aminopropylsilane on the Surface of FE3O4 Nanoparticles by Attenuated Total Reflection Infrared Spectroscopy  

NASA Astrophysics Data System (ADS)

A technique for quantitative analysis of 3-aminopropylsilane on the surface of chemically modified Fe3O4 magnetic nanoparticles in the concentration range 0.32-3.03 mmol/g was developed using attenuated total reflection infrared spectroscopy. The technique was based on the ratios of band areas corresponding to Fe-O vibrations of the nanoparticles and Si-O vibrations of the coating as a function of the Si mass fraction in the nanocomposite that was determined by inductively coupled plasma atomic-emission spectroscopy.

Demin, A. M.; Koryakova, O. V.; Krasnov, V. P.

2014-09-01

159

Quantitative assessment of hydrocarbon contamination in soil using reflectance spectroscopy: a "multipath" approach.  

PubMed

Petroleum hydrocarbons are contaminants of great significance. The commonly used analytic method for assessing total petroleum hydrocarbons (TPH) in soil samples is based on extraction with 1,1,2-Trichlorotrifluoroethane (Freon 113), a substance prohibited to use by the Environmental Protection Agency. During the past 20 years, a new quantitative methodology that uses the reflected radiation of solids has been widely adopted. By using this approach, the reflectance radiation across the visible, near infrared-shortwave infrared region (400-2500 nm) is modeled against constituents determined using traditional analytic chemistry methods and then used to predict unknown samples. This technology is environmentally friendly and permits rapid and cost-effective measurements of large numbers of samples. Thus, this method dramatically reduces chemical analytical costs and secondary pollution, enabling a new dimension of environmental monitoring. In this study we adapted this approach and developed effective steps in which hydrocarbon contamination in soils can be determined rapidly, accurately, and cost effectively solely from reflectance spectroscopy. Artificial contaminated samples were analyzed chemically and spectrally to form a database of five soils contaminated with three types of petroleum hydrocarbons (PHCs), creating 15 datasets of 48 samples each at contamination levels of 50-5000 wt% ppm (parts per million). A brute force preprocessing approach was used by combining eight different preprocessing techniques with all possible datasets, resulting in 120 different mutations for each dataset. The brute force was done based on an innovative computing system developed for this study. A new parameter for evaluating model performance scoring (MPS) is proposed based on a combination of several common statistical parameters. The effect of dividing the data into training validation and test sets on modeling accuracy is also discussed. The results of this study clearly show that predicting TPH levels at low concentrations in selected soils at high precision levels is viable. Dividing a dataset into training, validation, and test groups affects the modeling process, and different preprocessing methods, alone or in combination, need to be selected based on soil type and PHC type. MPS was found to be a better parameter for selecting the best performing model than ratio of prediction to deviation, yielding models with the same performance but less complicated and more stable. The use of the "all possibilities" system proved to be mandatory for efficient optimal modeling of reflectance spectroscopy data. PMID:24160885

Schwartz, Guy; Ben-Dor, Eyal; Eshel, Gil

2013-11-01

160

Final Report: Investigation of Polarization Spectroscopy and Degenerate Four-Wave Mixing for Quantitative Concentration Measurements  

SciTech Connect

Laser-induced polarization spectroscopy (LIPS), degenerate four-wave mixing (DFWM), and electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) are techniques that shows great promise for sensitive measurements of transient gas-phase species, and diagnostic applications of these techniques are being pursued actively at laboratories throughout the world. However, significant questions remain regarding strategies for quantitative concentration measurements using these techniques. The primary objective of this research program is to develop and test strategies for quantitative concentration measurements in flames and plasmas using these nonlinear optical techniques. Theoretically, we are investigating the physics of these processes by direct numerical integration (DNI) of the time-dependent density matrix equations that describe the wave-mixing interaction. Significantly fewer restrictive assumptions are required when the density matrix equations are solved using this DNI approach compared with the assumptions required to obtain analytical solutions. For example, for LIPS calculations, the Zeeman state structure and hyperfine structure of the resonance and effects such as Doppler broadening can be included. There is no restriction on the intensity of the pump and probe beams in these nonperturbative calculations, and both the pump and probe beam intensities can be high enough to saturate the resonance. As computer processing speeds have increased, we have incorporated more complicated physical models into our DNI codes. During the last project period we developed numerical methods for nonperturbative calculations of the two-photon absorption process. Experimentally, diagnostic techniques are developed and demonstrated in gas cells and/or well-characterized flames for ease of comparison with model results. The techniques of two-photon, two-color H-atom LIPS and three-laser ERE CARS for NO and C{sub 2}H{sub 2} were demonstrated during the project period, and nonperturbative numerical models of both of these techniques were developed. In addition, we developed new single-mode, injection-seeded optical parametric laser sources (OPLSs) that will be used to replace multi-mode commercial dye lasers in our experimental measurements. The use of single-mode laser radiation in our experiments will increase significantly the rigor with which theory and experiment are compared.

Robert P. Lucht

2005-03-09

161

Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.  

PubMed

Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15?000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as chemical images providing identification as well as localisation of chemical compounds in non-homogenous samples. PMID:25156745

Manley, Marena

2014-12-21

162

High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices.  

PubMed

Quantitative and qualitative high-resolution (HR) dependent and independent acquisition schemes on a QqTOF MS (with resolving power 20,000-40,000) were investigated for the analysis of pharmaceutical compounds in biological fluids. High-resolution selected reaction monitoring (HR-SRM) was found to be linear over three orders of magnitude for quantitative analysis of paracetamol in human plasma, offering a real alternative to triple quadrupole LC-SRM/MS. Metabolic stability of talinolol in microsomes was characterized by use of three different acquisition schemes: (i) information-dependent acquisition (IDA) with a TOF MS experiment as survey scan and product-ion scan as dependent scan; (ii) MS(ALL) by collecting TOF mass spectra with and without fragmentation by alternating the collision energy of the collision cell between a low (i.e., 10 eV) and high setting (i.e., 40 eV); and (iii) a novel independent acquisition mode referred to as "sequential window acquisition of all theoretical fragment-ion spectra" (SWATH) or "global precursor ions scan mode" (GPS) in which sequential precursor ions windows (typically 20 u) are used to collect the same spectrum precursor and fragment ions using a collision energy range. SWATH or GPS was found to be superior to IDA or MS(ALL) in combination with UHPLC for qualitative analysis but requires a rapidly acquiring mass spectrometer. Finally, the GPS concept was used for QUAL/QUAN analysis (i.e. integration of qualitative and quantitative analysis) of bosentan and its metabolites in urine over a concentration range from 5 to 2,500 ng mL(-1). PMID:22203371

Hopfgartner, Gérard; Tonoli, David; Varesio, Emmanuel

2012-03-01

163

Cancer therapy prognosis using quantitative ultrasound spectroscopy and a kernel-based metric  

NASA Astrophysics Data System (ADS)

In this study, a kernel-based metric based on the Hilbert-Schmidt independence criterion (HSIC) is proposed in a computer-aided-prognosis system to monitor cancer therapy effects. In order to induce tumour cell death, sarcoma xenograft tumour-bearing mice were injected with microbubbles followed by ultrasound and X-ray radiation therapy successively as a new anti-vascular treatment. High frequency (central frequency 30 MHz) ultrasound imaging was performed before and at different times after treatment and using spectroscopy, quantitative ultrasound (QUS) parametric maps were derived from the radiofrequency (RF) signals. The intensity histogram of midband fit parametric maps was computed to represent the pre- and post-treatment images. Subsequently, the HSIC-based metric between preand post-treatment samples were computed for each animal as a measure of distance between the two distributions. The HSIC-based metrics computes the distance between two distributions in a reproducing kernel Hilbert space (RKHS), meaning that by using a kernel, the input vectors are non-linearly mapped into a different, possibly high dimensional feature space. Computing the population means in this new space, enhanced group separability (compared to, e.g., Euclidean distance in the original feature space) is ideally obtained. The pre- and post-treatment parametric maps for each animal were thus represented by a dissimilarity measure, in which a high value of this metric indicated more treatment effect on the animal. It was shown in this research that this metric has a high correlation with cell death and if it was used in supervised learning, a high accuracy classification was obtained using a k-nearest-neighbor (k-NN) classifier.

Gangeh, Mehrdad J.; Hashim, Amr; Giles, Anoja; Czarnota, Gregory J.

2014-03-01

164

Ni speciation in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation  

NASA Astrophysics Data System (ADS)

Changes in Ni speciation in a 64 m vertical profile of a New Caledonian saprolitic-lateritic regolith developed over ultramafic rocks under tropical weathering conditions were investigated by EXAFS spectroscopy. Quantitative analysis of the EXAFS spectra by linear combination-least squares fitting (LC-LSF) using a large set of model compound spectra showed that Ni hosted in primary silicate minerals (olivine and serpentine) in the bedrock is incorporated in secondary phyllosilicates (serpentine) and Fe-oxides (goethite) in the saprolite unit and mainly in goethite in the laterite unit. A significant concentration of Ni (up to 30% of total Ni) is also hosted by Mn-oxides in the transition laterite (i.e. the lowest part of the laterite unit which contains large amounts of Mn-oxides). However, the amount of Ni associated with Mn-oxides does not exceed 20% of the total Ni in the overlying laterite unit. This sequence of Ni species from bedrock to laterite yields information about the behavior of Ni during tropical weathering of ultramafic rocks. The different Ni distributions in phyllosilicates in the bedrock (randomly distributed) and in the saprolite unit (clustered) indicate two generations of Ni-bearing phyllosilicates. The first, which formed at higher temperature, is related to serpentinization of oceanic crust, whereas the second one, which formed at lower temperature, is associated with post-obduction weathering of ultramafic rocks. In addition, the observed decrease in the proportion of Ni hosted by Mn-oxides from the transition laterite to the upper lateritic horizons indicates dissolution of Mn-oxides during the last stages of differentiation of the lateritic regolith (i.e. lateritization). Finally, the ubiquitous occurrence of Ni-bearing goethite emphasizes the major role of this phase in Ni speciation at the different weathering stages and suggests that goethite represents the major host for Ni in the final tropical weathering stages of New Caledonian ultramafic rocks.

Dublet, Gabrielle; Juillot, Farid; Morin, Guillaume; Fritsch, Emmanuel; Fandeur, Dik; Ona-Nguema, Georges; Brown, Gordon E.

2012-10-01

165

A comparison of quantitative reconstruction techniques for PIXE-tomography analysis applied to biological samples  

NASA Astrophysics Data System (ADS)

The tomographic reconstruction of biological specimens requires robust algorithms, able to deal with low density contrast and low element concentrations. At the IST/ITN microprobe facility new GPU-accelerated reconstruction software, JPIXET, has been developed, which can significantly increase the speed of quantitative reconstruction of Proton Induced X-ray Emission Tomography (PIXE-T) data. It has a user-friendly graphical user interface for pre-processing, data analysis and reconstruction of PIXE-T and Scanning Transmission Ion Microscopy Tomography (STIM-T). The reconstruction of PIXE-T data is performed using either an algorithm based on a GPU-accelerated version of the Maximum Likelihood Expectation Maximisation (MLEM) method or a GPU-accelerated version of the Discrete Image Space Reconstruction Algorithm (DISRA) (Sakellariou (2001) [2]). The original DISRA, its accelerated version, and the MLEM algorithm, were compared for the reconstruction of a biological sample of Caenorhabditis elegans - a small worm. This sample was analysed at the microbeam line of the AIFIRA facility of CENBG, Bordeaux. A qualitative PIXE-T reconstruction was obtained using the CENBG software package TomoRebuild (Habchi et al. (2013) [6]). The effects of pre-processing and experimental conditions on the elemental concentrations are discussed.

Beasley, D. G.; Alves, L. C.; Barberet, Ph.; Bourret, S.; Devès, G.; Gordillo, N.; Michelet, C.; Le Trequesser, Q.; Marques, A. C.; Seznec, H.; da Silva, R. C.

2014-07-01

166

The physical and biological basis of quantitative parameters derived from diffusion MRI.  

PubMed

Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy).Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses.The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times.In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085

Winston, Gavin P

2012-12-01

167

Quantitative changes in sets of proteins as markers of biological response  

SciTech Connect

Exposure to either physical or chemical insults triggers a cascade of bio-chemical events within the target cell. This response requires adjustment within the protein population of the cell, some proteins becoming more abundant (those involved in the cellular response), others less abundant (those not required or counterproductive to the response). Thus, quantitative changes in the global protein population of an exposed biological system may well serve as an indicator of exposure, provided the alterations observed are selective and dose-dependent. In this paper we present results from a study in which liver protein changes induced by exposure of mice to chemicals known to cause peroxisome proliferation and subsequent hepatocellular carcinoma where monitored. Clofibrate, and its chemical analog ciprofibrate, are hypolipidemic drugs. Di-(ethylhexyl)phthalate (DEHP) is a plasticizer used widely in disposable containers for blood products. WY-14643 is a chemical shown to cause hypolipidemic and peroxisome proliferation, similar to clofibrate, ciprofibrate and DEHP, but structurally different from these three chemicals. Thus, two of the four chemicals are structurally similar while the remaining two are very distinct, although all four chemicals cause the same gross biological response. Our results show that although common protein effects are observed in mice exposed to these chemicals, each chemical also causes specific alterations in selective subsets of proteins that could serve as markers of a particular exposure. 13 refs., 4 figs., 1 tab.

Giometti, C.S.; Taylor, J.; Gemmell, M.A.; Tollaksen, S.L. (Argonne National Lab., IL (USA)); Lalwani, N.D.; Reddy, J.K. (Northwestern Univ., Chicago, IL (USA))

1990-01-01

168

Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis.  

PubMed

In the last 10 years, several forms of two-dimensional infrared (2DIR) spectroscopy have been developed, such as IR pump-probe spectroscopy and photon-echo techniques. In this Account, we describe a doubly vibrationally enhanced four-wave mixing method, in which a third-order nonlinear signal is generated from the interaction of two independently tunable IR beams and an electron-polarizing visible beam at 790 nm. When the IR beams are independently in resonance with coupled vibrational transitions, the signal is enhanced and cross-peaks appear in the spectrum. This method is known as either DOVE (doubly vibrationally enhanced) four-wave mixing or EVV (electron-vibration-vibration) 2DIR spectroscopy. We begin by discussing the basis and properties of EVV 2DIR. We then discuss several biological and potential biomedical applications. These include protein identification and quantification, as well as the potential of this label-free spectroscopy for protein and peptide structural analysis. In proteomics, we also show how post-translational modifications in peptides (tyrosine phosphorylation) can be detected by EVV 2DIR spectroscopy. The feasibility of EVV 2DIR spectroscopy for tissue imaging is also evaluated. Preliminary results were obtained on a mouse kidney histological section that was stained with hematoxylin (a small organic molecule). We obtained images by setting the IR frequencies to a specific cross-peak (the strongest for hematoxylin was obtained from its analysis in isolation; a general CH(3) cross-peak for proteins was also used) and then spatially mapping as a function of the beam position relative to the sample. Protein and hematoxylin distribution in the tissue were measured and show differential contrast, which can be entirely explained by the different tissue structures and their functions. The possibility of triply resonant EVV 2DIR spectroscopy was investigated on the retinal chromophore at the centre of the photosynthetic protein bacteriorhodopsin (bR). By putting the visible third beam in resonance with an electronic transition, we were able to enhance the signal and increase the sensitivity of the method by several orders of magnitude. This increase in sensitivity is of great importance for biological applications, in which the number of proteins, metabolites, or drug molecules to be detected is low (typically pico- to femtomoles). Finally, we present theoretical investigations for using EVV 2DIR spectroscopy as a structural analysis tool for inter- and intramolecular interaction geometries. PMID:19548660

Fournier, Frederic; Guo, Rui; Gardner, Elizabeth M; Donaldson, Paul M; Loeffeld, Christian; Gould, Ian R; Willison, Keith R; Klug, David R

2009-09-15

169

Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.  

DOEpatents

A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

2000-11-21

170

High-Resolution Waveguide THz Spectroscopy of Biological Molecules N. Laman,* S. Sree Harsha,* D. Grischkowsky,* and Joseph S. Melingery  

E-print Network

High-Resolution Waveguide THz Spectroscopy of Biological Molecules N. Laman,* S. Sree Harsha,* D and terahertz time- domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper features

171

Impact of pellet thickness on quantitative terahertz spectroscopy of solid samples in a polyethylene matrix.  

PubMed

Pellets composed of different weight-percent (wt-%) of lactose within a polyethylene (PE) matrix are used to examine how the physical thickness of solid samples impact analytical measurements performed over terahertz (THz) frequencies when using time-domain THz spectroscopy. Results indicate that the thickness of each pellet depends on the mass and physical properties of the individual components that comprise the pellet. Thickness of mixture pellets depends on the porosity of the individual pellet components. Porosity measurements presented here for PE and lactose give values of 25.6 ± 0.3 and 14.5 ± 0.1, respectively, which indicate that more air is trapped within the compressed PE matrix compared to that for lactose. This difference in porosity creates different pellet thicknesses for pellets of the same nominal mass but with different relative amounts of PE and lactose. For this binary matrix, the thickness of each pellet is found to be a linear combination of the compressed densities of the individual components. Analysis of the time-domain THz spectra reveals that thinner samples are confounded by a fringe pattern observed in the frequency-domain spectra. This fringe pattern is created by an etalon corresponding to the air/pellet interfaces for the sample in the optical path. Spectra collected from thicker pellets are confounded by a sloping baseline caused by scattering effects within the pellet matrix. The quantitative impact of pellet thickness is determined by comparing the mean standard error of calibration (MSEC) and mean standard error of prediction (MSEP) for a set of leave-three-out cross validation multivariate calibration models based on the partial least-squares (PLS) algorithm. Results indicate that PLS models are capable of analytical measurements with MSEC and MSEP values between 0.04 and 0.20 wt-%. Analysis of spectral variance captured within the corresponding spectral loadings for each model indicates that spectral variance is lowest for the 300 mg samples where the impact of scattering is minimal under conditions when the sample etalon is nonexistent. PMID:23438763

Namkung, Hankyu; Kim, Jaejin; Chung, Hoeil; Arnold, Mark A

2013-04-01

172

Quantitative Orientation Measurements in Thin Lipid Films by Attenuated Total Reflection Infrared Spectroscopy  

E-print Network

, namely polarized transmission spectroscopy (Rothschild and Clark, 1979; Chollet and Messier, 1982; Vogel (Golden et al., 1981; Buf- feteau et al., 1991; Blaudez et al., 1993), and polarized attenuated total reflection (ATR) spectroscopy (Harrick, 1967; Fringeli and Gu¨nthard, 1981; Kimura et al., 1986; Ahn

Pezolet, Michel

173

Spectroscopy of scattered light for the characterization of micro and nanoscale objects in biology and medicine.  

PubMed

The biomedical uses for the spectroscopy of scattered light by micro and nanoscale objects can broadly be classified into two areas. The first, often called light scattering spectroscopy (LSS), deals with light scattered by dielectric particles, such as cellular and sub-cellular organelles, and is employed to measure their size or other physical characteristics. Examples include the use of LSS to measure the size distributions of nuclei or mitochondria. The native contrast that is achieved with LSS can serve as a non-invasive diagnostic and scientific tool. The other area for the use of the spectroscopy of scattered light in biology and medicine involves using conducting metal nanoparticles to obtain either contrast or electric field enhancement through the effect of the surface plasmon resonance (SPR). Gold and silver metal nanoparticles are non-toxic, they do not photobleach, are relatively inexpensive, are wavelength-tunable, and can be labeled with antibodies. This makes them very promising candidates for spectrally encoded molecular imaging. Metal nanoparticles can also serve as electric field enhancers of Raman signals. Surface enhanced Raman spectroscopy (SERS) is a powerful method for detecting and identifying molecules down to single molecule concentrations. In this review, we will concentrate on the common physical principles, which allow one to understand these apparently different areas using similar physical and mathematical approaches. We will also describe the major advancements in each of these areas, as well as some of the exciting recent developments. PMID:24480270

Turzhitsky, Vladimir; Qiu, Le; Itzkan, Irving; Novikov, Andrei A; Kotelev, Mikhail S; Getmanskiy, Michael; Vinokurov, Vladimir A; Muradov, Alexander V; Perelman, Lev T

2014-02-01

174

Determination of quantitative distributions of heavy-metal stain in biological specimens by annular dark-field STEM  

PubMed Central

It is shown that dark-field images collected in the scanning transmission electron microscope (STEM) at two different camera lengths yield quantitative distributions of both the heavy and light atoms in a stained biological specimen. Quantitative analysis of the paired STEM images requires knowledge of the elastic scattering cross sections, which are calculated from the NIST Elastic-Scattering Cross-Section Database. The results reveal quantitative information about the distribution of fixative and stain within the biological matrix, and provide a basis for assessing detection limits for heavy metal clusters used to label intracellular proteins. In sectioned cells that have been stained only with osmium tetroxide, we find an average of 1.2 ± 0.1 Os atom per nm3, corresponding to an atomic ratio of Os:C atoms of approximately 0.02, which indicates that small heavy atom clusters of Undecagold and Nanogold can be detected in lightly stained specimens. PMID:18359249

Sousa, A. A.; Hohmann-Marriott, M.; Aronova, M. A.; Zhang, G.; Leapman, R. D.

2009-01-01

175

Quantitative analysis of three-dimensional biological cells using interferometric microscopy  

NASA Astrophysics Data System (ADS)

Live biological cells are three-dimensional microscopic objects that constantly adjust their sizes, shapes and other biophysical features. Wide-field digital interferometry (WFDI) is a holographic technique that is able to record the complex wavefront of the light which has interacted with in-vitro cells in a single camera exposure, where no exogenous contrast agents are required. However, simple quasi-three-dimensional holographic visualization of the cell phase profiles need not be the end of the process. Quantitative analysis should permit extraction of numerical parameters which are useful for cytology or medical diagnosis. Using a transmission-mode setup, the phase profile represents the multiplication between the integral refractive index and the thickness of the sample. These coupled variables may not be distinct when acquiring the phase profiles of dynamic cells. Many morphological parameters which are useful for cell biologists are based on the cell thickness profile rather than on its phase profile. We first overview methods to decouple the cell thickness and its refractive index using the WFDI-based phase profile. Then, we present a whole-cell-imaging approach which is able to extract useful numerical parameters on the cells even in cases where decoupling of cell thickness and refractive index is not possible or desired.

Shaked, Natan T.; Wax, Adam

2011-06-01

176

Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system  

PubMed Central

We theoretically investigate coherent optical spectroscopy of a biological semiconductor quantum dot (QD) coupled to DNA molecules. Coupling with DNAs, the linear optical responses of the peptide QDs will be enhanced significantly in the simultaneous presence of two optical fields. Based on this technique, we propose a scheme to measure the vibrational frequency of DNA and the coupling strength between peptide QD and DNA in all-optical domain. Distinct with metallic quantum dot, biological QD is non-toxic and pollution-free to environment, which will contribute to clinical medicine experiments. This article leads people to know more about the optical behaviors of DNAs-quantum dot system, with the currently popular pump-probe technique. PMID:22340277

2012-01-01

177

Experimental demonstration of quantitation errors in MR spectroscopy resulting from saturation corrections under changing conditions  

NASA Astrophysics Data System (ADS)

Metabolite concentration measurements in in vivo NMR are generally performed under partially saturated conditions, with correction for partial saturation performed after data collection using a measured saturation factor. Here, we present an experimental test of the hypothesis that quantitation errors can occur due to application of such saturation factor corrections in changing systems. Thus, this extends our previous theoretical work on quantitation errors due to varying saturation factors. We obtained results for two systems frequently studied by 31P NMR, the ischemic rat heart and the electrically stimulated rat gastrocnemius muscle. The results are interpreted in light of previous theoretical work which defined the degree of saturation occurring in a one-pulse experiment for a system with given spin-lattice relaxation times, T1s, equilibrium magnetizations, M0s, and reaction rates. We found that (i) the assumption of constancy of saturation factors leads to quantitation errors on the order of 40% in inorganic phosphate; (ii) the dominant contributor to the quantitation errors in inorganic phosphate is most likely changes in T1; (iii) T1 and M0 changes between control and intervention periods, and chemical exchange contribute to different extents to quantitation errors in phosphocreatine and ?-ATP; (iv) relatively small increases in interpulse delay substantially decreased quantitation errors for metabolites in ischemic rat hearts; (v) random error due to finite SNR led to approximately 4% error in quantitation, and hence was a substantially smaller contributor than were changes in saturation factors.

Galbán, Craig J.; Ellis, Scott J.; Spencer, Richard G. S.

2003-04-01

178

Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine  

NASA Astrophysics Data System (ADS)

It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with ? = 1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

Zhang, Yong; Cong, Qian; Xie, Yunfei; Yang, Jingxiu; Zhao, Bing

2008-12-01

179

Tip-enhanced Raman spectroscopy and related techniques in studies of biological materials  

NASA Astrophysics Data System (ADS)

Biological materials can be highly heterogeneous at the nanometer scale. The investigation of nanostructures is often hampered by the low spatial resolution (e.g. spectroscopic techniques) or very little chemical information (e.g. atomic force microscopy (AFM), scanning tunneling microscopy (STM)) provided by analytical techniques. Our research focuses on combined instruments, which allow the analysis of the exactly same area of a sample by complementary techniques, such as AFM and Raman spectroscopy. Tip-enhanced Raman spectroscopy (TERS) combines the high spatial resolution of AFM or STM with the chemical information provided by Raman spectroscopy. The technique is based on enhancement effects known from surface-enhanced Raman scattering (SERS). In TERS the enhancing metallic nanostructure is brought to the sample by an AFM or STM tip. With a TERS-active tip, enhanced Raman signals can be generated from a sample area as small as 10-50 nm in diameter. AFM analysis of bacterial biofilms has demonstrated their heterogeneity at the nanometer scale, revealing a variety of nanostructures such as pili, flagella, and extracelullar polymers. TERS measurements of the biopolymers alginate and cytochrome c have yielded spectroscopic fingerprints even of such weak Raman scatterers, which in future can allow their localization in complex matrices. Furthermore, biofilms of the bacterium Halomonas meridiana were studied, which was found to be involved in the generation of the mineral dolomite. Only combined AFM-Raman analysis was able to identify the nanoglobules found in laboratory cultures of H. meridiana as dolomite nanoparticles. Our combined setups are and will be applied to the investigation of biofilms, fish spermatozoa as well as biological membranes.

Schmid, Thomas; Sebesta, Aleksandar; Stadler, Johannes; Opilik, Lothar; Balabin, Roman M.; Zenobi, Renato

2010-02-01

180

[Qualitative and quantitative detection of beet syrup adulteration of honey by near-infrared spectroscopy: a feasibility study].  

PubMed

In order to further investigate the utility of near-infrared spectroscopys (NIRS) in rapidly detecting honey adulteration, near-infrared spectroscopy in combination with chemometric methods was investigated for qualitative and quantitative detection of beet syrup adulteration of honey. Total prediction accuracy of testing set was 90.2% by partial least squares-discriminant analysis (PLS-DA) for authentic and adulterated honey samples. Total prediction accuracy of testing sets was all below 33.3% by different discriminant methods for classes of adulteration level. The quantitative analysis of adulteration level by PLS regression gave satisfying results if adulterated honey samples were got from the same one authentic honey sample: correlation coefficient (r)of actual values versus predicted values was 0.9829 and root mean square error of prediction (RMSEP) was 1.394 2 in testing set, otherwise it gave dissatisfying results for the adulterated samples from different botanical origins or the different samples of the same botanical origins. The results showed that NIRS could be applied for rapid detection of authentic and adulterated honey samples, but not for detection of classes of adulteration level and quantification of adulteration level with beet syrup. PMID:24409707

Li, Shui-Fang; Wen, Rui-Zhi; Yin, Yong; Zhou, Zi; Shan, Yang

2013-10-01

181

Quantitative analyses of glass via laser-induced breakdown spectroscopy in argon  

NASA Astrophysics Data System (ADS)

We demonstrate that elemental analysis of glass with a measurement precision of about 10% can be performed via calibration-free laser-induced breakdown spectroscopy. Therefore, plasma emission spectra recorded during ultraviolet laser ablation of different glasses are compared to the spectral radiance computed for a plasma in local thermodynamic equilibrium. Using an iterative calculation algorithm, we deduce the relative elemental fractions and the plasma properties from the best agreement between measured and computed spectra. The measurement method is validated in two ways. First, the LIBS measurements are performed on fused silica composed of more than 99.9% of SiO2. Second, the oxygen fractions measured for heavy flint and barite crown glasses are compared to the values expected from the glass composing oxides. The measured compositions are furthermore compared with those obtained by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. It is shown that accurate LIBS analyses require spectra recording with short enough delays between laser pulse and detector gate, when the electron density is larger than 1017 cm- 3. The results show that laser-induced breakdown spectroscopy based on accurate plasma modeling is suitable for elemental analysis of complex materials such as glasses, with an analytical performance comparable or even better than that obtained with standard techniques.

Gerhard, C.; Hermann, J.; Mercadier, L.; Loewenthal, L.; Axente, E.; Luculescu, C. R.; Sarnet, T.; Sentis, M.; Viöl, W.

2014-11-01

182

QUANTITATIVE ULTRAVIOLET SPECTROSCOPY IN WEATHERING OF A MODEL POLYESTER-URETHANE COATING. (R828081E01)  

EPA Science Inventory

Spectroscopy was used to quantify the effects of ultraviolet light on a model polyester–urethane coating as it degraded in an accelerated exposure chamber. An explorative calculation of the effective dosage absorbed by the coatings was made and, depending on the quantum...

183

QUANTITATIVE IMAGING AND ANALYSIS OF BIOLOGICAL SPECIMENS IN THE FIELD-EMISSION SCANNING TRANSMISSION ELECTRON MICROSCOPE: CAPABILITIES AND LIMITATIONS  

Microsoft Academic Search

We have been applying a field-emission scanning transmission electron microscope (STEM) to high-resolu- tion imaging and analysis of biological specimens. This instrument is equipped with a cold\\/cryotransfer stage, dig- ital image acquisition system, energy-dispersive x-ray (EDX) detector, and electron energy loss spectrometer (EELS). It has been optimized to give low detection limits for elemental microanalysis and to provide quantitative images

S. Brian Andrews; Natalia B. Pivovarova; Richard D. Leapman

184

[Qualitative and quantitative research on sulfur fumigation of Angelicae Dahuricae Radix (Baizhi) by near-infrared spectroscopy].  

PubMed

The contents of coumarins in the sulfur fumigated Angelicae Dahuricae Radix (Baizhi, ADR) were reduced significantly. To achieve the quality control of ADR, the qualitative identification of sulfur fumigated ADR and quantitative model of imperatorin content should be established. The near-infrared (NIR) spectrograms of non-sulfur and sulfur fumigated ADR were collected by NIR diffuse reflectance spectroscopy technology and pretreated by the method of first derivative derivation and vector normalization. The Ward's Algorithm method was used for the cluster analysis. The non-sulfur and sulfur fumigated ADR can be quickly identified in the range of 8,806. 0-3 811.0 cm(-1) based on the cluster analysis. The NIR quantitative model of imperatorin was established by the contents of imperatorin determined by HPLC in combination with partial least squares regression analysis. According to the calibration model established in this study, correlation coefficients (R2), the root-mean-square error of cross-validation (RMSECV), and the root-mean-square error of prediction (RMSEP) for imperatorin were 0.982 8, 0.006 8, 0.011 8, respectively. The quantitative model of imperatorin can be applied to determine the content of imperatorin in ADR accurately. PMID:25282896

Wu, Xiao-Yi; Chao, Zhi-Mao; Sun, Wen; Wang, Chun

2014-05-01

185

Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy  

NASA Astrophysics Data System (ADS)

This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

2012-03-01

186

Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy  

E-print Network

Transfer for Pharmacophore Mapping MRI Magnetic Resonance Imaging MRS Magnetic Resonance Spectroscopy MW Microwave viii NMR Nuclear Magnetic Resonance NOE Nuclear Overhauser Effect pCBA p-chlorobenzaldehyde ppm Parts per million PTD 4... (II-10)) using one assumed value for T1. ............ 38 III-1 Reaction of DPBD with PTD in acetonitrile. The signal intensities of H1 and H1? were monitored in the NMR experiments. .......................... 48 III-2 Stacked plots...

Zeng, Haifeng

2012-07-16

187

Application of terahertz spectroscopy to the characterization of biological samples using birefringence silicon grating.  

PubMed

We present a device and method for performing vector transmission spectroscopy on biological specimens at terahertz (THz) frequencies. The device consists of artificial dielectric birefringence obtained from silicon microfluidic grating structures. The device can measure the complex dielectric function of a liquid, across a wide THz band of 2 to 5.5 THz, using a Fourier transform infrared spectrometer. Measurement data from a range of liquid specimens, including sucrose, salmon deoxyribonucleic acid (DNA), herring DNA, and bovine serum albumin protein solution in water are presented. The specimen handling is simple, using a microfluidic channel. The transmission through the device is improved significantly and thus the measurement accuracy and bandwidth are increased. PMID:22734784

Saha, Shimul C; Grant, James P; Ma, Yong; Khalid, Ata; Hong, Feng; Cumming, David R S

2012-06-01

188

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters, such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) of 0.9451 and root-mean-square error of prediction (RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.

Shao, Yongni; He, Yong; Mao, Jingyuan

2007-09-01

189

Quantitative determination of captopril and prednisolone in tablets by FT-Raman spectroscopy  

Microsoft Academic Search

A procedure for the quantitative determination of captopril and prednisolone in commercial tablets based on partial least squares (PLS) and principal component regression (PCR) treatment of FT-Raman spectroscopic data is described. In the studied medicines active pharmaceutical ingredients (APIs) constitute 4.2–16.7% of the tablet mass. Results obtained from calibration models built using unnormalised spectra were compared with the values found

Sylwester Mazurek; Roman Szostak

2006-01-01

190

Combining surface sensitive vibrational spectroscopy and fluorescence microscopy to study biological interfaces  

NASA Astrophysics Data System (ADS)

A multimodal system combining surface sensitive sum frequency generation (SFG) vibrational spectroscopy and total-internal reflection fluorescence (TIRF) microscopy for surface and interface study was developed. Interfacial molecular structural information can be detected using SFG spectroscopy while interfacial fluorescence signal can be visualized using TIRF microscopy from the same sample. As a proof of concept experiment, SFG spectra of fluorescent polystyrene (PS) beads with different surface coverage were correlated with TIRF signal observed. Results showed that SFG signals from the ordered surfactant methyl groups were detected from the substrate surface, while signals from PS phenyl groups on the beads were not seen. Additionally, a lipid monolayer labeled using lipid-associated dye was deposited on a silica substrate and studied in different environments. The contact with water of this lipid monolayer caused SFG signal to disappear, indicating a possible lipid molecular disorder and the formation of lipid bilayers or liposomes in water. TIRF was able to visualize the presence of lipid molecules on the substrate, showing that the lipids were not removed from the substrate surface by water. The integration of the two surface sensitive techniques can simultaneously visualize interfacial molecular dynamics and characterize interfacial molecular structures in situ, which is important and is expected to find extensive applications in biological interface related research.

Zhang, Chi; Jasensky, Joshua; Wu, Jing; Chen, Zhan

2014-03-01

191

Accurate determination of reference materials and natural isolates by means of quantitative (1)h NMR spectroscopy.  

PubMed

A fast and precise proton nuclear magnetic resonance (qHNMR) method for the quantitative determination of low molecular weight target molecules in reference materials and natural isolates has been validated using ERETIC 2 (Electronic REference To access In vivo Concentrations) based on the PULCON (PULse length based CONcentration determination) methodology and compared to the gravimetric results. Using an Avance III NMR spectrometer (400 MHz) equipped with a broad band observe (BBO) probe, the qHNMR method was validated by determining its linearity, range, precision, and accuracy as well as robustness and limit of quantitation. The linearity of the method was assessed by measuring samples of l-tyrosine, caffeine, or benzoic acid in a concentration range between 0.3 and 16.5 mmol/L (r(2) ? 0.99), whereas the interday and intraday precisions were found to be ?2%. The recovery of a range of reference compounds was ?98.5%, thus demonstrating the qHNMR method as a precise tool for the rapid quantitation (~15 min) of food-related target compounds in reference materials and natural isolates such as nucleotides, polyphenols, or cyclic peptides. PMID:24559241

Frank, Oliver; Kreissl, Johanna Karoline; Daschner, Andreas; Hofmann, Thomas

2014-03-26

192

Theoretical Population Biology 59, 175 184 (2001) Quantitative Genetics in the Age of Genomics  

E-print Network

biology (whole organism cloning, embryo transplantation) and recombinant DNA (trans- genic organisms factors (such as particular genotype environment interactions). Plant and animal breeders are concerned

Walsh, Bruce

193

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy.  

PubMed

Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters, such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) of 0.9451 and root-mean-square error of prediction (RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique. PMID:17805379

Shao, Yongni; He, Yong; Mao, Jingyuan

2007-09-01

194

Spectral-domain optical coherence phase microscopy for quantitative biological studies  

E-print Network

Conventional phase-contrast and differential interference contrast microscopy produce high contrast images of transparent specimens such as cells. However, they do not provide quantitative information or do not have enough ...

Joo, Chulmin, 1976-

2008-01-01

195

Quantitative elemental analyses of archaeological materials by laser-induced breakdown spectroscopy (LIBS): an overview  

NASA Astrophysics Data System (ADS)

LIBS is one of the most promising techniques for rapid, in-situ elemental analyses of artworks. It does not require sample preparation, it is almost non destructive (micro sampling) and information both about major and trace elements could be obtained simultaneously. LIBS has been used to recognize the elements present in different archaeological materials and has been also proposed for on-line monitoring during the object cleaning by lasers. Quantitative determination of the material composition can supply useful information to restorers and help the object cataloguing. However, the analytical LIBS measurements on the archaeological materials were rarely reported, mainly due to difficulties to obtain the corresponding matrix-matched standards, required for the initial calibration. Alternatively, Calibration-Free (CF) approach could be used on some class of materials if all the major sample elements are detected and if the laser plasma preserves the material stochiometry. The latter condition is sometimes missing, as in the case of bronzes under nanosecond pulse laser ablation. We have developed a theoretical model for laser ablation of quaternary copper alloys, which allows for correction of the missing plasma stochiometry in CF approach. The model also predicts the optimal calibration for this type of material. In our recent work, we also obtained quantitative LIBS results on marbles by realizing the calibration standards starting from doped CaCO3 powders and by applying the corrections on the plasma parameters, different for the laboratory standards and marbles. Semi-quantitative LIBS results have been also obtained on multi-layered renaissance ceramics by subtraction of the contribution to plasma of each ceramic layer.

Lazic, Violeta; Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Fornarini, Lucilla; Spizzichino, Valeria

2005-06-01

196

Quantitative performance measurements of bent crystal Laue analyzers for X-ray fluorescence spectroscopy  

PubMed Central

Third-generation synchrotron radiation sources pose difficult challenges for energy-dispersive detectors for XAFS because of their count rate limitations. One solution to this problem is the bent crystal Laue analyzer (BCLA), which removes most of the undesired scatter and fluorescence before it reaches the detector, effectively eliminating detector saturation due to background. In this paper experimental measurements of BCLA performance in conjunction with a 13-element germanium detector, and a quantitative analysis of the signal-to-noise improvement of BCLAs are presented. The performance of BCLAs are compared with filters and slits. PMID:22514172

Karanfil, C.; Bunker, G.; Newville, M.; Segre, C. U.; Chapman, D.

2012-01-01

197

Comparison of electron energy-loss and quantitative optical spectroscopy on individual optical gold antennas  

NASA Astrophysics Data System (ADS)

Using a rather large set of different individual metallic optical antennas, we compare directly measured electron energy-loss spectra with measured quantitative optical extinction and scattering cross-section spectra on the identical antennas. All antenna resonances lie near 1.4 µm wavelength. In contrast to other reports, we find identical resonance positions for electrons and photons to within the experimental errors. We discuss possible artifacts which can lead to seemingly different resonance positions in experiments. Our experimental results agree well with complete numerical calculations of both sorts of spectra.

Husnik, Martin; von Cube, Felix; Irsen, Stephan; Linden, Stefan; Niegemann, Jens; Busch, Kurt; Wegener, Martin

2013-10-01

198

Qualitative and quantitative control of carbonated cola beverages using ¹H NMR spectroscopy.  

PubMed

¹H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D?O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as "fingerprints" and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents. PMID:22356160

Maes, Pauline; Monakhova, Yulia B; Kuballa, Thomas; Reusch, Helmut; Lachenmeier, Dirk W

2012-03-21

199

In vitro quantitation of human femoral artery atherosclerosis using near-infrared Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Near-infrared Raman spectroscopy has been used in vitro to identify calcified atherosclerotic plaques in human femoral arteries. Raman techniques allow for the identification of these plaques in a nondestructive manner, which may allow for the diagnosis of coronary artery disease in cardiac patients in the future. As Raman spectroscopy also reveals chemical information about the composition of the arteries, it can also be used as a prognostic tool. The in vivo detection of atherosclerotic plaques at risk for rupture in cardiac patients will enhance treatment methods while improving clinical outcomes for these procedures. Raman spectra were excited by an Invictus 785-nm NIR laser and measured with a fiber-coupled micro-Raman RXN system (Kaiser Optical Systems, Inc., Ann Arbor, MI) equipped with a 785 nm CW laser and CCD detector. Chemical mapping of arteries obtained post mortem allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and carbonate apatite, which are known to be present in calcified plaques. By mapping the locations of these peaks the boundaries of the plaques can be precisely determined. Areas of varying degrees of calcification were also identified. Because this can be useful in determining the degree of plaque calcification and vessel stenosis, this may have a significant impact on the clinical treatment of atherosclerotic plaques in the future.

Dykes, Ava C.; Anastasiadis, Pavlos; Allen, John S., III; Sharma, Shiv K.

2012-06-01

200

Total reflection x-ray fluorescence spectroscopy (TXRF) a new high sensitivity (PPT) quantitative method for forensic and environmental samples  

SciTech Connect

Total Reflection X-Ray Fluorescence (TYRF) Spectroscopy instrumentation has recently become available on the U.S. commercial market. This x-ray excited method is touted for its sensitivity (parts per trillion), quantitative ability without the need for multi-element standards and lack of response change to matrix element differences. It has been promoted for use in forensic science and on environmental samples. This paper will discuss the results of a blind studies, wherein well characterized samples of forensic interest and environmental water proficiency tests were submitted for determination of elemental composition and concentration. The results indicate that this instrumentation should be considered by those laboratories analyzing materials at low (trace) concentrations or small (microscopical) size.

Kubic, T.A.; Amray, M.S. [ATOMIKA, Bedford, MA (United States); Reus, U. [ATOMKIA Instruments, Munich (Germany)] [and others

1995-12-31

201

Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s - 1 . Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

Cabalín, L. M.; González, A.; Ruiz, J.; Laserna, J. J.

2010-08-01

202

Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes.  

PubMed

Exosomes are naturally occurring nanoparticles with unique structure, surface biochemistry, and mechanical characteristics. These distinct nanometer-sized bioparticles are secreted from the surfaces of oral epithelial cells into saliva and are of interest as oral-cancer biomarkers. We use high- resolution AFM to show single-vesicle quantitative differences between exosomes derived from normal and oral cancer patient's saliva. Compared to normal exosomes (circular, 67.4 ± 2.9 nm), our findings indicate that cancer exosome populations are significantly increased in saliva and display irregular morphologies, increased vesicle size (98.3 ± 4.6 nm), and higher intervesicular aggregation. At the single-vesicle level, cancer exosomes exhibit significantly (P < 0.05) increased CD63 surface densities. To our knowledge, it represents the first report detecting single-exosome surface protein variations. Additionally, high-resolution AFM imaging of cancer saliva samples revealed discrete multivesicular bodies with intraluminal exosomes enclosed. We discuss the use of quantitative, nanoscale ultrastructural and surface biomolecular analysis of saliva exosomes at single-vesicle- and single-protein-level sensitivities as a potentially new oral cancer diagnostic. PMID:22017459

Sharma, Shivani; Gillespie, Boyd M; Palanisamy, Viswanathan; Gimzewski, James K

2011-12-01

203

N-CPMAS nuclear magnetic resonance spectroscopy and biological stability of soil organic nitrogen in whole soil and  

E-print Network

15 N-CPMAS nuclear magnetic resonance spectroscopy and biological stability of soil organic in the field. # 2003 Elsevier Ltd. All rights reserved. 1. Introduction The chemical structure of soil organic­NMR) and pyrolysis-mass spec- trometry (PyMS) to gain further information about the chemical structure of soil

Weliky, David

204

Quantitation of Organics in Supercritical Fluid Aging Experiments Using FTIR Spectroscopy  

SciTech Connect

Aging is a natural process in which hydrophobic organic contaminants slowly accumulate in the mineral pores and organic matter of soils and sediments. Contaminants in aged soils exhibit decreased bioavailability and slow release to the environment. Therefore, aging may have a significant influence on the applicability and effectiveness of remediation strategies (e.g., bioremediation and natural attenuation) and the accuracy of numerical transport models. Previous research in our laboratory has demonstrated that circulating supercritical carbon dioxide can be used to rapidly prepare artificially aged materials for studying slow-release behavior. In this investigation, FTIR spectroscopy was evaluated as a means of monitoring the progress of the aging process in real time. Solvent interferences, measurement sensitivity for selected halocarbons and the influence of temperature and pressure on the FTIR spectra were assessed. Application of this methodology to monitoring the incorporation of carbon tetrachloride into natural soils will be discussed.

Thompson, Christopher J.; Riley, Robert G.; Amonette, James E.; Gassman, Paul L.

2004-03-31

205

Qualitative and quantitative study of polymorphic forms in drug formulations by near infrared FT-Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Near infrared FT-Raman spectroscopy was applied for the determination of polymorphic forms in a number of commercial drug products containing the polymorphic drug compounds sorbitol, mannitol, famotidine, acemetacin, carbamazepine, meprobamate and phenylbutazone. The crystal forms present in the drug products were identified based on the position, intensity and shape of characteristic bands. Quantitative analysis of a mixture of two crystal forms of mannitol in a drug product was carried out using a partial least-squares method. In drug products containing meprobamate, sorbitol, and carbamazepine, the thermodynamically stable form was found exclusively, whereas metastable polymorphs were found in solid dosage forms of acemetacin, phenylbutazone, famotidine and mannitol. A mixture of two polymorphic forms of mannitol in Lipobay tablets was determined to consist of 30.8±3.8% of the metastable modification I. The simple sample preparation, the occurrence of sharp bands in the spectra as well as the high reproducibility and accuracy qualifies FT-Raman spectroscopy for the identification and quantification of crystal forms in drug products. The method is perfectly suited to meet the regulatory requirements of monitoring crystal forms during processing and storage and often succeeds in detecting the present crystal form in drug products even when the used excipients are not known.

Auer, Martin E.; Griesser, Ulrich J.; Sawatzki, Juergen

2003-12-01

206

Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts  

NASA Astrophysics Data System (ADS)

Noninvasive and longitudinal monitoring of tumor oxygenation status using quantitative diffuse reflectance spectroscopy is used to test whether a final treatment outcome could be estimated from early optical signatures in a murine model of head and neck cancer when treated with radiation. Implanted tumors in the flank of 23 nude mice are exposed to 39 Gy of radiation, while 11 animals exposed to sham irradiation serve as controls. Diffuse optical reflectance is measured from the tumors at baseline (prior to irradiation) and then serially until 17 days posttreatment. The fastest and greatest increase in baseline-corrected blood oxygen saturation levels are observed from the animals that show complete tumor regression with no recurrence 90 days postirradiation, relative to both untreated and treated animals with local recurrences. These increases in saturation are observed starting 5 days posttreatment and last up to 17 days posttreatment. This preclinical study demonstrates that diffuse reflectance spectroscopy could provide a practical method far more effective than the growth delay assay to prognosticate treatment outcome in solid tumors and may hold significant translational promise.

Vishwanath, Karthik; Klein, Daniel; Chang, Kevin; Schroeder, Thies; Dewhirst, Mark W.; Ramanujam, Nimmi

2009-09-01

207

A quantitative framework For large-scale model estimation and discrimination In systems biology  

E-print Network

Using models to simulate and analyze biological networks requires principled approaches to parameter estimation and model discrimination. We use Bayesian and Monte Carlo methods to recover the full probability distributions ...

Eydgahi, Hoda

2013-01-01

208

Quantitative Modeling and Estimation in Systems Biology using Fluorescent Reporter Systems  

E-print Network

and noisy. The focus in this work is on modeling and parameter estimation of biological systems that are monitored using fluorescent reporter systems. Fluorescent reporter systems are widely used for various applications such as monitoring gene expression...

Bansal, Loveleena

2013-12-10

209

[Study on temperature correctional models of quantitative analysis with near infrared spectroscopy].  

PubMed

Effect of enviroment temperature on near infrared spectroscopic quantitative analysis was studied. The temperature correction model was calibrated with 45 wheat samples at different environment temperaturs and with the temperature as an external variable. The constant temperature model was calibated with 45 wheat samples at the same temperature. The predicted results of two models for the protein contents of wheat samples at different temperatures were compared. The results showed that the mean standard error of prediction (SEP) of the temperature correction model was 0.333, but the SEP of constant temperature (22 degrees C) model increased as the temperature difference enlarged, and the SEP is up to 0.602 when using this model at 4 degrees C. It was suggested that the temperature correctional model improves the analysis precision. PMID:16201365

Zhang, Jun; Chen, Hua-cai; Chen, Xing-dan

2005-06-01

210

Quantitative degenerate four-wave mixing spectroscopy: Probes for molecular species  

SciTech Connect

Resonant degenerate four-wave mixing (DFWM) is currently the subject of intensive investigation as a sensitive diagnostic tool for molecular species. DFWM has the advantage of generating a coherent (beam-like) signal which results in null-background detection and provides excellent immunity to background-light interference. Since multiple one-photon resonances are involved in the signal generation process, the DFWM technique can allow sensitive detection of molecules via electronic, vibrational or rotational transitions. These properties combine to make DFWM a widely applicable diagnostic technique for the probing of molecular species. The authors are conducting fundamental and applied investigations of DFWM for quantitative measurements of trace species in reacting gases. During the past year, efforts have been focussed in two areas: (1) understanding the effects of collisional processes on the DFWM signal generation process, and (2) exploring the applicability of infrared DFWM to detect polyatomic molecules via rovibrational transitions.

Farrow, R.; Rakestraw, D.; Paul, P.; Lucht, R.; Danehy, P.; Friedman-Hill, E.; Germann, G. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01

211

Quantitative X-ray Absorption and Emission Spectroscopies: Electronic Structure Elucidation of Cu2S and CuS  

PubMed Central

The electronic structures of Cu2S and CuS have been under intense scrutiny, with the aim of understanding the relationship between their electronic structures and commercially important physical properties. Here, X-ray absorption and emission spectroscopic data have been analyzed using a quantitative, molecular orbital (MO) based approach to understand the electronic structure of these two complex systems. Cu2S is shown to have a significant amount of Cu2+ sites and therefore Cu0 centers. The presence of low-valent Cu is correlated with the electrical conductivity of Cu2S, especially at high temperatures. CuS is shown to have tetrahedral Cu2+ and trigonal Cu1+ sites, with crystal planes that have alternating high and low charge on the Cu centers. These alternating charges may contribute to internal energy transitions required for photoluminescence properties. The in-depth electronic structure solutions presented here not only solve a complicated much-debated problem, but also demonstrate the strength of quantitative MO based approach to X-ray spectroscopies PMID:23781327

Kumar, Prashant; Nagarajan, Rajamani

2013-01-01

212

Compartment syndrome: A quantitative study of high-energy phosphorus compounds using sup 31 P-magnetic resonance spectroscopy  

SciTech Connect

The purpose of this study was to quantitate the intracellular high-energy phosphate compounds during 6 hours of tissue ischemia in the anterior tibial compartment of beagles subjected to an induced traumatized compartment syndrome. The goal of this work was to provide clinicians with objective criteria to augment clinical judgment regarding surgical intervention in the impending compartment syndrome. A beagle model was utilized in which the Delta pressure (difference between the mean arterial pressure and compartment pressure) could be controlled. The model, in conjunction with {sup 31}P-magnetic resonance spectroscopy (MRS), allowed a measure of high-energy phosphate compounds and pH in the compartment at various Delta pressures. The extent of ischemic metabolic insult in the compartment was then quantitated. Our data suggest the following: (1) lower Delta pressures result in a proportionally greater drop in the intracellular phosphocreatine ratio and pH; (2) at lower Delta pressures, there is proportionally greater decline in the percentage recovery post-fasciotomy; (3) blood pressure is extremely important and periods of hypotension may result in increased muscle damage at lower compartment pressures.

Heppenstall, R.B.; Sapega, A.A.; Izant, T.; Fallon, R.; Shenton, D.; Park, Y.S.; Chance, B. (Veterans Administration Medical Center, Philadelphia, PA (USA))

1989-08-01

213

Multispectral diode laser based shifted excitation Raman difference spectroscopy for biological sample identification  

NASA Astrophysics Data System (ADS)

Raman spectroscopy is a well established analytical method with applications in many areas, e.g. analysis of biological samples. To overcome the problem of an undesired fluorescence background masking the Raman signals we present a multi-spectral approach using shifted excitation Raman difference spectroscopy (SERDS). For our investigations we applied microsystem diode lasers which realize two slightly shifted excitation wavelengths required to perform SERDS at 488 nm, 671 nm, and 785 nm. The emission at 488 nm with an optical power of up to 30 mW and a spectral shift of 0.3 nm (12 cm-1) is realized by frequency doubling of a 976 nm distributed feedback (DFB) diode laser. The 671 nm laser diode contains two separate laser cavities (spectral shift: 0.7 nm (13 cm-1)) each incorporating a volume Bragg grating as frequency selective element. In that case, optical powers up to 50 mW can be obtained. For investigations at 785 nm we used a DFB laser with a maximum optical power of 110 mW and a spectral shift of 0.5 nm (7 cm-1). Meat, fat tissue, connective tissue and bones from pork and beef were used as test samples to demonstrate the effective background removal using SERDS. For all three wavelengths integration times of only 5 - 10 seconds were necessary showing the possibility of SERDS for rapid sample identification. A comparison with conventional Raman spectra is given pointing out the improvement of spectral quality. The applicability of SERDS for other analytical applications, e.g. medical diagnosis will be discussed.

Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

2012-06-01

214

Spectroscopic characterization of biological agents using FTIR, normal Raman and surface-enhanced Raman spectroscopies  

NASA Astrophysics Data System (ADS)

FTIR, Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) requires a minimum of sample allows fast identification of microorganisms. The use of this technique for characterizing the spectroscopic signatures of these agents and their stimulants has recently gained considerable attention due to the fact that these techniques can be easily adapted for standoff detection from considerable distances. The techniques also show high sensitivity and selectivity and offer near real time detection duty cycles. This research focuses in laying the grounds for the spectroscopic differentiation of Staphylococcus spp., Pseudomonas spp., Bacillus spp., Salmonella spp., Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, and E. coli, together with identification of their subspecies. In order to achieve the proponed objective, protocols to handle, cultivate and analyze the strains have been developed. Spectroscopic similarities and marked differences have been found for Spontaneous or Normal Raman spectra and for SERS using silver nanoparticles have been found. The use of principal component analysis (PCA), discriminate factor analysis (DFA) and a cluster analysis were used to evaluate the efficacy of identifying potential threat bacterial from their spectra collected on single bacteria. The DFA from the bacteria Raman spectra show a little discrimination between the diverse bacterial species however the results obtained from the SERS demonstrate to be high discrimination technique. The spectroscopic study will be extended to examine the spores produced by selected strains since these are more prone to be used as Biological Warfare Agents due to their increased mobility and possibility of airborne transport. Micro infrared spectroscopy as well as fiber coupled FTIR will also be used as possible sensors of target compounds.

Luna-Pineda, Tatiana; Soto-Feliciano, Kristina; De La Cruz-Montoya, Edwin; Pacheco Londoño, Leonardo C.; Ríos-Velázquez, Carlos; Hernández-Rivera, Samuel P.

2007-04-01

215

MR imaging of fat-containing tissues: valuation of two quantitative imaging techniques in comparison with localized proton spectroscopy.  

PubMed

Since lipid protons, consisting mainly of triacylglycerols (TAG), are rather mobile, magnetic resonance imaging (MRI) is ideally suited for the examination of fat-containing tissues such as bone marrow. In contrast to water protons, however, lipid protons are chemically distinct and give rise to at least eight resonance peaks with different T1 and T2 relaxation times in the 1H spectrum. This is why the characterization of fat-containing tissues by quantitative MRI is much more difficult than that of most other tissues. In our study we wanted to examine the accuracy and the potential of a 1H chemical shift imaging (CSI) technique and a multiple spin-echo imaging (MSEI) technique. A stimulated-echo (STEAM) sequence for spatially localized proton spectroscopy was used as the reference method. In the first part of this paper, we describe quantitative imaging experiments which were performed to assess the accuracy of the fat-water separation according to the Dixon method and the bi-exponential decomposition of the MSEI data. For that purpose, we used a two-compartment phantom filled with either an aqueous Gd-DTPA solution and vegetable oil or with two different aqueous Gd-DTPA solutions, respectively. The analysis of the 1H CSI data revealed that the presence of non-methylen protons in neutral fats leads to a slight under-estimation (of about 15%) of the relative fat fraction. The error is described theoretically and verified quantitatively by STEAM measurements. The bi-exponential analysis of the transverse relaxation data, on the other hand, yields reliable T2 values if the relative proton density of both components is higher than 15%. IN the second part of our investigation, the same techniques were applied to acquire data from the subcutaneous fatty tissue, the femoral head, and the lumbar vertebrae of three healthy volunteers. In the bone marrow spectra, only two broad resonances could be resolved; they were superpositions of diverse molecular groups with different T1 and T2 relaxation times. In these cases, localized proton spectroscopy does not provide additional information with respect to 1H CSI. The MSEI data of the three examined fat containing tissue regions were adequately fitted by a bi-exponential function despite the fact that there were much more chemically distinct protons present in fatty tissues. PMID:8231682

Brix, G; Heiland, S; Bellemann, M E; Koch, T; Lorenz, W J

1993-01-01

216

Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography.  

PubMed

X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching. PMID:25343804

Hoshino, Masato; Uesugi, Kentaro; Tsukube, Takuro; Yagi, Naoto

2014-11-01

217

Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR Spectroscopy  

PubMed Central

Background Vibrational spectroscopic techniques are becoming increasingly important and popular because they have the potential to provide rapid and convenient solutions to routine analytical problems. Using these techniques, a variety of substances can be characterized, identified and also quantified rapidly. Results The rapid ATR-FTIR (Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy) in time technique has been applied, which is suitable to quantify the concentrations of microbial rhamnolipids in a typical cultivation process. While the usually applied HPLC analysis requires an extensive and time consuming multi step extraction protocol for sample preparation, the ATR-FTIR-method allows the quantification of the rhamnolipids within 20 minutes. Accuracies between 0.5 g/l – 2.1 g/l for the different analytes were determined by cross validation of the calibration set. Even better accuracies between 0.28 g/l – 0.59 g/l were found for independent test samples of an arbitrarily selected cultivation. Conclusion ATR-FTIR was found to be suitable for the rapid analysis of rhamnolipids in a biotechnological process with good reproducibility in sample determination and sufficient accuracy. An improvement in accuracy through continuous expansion and validation of the reference spectra set seems very likely. PMID:18840269

Leitermann, Frank; Syldatk, Christoph; Hausmann, Rudolf

2008-01-01

218

Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions  

NASA Astrophysics Data System (ADS)

Four newly synthesized poly (propylene amine) dendrimers from first and second generation modified with 1,8-naphthalimide units in the dendrimer periphery have been investigated as ligands for the detection of heavy metal ions (Al3+, Sb2+, As2+, Cd2+ and Pb2+) by surface-enhanced Raman spectroscopy. Calibration curves were established for all metal ions between the concentration ranges of  1 x 10-6 to 5 x 10-4 M. It has been shown that these dendrimers can be coordinated, especially with different metal ions. Using dendrimer molecules and silver colloids at the same time allowed us to obtain an SERS signal from the abovementioned metal ions at very low concentrations. Principle component analysis (PCA) analysis was also applied to the collected SERS data. Four differentPCA models were developed to accomplish the discrimination of five metal ions, which interacted with each of the four dendrimer molecules, separately. A detailed investigation was performed in the present study to provide the basis of a new approach for heavy metal detection.

Temiz, Havva Tumay; Boyaci, Ismail Hakki; Grabchev, Ivo; Tamer, Ugur

2013-12-01

219

Fast Quantitative Analysis Of Museum Objects Using Laser-Induced Breakdown Spectroscopy And Multiple Regression Algorithms  

NASA Astrophysics Data System (ADS)

The recent development of mobile instrumentation, specifically devoted to in situ analysis and study of museum objects, allows the acquisition of many LIBS spectra in very short time. However, such large amount of data calls for new analytical approaches which would guarantee a prompt analysis of the results obtained. In this communication, we will present and discuss the advantages of statistical analytical methods, such as Partial Least Squares Multiple Regression algorithms vs. the classical calibration curve approach. PLS algorithms allows to obtain in real time the information on the composition of the objects under study; this feature of the method, compared to the traditional off-line analysis of the data, is extremely useful for the optimization of the measurement times and number of points associated with the analysis. In fact, the real time availability of the compositional information gives the possibility of concentrating the attention on the most `interesting' parts of the object, without over-sampling the zones which would not provide useful information for the scholars or the conservators. Some example on the applications of this method will be presented, including the studies recently performed by the researcher of the Applied Laser Spectroscopy Laboratory on museum bronze objects.

Lorenzetti, G.; Foresta, A.; Palleschi, V.; Legnaioli, S.

2009-09-01

220

[Rapid quantitative analysis of hydrocarbon composition of furfural extract oils using attenuated total reflection infrared spectroscopy].  

PubMed

A set of rapid analysis system for hydrocarbon composition of heavy oils was designed using attenuated total reflection FTIR spectrometer and chemometrics to determine the hydrocarbon composition of furfural extract oils. Sixty two extract oil samples were collected and their saturates and aromatics content data were determined according to the standard NB/SH/T0509-2010, then the total contents of resins plus asphaltenes were calculated by the subtraction method in the percentage of weight. Based on the partial least squares (PLS), calibration models for saturates, aromatics, and resin+asphaltene contents were established using attenuated total reflection FTIR spectroscopy, with their SEC, 1.43%, 0.91% and 1.61%, SEP, 1.56%, 1.24% and 1.81%, respectively, meeting the accuracy and repeatability required for the standard. Compared to the present standard method, the efficiency of hydrocarbon composition analysis for furfural extract oils is significantly improved by the new method which is rapid and simple. The system could also be used for other heavy oil analysis, with excellent extension and application foreground. PMID:25269288

Li, Na; Yuan, Hong-Fu; Hu, Ai-Qin; Liu, Wei; Song, Chun-Feng; Li, Xiao-Yu; Song, Yi-Chang; He, Qi-Jun; Liu, Sha; Xu, Xiao-Xuan

2014-07-01

221

Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

A double pulse-laser induced breakdown spectroscopy (DP-LIBS) was used to determine arsenic (As) concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. We showed that the use of double pulse laser led to enhancements of signal intensity (by 13% on average) and signal-to-noise ratio of As emission lines (by 165% on average) with smaller relative standard deviation compared to single pulse laser approach. We believe this occurred because the second laser pulse in the rarefied atmosphere produced by the first pulse led to the increase of plasma temperature and populations of exited levels. An internal standardization method using a Fe emission line provided a better correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements used. The Fe was known as one of the major components in current soil samples, and its concentration varied not substantially. The As concentration determined by the DP-LIBS was compared with that obtained by atomic absorption spectrometry (AAS) to evaluate the current LIBS system. They are correlated with a correlation coefficient of 0.94. The As concentration by the DP-LIBS was underestimated in the high concentration range (>1000 mg-As/kg). The loss of sensitivity that occurred at high concentrations could be explained by self-absorption in the generated plasma.

Kwak, Ji-hyun; Lenth, Christoph; Salb, Christian; Ko, Eun-Joung; Kim, Kyoung-Woong; Park, Kihong

2009-10-01

222

Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy.  

PubMed

Interactions of glyphosate (N-phosphonomethylglycine) herbicide (GLY) with soluble fulvic acids (FAs) and humic acids (HAs) at pH 5.2 and 7 were studied by (1)H and (31)P NMR spectroscopy. Increasing concentrations of soluble humic matter determined broadening and chemical shift drifts of proton and phosphorus GLY signals, thereby indicating the occurrence of weak interactions between GLY and humic superstructures. Binding was larger for FAs and pH 5.2 than for HAs and pH 7, thus suggesting formation of hydrogen bonds between GLY carboxyl and phosphonate groups and protonated oxygen functions in humic matter. Changes in relaxation and correlation times of (1)H and (31)P signals and saturation transfer difference NMR experiments confirmed the noncovalent nature of GLY-humic interactions. Diffusion-ordered NMR spectra allowed calculation of the glyphosate fraction bound to humic superstructures and association constants (K(a)) and Gibbs free energies of transfer for GLY-humic complex formation at both pH values. These values showed that noncovalent interactions occurred most effectively with FAs and at pH 5.2. Our findings indicated that glyphosate may spontaneously and significantly bind to soluble humic matter by noncovalent interactions at slightly acidic pH and, thus, potentially pollute natural water bodies by moving through soil profiles in complexes with dissolved humus. PMID:22591574

Mazzei, Pierluigi; Piccolo, Alessandro

2012-06-01

223

Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions.  

PubMed

Four newly synthesized poly (propylene amine) dendrimers from first and second generation modified with 1,8-naphthalimide units in the dendrimer periphery have been investigated as ligands for the detection of heavy metal ions (Al(3+), Sb(2+), As(2+), Cd(2+) and Pb(2+)) by surface-enhanced Raman spectroscopy. Calibration curves were established for all metal ions between the concentration ranges of 1 x 10(-6) to 5 x 10(-4) M. It has been shown that these dendrimers can be coordinated, especially with different metal ions. Using dendrimer molecules and silver colloids at the same time allowed us to obtain an SERS signal from the abovementioned metal ions at very low concentrations. Principle component analysis (PCA) analysis was also applied to the collected SERS data. Four different PCA models were developed to accomplish the discrimination of five metal ions, which interacted with each of the four dendrimer molecules, separately. A detailed investigation was performed in the present study to provide the basis of a new approach for heavy metal detection. PMID:23973576

Temiz, Havva Tumay; Boyaci, Ismail Hakki; Grabchev, Ivo; Tamer, Ugur

2013-12-01

224

Quantitative analysis of adhesive resin in the hybrid layer using Raman spectroscopy  

PubMed Central

The objective was to determine absolute molar concentration of adhesive resin components in the hybrid layer by establishing methods based on Raman spectroscopy fundamentals. The hybrid layer was treated as a three-component system consisting of collagen and an adhesive resin containing two monomers. Adhesive standard specimens and Raman peak area ratios obtained with a 785 nm excitation wavelength were used to construct separate calibration curves for comonomer relative molar concentration and Bis-GMA absolute molar concentration. Since collagen and water had no measurable peaks in the fingerprint region, a dilution coefficient Kj was defined to describe their impact on Raman peak area and to calculate HEMA absolute molar concentration. Methodology was validated using an analogous system containing acetone/ethanol/water. The absolute molar concentration of Bis-GMA and HEMA decreased 87% and 83%, respectively, from the top quarter to the middle of the hybrid layer. Additionally, less Bis-GMA penetrated the hybrid layer than HEMA, as indicated by the ?20% decrease in comonomer molar concentration ratio between the adhesive resin layer and the top half of the hybrid layer. Lack of complete monomer infiltration will further challenge dentin-adhesive bond longevity. PMID:20186729

Zou, Yuan; Armstrong, Steven R.; Jessop, Julie L. P.

2009-01-01

225

Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology  

Microsoft Academic Search

Gregor Mendel was either clever or lucky enough to study traits of simple inheritance in his pea plants; however, many plant characters of interest to modern geneticists are decidedly complex. Understanding the genetic basis of such complex, or quantitative, traits requires a combination of modern molecular genetic techniques and powerful statistical methods. These approaches have begun to give us insight

Rodney Mauricio

2001-01-01

226

Predicting Skin Permeability from Complex Chemical Mixtures: Dependency of Quantitative Structure Permeation Relationships on Biology of Skin Model Used  

PubMed Central

Dermal absorption of topically applied chemicals usually occurs from complex chemical mixtures; yet, most attempts to quantitate dermal permeability use data collected from single chemical exposure in aqueous solutions. The focus of this research was to develop quantitative structure permeation relationships (QSPR) for predicting chemical absorption from mixtures through skin using two levels of in vitro porcine skin biological systems. A total of 16 diverse chemicals were applied in 384 treatment mixture combinations in flow-through diffusion cells and 20 chemicals in 119 treatment combinations in isolated perfused porcine skin. Penetrating chemical flux into perfusate from diffusion cells was analyzed to estimate a normalized dermal absorptive flux, operationally an apparent permeability coefficient, and total perfusate area under the curve from perfused skin studies. These data were then fit to a modified dermal QSPR model of Abraham and Martin including a sixth term to account for mixture interactions based on physical chemical properties of the mixture components. Goodness of fit was assessed using correlation coefficients (r2), internal and external validation metrics (qLOO2, qL25%2, qEXT2), and applicable chemical domain determinations. The best QSPR equations selected for each experimental biological system had r2 values of 0.69–0.73, improving fits over the base equation without the mixture effects. Different mixture factors were needed for each model system. Significantly, the model of Abraham and Martin could also be reduced to four terms in each system; however, different terms could be deleted for each of the two biological systems. These findings suggest that a QSPR model for estimating percutaneous absorption as a function of chemical mixture composition is possible and that the nature of the QSPR model selected is dependent upon the biological level of the in vitro test system used, both findings having significant implications when dermal absorption data are used for in vivo risk assessments. PMID:20947718

Riviere, Jim E.; Brooks, James D.

2011-01-01

227

Tracking Biological Organic Compounds In Atmospheric Deposition In Alpine Environments With Fluorescence Spectroscopy  

NASA Astrophysics Data System (ADS)

Alpine environments, such as those of the Colorado Rocky Mountains, USA and the Sierra Nevada Mountains, Spain, contain undeveloped, barren soils that are carbon-limited. Atmospheric wet and dry deposition of organic carbon (OC) represents a substantial fraction of the OC load available to alpine soils, and includes contributions from atmospheric pollutants, dust, and biological aerosols, such as bacteria, algae, fungi, and plant debris. To evaluate the seasonal variability and sources of atmospheric deposition at these alpine sites, we measured the chemical characteristics of weekly wet and dry deposition and snowpack samples, including characterization of dissolved organic matter (DOM) and water soluble organic matter (WSOM) with fluorescence spectroscopy. The excitation-emission matrix (EEM) spectra we acquired show the presence of recurring peaks at low excitation and emission wavelengths typically associated with highly biodegradable organic carbon, presumably derived from the aromatic amino acids, tyrosine and tryptophan. Solar simulation experiments demonstrated that amino acid-like fluorescent components were more resistant to photo-degradation than humic- and fulvic-like fluorescent components. Our results also reveal the presence of a unique fluorophore, not previously described, that is found in both Rocky Mountains and the Sierra Nevada snowpack, wet deposition, and dry deposition and may be attributed to fluorescent pigments in bacteria. Biological aerosols may represent a labile source of carbon for alpine soil microbes, and consequently their deposition has important consequences for biogeochemical processes occurring in barren, alpine soils. Excitation emission matrix image of 24 Aug 2010 wet deposition sample from the Soddie site at Niwot Ridge, Colorado showing a unique fluorescent component with dual excitation peaks (285 nm and 340 nm) at 410 nm emission.

Mladenov, N.; Oldani, K. M.; Williams, M. W.; Schmidt, S. K.; Darcy, J.; Lemons, S.; Reche, I.

2013-12-01

228

High-Field EPR Spectroscopy on Transfer Proteins in Biological Action  

NASA Astrophysics Data System (ADS)

In the last decade joint efforts of biologists, chemists, and physicists were made to understand the dominant factors determining specificity and directionality of transmembrane transfer processes in proteins. Characteristic examples of such factors are time varying specific H-bonding patterns and/or polarity effects of the microenvironment. In this overview, a few large paradigm biosystems are surveyed which have been explored lately in our laboratory. Taking advantage of the improved spectral and temporal resolution of high-frequency/high-field EPR at 95 GHz/3.4 T and 360 GHz/12.9 T, as compared to conventional X-band EPR (9.5 GHz/0.34 T), three transfer proteins in action are characterized with respect to structure and dynamics: (1) light-induced electron-transfer intermediates in wild-type and mutant reaction-centre proteins from photosynthetic bacteria Rhodobacter sphaeroides, (2) light-driven proton-transfer intermediates of site-specifically nitroxide spin-labelled mutants of bacteriorhodopsin proteins from Halobacterium salinarium, (3) refolding intermediates of site-specifically nitroxide spin-labelled mutants of the channel-forming protein domain of Colicin A bacterial toxin produced in Escherichia coli. The information obtained is complementary to that of protein crystallography, solid-state NMR, infrared and optical spectroscopy techniques. A unique strength of high-field EPR is particularly noteworthy: it can provide detailed information on transient intermediates of proteins in biological action. They can be observed and characterized while staying in their working states on biologically relevant time scales.

Möbius, K.; Schnegg, A.; Plato, M.; Fuchs, M. R.; Savitsky, A.

2006-08-01

229

IRMPD spectroscopy of protonated S-nitrosocaptopril, a biologically active, synthetic amino acid.  

PubMed

S-Nitrosocaptopril, a biologically active S-nitrosothiol, is generated as protonated species and isolated in the gas phase by electrospray ionization coupled to Fourier Transform Ion Cyclotron Resonance (FT-ICR) or ion-trap mass spectrometry. The structural and IR spectroscopic characterization of protonated S-nitrosocaptopril (SNOcapH(+)) is aided by the comparative study of the parent species lacking the NO feature, namely protonated captopril. The study is accomplished by methodologies based on tandem mass spectrometry, namely by energy resolved collision-induced dissociation and infrared multiple-photon dissociation (IRMPD) spectroscopy, backed by density functional theory calculations. IRMPD spectra have been obtained both in the 1000-1900 cm(-1) fingerprint range, using a beamline of the infrared free electron laser (IR-FEL) at the Centre Laser Infrarouge d'Orsay (CLIO), and in the O-H and N-H stretching region (2900-3700 cm(-1)) using the tunable IR radiation of a tabletop parametric oscillator/amplifier (OPO/OPA) laser source. The structural features of the ion have been ascertained by comparison of the experimental IRMPD spectra with the IR transitions calculated for the lowest energy isomers. Evidence is obtained that protonation occurs at the amide carbonyl oxygen which is found to be the thermodynamically most basic site. However, SNOcapH(+) is present as a thermally equilibrated mixture of low-energy structures, with a major contribution of the most stable isomer characterized by a trans relationship of the positively charged OH group with respect to the carboxylic acid functionality on the adjacent proline ring and by an anti conformation at the S-N (partial) double bond, though the energy difference with the analogous trans-syn isomer is less than 1 kJ mol(-1). The highly diagnostic N-O stretching mode has been unambiguously identified, which may be regarded as an informative probe for S-nitrosation features in more complex, biologically active molecules. PMID:20852770

Coletti, Cecilia; Re, Nazzareno; Scuderi, Debora; Maître, Philippe; Chiavarino, Barbara; Fornarini, Simonetta; Lanucara, Francesco; Sinha, Rajeev K; Crestoni, Maria Elisa

2010-11-01

230

Quantitative determination of polyphosphate in sediments using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and partial least squares regression.  

PubMed

Phosphorus (P) is a major cause of eutrophication and subsequent loss of water quality in freshwater ecosystems. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. Despite the broad relevance of polyphosphate (Poly-P) in bioremediation and P release processes in the environment, its quantification is not yet well developed for sediment samples. Current methods possess significant disadvantages because of the difficulties associated with using a single extractant to extract a specific P compound without altering others. A fast and reliable method to estimate the quantitative contribution of microorganisms to sediment P release processes is needed, especially when an excessive P accumulation in the form of polyphosphate (Poly-P) occurs. Development of novel approaches for application of emerging spectroscopic techniques to complex environmental matrices such as sediments significantly contributes to the speciation models of P mobilization, biogeochemical nutrient cycling and development of nutrient models. In this study, for the first time Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in combination with partial least squares (PLS) was used to quantify Poly-P in sediments. To reduce the high absorption matrix components in sediments such as silica, a physical extraction method was developed to separate sediment biological materials from abiotic particles. The aim was to achieve optimal separation of the biological materials from sediment abiotic particles with minimum chemical change in the sample matrix prior to ATR-FTIR analysis. Using a calibration set of 60 samples for the PLS prediction models in the Poly-P concentration range of 0-1 mg g(-1) d.w. (dry weight of sediment) (R(2) = 0.984 and root mean square error of prediction RMSEP = 0.041 at Factor-1) Poly-P could be detected at less than 50 ?g g(-l) d.w. Using this technique, there is no solvent extraction or chemical treatment required, sample preparation is minimal and simple, and the analysis time is greatly reduced. The results from this study demonstrated the potential of ATR FT-IR spectroscopy as an alternative method to study Poly-P in sediments. PMID:22801463

Khoshmanesh, Aazam; Cook, Perran L M; Wood, Bayden R

2012-08-21

231

Systems Biology of Cancer: A Challenging Expedition for Clinical and Quantitative Biologists  

PubMed Central

A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression.

Korsunsky, Ilya; McGovern, Kathleen; LaGatta, Tom; Olde Loohuis, Loes; Grosso-Applewhite, Terri; Griffeth, Nancy; Mishra, Bud

2014-01-01

232

Non-invasive quantitative assessment of oxidative metabolism in quadriceps muscles by near infrared spectroscopy  

PubMed Central

Background—Near infrared spectroscopy can be used in non-invasive monitoring of changes in skeletal muscle oxygenation in exercising subjects. Objective—To evaluate whether this method can be used to assess metabolic capacity of muscles. Two distinctive variables abstracted from a curve of changes in muscle oxygenation were assessed. Methods—Exercise on a cycle ergometer was performed by 18 elite male athletes and eight healthy young men. A measuring probe was placed on the skin of the quadriceps muscle to measure reflected light at two wavelengths (760 and 850 nm), so that the relative index of muscle oxygenation could be calculated. Exercise intensity was increased from 50 W in 50 W increments until the subject was exhausted. During exercise, changes in muscle oxygenation and blood lactate concentration were recorded. The following two variables for assessment of muscle oxygenation were then abstracted and analysed by plotting curves of changes in muscle oxygenation: the rate of recovery of muscle oxygen saturation (RR) and the relative value of the effective decrease in muscle oxygenation (Deff). Results—Data analysis showed a correlation between muscle oxygenation and blood lactate concentration at the various exercise intensities and verified the feasibility of the experiment. Data for the athletes were compared with those for the controls using the Aspin-Welch test of significance; t = 2.3 and 2.86 for RR and Deff respectively. There were significant differences (p = 0.05) between the athletes and the control group with respect to these two variables. Conclusion—RR and Deff may be distinctive variables that can be used to characterise muscle oxidative metabolism during human body movement. Key Words: recovery; muscle; oxygen saturation; exercise; elite athletes PMID:11726485

Ding, H; Wang, G; Lei, W; Wang, R; Huang, L; Xia, Q; Wu, J

2001-01-01

233

Quantitative Soil Carbon Analysis with in Situ Laser-Induced Breakdown Spectroscopy by Multivariate Analysis  

NASA Astrophysics Data System (ADS)

The Earth's oceans, forests, agricultural lands and other natural areas absorb about half of the carbon dioxide emitted from anthropogenic sources. Terrestrial carbon sequestration strategies are immediately available to bridge the gap between current terrestrial sequestration capacity and high-capacity geologic sequestration projects available in 10 to 20 years. Terrestrial carbon sequestration strategies consist of implementing land management practices aimed at decreasing CO2 emitted into the atmosphere and developing advanced measurement tools to inventory and monitor carbon processes in soils and biota. Laser-Induced Breakdown Spectroscopy (LIBS) is one of the analytical tools used to determine the total soil carbon in samples within the Big Sky and Southwest Carbon Sequestration Regional Partnerships. LIBS involves focusing a Nd:YAG laser operating at 1064nm onto the surface of the sample. The laser ablates material from the surface, generating an expanding plasma containing electronically excited ions, atoms, and small molecules. As these electronically excited species relax back to the ground state, they emit light at wavelengths characteristic of the species present in the sample. Some of this emission is directed into one of three dispersive spectrometers. The experiments discussed in this paper were completed with a person portable LIBS instrument designed and built at Los Alamos National Laboratory that uses a Kigre Laser (25mJ/pulse) and an Ocean Optics HR2000 dispersive spectrometer. This instrument was used to probe samples collected from Illinois (no-till loam), Michigan (no-till clay), and North Dakota (reduced-till sand). A new multivariate analysis technique was employed to extract concentrations to 0.5%C with significantly greater statistical accuracy than conventional univariate techniques. These MVA techniques appear to completely compensate for these matrix effects because the analysis identifies the correlations between the spectra (independent variables), the individual elements of interest (dependent variables such as Si) as well as the other elements in the matrix.

Harris, R. D.; Clegg, S. M.; Barefield, J. E.; Fessenden-Rahn, J. E.; Wiens, R. C.; Ebinger, M. H.

2007-12-01

234

Rapid Quantitation of a Large Scope of Eicosanoids in Two Models of Inflammation: Development of an Electrospray and Tandem Mass Spectrometry Method and Application to Biological Studies  

Microsoft Academic Search

Assessment of eicosanoid levels in biological systems is important for understanding their role in cell function and pathophysiological events. Current methods of eicosanoid quantitation are limited by sensitivity, scope, or throughput. The development of a new method for eicosanoid assessment in biological samples by electrospray and tandem mass spectrometry (MS\\/MS) in the multiple reaction monitoring mode is described here. In

Alon Margalit; Kevin L. Duffin; Peter C. Isakson

1996-01-01

235

Quantitative determination of captopril and prednisolone in tablets by FT-Raman spectroscopy.  

PubMed

A procedure for the quantitative determination of captopril and prednisolone in commercial tablets based on partial least squares (PLS) and principal component regression (PCR) treatment of FT-Raman spectroscopic data is described. In the studied medicines active pharmaceutical ingredients (APIs) constitute 4.2-16.7% of the tablet mass. Results obtained from calibration models built using unnormalised spectra were compared with the values found when an internal standard was added to each sample and the spectra were normalised by its selected band intensity at maximum or integrated. To appraise the quality of the models the relative standard error of predictions (RSEPs) were calculated for calibration and testing data sets. For captopril determination these were 1.8-2.2% (2.1-2.3%) and 2.7-3.1% (2.7-3.6%), respectively for the different PLS (PCR) models. For prednisolone these errors amounted to 1.8-2.1% (2.6-3.5%) and 3.2-3.7% (3.7-5.9%), respectively. Three commercial preparations of captopril containing 12.5mg and one 25mg of API per tablet were quantified using developed models. Found captopril contents, calculated versus results of iodometric titration, was equal 99.2-101.2% (99.2-102.0%), for the different PLS (PCR) calibration models and the different preparations. Quantification of prednisolone tablets, declared content 5mg per tablet, on the basis of PLS (PCR) models gave API amount, calculated versus results of UV-vis method, in the 99.0-101.0% (98.0-102.0%) range. PMID:16253463

Mazurek, Sylwester; Szostak, Roman

2006-03-18

236

Electron Momentum Spectroscopy and Its Applications to Molecules of Biological Interest  

NASA Astrophysics Data System (ADS)

Energy and wave function are the heart and soul of Schrödinger quantum mechanics. Electron momentum spectroscopy (EMS) so far provides the most stringent test for quantum mechanical models (theory, basis sets and the combination of both) through observables such as binding energy spectra and Dyson orbital momentum distributions. The capability of EMS to measure Dyson orbitals of a molecule as momentum distributions provides a unique opportunity to assess the models of quantum mechanics based on orbitals, rather than on energy dominated (mostly isotropic) properties. Recently, the author introduced a technique called dual space analysis (DSA), which is based on EMS and quantum mechanics to analyze orbital based information in the more familiar position space as well as the less familiar momentum space. In this article, the development of EMS and DSA is reviewed through the applications to molecules of biological interest such as amino acids, nucleic acid bases and recently nucleosides. The emphasis is the applications of DSA to study isomerization processes and chemical bonding mechanisms of these molecules.

Wang, Feng

2007-11-01

237

Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy  

SciTech Connect

An assessment is made of the biological effects and physical hazards of static and time-varying fields associated with the NMR devices that are being used for clinical imaging and in vivo spectroscopy. A summary is given of the current state of knowledge concerning the mechanisms of interaction and the bioeffects of these fields. Additional topics that are discussed include: (1) physical effects on pacemakers and metallic implants such as aneurysm clips, (2) human health studies related to the effects of exposure to nonionizing electromagnetic radiation, and (3) extant guidelines for limiting exposure of patients and medical personnel to the fields produced by NMR devices. On the basis of information available at the present time, it is concluded that the fields associated with the current generation of NMR devices do not pose a significant health risk in themselves. However, rigorous guidelines must be followed to avoid the physical interaction of these fields with metallic implants and medical electronic devices. 476 refs., 5 figs., 2 tabs.

Tenforde, T.S.; Budinger, T.F.

1985-08-01

238

Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy  

NASA Astrophysics Data System (ADS)

Two new approaches to quantify sulfur functionalities in natural organic matter from S K-edge XANES spectroscopy are presented. In the first, the K-edge spectrum is decomposed into Gaussian and two arctangent functions, as in the usual Gaussian curve fitting (GCF) method, but the applicability of the model is improved by a rigorous simulation procedure that constrains the model-fit to converge toward chemically and physically realistic values. Fractions of each type of functionality are obtained after spectral decomposition by correcting Gaussian areas for the change in X-ray absorption cross-section with increasing oxidation state. This correction is made using published calibration curves and a new curve obtained in this study. Calibration-induced errors, inherent to the choice of a particular curve, are typically lower than 5% of total sulfur for oxidized species (e.g., sulfate), may reach 10% for organic reduced sulfur, and may be as high as 30-40% for inorganic reduced sulfur. A generic curve, which reduces the calibration-induced uncertainty by a factor of two on data collected to avoid X-ray overabsorption, is derived. In the second analytical scheme, the K-edge spectrum is partitioned into a weighted sum of component species, as in the usual linear combination fitting (LCF) method, but is fit to an extended database of reference spectra under the constraint of non-negativity in the loadings (Combo fit). The fraction of each sulfur functionality is taken as the sum of all positive fractions of references with similar oxidation state of sulfur. The two proposed methods are applied to eight humic and fulvic acids from the International Humic Substances Society (IHSS). The nature and fractions of sulfur functionalities obtained by the two analytical approaches are consistent with each other. The accuracy of the derived values, expressed as the difference in values of a fraction obtained on the same material by the two independent methods, is on average 4.5 ± 3.0% of total sulfur for exocyclic reduced sulfur, 4.1 ± 2.1% for heterocyclic reduced sulfur, and 1.6 ± 1.4% for sulfate. Total reduced sulfur has a better accuracy of estimation (2.4 ± 1.6%) than either exocyclic and heterocyclic sulfur, because the errors on the two reduced pools have opposite sign. Experimental difficulties and uncertainties of the results associated with the analysis of concentrated and heterogeneous samples are discussed. The spectra of the IHSS materials and the reference compounds are made available as an open source for interlaboratory testing.

Manceau, Alain; Nagy, Kathryn L.

2012-12-01

239

Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding  

NASA Astrophysics Data System (ADS)

Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

2013-12-01

240

Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding.  

PubMed

Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results. PMID:24188921

Zhang, Yi; Gabr, Refaat E; Zhou, Jinyuan; Weiss, Robert G; Bottomley, Paul A

2013-12-01

241

A method for quantitative mapping of thick oil spills using imaging spectroscopy  

USGS Publications Warehouse

In response to the Deepwater Horizon oil spill in the Gulf of Mexico, a method of near-infrared imaging spectroscopic analysis was developed to map the locations of thick oil floating on water. Specifically, this method can be used to derive, in each image pixel, the oil-to-water ratio in oil emulsions, the sub-pixel areal fraction, and its thicknesses and volume within the limits of light penetration into the oil (up to a few millimeters). The method uses the shape of near-infrared (NIR) absorption features and the variations in the spectral continuum due to organic compounds found in oil to identify different oil chemistries, including its weathering state and thickness. The method is insensitive to complicating conditions such as moderate aerosol scattering and reflectance level changes from other conditions, including moderate sun glint. Data for this analysis were collected by the NASA Airborne Visual Infrared Imaging Spectrometer (AVIRIS) instrument, which was flown over the oil spill on May 17, 2010. Because of the large extent of the spill, AVIRIS flight lines could cover only a portion of the spill on this relatively calm, nearly cloud-free day. Derived lower limits for oil volumes within the top few millimeters of the ocean surface directly probed with the near-infrared light detected in the AVIRIS scenes were 19,000 (conservative assumptions) to 34,000 (aggressive assumptions) barrels of oil. AVIRIS covered about 30 percent of the core spill area, which consisted of emulsion plumes and oil sheens. Areas of oil sheen but lacking oil emulsion plumes outside of the core spill were not evaluated for oil volume in this study. If the core spill areas not covered by flight lines contained similar amounts of oil and oil-water emulsions, then extrapolation to the entire core spill area defined by a MODIS (Terra) image collected on the same day indicates a minimum of 66,000 to 120,000 barrels of oil was floating on the surface. These estimates are preliminary and subject to revision pending further analysis. Based on laboratory measurements, near-infrared (NIR) photons penetrate only a few millimeters into oil-water emulsions. As such, the oil volumes derived with this method are lower limits. Further, the detection is only of thick surface oil and does not include sheens, underwater oil, or oil that had already washed onto beaches and wetlands, oil that had been burned or evaporated as of May 17. Because NIR light penetration within emulsions is limited, and having made field observations that oil emulsions sometimes exceeded 20 millimeters in thickness, we estimate that the volume of oil, including oil thicker than can be probed in the AVIRIS imagery, is possibly as high as 150,000 barrels in the AVIRIS scenes. When this value is projected to the entire spill, it gives a volume of about 500,000 barrels for thick oil remaining on the sea surface as of May 17. AVIRIS data cannot be used to confirm this higher volume, and additional field work including more in-situ measurements of oil thickness would be required to confirm this higher oil volume. Both the directly detected minimum range of oil volume, and the higher possible volume projection for oil thicker than can be probed with NIR spectroscopy imply a significantly higher total volume of oil relative to that implied by the early NOAA (National Oceanic and Atmospheric Administration) estimate of 5,000 barrels per day reported on their Web site.

Clark, Roger N.; Swayze, Gregg A.; Leifer, Ira; Livo, K. Eric; Kokaly, Raymond; Hoefen, Todd; Lundeen, Sarah; Eastwood, Michael; Green, Robert O.; Pearson, Neil; Sarture, Charles; McCubbin, Ian; Roberts, Dar; Bradley, Eliza; Steele, Denis; Ryan, Thomas; Dominguez, Roseanne

2010-01-01

242

Biologically inspired means for rank-order encoding images: a quantitative analysis.  

PubMed

In this paper, we present biologically inspired means to enhance perceptually important information retrieval from rank-order encoded images. Validating a retinal model proposed by VanRullen and Thorpe, we observe that on average only up to 70% of the available information can be retrieved from rank-order encoded images. We propose a biologically inspired treatment to reduce losses due to a high correlation of adjacent basis vectors and introduce a filter-overlap correction algorithm (FoCal) based on the lateral inhibition technique used by sensory neurons to deal with data redundancy. We observe a more than 10% increase in perceptually important information recovery. Subsequently, we present a model of the primate retinal ganglion cell layout corresponding to the foveal-pit. We observe that information recovery using the foveal-pit model is possible only if FoCal is used in tandem. Furthermore, information recovery is similar for both the foveal-pit model and VanRullen and Thorpe's retinal model when used with FoCal. This is in spite of the fact that the foveal-pit model has four ganglion cell layers as in biology while VanRullen and Thorpe's retinal model has a 16-layer structure. PMID:20550988

Sen Bhattacharya, Basabdatta; Furber, Stephen B

2010-07-01

243

Determining enzyme kinetics for systems biology with nuclear magnetic resonance spectroscopy.  

PubMed

Enzyme kinetics for systems biology should ideally yield information about the enzyme's activity under in vivo conditions, including such reaction features as substrate cooperativity, reversibility and allostery, and be applicable to enzymatic reactions with multiple substrates. A large body of enzyme-kinetic data in the literature is based on the uni-substrate Michaelis-Menten equation, which makes unnatural assumptions about enzymatic reactions (e.g., irreversibility), and its application in systems biology models is therefore limited. To overcome this limitation, we have utilised NMR time-course data in a combined theoretical and experimental approach to parameterize the generic reversible Hill equation, which is capable of describing enzymatic reactions in terms of all the properties mentioned above and has fewer parameters than detailed mechanistic kinetic equations; these parameters are moreover defined operationally. Traditionally, enzyme kinetic data have been obtained from initial-rate studies, often using assays coupled to NAD(P)H-producing or NAD(P)H-consuming reactions. However, these assays are very labour-intensive, especially for detailed characterisation of multi-substrate reactions. We here present a cost-effective and relatively rapid method for obtaining enzyme-kinetic parameters from metabolite time-course data generated using NMR spectroscopy. The method requires fewer runs than traditional initial-rate studies and yields more information per experiment, as whole time-courses are analyzed and used for parameter fitting. Additionally, this approach allows real-time simultaneous quantification of all metabolites present in the assay system (including products and allosteric modifiers), which demonstrates the superiority of NMR over traditional spectrophotometric coupled enzyme assays. The methodology presented is applied to the elucidation of kinetic parameters for two coupled glycolytic enzymes from Escherichia coli (phosphoglucose isomerase and phosphofructokinase). 31P-NMR time-course data were collected by incubating cell extracts with substrates, products and modifiers at different initial concentrations. NMR kinetic data were subsequently processed using a custom software module written in the Python programming language, and globally fitted to appropriately modified Hill equations. PMID:24957764

Eicher, Johann J; Snoep, Jacky L; Rohwer, Johann M

2012-01-01

244

Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r2=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL.min-1.100 g-1 (CI0.95: -19.63 mL.min-1.100 g-1-13.9 mL.min-1.100 g-1). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care.

Elliott, Jonathan T.; Diop, Mamadou; Tichauer, Kenneth M.; Lee, Ting-Yim; Lawrence, Keith St.

2010-05-01

245

Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy.  

PubMed

Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r(2)=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL min(-1)100 g(-1) (CI(0.95): -19.63 mL min(-1)100 g(-1)-13.9 mL min(-1)100 g(-1)). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care. PMID:20615043

Elliott, Jonathan T; Diop, Mamadou; Tichauer, Kenneth M; Lee, Ting-Yim; St Lawrence, Keith

2010-01-01

246

Remote Quantitative Analysis of Minerals Based on Multispectral Line-Calibrated Laser-Induced Breakdown Spectroscopy (LIBS).  

PubMed

Laser-induced breakdown spectroscopy (LIBS) is a feasible remote sensing technique used for mineral analysis in some unapproachable places where in situ probing is needed, such as analysis of radioactive elements in a nuclear leak or the detection of elemental compositions and contents of minerals on planetary and lunar surfaces. Here a compact custom 15 m focus optical component, combining a six times beam expander with a telescope, has been built, with which the laser beam of a 1064 nm Nd?;?YAG laser is focused on remote minerals. The excited LIBS signals that reveal the elemental compositions of minerals are collected by another compact single lens-based signal acquisition system. In our remote LIBS investigations, the LIBS spectra of an unknown ore have been detected, from which the metal compositions are obtained. In addition, a multi-spectral line calibration (MSLC) method is proposed for the quantitative analysis of elements. The feasibility of the MSLC and its superiority over a single-wavelength determination have been confirmed by comparison with traditional chemical analysis of the copper content in the ore. PMID:25239065

Wan, Xiong; Wang, Peng

2014-10-01

247

Mapping of thermal injury in biologic tissues using quantitative pathologic techniques  

NASA Astrophysics Data System (ADS)

Qualitative and quantitative pathologic techniques can be used for (1) mapping of thermal injury, (2) comparisons lesion sizes and configurations for different instruments or heating sources and (3) comparisons of treatment effects. Concentric zones of thermal damage form around a single volume heat source. The boundaries between some of these zones are distinct and measurable. Depending on the energy deposition, heating times and tissue type, the zones can include the following beginning at the hotter center and progressing to the cooler periphery: (1) tissue ablation, (2) carbonization, (3) tissue water vaporization, (4) structural protein denaturation (thermal coagulation), (5) vital enzyme protein denaturation, (6) cell membrane disruption, (7) hemorrhage, hemostasis and hyperhemia, (8) tissue necrosis and (9) wound organization and healing.

Thomsen, Sharon L.

1999-05-01

248

Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology  

PubMed Central

Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

2011-01-01

249

A method of online quantitative interpretation of diffuse reflection profiles of biological tissues  

NASA Astrophysics Data System (ADS)

We have developed a method of combined interpretation of spectral and spatial characteristics of diffuse reflection of biological tissues, which makes it possible to determine biophysical parameters of the tissue with a high accuracy in real time under conditions of their general variability. Using the Monte Carlo method, we have modeled a statistical ensemble of profiles of diffuse reflection coefficients of skin, which corresponds to a wave variation of its biophysical parameters. On its basis, we have estimated the retrieval accuracy of biophysical parameters using the developed method and investigated the stability of the method to errors of optical measurements. We have showed that it is possible to determine online the concentrations of melanin, hemoglobin, bilirubin, oxygen saturation of blood, and structural parameters of skin from measurements of its diffuse reflection in the spectral range 450-800 nm at three distances between the radiation source and detector.

Lisenko, S. A.; Kugeiko, M. M.

2013-02-01

250

Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis.  

PubMed

The stress-induced attachment of small ubiquitin-like modifier (SUMO) to a diverse collection of nuclear proteins regulating chromatin architecture, transcription, and RNA biology has been implicated in protecting plants and animals against numerous environmental challenges. In order to better understand stress-induced SUMOylation, we combined stringent purification of SUMO conjugates with isobaric tag for relative and absolute quantification mass spectrometry and an advanced method to adjust for sample-to-sample variation so as to study quantitatively the SUMOylation dynamics of intact Arabidopsis seedlings subjected to stress. Inspection of 172 SUMO substrates during and after heat shock (37 °C) revealed that stress mostly increases the abundance of existing conjugates, as opposed to modifying new targets. Some of the most robustly up-regulated targets participate in RNA processing and turnover and RNA-directed DNA modification, thus implicating SUMO as a regulator of the transcriptome during stress. Many of these targets were also strongly SUMOylated during ethanol and oxidative stress, suggesting that their modification is crucial for general stress tolerance. Collectively, our quantitative data emphasize the importance of SUMO to RNA-related processes protecting plants from adverse environments. PMID:23197790

Miller, Marcus J; Scalf, Mark; Rytz, Thérèse C; Hubler, Shane L; Smith, Lloyd M; Vierstra, Richard D

2013-02-01

251

Spectroscopy  

NSDL National Science Digital Library

This site describes the theory and practice of IR and NMR spectroscopy for classroom and laboratory instruction. Although it is written for a course at the University of Colorado, Boulder, this site is appropriate for anyone doing analytical measurements with infrared or NMR.

2011-08-05

252

The EVB as a quantitative tool for formulating simulations and analyzing biological and chemical reactions  

PubMed Central

Recent years have seen dramatic improvements in computer power, allowing ever more challenging problems to be approached. In light of this, it is imperative to have a quantitative model for examining chemical reactivity, both in the condensed phase and in solution, as well as to accurately quantify physical organic chemistry (particularly as experimental approaches can often be inconclusive). Similarly, computational approaches allow for great progress in studying enzyme catalysis, as they allow for the separation of the relevant energy contributions to catalysis. Due to the complexity of the problems that need addressing, there is a need for an approach that can combine reliability with an ability to capture complex systems in order to resolve long-standing controversies in a unique way. Herein, we will demonstrate that the empirical valence bond (EVB) approach provides a powerful way to connect the classical concepts of physical organic chemistry to the actual energies of enzymatic reactions by means of computation. Additionally, we will discuss the proliferation of this approach, as well as attempts to capture its basic chemistry and repackage it under different names. We believe that the EVB approach is the most powerful tool that is currently available for studies of chemical processes in the condensed phase in general and enzymes in particular, particularly when trying to explore the different proposals about the origin of the catalytic power of enzymes.

Kamerlin, Shina C. L.; Warshel, Arieh

2012-01-01

253

Note: Alignment/focus dependent core-line sensitivity for quantitative chemical analysis in hard x-ray photoelectron spectroscopy using a hemispherical electron analyzer  

SciTech Connect

X-ray photoelectron spectroscopy is an established technique for quantitative chemical analysis requiring accurate peak intensity analysis. We present evidence of focus/alignment dependence of relative peak intensities for peaks over a broad kinetic energy range with a hemispherical electron analyzer operated in a position imaging mode. A decrease of over 50% in the Ag 2p{sub 3/2} to Ag 3d ratio is observed in a Ag specimen. No focus/alignment dependence is observed when using an angular imaging mode, necessitating the use of angular mode for quantitative chemical analysis.

Weiland, Conan; Browning, Raymond; Karlin, Barry A.; Fischer, Daniel A.; Woicik, Joseph C. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

2013-03-15

254

3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment  

NASA Astrophysics Data System (ADS)

X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.

Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan

2014-06-01

255

Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas  

PubMed Central

Background In this study we aimed to quantify tumor suppressor gene (TSG) promoter methylation densities levels in primary neuroblastoma tumors and cell lines. A subset of these TSGs is associated with a CpG island methylator phenotype (CIMP) in other tumor types. Methods The study panel consisted of 38 primary tumors, 7 established cell lines and 4 healthy references. Promoter methylation was determined by bisulphate Pyrosequencing for 14 TSGs; and LINE-1 repeat element methylation was used as an indicator of global methylation levels. Results Overall mean TSG Z-scores were significantly increased in cases with adverse outcome, but were unrelated to global LINE-1 methylation. CIMP with hypermethylation of three or more gene promoters was observed in 6/38 tumors and 7/7 cell lines. Hypermethylation of one or more TSG (comprising TSGs BLU, CASP8, DCR2, CDH1, RASSF1A and RASSF2) was evident in 30/38 tumors. By contrast only very low levels of promoter methylation were recorded for APC, DAPK1, NORE1A, P14, P16, TP73, PTEN and RARB. Similar involvements of methylation instability were revealed between cell line models and neuroblastoma tumors. Separate analysis of two proposed CASP8 regulatory regions revealed frequent and significant involvement of CpG sites between exon 4 and 5, but modest involvement of the exon 1 region. Conclusions/significance The results highlight the involvement of TSG methylation instability in neuroblastoma tumors and cell lines using quantitative methods, support the use of DNA methylation analyses as a prognostic tool for this tumor type, and underscore the relevance of developing demethylating therapies for its treatment. PMID:22984959

2012-01-01

256

Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique  

NASA Astrophysics Data System (ADS)

Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

2011-03-01

257

Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate  

Microsoft Academic Search

Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative

Pascal E. Saikaly; Morton A. Barlaz; F. L. de los Reyes

2007-01-01

258

X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples  

PubMed Central

As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745

George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

2012-01-01

259

Characterisation of in vivo ovarian cancer models by quantitative 1H magnetic resonance spectroscopy and diffusion-weighted imaging.  

PubMed

Magnetic resonance imaging (MRI) and spectroscopy (MRS) offer powerful approaches for detecting physiological and metabolic alterations in malignancies and help investigate underlying molecular mechanisms. Research on epithelial ovarian carcinoma (EOC), the gynaecological malignancy with the highest death rate characterised by frequent relapse and onset of drug resistance, could benefit from application of these molecular imaging approaches. In this study, MRI/MRS were used to characterise solid tumour models obtained by subcutaneous (s.c.) or intraperitoneal (i.p.) implantation of human SKOV3.ip cells in severe combined immunodeficiency (SCID) mice. In vivo MRI/MRS, ex vivo magic-angle-spinning (MAS), and in vitro (1)H-NMR measurements were carried out at 4.7 T, 9.4 T, and 9.4/16.5 T, respectively. MRI evaluation was performed by T1-, T2-, and diffusion-weighted (DW) multislice spin-echo imaging. The in vivo (1)H spectra of all tumour models showed a prominent resonance of total choline-containing metabolites (tCho). Quantitative in vivo MRS of both i.p. and s.c. SKOV3.ip xenografts showed that the mean tCho content was in the 2.9-4.5 mM range, with a mean PCho/tCho ratio of 0.99 ± 0.01 [23 examinations, 14-34 days post injection (dpi)], in good agreement with ex vivo and in vitro analyses. Myo-inositol ranged between 11.7 and 17.0 mM, with a trend towards higher values in i.p. xenografts at 14-16 dpi. The average apparent diffusion coefficient (ADC) values of SKOV3.ip xenografts [1.64 ± 0.11 (n = 9, i.p.) and 1.58 ± 0.03 x10(-3) mm(2)/s (n = 7, s.c.)] were in agreement with values reported for tumours from patients with EOC, while the mean vascular signal fraction (VSF) was lower (? 4%), probably due to the more rapid growth of preclinical models. Both s.c. and i.p. xenografts are valuable preclinical models for monitoring biochemical and physiopathological changes associated with in vivo EOC tumour growth and response to therapy, which may serve as the basis for further clinical development of noninvasive MR approaches. PMID:22020805

Canese, Rossella; Pisanu, Maria Elena; Mezzanzanica, Delia; Ricci, Alessandro; Paris, Luisa; Bagnoli, Marina; Valeri, Barbara; Spada, Massimo; Venditti, Massimo; Cesolini, Albino; Rodomonte, Andrea; Giannini, Massimo; Canevari, Silvana; Podo, Franca; Iorio, Egidio

2012-04-01

260

Decomposition of Marine Biological Materials for the Determination of Selenium by Fluorescence Spectrometry  

E-print Network

I Decomposition of Marine Biological Materials for the Determination of Selenium by Fluorescence to inorganic selenium for analysis by fluorescence spectroscopy were investigated. Wet ashingwith nitric largestpercentageof seleniumfrom fish tissue and quantitatively degraded organoseleniumcompounds to inorganic selenium

Canberra, University of

261

FT-IR TRANSMISSION SPECTROSCOPY FOR QUANTITATION OF AMMONIUM BISULFATE IN FINE PARTICULATE MATTER COLLECTED ON TEFLON FILTERS  

EPA Science Inventory

A quantitative measurement method for fine particle bisulfatein ammonium bisulfate collected from the ambient air onto Teflon filters is described. nfrared absorbance measurements of the Teflon filters are made before and after particle collection. ubtraction of the two spectra r...

262

Roles of biologic breast tissue composition and quantitative image analysis of mammographic images in breast tumor characterization  

NASA Astrophysics Data System (ADS)

Purpose. Investigate whether knowledge of the biologic image composition of mammographic lesions provides imagebased biomarkers above and beyond those obtainable from quantitative image analysis (QIA) of X-ray mammography. Methods. The dataset consisted of 45 in vivo breast lesions imaged with the novel 3-component breast (3CB) imaging technique based on dual-energy mammography (15 malignant, 30 benign diagnoses). The 3CB composition measures of water, lipid, and protein thicknesses were assessed and mathematical descriptors, `3CB features', were obtained for the lesions and their periphery. The raw low-energy mammographic images were analyzed with an established in-house QIA method obtaining `QIA features' describing morphology and texture. We investigated the correlation within the `3CB features', within the `QIA features', and between the two. In addition, the merit of individual features in the distinction between malignant and benign lesions was assessed. Results. Whereas many descriptors within the `3CB features' and `QIA features' were, often by design, highly correlated, correlation between descriptors of the two feature groups was much weaker (maximum absolute correlation coefficient 0.58, p<0.001) indicating that 3CB and QIA-based biomarkers provided potentially complementary information. Single descriptors from 3CB and QIA appeared equally well-suited for the distinction between malignant and benign lesions, with maximum area under the ROC curve 0.71 for a protein feature (3CB) and 0.71 for a texture feature (QIA). Conclusions. In this pilot study analyzing the new 3CB imaging modality, knowledge of breast tissue composition appeared additive in combination with existing mammographic QIA methods for the distinction between benign and malignant lesions.

Drukker, Karen; Giger, Maryellen L.; Duewer, Fred; Malkov, Serghei; Flowers, Christopher I.; Joe, Bonnie; Kerlikowske, Karla; Drukteinis, Jennifer S.; Shepherd, John

2014-03-01

263

Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy  

NASA Astrophysics Data System (ADS)

By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (Cdbnd O and NH2) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of ?-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment.

Semenov, M. A.; Blyzniuk, Iu. N.; Bolbukh, T. V.; Shestopalova, A. V.; Evstigneev, M. P.; Maleev, V. Ya.

2012-09-01

264

Fiber optic evanescent wave spectroscopy (FEWS) and its applications for multicomponent analysis of blood and biological fluids  

NASA Astrophysics Data System (ADS)

In numerous cases the technique of Fiberoptic Evanescent Wave Spectroscopy (FEWS) offers great advantages over regular IR spectroscopic methods. It provides an easy way for measuring the absorption spectra of highly absorbing or highly scattering samples. With FEWS one can perform measurements in situ and in real time and this is potentially useful for measurements on biological samples or for the monitoring of chemical reactions. In the present work, the FEWS technique was used to analyze human blood serum using a Fourier Transform Infrared Spectrometer. A special cell based on IR transmitting non-toxic silver halide fibers was designed. Further improvements in the analysis were obtained by adopting some multivariate calibration techniques that have already been used in clinical chemistry. The blood constituents analyzed were: urea, total protein, cholesterol, uric acid and calcium. Good agreement between our results and the ordinary chemical and enzymatic methods was obtained.

Simhi, Ronit; Bunimovich, David; Sela, Ben-Ami; Katzir, Abraham

1995-05-01

265

Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning  

Microsoft Academic Search

Beef is a commercially important and widely consumed muscle food and central to the protein intake of many societies. In the food industry no technology exists for the rapid and accurate detection of microbiologically spoiled or contaminated beef. Fourier transform infrared (FT-IR) spectroscopy is a rapid, reagentless and non-destructive analytical technique whose continued development is resulting in manifold applications across

David I. Ellis; David Broadhurst; Royston Goodacre

2004-01-01

266

Detection of trace Al in model biological tissue with laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Laser-induced breakdown spectroscopy (LIBS), which is an excellent tool for trace elemental analysis, was studied as a method of detecting sub-part-per-106 (ppm) concentrations of aluminum in surrogates of human tissue. Tissue was modeled using a 2% agarose gelatin doped with an Al2O3 nanoparticle suspension. A calibration curve created with standard reference samples of known Al concentrations was used to determine the limit of detection, which was less than 1 ppm. Rates of false negative and false positive detection results for a much more realistic sampling methodology were also studied, suggesting that LIBS could be a candidate for the real-time in vivo detection of metal contamination in human soft tissue.

Adamson, Marian D.; Rehse, Steven J.

2007-08-01

267

Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples  

NASA Astrophysics Data System (ADS)

High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.

Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

2013-11-01

268

Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples.  

PubMed

High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues. PMID:24284435

Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

2013-01-01

269

Recent applications of /sup 13/C NMR spectroscopy to biological systems  

SciTech Connect

Carbon-13 nuclear magnetic resonance (NMR) spectroscopy, in conjunction with carbon-13 labelling, is a powerful new analytical technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The technique can provide, rapidly and non-destructively, unique information about: the architecture and dynamics of structural components; the nature of the intracellular environment; and metabolic pathways and relative fluxes of individual carbon atoms. With the aid of results recently obtained by us and those reported by a number of other laboratories, the problems and potentialities of the technique will be reviewed with emphasis on: the viscosities of intracellular fluids; the structure and dynamics of the components of membranes; and the primary and secondary metabolic pathways of carbon in microorganisms, plants, and mammalian cells in culture.

Matwiyoff, N.A.

1981-01-01

270

Quantitative Surface Analysis of NBS Standard Materials and Mt. St. Helens Ash by Electron Spectroscopy for Chemical Analysis  

Microsoft Academic Search

Results are presented which develop a quantitative method of surface analysis by ESCA for complex heterogeneous systems. Calibration and application of the method to determination of surface weight percentages are discussed. Mt. St. Helens Ash is used to authenticate the method; results agree with bulk analysis to ±20%. Results from NBS standard materials are used to establish detection limits of

Joseph A. Gardella Jr; David M. Hercules

1983-01-01

271

Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy: An Undergraduate Quantitative Analysis Experiment  

ERIC Educational Resources Information Center

An experiment for the undergraduate quantitative analysis laboratory involving applications of visible spectrophotometry is described. Salicylate, a component found in several medications, as well as the active by-product of aspirin decomposition, is quantified. The addition of excess iron(III) to a solution of salicylate generates a deeply…

Mitchell-Koch, Jeremy T.; Reid, Kendra R.; Meyerhoff, Mark E.

2008-01-01

272

Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy  

Microsoft Academic Search

Noninvasive and real-time analysis of skin properties is useful in a wide variety of applications. In particular, the quantitative assessment of skin in terms of hemoglobin and melanin content, as well as in terms of its light scattering properties, is a challenging problem in dermatology. We present here a technique for examining human skin, based on the in vivo measurement

George Zonios; Julie Bykowski; Nikiforos Kollias

2001-01-01

273

Homogeneity testing and quantitative analysis of manganese (Mn) in vitrified Mn-doped glasses by laser-induced breakdown spectroscopy (LIBS)  

NASA Astrophysics Data System (ADS)

Laser-induced breakdown spectroscopy (LIBS), an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn) in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×109 W/cm2. The spatially integrated plasma emission was collected and imaged on to the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX) surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.

Unnikrishnan, V. K.; Nayak, Rajesh; Kartha, V. B.; Santhosh, C.; Sonavane, M. S.; Yeotikar, R. G.; Shah, M. L.; Gupta, G. P.; Suri, B. M.

2014-09-01

274

Standardization and validation of a new atomic absorption spectroscopy technique for determination and quantitation of Aluminium adjuvant in immunobiologicals  

Microsoft Academic Search

In the present study, Aluminium quantification in immunobiologicals has been described using atomic absorption spectroscopy (AAS) technique. The assay was found to be linear in 25–125?g\\/ml Aluminium range. The procedure was found to be accurate for different vaccines with recoveries of external additions ranging between 93.26 and 103.41%. The mean Limit of Variation (L.V.) for both intra- and inter-assay precision

Arti Mishra; Sumir Rai Bhalla; Sameera Rawat; Vivek Bansal; Rakesh Sehgal; Sunil Kumar

2007-01-01

275

High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning  

SciTech Connect

High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

2005-01-27

276

ENVIRONMENTAL AND BIOLOGICAL APPLICATIONS OF EXTENDED X-RAY ABSORPTION FINE STRUCTURE (EXAFS) AND X-RAY ABSORPTION NEAR EDGE STRUCTURE (XANES) SPECTROSCOPIES  

Microsoft Academic Search

XAS (X-ray absorption spectroscopy) has proven to be a powerful technique in several fields including the biological and environmental sciences. It has enabled scientists to analyze samples that could not be analyzed using classical techniques such as XRD (X-ray diffraction). In addition, it allows for the direct determination of elemental oxidation states, where the use of other methods is time

J. G. Parsons; M. V. Aldrich; J. L. Gardea-Torresdey

2002-01-01

277

Using wide-field quantitative diffuse reflectance spectroscopy in combination with high-resolution imaging for margin assessment  

NASA Astrophysics Data System (ADS)

Due to the large number of women diagnosed with breast cancer and the lack of intra-operative tools, breast cancer margin assessment presents a significant unmet clinical need. Diffuse reflectance spectral imaging provides a method for quantitatively interrogating margins of lumpectomy specimens. We have previously found that [?- carotene]/?s' is a diagnostically important parameter but both parameters, [?-carotene] and ?s', were derived from a low resolution parameter map and are subject to the tissue type and heterogeneity present in the breast. In this study, we used diffuse reflectance measurements from individual sites co-registered with high resolution microendoscopy (HRME) images to determine if the combined performance of these technologies could improve margin assessment. By comparing the optical parameters of [?-carotene] and ?s' to the quantitative HRME image endpoints of feature size, feature density and normalized fluorescence, we determined that adding HRME to spectral imaging can improve the specificity of our diffuse reflectance spectral imaging system.

Kennedy, Stephanie; Mueller, Jenna; Bydlon, Torre; Brown, J. Quincy; Ramanujam, Nimmi

2011-03-01

278

Sensing Lanthanide Metal Content in Biological Tissues with Magnetic Resonance Spectroscopy  

PubMed Central

The development and validation of MRI contrast agents consisting of a lanthanide chelate often requires a determination of the concentration of the agent in ex vivo tissue. We have developed a protocol that uses 70% nitric acid to completely digest tissue samples that contain Gd(III), Dy(III), Tm(III), Eu(III), or Yb(III) ions, or the MRI contrast agent gadodiamide. NMR spectroscopy of coaxial tubes containing a digested sample and a separate control solution of nitric acid was used to rapidly and easily measure the bulk magnetic susceptibility (BMS) shift caused by each lanthanide ion and gadodiamide. Each BMS shift was shown to be linearly correlated with the concentration of each lanthanide ion and gadodiamide in the 70% nitric acid solution and in digested rat kidney and liver tissues. These concentration measurements had outstanding precision, and also had good accuracy for concentrations ?10 mM for Tm(III) Eu(III), and Yb(III), and ?3 mM for Gd(III), gadodiamide, and Dy(III). Improved sample handling methods are needed to improve measurement accuracy for samples with lower concentrations. PMID:24152931

Hingorani, Dina V.; Gonzalez, Sandra I.; Li, Jessica F.; Pagel, Mark D.

2013-01-01

279

Study on the synthesis, biological activity and spectroscopy of naphthalimide-diamine conjugates.  

PubMed

Eleven novel naphthalimide-diamine conjugates were synthesized and their structures were confirmed by elemental analysis, 1H-NMR, 13C-NMR and MS. Their in vitro antitumor activities were assessed using MTT assays on two cancerous cell lines K562, HCT116, and one normal hepatoma cell line QSG 7701. Compound 7f exhibited potent antitumor activity on HCT116 cells and favorable cell selectivity toward QSG 7701 compared with the positive control, amonafide. Moreover, 7f could block HeG2 cells in the G2/M phase and induce HeG2 cells apoptosis. The interaction of compound 7f with herring sperm DNA was studied by UV/vis absorption and fluorescence spectroscopy under physiological conditions (pH = 7.4). The observed spectral quenching of compound 7f by DNA and the displacement of EB from DNA-EB complex by compound 7f indicated that compound 7f could intercalate into DNA base pairs, which was also corroborated by the effect of KI on compound-DNA interaction. Further caloric fluorescent tests revealed that the quenching mechanism was a static type. Meanwhile, the binding constants, thermodynamic parameters and the effect of NaCl on compound-DNA interaction showed that the type of interaction force was mainly hydrogen bonds and the binding process was driven by hydrogen and van der Waals bonding. PMID:24918538

Tian, Zhi-Yong; Li, Jing-Hua; Li, Qian; Zang, Feng-Lei; Zhao, Zhong-Hua; Wang, Chao-Jie

2014-01-01

280

Electronic Spectroscopy of Biological Molecules in Supersonic Jets: The Amino Acid Tryptophane  

NASA Astrophysics Data System (ADS)

The jet-cooled ultraviolet absorption spectrum of the amino acid tryptophan has been measured by cavity ringdown laser absorption spectroscopy covering the region where the origin bands of the S1?S0 transition of the six conformers A to F are located. Tryptophan was transferred to the gas phase employing two different methods, thermal heating and laser vaporization. The latter technique has been proved to be more efficient in the sense that it allowed us to obtain higher densities of tryptophan in the jet for short times and that thermal decomposition of the sample, which occurred upon thermal heating, could be avoided. On the other hand, a better signal-to-noise ratio was obtained with conventional heating. For comparison, we have also carried out laser-induced fluorescence (LIF) measurements. It was found that the bands belonging to conformer A were stronger in the LIF spectra than in the absorption spectra. This is explained with a higher fluorescence yield for conformer A compared to the other conformers. It follows that LIF is not suited to properly describe the absorption behavior of tryptophan for the electronic transition under study.

Huisken, F.; Rouillé, G.; Arold, M.; Staicu, A.; Henning, Th.

2008-12-01

281

Development of a Fourier transform infrared spectroscopy coupled to UV-Visible analysis technique for aminosides and glycopeptides quantitation in antibiotic locks.  

PubMed

Antibiotic Lock technique maintains catheters' sterility in high-risk patients with long-term parenteral nutrition. In our institution, vancomycin, teicoplanin, amikacin and gentamicin locks are prepared in the pharmaceutical department. In order to insure patient safety and to comply to regulatory requirements, antibiotic locks are submitted to qualitative and quantitative assays prior to their release. The aim of this study was to develop an alternative quantitation technique for each of these 4 antibiotics, using a Fourier transform infrared (FTIR) coupled to UV-Visible spectroscopy and to compare results to HPLC or Immunochemistry assays. Prevalidation studies permitted to assess spectroscopic conditions used for antibiotic locks quantitation: FTIR/UV combinations were used for amikacin (1091-1115cm(-1) and 208-224nm), vancomycin (1222-1240cm(-1) and 276-280nm), and teicoplanin (1226-1230cm(-1) and 278-282nm). Gentamicin was quantified with FTIR only (1045-1169cm(-1) and 2715-2850cm(-1)) due to interferences in UV domain of parabens, preservatives present in the commercial brand used to prepare locks. For all AL, the method was linear (R(2)=0.996 to 0.999), accurate, repeatable (intraday RSD%: from 2.9 to 7.1% and inter-days RSD%: 2.9 to 5.1%) and precise. Compared to the reference methods, the FTIR/UV method appeared tightly correlated (Pearson factor: 97.4 to 99.9%) and did not show significant difference in recovery determinations. We developed a new simple reliable analysis technique for antibiotics quantitation in locks using an original association of FTIR and UV analysis, allowing a short time analysis to identify and quantify the studied antibiotics. PMID:24438668

Sayet, G; Sinegre, M; Ben Reguiga, M

2014-01-01

282

Estimation of soil clay and organic matter using two quantitative methods (PLSR and MARS) based on reflectance spectroscopy  

NASA Astrophysics Data System (ADS)

A rapid and inexpensive soil analytical technique is needed for soil quality assessment and accurate mapping. This study investigated a method for improved estimation of soil clay (SC) and organic matter (OM) using reflectance spectroscopy. Seventy soil samples were collected from Sinai peninsula in Egypt to estimate the soil clay and organic matter relative to the soil spectra. Soil samples were scanned with an Analytical Spectral Devices (ASD) spectrometer (350-2500 nm). Three spectral formats were used in the calibration models derived from the spectra and the soil properties: (1) original reflectance spectra (OR), (2) first-derivative spectra smoothened using the Savitzky-Golay technique (FD-SG) and (3) continuum-removed reflectance (CR). Partial least-squares regression (PLSR) models using the CR of the 400-2500 nm spectral region resulted in R2 = 0.76 and 0.57, and RPD = 2.1 and 1.5 for estimating SC and OM, respectively, indicating better performance than that obtained using OR and SG. The multivariate adaptive regression splines (MARS) calibration model with the CR spectra resulted in an improved performance (R2 = 0.89 and 0.83, RPD = 3.1 and 2.4) for estimating SC and OM, respectively. The results show that the MARS models have a great potential for estimating SC and OM compared with PLSR models. The results obtained in this study have potential value in the field of soil spectroscopy because they can be applied directly to the mapping of soil properties using remote sensing imagery in arid environment conditions. Key Words: soil clay, organic matter, PLSR, MARS, reflectance spectroscopy.

Nawar, Said; Buddenbaum, Henning; Hill, Joachim

2014-05-01

283

Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples  

SciTech Connect

This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

Martin, Madhavi Z [ORNL; Labbe, Nicole [ORNL; Wagner, Rebekah J. [Pennsylvania State University, University Park, PA

2013-01-01

284

BIOLOG  

EPA Science Inventory

BIOLOG contains more than 43,000 citations to literature on microbial degradation and toxicity of more than 6,000 chemicals. Records are organized by CAS Registry Number and by 6 categories (i.e., biodegradation/toxicity; oxygen condition (anaerobic/aerobic); culture type (pure e...

285

Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone  

NASA Astrophysics Data System (ADS)

Raman microspectroscopy and quantitative backscattered electron imaging (qBEI) of bone are powerful tools to investigate bone material properties. Both methods provide information on the degree of bone matrix mineralization. However, a head-to-head comparison of these outcomes from identical bone areas has not been performed to date. In femoral midshaft cross sections of three women, 99 regions (20×20 ?) were selected inside osteons and interstitial bone covering a wide range of matrix mineralization. As the focus of this study was only on regions undergoing secondary mineralization, zones exhibiting a distinct gradient in mineral content close to the mineralization front were excluded. The same regions were measured by both methods. We found a linear correlation (R2=0.75) between mineral/matrix as measured by Raman spectroscopy and the wt. %Mineral/(100-wt. %Mineral) as obtained by qBEI, in good agreement with theoretical estimations. The observed deviations of single values from the linear regression line were determined to reflect biological heterogeneities. The data of this study demonstrate the good correspondence between Raman and qBEI outcomes in describing tissue mineralization. The obtained correlation is likely sensitive to changes in bone tissue composition, providing an approach to detect potential deviations from normal bone.

Roschger, Andreas; Gamsjaeger, Sonja; Hofstetter, Birgit; Masic, Admir; Blouin, Stéphane; Messmer, Phaedra; Berzlanovich, Andrea; Paschalis, Eleftherios P.; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter

2014-06-01

286

Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy  

SciTech Connect

The chemical nature of Mn-containing particulates emitted from (methylcyclopentadienyl)manganese tricarbonyl-added gasoline engines has been elucidated using Mn K-edge X-ray absorption fine structure (XAFS) spectroscopy. Edge shift data from the X-ray absorption near-edge structure (SANES) spectra showed that the average Mn valence in these particulates is {approximately}2.2. Using a principal component analysis (PCA) algorithm, the number and type of probable species contained in these particulates were determined to be three, consisting of Mn{sub 3}O{sub 4}, MnSO{sub 4}{sm_bullet}H{sub 2}O, and a divalent manganese phosphate, Mn{sub 5}(PO{sub 4})[PO{sub 3}(OH)]{sub 2}{sm_bullet}4H{sub 2}O. The proportions of these Mn phases in each particulate sample were evaluated quantitatively using least-squares fitting (LSF) of the experimental XANES spectra with linear combinations of these principal component (model compound) spectra. Two groups of Mn-bearing particulates may be distinguished: group I having 4--9 wt % of Mn{sub 3}O{sub 4} and exhibiting a single intense first major absorption maximum at the Mn K-edge and group II containing 15--22 wt % of Mn{sub 3}O{sub 4} and exhibiting a doublet absorption maximum at lower intensity. Fourier transforms of the EXAFS signals were found to corroborate the XANES results. This study clearly establishes XANES spectroscopy, in combination with PCA and LSF, as a quantitative analytical tool for speciation of dilute and/or amorphous multicomponent environmental materials not easily attainable with conventional methods.

Ressler, T.; Wong, J.; Roos, J.; Smith, I.L.

2000-03-15

287

National Institutes of Health Training Program in Quantitative Biology and Physiology Rationale, Mission and Specific Aims of Training Program  

E-print Network

, Chemistry, Mathematics, Manufacturing Engineering, Electrical & Computer Engineering, Aerospace & Mechanical facing future discovery and innovation in biology and physiology. Developments in molecular these principles from a systems perspective over several length and time scales. Biomedical Engineering at Boston

Vajda, Sandor

288

Rapid evaluation and quantitative analysis of thyme, origano and chamomile essential oils by ATR-IR and NIR spectroscopy  

NASA Astrophysics Data System (ADS)

The essential oils obtained from various chemotypes of thyme, origano and chamomile species were studied by ATR/FT-IR as well as NIR spectroscopy. Application of multivariate statistics (PCA, PLS) in conjunction with analytical reference data leads to very good IR and NIR calibration results. For the main essential oil components (e.g. carvacrol, thymol, ?-terpinene, ?-bisabolol and ?-farnesene) standard errors are in the range of the applied GC reference method. In most cases the multiple coefficients of determination ( R2) are >0.97. Using the IR fingerprint region (900-1400 cm -1) a qualitative discrimination of the individual chemotypes is possible already by visual judgement without to apply any chemometric algorithms.The described rapid and non-destructive methods can be applied in industry to control very easily purifying, blending and redistillation processes of the mentioned essential oils.

Schulz, Hartwig; Quilitzsch, Rolf; Krüger, Hans

2003-12-01

289

Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics.  

PubMed

The current study presents an application of Diffuse Reflectance Infrared Fourier Transform Spectroscopy for detection and quantification of fraudulent addition of commonly employed adulterants (spent coffee grounds, coffee husks, roasted corn and roasted barley) to roasted and ground coffee. Roasted coffee samples were intentionally blended with the adulterants (pure and mixed), with total adulteration levels ranging from 1% to 66% w/w. Partial Least Squares Regression (PLS) was used to relate the processed spectra to the mass fraction of adulterants and the model obtained provided reliable predictions of adulterations at levels as low as 1% w/w. A robust methodology was implemented that included the detection of outliers. High correlation coefficients (0.99 for calibration; 0.98 for validation) coupled with low degrees of error (1.23% for calibration; 2.67% for validation) confirmed that DRIFTS can be a valuable analytical tool for detection and quantification of adulteration in ground, roasted coffee. PMID:24054633

Reis, Nádia; Franca, Adriana S; Oliveira, Leandro S

2013-10-15

290

Quantitative analysis of Ni, Zr and Ba in soil by combing neuro-genetic approach and laser induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

With the combination of neuro-genetic approach and laser-induced breakdown spectroscopy (LIBS), an improved method is proposed to predict the concentrations of Ni, Zr and Ba in soil samples. In this method, an artificial neural network (ANN) based on gradient descent with momentum and adaptive learning rate back propagation (GDMABP) algorithm is used. Simultaneously, an optimization strategy based on genetic algorithm (GA) is employed for selecting number of neurons in hidden layer and momentum coefficient in GDMABP ANN and to obtain an optimized network. Subsequently, the network is used to predict concentration of Ni, Zr and Ba from the tested LIBS data. The approach of neuro-genetic for LIBS analysis is described in detail. The predicted results are compared with those obtained from conventional calibration curve method. Overall, the method of combining neuro-genetic approach with LIBS is capable of predicting elemental concentration.

Shen, Qinmei; Zhou, Weidong; Li, Kexue

2010-11-01

291

Depth-dependent calibration for quantitative elemental depth profiling of copper alloys using laser-induced plasma spectroscopy  

NASA Astrophysics Data System (ADS)

This work presents new calibration procedures for deep elemental depth profile analysis of bronze artifacts. A simple ablation model is developed for the estimation of the ablation rate and hence for deriving the depth spatial calibration scale. Elemental quantification is obtained through the construction of calibration surfaces, using reference samples of known composition, relating laser-induced plasma spectroscopy (LIPS) intensity ratios, content of atomic species and number of laser pulses. Such a method represents a refinement of the standard LIPS quantification approach based on calibration curves, which is extended here to the generation of significantly deep craters into the material under investigation up to several hundred microns. The depth dependence of the calibration surfaces measured is discussed in the framework of a simplified model of depth-dependent plasma temperature.

Agresti, Juri; Siano, Salvatore

2014-10-01

292

Quantitative 3.0T MR Spectroscopy Reveals Decreased Creatine Concentration in the Dorsolateral Prefrontal Cortex of Patients with Social Anxiety Disorder  

PubMed Central

Background The brain biochemical changes of social anxiety have not been clarified although there have been a limited number of MR spectroscopic studies which utilized metabolite/creatine ratios. Present study aimed to explore the alteration of absolute metabolite concentration in social anxiety disorder using quantitative MR spectroscopy. Materials and Methods With a 3.0T MR scanner, single voxel MR spectroscopy (stimulated echo acquisition mode, TR/TE/TM?=?2000/20/16 ms) was performed in the left dorsolateral prefrontal cortex and related regions of nine medication-free patients with social anxiety disorder and nine controls. Absolute metabolite concentration was calculated using tissue water as the internal reference and corrected for the partial volume of cerebrospinal fluid. Results In the left dorsolateral prefrontal cortex, the N-acetyl aspartate/creatine ratio of patients was significantly higher than that of controls, and this was due to the decrease of creatine concentration instead of the increase of N-acetyl aspartate concentration. Furthermore, the creatine concentration of the left dorsolateral prefrontal cortex was negatively correlated with the scores of Liebowitz social anxiety scale. Conclusions The alteration of creatine level in the left dorsolateral prefrontal cortex suggests abnormal energy metabolism and correlates with symptom severity in social anxiety disorder. And metabolite concentration is preferable to metabolite/creatine ratio for the investigation of individual, absolute metabolite changes in this region of social anxiety disorder. PMID:23110183

Nie, Xiaojing; Wu, Qizhu; Li, Jun; Zhang, Wei; Huang, Xiaoqi; Gong, Qiyong

2012-01-01

293

Quantitative determination of chlorpromazine. HCl in tablets, spansules, injectables, and bulk chemical by nuclear magnetic resonance spectroscopy.  

PubMed

A nuclear magnetic resonance (NMR) procedure is described for the quantitative analysis of chlorpromazine. HCl in bulk chemical as well as in final dosage forms--tablets, spansules, and injectables. The method is based on measurement of a characteristic signal of chlorpromazine relative to an internal standard. Three different internal standards are specified: Cyclohexane was selected because of the convenience and rapidity with which samples could be prepared for assay. Piperonal was used to verify the method and to show that precision and accuracy were not affected by the volatility of the cyclohexane. Tetramethylammonium bromide was used as an internal standard for Thorazine injectable. No interferences were found from stearates and other tablet excipients. The NMR procedure provides a simple, direct, and specific assay with a precision of +/- 1-2%. PMID:621193

Zarembo, J E; Warren, R J; Staiger, D B

1978-01-01

294

[A quantitative method for evaluating the structure and conformational stability of proteins by second derivative UV-spectroscopy].  

PubMed

A quantitative method is suggested for estimating the structure and conformational stability of proteins based on the individual absorbance of Tyr residues in the second derivative UV spectra. Subtilisins Carlsberg, BPN' and 72 were chosen as the model proteins. The values of the increase of the Tyr absorption at 282.3 nm upon the total denaturation of the proteins made it possible to calculate the number of the exposed and "buried" tyrosine residues in the native proteins. A mathematical model of spectrum changes during the transition of Tyr residues from the "buried" to exposed form is suggested. The method is useful for the determination of the denaturation constants of proteins bearing "buried" tyrosine residues. PMID:8166752

Shevchenko, A A; Kost, O A; Kazanskaia, N F

1994-03-01

295

33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe.  

PubMed

(33)S nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the (33)S nucleus. We have developed a 10 mm (33)S cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The (33)S NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The (33)S cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO(4)(2-) anions and -SO(3)(-) groups using the (33)S cryogenic probe, as the (33)S nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the (33)S cryogenic probe, as the (33)S nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds. PMID:20515157

Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

2010-05-01

296

Identification of antibody isotypes in biological fluids by means of micro-Raman spectroscopy and chemometric methods  

NASA Astrophysics Data System (ADS)

Clinical diagnosis of infections, generally are realized by serological methods, which identifies the antibodies presents in serum or tissue fluids of the patient. Antibodies are proteins present in our bodies that aid in the elimination of pathogens or antigens. Identification of antibodies isotypes is important because can help to predict when and whether patients will recover from infections and are commonly diagnosed by means of indirect methods such as serological test. In the other hand, the majority of these methods requires specific kits for the analysis, special sample preparation, chemical reagents, expensive equipment and require long time for getting results. In this work we show the feasibility to discriminate antibody isotypes in biological fluids like human colostrum by means of Raman spectroscopy and chemometrics. Spectra were obtained using an excitation wavelength of 514 nm over dried samples of human colostrum labeled previously as positives to specific IgG and IgM antibodies against Toxoplasma Gondii by means of ELISA test. Partial least square-discriminant analysis (PLS-DA) was used to discriminate among antibody isotypes by use second derivative of Raman spectra of colostrum samples.

Araujo-Andrade, C.; Pichardo-Molina, J. L.; Barbosa-Sabanero, G.; Frausto-Reyes, C.

2008-02-01

297

33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe  

NASA Astrophysics Data System (ADS)

S33 nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the S33 nucleus. We have developed a 10 mm S33 cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The S33 NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The S33 cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO42- anions and -SO3- groups using the S33 cryogenic probe, as the S33 nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the S33 cryogenic probe, as the S33 nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.

Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

2010-05-01

298

Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy.  

PubMed

We developed a rapid and simple method which combines a surface swab capture method and surface-enhanced Raman spectroscopy for recovery and quantitative detection of thiabendazole on apple surfaces. The whole apple surface was swabbed and the swab was vortexed in methanol releasing the pesticide. Silver dendrites were then added to bind the pesticide and used for enhancing the Raman signals. The recovery of the surface swab method was calculated to be 59.4-76.6% for intentionally contaminated apples at different levels (0.1, 0.3, 3, and 5 ppm, ?g/g per weight). After considering the releasing factor (66.6%) from the swab, the final accuracy of the swab-SERS method was calculated to be between 89.2% and 115.4%. This swab-SERS method is simple, sensitive, rapid (?10 min), and quantitative enough for QA/QC in plant procedure. This can be extended to detect other pesticides on raw agricultural produce like pears, carrots, and melons etc. PMID:24262524

He, Lili; Chen, Tuo; Labuza, Theodore P

2014-04-01

299

Identification and Quantitation of Phenylalanine in the Brain of Patients with Phenylketonuria by Means of Localized in Vivo1H Magnetic-Resonance Spectroscopy  

NASA Astrophysics Data System (ADS)

Localized proton MR spectroscopy was used to identify phenylalanine (PHE) and to quantitate its cerebral concentration in patients with type I phenylketonuria (PKU). Data acquisition was optimized for the detection of low-concentration metabolites, using a short TE (20 ms) double Hahn-echo localization sequence for large volumes within the head coil and for smaller volumes using a surface coil, Previously described methods to quantitate localized MR spectra were extended to cover the case of low-concentration metabolites, unevenly distributed in three brain compartments and measured in difference spectra only. PHE content was determined in difference spectra of four PKU patients with respect to normals and in one patient before and after an oral load of L-PHE, PHE concentrations of 0.3 to 0.6 mmol/kg brain tissue were obtained, resulting in a concentration gradient for PHE between blood and brain tissue of 2.4 to 3.0, No significant changes were found for the abundant metabolites in gray or white matter. Previously reported MRI changes were confirmed to be due to increased cerebro-spinal-fluid-like spaces.

Kreis, R.; Pietz, J.; Penzien, J.; Herschkowitz, N.; Boesch, C.

300

Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms  

Microsoft Academic Search

Alternative splicing (AS) of pre-messenger RNA is a common phenomenon that creates different transcripts from a single gene, and these alternative transcripts affect phenotypes. The majority of AS research has examined tissue and developmental specificity of expression of particular AS transcripts, how this specificity affects cell function, and how aberrant AS is related to disease. Few studies have examined quantitative

J H Marden

2008-01-01

301

Standardization and validation of a new atomic absorption spectroscopy technique for determination and quantitation of aluminium adjuvant in immunobiologicals.  

PubMed

In the present study, Aluminium quantification in immunobiologicals has been described using atomic absorption spectroscopy (AAS) technique. The assay was found to be linear in 25-125 microg/ml Aluminium range. The procedure was found to be accurate for different vaccines with recoveries of external additions ranging between 93.26 and 103.41%. The mean Limit of Variation (L.V.) for both intra- and inter-assay precision was calculated to be 1.62 and 2.22%, respectively. Further the procedure was found to be robust in relation to digestion temperature, alteration in acid (HNO(3) and H(2)SO(4)) ratio used for sample digestion and storage of digested vaccine samples up to a period of 15 days. After validation, AAS method was compared for its equivalency with routinely used complexometric titration method. On simultaneously applying on seven different groups of both bacterial and viral vaccines, viz., DPT, DT, TT, Hepatitis-A and B, Antirabies vaccine (cell culture) and tetravalent DPT-Hib, a high degree of positive correlation (+0.85-0.998) among AAS and titration methods was observed. Further AAS method was found to have an edge over complexometric titration method that a group of vaccines, viz., ARV (cell culture, adsorbed) and Hepatitis-A, in which Aluminium estimation is not feasible by pharmacopoeial approved complexometric titration method (possibly due to some interference in the sample matrix), this newly described and validated AAS assay procedure delivered accurate and reproducible results. PMID:17644407

Mishra, Arti; Bhalla, Sumir Rai; Rawat, Sameera; Bansal, Vivek; Sehgal, Rakesh; Kumar, Sunil

2007-10-01

302

Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Laser-Induced Breakdown Spectroscopy (LIBS) has been considered in many applications in nuclear industry. LIBS can be an ideal technique for analyzing the inaccessible nuclear materials typically located behind a shielding window. We report the effect of optical transmittance of the shielding window on the analytical performances of stand-off LIBS for the preliminary surrogate sample of demonstration pyrochemical process, a mixture of cerium oxide (CeO2) and potassium chloride (KCl). A pulsed laser beam was focused on the surface of the sample located 1.45 m away from the stand-off LIBS device. The laser-induced plasma emission was collected through a Schmidt-Cassegrain telescope. LIBS spectra were obtained in an open path and through the shielding window. Univariate calibration curves were obtained using the integrated area of partially resolved Ce I and II lines. The limits of detection (LOD) for Ce were estimated to be 0.046 and 0.061 wt.% for the open-path and through-window analysis, respectively. We found that the through-window LOD is mainly influenced by the optical transmittance of the shielding window and therefore, the through-window LOD can be predicted from the open-path LOD and the optical transmittance of the shielding window. Also, multivariate calibration using partial least squares regression was successfully applied. The quality of calibration could be improved by the multivariate analysis.

Gong, Yongdeuk; Choi, Daewoong; Han, Bo-Young; Yoo, Jonghyun; Han, Song-Hee; Lee, Yonghoon

2014-10-01

303

Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy  

SciTech Connect

Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of toxic metals Pb and Cd in Pb(NO{sub 3}){sub 2} and Cd(NO{sub 3}){sub 2}.4H{sub 2}O aqueous solutions, respectively. The plasma is generated by focusing a nanosecond Nd:YAG ({lambda}=1064 nm) laser on the surface of liquid in the homemade liquid jet configuration. With an assumption of local thermodynamic equilibrium (LTE), calibration curves of Pb and Cd were obtained at different delay times between 1 to 5 {mu}s. The temporal behavior of limit of detections (LOD) was investigated and it is shown that the minimum LODs for Pb and Cd are 4 and 68 parts in 10{sup 6} (ppm), respectively. In order to demonstrate the correctness of the LTE assumption, plasma parameters including plasma temperature and electron density are evaluated, and it is shown that the LTE condition is satisfied at all delay times.

Cheri, M. Sadegh; Tavassoli, S. H.

2011-03-20

304

Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics.  

PubMed

Microbiological safety plays a very significant part in the quality control of milk and dairy products worldwide. Current methods used in the detection and enumeration of spoilage bacteria in pasteurized milk in the dairy industry, although accurate and sensitive, are time-consuming. FT-IR spectroscopy is a metabolic fingerprinting technique that can potentially be used to deliver results with the same accuracy and sensitivity, within minutes after minimal sample preparation. We tested this hypothesis using attenuated total reflectance (ATR), and high throughput (HT) FT-IR techniques. Three main types of pasteurized milk - whole, semi-skimmed and skimmed - were used and milk was allowed to spoil naturally by incubation at 15 degrees C. Samples for FT-IR were obtained at frequent, fixed time intervals and pH and total viable counts were also recorded. Multivariate statistical methods, including principal components-discriminant function analysis and partial least squares regression (PLSR), were then used to investigate the relationship between metabolic fingerprints and the total viable counts. FT-IR ATR data for all milks showed reasonable results for bacterial loads above 10(5) cfu ml(-1). By contrast, FT-IR HT provided more accurate results for lower viable bacterial counts down to 10(3) cfu ml(-1) for whole milk and, 4 x 10(2) cfu ml(-1) for semi-skimmed and skimmed milk. Using FT-IR with PLSR we were able to acquire a metabolic fingerprint rapidly and quantify the microbial load of milk samples accurately, with very little sample preparation. We believe that metabolic fingerprinting using FT-IR has very good potential for future use in the dairy industry as a rapid method of detection and enumeration. PMID:18810291

Nicolaou, Nicoletta; Goodacre, Royston

2008-10-01

305

Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans  

NASA Astrophysics Data System (ADS)

In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 ?m of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

2014-02-01

306

QUANTITATIVE SPECTROSCOPY OF BLUE SUPERGIANT STARS IN THE DISK OF M81: METALLICITY, METALLICITY GRADIENT, AND DISTANCE  

SciTech Connect

The quantitative spectral analysis of low-resolution ({approx}5 A) Keck LRIS spectra of blue supergiants in the disk of the giant spiral galaxy M81 is used to determine stellar effective temperatures, gravities, metallicities, luminosities, interstellar reddening, and a new distance using the flux-weighted gravity-luminosity relationship. Substantial reddening and extinction are found with E(B - V) ranging between 0.13 and 0.38 mag and an average value of 0.26 mag. The distance modulus obtained after individual reddening corrections is 27.7 {+-} 0.1 mag. The result is discussed with regard to recently measured tip of the red giant branch and Cepheid distances. The metallicities (based on elements such as iron, titanium, magnesium) are supersolar ( Almost-Equal-To 0.2 dex) in the inner disk (R {approx}< 5 kpc) and slightly subsolar ( Almost-Equal-To - 0.05 dex) in the outer disk (R {approx}> 10 kpc) with a shallow metallicity gradient of 0.034 dex kpc{sup -1}. The comparison with published oxygen abundances of planetary nebulae and metallicities determined through fits of Hubble Space Telescope color-magnitude diagrams indicates a late metal enrichment and a flattening of the abundance gradient over the last 5 Gyr. This might be the result of gas infall from metal-rich satellite galaxies. Combining these M81 metallicities with published blue supergiant abundance studies in the Local Group and the Sculptor Group, a galaxy mass-metallicity relationship based solely on stellar spectroscopic studies is presented and compared with recent studies of Sloan Digital Sky Survey star-forming galaxies.

Kudritzki, Rolf-Peter; Urbaneja, Miguel A.; Gazak, Zachary; Bresolin, Fabio [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Przybilla, Norbert [Dr. Remeis-Sternwarte Bamberg and ECAP, D-96049 Bamberg (Germany); Gieren, Wolfgang; Pietrzynski, Grzegorz, E-mail: kud@ifa.hawaii.edu, E-mail: urbaneja@ifa.hawaii.edu, E-mail: zgazak@ifa.hawaii.edu, E-mail: bresolin@ifa.hawaii.edu, E-mail: przybilla@sternwarte.uni-erlangen.de, E-mail: wgieren@astro-udec.cl, E-mail: pietrzyn@astrouw.edu.pl [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

2012-03-01

307

The BioCAT undulator beamline 18ID: A facility for biological non-crystalline diffraction and x-ray absorption spectroscopy at the APS  

SciTech Connect

The 18ID undulator beamline of the Biophysics Collaborative Access Team at the Advanced Photon Source, Argonne, IL, USA, is a high-performance instrument designed for, and dedicated to, the study of partially ordered and disordered biological materials using the techniques of small-angle X-ray scattering, fiber diffraction, and X-ray absorption spectroscopy. The beamline and associated instrumentation are described in detail and examples of the representative experimental results are presented.

Fischetti, R.; Stepanov, S.; Rosenbaum, G.; Barrea, R.; Black, E.; Gore, D.; Heurich, R.; Kondrashkina, E.; Kropf, A.J.; Wang, S.; Zhang, K.; Irving, T.C.; Bunker, G.B. (IIT); (Georgia)

2008-07-02

308

Raman Spectroscopy.  

ERIC Educational Resources Information Center

Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

Gerrard, Donald L.

1984-01-01

309

High-resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids.  

PubMed

A new approach to the characterization of biomolecules in whole biological fluids is presented based on simplification of 1H NMR spectra by utilizing differences in molecular diffusion coefficients alone and combinations of relaxation and diffusion parameters. New NMR pulse sequences incorporating both spectral editing features together with solvent water resonance elimination are presented. The methods are exemplified using whole human blood plasma, and it is shown that it is possible to obtain NMR spectra of the slowly diffusing species (generally large molecules) by diffusion editing, the slowly relaxing species (generally small molecules) by spin relaxation editing, or spectra showing any range of molecular mobility using a combination of the two methods. The diffusion-based editing methods are also applicable to the selection of resonances in two-dimensional NMR spectroscopy of biofluids, and we show this for the first time by the production of 1H-1H diffusion-edited TOCSY spectra of human blood plasma where the resonance intensities are weighted according to the molecular diffusion coefficient. In this case, by measuring a diffusion-edited 1H-1H TOCSY NMR spectrum of plasma, it is possible to obtain signals from only the macromolecular components, and this may be of benefit in the analysis of blood lipoproteins. In complex biofluids, the combination of diffusion and relaxation editing brings about considerable spectral simplification leading to an easier resonance assignment process. We also demonstrate the production of 1H NMR spectra with intensities corresponding to diffusion coefficient rather than number of protons, and this opens up new possibilities for pattern recognition classification of samples based on altered molecular mobility features of biofluid components. PMID:8843135

Liu, M; Nicholson, J K; Lindon, J C

1996-10-01

310

Single shot white light interference microscopy with colour fringe analysis for quantitative phase imaging of biological cells  

NASA Astrophysics Data System (ADS)

To quantitatively obtain the phase map of Onion and human red blood cell (RBC) from white light interferogram we used Hilbert transform color fringe analysis technique. The three Red, Blue and Green color components are decomposed from single white light interferogram and Refractive index profile for Red, Blue and Green colour were computed in a completely non-invasive manner for Onion and human RBC. The present technique might be useful for non-invasive determination of the refractive index variation within cells and tissues and morphological features of sample with ease of operation and low cost.

Srivastava, Vishal; Mehta, D. S.

2013-02-01

311

A meta-classifier for detecting prostate cancer by quantitative integration of in vivo magnetic resonance spectroscopy and magnetic resonance imaging  

NASA Astrophysics Data System (ADS)

Recently, in vivo Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) have emerged as promising new modalities to aid in prostate cancer (CaP) detection. MRI provides anatomic and structural information of the prostate while MRS provides functional data pertaining to biochemical concentrations of metabolites such as creatine, choline and citrate. We have previously presented a hierarchical clustering scheme for CaP detection on in vivo prostate MRS and have recently developed a computer-aided method for CaP detection on in vivo prostate MRI. In this paper we present a novel scheme to develop a meta-classifier to detect CaP in vivo via quantitative integration of multimodal prostate MRS and MRI by use of non-linear dimensionality reduction (NLDR) methods including spectral clustering and locally linear embedding (LLE). Quantitative integration of multimodal image data (MRI and PET) involves the concatenation of image intensities following image registration. However multimodal data integration is non-trivial when the individual modalities include spectral and image intensity data. We propose a data combination solution wherein we project the feature spaces (image intensities and spectral data) associated with each of the modalities into a lower dimensional embedding space via NLDR. NLDR methods preserve the relationships between the objects in the original high dimensional space when projecting them into the reduced low dimensional space. Since the original spectral and image intensity data are divorced from their original physical meaning in the reduced dimensional space, data at the same spatial location can be integrated by concatenating the respective embedding vectors. Unsupervised consensus clustering is then used to partition objects into different classes in the combined MRS and MRI embedding space. Quantitative results of our multimodal computer-aided diagnosis scheme on 16 sets of patient data obtained from the ACRIN trial, for which corresponding histological ground truth for spatial extent of CaP is known, show a marginally higher sensitivity, specificity, and positive predictive value compared to corresponding CAD results with the individual modalities.

Viswanath, Satish; Tiwari, Pallavi; Rosen, Mark; Madabhushi, Anant

2008-03-01

312

QChIPat: a quantitative method to identify distinct binding patterns for two biological ChIP-seq samples in different experimental conditions  

PubMed Central

Background Many computational programs have been developed to identify enriched regions for a single biological ChIP-seq sample. Given that many biological questions are often asked to compare the difference between two different conditions, it is important to develop new programs that address the comparison of two biological ChIP-seq samples. Despite several programs designed to address this question, these programs suffer from some drawbacks, such as inability to distinguish whether the identified differential enriched regions are indeed significantly enriched, lack of distinguishing binding patterns, and neglect of the normalization between samples. Results In this study, we developed a novel quantitative method for comparing two biological ChIP-seq samples, called QChIPat. Our method employs a new global normalization method: nonparametric empirical Bayes (NEB) correction normalization, utilizes pre-defined enriched regions identified from single-sample peak calling programs, uses statistical methods to define differential enriched regions, then defines binding (histone modification) pattern information for those differential enriched regions. Our program was tested on a benchmark data: histone modifications data used by ChIPDiffs. It was then applied on two study cases: one to identify differential histone modification sites for ChIP-seq of H3K27me3 and H3K9me2 data in AKT1-transfected MCF10A cells; the other to identify differential binding sites for ChIP-seq of TCF7L2 data in MCF7 and PANC1 cells. Conclusions Several advantages of our program include: 1) it considers a control (or input) experiment; 2) it incorporates a novel global normalization strategy: nonparametric empirical Bayes correction normalization; 3) it provides the binding pattern information among different enriched regions. QChIPat is implemented in R, Perl and C++, and has been tested under Linux. The R package is available at http://motif.bmi.ohio-state.edu/QChIPat. PMID:24564479

2013-01-01

313

Quantitative measurements by Fourier-transform infrared spectroscopy of toxic gas production during inhibition of JP-8 fires by CF3Br and C3F7H  

NASA Astrophysics Data System (ADS)

Fourier-transform infrared spectroscopy is used to monitor gases generated during chemical inhibition of JP-8 fuel pool fires burning in air. Gas samples are taken from a location that approximates the position of an individual who is using a handheld extinguisher to subdue the fire. These gas samples are flowed through a 10-m path-length multipass optical cell placed in the sample beam of a Fourier-transform infrared spectrometer. Gas samples are analyzed before and during application of C3F7H (trade name FM200) and CF3Br (Halon 1301) to the fire. It is shown that application of these halogenated hydrocarbons to JP-8 pool fires produces significant quantities of acid gases (HF and HBr) and of CF2O. A calculation of the concentrations (in parts in 10 6) of these gases and other gaseous combustion products, based on observed absorbances, is presented. We believe this is the first quantitative simultaneous measurement of HF, HBr, HCl, and CF2O production during chemical inhibition of real fires.

Modiano, Steven H.; McNesby, Kevin L.; Marsh, Paul E.; Bolt, William; Herud, Craig

1996-07-01

314

Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells.  

PubMed

In vivo studies have demonstrated that the state of dispersion of carbon nanotubes (CNTs) plays an important role in generating adverse pulmonary effects. However, little has been done to develop reproducible and quantifiable dispersion techniques to conduct mechanistic studies in vitro. This study was to evaluate the dispersion of multiwalled carbon nanotubes (MWCNTs) in tissue culture media, with particular emphasis on understanding the forces that govern agglomeration and how to modify these forces. Quantitative techniques such as hydrophobicity index, suspension stability index, attachment efficiency, and dynamic light scattering were used to assess the effects of agglomeration and dispersion of as-prepared (AP), purified (PD), or carboxylated (COOH) MWCNTs on bronchial epithelial and fibroblast cell lines. We found that hydrophobicity is the major factor determining AP- and PD-MWCNT agglomeration in tissue culture media but that the ionic strength is the main factor determining COOH-MWCNT suspendability. Bovine serum albumin (BSA) was an effective dispersant for MWCNTs, providing steric and electrosteric hindrances that are capable of overcoming hydrophobic attachment and the electrostatic screening of double layer formation in ionic media. Thus, BSA was capable of stabilizing all tube versions. Dipalmitoylphosphatidylcholine (DPPC) provided additional stability for AP-MWCNTs in epithelial growth medium (BEGM). While the dispersion state did not affect cytotoxicity, improved dispersion of AP- and PD-MWCNTs increased TGF-?1 production in epithelial cells and fibroblast proliferation. In summary, we demonstrate how quantitative techniques can be used to assess the agglomeration state of MWCNTs when conducting mechanistic studies on the effects of dispersion on tissue culture cells. PMID:21067152

Wang, Xiang; Xia, Tian; Ntim, Susana Addo; Ji, Zhaoxia; George, Saji; Meng, Huan; Zhang, Haiyuan; Castranova, Vincent; Mitra, Somenath; Nel, André E

2010-12-28

315

Laser-Induced Breakdown Spectroscopy: A Novel Technology for the Rapid Detection, Identification, and Discrimination of Biological Agents  

E-print Network

nanosecond laser-induced breakdown spectroscopy," accepted for publication, Applied Physics Letters, MarchLaser-Induced Breakdown Spectroscopy: A Novel Technology for the Rapid Detection, Identification Palchaudhuri2 1Department of Physics and Astronomy and 2Department of Immunology and Microbiology, Wayne State

Rehse, Steven J.

316

Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.  

PubMed

Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

2012-10-01

317

High-throughput quantitation of amino acids in rat and mouse biological matrices using stable isotope labeling and UPLC-MS/MS analysis.  

PubMed

Quantifying amino acids in biological matrices is typically performed using liquid chromatography (LC) coupled with fluorescent detection (FLD), requiring both derivatization and complete baseline separation of all amino acids. Due to its high specificity and sensitivity, the use of UPLC-MS/MS eliminates the derivatization step and allows for overlapping amino acid retention times thereby shortening the analysis time. Furthermore, combining UPLC-MS/MS with stable isotope labeling (e.g., isobaric tag for relative and absolute quantitation, i.e., iTRAQ) of amino acids enables quantitation while maintaining sensitivity, selectivity and speed of analysis. In this study, we report combining UPLC-MS/MS analysis with iTRAQ labeling of amino acids resulting in the elution and quantitation of 44 amino acids within 5 min demonstrating the speed and convenience of this assay over established approaches. This chromatographic analysis time represented a 5-fold improvement over the conventional HPLC-MS/MS method developed in our laboratory. In addition, the UPLC-MS/MS method demonstrated improvements in both specificity and sensitivity without loss of precision. In comparing UPLC-MS/MS and HPLC-MS/MS results of 32 detected amino acids, only 2 amino acids exhibited imprecision (RSD) >15% using UPLC-MS/MS, while 9 amino acids exhibited RSD >15% using HPLC-MS/MS. Evaluating intra- and inter-assay precision over 3 days, the quantitation range for 32 detected amino acids in rat plasma was 0.90-497 ?M, with overall mean intra-day precision of less than 15% and mean inter-day precision of 12%. This UPLC-MS/MS assay was successfully implemented for the quantitative analysis of amino acids in rat and mouse plasma, along with mouse urine and tissue samples, resulting in the following concentration ranges: 0.98-431 ?M in mouse plasma for 32 detected amino acids; 0.62-443 ?M in rat plasma for 32 detected amino acids; 0.44-8590?M in mouse liver for 33 detected amino acids; 0.61-1241 ?M in mouse kidney for 37 detected amino acids; and 1.39-1,681 ?M in rat urine for 34 detected amino acids. The utility of the assay was further demonstrated by measuring and comparing plasma amino acid levels between pre-diabetic Zucker diabetic fatty rats (ZDF/Gmi fa/fa) and their lean littermates (ZDF/Gmi fa/?). Significant differences (P<0.001) in 9 amino acid concentrations were observed, with the majority ranging from a 2- to 5-fold increase in pre-diabetic ZDF rats on comparison with ZDF lean rats, consistent with previous literature reports. PMID:24842860

Takach, Edward; O'Shea, Thomas; Liu, Hanlan

2014-08-01

318

[The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].  

PubMed

The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents. PMID:25080801

Sil've?strova, O Iu; Domonova, É A; Shipulina, O Iu

2014-04-01

319

Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.  

PubMed

Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections. PMID:25252358

Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

2014-09-01

320

Quantitative estimates of vascularity in a collagen-based cell scaffold containing basic fibroblast growth factor by non-invasive near-infrared spectroscopy for regenerative medicine  

NASA Astrophysics Data System (ADS)

Successful tissue regeneration required both cells with high proliferative and differentiation potential and an environment permissive for regeneration. These conditions can be achieved by providing cell scaffolds and growth factors that induce angiogenesis and cell proliferation. Angiogenenis within cell scaffolds is typically determined by histological examination with immunohistochemical markers for endothelium. Unfortunately, this approach requires removal of tissue and the scaffold. In this study, we examined the hemoglobin content of implanted collagen-based cell scaffolds containing basic fibroblast growth factor (bFGF) in vivo by non-invasive near infrared spectroscopy (NIRS). We also compared the hemoglobin levels measured by NIRS to the hemoglobin content measured with a conventional biological assay. Non-invasive NIRS recordings were performed with a custom-built near-infrared spectrometer using light guide-coupled reflectance measurements. NIRS recordings revealed that absorbance increased after implantation of collagen scaffolds containing bFGF. This result correlated (R2=0.93) with our subsequent conventional hemoglobin assay. The NIRS technique provides a non-invasive method for measuring the degree of vascularization in cell scaffolds. This technique may be advantageous for monitoring angiogenesis within different cell scaffolds, a prerequisite for effective tissue regeneration.

Kushibiki, Toshihiro; Awazu, Kunio

2008-04-01

321

Parallel ?-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: Quantitative benchmark for the interpretation of amyloid and protein infrared spectra  

PubMed Central

Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel ?-sheets. Using a synthetic macrocycle that enforces a two stranded parallel ?-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly 13C=18O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequen cies of the labels ranged from 1585 to 1595 cm?1, with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the linewidths and frequencies nearly quantitatively. Historically, the characteristic features of ?-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel ?-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm?1 linewidth. Narrower linewidths indicate that the amide I backbone is solvent protected inside the macrocycle. This work provides calculated and experimentally verified couplings for parallel ?-sheets that can be used in structure-based models to simulate and interpret the infrared spectra of ?-sheet containing proteins and protein assemblies, such as amyloid fibers. PMID:23113791

Woys, Ann Marie; Almeida, Aaron M.; Wang, Lu; Chiu, Chi Cheng; McGovern, Michael; de Pablo, Juan J.; Skinner, James L.; Gellman, Samuel H.; Zanni, Martin T.

2012-01-01

322

Sodium and potassium released from burning particles of brown coal and pine wood in a laminar premixed methane flame using quantitative laser-induced breakdown spectroscopy.  

PubMed

A quantitative point measurement of total sodium ([Na](total)) and potassium ([K](total)) in the plume of a burning particle of Australian Loy Yang brown coal (23 ± 3 mg) and of pine wood pellets (63 ± 3 mg) was performed using laser-induced breakdown spectroscopy (LIBS) in a laminar premixed methane flame at equivalence ratios ( U ) of 1.149 and 1.336. Calibration was performed using atomic sodium or potassium generated by evaporation of droplets of sodium sulfite (Na(2)SO(3)) or potassium sulfate (K(2)SO(4)) solutions seeded into the flame. The calibration compensated for the absorption by atomic alkalis in the seeded flame, which is significant at high concentrations of solution. This allowed quantitative measurements of sodium (Na) and potassium (K) released into the flame during the three phases of combustion, namely devolatilization, char, and ash cooking. The [Na](total) in the plume released from the combustion of pine wood pellets during the devolatilization was found to reach up to 13 ppm. The maximum concentration of total sodium ([Na](max)M(total)) and potassium ([K](max)(total)) released during the char phase of burning coal particles for ? = 1.149 was found to be 9.27 and 5.90 ppm, respectively. The [Na](max)(total) and [K](max)(total) released during the char phase of burning wood particles for ? = 1.149 was found to be 15.1 and 45.3 ppm, respectively. For the case of ? = 1.336, the [Na](max)(total) and [K](max)(total) were found to be 13.9 and 6.67 ppm during the char phase from burning coal particles, respectively, and 21.1 and 39.7 ppm, respectively, from burning wood particles. The concentration of alkali species was higher during the ash phase. The limit of detection (LOD) of sodium and potassium with LIBS in the present arrangement was estimated to be 29 and 72 ppb, respectively. PMID:21639991

Hsu, Li-Jen; Alwahabi, Zeyad T; Nathan, Graham J; Li, Yu; Li, Z S; Aldén, Marcus

2011-06-01

323

Application of NIR spectroscopy for the quality control of mangosteen pericarp powder: quantitative analysis of alpha-mangostin in mangosteen pericarp powder and capsule.  

PubMed

Near-infrared spectroscopy (NIR) was applied to the quantitative analysis of the concentration of alpha-mangostin (aM) in mangosteen pericarp powder (MP). The predicted results from the partial least squares chemometric method of various pretreatment data were compared to obtain the best calibration model. Two different types of containers (transparent capsules and glass vials) filled with the same samples were measured. For MP mixture in vials, the calibration model involving nine principal components (PC) could predict the amount of aM most accurately based on non-pretreatment spectral data. For MP mixture in capsules, the calibration model involving nine PC could predict the amount of aM most accurately based on first-derivative pretreatment spectra. The relationships of the calibration models for both samples had sufficiently linear plots. The standard error of cross-validation for the MP mixture in vials was lower and the R(2) values of validation were higher compared to the MP mixture in capsules. The equation for prediction of the concentration of aM in MP mixtures in vials is y = 0.9775x + 0.0425 with R(2) = 0.9950 and for those in capsules is y = 1.0264x + 0.0126 with R(2) = 0.9898. Both validation results indicated that the concentrations of aM in MP mixtures were predicted with sufficient accuracy and repeatability. NIR can be a useful tool for the quality control of herbal medicine in powder form without any sample preparation. The type and the shape of the container should be considered to obtain more accurate data. PMID:22926311

Peerapattana, Jomjai; Otsuka, Kuniko; Otsuka, Makoto

2013-07-01

324

Full-field Hilbert phase microscopy using nearly common-path low coherence off-axis interferometry for quantitative imaging of biological cells  

NASA Astrophysics Data System (ADS)

We demonstrate single shot low coherence quantitative Hilbert phase microscopy (HPM) for the reconstruction of the two dimensional (2D) phase map of biological cells. The system is based on a compact and nearly common-path high magnification Mirau-interferometric objective lens. The spatial carrier frequency of the interference fringes was increased by means of introducing tilt in one of the arms of the interferometer, thus making the system off-axis. The system is user friendly as the interference fringes and imaging of objects with high lateral and axial resolution can be obtained quickly using a low cost commercially available microscope. Experimental results for the 2D phase map of polystyrene spheres and human red blood cells (RBCs) are presented. Hilbert transform fringe analysis was used for reconstructing the phase map and refractive index (RI) of the objects. For dynamic substances which change rapidly, single shot low coherence interferometric microscopy is an important method for obtaining the phase. Experimental results with increased field-of-view and large tilt angle are also presented. It is well known that on increasing the tilt angle for improved spatial phase sampling the object remains focused in only a small area even though the field-of-view is large. This limitation was overcome by means of vertical scanning low coherence interferometry. Due to the low coherence properties of the light source the interference occurs only at the desired location of the object, i.e., where the object is sharply focused. The object was vertically scanned and the single shot interferograms were recorded for every scan and analyzed by Hilbert transform. In this way a large area of the sample can be imaged quantitatively.

Srivastava, Vishal; Anna, Tulsi; Singh Mehta, Dalip

2012-12-01

325

A strategy for a post-method-validation use of incurred biological samples for establishing the acceptability of a liquid chromatography/tandem mass-spectrometric method for quantitation of drugs in biological samples.  

PubMed

Validated liquid chromatography/tandem mass spectrometric (LC/MS/MS) methods are now widely used for quantitation of drugs in post-dose (incurred) biological samples for the assessment of pharmacokinetic parameters, bioavailability and bioequivalence. In accordance with the practice currently accepted within the pharmaceutical industry and the regulatory bodies, validation of a bioanalytical LC/MS/MS method is performed using standards and quality control (QC) samples prepared by spiking the drug (the analyte) into the appropriate blank biological matrix (e.g. human plasma). The method is then declared to be adequately validated for analyzing incurred biological samples. However, unlike QC samples, incurred samples may contain an epimer or another type of isomer of the drug, such as a Z or E isomer. Such a metabolite will obviously interfere with the selected reaction monitoring (SRM) transition used for the quantitation of the drug. The incurred sample may also contain a non-isomeric metabolite having a molecular mass different from that of the drug (such an acylglucuronide metabolite) that can still contribute to (and hence interfere with) the SRM transition used for the quantitation of the drug. The potential for the SRM interference increases with the use of LC/MS/MS bioanalytical methods with very short run times (e.g. 0.5 min). In addition, a metabolite can potentially undergo degradation or conversion to revert back to the drug during the multiple steps of sample preparation that precede the introduction of the processed sample into the LC/MS/MS system. In this paper, we recommend a set of procedures to undertake with incurred samples, as soon as such samples are available, in order to establish the validity of an LC/MS/MS method for analyzing real-life samples. First, it is recommended that the stability of incurred samples be investigated 'as is' and after sample preparation. Second, it is recommended that potential SRM interference be investigated by analyzing the incurred samples using the same LC/MS/MS method but with the additional incorporation of the SRM transitions attributable to putative metabolites (multi-SRM method). The metabolites monitored will depend on the expected metabolic products of the drug, which are predictable based on the functional groups present in the chemical structure of the drug. Third, it is recommended that potential SRM interference be further investigated by analyzing the incurred samples using the multi-SRM LC/MS/MS method following the modification of chromatographic conditions to enhance chromatographic separation of the drug from any putative metabolites. We will demonstrate the application of the proposed strategy by using a carboxylic acid containing drug candidate and its acylglucuronide as a putative metabolite. Plasma samples from the first-in-man (FIM) study of the drug candidate were used as the incurred samples. PMID:12203245

Jemal, Mohammed; Ouyang, Zheng; Powell, Mark L

2002-01-01

326

The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-volatile (<2 wt.%) silicate samples (90 rock slabs, corresponding powders, and 22 geostandards) were split into training, validation, and test sets. The LIBS spectra and chemical compositions of the training set were used with three multivariate methods to predict the chemical compositions of the test set. The methods were partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs. Both the full LIBS spectrum and the intensity at five pre-selected spectral channels per major element (feature selection) were used as input data for the multivariate calculations. The training spectra were supplied to the algorithms without averaging ( i.e. five spectra per target) and with averaging ( i.e. all spectra from the same target averaged and treated as one spectrum). In most cases neural networks did not perform better than PLS for our samples. PLS2 without spectral averaging outperformed all other procedures on the basis of lowest quadrature root mean squared error (RMSE) for both the full test set and the igneous rocks test set. The RMSE for PLS2 using the igneous rock slab test set is: 3.07 wt.% SiO 2, 0.87 wt.% TiO 2, 2.36 wt.% Al 2O 3, 2.20 wt.% Fe 2O 3, 0.08 wt.% MnO, 1.74 wt.% MgO, 1.14 wt.% CaO, 0.85 wt.% Na 2O, 0.81 wt.% K 2O. PLS1 with feature selection and averaging had a higher quadrature RMSE than PLS2, but merits further investigation as a method of reducing data volume and computation time and potentially improving prediction accuracy, particularly for samples that differ significantly from the training set. Precision and accuracy were influenced by the ratio of laser beam diameter (˜490 ?m) to grain size, with coarse-grained rocks often resulting in lower accuracy and precision than analyses of fine-grained rocks and powders. The number of analysis spots that were normally required to produce a chemical analysis within one standard deviation of the true bulk composition ranged from ˜10 for fine-grained rocks to >20 for some coarse-grained rocks.

Anderson, Ryan B.; Morris, Richard V.; Clegg, Samuel M.; Bell, James F.; Wiens, Roger C.; Humphries, Seth D.; Mertzman, Stanley A.; Graff, Trevor G.; McInroy, Rhonda

2011-10-01

327

Screening biological stains with qPCR versus lateral flow immunochromatographic test strips: a quantitative comparison using analytical figures of merit.  

PubMed

Biological fluid identification is an important facet of evidence examination in forensic laboratories worldwide. While identifying bodily fluids may provide insight into which downstream DNA methods to employ, these screening techniques consume a vital portion of the available evidence, are usually qualitative, and rely on visual interpretation. In contrast, qPCR yields information regarding the amount and proportion of amplifiable genetic material. In this study, dilution series of either semen or male saliva were prepared in either buffer or female blood. The samples were subjected to both lateral flow immunochromatographic test strips and qPCR analysis. Analytical figures of merit-including sensitivity, minimum distinguishable signal (MDS) and limit of detection (LOD)-were calculated and compared between methods. By applying the theory of the propagation of random errors, LODs were determined to be 0.05 ?L of saliva for the RSID™ Saliva cards, 0.03 ?L of saliva for Quantifiler(®) Duo, and 0.001 ?L of semen for Quantifiler(®) Duo. In conclusion, quantitative PCR was deemed a viable and effective screening method for subsequent DNA profiling due to its stability in different matrices, sensitivity, and low limits of detection. PMID:24117798

Oechsle, Crystal Simson; Haddad, Sandra; Sgueglia, Joanne B; Grgicak, Catherine M

2014-01-01

328

Multifrequency EPR Spectroscopy: A Toolkit for the Characterization of Mono and Dinuclear Metal Ion Centers in Complex Biological Systems  

Microsoft Academic Search

Metalloenzymes are ubiquitous in nature containing complex metal ion cofactors intimately involved in the enzymes' biological function. The application of multifrequency continuous wave and orientation selective pulsed EPR in conjunction with computer simulation and density functional theory calculations has proven to be a powerful toolkit for the geometric and electronic structural characterization of these metal ion cofactors in the resting

Graeme R. Hanson

2010-01-01

329

Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells.  

PubMed

We report the development of a multiple-trap laser tweezers Raman spectroscopy (LTRS) array for simultaneously acquiring Raman spectra of individual cells in physiological environments. This LTRS-array technique was also combined with phase contrast and fluorescence microscopy, allowing measurement of Raman spectra, refractility, and fluorescence images of individual cells with a temporal resolution of ~5 s. As a demonstration, we used this technique to monitor multiple Bacillus cereus spores germinating in a nutrient medium for up to 90min and observed the kinetics of dipicolinic acid release and uptake of nucleic acid-binding stain molecules during spore germination. PMID:20967053

Zhang, Pengfei; Kong, Lingbo; Setlow, Peter; Li, Yong-Qing

2010-10-15

330

Application of Synchrotron X-Ray Microbeam Spectroscopy to the Determination of Metal Distribution and Speciation in Biological Tissues  

Microsoft Academic Search

Resolving the distribution and speciation of metal(loid)s within biological environmental samples is essential for understanding bioavailability, trophic transfer, and environmental risk. We used synchrotron x?ray microspectroscopy to analyze a range of samples that had been exposed to metal(loid) contamination. Microprobe x?ray fluorescence elemental mapping (µSXRF) of decomposing rhizosphere microcosms consisting of Ni? and U?contaminated soil planted with wheat (Triticum aestivum)

T. Punshon; B. P. Jackson; A. Lanzirotti; W. A. Hopkins; P. M. Bertsch; J. Burger

2005-01-01

331

Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs  

Microsoft Academic Search

Here we report on an investigation of the three-dimensional excitation-emission-matrix (EEM) fluorescence spectra of unconcentrated water samples collected in 1996, 1998 and 1999 at a site particularly propitious for macro-algae development. The degradation of these macro-algae was studied to determine the influence of their exudates on natural water EEM fluorescence spectra. This work demonstrates that biological activity is one of

E. Parlanti; K. Wörz; L. Geoffroy; M. Lamotte

2000-01-01

332

Applying a field spectroscopy technique for assessing successional trends of biological soil crusts in a semi-arid environment  

Microsoft Academic Search

We studied the successional stages of biological soil crusts (BSCs) by using in-situ spectroscopic techniques during 6 years of recovery following scraping-sterilization and scraping-crumbling disturbances on north- and south-facing slopes and in plots with and without overland water runoff barriers. Two spectral indices, the Brightness Index (BI) and the Normalized Difference Vegetation Index (NDVI), were used as indicators for evaluating

E. Zaady; A. Karnieli; M. Shachak

2007-01-01

333

Quantitative measurement of biological substances in daily-life environment with the little-finger-size one-shot spectroscopic tomography  

NASA Astrophysics Data System (ADS)

In daily-life environment, the quantitative measurement of biological substances, such as the blood glucose level in the human skin, is strongly required to realize the non-invasive healthcare apparatus. Fourier-spectroscopic-tomography of the little-finger-size with high time-resolution and with the strong robustness for mechanical vibrations is proposed. The proposed method is a kind of near-common-path interferometer with spatial phase-shift method. We install the transmission-type relative-inclined phase-shifter on the optical Fourier transform plane of the infinity corrected optical system. The phase shifter is constructed with the cuboid and wedge prisms to give the relative phase-shift spatially between each half-flux of the objective beams. The interferograms from each single-bright-point on an objective surface in a line are formed as fringe patterns on 2-dimensional imaging array devices. And because the proposed method is based on the imaging optics, only emitted rays from a focal plane can contribute forming of interferograms. Thus, the measurement plane can be limited onto the focal plane only. From the spectroscopic tomography, only at a localized vessel area in human skins, we can get the pinpointed near-infrared spectroscopic data. And we can expect the improvement of the determination precision, because a Fourier spectroscopic-character is acquired from multiple intensity data in accordance with amount of phase-shift. From the statistical point of view, the gradation of detector is improved with the square root of sample number, based on t-distribution. We constructed the statistical model to assure the determination accuracy, and demonstrated the feasibility of the glucose sensor using liquid cells.

Ishida, Akane; Sato, Shun; Nakada, Sho; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

2014-02-01

334

Oriented Single-Crystal Nuclear Resonance Vibrational Spectroscopy of [Fe(TPP)(MI)(NO)]: Quantitative Assessment of the trans Effect of NO  

PubMed Central

This paper presents oriented single-crystal Nuclear Resonance Vibrational Spectroscopy (NRVS) data for the six-coordinate (6C) ferrous heme-nitrosyl model complex [57Fe(TPP)(MI)(NO)] (1; TPP2? = tetraphenylporphyrin dianion; MI = 1-methylimidazole). The availability of these data enables for the first time the detailed simulation of the complete NRVS data, including the porphyrin-based vibrations, of a 6C ferrous heme-nitrosyl, using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Importantly, the Fe-NO stretch is split by interaction with a porphyrin-based vibration into two features, observed at 437 and 472 cm?1. The 437 cm?1 feature is strongly out-of-plane (oop) polarized and shows an 15N18O isotope shift of 8 cm?1, and is therefore assigned to ?(Fe-NO). The admixture of Fe-N-O bending character is small. Main contributions to the Fe-N-O bend are observed in the 520 – 580 cm?1 region, distributed over a number of in-plane (ip) polarized porphyrin-based vibrations. The main component, assigned to ?ip(Fe-N-O), is identified with the feature at 563 cm?1. The Fe-N-O bend also shows strong mixing with the Fe-NO stretching internal coordinate, as evidenced by the oop NRVS intensity in the 520 – 580 cm?1 region. Very accurate normal mode descriptions of ?(Fe-NO) and ?ip(Fe-N-O) have been obtained in this study. These results contradict previous interpretations of the vibrational spectra of 6C ferrous heme-nitrosyls where the higher energy feature at ~550 cm?1 had usually been associated with ?(Fe-NO). Furthermore, these results provide key insight into NO binding to ferrous heme active sites in globins and other heme proteins, in particular with respect to (a) the effect of hydrogen bonding to the coordinated NO, and (b) changes in heme dynamics upon NO coordination. [Fe(TPP)(MI)(NO)] constitutes an excellent model system for ferrous NO adducts of myoglobin (Mb) mutants where the distal histidine (His64) has been removed. Comparison to the reported vibrational data for wild-type (wt) Mb-NO then shows that the effect of H-bonding to coordinated NO is weak, and mostly leads to a polarization of the ?/?* orbitals of bound NO. In addition, the observation that ?ip(Fe-N-O) does not correlate well with ?(N-O) can be traced back to the very mixed nature of this mode. The Fe-N(imidazole) stretching frequency is observed at 149 cm?1 in [Fe(TPP)(MI)(NO)], and spectral changes upon NO binding to five-coordinate ferrous heme active sites are discussed. The obtained high-quality force constants for the Fe-NO and N-O bonds of 2.57 and 11.55 mdyn/Å can further be compared to those of corresponding 5C species, which allows for a quantitative analysis of the ? trans interaction between the proximal imidazole (His) ligand and NO. This is key for the activation of the NO sensor soluble guanylate cyclase. Finally, DFT methods are calibrated against the experimentally determined vibrational properties of the Fe-N-O subunit in 1. DFT is in fact incapable of reproducing the vibrational energies and normal mode descriptions of the Fe-N-O unit well, and thus, DFT-based predictions of changes in vibrational properties upon heme-modification or other perturbations of these 6C complexes have to be treated with caution. PMID:20586416

Silvernail, Nathan; Alp, E. Ercan; Sturhahn, Wolfgang; Zhao, Jiyong

2010-01-01

335

Oriented single-crystal nuclear resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)]: quantitative assessment of the trans effect of NO.  

PubMed

This paper presents oriented single-crystal Nuclear Resonance Vibrational Spectroscopy (NRVS) data for the six-coordinate (6C) ferrous heme-nitrosyl model complex [(57)Fe(TPP)(MI)(NO)] (1; TPP(2-) = tetraphenylporphyrin dianion; MI = 1-methylimidazole). The availability of these data enables for the first time the detailed simulation of the complete NRVS data, including the porphyrin-based vibrations, of a 6C ferrous heme-nitrosyl, using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Importantly, the Fe-NO stretch is split by interaction with a porphyrin-based vibration into two features, observed at 437 and 472 cm(-1). The 437 cm(-1) feature is strongly out-of-plane (oop) polarized and shows a (15)N(18)O isotope shift of 8 cm(-1) and is therefore assigned to nu(Fe-NO). The admixture of Fe-N-O bending character is small. Main contributions to the Fe-N-O bend are observed in the 520-580 cm(-1) region, distributed over a number of in-plane (ip) polarized porphyrin-based vibrations. The main component, assigned to delta(ip)(Fe-N-O), is identified with the feature at 563 cm(-1). The Fe-N-O bend also shows strong mixing with the Fe-NO stretching internal coordinate, as evidenced by the oop NRVS intensity in the 520-580 cm(-1) region. Very accurate normal mode descriptions of nu(Fe-NO) and delta(ip)(Fe-N-O) have been obtained in this study. These results contradict previous interpretations of the vibrational spectra of 6C ferrous heme-nitrosyls where the higher energy feature at approximately 550 cm(-1) had usually been associated with nu(Fe-NO). Furthermore, these results provide key insight into NO binding to ferrous heme active sites in globins and other heme proteins, in particular with respect to (a) the effect of hydrogen bonding to the coordinated NO and (b) changes in heme dynamics upon NO coordination. [Fe(TPP)(MI)(NO)] constitutes an excellent model system for ferrous NO adducts of myoglobin (Mb) mutants where the distal histidine (His64) has been removed. Comparison to the reported vibrational data for wild-type (wt) Mb-NO then shows that the effect of H bonding to the coordinated NO is weak and mostly leads to a polarization of the pi/pi* orbitals of bound NO. In addition, the observation that delta(ip)(Fe-N-O) does not correlate well with nu(N-O) can be traced back to the very mixed nature of this mode. The Fe-N(imidazole) stretching frequency is observed at 149 cm(-1) in [Fe(TPP)(MI)(NO)], and spectral changes upon NO binding to five-coordinate ferrous heme active sites are discussed. The obtained high-quality force constants for the Fe-NO and N-O bonds of 2.57 and 11.55 mdyn/A can further be compared to those of corresponding 5C species, which allows for a quantitative analysis of the sigma trans interaction between the proximal imidazole (His) ligand and NO. This is key for the activation of the NO sensor soluble guanylate cyclase. Finally, DFT methods are calibrated against the experimentally determined vibrational properties of the Fe-N-O subunit in 1. DFT is in fact incapable of reproducing the vibrational energies and normal mode descriptions of the Fe-N-O unit well, and thus, DFT-based predictions of changes in vibrational properties upon heme modification or other perturbations of these 6C complexes have to be treated with caution. PMID:20586416

Lehnert, Nicolai; Sage, J Timothy; Silvernail, Nathan; Scheidt, W Robert; Alp, E Ercan; Sturhahn, Wolfgang; Zhao, Jiyong

2010-08-01

336

Distinguishing the core from the shell in MnO x \\/MnO y and FeO x \\/MnO x core\\/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis  

Microsoft Academic Search

The structural and chemical characterization of inverted bi-magnetic MnOx(antiferromagnetic)\\/MnOy(ferrimagnetic) and FeOx(soft-ferrimagnetic)\\/MnOx(hard-ferrimagnetic) core\\/shell nanoparticles has been carried out by means of scanning transmission electron microscopy with electron energy loss spectroscopy analysis, (S)TEM-EELS. Quantitative EELS was applied to assess the local composition of the nanoparticles by evaluating the local Mn oxidation state based on the Mn L3\\/L2 peak intensity ratio and the

S. Estradé; Ll. Yedra; A. López-Ortega; M. Estrader; G. Salazar-Alvarez; M. D. Baró; J. Nogués; F. Peiró

337

Multiphoton fluorescence microscopy in biology  

NASA Astrophysics Data System (ADS)

The inherent advantages of nonlinear excitation make multiphoton fluorescence microscopy (MPFM) awell-suited imaging technique for extracting valuable information from turbid and thick biological samples. These advantages include high three-dimensional spatial resolution, large penetration depth, minimum out-of-focus cellular photodamage, and high signal-to-noise contrast. We have investigated the nonlinear spectroscopy of biologically important molecules such as NADH, flavins, and intrinsically fluorescent proteins. Fundamental understanding of the molecular spectroscopy and dynamics of these biomolecules is essential for advancing their applications in biological research. MPFM has been utilized for monitoring a large spectrum of biological processes including metabolic activity and exocytosis. We will discuss two-photon (2P) redox fluorescence microscopy of NADH, which gives a quantitative measure of the respiratory chain activity, thus allowing functional imaging of energy metabolism in neurons and native brain tissue. Finally, a rational design strategy, based on donor-acceptor-donor configuration, will be elucidated for fluorescent probes with large 2P-excitation cross-section. These dyes are water-soluble, yet possess a high affinity to organic phases with site-specific labeling and Ca+2 sensitivity (Kd ~ 350 nM). A brief account on the biological application of nanocrystals and second harmonic imaging will be reviewed.

Heikal, Ahmed A.; Webb, Watt W.

2002-11-01

338

Quantitative solid-state analysis of three solid forms of ranitidine hydrochloride in ternary mixtures using Raman spectroscopy and X-ray powder diffraction.  

PubMed

The aim of the study was to develop a reliable quantification procedure for mixtures of three solid forms of ranitidine hydrochloride using X-ray powder diffraction (XRPD) and Raman spectroscopy combined with multivariate analysis. The effect of mixing methods of the calibration samples on the calibration model quality was also investigated. Thirteen ternary samples of form 1, form 2 and the amorphous form of ranitidine hydrochloride were prepared in triplicate to build a calibration model. The ternary samples were prepared by three mixing methods (a) manual mixing (MM) and ball mill mixing (BM) using two (b) 5 mm (BM5) or (c) 12 mm (BM12) balls for 1 min. The samples were analyzed with XRPD and Raman spectroscopy. Principal component analysis (PCA) was used to study the effect of mixing method, while partial least squares (PLS) regression was used to build the quantification models. PCA score plots showed that, in general, BM12 resulted in the narrowest sample clustering indicating better sample homogeneity. In the quantification models, the number of PLS factors was determined using cross-validation and the models were validated using independent test samples with known concentrations. Multiplicative scattering correction (MSC) without scaling gave the best PLS regression model for XPRD, and standard normal variate (SNV) transformation with centering gave the best model for Raman spectroscopy. Using PLS regression, the root mean square error of prediction (RMSEP) values of the best models were 5.0-6.9% for XRPD and 2.5-4.5% for Raman spectroscopy. XRPD and Raman spectroscopy in combination with PLS regression can be used to quantify the amount of single components in ternary mixtures of ranitidine hydrochloride solid forms. Raman spectroscopy gave better PLS regression models than XRPD, allowing a more accurate quantification. PMID:19081220

Chieng, Norman; Rehder, Sönke; Saville, Dorothy; Rades, Thomas; Aaltonen, Jaakko

2009-01-15

339

Quantitative molecular methods in virology  

Microsoft Academic Search

Summary During the past few years, significant technical effort was made to develop molecular methods for the absolute quantitation of nucleic acids in biological samples. In virology, semi-quantitative and quantitative techniques of different principle, complexity, and reliability were designed, optimized, and applied in basic and clinical researches. The principal data obtained in successful pilot applications in vivo are reported in

M. Clementi; S. Menzo; A. Manzin; P. Bagnarelli

1995-01-01

340

The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space  

NASA Technical Reports Server (NTRS)

One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

2002-01-01

341

A quantitative differentiation method for plastic bags by infrared spectroscopy, thickness measurement and differential scanning calorimetry for tracing the source of illegal drugs  

Microsoft Academic Search

Fifty shopping bags, commonly encountered in the packaging of drug doses, were characterized by thickness measurements, infrared spectroscopy and differential scanning calorimetry. By these very straightforward and inexpensive techniques, without sample preparation, nearly all the considered samples could be discriminated. Ninety-seven percent of the possible pairs of white, apparently similar dull polymer films were differentiated. The rather large degree of

Valerio Causin; Carla Marega; Pietro Carresi; Sergio Schiavone; Antonio Marigo

2006-01-01

342

Use of near infrared correlation spectroscopy for quantitation of surface iron, absorbed water and stored electronic energy in a suite of Mars soil analog materials  

NASA Technical Reports Server (NTRS)

A number of questions concerning the surface mineralogy and the history of water on Mars remain unresolved using the Viking analyses and Earth-based telescopic data. Identification and quantitation of iron-bearing clays on Mars would elucidate these outstanding issues. Near infrared correlation analysis, a method typically applied to qualitative and quantitative analysis of individual constituents of multicomponent mixtures, is adapted here to selection of distinctive features of a small, highly homologous series of Fe/Ca-exchanged montmorillonites and several kalinites. Independently determined measures of surface iron, relative humidity and stored electronic energy were used as constituent data for linear regression of the constituent vs. reflectance data throughout the spectral region 0.68 to 2.5 micrometers. High correlations were found in appropriate regions for all three constituents, though that with stored energy is still considered tenuous. Quantitation was improved using 1st and 2nd derivative spectra. High resolution data over a broad spectral range would be required to quantitatively identify iron-bearing clays by remotely sensed reflectance.

Coyne, Lelia M.; Banin, Amos; Carle, Glenn; Orenberg, James; Scattergood, Thomas

1989-01-01

343

The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space  

NASA Technical Reports Server (NTRS)

One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

2002-01-01

344

Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.  

PubMed

An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance. PMID:20090802

Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

2010-01-20

345

A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy  

Microsoft Academic Search

A new approach was developed to measure the water content of silicate glasses using Raman spectroscopy, which is independent\\u000a of the glass matrix composition and structure. Contrary to previous studies, the compositional range of our studied silicate\\u000a glasses was not restricted to rhyolites, but included andesitic, basaltic and phonolitic glasses. We used 21 glasses with\\u000a known water contents for calibration.

Zoltán Zajacz; Werner Halter; Wim J. Malfait; Olivier Bachmann; Robert J. Bodnar; Marc M. Hirschmann; Charles W. Mandeville; Yann Morizet; Othmar Müntener; Peter Ulmer; James D. Webster

2005-01-01

346

Structural Analysis of Wheat Straw Lignin by Quantitative 31 P and 2D NMR Spectroscopy. The Occurrence of Ester Bonds and ?-O-4 Substructures  

Microsoft Academic Search

By combining mild alkaline hydrolysis with quantitative 31P NMR we have been able to arrive at a protocol for determining the various ester linkages and their relative contributions to the overall structure of wheat straw lignin. Additional information on the identity and location of these bonds was sought by the application of GC\\/MS and two-dimensional 13C-1H heterocorrelation NMR experiments. Milled

Claudia Crestini; Dimitris S. Argyropoulos

1997-01-01

347

Selective observation of biologically important 15N-labeled metabolites in isolated rat brain and liver by 1H-detected multiple-quantum-coherence spectroscopy  

NASA Astrophysics Data System (ADS)

Four cerebral metabolites of importance in neurotransmission, serotonin, L-tryptophan, L-glutamine, and N-acetyl- L-aspartate, and two hepatic urea-cycle intermediates, citrulline and urea, were found to be observable by 1H- 15N heteronuclear multiple-quantum-coherence (HMQC) spectroscopy in aqueous solution at physiological pH and temperature, through the protons spin-coupled to their indole, amide, or ureido nitrogen. Their 1H chemical shifts were well dispersed over a 5-10 ppm region while the 1J 15N- 1H values were 87-99 Hz. For [?- 15N]glutamine, a 50- to 100-fold increase in sensitivity over direct 15N detection was achieved, in contrast to a 2-fold increase by the polarization-transfer method. In the isolated brain of portacaval-shunted rats, the amide protons of biologically 15N-enriched [?- 15N]glutamine were observed in 2 min of acquisition, with suppression of proton signals from all other cerebral metabolites. In isolated liver of 15N-enriched control rats, [ 15NIurea protons were observed in 16 min. The HMQC method is likely to be effective for the in vivo study of cerebral and hepatic nitrogen metabolism.

Kanamori, Keiko; Ross, Brian D.; Parivar, Farhad

348

Detection and quantitative analysis of chemical species in Hanford tank materials using Raman spectroscopy technology: FY94, January 1, 1994--March 31, 1995  

SciTech Connect

This report provides a summary of work completed in FY-94 by FSU to develop and investigate the feasibility of using Raman spectroscopy with Hanford tank waste materials. Raman performance impacts from sample morphology, including the effects of absorption, particle size, density, color and refractive index, are discussed. An algorithm for relative species concentration measurement from Raman data is presented. An Algorithm for applying Raman to tank waste core screening is presented and discussed. A library of absorption and Raman spectra are presented that support this work.

Vickers, T.J.; Mann, C. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry

1995-09-12

349

Near-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statistics  

NASA Astrophysics Data System (ADS)

Toxoplasmosis is an important zoonosis in public health because domestic cats are the main agents responsible for the transmission of this disease in Brazil. We investigate a method for diagnosing toxoplasmosis based on Raman spectroscopy. Dispersive near-infrared Raman spectra are used to quantify anti-Toxoplasma gondii (IgG) antibodies in blood sera from domestic cats. An 830-nm laser is used for sample excitation, and a dispersive spectrometer is used to detect the Raman scattering. A serological test is performed in all serum samples by the enzyme-linked immunosorbent assay (ELISA) for validation. Raman spectra are taken from 59 blood serum samples and a quantification model is implemented based on partial least squares (PLS) to quantify the sample's serology by Raman spectra compared to the results provided by the ELISA test. Based on the serological values provided by the Raman/PLS model, diagnostic parameters such as sensitivity, specificity, accuracy, positive prediction values, and negative prediction values are calculated to discriminate negative from positive samples, obtaining 100, 80, 90, 83.3, and 100%, respectively. Raman spectroscopy, associated with the PLS, is promising as a serological assay for toxoplasmosis, enabling fast and sensitive diagnosis.

Duarte, Janaína; Pacheco, Marcos T. T.; Villaverde, Antonio Balbin; Machado, Rosangela Z.; Zângaro, Renato A.; Silveira, Landulfo

2010-07-01

350

This manuscript has been published in Current Biology (2007) 17 :103-114 DOI :10.1016/j.cub.2006.12.024 Cryptic quantitative evolution  

E-print Network

This manuscript has been published in Current Biology (2007) 17 :103-114 DOI :10.1016/j.cub.2006) 103-14" DOI : 10.1016/j.cub.2006.12.024 #12;This manuscript has been published in Current Biology (2007) 17 :103-114 DOI :10.1016/j.cub.2006.12.024 2 robustness has been mostly studied theoretically [2

Paris-Sud XI, Université de

351

Malaria remedies of the Kenyah of the Apo Kayan, East Kalimantan, Indonesian Borneo: A quantitative assessment of local consensus as an indicator of biological efficacy  

Microsoft Academic Search

Traditional remedies have been a source of important antimalarial drugs and continue to provide novel and effective treatments, both where pharmaceuticals are not available and where the disease is increasingly resistant to commonly prescribed drugs. The Kenyah of the Apo Kayan, a remote forested plateau in Indonesian Borneo, use 17 malaria remedies derived from natural sources. A quantitative analysis of

Danna J. Leaman; J. Thor Arnason; Razali Yusuf; Harini Sangat-Roemantyo; Herwasono Soedjito; Cindy K. Angerhofer; John M. Pezzuto

1995-01-01

352

20th Biennial Conference on the Biology of Marine Mammals Dunedin, New Zealand, 9-13 December 2012 A quantitative analysis of the response of short-  

E-print Network

! 51! A quantitative analysis of the response of short- finned pilot whales, Globicephala macrorhynchus wild cetaceans. Analysis of these tissues can provide important information on specific identity, sex Welfare, 290 Summer Street, Yarmouth Port, MA, 02675, USA Corresponding author: scramer@whoi.edu Marine

353

A quantitative analysis of protein secondary structure of photosystem II particles and light-harvesting complex of chloroplast thylakoid membranes by FT-IR spectroscopy  

NASA Astrophysics Data System (ADS)

We report the preliminary results of protein conformational analysis of photosystem II (PSII) particles and light-harvesting complex (LHC-II) of chloroplast thylakoid membranes isolated from fresh spinach in aqueous solution at neutral pH. FT-IR spectroscopy, with its self-deconvolution and second derivative resolution enhancement as well as curve-fitting procedures, was used in the amide I region (1700-1600 cm-1), to determine the amount of each conformation present in coexistence. Spectroscopic data have shown the domination of the ?-helix (1656 cm-1) to be a major conformational component in both PSII (64%) and LHC-II (48%) systems. The ?-sheet (1626-1640 cm-1), with 17% for PSII and 21% for LHC-II, and the turn structure (1670-1680 cm-1), with 23% for LHC-II and 13% for PSII, with ?-antiparallel (1689-1691 cm-1) 8% for LHC-II and 6% for PSII, were the minor conformations present in aqueous solution.

Nahar, S.; Tajmir-Riahi, H. A.; Carpentier, R.

1994-12-01

354

Quantitative assessment of brain tissue oxygenation in porcine models of cardiac arrest and cardiopulmonary resuscitation using hyperspectral near-infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Near-infrared spectroscopy (NIRS) is a non-invasive tool to measure real-time tissue oxygenation in the brain. In an invasive animal experiment we were able to directly compare non-invasive NIRS measurements on the skull with invasive measurements directly on the brain dura matter. We used a broad-band, continuous-wave hyper-spectral approach to measure tissue oxygenation in the brain of pigs under the conditions of cardiac arrest, cardiopulmonary resuscitation (CPR), and defibrillation. An additional purpose of this research was to find a correlation between mortality due to cardiac arrest and inadequacy of the tissue perfusion during attempts at resuscitation. Using this technique we measured the changes in concentrations of oxy-hemoglobin [HbO2] and deoxy-hemoglobin [HHb] to quantify the tissue oxygenation in the brain. We also extracted cytochrome c oxidase changes ?[Cyt-Ox] under the same conditions to determine increase or decrease in cerebral oxygen delivery. In this paper we proved that applying CPR, [HbO2] concentration and tissue oxygenation in the brain increase while [HHb] concentration decreases which was not possible using other measurement techniques. We also discovered a similar trend in changes of both [Cyt-Ox] concentration and tissue oxygen saturation (StO2). Both invasive and non-invasive measurements showed similar results.

Lotfabadi, Shahin S.; Toronov, Vladislav; Ramadeen, Andrew; Hu, Xudong; Kim, Siwook; Dorian, Paul; Hare, Gregory M. T.

2014-03-01

355

Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose.  

PubMed

Transmission Raman spectroscopy (TRS) is a recently introduced analytical technique to pharmaceutical analysis permitting volumetric sampling by non-destructive means. Here we demonstrate experimentally, for the first time, the enhanced speed of quantification of pharmaceutical tablets by an order of magnitude compared with conventional TRS. This is achieved using an enhancing element, "photon diode", avoiding the loss of laser photons at laser coupling interface. The proof-of-concept experiments were performed on a complex mixture consisting of 5 components (3 APIs and 2 excipients) with nominal concentrations ranging between 0.4 and 89%. Acquisition times as short as 0.01 s were reached with satisfactory quantification accuracy for all the sample components. Results suggest that even faster sampling speeds would be achievable for components with stronger Raman scattering cross sections or with higher laser powers. This major improvement in speed of volumetric analysis enables high throughput deployment of TRS for in line quality control applications within the batch or continuous manufacturing process and facilitating non-destructive analysis of large fractions. PMID:25360447

Griffen, Julia A; Owen, Andrew W; Matousek, Pavel

2014-12-01

356

Easy and cheap fabrication of ordered pyramidal-shaped plasmonic substrates for detection and quantitative analysis using surface-enhanced Raman spectroscopy.  

PubMed

In this work we present a simple approach for the fabrication of periodically ordered pyramidal-shaped metallic nanostructures and demonstrate their efficiency as SERS active substrates. Our method for the fabrication of the plasmonic substrate is based on nanoimprint lithography and exploits the thermal properties of two classes of polymers, thermoplastics and hydrogels. During the heating process the thermoplastic polymers will start to melt whereas the hydrogel polymers will form a solid due to the evaporation of water molecules adsorbed during the dissolving process. Using this approach we fabricate highly ordered pyramidal-shaped nanostructures using the texture of a commercial DVD as the initial mold. This technique represents a low-cost alternative to the classical lithography techniques, allowing the fabrication over large areas (~cm(2)) of periodically ordered nanostructures in a controlled and reproducible manner. The SERS efficiency of the fabricated substrate is demonstrated through the detection of urea molecules found in the fingerprint. In addition, due to the periodicity of the pyramidal-shaped structures, the fabricated substrate can be successfully employed to correlate the intensity of the specific SERS peak of urea with the molecules concentration, offering thus the possibility of developing a quantitative SERS renal sensor. PMID:23817626

Leordean, Cosmin; Gabudean, Ana-Maria; Canpean, Valentin; Astilean, Simion

2013-09-01

357

Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection diesel engine by using linear raman spectroscopy.  

PubMed

Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume. PMID:16270549

Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred

2005-11-01

358

Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume.

Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred

2005-11-01

359

EDITORIAL: Physical Biology  

Microsoft Academic Search

Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure

Jane Roscoe

2004-01-01

360

Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation  

PubMed Central

Acyloxydiene–Fe(CO)3 complexes can act as enzyme-triggered CO-releasing molecules (ET-CORMs). Their biological activity strongly depends on the mother compound from which they are derived, i.e. cyclohexenone or cyclohexanedione, and on the position of the ester functionality they harbour. The present study addresses if the latter characteristic affects CO release, if cytotoxicity of ET-CORMs is mediated through iron release or inhibition of cell respiration and to what extent cyclohexenone and cyclohexanedione derived ET-CORMs differ in their ability to counteract TNF-? mediated inflammation. Irrespective of the formulation (DMSO or cyclodextrin), toxicity in HUVEC was significantly higher for ET-CORMs bearing the ester functionality at the outer (rac-4), as compared to the inner (rac-1) position of the cyclohexenone moiety. This was paralleled by an increased CO release from the former ET-CORM. Toxicity was not mediated via iron as EC50 values for rac-4 were significantly lower than for FeCl2 or FeCl3 and were not influenced by iron chelation. ATP depletion preceded toxicity suggesting impaired cell respiration as putative cause for cell death. In long-term HUVEC cultures inhibition of VCAM-1 expression by rac-1 waned in time, while for the cyclohexanedione derived rac-8 inhibition seems to increase. NF?B was inhibited by both rac-1 and rac-8 independent of I?B? degradation. Both ET-CORMs activated Nrf-2 and consequently induced the expression of HO-1. This study further provides a rational framework for designing acyloxydiene–Fe(CO)3 complexes as ET-CORMs with differential CO release and biological activities. We also provide a better understanding of how these complexes affect cell-biology in mechanistic terms. PMID:25009775

Stamellou, E.; Storz, D.; Botov, S.; Ntasis, E.; Wedel, J.; Sollazzo, S.; Kramer, B.K.; van Son, W.; Seelen, M.; Schmalz, H.G.; Schmidt, A.; Hafner, M.; Yard, B.A.

2014-01-01

361

Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multi-walled Carbon Nanotubes in Mammalian Tissue Culture Cells  

PubMed Central

In vivo studies have demonstrated that the state of dispersion of carbon nanotubes (CNT) plays an important role in generating adverse pulmonary effects. However, little has been done to develop reproducible and quantifiable dispersion techniques to conduct mechanistic studies in vitro. This study was to evaluate the dispersion of multi-walled carbon nanotubes (MWCNT) in tissue culture media, with particular emphasis on understanding the forces that govern agglomeration and how to modify these forces. Quantitative techniques such as hydrophobicity index, suspension stability index, attachment efficiency and dynamic light scattering were used to assess the effects of agglomeration and dispersion of as-prepared (AP), purified (PD) or carboxylated (COOH) MWCNT on bronchial epithelial and fibroblast cell lines. We found that hydrophobicity is the major factor determining AP- and PD-MWCNT agglomeration in tissue culture media but that the ionic strength is the main factor determining COOH-MWCNT suspendability. Bovine serum albumin (BSA) was an effective dispersant for MWCNT, providing steric and electrosteric hindrance that are capable of overcoming hydrophobic attachment and the electrostatic screening of double layer formation in ionic media. Thus, BSA was capable of stabilizing all tube versions. Dipalmitoylphosphatidylcholine (DPPC) provided additional stability for AP-MWCNT in epithelial growth medium (BEGM). While dispersion state did not affect cytotoxicity, improved dispersion of AP- and PD-MWCNT increased TGF-?1 production in epithelial cells and fibroblast proliferation. In summary, we demonstrate how quantitative techniques can be used to assess the agglomeration state of MWCNT when conducting mechanistic studies on the effects of dispersion on tissue culture cells. PMID:21067152

Wang, Xiang; Xia, Tian; Ntim, Susana Addo; Ji, Zhaoxia; George, Saji; Meng, Huan; Zhang, Haiyuan; Castranova, Vincent; Mitra, Somenath; Nel, André E.

2014-01-01

362

Preparation, biological evaluation and pharmacokinetics of human anti-HER1 monoclonal antibody, Panitumumab, labeled with 86Y for quantitative PET imaging of carcinoma  

PubMed Central

Purpose Panitumumab, a human monoclonal antibody (mAb) that binds to the epidermal growth factor receptor (EGFR/HER1), was approved by the FDA in 2006 for the treatment of patients with HER1-expressing carcinoma. In this report, we describe preclinical development of 86Y-CHX-A?-DTPA-panitumumab for quantitative positron emission tomography (PET) imaging of HER1-expressing carcinoma. Experimental design Panitumumab was conjugated to CHX-A?-DTPA and radiolabeled with 86Y. In vivo biodistribution, PET imaging, blood clearance, area under the curve (AUC), area under the moment curve (AUMC) and mean residence time (MRT) were determined on mice bearing HER1-expressing human colorectal (LS-174T), prostate (PC-3) and epidermoid (A431) tumor xenografts. Receptor-specificity was demonstrated by co-injection of 0.1 mg panitumumab with the radioimmunoconjugate (RIC). Results 86Y-CHX-A?-DTPA-panitumumab was routinely prepared with a specific activity exceeding 2 GBq/mg. Biodistribution and PET imaging studies demonstrated high HER1-specific tumor uptake of the RIC. In mice bearing LS-174T, PC-3 or A431 tumors, the tumor uptake at 3 d were 34.6 ± 5.9, 22.1± 1.9 and 22.7 ± 1.7 % ID/g, respectively. The corresponding tumor uptake in mice co-injected with 0.1 mg panitumumab was 9.3 ± 1.5, 8.8 ± 0.9 and 10.0 ± 1.3 % ID/g, respectively at the same time point, demonstrating specific blockage of the receptor. Normal organ and tumor uptake quantified by PET were closely related (r2= 0.95) to values determined by biodistribution studies. LS-174T tumor had the highest AUC (96.8 ± 5.6 %ID.d.g?1) and AUMC (262.5 ± 14.9 %ID.d2.g?1), however the tumor MRT were identical for all three tumors (2.7–2.8 d). Conclusion This study demonstrates the potential of 86Y-CHX-A?-DTPA-panitumumab for quantitative non-invasive PET imaging of HER1-expressing tumors, and represents the first step towards clinical translation. PMID:20484421

Nayak, Tapan K.; Garmestani, Kayhan; Baidoo, Kwamena E.; Milenic, Diane E.; Brechbiel, Martin W.

2010-01-01

363

A Quantitative High-Throughput Screen for Modulators of IL-6 Signaling: A Model for Interrogating Biological Networks using Chemical Libraries  

PubMed Central

Small molecule modulators are critical for dissecting and understanding signaling pathways at the molecular level. Interleukin 6 (IL-6) is a cytokine that signals via the JAK/STAT pathway and is implicated in cancer and inflammation. To identify modulators of this pathway, we screened a chemical collection against an IL-6 responsive cell line stably expressing a beta-lactamase reporter gene fused to a sis-inducible element (SIE-bla cells). This assay was optimized for a 1536-well microplate format and screened against 11,693 small molecules using quantitative high-throughput screening (qHTS), a method that assays a chemical library at multiple concentrations to generate titration-response profiles for each compound. The qHTS recovered 564 actives with well-fit curves that clustered into 32 distinct chemical series of 13 activators and 19 inhibitors. A retrospective analysis of the qHTS data indicated that single concentration data at 1.5 and 7.7 uM scored 35 and 71% of qHTS actives, respectively, as inactive and were therefore false negatives. Following counter screens to identify fluorescent and nonselective series, we found four activator and one inhibitor series that modulated SIE-bla cells but did not show similar activity in reporter gene assays induced by EGF and hypoxia. Small molecules within these series will make useful tool compounds to investigate IL-6 signaling mediated by JAK/STAT activation. PMID:19668870

Johnson, Ronald L.; Huang, Ruili; Jadhav, Ajit; Southall, Noel; Wichterman, Jennifer; MacArthur, Ryan; Xia, Menghang; Bi, Kun; Printen, John; Austin, Christopher P.; Inglese, James

2009-01-01

364

Quantitative Glycomics Strategies*  

PubMed Central

The correlations between protein glycosylation and many biological processes and diseases are increasing the demand for quantitative glycomics strategies enabling sensitive monitoring of changes in the abundance and structure of glycans. This is currently attained through multiple strategies employing several analytical techniques such as capillary electrophoresis, liquid chromatography, and mass spectrometry. The detection and quantification of glycans often involve labeling with ionic and/or hydrophobic reagents. This step is needed in order to enhance detection in spectroscopic and mass spectrometric measurements. Recently, labeling with stable isotopic reagents has also been presented as a very viable strategy enabling relative quantitation. The different strategies available for reliable and sensitive quantitative glycomics are herein described and discussed. PMID:23325767

Mechref, Yehia; Hu, Yunli; Desantos-Garcia, Janie L.; Hussein, Ahmed; Tang, Haixu

2013-01-01

365

Qualitative and quantitative analysis of a group of volatile organic compounds in biological samples by HS-GC/FID: application in practical cases.  

PubMed

A simple and sensitive procedure, using n-propanol as internal standard (IS), was developed and validated for the qualitative and quantitative analysis of a group of 11 volatile organic substances with different physicochemical properties (1-butanol, 2-propanol, acetaldehyde, ethyl acetate, acetone, acetonitrile, chloroform, diethyl ether, methanol, toluene and p-xylene) in whole blood, urine and vitreous humor. Samples were prepared by dilution with an aqueous solution of internal standard followed by Headspace Gas Chromatography with a Flame-ionization Detector (HS GC-FID) analysis. Chromatographic separation was performed using two capillary columns with different polarities (DB-ALC2: 30m×0.320mm×1.2?m and DB-ALC1: 30m×0.320mm×1.8?m), thus providing a change in the retention and elution order of volatiles. This dual column confirmation increases the specificity, since the risk of another substance co-eluting at the same time in both columns is very small. The method was linear from 5 to 1000mg/L for toluene and p-xylene, 50-1000mg/L for chloroform, and 50-2000mg/L for the remaining substances, with correlation coefficients of over 0.99 for all compounds. The limits of detection (LOD) ranged 1 to 10mg/L, while the limits of quantification (LOQ) ranged from 2 to 31mg/L. The intra-day precision (CV<6.4%), intermediate precision (CV<7.0%) and accuracy (relative error ±10%) of the method were in conformity with the criteria normally accepted in bioanalytical method validation. The method developed has been applied to forensic cases, with the advantages that it uses a small sample volume and does not require any extraction procedure as it makes use of a headspace injection technique. PMID:25124884

Monteiro, C; Franco, J M; Proença, P; Castañera, A; Claro, A; Vieira, D N; Corte-Real, F

2014-10-01

366

On Quantitizing  

PubMed Central

Quantitizing, commonly understood to refer to the numerical translation, transformation, or conversion of qualitative data, has become a staple of mixed methods research. Typically glossed are the foundational assumptions, judgments, and compromises involved in converting disparate data sets into each other and whether such conversions advance inquiry. Among these assumptions are that qualitative and quantitative data constitute two kinds of data, that quantitizing constitutes a unidirectional process essentially different from qualitizing, and that counting is an unambiguous process. Among the judgments are deciding what and how to count. Among the compromises are balancing numerical precision with narrative complexity. The standpoints of “conditional complementarity,” “critical remediation,” and “analytic alternation” clarify the added value of converting qualitative data into quantitative form. PMID:19865603

Sandelowski, Margarete; Voils, Corrine I.; Knafl, George

2009-01-01

367

Use of Concept of Chemotherapy-Equivalent Biologically Effective Dose to Provide Quantitative Evaluation of Contribution of Chemotherapy to Local Tumor Control in Chemoradiotherapy Cervical Cancer Trials  

SciTech Connect

Purpose: To express the magnitude of the contribution of chemotherapy to local tumor control in chemoradiotherapy cervical cancer trials in terms of the concept of the biologically effective dose. Methods and Materials: The local control rates of both arms of each study (radiotherapy vs. radiotherapy plus chemotherapy) reported from randomized controlled trials of concurrent chemoradiotherapy for cervical cancer were reviewed and expressed using the Poisson model for tumor control probability (TCP) as TCP = exp(-exp E), where E is the logarithm of cell kill. By combining the two TCP values from each study, we calculated the chemotherapy-related log cell kill as Ec = ln[(lnTCP{sub Radiotherapy})/(lnTCP{sub Chemoradiotherapy})]. Assuming a range of radiosensitivities ({alpha} = 0.1-0.5 Gy{sup -1}) and taking the calculated log cell kill, we calculated the chemotherapy-BED, and using the linear quadratic model, the number of 2-Gy fractions corresponding to each BED. The effect of a range of tumor volumes and radiosensitivities ({alpha} Gy{sup -1}) on the TCP was also explored. Results: The chemotherapy-equivalent number of 2-Gy fractions range was 0.2-4 and was greater in tumors with lower radiosensitivity. In those tumors with intermediate radiosensitivity ({alpha} = 0.3 Gy{sup -1}), the equivalent number of 2-Gy fractions was 0.6-1.3, corresponding to 120-260 cGy of extra dose. The opportunities for clinically detectable improvement are only available in tumors with intermediate radiosensitivity with {alpha} = 0.22-0.28 Gy{sup -1}. The dependence of TCP on the tumor volume decreases as the radiosensitivity increases. Conclusion: The results of our study have shown that the contribution of chemotherapy to the TCP in cervical cancer is expected to be clinically detectable in larger and less-radiosensitive tumors.

Plataniotis, George A. [Department of Oncology, Aberdeen Royal Infirmary, Aberdeen (United Kingdom)], E-mail: george.plataniotis@nhs.net; Dale, Roger G. [Imperial College Healthcare NHS Trust, Charing Cross Hospital, London (United Kingdom)

2008-12-01

368

Allometry in Biological Systems  

NSDL National Science Digital Library

The objectives of the lab are to 1) understand the quantitative methods used to explain the relationships between biological characters, and 2)to examine the relationship between surface area and volume, and how that relationship affects heating and cooling rates.

Stephen Trombulak (Middlebury College;)

1991-06-06

369

Direct and quantitative absorptive spectroscopy of nanowires  

E-print Network

Photonic nanostructures exhibit unique optical properties that are attractive in many different applications. However, measuring the optical properties of individual nanostructures, in particular the absorptive properties, ...

Tong, Jonathan Kien-Kwok

2012-01-01

370

Quantitative VUV spectroscopy of Cl2  

NASA Technical Reports Server (NTRS)

The photoabsorption and fluorescence cross sections of Cl2 were measured in the 105-145 nm region using synchrotron radiation as a light source. The oscillator strengths for the major absorption bands were calculated from the measured absorption cross sections. The measured oscillator strengths for the 2 3Pi u and 2 1Pi u - X 1Sigma(+)g transitions agree quite well with the theoretical values. The absorption spectrum was analyzed in accord with the excited electronic states calculated by Peyerimhoff and Buenker (1981). The Rydberg series converging to the first and second ionization potentials were classified. The vibrational levels of the 2 1Sigma(+)u ionic state were determined up to v prime = 15 from the fluorescence excitation spectrum. It was observed that a band with peak at 108.3 nm produces VUV fluorescence, but it produces UV fluorescence only by a collisional excitation process.

Lee, L. C.; Suto, M.; Tang, K. Y.

1986-01-01

371

Journal of Quantitative Spectroscopy & Radiative Transfer ] (  

E-print Network

constants will be of great utility to high-spectral- resolution IR remote sensing as well as radiative; Ammonium sulfate; Ammonium nitrate; Sulfuric acid; Nitric acid; Infrared remote sensing 1. Introduction Infrared (IR) remote sensing by ground-based, airborne and satellite sensors to determine geophysical

372

Journal of Quantitative Spectroscopy & Radiative Transfer ] (  

E-print Network

tropospheric aerosol; Effective medium approximations; Infrared remote sensing 1. Introduction Internally mixed rules that are commonly used in modeling optical constants of aerosol mixtures either in remote sensing. These findings will be of practical use in remote sensing and radiation transfer/climate studies as well as help

373

Quantitative spectroscopy for detection of cervical dysplasia  

E-print Network

The current clinical standard for cervical cancer diagnosis is colposcopy, a procedure that involves visual inspection and biopsy of at-risk tissue, followed by histopathology. The major objective of colposcopy is detection ...

Mirkovi?, Jelena, Ph. D. Massachusetts Institute of Technology

2009-01-01

374

Spectroscopy: Nanoscale terahertz spectroscopy  

NASA Astrophysics Data System (ADS)

The advent of terahertz spectroscopy schemes that offer single-photon sensitivity, femtosecond time resolution and nanometre spatial resolution is creating new opportunities for investigating ultrafast charge dynamics in semiconductor structures.

Shigekawa, Hidemi; Yoshida, Shoji; Takeuchi, Osamu

2014-11-01

375

Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants  

Microsoft Academic Search

Laser-induced breakdown spectroscopy spectra of bacterial spores, molds, pollens and nerve agent simulants have been acquired. The performance of several statistical methodologies linear correlation, principal components analysis, and soft independent model of class analogy has been evaluated for their ability to differentiate between the various samples. The effect of data selection (total spectra, peak intensities, and intensity ratios) and pre-treatments

Chase A. Munson; Frank C. De Lucia; Thuvan Piehler; Kevin L. McNesby; Andrzej W. Miziolek

2005-01-01

376

On Quantitizing  

ERIC Educational Resources Information Center

"Quantitizing", commonly understood to refer to the numerical translation, transformation, or conversion of qualitative data, has become a staple of mixed methods research. Typically glossed are the foundational assumptions, judgments, and compromises involved in converting disparate data sets into each other and whether such conversions advance…

Sandelowski, Margarete; Voils, Corrine I.; Knafl, George

2009-01-01

377

Quantitative evolutionary design  

PubMed Central

The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

Diamond, Jared

2002-01-01

378

Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: protein synthesis, cell proliferation, and T-cell activation.  

PubMed

Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value ? 0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before. PMID:22542004

Navare, Arti T; Sova, Pavel; Purdy, David E; Weiss, Jeffrey M; Wolf-Yadlin, Alejandro; Korth, Marcus J; Chang, Stewart T; Proll, Sean C; Jahan, Tahmina A; Krasnoselsky, Alexei L; Palermo, Robert E; Katze, Michael G

2012-07-20

379

Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation  

SciTech Connect

Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value{<=}0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

Navare, Arti T.; Sova, Pavel; Purdy, David E.; Weiss, Jeffrey M. [Department of Microbiology, University of Washington, Seattle, WA (United States)] [Department of Microbiology, University of Washington, Seattle, WA (United States); Wolf-Yadlin, Alejandro [Department of Genome Sciences, University of Washington, Seattle, WA (United States)] [Department of Genome Sciences, University of Washington, Seattle, WA (United States); Korth, Marcus J.; Chang, Stewart T.; Proll, Sean C. [Department of Microbiology, University of Washington, Seattle, WA (United States)] [Department of Microbiology, University of Washington, Seattle, WA (United States); Jahan, Tahmina A. [Proteomics Resource, UW Medicine at South Lake Union, Seattle, WA (United States)] [Proteomics Resource, UW Medicine at South Lake Union, Seattle, WA (United States); Krasnoselsky, Alexei L.; Palermo, Robert E. [Department of Microbiology, University of Washington, Seattle, WA (United States)] [Department of Microbiology, University of Washington, Seattle, WA (United States); Katze, Michael G., E-mail: honey@uw.edu [Department of Microbiology, University of Washington, Seattle, WA (United States); Washington National Primate Research Center, University of Washington, Seattle, WA (United States)

2012-07-20

380

Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants  

NASA Astrophysics Data System (ADS)

Laser-induced breakdown spectroscopy spectra of bacterial spores, molds, pollens and nerve agent simulants have been acquired. The performance of several statistical methodologies-linear correlation, principal components analysis, and soft independent model of class analogy-has been evaluated for their ability to differentiate between the various samples. The effect of data selection (total spectra, peak intensities, and intensity ratios) and pre-treatments (e.g., averaging) on the statistical models have also been studied. Results indicate the use of spectral averaging and weighting schemes may be used to significantly improve sample differentiation.

Munson, Chase A.; De Lucia, Frank C.; Piehler, Thuvan; McNesby, Kevin L.; Miziolek, Andrzej W.

2005-08-01

381

Microfluidics for optics and quantitative cell biology.  

E-print Network

??Microfluidics is a quickly expanding field with numerous applications. The advent of rapid-prototyping and soft- lithography allow for easy and inexpensive fabrication of microfluidic devices.… (more)

Campbell, James Kyle

2008-01-01

382

Quantitative biomedical mass spectrometry  

NASA Astrophysics Data System (ADS)

The scope of this contribution is an illustration of the capabilities of isotope dilution mass spectrometry (IDMS) for quantification of target substances in the biomedical field. After a brief discussion of the general principles of quantitative MS in biological samples, special attention will be paid to new technological developments or trends in IDMS from selected examples from the literature. The final section will deal with the use of IDMS for accuracy assessment in clinical chemistry. Methodological aspects considered crucial for avoiding sources of error will be discussed.

de Leenheer, Andrép; Thienpont, Linda M.

1992-09-01

383

The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones.  

PubMed

Quinones function as electron transport cofactors in photosynthesis and cellular respiration. The versatility and functional diversity of quinones is primarily due to the diverse midpoint potentials that are tuned by the substituent effects and interactions with surrounding amino acid residues in the binding site in the protein. In the present study, a library of substituted 1,4-naphthoquinones are analyzed by cyclic voltammetry in both protic and aprotic solvents to determine effects of substituent groups and hydrogen bonds on the midpoint potential. We use continuous-wave electron paramagnetic resonance (EPR) spectroscopy to determine the influence of substituent groups on the electronic properties of the 1,4-naphthoquinone models in an aprotic solvent. The results establish a correlation between the presence of substituent group(s) and the modification of electronic properties and a corresponding shift in the midpoint potential of the naphthoquinone models. Further, we use pulsed EPR spectroscopy to determine the effect of substituent groups on the strength and planarity of the hydrogen bonds of naphthoquinone models in a protic solvent. This study provides support for the tuning of the electronic properties of quinone cofactors by the influence of substituent groups and hydrogen bonding interactions. PMID:23676117

Coates, Christopher S; Ziegler, Jessica; Manz, Katherine; Good, Jacob; Kang, Bernard; Milikisiyants, Sergey; Chatterjee, Ruchira; Hao, Sijie; Golbeck, John H; Lakshmi, K V

2013-06-20

384

Marine Biology  

E-print Network

this  door. ”   Marine  Biology   I  joined  the  military  RIVERSIDE   Marine  Biology   A Thesis submitted in partialBiology                                                                                                                        

Zaffino, Kyle

2013-01-01

385

Microscopic Imaging and Spectroscopy with Scattered Light  

PubMed Central

Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940

Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim

2012-01-01

386

Theoretical Physics in Cellular Biology  

E-print Network

Theoretical Physics in Cellular Biology: Some Illustrative Case Studies Living matter obeys in many areas of biology. This truism is becoming ever more relevant with the rapid growth of the ability of biological experiment to produce large amounts of quantitative data: comprehending that data surely

387

Quantitative Bioscience for the 21st Century  

NSDL National Science Digital Library

This peer-reviewed article from BioScience is about the use of quantitative research in biology. Using a carefully chosen set of examples, we illustrate the importance and ubiquity of quantitative reasoning in the biological sciences. The examples range across many different levels of biological organization, from diseases through ecosystems, and the problems addressed range from basic to applied. In addition to the overall theme that mathematical and statistical approaches are essential for understanding biological systems, three particular and interacting mathematical themes emerge. First, nonlinearity is pervasive; second, inclusion of stochasticity is essential; and third, issues of scale are common to all applications of quantitative approaches. Future progress in understanding many biological systems will depend on continued applications and developments in these three areas, and on understanding how nonlinearity, stochasticity, and scale interact.

ALAN HASTINGS, PETER ARZBERGER, BEN BOLKER, SCOTT COLLINS, ANTHONY R. IVES, NORMAN A. JOHNSON, and MARGARET A. PALMER (;)

2005-06-01

388

Quantitative Literacy  

NSDL National Science Digital Library

This resource guide from the Middle School Portal 2 project, written specifically for teachers, provides links to exemplary resources including background information, lessons, career information, and related national science education standards.On this wiki page, you will find online lessons, activities, and projects that allow students a range of real-world contexts. The Content Collections section contains sites that offer sets of problems and illustrations that connect middle school math to down-to-earth settings. The Interdisciplinary Lessons and Activities section offers activities and projects ready for interdisciplinary teaching. Each of the following sections focuses on a math topic: Data Analysis and Display, Probability, Measurement, Number and Operations. The resources offer mathematics in settings that deliberately cross over into other areas of the curriculum. Finally, for teachers looking for support in teaching quantitative literacy, a new approach for us all, Background Information for Teachers presents a select set of professional resources.

Herrera, Terese

2009-04-01

389

Recent applications of fluorescence correlation spectroscopy in live systems.  

PubMed

Fluorescence correlation spectroscopy (FCS) is a widely used technique in biophysics and has helped address many questions in the life sciences. It provides important advantages compared to other fluorescence and biophysical methods. Its single molecule sensitivity allows measuring proteins within biological samples at physiological concentrations without the need of overexpression. It provides quantitative data on concentrations, diffusion coefficients, molecular transport and interactions even in live organisms. And its reliance on simple fluorescence intensity and its fluctuations makes it widely applicable. In this review we focus on applications of FCS in live samples, with an emphasis on work in the last 5 years, in the hope to provide an overview of the present capabilities of FCS to address biologically relevant questions. PMID:24726724

Machá?, Radek; Wohland, Thorsten

2014-10-01

390

High resolution UV resonance enhanced two-photon ionization spectroscopy with mass selection of biologically relevant molecules in the gas phase  

NASA Astrophysics Data System (ADS)

The high resolution Doppler-free resonance-enhanced two-photon ionization (R2PI) spectroscopy with mass selection of jet-cooled (2-12 K) molecular species is a powerful experimental method providing comprehensive information on both isolated molecules and molecular clusters. We have demonstrated for the first time that this technique can be applied to large molecules and provides detailed information on their conformational structure. It allows rotationally resolved (FWHM = 70 MHz) spectra of the vibronic bands of the S1<--S0 electronic transition of the studied molecular systems to be measured. A specially designed computer-assisted fitting routine based on genetic algorithms is used to determine their rotational constants in the ground and excited electronic states, respectively, and the transition moment ratio. To interpret the experimental information and to discriminate and unambiguously assign the observed approach to the study of the neurotransmitter molecule, ephedrine. The results elucidate the role of the intramolecular hydrogen bonds stabilizing the respective conformations and affecting their intrinsic properties.

Chervenkov, S.; Wang, P. Q.; Karaminkov, R.; Chakraborty, T.; Braun, Juergen E.; Neusser, Hans J.

2005-04-01

391

A contribution to the analysis of microamounts of biological samples using a combination of graphite furnace and microwave induced plasma atomic emission spectroscopy  

NASA Astrophysics Data System (ADS)

The use of a commercial graphite furnace combined with a TM 110 microwave cavity for the multielement analysis of small-volume liquid samples by microwave-induced plasma atomic emission spectroscopy is described. Sample aliquots of 5-50 ?l are dried at 100°C and subsequently vaporized by heating up to 2400°C. When the dry vapour cloud is evoluted into a 40 W argon microwave plasma with an argon carrier gas flow of 4.51/min, detection limits for Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Tl and Zn range from 1-50 ng/ml. Atomic lines are predominant. In routine analysis the analytical performance of the system is judged by the analysis times of 2-3 min per sample, the absence of memory effects and relative standard deviations in the range of 0.02-6.07. The analytical precision is improved by a factor of 2 by using a reference line. As varying alkaline contents, organics and various anions evoke matrix effects, the analysis of real samples requires the use of standard addition methods. Analysis results for Cd, Cu, Mn, Pb and Zn in NBS orchard leaves and bovine liver agree well with certified values. Direct determinations of Fe, Cu and Zn in 50 ?l serum samples are possible when applying adequate thermal decomposition of samples in the furnace.

Aziz, A.; Broekaert, J. A. C.; Leis, F.

392

Anaerobic digestion of solid slaughterhouse waste: study of biological stabilization by Fourier Transform infrared spectroscopy and thermogravimetry combined with mass spectrometry.  

PubMed

In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG-MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (approximately 300 degrees C) peak was observed, while the weight loss experienced at high-temperature (450-550 degrees C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT. PMID:20012340

Cuetos, María José; Gómez, Xiomar; Otero, Marta; Morán, Antonio

2010-07-01

393

Magnetic circular dichroism spectroscopy.  

PubMed

Being able to probe the structure and energy levels of metal ions in biological systems is an important goal of bioinorganic scientists. Several of the techniques used rely on the paramagnetic property of certain oxidation states of metal ions. MCD spectroscopy is one of those techniques and represents an effective way of obtaining structure/electronic information of paramagnetic metal ions. The basics of this technique are discussed along with examples of how MCD spectroscopy has been successfully used to elucidate the metal clusters of Nif proteins from nitrogen-fixing bacteria. PMID:21833870

Hales, Brian J

2011-01-01

394

Broadband Homonuclear Correlation Spectroscopy Driven by Combined R2nv Sequences under Fast Magic Angle Spinning for NMR Structural Analysis of Organic and Biological Solids  

PubMed Central

We recently described a family of experiments for R2nv Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions (J. Am. Chem. Soc., 133, 2011, 3943). In these RDSD experiments, since the broadened second-order rotational resonance conditions are dominated by the radio frequency field strength and the phase shifts, as well as the size of reintroduced dipolar couplings, the different R2nv sequences display unique polarization transfer behaviors and different recoupling frequency bandwidths. Herein, we present a series of modified R2nv sequences, dubbed COmbined R2nv-Driven (CORD), that yield broadband homonuclear dipolar recoupling and give rise to uniform distribution of cross peak intensities across the entire correlation spectrum. We report NMR experiments and numerical simulations demonstrating that these CORD spin diffusion sequences are suitable for broadband recoupling at a wide range of magnetic fields and MAS frequencies, including fast-MAS conditions (?r = 40 kHz and above). Since these CORD sequences are largely insensitive to dipolar truncation, they are well suited for the determination of long-range distance constraints, which are indispensable for the structural characterization of a broad range of systems. Using U-13C-alanine and U-13C,15N-histidine, we show that under fast-MAS conditions, the CORD sequences display polarization transfer efficiencies within broadband frequency regions that are generally higher than those offered by other existing spin diffusion pulse schemes. A 89-residue U-13C,15N-dynein light chain (LC8) protein has also been used to demonstrate that the CORD sequences exhibit uniformly high cross peak intensities across the entire chemical shift range. PMID:23685715

Hou, Guangjin; Yan, Si; Trebosc, Julien; Amoureux, Jean-Paul; Polenova, Tatyana

2013-01-01

395

ZEKE Spectroscopy  

Microsoft Academic Search

Since 1984, ZEKE (ZEro Kinetic Energy) spectroscopy has matured into a very high resolution spectroscopy for the study of cations, anions, and indirectly through these species, neutrals--including very short lived intermediates in chemical rections. It has even yielded the first direct spectroscopic data on elusive transition states of chemical reactions. This is the first book to describe ZEKE spectroscopy, a

E. W. Schlag

1998-01-01

396

ZEKE Spectroscopy  

Microsoft Academic Search

Since 1984, ZEKE (ZEro Kinetic Energy) spectroscopy has matured into a very high resolution spectroscopy for the study of cations, anions, and indirectly through these species, neutrals--including very short lived intermediates in chemical rections. It has even yielded the first direct spectroscopic data on elusive transition states of chemical reactions. This is the first book to describe ZEKE spectroscopy, a

E. W. Schlag

2005-01-01

397

Structure and function of quinones in biological solar energy transduction: a differential pulse voltammetry, EPR, and hyperfine sublevel correlation (HYSCORE) spectroscopy study of model benzoquinones.  

PubMed

Quinones are widely used electron transport cofactors in photosynthetic reaction centers. Previous studies have suggested that the structure of the quinone cofactors and the protein interactions or "smart" matrix effects from the surrounding environment govern the redox potential and hence the function of quinones in photosynthesis. In the present study, a series of 1,4-benzoquinone models are examined via differential pulse voltammetry to provide relative redox potentials. In parallel, CW and pulsed EPR methods are used to directly determine the electronic properties of each benzoquinone in aprotic and protic environments. The shifts in the redox potential of the quinones are found to be dependent on the nature of the substituent group and the number of substituent groups on the quinone molecule. Further, we establish a direct correlation between the nature of the substituent group and the change in electronic properties of the benzosemiquinone by analysis of the isotropic and anisotropic components of the electron-nuclear hyperfine interactions observed by CW and pulsed EPR studies, respectively. Examination of an extensive library of model quinones in both aprotic and protic solvents indicates that hydrogen-bonding interactions consistently accentuate the effects of the substituent groups of the benzoquinones. This study provides direct support for the tuning and control of quinone cofactors in biological solar energy transduction through interactions with the surrounding protein matrix. PMID:19835408

Weyers, Amanda M; Chatterjee, Ruchira; Milikisiyants, Sergey; Lakshmi, K V

2009-11-19

398

Raman spectroscopy for noninvasive glucose measurements  

E-print Network

We report the first successful study of the use of Raman spectroscopy for quantitative, noninvasive (“transcutaneous”) measurement of blood analytes, using glucose as an example. As an initial evaluation of the ability of ...

Enejder, Annika M. K.

399

Biological Pollutants  

MedlinePLUS

... Pollutants An Introduction to Indoor Air Quality (IAQ) Biological Pollutants Basic Information on Pollutants and Sources of ... collects may accumulate biological contaminants. Health Effects From Biological Contaminants Some biological contaminants trigger allergic reactions, including ...

400

Mossbauer Spectroscopy.  

ERIC Educational Resources Information Center

Reviews current research in Mossbauer spectroscopy, including instrumentation and experimental techniques, spectral analysis, catalysts and surfaces, environmental studies, medical applications and atmospheric air studies. Cites 346 references. (CS)

Stevens, John G.; Bowen, Lawrence H.

1980-01-01

First Page Previous Page 1 2 3 4 5 6 7