Science.gov

Sample records for quantitative cellular level

  1. Quantitative in situ hybridization for the study of gene expression at the regional and cellular levels.

    PubMed

    Le Moine, Catherine

    2003-08-01

    Quantitative in situ hybridization allows measurement of mRNA level modifications in a variety of experimental conditions. This analysis may be performed both at the regional anatomical and cellular levels by densitometry, neuronal counting and silver grain measurements. PMID:18428577

  2. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR.

    PubMed

    Henrich, Timothy J; Gallien, Sebastien; Li, Jonathan Z; Pereyra, Florencia; Kuritzkes, Daniel R

    2012-12-01

    Droplet digital PCR (ddPCR) is an emerging nucleic acid detection method that provides absolute quantitations of target sequences without relying on the use of standard curves. The ability of ddPCR to detect and quantitate total HIV-1 DNA and 2-LTR circles from a panel of patients on and off antiviral therapy was evaluated compared to established real-time (RT)-PCR methods. To calculate the dynamic range of ddPCR for HIV-1 DNA and 2-LTR circles, serial dilutions of DNA amplicons or episomes were determined by ddPCR as well as with RT-PCR. HIV-1 DNA from 3 viremic patients and 4 patients on suppressive antiretroviral therapy, and 2-LTR circles from 3 patients with low-level viremia were also quantitated. Copy numbers determined by ddPCR of serial dilutions of HIV-1 or human CCR5 DNA amplicon standards were comparable to nominal input copy number. The sensitivity of ddPCR to detect HIV-1 or CCR5 DNA was similar to that of RT-PCR. Low levels of 2-LTR circles were detected in samples from all 3 patients by both ddPCR and RT-PCR. ddPCR is a promising novel technology for the study of HIV-1 reservoirs and persistence, but further optimization of this novel technology would enhance the detection of very low-level viral genetic targets. PMID:22974526

  3. Low-Level Detection and Quantitation of Cellular HIV-1 DNA and 2-LTR Circles Using Droplet Digital PCR

    PubMed Central

    Henrich, Timothy J.; Gallien, Sebastien; Li, Jonathan Z.; Pereyra, Florencia; Kuritzkes, Daniel R.

    2012-01-01

    Droplet digital PCR (ddPCR) is an emerging nucleic acid detection method that provides absolute quantitations of target sequences without relying on the use of standard curves. The ability of ddPCR to detect and quantitate total HIV-1 DNA and 2-LTR circles from a panel of patients on and off antiviral therapy was evaluated compared to established real-time (RT)-PCR methods. To calculate the dynamic range of ddPCR for HIV-1 DNA and 2-LTR circles, serial dilutions of DNA amplicons or episomes were determined by ddPCR as well as with RT-PCR. HIV-1 DNA from 3 viremic patients and 4 patients on suppressive antiretroviral therapy, and 2-LTR circles from 3 patients with low-level viremia was also quantitated. Copy numbers determined by ddPCR of serial dilutions of HIV-1 or human CCR5 DNA amplicon standards were comparable to nominal input copy number. The sensitivity of ddPCR to detect HIV-1 or CCR5 DNA was similar to that of RT-PCR. Low levels of 2-LTR circles were detected in samples from all 3 patients by both ddPCR and RT-PCR. ddPCR is a promising novel technology for the study of HIV-1 reservoirs and persistence, but further optimization of this novel technology would enhance the detection of very low-level viral genetic targets. PMID:22974526

  4. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  5. Quantitative comparison of cellular patterns of stable and unstable mixtures

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Lee, J. H. S.; Lee, J.; Zhang, Y.

    2016-07-01

    This study describes a comparison of smoked foils from five different mixtures (C2H2+2.5{O}2+85 % Ar, 2H2+O2+50 % Ar, C2H2+2.5O2+70 % Ar, C2H2+5N2O, and CH4+2O2) that produced transverse waves of regular and irregular spacing. Histograms, variance, and the autocorrelation function (ACF) were used to quantify the spacing irregularity. Each smoked foil was first digitized then separated into left-running and right-running waves for subsequent analysis. The five mixtures showed different degrees of irregularity in the analysis of the histograms and the ACF of the spacing of the transverse waves. The dominant mode was readily found from the peak in the histogram and the first peak in the ACF result. The spacing of the main transverse waves provided by the histogram and the first peak of the ACF were much closer to the spacing of the transverse waves measured by eye for stable mixtures than for unstable ones due to their stronger dominant mode. In certain cases, other modes besides the dominant one were observed, such as two peaks in the histogram and other large peaks in the ACF result. Variance was used as a quantitative measurement of the cellular pattern irregularity level.

  6. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    PubMed Central

    2011-01-01

    Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a) using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b) with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our results suggest that this

  7. Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability.

    PubMed

    Liu, Gaowen; Yong, Mei Yun Jacy; Yurieva, Marina; Srinivasan, Kandhadayar Gopalan; Liu, Jaron; Lim, John Soon Yew; Poidinger, Michael; Wright, Graham Daniel; Zolezzi, Francesca; Choi, Hyungwon; Pavelka, Norman; Rancati, Giulia

    2015-12-01

    Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ~1,000 individual "essential" genes and found that ~9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance. PMID:26627736

  8. Sub-cellular and Multi-cellular Signaling Mechanisms Revealed by Quantitative Laser Microscopies

    NASA Astrophysics Data System (ADS)

    Piston, David

    2005-03-01

    Newly developed instrumentation and optical probes allows us to image quantitatively dynamic processes within ever more complicated biological systems. Using methods such as fluorescence recovery after photobleaching (FRAP) and Förster resonance energy transfer (FRET) of GFPs fused to the glucose sensing enzyme glucokinase (GK), we have discovered that the location and activity of beta cell GK is acutely regulated by insulin. These findings provide a mechanism whereby the glucose sensing ability of the beta cell is tightly coupled to insulin signaling. We have also measured pancreatic β-cell metabolism during glucose stimulation by quantitative two-photon NAD(P)H imaging. We have developed methods to delineate quantitatively the NAD(P)H signals from the cytoplasm and mitochondria, and show that the metabolic response of these two compartments are differentially stimulated by glucose and other metabolites. Absolute levels of NAD(P)H were determined using two-photon excited fluorescence lifetime imaging (FLIM). These findings elucidate the relative contributions of glycolytic and citric acid cycle metabolism in normal and diabetic cells.

  9. Graviperception and graviresponse at the cellular level

    NASA Astrophysics Data System (ADS)

    Bräucker, Richard; Cogoli, Augusto; Hemmersbach, Ruth

    Studies under varied acceleration conditions demonstrated that free living cells such as protists are able to perceive changes of the acceleration conditions. Recent studies favorite the hypothesis that in these systems gravity is perceived either by intracellular receptors (statocyst-like organelles), heavy cell organelles (such as nucleus) and/or by sensing the cell mass by means of ion channels located in the cell membrane. Mammalian cells in microgravity were profoundly influenced. Alteration in the cellular mechanisms and structures in mammalian cells like signal transduction and the cytoskeleton were detected. It can be speculated that the depression of the immune system may become a serious health issue on flights to and from Mars.

  10. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    EPA Science Inventory

    With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate t...

  11. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    SciTech Connect

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    2005-03-16

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  12. Ultrasensitive proteomic quantitation of cellular signaling by digitized nanoparticle-protein counting

    PubMed Central

    Jacob, Thomas; Agarwal, Anupriya; Ramunno-Johnson, Damien; O’Hare, Thomas; Gönen, Mehmet; Tyner, Jeffrey W.; Druker, Brian J.; Vu, Tania Q.

    2016-01-01

    Many important signaling and regulatory proteins are expressed at low abundance and are difficult to measure in single cells. We report a molecular imaging approach to quantitate protein levels by digitized, discrete counting of nanoparticle-tagged proteins. Digitized protein counting provides ultrasensitive molecular detection of proteins in single cells that surpasses conventional methods of quantitating total diffuse fluorescence, and offers a substantial improvement in protein quantitation. We implement this digitized proteomic approach in an integrated imaging platform, the single cell-quantum dot platform (SC-QDP), to execute sensitive single cell phosphoquantitation in response to multiple drug treatment conditions and using limited primary patient material. The SC-QDP: 1) identified pAKT and pERK phospho-heterogeneity and insensitivity in individual leukemia cells treated with a multi-drug panel of FDA-approved kinase inhibitors, and 2) revealed subpopulations of drug-insensitive CD34+ stem cells with high pCRKL and pSTAT5 signaling in chronic myeloid leukemia patient blood samples. This ultrasensitive digitized protein detection approach is valuable for uncovering subtle but important differences in signaling, drug insensitivity, and other key cellular processes amongst single cells. PMID:27320899

  13. Building quantitative, three dimensional atlases of gene expression and morphology at cellular resolution

    PubMed Central

    Knowles, David W.; Biggin, Mark D.

    2013-01-01

    Animals comprise dynamic three-dimensional arrays of cells that express gene products in intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A rigorous understanding of these developmental processes requires automated methods that quantitatively record and analyze complex morphologies and their associated patterns of gene expression at cellular resolution. Here we summarize light microscopy based approaches to establish permanent, quantitative datasets—atlases—that record this information. We focus on experiments that capture data for whole embryos or large areas of tissue in three dimensions, often at multiple time points. We compare and contrast the advantages and limitations of different methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary collaborations and integrated experimental pipelines that link sample preparation, image acquisition, image analysis, database design, visualization and quantitative analysis. PMID:24123936

  14. Game level layout generation using evolved cellular automata

    NASA Astrophysics Data System (ADS)

    Pech, Andrew; Masek, Martin; Lam, Chiou-Peng; Hingston, Philip

    2016-01-01

    Design of level layouts typically involves the production of a set of levels which are different, yet display a consistent style based on the purpose of a particular level. In this paper, a new approach to the generation of unique level layouts, based on a target set of attributes, is presented. These attributes, which are learned automatically from an example layout, are used for the off-line evolution of a set of cellular automata rules. These rules can then be used for the real-time generation of level layouts that meet the target parameters. The approach is demonstrated on a set of maze-like level layouts. Results are presented to show the effect of various CA parameters and rule representation.

  15. Development of cellular absorptive tracers (CATs) for a quantitative characterization of microbial mass in flow systems.

    PubMed

    Choi, Jaeyoung; Saripalli, Prasad; Meldrum, Deirdre; Lee, Ju Young

    2007-12-01

    A new method was developed for a simple non-destructive characterization of bacterial mass in flow systems. Results of partition and transport experiments showed that adsorption of a CAT molecule into the cellular mass resulted in its retardation during flow, which was a good measure of the biomass quantity and distribution. Three dyes, acridine orange (AO), toluidine blue (TB), and safranin O (SO), were chosen as CATs to demonstrate their utility to quantitatively characterize the biomass, its location and morphology in flow system. The results clearly demonstrated the applicability of AO, TB, and SO as cellular absorptive tracers in columnar flow experiments. PMID:17329099

  16. Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles.

    PubMed

    Liu, Rong; Rallo, Robert; Bilal, Muhammad; Cohen, Yoram

    2015-01-01

    Quantitative structure-activity relationships (QSARs) were developed, for cellular uptake of nanoparticles (NPs) of the same iron oxide core but with different surface-modifying organic molecules, based on linear and non-linear (epsilon support vector regression (ε-SVR)). A linear QSAR provided high prediction accuracy of R2=0.751 (coefficient of determination) using 11 descriptors selected from an initial pool of 184 descriptors calculated for the NP surfacemodifying molecules, while a ε-SVR based QSAR with only 6 descriptors improved prediction accuracy to R2=0.806. The linear and ε-SVR based QSARs both demonstrated good robustness and well spanned applicability domains. It is suggested that the approach of evaluating pertinent descriptors and their significance, via QSAR analysis, to cellular NP uptake could support planning and interpretation of toxicity studies as well as provide guidance for the tailor-design NPs with respect to targeted cellular uptake for various applications. PMID:25747434

  17. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis.

    PubMed

    Mercer, Jacob L; Argus, Joseph P; Crabtree, Donna M; Keenan, Melissa M; Wilks, Moses Q; Chi, Jen-Tsan Ashley; Bensinger, Steven J; Lavau, Catherine P; Wechsler, Daniel S

    2015-01-01

    PICALM (Phosphatidyl Inositol Clathrin Assembly Lymphoid Myeloid protein) is a ubiquitously expressed protein that plays a role in clathrin-mediated endocytosis. PICALM also affects the internalization and trafficking of SNAREs and modulates macroautophagy. Chromosomal translocations that result in the fusion of PICALM to heterologous proteins cause leukemias, and genome-wide association studies have linked PICALM Single Nucleotide Polymorphisms (SNPs) to Alzheimer's disease. To obtain insight into the biological role of PICALM, we performed gene expression studies of PICALM-deficient and PICALM-expressing cells. Pathway analysis demonstrated that PICALM expression influences the expression of genes that encode proteins involved in cholesterol biosynthesis and lipoprotein uptake. Gas Chromatography-Mass Spectrometry (GC-MS) studies indicated that loss of PICALM increases cellular cholesterol pool size. Isotopic labeling studies revealed that loss of PICALM alters increased net scavenging of cholesterol. Flow cytometry analyses confirmed that internalization of the LDL receptor is enhanced in PICALM-deficient cells as a result of higher levels of LDLR expression. These findings suggest that PICALM is required for cellular cholesterol homeostasis and point to a novel mechanism by which PICALM alterations may contribute to disease. PMID:26075887

  18. Cellular chromophores and signaling in low level light therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Demidova-Rice, Tatiana N.

    2007-02-01

    The use of low levels of visible or near infrared light (LLLT) for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In recent years major advances have been made in understanding the mechanisms that operate at the cellular and tissue levels during LLLT. Mitochondria are thought to be the main site for the initial effects of light and specifically cytochrome c oxidase that has absorption peaks in the red and near infrared regions of the electromagnetic spectrum matches the action spectra of LLLT effects. The discovery that cells employ nitric oxide (NO) synthesized in the mitochondria by neuronal nitric oxide synthase, to regulate respiration by competitive binding to the oxygen binding of cytochrome c oxidase, now suggests how LLLT can affect cell metabolism. If LLLT photodissociates inhibitory NO from cytochrome c oxidase, this would explain increased ATP production, modulation of reactive oxygen species, reduction and prevention of apoptosis, stimulation of angiogenesis, increase of blood flow and induction of transcription factors. In

  19. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe

    PubMed Central

    Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-01-01

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions. PMID:24957323

  20. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-06-01

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions.

  1. Quantitative Fluorescence Assays Using a Self-Powered Paper-Based Microfluidic Device and a Camera-Equipped Cellular Phone.

    PubMed

    Thom, Nicole K; Lewis, Gregory G; Yeung, Kimy; Phillips, Scott T

    2014-01-01

    Fluorescence assays often require specialized equipment and, therefore, are not easily implemented in resource-limited environments. Herein we describe a point-of-care assay strategy in which fluorescence in the visible region is used as a readout, while a camera-equipped cellular phone is used to capture the fluorescent response and quantify the assay. The fluorescence assay is made possible using a paper-based microfluidic device that contains an internal fluidic battery, a surface-mount LED, a 2-mm section of a clear straw as a cuvette, and an appropriately-designed small molecule reagent that transforms from weakly fluorescent to highly fluorescent when exposed to a specific enzyme biomarker. The resulting visible fluorescence is digitized by photographing the assay region using a camera-equipped cellular phone. The digital images are then quantified using image processing software to provide sensitive as well as quantitative results. In a model 30 min assay, the enzyme β-D-galactosidase was measured quantitatively down to 700 pM levels. This Communication describes the design of these types of assays in paper-based microfluidic devices and characterizes the key parameters that affect the sensitivity and reproducibility of the technique. PMID:24490035

  2. A positive feedback at the cellular level promotes robustness and modulation at the circuit level.

    PubMed

    Dethier, Julie; Drion, Guillaume; Franci, Alessio; Sepulchre, Rodolphe

    2015-10-01

    This article highlights the role of a positive feedback gating mechanism at the cellular level in the robustness and modulation properties of rhythmic activities at the circuit level. The results are presented in the context of half-center oscillators, which are simple rhythmic circuits composed of two reciprocally connected inhibitory neuronal populations. Specifically, we focus on rhythms that rely on a particular excitability property, the postinhibitory rebound, an intrinsic cellular property that elicits transient membrane depolarization when released from hyperpolarization. Two distinct ionic currents can evoke this transient depolarization: a hyperpolarization-activated cation current and a low-threshold T-type calcium current. The presence of a slow activation is specific to the T-type calcium current and provides a slow positive feedback at the cellular level that is absent in the cation current. We show that this slow positive feedback is required to endow the network rhythm with physiological modulation and robustness properties. This study thereby identifies an essential cellular property to be retained at the network level in modeling network robustness and modulation. PMID:26311181

  3. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis.

    PubMed

    Cornaby, Caleb; Tanner, Anne; Stutz, Eric W; Poole, Brian D; Berges, Bradford K

    2016-03-01

    Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection. PMID:26669819

  4. Teratogenic potency of valproate analogues evaluated by quantitative estimation of cellular morphology in vitro.

    PubMed

    Berezin, V; Kawa, A; Bojic, U; Foley, A; Nau, H; Regan, C; Edvardsen, K; Bock, E

    1996-10-01

    To develop a simple prescreening system for teratogenicity testing, a novel in vitro assay was established using computer assisted microscopy allowing automatic delineation of contours of stained cells and thereby quantitative determination of cellular morphology. The effects of valproic acid (VPA) and analogues with high as well as low teratogenic activities-(as previously determined in vivo)-were used as probes for study of the discrimination power of the in vitro model. VPA, a teratogenic analogue (+/-)-4-en-VPA, and a non-teratogenic analogue (E)-2-en-VPA, as well as the purified (S)- and (R)-enantiomers of 4-yn-VPA (teratogenic and non-teratogenic, respectively), were tested for their effects on cellular morphology of cloned mouse fibroblastoid L-cell lines, neuroblastoma N2a cells, and rat glioma BT4Cn cells, and were found to induce varying increases in cellular area: Furthermore, it was demonstrated that under the chosen conditions the increase in area correlated statistically significantly with the teratogenic potency of the employed compounds. Setting the cellular area of mouse L-cells to 100% under control conditions, the most pronounced effect was observed for (S)-4-yn-VPA (211%, P = < 0.001) followed by VPA (186%, P < 0.001), 4-en-VPA (169%, P < 0.001) and non-teratogenic 2-en-VPA (137%, P < 0.005) and (R)-4-yn-VPA (105%). This effect was independent of the choice of substrata, since it was observed on L-cells grown on plastic, fibronectin, laminin and Matrigel. However, when VPA-treated cells were exposed to an arginyl-glycyl-aspartate (RGD)-containing peptide to test whether VPA treatment was able to modulate RGD-dependent integrin interactions with components of the extracellular matrix, hardly any effect could be observed, whereas control cells readily detached from the substratum, indicating a changed substrate adhesion of the VPA-treated cells. The data thus indicate that measurement of cellular area may serve as a simple in vitro test in the

  5. Real-time cellular analysis for quantitative detection of functional Clostridium difficile toxin in stool.

    PubMed

    Huang, Bin; Li, Haijing; Jin, Dazhi; Stratton, Charles W; Tang, Yi-Wei

    2014-04-01

    Rapid and accurate diagnosis and monitoring of Clostridium difficile infection (CDI) is critical for patient care and infection control. We will briefly review current laboratory techniques for the diagnosis of CDI and identify aspects needing improvement. We will also introduce a real-time cellular analysis (RTCA) assay developed for the diagnosis and monitoring of CDI using electronic impedance to assess the cell status. The RTCA assay uses impedance measurement to detect minute physiological changes in cells cultured on gold microelectrodes embedded in glass substrates in the bottom of microtiter wells. This assay has been adapted for quantitative detection of C. difficile functional toxin directly from stool specimens. Compared to conventional techniques and molecular assays, the RTCA assay provides a valuable tool for the diagnosis of CDI as well as for the assessment of clinical severity and for monitoring therapeutic efficacies. PMID:24649817

  6. Sub-cellular quantitative optical diffraction tomography with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Charrière, Florian; Kühn, Jonas; Colomb, Tristan; Cuche, Etienne; Marquet, Pierre; Depeursinge, Christian

    2007-02-01

    Digital holographic microscopy (DHM) is an interferometric technique, providing quantitative mapping of the phase shift induced by semi-transparent microscopic specimens, such as cells, with sub-wavelength resolution along the optical axis. Thanks to actual PCs and CCDs, DHM provides nowadays cost-effective instruments for real-time measurements at very high acquisition rates, with sub-micron transverse resolution. However, DHM phase images do not reveal the threedimensional (3D) internal distribution of refractive index, but a phase shift resulting from a mean refractive index (RI) integrated over the cellular thickness. Standard optical diffraction tomography (ODT) techniques can be efficiently applied to reveal internal structures and to measure 3D RI spatial distributions, by recording 2D DHM phase data for different sample orientations or illumination beam direction, in order to fill up entirely the Ewald sphere in the Fourier space. The 3D refractive index can then be reconstructed, even in the direct space with backpropagation algorithms or from the Fourier space with inverse Fourier transform. The presented technique opens wide perspectives in 3D cell imaging: the DHM-based micro-tomography furnishes invaluable data on the cell components optical properties, potentially leading to information about organelles intracellular distribution. Results obtained on biological specimens will be presented. Morphometric measurements can be extracted from the tomographic data, by detection based on the refractive index contrast within the 3D reconstructions. Results and perspectives about sub-cellular organelles identification inside the cell will also be exposed.

  7. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  8. Quantitative metric profiles capture three-dimensional temporospatial architecture to discriminate cellular functional states

    PubMed Central

    2011-01-01

    Background Computational analysis of tissue structure reveals sub-visual differences in tissue functional states by extracting quantitative signature features that establish a diagnostic profile. Incomplete and/or inaccurate profiles contribute to misdiagnosis. Methods In order to create more complete tissue structure profiles, we adapted our cell-graph method for extracting quantitative features from histopathology images to now capture temporospatial traits of three-dimensional collagen hydrogel cell cultures. Cell-graphs were proposed to characterize the spatial organization between the cells in tissues by exploiting graph theory wherein the nuclei of the cells constitute the nodes and the approximate adjacency of cells are represented with edges. We chose 11 different cell types representing non-tumorigenic, pre-cancerous, and malignant states from multiple tissue origins. Results We built cell-graphs from the cellular hydrogel images and computed a large set of features describing the structural characteristics captured by the graphs over time. Using three-mode tensor analysis, we identified the five most significant features (metrics) that capture the compactness, clustering, and spatial uniformity of the 3D architectural changes for each cell type throughout the time course. Importantly, four of these metrics are also the discriminative features for our histopathology data from our previous studies. Conclusions Together, these descriptive metrics provide rigorous quantitative representations of image information that other image analysis methods do not. Examining the changes in these five metrics allowed us to easily discriminate between all 11 cell types, whereas differences from visual examination of the images are not as apparent. These results demonstrate that application of the cell-graph technique to 3D image data yields discriminative metrics that have the potential to improve the accuracy of image-based tissue profiles, and thus improve the detection

  9. Thioflavin T as a fluorescence probe for monitoring RNA metabolism at molecular and cellular levels.

    PubMed

    Sugimoto, Shinya; Arita-Morioka, Ken-ichi; Mizunoe, Yoshimitsu; Yamanaka, Kunitoshi; Ogura, Teru

    2015-08-18

    The intrinsically stochastic dynamics of mRNA metabolism have important consequences on gene regulation and non-genetic cell-to-cell variability; however, no generally applicable methods exist for studying such stochastic processes quantitatively. Here, we describe the use of the amyloid-binding probe Thioflavin T (ThT) for monitoring RNA metabolism in vitro and in vivo. ThT fluoresced strongly in complex with bacterial total RNA than with genomic DNA. ThT bound purine oligoribonucleotides preferentially over pyrimidine oligoribonucleotides and oligodeoxyribonucleotides. This property enabled quantitative real-time monitoring of poly(A) synthesis and phosphorolysis by polyribonucleotide phosphorylase in vitro. Cellular analyses, in combination with genetic approaches and the transcription-inhibitor rifampicin treatment, demonstrated that ThT mainly stained mRNA in actively dividing Escherichia coli cells. ThT also facilitated mRNA metabolism profiling at the single-cell level in diverse bacteria. Furthermore, ThT can also be used to visualise transitions between non-persister and persister cell states, a phenomenon of isogenic subpopulations of antibiotic-sensitive bacteria that acquire tolerance to multiple antibiotics due to stochastically induced dormant states. Collectively, these results suggest that probing mRNA dynamics with ThT is a broadly applicable approach ranging from the molecular level to the single-cell level. PMID:25883145

  10. Differential Associations between CDH13 Genotypes, Adiponectin Levels, and Circulating Levels of Cellular Adhesive Molecules

    PubMed Central

    Teng, Ming-Sheng; Wu, Semon; Hsu, Lung-An; Chou, Hsin-Hua; Ko, Yu-Lin

    2015-01-01

    CDH13 gene variants with lower adiponectin levels are paradoxically associated with a more favorable metabolic profile. We investigated the statistical association between CDH13 locus variants and adiponectin levels by examining 12 circulating inflammation marker levels and adiposity status in 530 Han Chinese people in Taiwan. After adjustments for clinical covariates, adiponectin levels were positively associated with soluble vascular cell adhesion molecule-1 (sVCAM1) levels and negatively associated with adiposity status and levels of C-reactive protein (CRP), soluble E-selectin (sE-selectin), and soluble intercellular adhesion molecule-1 (sICAM1). In addition, minor alleles of the CDH13 rs12051272 polymorphism were found to have lower adiponectin levels and higher CRP, sE-selectin, sICAM1, and sVCAM1 levels as well as higher body mass indices and waist circumferences in participants (all P < 0.05). In a subgroup analysis stratified by sex, significant associations between CDH13 genotypes and sE-selectin levels occurred only in men (P = 3.9 × 10−4 and interaction P = 0.005). CDH13 locus variants and adiponectin levels are associated with circulating levels of cellular adhesion molecules and adiposity status in a differential manner that interacts with sex. These results provide further evidence for the crucial role of adiponectin levels and CDH13 gene variants in immune-mediated and inflammatory diseases. PMID:26600672

  11. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.

    PubMed

    Kalambur, Venkat S; Longmire, Ellen K; Bischof, John C

    2007-11-20

    Superparamagnetic iron oxide nanoparticles (NPs) hold promise for a variety of biomedical applications due to their properties of visualization using magnetic resonance imaging (MRI), heating with radio frequency (rf), and movement in an external magnetic field. In this study, the cellular loading (uptake) mechanism of dextran- and surfactant-coated iron oxide NPs by malignant prostate tumor cells (LNCaP-Pro5) has been studied, and the feasibility of traditional rf treatment and a new laser heating method was evaluated. The kinetics of cell loading was quantified using magnetophoresis and a colorimetric assay. The results showed that loading of surfactant-coated iron oxide NPs with LNCaP-Pro5 was saturable with time (at 24 h) and extracellular concentration (11 pg Fe/cell at 0.5 mg Fe/mL), indicating that the particles are taken up by an "adsorptive endocytosis" pathway. Dextran-coated NPs, however, were taken up less efficiently (1 pg Fe/cell at 0.5 mg Fe/mL). Loading did not saturate with concentration suggesting uptake by fluid-phase endocytosis. Magnetophoresis suggests that NP-loaded cells can be held using external magnetic fields in microcirculatory flow velocities in vivo or in an appropriately designed extracorporeal circuit. Loaded cells were heated using traditional rf (260A, 357 kHz) and a new laser method (532 nm, 7 ns pulse duration, 0.03 J/pulse, 20 pulse/s). Iron oxide in water was found to absorb sufficiently strongly at 532 nm such that heating of individual NPs and thus loaded cells (1 pg Fe/cell) was effective (<10% cell survival) after 30 s of laser exposure. Radio frequency treatment required higher loading (>10 pg Fe/cell) and longer duration (30 min) when compared to laser to accomplish cell destruction (50% viability at 10 pg Fe/cell). Scaling calculations show that the pulsed laser method can lead to single-cell (loaded with NPs) treatments (200 degrees C temperature change at the surface of an individual NP) unlike traditional rf heating

  12. Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level

    NASA Astrophysics Data System (ADS)

    Wu, Tao T.; Qu, Jianan Y.; Cheung, Tak Hong; Yim, So Fan; Wong, Yick Fu

    2005-06-01

    Acetic acid, inducing transient whitening (acetowhitening) when applied to epithelial tissues, is a commonly used contrast agent for detecting early cervical cancer. The goals of this research are to investigate the temporal characteristics of acetowhitening process in cervical epithelial tissue at cellular level and develop a clear understanding of the diagnostic information carried in the acetowhitening signal. A system measuring time-resolved reflectance was built to study the rising and decay processes of acetowhitening signal from the monolayered cell cultures of normal and cancerous cervical squamous cells. It is found that the dynamic processes of acetowhitening in normal and cancerous cells are significantly different. The results of this study provide insight valuable to further understand the acetowhitening process in epithelial cells and to encourage the development of an objective procedure to detect the early cervical cancers based on quantitative monitoring of the dynamic process of acetowhitening

  13. Quantitative Characterization of Cellular Membrane-Receptor Heterogeneity through Statistical and Computational Modeling

    PubMed Central

    Weddell, Jared C.; Imoukhuede, P. I.

    2014-01-01

    Cell population heterogeneity can affect cellular response and is a major factor in drug resistance. However, there are few techniques available to represent and explore how heterogeneity is linked to population response. Recent high-throughput genomic, proteomic, and cellomic approaches offer opportunities for profiling heterogeneity on several scales. We have recently examined heterogeneity in vascular endothelial growth factor receptor (VEGFR) membrane localization in endothelial cells. We and others processed the heterogeneous data through ensemble averaging and integrated the data into computational models of anti-angiogenic drug effects in breast cancer. Here we show that additional modeling insight can be gained when cellular heterogeneity is considered. We present comprehensive statistical and computational methods for analyzing cellomic data sets and integrating them into deterministic models. We present a novel method for optimizing the fit of statistical distributions to heterogeneous data sets to preserve important data and exclude outliers. We compare methods of representing heterogeneous data and show methodology can affect model predictions up to 3.9-fold. We find that VEGF levels, a target for tuning angiogenesis, are more sensitive to VEGFR1 cell surface levels than VEGFR2; updating VEGFR1 levels in the tumor model gave a 64% change in free VEGF levels in the blood compartment, whereas updating VEGFR2 levels gave a 17% change. Furthermore, we find that subpopulations of tumor cells and tumor endothelial cells (tEC) expressing high levels of VEGFR (>35,000 VEGFR/cell) negate anti-VEGF treatments. We show that lowering the VEGFR membrane insertion rate for these subpopulations recovers the anti-angiogenic effect of anti-VEGF treatment, revealing new treatment targets for specific tumor cell subpopulations. This novel method of characterizing heterogeneous distributions shows for the first time how different representations of the same data set lead

  14. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels.

    PubMed

    Li, Simin; Bhave, Devayani; Chow, Jennifer M; Riera, Thomas V; Schlee, Sandra; Rauch, Simone; Atanasova, Mariya; Cate, Richard L; Whitty, Adrian

    2015-04-17

    A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome. PMID:25635057

  15. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data.

    PubMed

    Toseland, Christopher P; Clayton, Debra J; McSparron, Helen; Hemsley, Shelley L; Blythe, Martin J; Paine, Kelly; Doytchinova, Irini A; Guan, Pingping; Hattotuwagama, Channa K; Flower, Darren R

    2005-10-01

    AntiJen is a database system focused on the integration of kinetic, thermodynamic, functional, and cellular data within the context of immunology and vaccinology. Compared to its progenitor JenPep, the interface has been completely rewritten and redesigned and now offers a wider variety of search methods, including a nucleotide and a peptide BLAST search. In terms of data archived, AntiJen has a richer and more complete breadth, depth, and scope, and this has seen the database increase to over 31,000 entries. AntiJen provides the most complete and up-to-date dataset of its kind. While AntiJen v2.0 retains a focus on both T cell and B cell epitopes, its greatest novelty is the archiving of continuous quantitative data on a variety of immunological molecular interactions. This includes thermodynamic and kinetic measures of peptide binding to TAP and the Major Histocompatibility Complex (MHC), peptide-MHC complexes binding to T cell receptors, antibodies binding to protein antigens and general immunological protein-protein interactions. The database also contains quantitative specificity data from position-specific peptide libraries and biophysical data, in the form of diffusion co-efficients and cell surface copy numbers, on MHCs and other immunological molecules. The uses of AntiJen include the design of vaccines and diagnostics, such as tetramers, and other laboratory reagents, as well as helping parameterize the bioinformatic or mathematical in silico modeling of the immune system. The database is accessible from the URL: http://www.jenner.ac.uk/antijen. PMID:16305757

  16. Time- and polarization-resolved cellular autofluorescence towards quantitative biochemistry on living cells

    NASA Astrophysics Data System (ADS)

    Alfveby, John; TImerman, Randi; Soto Velasquez, Monica P.; Wickramasinghe, Dhanushka W. P. M.; Bartusek, Jillian; Heikal, Ahmed A.

    2014-09-01

    Native coenzymes such as the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide play pivotal roles in energy metabolism and a myriad of biochemical reactions in living cells/tissues. These coenzymes are naturally fluorescent and, therefore, have the potential to serve as intrinsic biomarkers for mitochondrial activities, programmed cell death (apoptosis), oxidative stress, aging, and neurodegenerative disease. In this contribution, we employ two-photon fluorescence lifetime imaging microscopy (FLIM) and time-resolved anisotropy imaging of intracellular NADH for quantitative, non-invasive biochemistry on living cells in response to hydrogenperoxide- induced oxidative stress. In contrast with steady-state one-photon, UV-excited autofluorescence, two-photon FLIM is sensitive to both molecular conformation and stimuli-induced changes in the local environment in living cells with minimum photodamage and inherently enhanced spatial resolution. On the other hand, time-resolved, two-photon anisotropy imaging of cellular autofluorescence allows for quantitative assessment of binding state and environmental restrictions on the tumbling mobility of intrinsic NADH. Our measurements reveal that free and enzyme-bound NADH exist at equilibrium, with a dominant autofluorescence contribution of the bound fraction in living cells. Parallel studies on NADH-enzyme binding in controlled environments serve as a point of reference in analyzing autofluorescence in living cells. These autofluorescence-based approaches complement the conventional analytical biochemistry methods that require the destruction of cells/tissues, while serving as an important step towards establishing intracellular NADH as a natural biomarker for monitoring changes in energy metabolism and redox state of living cells in response to environmental hazards.

  17. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.

    PubMed

    Taipale, Mikko; Tucker, George; Peng, Jian; Krykbaeva, Irina; Lin, Zhen-Yuan; Larsen, Brett; Choi, Hyungwon; Berger, Bonnie; Gingras, Anne-Claude; Lindquist, Susan

    2014-07-17

    Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of cofactors (cochaperones) that regulate their specificity and function. However, how these cochaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone-cochaperone-client interaction network in human cells. We uncover hundreds of chaperone clients, delineate their participation in specific cochaperone complexes, and establish a surprisingly distinct network of protein-protein interactions for cochaperones. As a salient example of the power of such analysis, we establish that NUDC family cochaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network and its regulation in development and disease and expand the use of chaperones as sensors for drug-target engagement. PMID:25036637

  18. Integrated multiplatform method for in vitro quantitative assessment of cellular uptake for fluorescent polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Ferrari, Raffaele; Lupi, Monica; Falcetta, Francesca; Bigini, Paolo; Paolella, Katia; Fiordaliso, Fabio; Bisighini, Cinzia; Salmona, Mario; D'Incalci, Maurizio; Morbidelli, Massimo; Moscatelli, Davide; Ubezio, Paolo

    2014-01-01

    Studies of cellular internalization of nanoparticles (NPs) play a paramount role for the design of efficient drug delivery systems, but so far they lack a robust experimental technique able to quantify the NP uptake in terms of number of NPs internalized in each cell. In this work we propose a novel method which provides a quantitative evaluation of fluorescent NP uptake by combining flow cytometry and plate fluorimetry with measurements of number of cells. Single cell fluorescence signals measured by flow cytometry were associated with the number of internalized NPs, exploiting the observed linearity between average flow cytometric fluorescence and overall plate fluorimeter measures, and previous calibration of the microplate reader with serial dilutions of NPs. This precise calibration has been made possible by using biocompatible fluorescent NPs in the range of 20-300 nm with a narrow particle size distribution, functionalized with a covalently bonded dye, Rhodamine B, and synthesized via emulsion free-radical polymerization. We report the absolute number of NPs internalized in mouse mammary tumor cells (4T1) as a function of time for different NP dimensions and surface charges and at several exposure concentrations. The obtained results indicate that 4T1 cells incorporated 103-104 polymer NPs in a short time, reaching an intracellular concentration 15 times higher than the external one.

  19. A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus

    NASA Astrophysics Data System (ADS)

    Qin, Qing-Hua; Wang, Ya-Nan

    2012-12-01

    A bone cell population dynamics model for cortical bone remodeling under mechanical stimulus is developed in this paper. The external experiments extracted from the literature which have not been used in the creation of the model are used to test the validity of the model. Not only can the model compare reasonably well with these experimental results such as the increase percentage of final values of bone mineral content (BMC) and bone fracture energy (BFE) among different loading schemes (which proves the validity of the model), but also predict the realtime development pattern of BMC and BFE, as well as the dynamics of osteoblasts (OBA), osteoclasts (OCA), nitric oxide (NO) and prostaglandin E2 (PGE2) for each loading scheme, which can hardly be monitored through experiment. In conclusion, the model is the first of its kind that is able to provide an insight into the quantitative mechanism of bone remodeling at cellular level by which bone cells are activated by mechanical stimulus in order to start resorption/formation of bone mass. More importantly, this model has laid a solid foundation based on which future work such as systemic control theory analysis of bone remodeling under mechanical stimulus can be investigated. The to-be identified control mechanism will help to develop effective drugs and combined nonpharmacological therapies to combat bone loss pathologies. Also this deeper understanding of how mechanical forces quantitatively interact with skeletal tissue is essential for the generation of bone tissue for tissue replacement purposes in tissue engineering.

  20. Human more complex than mouse at cellular level.

    PubMed

    Vinogradov, Alexander E

    2012-01-01

    The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain). In this work, I show that a greater number of C2H2-ZF genes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB) genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes). The evolutionary turnover of C2H2-ZF(-KRAB) genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB) genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues), whereas a lower amount--in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend). These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided. PMID:22911852

  1. Atherogenesis and iron: from epidemiology to cellular level

    PubMed Central

    Vinchi, Francesca; Muckenthaler, Martina U.; Da Silva, Milene C.; Balla, György; Balla, József; Jeney, Viktória

    2014-01-01

    Iron accumulates in human atherosclerotic lesions but whether it is a cause or simply a downstream consequence of the atheroma formation has been an open question for decades. According to the so called “iron hypothesis,” iron is believed to be detrimental for the cardiovascular system, thus promoting atherosclerosis development and progression. Iron, in its catalytically active form, can participate in the generation of reactive oxygen species and induce lipid-peroxidation, triggering endothelial activation, smooth muscle cell proliferation and macrophage activation; all of these processes are considered to be proatherogenic. On the other hand, the observation that hemochromatotic patients, affected by life-long iron overload, do not show any increased incidence of atherosclerosis is perceived as the most convincing evidence against the “iron hypothesis.” Epidemiological studies and data from animal models provided conflicting evidences about the role of iron in atherogenesis. Therefore, more careful studies are needed in which issues like the source and the compartmentalization of iron will be addressed. This review article summarizes what we have learnt about iron and atherosclerosis from epidemiological studies, animal models and cellular systems and highlights the rather contributory than innocent role of iron in atherogenesis. PMID:24847266

  2. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    NASA Astrophysics Data System (ADS)

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  3. Immunoglobulin levels and cellular immune function in lead exposed workers.

    PubMed

    Queiroz, M L; Perlingeiro, R C; Bincoletto, C; Almeida, M; Cardoso, M P; Dantas, D C

    1994-02-01

    The immunological status of lead acid battery workers with blood lead levels and urinary delta-aminolevulinic acid (ALA-U) concentrations ranging from safe to toxic levels has been examined and compared with those of non-exposed, age and sex matched controls. No differences in the serum concentrations of IgG, IgA and IgM between the populations were observed and there existed no correlation between blood lead level or ALA-U concentrations and serum immunoglobulin levels. In addition assessment was made of the capacity of peripheral blood mononuclear cells to respond to the mitogen phytohaemagglutinin (PHA), a correlate of T cell function. As before, there was no difference between exposed and control populations and no correlation between reactivity and blood lead concentration. Our data suggest that chronic exposure to lead fail to compromise lymphocyte function in man. PMID:8169320

  4. Cellular HIV-1 DNA quantitation in patients during simplification therapy with protease inhibitor-sparing regimens.

    PubMed

    Sarmati, Loredana; Parisi, Saverio Giuseppe; Nicastri, Emanuele; d'Ettorre, Gabriella; Andreoni, Carolina; Dori, Luca; Gatti, Francesca; Montano, Marco; Buonomini, Anna Rita; Boldrin, Caterina; Palù, Giorgio; Vullo, Vincenzo; Andreoni, Massimo

    2007-07-01

    Simplified regimens containing protease-inhibitors (PI)-sparing combinations were used in patients with virological suppression after prolonged highly active antiretroviral therapy. This study evaluated the total HIV-1 DNA quantitation as a predictor of long-term success for PI-sparing simplified therapy. Sixty-two patients were enrolled in a prospective non-randomized cohort. All patients have been receiving a triple-therapy regimen, two nucleoside reverse transcriptase inhibitors (NRTIs) plus one PI, for at least 9 months and were characterized by undetectable plasma HIV-1 RNA levels (<50 cp/ml) for at least 6 months. Patients were changed to a simplified PI-sparing regimen to overcome PI-associated adverse effects. HIV-DNA levels in peripheral blood mononuclear cells (PBMCs) were evaluated at baseline and at the end of follow-up. Patients with proviral DNA levels below the median value (226 copies/10(6) PBMCs) had a significant higher CD4 cell count at nadir (P = 0.003) and at enrolment (P = 0.001) with respect to patients with HIV-DNA levels above the median value. At month 18, 53 out of 62 (85%) patients on simplified regimen showed virological success, 4 (6.4%) patients experienced virological failure and 5 (8%) patients showed viral blip. At logistic regression analysis, HIV-DNA levels below 226 copies/10(6) PBMCs at baseline were associated independently to a reduced risk of virological failure or viral blip during simplified therapy (OR 0.002, 95% CI 0.001-0.46, P = 0.025). The substitution of PI with NRTI or non-NRTIs may represent an effective treatment option. Indeed, treatment failure or viral blip were experienced by 6% and 8% of the patients on simplified therapy, respectively. In addition, sustained suppression of the plasma viral load was significantly correlated with low levels of proviral DNA before treatment simplification. PMID:17516532

  5. Using a Virtual Tissue Culture System to Assist Students in Understanding Life at the Cellular Level

    ERIC Educational Resources Information Center

    McLauglin, Jacqueline S.; Seaquist, Stephen B.

    2008-01-01

    In every biology course ever taught in the nation's classrooms, and in every biology book ever published, students are taught about the "cell." The cell is as fundamental to biology as the atom is to chemistry. Truly, everything an organism does occurs fundamentally at the cellular level. Beyond memorizing the cellular definition, students are not…

  6. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment.

    PubMed

    Khademolhosseini, F; Liu, C-C; Lim, C J; Chiao, M

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells. PMID:27587150

  7. Metabolism of platelet activating factor at the whole organ and cellular level

    SciTech Connect

    Haroldsen, P.E.

    1987-01-01

    Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-3-glycerophosphocholine) has been characterized as a phospholipid possessing a myriad of effects from the cellular to whole organism levels. Analytical methods and procedures were developed in order to measure and identify PAF precursors and metabolites. Two quantitative physicochemical methods based on isotope dilution mass spectrometry (MS) were developed to measure lyso-PAF and applied to the calcium ionophore stimulated human neutrophil. Levels of lyso-PAF were found to be significantly increased, 2-3 fold, upon cell activation with a stimulus that concomitantly elicits the production of PAF. Investigation into the metabolism of PAF by the isolated perfused rat lung by intratracheal instillation revealed (/sup 3/H)-PAF to be extensively metabolized over a 15 minute time course. Greater than 96% of the administered dose was retained by the lung and was distributed as: lyso-PAF (3.3%), phosphatidylcholine (GPC, 82.3%), phosphatidylethanolamine (2.5%), and neutral lipid (2.5%), the remainder was intact PAF.

  8. Highly Dynamic Cellular-Level Response of Symbiotic Coral to a Sudden Increase in Environmental Nitrogen

    PubMed Central

    Kopp, C.; Pernice, M.; Domart-Coulon, I.; Djediat, C.; Spangenberg, J. E.; Alexander, D. T. L.; Hignette, M.; Meziane, T.; Meibom, A.

    2013-01-01

    ABSTRACT Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase 15N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. PMID:23674611

  9. Cellular Level Models as Tools for Cytokine Design

    PubMed Central

    Radhakrishnan, Mala L.; Tidor, Bruce

    2012-01-01

    Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model’s parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand–receptor dissociation can generally occur prior to signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. PMID:20568274

  10. QUANTITATIVE IN VITRO MEASUREMENT OF CELLULAR PROCESSES CRITICAL TO THE DEVELOPMENT OF NEURAL CONNECTIVITY USING HCA.

    EPA Science Inventory

    New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...

  11. Quantitative trait loci influencing honeybee alarm pheromone levels.

    PubMed

    Hunt, G J; Collins, A M; Rivera, R; Page, R E; Guzmán-Novoa, E

    1999-01-01

    Quantitative trait loci (QTL) mapping procedures were used to identify loci that influence the levels of alarm pheromones found in the stinging apparatus of worker honeybees. An F1 queen was produced from a cross between a queen of European origin and a drone descended from an African subspecies. Haploid drones from the hybrid queen were individually backcrossed to European queens to produce 172 colonies. Samples of stings were taken from backcross workers of these colonies. Alarm pheromone levels were determined by gas chromatography. RAPD markers were scored from the haploid drone fathers of these colonies. The multiple-QTL model (MQM) of MapQTL was used to identify QTLs that influence the levels of four alarm pheromone components. Seven independent, potential QTLs were identified with LOD scores greater than two, and one at LOD 1.88. We identified one QTL for n-decyl acetate, three for n-octanol, four for isopentyl acetate, and one for hexyl acetate. One region of linkage group XI shows a strong influence on body size and the levels of three alarm pheromone components. This locus explained 40% of the variance for the amount of n-decyl acetate (LOD 6.57). In general, the QTLs influencing alarm pheromone levels were independent of previously identified loci that influenced the stinging behavior of these colonies. The only exception was a potential locus influencing levels of n-octanol, which was inversely correlated with stinging behavior. PMID:10544503

  12. In situ sensing and modeling of molecular events at the cellular level

    NASA Astrophysics Data System (ADS)

    Yang, Ruiguo

    We developed the Atomic Force Microscopy (AFM) based nanorobot in combination with other nanomechanical sensors for the investigation of cell signaling pathways. The AFM nanorobotics hinge on the superior spatial resolution of AFM in imaging and extends it into the measurement of biological processes and manipulation of biological matters. A multiple input single output control system was designed and implemented to solve the issues of nanomanipulation of biological materials, feedback, response frequency and nonlinearity. The AFM nanorobotic system therefore provide the human-directed position, velocity and force control with high frequency feedback, and more importantly it can feed the operator with the real-time imaging of manipulation result from the fast-imaging based local scanning. The use of the system has taken the study of cellular process at the molecular scale into a new level. The cellular response to the physiological conditions can be significantly manifested in cellular mechanics. Dynamic mechanical property has been regarded as biomarkers, sometimes even regulators of the signaling and physiological processes, thus the name mechanobiology. We sought to characterize the relationship between the structural dynamics and the molecular dynamics and the role of them in the regulation of cell behavior. We used the AFM nanorobotics to investigate the mechanical properties in real-time of cells that are stimulated by different chemical species. These reagents could result in similar ion channel responses but distinctive mechanical behaviors. We applied these measurement results to establish a model that describes the cellular stimulation and the mechanical property change, a "two-hit" model that comprises the loss of cell adhesion and the initiation of cell apoptosis. The first hit was verified by functional experiments: depletion of Calcium and nanosurgery to disrupt the cellular adhesion. The second hit was tested by a labeling of apoptotic markers that

  13. Quantitative phase measurement for wafer-level optics

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao

    2015-07-01

    Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.

  14. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress.

    PubMed

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-10-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  15. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  16. Quantitative aspects of digital microscopy applied to cellular localization of heparin in smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Johnston, Richard F.; Hanzel, David K.; Stack, Bob; Brandley, Brian; Castellot, John

    1995-04-01

    High Resolution digital acquisition allows a great deal of flexibility in the types of questions that can be directed to microscopic samples. To eliminate subjective bias and provide quantitative results we have approached microscopy with an automated digital format. This mode can return quantitative data at high resolution over large fields. The digital format makes accessible data including [data segmentation]: multispectral colocalization, seeding and connectivity, particle size and shape distribution and population analysis. We have begun a program to investigate this approach using the confocal microscope. Scanning larger fields-of-view at lower spatial resolutions (e.g., low magnification objective) defines large maps that allow alignment of high spatial resolution (diffraction limited) sampling. The [objective] selection of the field-of-view with low spatial resolution reduces the subjective nature of the selection of a 'typical staining pattern'. High resolution digital scanning in three dimensions contribute both to the 'objective' nature of the analysis and allow for quantitation of characteristics not historically available/accessible. The complex carbohydrate heparin is implicated in tumor growth and wound healing by affecting angiogenesis, cell proliferation and motility. The internal localization of heparin within vascular cells appears to be a good predictor of the sensitivity of those cells to the action of heparin. Cells resistant to the antiproliferative action of heparin are able to sequester the heparin in large vacuoles whereas those cells sensitive to the carbohydrate do not exhibit these structures. We have applied our approach to QUANTITATIVE DIGITAL MICROSCOPY to the analysis of intracellular heparin distribution.

  17. Cellular phone-based image acquisition and quantitative ratiometric method for detecting cocaine and benzoylecgonine for biological and forensic applications.

    PubMed

    Cadle, Brian A; Rasmus, Kristin C; Varela, Juan A; Leverich, Leah S; O'Neill, Casey E; Bachtell, Ryan K; Cooper, Donald C

    2010-01-01

    Here we describe the first report of using low-cost cellular or web-based digital cameras to image and quantify standardized rapid immunoassay strips as a new point-of-care diagnostic and forensics tool with health applications. Quantitative ratiometric pixel density analysis (QRPDA) is an automated method requiring end-users to utilize inexpensive (∼ $1 USD/each) immunotest strips, a commonly available web or mobile phone camera or scanner, and internet or cellular service. A model is described whereby a central computer server and freely available IMAGEJ image analysis software records and analyzes the incoming image data with time-stamp and geo-tag information and performs the QRPDA using custom JAVA based macros (http://www.neurocloud.org). To demonstrate QRPDA we developed a standardized method using rapid immunotest strips directed against cocaine and its major metabolite, benzoylecgonine. Images from standardized samples were acquired using several devices, including a mobile phone camera, web cam, and scanner. We performed image analysis of three brands of commercially available dye-conjugated anti-cocaine/benzoylecgonine (COC/BE) antibody test strips in response to three different series of cocaine concentrations ranging from 0.1 to 300 ng/ml and BE concentrations ranging from 0.003 to 0.1 ng/ml. This data was then used to create standard curves to allow quantification of COC/BE in biological samples. Across all devices, QRPDA quantification of COC and BE proved to be a sensitive, economical, and faster alternative to more costly methods, such as gas chromatography-mass spectrometry, tandem mass spectrometry, or high pressure liquid chromatography. The limit of detection was determined to be between 0.1 and 5 ng/ml. To simulate conditions in the field, QRPDA was found to be robust under a variety of image acquisition and testing conditions that varied temperature, lighting, resolution, magnification and concentrations of biological fluid in a sample. To

  18. A `Clicked' Tetrameric Hydroxamic Acid Glycopeptidomimetic Antagonizes Sugar-Lectin Interactions On The Cellular Level

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Lin; Zang, Yi; Xie, Juan; Li, Jia; Chen, Guo-Rong; He, Xiao-Peng; Tian, He

    2014-07-01

    A tetrameric N-acetyl galactosaminyl (GalNAc) peptidomimetic was constructed by N-acetylation of repeating proline-based hydroxamic acid units, followed by a convergent `click chemistry' coupling. This novel glycopeptidomimetic was determined to effectively antagonize the interaction between a transmembrane hepatic lectin and GalNAc on the cellular level.

  19. A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS

    EPA Science Inventory

    We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...

  20. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study

    PubMed Central

    Rikabi, Sarah; French, Anna; Pinedo-Villanueva, Rafael; Morrey, Mark E; Wartolowska, Karolina; Judge, Andrew; MacLaren, Robert E; Mathur, Anthony; Williams, David J; Wall, Ivan; Birchall, Martin; Reeve, Brock; Atala, Anthony; Barker, Richard W; Cui, Zhanfeng; Furniss, Dominic; Bure, Kim; Snyder, Evan Y; Karp, Jeffrey M; Price, Andrew; Carr, Andrew; Brindley, David A

    2014-01-01

    There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community. PMID:25383173

  1. How cells explore shape space: A quantitative statistical perspective of cellular morphogenesis

    PubMed Central

    Yin, Zheng; Sailem, Heba; Sero, Julia; Ardy, Rico; Wong, Stephen T.C.; Bakal, Chris

    2014-01-01

    Through statistical analysis of datasets describing single cell shape following systematic gene depletion, we have found that the morphological landscapes explored by cells are composed of a small number of attractor states. We propose that the topology of these landscapes is in large part determined by cell-intrinsic factors, such as biophysical constraints on cytoskeletal organization, and reflect different stable signaling and/or transcriptional states. Cell-extrinsic factors act to determine how cells explore these landscapes, and the topology of the landscapes themselves. Informational stimuli primarily drive transitions between stable states by engaging signaling networks, while mechanical stimuli tune, or even radically alter, the topology of these landscapes. As environments fluctuate, the topology of morphological landscapes explored by cells dynamically adapts to these fluctuations. Finally we hypothesize how complex cellular and tissue morphologies can be generated from a limited number of simple cell shapes. PMID:25220035

  2. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress.

    PubMed

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials. PMID:27409641

  3. Whole cell, label free protein quantitation with data independent acquisition: quantitation at the MS2 level.

    PubMed

    McQueen, Peter; Spicer, Vic; Schellenberg, John; Krokhin, Oleg; Sparling, Richard; Levin, David; Wilkins, John A

    2015-01-01

    Label free quantitation by measurement of peptide fragment signal intensity (MS2 quantitation) is a technique that has seen limited use due to the stochastic nature of data dependent acquisition (DDA). However, data independent acquisition has the potential to make large scale MS2 quantitation a more viable technique. In this study we used an implementation of data independent acquisition--SWATH--to perform label free protein quantitation in a model bacterium Clostridium stercorarium. Four tryptic digests analyzed by SWATH were probed by an ion library containing information on peptide mass and retention time obtained from DDA experiments. Application of this ion library to SWATH data quantified 1030 proteins with at least two peptides quantified (∼ 40% of predicted proteins in the C. stercorarium genome) in each replicate. Quantitative results obtained were very consistent between biological replicates (R(2) ∼ 0.960). Protein quantitation by summation of peptide fragment signal intensities was also highly consistent between biological replicates (R(2) ∼ 0.930), indicating that this approach may have increased viability compared to recent applications in label free protein quantitation. SWATH based quantitation was able to consistently detect differences in relative protein quantity and it provided coverage for a number of proteins that were missed in some samples by DDA analysis. PMID:25348682

  4. ELF (extremely-low-frequency) field interactions at the animal, tissue and cellular levels

    SciTech Connect

    Tenforde, T.S.

    1990-10-01

    A description is given of the fundamental physical properties of extremely-low-frequency (ELF) electromagnetic fields, and the mechanisms through which these fields interact with the human body at a macroscopic level. Biological responses to ELF fields at the tissue, cellular and molecular levels are summarized, including new evidence that ELF field exposure produces alterations in gene expression and the cytoplasmic concentrations of specific proteins.

  5. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity

    PubMed Central

    Mortimer, Nathan T.; Goecks, Jeremy; Kacsoh, Balint Z.; Mobley, James A.; Bowersock, Gregory J.; Taylor, James; Schlenke, Todd A.

    2013-01-01

    Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity. PMID:23690612

  6. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    PubMed

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:26277093

  7. Introducing Simulated Cellular Architecture to the Quantitative Analysis of Fluorescent Microscopy

    PubMed Central

    DePristo, Mark A.; Chang, Lynne; Vale, Ronald D.; Khan, Shahid M.; Lipkow, Karen

    2009-01-01

    Biological cells are complex and highly dynamic: Many macromolecules are organized in loose assemblies, clusters or highly structured complexes, others exist most of the time as freely diffusing monomers. They move between regions and compartments through diffusion and enzyme-mediated transport, within a heavily crowded cytoplasm. To make sense of this complexity, computational models, and, in turn, quantitative in vivo data are needed. An array of fluorescent microscopy methods is available, but due to the inherent noise and complexity inside the cell, they are often hard to interpret. Using the example of fluorescence recovery after photobleaching (FRAP) and the bacterial chemotaxis system, we are here introducing detailed spatial simulations as a new approach in analysing such data. PMID:19628003

  8. A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury.

    PubMed

    Hausmann, R; Kaiser, A; Lang, C; Bohnert, M; Betz, P

    1999-01-01

    The time-dependent inflammatory cell reaction in human cortical contusions has been investigated during the first 30 weeks after blunt head injury. Immunohistochemical staining was carried out using CD 15 for granulocytes and LCA, CD 3 and UCHL-1 for mononuclear leucocytes. In order to provide reliable data for a forensic wound age estimation, the intensity of the cellular reaction was evaluated with a quantitative image analysis system. CD 15-labelled granulocytes were detectable earliest 10 min after brain injury, whereas significantly increased numbers of mononuclear leucocytes occurred in cortical contusions after a postinfliction interval of at least 1.1 days (LCA), 2 days (CD 3) or 3.7 days (UCHL-1), respectively. PMID:10433032

  9. Near-infrared quantitative phase imaging of cellular manipulation under different physio-chemical environments

    NASA Astrophysics Data System (ADS)

    Joshi, Bipin

    Quantitative phase imaging using Digital Holographic Microscopy (DHM) is emerging as a label-free and wide-field method of characterizing cells with high spatio-temporal resolution. In parallel, silicon based micromechanical and electronic devices are allowing both manipulation (e.g. electrical stimulation, mechanical actuation) as well as characterization (electrical and mechanical) of micro and nano-scopic samples. This has revolutionized development of lab-on-a-chip devices for high throughput analysis of cells and molecules for diagnosis of disease and screening of drug-effects. However, very little progress has been made in optical (e.g. fluorescence, Raman etc) characterization of samples on these silicon-based devices. Especially, wide-field high-resolution optical imaging and characterization of samples under silicon environment has not been possible owing to the opacity of silicon to visible light. This thesis reports high resolution near-infrared quantitative phase imaging of cells through silicon, in isotonic as well as hypotonic environment using DHM. Further, several microscopic (AFM, laser manipulation) methods are being developed for characterization of mechanical properties (e.g. elasticity) of cells so as to determine changes during physiological stress. In particular, optical tweezers are used for transverse-stretching cells by actuating anchored-beads as handles and imaging using phase-contrast microscopy. While this method is constantly gaining more attention due to non-contact nature of actuation, it is very time consuming and has low working distance. The thesis describes development of a weakly-focused laser beam for axial-stretching of cell by scattering force, which can be easily extended for wide-area stretching. Application of DHM allowed cell imaging with nm-resolution when stretched axially. Development of an empirical formula for force exerted by defocused light beam on cell surface led to measurement of elastic property of cell. In

  10. Monitoring protein phosphatase 1 isoform levels as a marker for cellular stress.

    PubMed

    Amador, Fátima Camões; Henriques, Ana Gabriela; da Cruz E Silva, Odete A B; da Cruz E Silva, Edgar F

    2004-01-01

    Reversible protein phosphorylation is a central mechanism regulating many biological functions, and abnormal protein phosphorylation can have a devastating impact on cellular control mechanisms, including a contributing role in neurodegenerative processes. Hence, many promising novel drug development strategies involve targeting protein phosphorylation systems. In this study, we demonstrate that various cellular stresses relevant to neurodegeneration can specifically affect the protein expression levels of protein phosphatase 1 (PP1). PP1 levels were altered upon exposure of PC12 and COS-1 cells to aluminium, Abeta peptides, sodium azide, and even heat shock. Particularly interesting, given PP1's involvement in aging and neurodegeneration, was the consistent decrease in PP1gamma(1) levels in response to stress agents. In fact, alterations in the expression levels of PP1 appear to correspond to an early response of stress induction, that is, before alterations in heat shock proteins can be detected. Our data suggest that monitoring PP1 isoform expression could constitute a useful diagnostic tool for cellular stress, possibly even neurodegeneration. Additionally, our results strengthen the rationale for signal transduction therapeutics and indicate that altering the specific activity of PP1 either directly or by targeting its regulatory proteins may be a useful therapeutic development strategy for the future. PMID:15113600

  11. Research of epidermal cellular vegetal cycle of intravascular low level laser irradiation in treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Bao, Xiaoqing; Zhang, Mei-Jue

    2005-07-01

    Objective: To research epidermal cellular vegetal cycle and the difference of DNA content between pre and post Intravascular Low Level Laser Irradiation treatment of psoriasis. Method: 15 patients suffered from psoriasis were treated by intravascular low level laser irradiation (output power: 4-5mw, 1 hour per day, a course of treatment is 10 days). We checked the different DNA content of epidermal cell between pre and post treatment of psoriasis and 8 natural human. Then the percentage of each phase among the whole cellular cycle was calculated and the statistical analysis was made. Results: The mean value of G1/S phase is obviously down while G2+M phase increased obviously. T test P<0.05.The related statistical analysis showed significant difference between pre and post treatments. Conclusions: The Intravascular Low Level Laser Irradiation (ILLLI) in treatment of psoriasis is effective according to the research of epidermal cellular vegetal cycle and the difference DNA content of Intravascular Low Level Laser Irradiation between pre and post treatment of psoriasis

  12. ERK1/2 can feedback-regulate cellular MEK1/2 levels.

    PubMed

    Hong, Seung-Keun; Wu, Pui-Kei; Karkhanis, Mansi; Park, Jong-In

    2015-10-01

    Signal transduction of the Raf/MEK/ERK pathway is regulated by various feedback mechanisms. Given the greater molar ratio between Raf-MEK than between MEK-ERK in cells, it may be possible that MEK1/2 levels are regulated to modulate Raf/MEK/ERK activity upon pathway stimulation. Nevertheless, it has not been reported whether MEK1/2 expression can be subject to a feedback regulation. Here, we report that the Raf/MEK/ERK pathway can feedback-regulate cellular MEK1 and MEK2 levels. In different cell types, ΔRaf-1:ER- or B-Raf(V600E)-mediated MEK/ERK activation increased MEK1 but decreased MEK2 levels. These regulations were abrogated by ERK1/2 knockdown mediated by RNA interference, suggesting the presence of a feedback mechanism that regulates MEK1/2 levels. Subsequently, analyses using qPCR and luciferase reporters of the DNA promoter and 3' untranslated region revealed that the feedback MEK1 upregulation was in part attributed to increased transcription. However, the feedback MEK2 downregulation was only observed at protein levels, which was blocked by the proteasome inhibitors, MG132 and bortezomib, suggesting that the MEK2 regulation is mediated at a post-translational level. These results suggest that the Raf/MEK/ERK pathway can feedback-regulate cellular levels of MEK1 and MEK2, wherein MEK1 levels are upregulated at transcriptional level whereas MEK2 levels are downregulated at posttranslational level. PMID:26163823

  13. Quantitative phase imaging of cellular and subcellular structures for non-invasive screening diagnostics of socially significant diseases

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Metelin, Vladislav; Nasyrov, Marat; Belyakov, Vladimir; Kuznetsov, Alexander; Sukhenko, Evgeniy

    2015-03-01

    The objective of the present study is to increase the quality of the early diagnosis using cytological differential-diagnostic criteria for reactive changes in the nuclear structures of the immunocompetent cells. The morphofunctional status of living cells were estimated in the real time using new technologic platform of the hardware-software complex for phase cell imaging. The level of functional activity for lymphocyte subpopulations was determined on the base of modification of nuclear structures and decreasing of nuclear phase thickness. The dynamics of nuclear parameters was used as the quantitative measuring for cell activating level and increasing of proliferative potential.

  14. Regulatory Nexus of Synthesis and Degradation Deciphers Cellular Nrf2 Expression Levels

    PubMed Central

    Suzuki, Takafumi; Shibata, Tatsuhiro; Takaya, Kai; Shiraishi, Kouya; Kohno, Takashi; Kunitoh, Hideo; Tsuta, Koji; Furuta, Koh; Goto, Koichi; Hosoda, Fumie; Sakamoto, Hiromi; Motohashi, Hozumi

    2013-01-01

    Transcription factor Nrf2 (NF-E2-related factor 2) is essential for oxidative and electrophilic stress responses. While it has been well characterized that Nrf2 activity is tightly regulated at the protein level through proteasomal degradation via Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination, not much attention has been paid to the supply side of Nrf2, especially regulation of Nrf2 gene transcription. Here we report that manipulation of Nrf2 transcription is effective in changing the final Nrf2 protein level and activity of cellular defense against oxidative stress even in the presence of Keap1 and under efficient Nrf2 degradation, determined using genetically engineered mouse models. In excellent agreement with this finding, we found that minor A/A homozygotes of a single nucleotide polymorphism (SNP) in the human NRF2 upstream promoter region (rs6721961) exhibited significantly diminished NRF2 gene expression and, consequently, an increased risk of lung cancer, especially those who had ever smoked. Our results support the notion that in addition to control over proteasomal degradation and derepression from degradation/repression, the transcriptional level of the Nrf2 gene acts as another important regulatory point to define cellular Nrf2 levels. These results thus verify the critical importance of human SNPs that influence the levels of transcription of the NRF2 gene for future personalized medicine. PMID:23572560

  15. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels.

    PubMed

    Suzuki, Takafumi; Shibata, Tatsuhiro; Takaya, Kai; Shiraishi, Kouya; Kohno, Takashi; Kunitoh, Hideo; Tsuta, Koji; Furuta, Koh; Goto, Koichi; Hosoda, Fumie; Sakamoto, Hiromi; Motohashi, Hozumi; Yamamoto, Masayuki

    2013-06-01

    Transcription factor Nrf2 (NF-E2-related factor 2) is essential for oxidative and electrophilic stress responses. While it has been well characterized that Nrf2 activity is tightly regulated at the protein level through proteasomal degradation via Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination, not much attention has been paid to the supply side of Nrf2, especially regulation of Nrf2 gene transcription. Here we report that manipulation of Nrf2 transcription is effective in changing the final Nrf2 protein level and activity of cellular defense against oxidative stress even in the presence of Keap1 and under efficient Nrf2 degradation, determined using genetically engineered mouse models. In excellent agreement with this finding, we found that minor A/A homozygotes of a single nucleotide polymorphism (SNP) in the human NRF2 upstream promoter region (rs6721961) exhibited significantly diminished NRF2 gene expression and, consequently, an increased risk of lung cancer, especially those who had ever smoked. Our results support the notion that in addition to control over proteasomal degradation and derepression from degradation/repression, the transcriptional level of the Nrf2 gene acts as another important regulatory point to define cellular Nrf2 levels. These results thus verify the critical importance of human SNPs that influence the levels of transcription of the NRF2 gene for future personalized medicine. PMID:23572560

  16. One-micron resolution optical coherence tomography (OCT) in vivo for cellular level imaging

    NASA Astrophysics Data System (ADS)

    Cui, Dongyao; Liu, Xinyu; Zhang, Jing; Yu, Xiaojun; Sun, Ding; Luo, Yuemei; Gu, Jun; Shum, Ping; Liu, Linbo

    2015-03-01

    We developed a spectral domain OCT system combining two NIR, CW light sources of different spectral range. Its resolving power is validated by visualizing the cellular structures of zebra fish larvae in vivo. An NIR extended illumination from 755-1100 nm is achieved. The axial resolution is 1.27 μm in air, corresponding to 0.93μm in tissue (n=1.36), which is the highest axial resolution using NIR, CW laser sources up to date to the best of our knowledge. In vivo imaging is conducted to demonstrate the resolving power of proposed one-micron resolution OCT system. The top and bottom surfaces of individual disk-like red blood cell is reliably visualized, as well as flat, spindle shaped endothelial cells lining along the luminal surface of the blood vessel wall. This study provides a viable solution for cellular and subcellular level OCT imaging system which is also very competitive in cost.

  17. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.

    PubMed

    Huh, Dongeun; Fujioka, Hideki; Tung, Yi-Chung; Futai, Nobuyuki; Paine, Robert; Grotberg, James B; Takayama, Shuichi

    2007-11-27

    We describe a microfabricated airway system integrated with computerized air-liquid two-phase microfluidics that enables on-chip engineering of human airway epithelia and precise reproduction of physiologic or pathologic liquid plug flows found in the respiratory system. Using this device, we demonstrate cellular-level lung injury under flow conditions that cause symptoms characteristic of a wide range of pulmonary diseases. Specifically, propagation and rupture of liquid plugs that simulate surfactant-deficient reopening of closed airways lead to significant injury of small airway epithelial cells by generating deleterious fluid mechanical stresses. We also show that the explosive pressure waves produced by plug rupture enable detection of the mechanical cellular injury as crackling sounds. PMID:18006663

  18. Dual Stimuli-Responsive Polymer Prodrugs Quantitatively Loaded by Nanoparticles for Enhanced Cellular Internalization and Triggered Drug Release.

    PubMed

    Huang, Mingming; Zhao, Kaijie; Wang, Lei; Lin, Shanqing; Li, Junjie; Chen, Jingbo; Zhao, Chengai; Ge, Zhishen

    2016-05-11

    Direct encapsulation of hydrophobic drugs into amphiphilic block copolymer micelles is frequently subjected to low drug loading efficiency (DLE) and loading content (DLC), as well as lower micellar stability and uncontrollable drug release. In this report, we prepare the copolymer prodrugs (PPEMA-co-PCPTM) via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(piperidin-1-yl)ethyl methacrylate (PEMA) and reduction-responsive CPT monomer (CPTM), which were quantitatively encapsulated into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles. The polymer prodrug-loaded nanoparticles showed high stability for a long time in aqueous solution or blood serum and even maintain similar size after a lyophilization-dissolution cycle. The tumoral pH (∼6.8)-responsive properties of PPEMA segments endow the micellar cores with triggered transition from neutral to positively charged and swellable properties. The PEG-b-PCL nanoparticles loading polymer prodrugs (PPEMA-b-PCPTM) eliminated burst drug release. Simultaneously, CPT drug release can be triggered by reductive agents and solution pH. At pH 6.8, efficient cellular internalization was achieved due to positively charged cores of the nanoparticles. As compared with nanoparticles loading PCPTM, higher cytotoxicity was observed by the nanoparticles loading PPEMA-b-PCPTM at pH 6.8. Further multicellular tumor spheroid (MCTs) penetration and growth suppression studies demonstrated that high-efficiency penetration capability and significant size shrinkage of MCTs were achieved after treatment by PPEMA-b-PCPTM-loaded nanoparticles at pH 6.8. Therefore, the responsive polymer prodrug encapsulation strategy represents an effective method to overcome the disadvantages of common hydrophobic drug encapsulation approaches by amphiphilic block copolymer micelles and simultaneously endows the nanoparticles with responsive drug release behaviors as well as enhanced cellular internalization and

  19. Liver proteomic response to hypertriglyceridemia in human-apolipoprotein C-III transgenic mice at cellular and mitochondrial compartment levels

    PubMed Central

    2014-01-01

    Background Hypertriglyceridemia (HTG) is defined as a triglyceride (TG) plasma level exceeding 150 mg/dl and is tightly associated with atherosclerosis, metabolic syndrome, obesity, diabetes and acute pancreatitis. The present study was undertaken to investigate the mitochondrial, sub-mitochondrial and cellular proteomic impact of hypertriglyceridemia in the hepatocytes of hypertriglyceridemic transgenic mice (overexpressing the human apolipoproteinC-III). Methods Quantitative proteomics (2D-DIGE) analysis was carried out on both “low-expressor” (LE) and “high-expressor” (HE) mice, respectively exhibiting moderate and severe HTG, to characterize the effect of the TG plasma level on the proteomic response. Results The mitoproteome analysis has revealed a large-scale phenomenon in transgenic mice, i.e. a general down-regulation of matricial proteins and up-regulation of inner membrane proteins. These data also demonstrate that the magnitude of proteomic changes strongly depends on the TG plasma level. Our different analyses indicate that, in HE mice, the capacity of several metabolic pathways is altered to promote the availability of acetyl-CoA, glycerol-3-phosphate, ATP and NADPH for TG de novo biosynthesis. The up-regulation of several cytosolic ROS detoxifying enzymes has also been observed, suggesting that the cytoplasm of HTG mice is subjected to oxidative stress. Moreover, our results suggest that iron over-accumulation takes place in the cytosol of HE mice hepatocytes and may contribute to enhance oxidative stress and to promote cellular proliferation. Conclusions These results indicate that the metabolic response to HTG in human apolipoprotein C-III overexpressing mice may support a high TG production rate and that the cytosol of hepatocytes is subjected to an important oxidative stress, probably as a result of FFA over-accumulation, iron overload and enhanced activity of some ROS-producing catabolic enzymes. PMID:25047818

  20. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations

    NASA Astrophysics Data System (ADS)

    Manshian, Bella B.; Munck, Sebastian; Agostinis, Patrizia; Himmelreich, Uwe; Soenen, Stefaan J.

    2015-09-01

    A mechanistic understanding of nanomaterial (NM) interaction with biological environments is pivotal for the safe transition from basic science to applied nanomedicine. NM exposure results in varying levels of internalized NM in different neighboring cells, due to variances in cell size, cell cycle phase and NM agglomeration. Using high-content analysis, we investigated the cytotoxic effects of fluorescent quantum dots on cultured cells, where all effects were correlated with the concentration of NMs at the single cell level. Upon binning the single cell data into different categories related to NM concentration, this study demonstrates, for the first time, that quantum dots activate both cytoprotective and cytotoxic mechanisms, resulting in a zero net result on the overall cell population, yet with significant effects in cells with higher cellular NM levels. Our results suggest that future NM cytotoxicity studies should correlate NM toxicity with cellular NM numbers on the single cell level, as conflicting mechanisms in particular cell subpopulations are commonly overlooked using classical toxicological methods.

  1. Comparison of cellular responses induced by low level light in different cell types

    NASA Astrophysics Data System (ADS)

    Huang, Ying-Ying; Chen, Aaron C.-H.; Sharma, Sulbha K.; Wu, Qiuhe; Hamblin, Michael R.

    2010-02-01

    Discoveries are rapidly being made in multiple laboratories that shed "light" on the fundamental molecular and cellular mechanisms underlying the use of low level light therapy (LLLT) in vitro, in animal models and in clinical practice. Increases in cellular levels of respiration, in cytochrome c oxidase activity, in ATP levels and in cyclic AMP have been found. Increased expression of reactive oxygen species and release of nitric oxide have also been shown. In order for these molecular changes to have a major effect on cell behavior, it is likely that various transcription factors will be activated, possibly via different signal transduction pathways. In this report we compare and contrast the effects of LLLT in vitro on murine embryonic fibroblasts, primary cortical neurons, cardiomyocytes and bone-marrow derived dendritic cells. We also examined two human cell lines, HeLa cancer cells and HaCaT keratinocytes. The effects of 810-nm near-infra-red light delivered at low and high fluences were addressed. Reactive oxygen species generation, transcription factor activation and ATP increases are reported. The data has led to the hypothesis that cells with a high level of mitochondrial activity (mitochondrial membrane potential) have a higher response to light than cells with low mitochondrial activity.

  2. Cellular Quantitative Structure–Activity Relationship (Cell-QSAR): Conceptual Dissection of Receptor Binding and Intracellular Disposition in Antifilarial Activities of Selwood Antimycins

    PubMed Central

    2012-01-01

    We present the cellular quantitative structure–activity relationship (cell-QSAR) concept that adapts ligand-based and receptor-based 3D-QSAR methods for use with cell-level activities. The unknown intracellular drug disposition is accounted for by the disposition function (DF), a model-based, nonlinear function of a drug’s lipophilicity, acidity, and other properties. We conceptually combined the DF with our multispecies, multimode version of the frequently used ligand-based comparative molecular field analysis (CoMFA) method, forming a single correlation function for fitting the cell-level activities. The resulting cell-QSAR model was applied to the Selwood data on filaricidal activities of antimycin analogues. Their molecules are flexible, ionize under physiologic conditions, form different intramolecular H-bonds for neutral and ionized species, and cross several membranes to reach unknown receptors. The calibrated cell-QSAR model is significantly more predictive than other models lacking the disposition part and provides valuable structure optimization clues by factorizing the cell-level activity of each compound into the contributions of the receptor binding and disposition. PMID:22468611

  3. Biodistribution of Small Interfering RNA at the Organ and Cellular Levels after Lipid Nanoparticle-mediated Delivery

    PubMed Central

    Shi, Bin; Keough, Ed; Matter, Andrea; Leander, Karen; Young, Stephanie; Carlini, Ed; Sachs, Alan B.; Tao, Weikang; Abrams, Marc; Howell, Bonnie; Sepp-Lorenzino, Laura

    2011-01-01

    Chemically stabilized small interfering RNA (siRNA) can be delivered systemically by intravenous injection of lipid nanoparticles (LNPs) in rodents and primates. The biodistribution and kinetics of LNP–siRNA delivery in mice at organ and cellular resolution have been studied using immunofluorescence (IF) staining and quantitative polymerase chain reaction (qPCR). At 0.5 and 2 hr post tail vein injection of Cy5-labeled siRNA encapsulated in LNP, the organ rank-order of siRNA levels is liver > spleen > kidney, with only negligible accumulation in duodenum, lung, heart, and brain. Similar conclusions were drawn by using qPCR to measure tissue siRNA levels as a secondary end point. siRNA levels in these tissues decreased by more than 10-fold after 24 hr. Within the liver, LNPs delivered siRNA to hepatocytes, Kupffer cells, and sinusoids in a time-dependent manner, as revealed by IF staining and signal quantitation methods established using OPERA/Columbus software. siRNA first accumulated in liver sinusoids and trafficked to hepatocytes by 2 hr post dose, corresponding to the onset of target mRNA silencing. Fluorescence in situ hybridization methods were used to detect both strands of siRNA in fixed tissues. Collectively, the authors have implemented a platform to evaluate biodistribution of siRNA across cell types and across tissues in vivo, with the objective of elucidating the pharmacokinetic and pharmacodynamic relationship to guide optimization of delivery vehicles. PMID:21804077

  4. Optical clearing based cellular-level 3D visualization of intact lymph node cortex

    PubMed Central

    Song, Eunjoo; Seo, Howon; Choe, Kibaek; Hwang, Yoonha; Ahn, Jinhyo; Ahn, Soyeon; Kim, Pilhan

    2015-01-01

    Lymph node (LN) is an important immune organ that controls adaptive immune responses against foreign pathogens and abnormal cells. To facilitate efficient immune function, LN has highly organized 3D cellular structures, vascular and lymphatic system. Unfortunately, conventional histological analysis relying on thin-sliced tissue has limitations in 3D cellular analysis due to structural disruption and tissue loss in the processes of fixation and tissue slicing. Optical sectioning confocal microscopy has been utilized to analyze 3D structure of intact LN tissue without physical tissue slicing. However, light scattering within biological tissues limits the imaging depth only to superficial portion of LN cortex. Recently, optical clearing techniques have shown enhancement of imaging depth in various biological tissues, but their efficacy for LN are remained to be investigated. In this work, we established optical clearing procedure for LN and achieved 3D volumetric visualization of the whole cortex of LN. More than 4 times improvement in imaging depth was confirmed by using LN obtained from H2B-GFP/actin-DsRed double reporter transgenic mouse. With adoptive transfer of GFP expressing B cells and DsRed expressing T cells and fluorescent vascular labeling by anti-CD31 and anti-LYVE-1 antibody conjugates, we successfully visualized major cellular-level structures such as T-cell zone, B-cell follicle and germinal center. Further, we visualized the GFP expressing metastatic melanoma cell colony, vasculature and lymphatic vessels in the LN cortex. PMID:26504662

  5. Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level.

    PubMed

    Regan, Lynne; Hinrichsen, Michael R; Oi, Curran

    2016-05-01

    All diseases can be fundamentally viewed as the result of malfunctioning cellular pathways. Protein engineering offers the potential to develop new tools that will allow these dysfunctional pathways to be better understood, in addition to potentially providing new routes to restore proper function. Here we discuss different approaches that can be used to change the intracellular activity of a protein by intervening at the protein level: targeted protein sequestration, protein recruitment, protein degradation, and selective inhibition of binding interfaces. The potential of each of these tools to be developed into effective therapeutic treatments will also be discussed, along with any major barriers that currently block their translation into the clinic. PMID:27031866

  6. Three-dimensional cellular-level imaging using full-field optical coherence tomography.

    PubMed

    Dubois, A; Moneron, G; Grieve, K; Boccara, A C

    2004-04-01

    An ultrahigh-resolution full-field optical coherence tomography (OCT) system has been developed for cellular-level imaging of biological media. The system is based on a Linnik interference microscope illuminated with a tungsten halogen lamp, associated with a high-resolution CCD camera. En face tomographic images are produced in real time, with the best spatial resolution ever achieved in OCT (0.7 microm x 0.9 microm, axial x transverse). A shot-noise limited detection sensitivity of 80 dB can be reached with an acquisition time per image of 1 s. Images of animal ophthalmic biopsies and vegetal tissues are shown. PMID:15128200

  7. Donut-shaped chambers for analysis of biochemical processes at the cellular and subcellular levels.

    PubMed

    Zurgil, N; Ravid-Hermesh, O; Shafran, Y; Howitz, S; Afrimzon, E; Sobolev, M; He, J; Shinar, E; Goldman-Levi, R; Deutsch, M

    2014-07-01

    In order to study cell-cell variation with respect to enzymatic activity, individual live cell analysis should be complemented by measurement of single cell content in a biomimetic environment on a cellular scale arrangement. This is a challenging endeavor due to the small volume of a single cell, the low number of target molecules and cell motility. Micro-arrayed donut-shaped chambers (DSCs) of femtoliter (fL), picoliter (pL), and nanoliter (nL) volumes have been developed and produced for the analysis of biochemical reaction at the molecular, cellular and multicellular levels, respectively. DSCs are micro-arrayed, miniature vessels, in which each chamber acts as an individual isolated reaction compartment. Individual live cells can settle in the pL and nL DSCs, share the same space and be monitored under the microscope in a noninvasive, time-resolved manner. Following cell lysis and chamber sealing, invasive kinetic measurement based on cell content is achieved for the same individual cells. The fL chambers are used for the analysis of the same enzyme reaction at the molecular level. The various DSCs were used in this proof-of-principle work to analyze the reaction of intracellular esterase in both primary and cell line immune cell populations. These unique DSC arrays are easy to manufacture and offer an inexpensive and simple operating system for biochemical reaction measurement of numerous single cells used in various practical applications. PMID:24829933

  8. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    SciTech Connect

    Choi, Joon-Seok; Lee, Cheol-Koo

    2013-09-13

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.

  9. Quantitative Research Attitudes and Research Training Perceptions among Master's-Level Students

    ERIC Educational Resources Information Center

    Steele, Janeé M.; Rawls, Glinda J.

    2015-01-01

    This study explored master's-level counseling students' (N = 804) perceptions of training in the Council for Accreditation of Counseling and Related Educational Programs (2009) Research and Program Evaluation standard, and their attitudes toward quantitative research. Training perceptions and quantitative research attitudes were low to moderate,…

  10. mTORC1 signaling activates NRF1 to increase cellular proteasome levels

    PubMed Central

    Zhang, Yinan; Manning, Brendan D

    2015-01-01

    Defects in the maintenance of protein homeostasis, or proteostasis, has emerged as an underlying feature of a variety of human pathologies, including aging-related diseases. Proteostasis is achieved through the coordinated action of cellular systems overseeing amino acid availability, mRNA translation, protein folding, secretion, and degradation. The regulation of these distinct systems must be integrated at various points to attain a proper balance. In a recent study, we found that the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) pathway, well known to enhance the protein synthesis capacity of cells while concordantly inhibiting autophagy, promotes the production of more proteasomes. Activation of mTORC1 genetically, through loss of the tuberous sclerosis complex (TSC) tumor suppressors, or physiologically, through growth factors or feeding, stimulates a transcriptional program involving the sterol-regulatory element binding protein 1 (SREBP1) and nuclear factor erythroid-derived 2-related factor 1 (NRF1; also known as NFE2L1) transcription factors leading to an increase in cellular proteasome content. As discussed here, our findings suggest that this increase in proteasome levels facilitates both the maintenance of proteostasis and the recovery of amino acids in the face of an increased protein load consequent to mTORC1 activation. We also consider the physiological and pathological implications of this unexpected new downstream branch of mTORC1 signaling. PMID:26017155

  11. Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging

    NASA Astrophysics Data System (ADS)

    Chacko, Jenu Varghese; Harke, Benjamin; Canale, Claudio; Diaspro, Alberto

    2014-10-01

    Atomic force microscopes (AFM) provide topographical and mechanical information of the sample with very good axial resolution, but are limited in terms of chemical specificity and operation time-scale. An optical microscope coupled to an AFM can recognize and target an area of interest using specific identification markers like fluorescence tags. A high resolution fluorescence microscope can visualize fluorescence structures or molecules below the classical optical diffraction limit and reach nanometer scale resolution. A stimulated emission depletion (STED) microscopy superresolution (SR) microscope coupled to an AFM is an example in which the AFM tip gains nanoscale manipulation capabilities. The SR targeting and visualization ability help in fast and specific identification of subdiffraction-sized cellular structures and manoeuvring the AFM tip onto the target. We demonstrate how to build a STED AFM and use it for biological nanomanipulation aided with fast visualization. The STED AFM based bionanomanipulation is presented for the first time in this article. This study points to future nanosurgeries performable at single-cell level and a physical targeted manipulation of cellular features as it is currently used in research domains like nanomedicine and nanorobotics.

  12. A scientific role for Space Station Freedom: Research at the cellular level

    NASA Technical Reports Server (NTRS)

    Johnson, Terry C.; Brady, John N.

    1993-01-01

    The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.

  13. A mitochondrial RNAi screen defines cellular bioenergetic determinants and identifies an adenylate kinase as a key regulator of ATP levels

    PubMed Central

    Lanning, Nathan J.; Looyenga, Brendan D.; Kauffman, Audra L.; Niemi, Natalie M.; Sudderth, Jessica; DeBerardinis, Ralph J.; MacKeigan, Jeffrey P.

    2014-01-01

    Summary Altered cellular bioenergetics and mitochondrial function are major features of several diseases including cancer, diabetes, and neurodegenerative disorders. Given this important link to human health, we sought to define proteins within mitochondria that are critical for maintaining homeostatic ATP levels. We screened an RNAi library targeting >1,000 nuclear-encoded genes whose protein products localize to the mitochondria in multiple metabolic conditions to examine their effect on cellular ATP levels. We identified a mechanism by which electron transport chain perturbation under glycolytic conditions increased ATP production through enhanced glycolytic flux; thereby highlighting the cellular potential for metabolic plasticity. Additionally, we identified a mitochondrial adenylate kinase (AK4) that regulates cellular ATP levels, AMPK signaling, and whose expression significantly correlates with glioma patient survival. As a result, this study maps the bioenergetic landscape of >1,000 mitochondrial proteins in the context of varied metabolic substrates and begins to link key metabolic genes with clinical outcome. PMID:24767988

  14. Optical-Resolution Photoacoustic Microscopy: Auscultation of Biological Systems at the Cellular Level

    PubMed Central

    Hu, Song; Wang, Lihong V.

    2013-01-01

    Photoacoustic microscopy (PAM) offers unprecedented sensitivity to optical absorption and opens a new window to study biological systems at multiple length- and timescales. In particular, optical-resolution PAM (OR-PAM) has pushed the technical envelope to submicron length scales and millisecond timescales. Here, we review the state of the art of OR-PAM in biophysical research. With properly chosen optical wavelengths, OR-PAM can spectrally differentiate a variety of endogenous and exogenous chromophores, unveiling the anatomical, functional, metabolic, and molecular information of biological systems. Newly uncovered contrast mechanisms of linear dichroism and Förster resonance energy transfer further distinguish OR-PAM. Integrating multiple contrasts and advanced scanning mechanisms has capacitated OR-PAM to comprehensively interrogate biological systems at the cellular level in real time. Two future directions are discussed, where OR-PAM holds the potential to translate basic biophysical research into clinical healthcare. PMID:23972836

  15. Modeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks

    NASA Astrophysics Data System (ADS)

    Ozcan, H. Kurtulus; Bilgili, Erdem; Sahin, Ulku; Ucan, O. Nuri; Bayat, Cuma

    2007-09-01

    Tropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul are utilized in constituting the model. A supervised algorithm for the evaluation of ozone concentration using a genetically trained multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. A genetic algorithm is used in the optimization of CNN templates. The model results and the actual measurement results are compared and statistically evaluated. It is observed that seasonal changes in ozone concentrations are reflected effectively by the concentrations estimated by the multilevel-CNN model structure, with a correlation value of 0.57 ascertained between actual and model results. It is shown that the multilevel-CNN modeling technique is as satisfactory as other modeling techniques in associating the data in a complex medium in air pollution applications.

  16. Recent developments in nanowires for bio-applications from molecular to cellular levels.

    PubMed

    Rahong, Sakon; Yasui, Takao; Kaji, Noritada; Baba, Yoshinobu

    2016-04-01

    This review highlights the most promising applications of nanowires for bioanalytical chemistry and medical diagnostics. The materials discussed here are metal oxide and Si semiconductors, which are integrated with various microfluidic systems. Nanowire structures offer desirable advantages such as a very small diameter size with a high aspect ratio and a high surface-to-volume ratio without grain boundaries; consequently, nanowires are promising tools to study biological systems. This review starts with the integration of nanowire structures into microfluidic systems, followed by the discussion of the advantages of nanowire structures in the separation, manipulation and purification of biomolecules (DNA, RNA and proteins). Next, some representative nanowire devices are introduced for biosensors from molecular to cellular levels based on electrical and optical approaches. Finally, we conclude the review by highlighting some bio-applications for nanowires and presenting the next challenges that must be overcome to improve the capabilities of nanowire structures for biological and medical systems. PMID:26928289

  17. How the Venus flytrap actively snaps: hydrodynamic measurements at the cellular level

    NASA Astrophysics Data System (ADS)

    Colombani, Mathieu; Forterre, Yoel; GEP Team

    2012-11-01

    Although they lack muscle, plants have evolved a remarkable range of mechanisms to create rapid motion, from the rapid folding of sensitive plants to seed dispersal. Of these spectacular examples that have long fascinated scientists, the carnivorous plant Venus flytrap, whose leaves snap together in a fraction of second to capture insects, has long been a paradigm for study. Recently, we have shown that this motion involves a snap-buckling instability due to the shell-like geometry of the leaves of the trap. However, the origin of the movement that allows the plant to cross the instability threshold and actively bend remains largely unknown. In this study, we investigate this active motion using a micro-fluidic pressure probe that gives direct hydraulic and mechanical measurements at the cellular level (osmotic pressure, cell membrane permeability, cell wall elasticity). Our results challenge the role of osmotically-driven water flows usually put forward to explain Venus flytrap's active closure.

  18. Protection of low density lipoprotein oxidation at chemical and cellular level by the antioxidant drug dipyridamole.

    PubMed Central

    Iuliano, L.; Colavita, A. R.; Camastra, C.; Bello, V.; Quintarelli, C.; Alessandroni, M.; Piovella, F.; Violi, F.

    1996-01-01

    1. The oxidative modification of low density lipoprotein (LDL) is thought to be an important factor in the initiation and development of atherosclerosis. Natural and synthetic antioxidants have been shown to protect LDL from oxidation and to inhibit atherosclerosis development in animals. Synthetic antioxidants are currently being tested, by they are not necessarily safe for human use. 2. We have previously reported that dipyridamole, currently used in clinical practice, is a potent scavenger of free radicals. Thus, we tested whether dipyridamole could affect LDL oxidation at chemical and cellular level. 3. Chemically induced LDL oxidation was made by Cu(II), Cu(II) plus hydrogen peroxide or peroxyl radicals generated by thermolysis of 2,2'-azo-bis(2-amidino propane). Dipyridamole, (1-10 microM), inhibited LDL oxidation as monitored by diene formation, evolution of hydroperoxides and thiobarbituric acid reactive substances, apoprotein modification and by the fluorescence of cis-parinaric acid. 4. The physiological relevance of the antioxidant activity was validated by experiments at the cellular level where dipyridamole inhibited endothelial cell-mediated LDL oxidation, their degradation by monocytes, and cytotoxicity. 5. In comparison with ascorbic acid, alpha-tocopherol and probucol, dipyridamole was the more efficient antioxidant with the following order of activity: dipyridamole > probucol > ascorbic acid > alpha-tocopherol. The present study shows that dipyridamole inhibits oxidation of LDL at pharmacologically relevant concentrations. The inhibition of LDL oxidation is unequivocally confirmed by use of three different methods of chemical oxidation, by several methods of oxidation monitoring, and the pharmacological relevance is demonstrated by the superiority of dipyridamole over the naturally occurring antioxidants, ascorbic acid and alpha-tocopherol and the synthetic antioxidant probucol. Images Figure 6 PMID:8968553

  19. Dual transcriptional-translational cascade permits cellular level tuneable expression control

    PubMed Central

    Morra, Rosa; Shankar, Jayendra; Robinson, Christopher J.; Halliwell, Samantha; Butler, Lisa; Upton, Mathew; Hay, Sam; Micklefield, Jason; Dixon, Neil

    2016-01-01

    The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems. PMID:26405200

  20. Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks

    PubMed Central

    Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad

    2015-01-01

    The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown. PMID:26340633

  1. Axial level-dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate.

    PubMed

    Kondoh, Hisato; Takada, Shinji; Takemoto, Tatsuya

    2016-06-01

    The transcription factor gene Sox2, centrally involved in neural primordial regulation, is activated by many enhancers. During the early stages of embryonic development, Sox2 is regulated by the enhancers N2 and N1 in the anterior neural plate (ANP) and posterior neural plate (PNP), respectively. This differential use of the enhancers reflects distinct regulatory mechanisms underlying the genesis of ANP and PNP. The ANP develops directly from the epiblast, triggered by nodal signal inhibition, and via the combined action of TFs SOX2, OTX2, POU3F1, and ZIC2, which promotes the the ANP development and inhibits other cell lineages. In contrast, the PNP is derived from neuromesodermal bipotential axial stem cells that develop into the neural plate when Sox2 is activated by the N1 enhancer, whereas they develop into the paraxial mesoderm when the N1 enhancer is repressed by the action of TBX6. The axial stem cells are maintained by the activity of WNT3a and T (Brachyury). However, at axial levels more anterior to the 8th somites (cervical levels), the development of both the neural plate and somite proceeds in the absence of WNT3a, T, or TBX6. These observations indicate that distinct molecular and cellular mechanisms determine neural plate genesis based on the axial level, and contradict the classical concept of the term "neural induction," which assumes a pan-neural plate mechanism. PMID:27279156

  2. Perturbing the Cellular Levels of Steroid Receptor Coactivator-2 Impairs Murine Endometrial Function

    PubMed Central

    Szwarc, Maria M.; Kommagani, Ramakrishna; Jeong, Jae-Wook; Wu, San-Pin; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.; DeMayo, Francesco J.; Lydon, John P.

    2014-01-01

    As pleiotropic coregulators, members of the p160/steroid receptor coactivator (SRC) family control a broad spectrum of transcriptional responses that underpin a diverse array of physiological and pathophysiological processes. Because of their potent coregulator properties, strict controls on SRC expression levels are required to maintain normal tissue functionality. Accordingly, an unwarranted increase in the cellular levels of SRC members has been causally linked to the initiation and/or progression of a number of clinical disorders. Although knockout mouse models have underscored the critical non-redundant roles for each SRC member in vivo, there are surprisingly few mouse models that have been engineered to overexpress SRCs. This deficiency is significant since SRC involvement in many of these disorders is based on unscheduled increases in the levels (rather than the absence) of SRC expression. To address this deficiency, we used recent mouse technology that allows for the targeted expression of human SRC-2 in cells which express the progesterone receptor. Through cre-loxP recombination driven by the endogenous progesterone receptor promoter, a marked elevation in expression levels of human SRC-2 was achieved in endometrial cells that are positive for the progesterone receptor. As a result of this increase in coregulator expression, female mice are severely subfertile due to a dysfunctional uterus, which exhibits a hypersensitivity to estrogen exposure. Our findings strongly support the proposal from clinical observations that increased levels of SRC-2 are causal for a number of endometrial disorders which compromise fertility. Future studies will use this mouse model to decipher the molecular mechanisms that underpin the endometrial defect. We believe such mechanistic insight may provide new molecular descriptors for diagnosis, prognosis, and/or therapy in the clinical management of female infertility. PMID:24905738

  3. Auxin transport at cellular level: new insights supported by mathematical modelling

    PubMed Central

    Hošek, Petr; Kubeš, Martin; Laňková, Martina; Dobrev, Petre I.; Klíma, Petr; Kohoutová, Milada; Petrášek, Jan; Hoyerová, Klára; Jiřina, Marcel; Zažímalová, Eva

    2012-01-01

    The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport. PMID:22438304

  4. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks.

    PubMed

    Castrillo, Juan I; Oliver, Stephen G

    2016-01-01

    Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and

  5. Association of elevated levels of cellular lipoteichoic acids of group B streptococci with human neonatal disease.

    PubMed Central

    Nealon, T J; Mattingly, S J

    1983-01-01

    Cell-associated lipoteichoic acids (LTAs) from late-exponential-phase cultures (serotypes Ia, Ib, Ic, II, and III) of group B streptococci isolated from infected and asymptomatically colonized infants were quantitated and characterized by growing the organisms in a chemically defined medium containing [3H]glycerol and [14C]acetate. Cell pellets were extracted with 45% aqueous phenol and chloroform-methanol and subjected to DEAE-Sephacel anion-exchange chromatography. Elution profiles resolved three major peaks, I, II, and III, with glycerol and phosphate present in a 1:1 molar ratio in each peak, and results obtained by Ouchterlony immunodiffusion analysis confirmed the presence of poly(glycerol phosphate). Saponification indicated that [14C]acetate was incorporated into fatty acids of peaks I and II only, suggesting that these were cell-associated LTAs. Peak II was of small molecular weight (less than 10,000) and probably represented another species of LTA. Peaks I and II were further demonstrated to be LTA by their ability to sensitize human type O erythrocytes. Peak III lacked fatty acids and was shown to probably be deacylated LTA. Quantitation of cell-associated teichoic acid material produced by the group B streptococcal strains indicated that the clinical isolates from infants with early- or late-onset disease possessed significantly higher levels than did the asymptomatic (clinical isolates from infants without symptoms of disease) group B streptococcal strains. Images PMID:6341233

  6. Characterization of cellular traction forces at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Dunn, Alexander

    2013-03-01

    The ability of cells to generate and respond to mechanical cues is an essential aspect of stem cell differentiation, embryonic development, and our senses of touch and hearing. However, our understanding of the roles of mechanical force in cell biology remains in its infancy, due largely to a lack of tools that measure the forces generated by living cells at the molecular scale. Here we describe a new technique termed Molecular Force Microscopy (MFM) that visualizes the forces exerted by single cellular adhesion molecules with nm, pN, and sub-second resolutions. MFM uses novel FRET-based molecular tension sensors that bind to a glass coverslip and present a binding site for integrins, a ubiquitous class of cell adhesion proteins. Cell-generated forces stretch the MFM sensor molecules, resulting in decreased FRET with increasing load that can be imaged at the single-molecule level. Human foreskin fibroblasts adhere to surfaces functionalized with the MFM probes and develop robust focal adhesions. FRET values measured using MFM indicate forces of between 1 and 4 pN per integrin, thus providing the first direct measurement of the tension per integrin molecule necessary to form stable adhesions. The relatively narrow force distribution suggests that mechanical tension is subject to exquisite feedback and control at the molecular level.

  7. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-06-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO. PMID:26554512

  8. Periodic forcing in a three-level cellular automata model for a vector-transmitted disease

    NASA Astrophysics Data System (ADS)

    Santos, L. B. L.; Costa, M. C.; Pinho, S. T. R.; Andrade, R. F. S.; Barreto, F. R.; Teixeira, M. G.; Barreto, M. L.

    2009-07-01

    A periodically forced two-dimensional cellular automata model is used to reproduce and analyze the complex spatiotemporal patterns observed in the transmission of vector infectious diseases. The system, which comprises three population levels, is introduced to describe complex features of the dynamics of the vector-transmitted dengue epidemics, known to be very sensitive to seasonal variables. The three coupled levels represent the human, the adult, and immature vector populations. The dynamics includes external seasonality forcing, human and mosquito mobility, and vector control effects. The model parameters, even if bounded to well-defined intervals obtained from reported data, can be selected to reproduce specific epidemic outbursts. In the current study, explicit results are obtained by comparison with actual data retrieved from the time series of dengue epidemics in two cities in Brazil. The results show fluctuations that are not captured by mean-field models. It also reveals the qualitative behavior of the spatiotemporal patterns of the epidemics. In the extreme situation of the absence of external periodic drive, the model predicts a completely distinct long-time evolution. The model is robust in the sense that it is able to reproduce the time series of dengue epidemics of different cities, provided that the forcing term takes into account the local rainfall modulation. Finally, an analysis is provided of the effect of the dependence between epidemics threshold and vector control actions, both in the presence and absence of human mobility factor.

  9. Tropomyosin and Myosin-II Cellular Levels Promote Actomyosin Ring Assembly in Fission Yeast

    PubMed Central

    Stark, Benjamin C.; Sladewski, Thomas E.; Pollard, Luther W.

    2010-01-01

    Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system. PMID:20110347

  10. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    PubMed Central

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.

    2014-01-01

    Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed. PMID:26157976

  11. Sulforaphane Restores Cellular Glutathione Levels and Reduces Chronic Periodontitis Neutrophil Hyperactivity In Vitro

    PubMed Central

    Dias, Irundika H. K.; Chapple, Ian L. C.; Milward, Mike; Grant, Melissa M.; Hill, Eric; Brown, James; Griffiths, Helen R.

    2013-01-01

    The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2. - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients’ neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2. - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. PMID:23826097

  12. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation.

    PubMed

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G; Fondufe-Mittendorf, Yvonne N

    2016-07-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  13. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM.

    PubMed

    Hartley, Jonathan M; Zhang, Rui; Gudheti, Manasa; Yang, Jiyuan; Kopeček, Jindřich

    2016-06-10

    We used a single-molecule localization technique called direct stochastic optical reconstruction microscopy (dSTORM) to quantify both colocalization and spatial distribution on a cellular level for two conceptually different N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates. Microscopy images were acquired of entire cells with resolutions as high as 25nm revealing the nanoscale distribution of the fluorescently labeled therapeutic components. Drug-free macromolecular therapeutics consisting of two self-assembling nanoconjugates showed slight increase in nanoclusters on the cell surface with time. Additionally, dSTORM provided high resolution images of the nanoscale organization of the self-assembling conjugates at the interface between two cells. A conjugate designed for treating ovarian cancer showed that the model drug (Cy3) and polymer bound to Cy5 were colocalized at an early time point before the model drug was enzymatically cleaved from the polymer. Using spatial descriptive statistics it was found that the drug was randomly distributed after 24h while the polymer bound dye remained in clusters. Four different fluorescent dyes were used and two different therapeutic systems were tested to demonstrate the versatility and possible general applicability of dSTORM for use in studying drug delivery systems. PMID:26855050

  14. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics.

    PubMed

    Miksys, Sharon; Rao, Yushu; Hoffmann, Ewa; Mash, Deborah C; Tyndale, Rachel F

    2002-09-01

    Cytochrome P450 (CYP) 2D6 is expressed in liver, brain and other extrahepatic tissues where it metabolizes a range of centrally acting drugs and toxins. As ethanol can induce CYP2D in rat brain, we hypothesized that CYP2D6 expression is higher in brains of human alcoholics. We examined regional and cellular expression of CYP2D6 mRNA and protein by RT-PCR, Southern blotting, slot blotting, immunoblotting and immunocytochemistry. A significant correlation was found between mean mRNA and CYP2D6 protein levels across 13 brain regions. Higher expression was detected in 13 brain regions of alcoholics (n = 8) compared to nonalcoholics (n = 5) (anovap < 0.0001). In hippocampus this was localized in CA1-3 pyramidal cells and dentate gyrus granular neurons. In cerebellum this was localized in Purkinje cells and their dendrites. Both of these brain regions, and these same cell-types, are known to be susceptible to alcohol damage. For one case, a poor metabolizer (CYP2D6*4/*4), there was no detectable CYP2D6 protein, confirming the specificity of the antibody used. These data suggest that in alcoholics elevated brain CYP2D6 expression may contribute to altered sensitivity to centrally acting drugs and to the mediation of neurotoxic and behavioral effects of alcohol. PMID:12354285

  15. A high-precision micropipette sensor for cellular-level real-time thermal characterization.

    PubMed

    Shrestha, Ramesh; Choi, Tae-Youl; Chang, Wonseok; Kim, Donsik

    2011-01-01

    We report herein development of a novel glass micropipette thermal sensor fabricated in a cost-effective manner, which is capable of measuring steady thermal fluctuation at spatial resolution of ∼2 μm with an accuracy of ±0.01 °C. We produced and tested various micrometer-sized sensors, ranging from 2 μm to 30 μm. The sensor comprises unleaded low-melting-point solder alloy (Sn-based) as a core metal inside a pulled borosilicate glass pipette and a thin film of nickel coating outside, creating a thermocouple junction at the tip. The sensor was calibrated using a thermally insulated calibration chamber, the temperature of which can be controlled with an accuracy of ±0.01 °C, and the thermoelectric power (Seebeck coefficient) of the sensor was recorded from 8.46 to 8.86 μV/°C. We have demonstrated the capability of measuring temperatures at a cellular level by inserting our temperature sensor into the membrane of a live retinal pigment epithelium cell subjected to a laser beam with a focal spot of 6 μm. We measured transient temperature profiles and the maximum temperatures were in the range of 38-55 ± 0.5 °C. PMID:22164108

  16. Adiponectin corrects premature cellular senescence and normalizes antimicrobial peptide levels in senescent keratinocytes.

    PubMed

    Jin, Taewon; Kim, Min Jeong; Heo, Won Il; Park, Kui Young; Choi, Sun Young; Lee, Mi-Kyung; Hong, Seung-Phil; Kim, Seong-Jin; Im, Myung; Moon, Nam Ju; Seo, Seong Jun

    2016-09-01

    Stress-induced premature senescence or aging causes dysfunction in the human somatic system. Adiponectin (Acrp30) plays a role in functional recovery, especially with adenosine 3',5'-monophosphate (AMP)-activated protein kinase (AMPK) and silent mating type information regulation 2 homolog 1 (SIRT1). Acrp30 stimulation reduced the premature senescence positive ratio induced by hydrogen peroxide (H2O2) and restituted human β-defensin 2 (hBD-2) levels in senescent keratinocytes. Acrp30 recovered AMPK activity in senescent keratinocytes and increased SIRT1 deacetylation activity. As a result, FoxO1 and FoxO3 transcription activity was recovered. Additionally, Acrp30 stimulation suppresses NFκB p65, which induces abnormal expression of hBD-2 induced by H2O2. In the present study, we have shown that Acrp30 reduces premature senescence and recovers cellular function in keratinocytes. These results suggest a role for Acrp30 as an anti-aging agent to improve impaired skin immune barriers. PMID:27349869

  17. A High-Precision Micropipette Sensor for Cellular-Level Real-Time Thermal Characterization

    PubMed Central

    Shrestha, Ramesh; Choi, Tae-Youl; Chang, Wonseok; Kim, Donsik

    2011-01-01

    We report herein development of a novel glass micropipette thermal sensor fabricated in a cost-effective manner, which is capable of measuring steady thermal fluctuation at spatial resolution of ∼2 μm with an accuracy of ±0.01 °C. We produced and tested various micrometer-sized sensors, ranging from 2 μm to 30 μm. The sensor comprises unleaded low-melting-point solder alloy (Sn-based) as a core metal inside a pulled borosilicate glass pipette and a thin film of nickel coating outside, creating a thermocouple junction at the tip. The sensor was calibrated using a thermally insulated calibration chamber, the temperature of which can be controlled with an accuracy of ±0.01 °C, and the thermoelectric power (Seebeck coefficient) of the sensor was recorded from 8.46 to 8.86 μV/°C. We have demonstrated the capability of measuring temperatures at a cellular level by inserting our temperature sensor into the membrane of a live retinal pigment epithelium cell subjected to a laser beam with a focal spot of 6 μm. We measured transient temperature profiles and the maximum temperatures were in the range of 38–55 ± 0.5 °C. PMID:22164108

  18. Morphine Produces Immunosuppressive Effects in Nonhuman Primates at the Proteomic and Cellular Levels*

    PubMed Central

    Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.; Jacobs, Jon M.; Gritsenko, Marina; Chan, Eric Y.; Purdy, David E.; Murnane, Robert D.; Larsen, Kay; Palermo, Robert E.; Shukla, Anil K.; Clauss, Theresa R.; Katze, Michael G.; McCune, Joseph M.; Smith, Richard D.

    2012-01-01

    Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. To explore how these changes interact with lentiviral infections in vivo, animals from two nonhuman primate species (African green monkeys and pigtailed macaques) were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g. lymph node, colon, cerebrospinal fluid, and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an interorgan, interindividual, and interspecies basis. In both species, morphine was associated with decreased levels of Ki-67+ T-cell activation but with only minimal changes in overall T-cell counts, neutrophil counts, and NK cell counts. Although changes in T-cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in lymph nodes, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have direct relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the potential interplay between opioid abuse and the immunological response to an infective agent. PMID:22580588

  19. Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology.

    PubMed

    Volinsky, Roman; Kinnunen, Paavo K J

    2013-06-01

    The oxidation of lipids has been shown to impact virtually all cellular processes. The paradigm has been that this involvement is due to interference with the functions of membrane-associated proteins. It is only recently that methodological advances in molecular-level detection and identification have begun to provide insights into oxidative lipid modification and its involvement in cell signaling as well as in major diseases and inflammation. Extensive evidence suggests a correlation between lipid peroxidation and degenerative neurological diseases such as Parkinson's and Alzheimer's, as well as type 2 diabetes and cancer. Despite the obvious relevance of understanding the molecular basis of the above ailments, the exact modes of action of oxidized lipids have remained elusive. In this minireview, we summarize recent findings on the biophysical characteristics of biomembranes following oxidative derivatization of their lipids, and how these altered properties are involved in both physiological processes and major pathological conditions. Lipid-bearing, oxidatively truncated and functionalized acyl chains are known to modify membrane bulk physical properties, such as thermal phase behavior, bilayer thickness, hydration and polarity profiles, as manifest in the altered structural dynamics of lipid bilayers, leading to augmented membrane permeability, fast lipid transbilayer diffusion (flip-flop), loss of lipid asymmetry (scrambling) and phase segregation (the formation of 'rafts'). These changes, together with the generated reactive lipid derivatives, can be further expected to interfere with lipid-protein interactions, influencing metabolic pathways, causing inflammation, the execution phase in apoptosis and initiating pathological processes. PMID:23506295

  20. Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels.

    PubMed

    Ilich, Jasminka Z; Kelly, Owen J; Inglis, Julia E; Panton, Lynn B; Duque, Gustavo; Ormsbee, Michael J

    2014-05-01

    While sarcopenia and sarcopenic obesity have been recognized in the last decade, a combined concept to include decreased muscle mass and strength, as well as decreased bone mass with coexistence of adiposity is discussed here. We introduce a new term, osteopenic obesity, and operationalize its meaning within the context of osteopenia and obesity. Next, we consolidate osteopenic obesity with the already existing and more familiar term, sarcopenic obesity, and delineate the resulting combined condition assigning it the term osteosarcopenic obesity. Identification and possible diagnosis of each condition are discussed, as well as the interactions of muscle, fat and bone tissues on cellular level, considering their endocrine features. Special emphasis is placed on the mesenchymal stem cell commitment into osteoblastogenic, adipogenic and myogenic lineages and causes of its deregulation. Based on the presented evidence and as expounded within the text, it is reasonable to say that under certain conditions, osteoporosis and sarcopenia could be the obesity of bone and muscle, respectively, with the term osteosarcopenic obesity as an encompassment for all. PMID:24632496

  1. Cellular levels of feedback regulator of adenylate cyclase and the effect of epinephrine and insulin.

    PubMed Central

    Ho, R j; Russell, T R; Asakawa, T; Sutherland, E W

    1975-01-01

    We have obtained direct evidence that shows the cellular formation and subsequent release of a potent inhibitor (feedback regulator) of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by adipocytes, upon stimulation with epinephrine. The appearance of such a feedback regulator in adipocytes preceded its release into the medium. During a 30 min incubation, intracellular regulator levels rose rapidly and reached 39-61 units/g of adipocyte at 10 min. Release of inhibitor into the medium increased slowly and was 11-16 units/g of adipocyte at 10 min. Upon continued incubation, the cells at 30 min contained 30-41 units/g of ingibitor, slightly less than the content at 30 min; meanwhile, the medium content rose more than 3-fold. The inhibitor from both locations appeared to have the same characteristics, judging from the purification procedures and the biological activities on hormone-stimulated adenylate cyclase. Adenylate cyclase was inhibited by the feedback regulator in vitro when either epinephrine, corticotropin (ACTH), or glucagon was used as activator. The site of action of this inhibitor is therefore most likely beyond the specific hormone receptors. A new in vitro action of insulin has been found. Insulin, 50-500 microunits/ml, inhibited the formation and release of this factor from isolated rat or hamster adipocytes by 29-81% after these cells were stimulated by hormones that raise intracellular adenosine 3':5'-cyclic monophosphate. This factor enhaced the effect of insulin in lowering the adenosine 3':5'-cyclic monophosphate levels in fresh rat adipocytes. A reduced formation of such a factor may modify the metabolic events in adipocytes, and some as yet unexplained effects of insulin could therefore be linked to the metabolic effects of this factor. PMID:174073

  2. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    PubMed

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters. PMID:26192200

  3. SINGLE-CELL LEVEL INVESTIGATION OF CYTOSKELETAL/CELLULAR RESPONSE TO EXTERNAL STIMULI

    SciTech Connect

    Hiddessen, A L

    2007-02-26

    A detailed understanding of the molecular mechanisms by which chemical signals control cell behavior is needed if the complex biological processes of embryogenesis, development, health and disease are to be completely understood. Yet, if we are to fully understand the molecular mechanisms controlling cell behavior, measurements at the single cell level are needed to supplement information gained from population level studies. One of the major challenges to accomplishing studies at the single cell level has been a lack of physical tools to complement the powerful molecular biological assays which have provided much of what we currently know about cell behavior. The goal of this exploratory project is the development of an experimental platform that facilitates integrated observation, tracking and analysis of the responses of many individual cells to controlled environmental factors (e.g. extracellular signals). Toward this goal, we developed chemically-patterned microarrays of both adherent and suspension mammalian cell types. A novel chemical patterning methodology, based on photocatalytic lithography, was developed to construct biomolecule and cell arrays that facilitate analysis of biological function. Our patterning techniques rely on inexpensive stamp materials and visible light, and do not necessitate mass transport or specified substrates. Patterned silicon and glass substrates are modified such that there is a non-biofouling polymer matrix surrounding the adhesive regions that target biomolecules and cells. Fluorescence and reflectance microscopy reveal successful patterning of proteins and single to small clusters of mammalian cells. In vitro assays conducted upon cells on the patterned arrays demonstrate the viability of cells interfacing with this synthetic system. Hence, we have successfully established a versatile cell measurement platform which can be used to characterize the molecular regulators of cellular behavior in a variety of important

  4. Morphine Produces Immunosuppressive Effects in Non-human Primates at the Proteomic and Cellular Levels

    SciTech Connect

    Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.; Jacobs, Jon M.; Gritsenko, Marina A.; Chan, Eric Y.; Purdy, David E.; Murnane, Robert D.; Larsen, Kay; Palermo, Robert E.; Shukla, Anil K.; Clauss, Therese RW; Katze, Michael G.; McCune, Joseph M.; Smith, Richard D.

    2012-05-11

    Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. As a prelude to understanding how these changes might interact with lentiviral infection in vivo, animals from two non-human primate (NHP) species [African green monkey (AGMs) and pigtailed macaque (PTs)] were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g., lymph node, colon, cerebrospinal fluid (CSF), and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an inter-organ, inter-individual, and inter-species basis. In both species, morphine was associated with decreased levels of (Ki-67+) T cell activation but with only minimal changes in overall T cell counts, neutrophil counts, and NK cells counts. While changes in T cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in the lymph node, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the interplay between opioid abuse and the response to infection with agents such as the human immunodeficiency virus, type 1 (HIV).

  5. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level

    PubMed Central

    Schvartzman, Mark; Palma, Matteo; Sable, Julia; Abramson, Justin; Hu, Xian; Sheetz, Michael P.; Wind, Shalom J.

    2011-01-01

    The ability to control the placement of individual molecules promises to enable a wide range of applications and is a key challenge in nanoscience and nanotechnology. Many biological interactions, in particular, are sensitive to the precise geometric arrangement of proteins. We have developed a technique which combines molecular-scale nanolithography with site-selective biochemistry to create biomimetic arrays of individual protein binding sites. The binding sites can be arranged in heterogeneous patterns of virtually any possible geometry with a nearly unlimited number of degrees of freedom. We have used these arrays to explore how the geometric organization of the extracellular matrix (ECM) binding ligand RGD (Arg-Gly-Asp) affects cell adhesion and spreading. Systematic variation of spacing, density and cluster size of individual integrin binding sites was used to elicit different cell behavior. Cell spreading assays on arrays of different geometric arrangements revealed a dramatic increase in spreading efficiency when at least 4 liganded sites were spaced within 60 nm or less, with no dependence on global density. This points to the existence of a minimal matrix adhesion unit for fibronectin defined in space and stoichiometry. Developing an understanding of the ECM geometries that activate specific cellular functional complexes is a critical step toward controlling cell behavior. Potential practical applications range from new therapeutic treatments to the rational design of tissue scaffolds that can optimize healing without scarring. More broadly, spatial control at the single-molecule level can elucidate factors controlling individual molecular interactions and can enable synthesis of new systems based on molecular-scale architectures. PMID:21319842

  6. Computational Approaches to Analyze and Predict Small Molecule Transport and Distribution at Cellular and Subcellular Levels

    PubMed Central

    Ah Min, Kyoung; Zhang, Xinyuan; Yu, Jing-yu; Rosania, Gus R.

    2013-01-01

    Quantitative structure-activity relationship (QSAR) studies and mechanistic mathematical modeling approaches have been independently employed for analyzing and predicting the transport and distribution of small molecule chemical agents in living organisms. Both of these computational approaches have been useful to interpret experiments measuring the transport properties of small molecule chemical agents, in vitro and in vivo. Nevertheless, mechanistic cell-based pharmacokinetic models have been especially useful to guide the design of experiments probing the molecular pathways underlying small molecule transport phenomena. Unlike QSAR models, mechanistic models can be integrated from microscopic to macroscopic levels, to analyze the spatiotemporal dynamics of small molecule chemical agents from intracellular organelles to whole organs, well beyond the experiments and training data sets upon which the models are based. Based on differential equations, mechanistic models can also be integrated with other differential equations-based systems biology models of biochemical networks or signaling pathways. Although the origin and evolution of mathematical modeling approaches aimed at predicting drug transport and distribution has occurred independently from systems biology, we propose that the incorporation of mechanistic cell-based computational models of drug transport and distribution into a systems biology modeling framework is a logical next-step for the advancement of systems pharmacology research. PMID:24218242

  7. Imaging of boron in tissue at the cellular level for boron neutron capture therapy.

    PubMed

    Arlinghaus, H F; Spaar, M T; Switzer, R C; Kabalka, G W

    1997-08-15

    Glioblastoma multiforme, and other tumors involving the brain, are undergoing experimental treatment with a promising new technique: boron neutron capture therapy (BNCT). BNCT relies on the capture of thermal neutrons by boron deposited biochemically in the tumor and the subsequent fission of the boron into energetic lithium ions and alpha particles. An important requirement for improved BNCT is the development of more selective boron delivery mechanisms. The ability to image the boron concentration in tissue sections and even inside individual cells would be an important aid in the development of these delivery mechanisms. We have compared both sputter-initiated resonance ionization microprobe (SIRIMP), which combines resonance ionization with a high-energy pulsed focused sputter ion beam and mass spectrometric detection of ions, with laser atomization resonance ionization microprobe (LARIMP), which uses a laser pulse instead of an ion pulse for the atomization process, to determine their characteristics in locating and quantifying boron concentrations as a function of position in tissues obtained from a rat which had been infused with a BNCT drug. The data show that the SIRIMP/LARIMP techniques are well suited for quantitative and ultrasensitive imaging of boron trace element concentrations in biological tissue sections. The LARIMP mode could be used to quickly determine the spatial boron concentration with intercellular resolution over large areas down to the low nanograms-per-gram level, while the SIRIMP mode could be used to determine the spatial boron concentration and its variability in intracellular areas. PMID:9271061

  8. Monitoring Astronaut Health at the Nanoscale Cellular Level Through the Eye

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Singh, Bhim S.; Rovati, Luigi; Docchio, Franco; Sebag, Jerry

    2000-01-01

    A user friendly goggles-like head-mounted device equipped with a suite of instruments for several non-invasive and quantitative medical evaluation of the eye, skin, and brain is desired for monitoring the health of astronauts during space travel and exploration of neighboring and distant planets. Real-time non-invasive evaluation of the different structures within the above organs can provide indices of the health of not just these organs, but the entire body. The techniques such as dynamic light scattering (for the early detection of uveitis, cholesterol levels, cataract, changes in the vitreous and possibly Alzheimer's disease), corneal autofluorescence (to assess extracellular matrix biology e.g., in diabetes), optical activity measurements (of anterior ocular fluid to evaluate blood-glucose levels), laser Doppler velocimetry (to assess retinal, optic nerve, and choroidal blood flow), reflectometry/oximetry (for assessing ocular and central nervous system oxygen metabolism), optical coherence tomography (to determine retinal tissue microstructure) and possibly scanning laser technology (for intraocular tissue imaging and scanning) will he integrated into this compact device. Skin sensors will also be mounted on the portion of the device in contact with the periocular region. This will enable monitoring of body temperature, EEG, and electrolyte status. This device will monitor astronaut health during long-duration space travel by detecting aberrations from pre-established "nonns", enabling prompt diagnosis and possibly the initiation of early preventative/curative therapy. The non-invasive nature of the device technologies permits frequent repetition of tests, enabling real-time complete crew health monitoring. This device may ultimately be useful in tele-medicine to bring modern healthcare to under-served areas on Earth as well as in so-called "advanced" care settings (e.g. diabetes in the USA).

  9. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment

    PubMed Central

    Beck, Kevin D.; Nguyen, Hal X.; Galvan, Manuel D.; Salazar, Desirée L.; Woodruff, Trent M.

    2010-01-01

    Traumatic injury to the central nervous system results in the disruption of the blood brain/spinal barrier, followed by the invasion of cells and other components of the immune system that can aggravate injury and affect subsequent repair and regeneration. Although studies of chronic neuroinflammation in the injured spinal cord of animals are clinically relevant to most patients living with traumatic injury to the brain or spinal cord, very little is known about chronic neuroinflammation, though several studies have tested the role of neuroinflammation in the acute period after injury. The present study characterizes a novel cell preparation method that assesses, quickly and effectively, the changes in the principal immune cell types by flow cytometry in the injured spinal cord, daily for the first 10 days and periodically up to 180 days after spinal cord injury. These data quantitatively demonstrate a novel time-dependent multiphasic response of cellular inflammation in the spinal cord after spinal cord injury and are verified by quantitative stereology of immunolabelled spinal cord sections at selected time points. The early phase of cellular inflammation is comprised principally of neutrophils (peaking 1 day post-injury), macrophages/microglia (peaking 7 days post-injury) and T cells (peaking 9 days post-injury). The late phase of cellular inflammation was detected after 14 days post-injury, peaked after 60 days post-injury and remained detectable throughout 180 days post-injury for all three cell types. Furthermore, the late phase of cellular inflammation (14–180 days post-injury) did not coincide with either further improvements, or new decrements, in open-field locomotor function after spinal cord injury. However, blockade of chemoattractant C5a-mediated inflammation after 14 days post-injury reduced locomotor recovery and myelination in the injured spinal cord, suggesting that the late inflammatory response serves a reparative function. Together, these

  10. Dissecting Analogical Leveling Quantitatively: The Case of the Innovative Potential Suffix in Tokyo Japanese.

    ERIC Educational Resources Information Center

    Matsuda, Kenjiro

    1993-01-01

    Analogical leveling in progress of a potential suffix in Tokyo Japanese is analyzed within a quantitative model. The phenomenon is shown to be controlled by five factors: sociological variable complex, verb stem length, verb conjugation pattern, the following inflectional form, and embeddedness of the clause containing the suffix. (Contains 70…

  11. Neighborhood disorder and telomeres: Connecting children’s exposure to community level stress and cellular response

    PubMed Central

    Theall, Katherine P.; Brett, Zoë H.; Shirtcliff, Elizabeth A.; Dunn, Erin C.; Drury, Stacy S.

    2013-01-01

    Our objective was to explore the utility of salivary telomere length (sTL) as an early indicator of neighborhood level social environmental risk during child development. We therefore tested the hypothesis that sTL would be associated with markers of social stress exposure in children. Children age 4–14 from 87 neighborhoods were recruited through five urban schools in New Orleans, Louisiana, U.S. Data were collected at the level of the child, family/household, and neighborhood. DNA was obtained from saliva using commercially available kits and sTL was determined for 104 children using quantitative PCR. Analysis was performed on 99 children who had complete data including sTL, social environmental stress, and additional covariates. The mean sTL value was 7.4 T/S (telomere signal/single copy signal) ratio units (± 2.4, range=2.5–18.0), and 4.7% of the variance in sTL was attributed to differences across neighborhoods. Children living in neighborhoods characterized by high disorder had an sTL value 3.2 units lower than children not living in high disordered environments (p<0.05) and their odds of having low relative sTL (defined as < 1 standard deviation below standardized z score mean) values was 3.43 times that of children not living in high disorder environments (adjusted OR=3.43, 95% CI=1.22, 9.62). Our findings are consistent with previous studies in adults demonstrating a strong link between psychosocial stress and sTL obtained from peripheral blood, consistent with previous studies in youth demonstrating an association between early life stress and sTL obtained from buccal cell DNA and offer increased support for the hypothesis that sTL represents a non-invasive biological indicator of psychosocial stress exposure (i.e., neighborhood disorder) able to reflect differences in stress exposure levels even in young children. PMID:23540366

  12. Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy.

    PubMed

    Watanabe-Nakayama, Takahiro; Machida, Shin-ichi; Harada, Ichiro; Sekiguchi, Hiroshi; Afrin, Rehana; Ikai, Atsushi

    2011-02-01

    The cellular response to external mechanical forces has important effects on numerous biological phenomena. The sequences of molecular events that underlie the observed changes in cellular properties have yet to be elucidated in detail. Here we have detected the responses of a cultured cell against locally applied cyclic stretching and compressive forces, after creating an artificial focal adhesion under a glass bead attached to the cantilever of an atomic force microscope. The cell tension initially increased in response to the tensile stress and then decreased within ∼1 min as a result of viscoelastic properties of the cell. This relaxation was followed by a gradual increase in tension extending over several minutes. The slow recovery of tension ceased after several cycles of force application. This tension-recovering activity was inhibited when cells were treated with cytochalasin D, an inhibitor of actin polymerization, or with (-)-blebbistatin, an inhibitor of myosin II ATPase activity, suggesting that the activity was driven by actin-myosin interaction. To our knowledge, this is the first quantitative analysis of cellular mechanical properties during the process of adaptation to locally applied cyclic external force. PMID:21281570

  13. Complex I Disorders: Causes, Mechanisms, and Development of Treatment Strategies at the Cellular Level

    ERIC Educational Resources Information Center

    Valsecchi, Federica; Koopman, Werner J. H.; Manjeri, Ganesh R.; Rodenburg, Richard J.; Smeitink, Jan A. M.; Willems, Peter H. G. M.

    2010-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) represents the final step in the conversion of nutrients into cellular energy. Genetic defects in the OXPHOS system have an incidence between 1:5,000 and 1:10,000 live births. Inherited isolated deficiency of the first complex (CI) of this system, a multisubunit assembly of 45 different proteins,…

  14. Using Nano-mechanics and Surface Acoustic Wave (SAW) for Disease Monitoring and Diagnostics at a Cellular Level in Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay

    A popular approach to monitoring diseases and their diagnosis is through biological, pathological or immunological characterization. However, at a cellular level progression of certain diseases manifests itself through mechanical effects as well. Here, we present a method which exploits localised flow; surface acoustic wave (SAW) induced acoustic streaming in a 9 μL droplet to characterize the adhesive properties of red blood cells (healthy, gluteraldehyde treated and malaria infected) in approximately 50 seconds. Our results show a 79% difference in cell mobilization between healthy malaria infected RBCs (and a 39% difference between healthy and treated ones), indicating that the method can serve as a platform for rapid clinical diagnosis; where separation of two or more different cell populations in a mixed solution is desirable. It can also act as a key biomarker for monitoring some diseases offering quantitative measures of disease progression and response to therapy.

  15. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation

    PubMed Central

    Siengdee, Puntita; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2. PMID:26010876

  16. Might carnitine status in animals indicate environmental/toxicological harm at the cellular level?

    SciTech Connect

    Garst, J.E.

    1995-12-01

    It is well known that R-(L)-carnitine (Cn) is essential for the energy-producing, mitochondrial beta-oxidation of long chain fatty acids. Cn can ameliorate the diverse effects of drugs, a chemicals and pollutants. Moreover, the toxicities of carbon monoxide, several heavy metals, and even the antibiotic cephaloridine seem mediated, in part, by actions affecting the Cn system. Data which could suggest that the Cn system is an integrator/regulator of the cellular response by the organism to it`s environment is described.

  17. 5-aminolevulinic acid for quantitative seek-and-treat of high-grade dysplasia in Barrett's esophagus cellular models

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Chi Allison; Ling, Celine S. N.; Andrews, David W.; Patterson, Michael S.; Diamond, Kevin R.; Hayward, Joseph E.; Armstrong, David; Fang, Qiyin

    2015-02-01

    High-grade dysplasia (HGD) in Barrett's esophagus (BE) poses increased risk for developing esophageal adenocarcinoma. To date, early detection and treatment of HGD regions are still challenging due to the sampling error from tissue biopsy and relocation error during the treatment after histopathological analysis. In this study, CP-A (metaplasia) and CP-B (HGD) cell lines were used to investigate the "seek-and-treat" potential using 5-aminolevulinic acid-induced protoporphyrin IX (PpIX). The photodynamic therapy photosensitizer then provides both a phototoxic effect and additional image contrast for automatic detection and real-time laser treatment. Complementary to our studies on automatic classification, this work focused on characterizing subcellular irradiation and the potential phototoxicity on both metaplasia and HGD. The treatment results showed that the HGD cells are less viable than metaplastic cells due to more PpIX production at earlier times. Also, due to mitochondrial localization of PpIX, a better killing effect was achieved by involving mitochondria or whole cells compared with just nucleus irradiation in the detected region. With the additional toxicity given by PpIX and potential morphological/textural differences for pattern recognition, this cellular platform serves as a platform to further investigate real-time "seek-and-treat" strategies in three-dimensional models for improving early detection and treatment of BE.

  18. Quantitative assessment of developmental levels in overarm throwing using wearable inertial sensing technology.

    PubMed

    Grimpampi, Eleni; Masci, Ilaria; Pesce, Caterina; Vannozzi, Giuseppe

    2016-09-01

    Motor proficiency in childhood has been recently recognised as a public health determinant, having a potential impact on the physical activity level and possible sedentary behaviour of the child later in life. Among fundamental motor skills, ballistic skills assessment based on in-field quantitative observations is progressively needed in the motor development community. The aim of this study was to propose an in-field quantitative approach to identify different developmental levels in overarm throwing. Fifty-eight children aged 5-10 years performed an overarm throwing task while wearing three inertial sensors located at the wrist, trunk and pelvis level and were then categorised using a developmental sequence of overarm throwing. A set of biomechanical parameters were defined and analysed using multivariate statistics to evaluate whether they can be used as developmental indicators. Trunk and pelvis angular velocities and time durations before the ball release showed increasing/decreasing trends with increasing developmental level. Significant differences between developmental level pairs were observed for selected biomechanical parameters. The results support the suitability and feasibility of objective developmental measures in ecological learning contexts, suggesting their potential supportiveness to motor learning experiences in educational and youth sports training settings. PMID:26818205

  19. Lipidomics: a mass spectrometry based, systems level analysis of cellular lipids

    PubMed Central

    Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex

    2009-01-01

    Lipidomics is a logical outcome of the history and traditions of lipid biochemistry and advances in mass spectrometry are at the heart of a renaissance in understanding the roles of lipids in cellular functions. Our desire to understand the complexity of lipids in biology has led to new techniques that allow us to identify over 1000 phospholipids in mammalian cell types and tissues. Improvements in chromatographic separation and mass spectrometry have positioned us to determine not only the lipid composition (i.e., parts list) of cells and tissues, but also address questions regarding lipid substrates and products that previously overwhelmed traditional analytical technologies. In the decade since lipidomics was conceived much of the efforts have been on new methodologies, development of computer programs to decipher the gigabytes of raw data, and struggling with the highly variable nature of biological systems where absolute quantities of a given metabolite may be less important than its relative change in concentration. It is clear that the technology is now sufficiently developed to address fundamental questions about the roles of lipids in cellular signaling and metabolic pathways. PMID:19744877

  20. Development and Validation of a Gamma Interferon ELISPOT Assay for Quantitation of Cellular Immune Responses to Varicella-Zoster Virus

    PubMed Central

    Smith, Jeffrey G.; Liu, Xu; Kaufhold, Robin M.; Clair, James; Caulfield, Michael J.

    2001-01-01

    Cell-mediated immunity appears to be critical for the prevention and control of varicella-zoster virus (VZV) infection and complications arising from zoster. Current assays of VZV-specific cell-mediated immunity are cumbersome or lack sensitivity. We have developed a gamma interferon ELISPOT assay that provides a direct measure of the number of T cells secreting a cytokine following stimulation with antigen. This assay is extremely sensitive and specific, with the ability to detect gamma interferon spot-forming cells (SFC) in the range of 10 to 1,000 SFC per million peripheral blood mononuclear cells (PBMCs). This assay has been validated by demonstrating the following: (i) the response detected is mediated almost entirely by CD4+ T cells, (ii) ELISPOT responses from fresh-frozen PBMCs are equivalent to those from freshly isolated cells, (iii) frozen PBMCs can be shipped on dry ice for up to 48 h without loss of activity, (iv) frozen PBMC samples can be stored in liquid nitrogen over long periods (>22 months) without any significant change in response, and (v) the numbers of ELISPOTs counted using a computer-based imaging system are equivalent to those counted by humans but have lower variability. The ability to use frozen cells is facilitated by the use of a recombinant nuclease (Benzonase) that can prevent cell clumping when samples are thawed. Frozen PBMC samples can be cycled through multiple changes in storage between liquid nitrogen and dry ice without any change in response being detected. This facilitates collection of samples at one site and testing performed at a remote location. This VZV ELISPOT assay provides a new versatile tool for monitoring cellular immune responses either during a herpes zoster disease outbreak or following vaccination. PMID:11527795

  1. Analysis of students' aptitude to provide meaning to images that represent cellular components at the molecular level.

    PubMed

    Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, Ijsbrand M

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or computer graphic images that closely resemble experimentally derived structures and are characterized by a low level of styling and simplification. This change brings about a new challenge for teachers: designing course instructions that allow students to interpret these images in a meaningful way. To determine how students deal with this change, we designed several image-based, in-course assessments. The images were highly relevant for the cell biology course but did not resemble any of the images in the teaching documents. We asked students to label the cellular components, describe their function, or both. What we learned from these tests is that realistic images, with a higher apparent level of complexity, do not deter students from investigating their meaning. When given a choice, the students do not necessarily choose the most simplified representation, and they were sensitive to functional indications embedded in realistic images. PMID:19723817

  2. Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes.

    PubMed

    Abelin, Jennifer G; Patel, Jinal; Lu, Xiaodong; Feeney, Caitlin M; Fagbami, Lola; Creech, Amanda L; Hu, Roger; Lam, Daniel; Davison, Desiree; Pino, Lindsay; Qiao, Jana W; Kuhn, Eric; Officer, Adam; Li, Jianxue; Abbatiello, Susan; Subramanian, Aravind; Sidman, Richard; Snyder, Evan; Carr, Steven A; Jaffe, Jacob D

    2016-05-01

    Profiling post-translational modifications represents an alternative dimension to gene expression data in characterizing cellular processes. Many cellular responses to drugs are mediated by changes in cellular phosphosignaling. We sought to develop a common platform on which phosphosignaling responses could be profiled across thousands of samples, and created a targeted MS assay that profiles a reduced-representation set of phosphopeptides that we show to be strong indicators of responses to chemical perturbagens.To develop the assay, we investigated the coordinate regulation of phosphosites in samples derived from three cell lines treated with 26 different bioactive small molecules. Phosphopeptide analytes were selected from these discovery studies by clustering and picking 1 to 2 proxy members from each cluster. A quantitative, targeted parallel reaction monitoring assay was developed to directly measure 96 reduced-representation probes. Sample processing for proteolytic digestion, protein quantification, peptide desalting, and phosphopeptide enrichment have been fully automated, making possible the simultaneous processing of 96 samples in only 3 days, with a plate phosphopeptide enrichment variance of 12%. This highly reproducible process allowed ∼95% of the reduced-representation phosphopeptide probes to be detected in ∼200 samples.The performance of the assay was evaluated by measuring the probes in new samples generated under treatment conditions from discovery experiments, recapitulating the observations of deeper experiments using a fraction of the analytical effort. We measured these probes in new experiments varying the treatments, cell types, and timepoints to demonstrate generalizability. We demonstrated that the assay is sensitive to disruptions in common signaling pathways (e.g. MAPK, PI3K/mTOR, and CDK). The high-throughput, reduced-representation phosphoproteomics assay provides a platform for the comparison of perturbations across a range of

  3. Correlation Between the Severity of Diabetic Peripheral Polyneuropathy and Glycosylated Hemoglobin Levels: A Quantitative Study

    PubMed Central

    Lee, Won-Jae; Jang, Sol; Lee, Seung-Hwa

    2016-01-01

    Objective To investigate risk factors for diabetic peripheral polyneuropathy and their correlation with the quantified severity of nerve dysfunction in patients with diabetes mellitus (DM). Methods A total of 187 diabetic patients with clinically suspected polyneuropathy (PN) were subclassified into 2 groups according to electrodiagnostic testing: a DM-PN group of 153 diabetic patients without electrophysiological abnormality and a DM+PN group of 34 diabetic patients with polyneuropathy. For all patients, age, sex, height, weight, duration of DM, and plasma glycosylated hemoglobin (HbA1c) level were comparatively investigated. A composite score was introduced to quantitatively analyze the results of the nerve conduction studies. Logistic regression analysis and multiple regression analysis were used to evaluate correlations between significant risk factors and severity of diabetic polyneuropathy. Results The DM+PN group showed a significantly higher HbA1c level and composite score, as compared with the DM-PN group. Increased HbA1c level and old age were significant predictive factors for polyneuropathy in diabetic patients (odds ratio=5.233 and 4.745, respectively). In the multiple linear regression model, HbA1c and age showed a significant positive association with composite score, in order (β=1.560 and 0.253, respectively). Conclusion Increased HbA1c level indicative of a state of chronic hyperglycemia was a risk factor for polyneuropathy in diabetic patients and a quantitative measure of its severity. PMID:27152276

  4. Quantitative myocardial perfusion PET parametric imaging at the voxel-level.

    PubMed

    Mohy-Ud-Din, Hassan; Lodge, Martin A; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the (82)Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves. PMID:26216052

  5. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    NASA Astrophysics Data System (ADS)

    Mohy-ud-Din, Hassan; Lodge, Martin A.; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves.

  6. Cellular Level Robotic Surgery: Nanodissection of Intermediate Filaments in Live Keratinocytes

    PubMed Central

    Yang, Ruiguo; Song, Bo; Sun, Zhiyong; Lai, King Wai Chiu; Fung, Carmen Kar Man; Patterson, Kevin C.; Seiffert-Sinha, Kristina; Sinha, Animesh A.; Xi, Ning

    2014-01-01

    We present the nanosurgery on the cytoskeleton of live cells using AFM based nanorobotics to achieve adhesiolysis and mimic the effect of pathophysiological modulation of intercellular adhesion. Nanosurgery successfully severs the intermediate filament bundles and disrupts cell-cell adhesion similar to the desmosomal protein disassembly in autoimmune disease, or the cationic modulation of desmosome formation. Our nanomechanical analysis revealed that adhesion loss results in a decrease in cellular stiffness in both, the case of biochemical modulation of the desmosome junctions or mechanical disruption of intercellular adhesion, supporting the notion that intercellular adhesion through intermediate filaments anchors the cell structure as focal adhesion does and that intermediate filaments are integral components in cell mechanical integrity. The surgical process could potentially help reveal the mechanism of autoimmune pathology-induced cell-cell adhesion loss as well as its related pathways that lead to cell apoptosis. PMID:25200612

  7. Characterization of cellular mechanical behavior at the microscale level by a hybrid force sensing device.

    PubMed

    Boukallel, Mehdi; Girot, Maxime; Régnier, Stéphane

    2009-07-01

    This paper deals with the development of an open design platform for characterization of mechanical cellular behavior. The resulting setup combines Scanning Probe Microscopy (SPM) techniques and advanced robotic approaches in order to carry out both prolonged observations and spatial measurements on biological samples. Visual and force feedback is controlled to achieve automatic data acquisition and to monitor process when high skills are required. The issue of the spring constant calibration is addressed using an accurate dynamic vibration approach. Experimentation on the mechanical cell characterization under in vitro conditions on human adherent Epithelial Hela cells demonstrates the viability and effectiveness of the proposed setup. Finally, the JKR (Johnson, Kendall and Roberts), the DMT (Derjaguin, Muller and Toporov) and Hertz contact theories are used to estimate the contact area between the cantilever and the biological sample. PMID:19627834

  8. A quantitative Kirkpatrick Level 1 and 2 study of equipment specialist apprentice operations training

    NASA Astrophysics Data System (ADS)

    Hughes, Dirk D.

    The primary purpose of the quantitative experimental study is to compare employee-learning outcomes for a course of study that is offered in two formats: explicit and tacit instructor led and explicit e-learning operations training. A Kirkpatrick Level 2 course examination is used to establish a pretest knowledge baseline and to measure posttest learning outcomes for each instructional format. A secondary purpose is to compare responses of the two groups using a Kirkpatrick Level 1 customer satisfaction index survey. Several authors reported the United States electric utility industry would have an employee attrition issue during the 2010 through 2015 period. This is at the same time the industry will be experiencing an increased demand for electricity. There now is a demand for highly training powerplant operators. A review of literature yielded few studies comparing instructor led training and e-based training. Though the Electric Power Research Institute stated the two training modes would be acceptable instruction, the organization did not develop a quantifiable justified recommendation as to the training. Subjects participated in a basic operations course and decided to take either the instructor led or e-based training course. Results of the study concluded that both instructor led and e-based training provided significant learning to the participants. The Kirkpatrick Level 1 results indicated significantly better results for instructor led training. There was not a significant difference in the Kirkpatrick Level 2 results between the two training modalities. Recommendation for future research include conducting a quantitative studies including a Phillips Level 5 study and qualitative studies including a more detailed examination of the customer satisfaction survey (Kirkpatrick Level 1).

  9. Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μPIV

    NASA Astrophysics Data System (ADS)

    Patrick, Michael J.; Chen, Chia-Yuan; Frakes, David H.; Dur, Onur; Pekkan, Kerem

    2011-04-01

    In hemodynamics, the inherent intermittency of two-phase cellular-level flow has received little attention. Unsteadiness is reported and quantified for the first time in the literature using a combination of fluorescent dye labeling, time-resolved scanning confocal microscopy, and micro-particle image velocimetry (μPIV). The near-wall red blood cell (RBC) motion of physiologic high-hematocrit blood in a rectangular microchannel was investigated under pressure-driven flow. Intermittent flow was associated with (1) the stretching of RBCs as they passed through RBC clusters with twisting motions; (2) external flow through local obstacles; and (3) transitionary rouleaux formations. Velocity profiles are presented for these cases. Unsteady flow clustered in local regions. Extra-cellular fluid flow generated by individual RBCs was examined using submicron fluorescent microspheres. The capabilities of confocal μPIV post-processing were verified using synthetic raw PIV data for validation. Cellular interactions and oscillating velocity profiles are presented, and 3D data are made available for computational model validation.

  10. Mapping of quantitative trait loci for high level of self-incompatibility in Brassica rapa L.

    PubMed

    Hatakeyama, Katsunori; Horisaki, Atsushi; Niikura, Satoshi; Narusaka, Yoshihiro; Abe, Hiroshi; Yoshiaki, Hitoshi; Ishida, Masahiko; Fukuoka, Hiroyuki; Matsumoto, Satoru

    2010-04-01

    The level of self-incompatibility (SI) is important to the purity of F1 seeds produced using the SI system of Brassica vegetables. To analyze the genetic basis of the level of SI, we generated an F2 population derived from a cross between a turnip inbred line showing a high level of SI and a Chinese cabbage inbred line showing a low level, and evaluated the level of SI under insect pollination in two years. We constructed a detailed linkage map of Brassica rapa from the F2 progeny, consisting of SSR, SNP, indel, and CAPS loci segregating into 10 linkage groups covering approximately 700 cM. Five quantitative trait loci (QTL) for high-level SI were identified. The phenotypic variation explained by the QTL ranged between 7.2% and 23.8%. Two QTL were detected in both years. Mapping of SI-related genes revealed that these QTL were co-localized with SLG on R07 and MLPK on R03. This is the first report of QTL for high-level SI evaluated under insect pollination in a Brassica vegetable. Our results could be useful for the marker-assisted selection of parental lines with a stable SI. PMID:20616857

  11. Modelling Molecular Mechanisms: A Framework of Scientific Reasoning to Construct Molecular-Level Explanations for Cellular Behaviour

    NASA Astrophysics Data System (ADS)

    van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Waarlo, Arend Jan

    2013-01-01

    Although molecular-level details are part of the upper-secondary biology curriculum in most countries, many studies report that students fail to connect molecular knowledge to phenomena at the level of cells, organs and organisms. Recent studies suggest that students lack a framework to reason about complex systems to make this connection. In this paper, we present a framework that could help students to reason back and forth between cells and molecules. It represents both the general type of explanation in molecular biology and the research strategies scientists use to find these explanations. We base this framework on recent work in the philosophy of science that characterizes explanations in molecular biology as mechanistic explanations. Mechanistic explanations describe a phenomenon in terms of the entities involved, the activities displayed and the way these entities and activities are organized. We conclude that to describe cellular phenomena scientists use entities and activities at multiple levels between cells and molecules. In molecular biological research, scientists use heuristics based on these intermediate levels to construct mechanistic explanations. They subdivide a cellular activity into hypothetical lower-level activities (top-down approaches) and they predict and test the organization of macromolecules into functional modules that play a role in higher-level activities (bottom-up approaches). We suggest including molecular mechanistic reasoning in biology education and we identify criteria for designing such education. Education using molecular mechanistic reasoning can build on common intuitive reasoning about mechanisms. The heuristics that scientists use can help students to apply this intuitive notion to the levels in between molecules and cells.

  12. Relationship between chicken cellular immunity and endotoxin levels in dust from chicken housing environments

    PubMed Central

    Roque, Katharine; Shin, Kyung-Min; Jo, Ji-Hoon; Kim, Hyoung-Ah

    2015-01-01

    Hazardous biochemical agents in animal husbandry indoor environments are known to promote the occurrence of various illnesses among workers and animals. The relationship between endotoxin levels in dust collected from chicken farms and various immunological markers was investigated. Peripheral blood was obtained from 20 broiler chickens and 20 laying hens from four different chicken farms in Korea. Concentrations of total or respirable dust in the inside the chicken farm buildings were measured using a polyvinyl chloride membrane filter and mini volume sampler. Endotoxin levels in the dust were determined by the Limulus Amebocyte Lysate Kinetic method. Interferon-γ production by peripheral blood mononuclear cells stimulated with concanavalin A was significantly lower in broilers or layers from the farms with higher endotoxin concentrations than the chickens from the farms with lower endotoxin levels. An opposite pattern was observed for plasma cortisol concentrations with higher cortisol levels found in chickens from the farms with higher endotoxin levels. When peripheral lymphocytes were examined, the percentage of CD3-Ia+ B cells was lower in layers from farms with higher endotoxin levels than those from locations with lower endotoxin levels. Overall, these results suggest a probable negative association between dust endotoxin levels and cell-mediated immunity in chickens. PMID:25549222

  13. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection.

    PubMed Central

    Hardwicke, M A; Sandri-Goldin, R M

    1994-01-01

    We have previously shown that the herpes simplex virus immediate-early regulatory protein ICP27 acts posttranscriptionally to affect mRNA processing (R. M. Sandri-Goldin and G. E. Mendoza, Genes Dev. 6:848-863, 1992). Specifically, in the presence of ICP27, spliced target mRNAs were decreased 5- to 10-fold in transfections with target genes containing a 5' or 3' intron. Here, we have investigated the effect of ICP27 during herpes simplex virus type 1 (HSV-1) infection on accumulation of spliced cellular mRNAs. ICP27 viral mutants have been shown to be defective in host shutoff (W. R. Sacks, C. C. Greene, D. P. Aschman, and P. A. Schaffer, J. Virol. 55:796-805, 1985). Therefore, we examined whether ICP27 could contribute to this complex process by decreasing cellular mRNA levels through its effects on host cell splicing. It was found that in infections with viral mutants defective in ICP27, the accumulated levels of three spliced host mRNAs were higher than those seen with wild-type HSV-1. The differences occurred posttranscriptionally as shown by nuclear runoff transcription assays. The stabilities of the spliced products during infection with wild-type or ICP27 mutant viruses were similar, and unspliced precursor mRNA for a viral spliced gene was detected in infections with wild-type HSV-1 but not in infections in which ICP27 was not expressed. These results suggest that the reduction in cellular mRNA levels and the accumulation of pre-mRNA are related and may be caused by an impairment in host cell splicing. These data further show that ICP27 is required for these effects to occur. Images PMID:8035480

  14. Searching for Lower Female Genital Tract Soluble and Cellular Biomarkers: Defining Levels and Predictors in a Cohort of Healthy Caucasian Women

    PubMed Central

    Kyongo, Jordan K.; Jespers, Vicky; Goovaerts, Odin; Michiels, Johan; Menten, Joris; Fichorova, Raina N.; Crucitti, Tania; Vanham, Guido; Ariën, Kevin K.

    2012-01-01

    Background High concentrations of pro-inflammatory cytokines have been previously observed in the genital fluids of women enrolled in microbicide trials and may explain observed increased HIV transmission in some of these trials. Although the longitudinal nature of these studies allows within-subject comparisons of post-product levels to baseline levels, the fact that the physiologic variations of these cytokines and other markers of immune activation are not fully defined in different populations, makes it difficult to assess changes that can be directly attributed to microbicide use as opposed to other biological and behavioural factors. Methods Cervicovaginal lavage samples were collected from 30 healthy Caucasian and assayed for concentrations of ten cytokines/chemokines, total protein content and two antimicrobial proteins using a multiplex immunoassay and ELISA. Cellular markers were characterized by flow cytometry on mononuclear cells collected from the endocervix using flocked swabs. Bacterial quantification was performed using quantitative PCR. Results Ectopy, menstrual cycle phase, prostate-specific antigen and presence of leucocytes in endocervical cells' supernatant were associated with the concentrations of cyto-/chemokines in cervicovaginal secretions. Approximately 3% of endocervical cells collected were monocytes of which a median of 52% (SD  = 17) expressed both CD4 and CCR5 markers. Approximately 1% of the total cells were T-cells with a median of 61% (SD  = 10) CD4 and CCR5 expression. Around 5% of the monocytes and 16% of the T-cells expressed the immune activation marker HLA-DR. Higher percentages of T-cells were associated with greater quantities of IL-1RA, GM-CSF and elafin. Conclusion We demonstrate the presence of selected soluble and cellular immune activation markers and identify their predictors in the female genital tract of healthy women. Future clinical trials should consider ectopy, sexual activity, menstrual cycle phase and

  15. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola)

    PubMed Central

    Mendes, Luís André; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO3 was more toxic than AgNPs at the population level: reproduction EC20 and EC50 was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO3 and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag+ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  16. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola).

    PubMed

    Mendes, Luís André; Maria, Vera L; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-10-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO₃ was more toxic than AgNPs at the population level: reproduction EC₂₀ and EC₅₀ was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO₃ and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag⁺ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  17. Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury.

    PubMed

    Woo, Anthony Y H; Waye, Mary M Y; Tsui, Stephen K W; Yeung, Sandy T W; Cheng, Christopher H K

    2008-04-01

    Recent studies revealed that the herb Andrographis paniculata possesses cardioprotective activities. Using neonatal rat cardiomyocytes, the cardioprotective actions of several diterpene lactones derived from A. paniculata including andrographolide, 14-deoxyandrographolide, 14-deoxy-11,12-didehydroandrographolide, and sodium 14-deoxyandrographolide-12-sulfonate were investigated. Pretreatment with andrographolide but not with the other compounds protected the cardiomyocytes against hypoxia/ reoxygenation injury and up-regulated the cellular-reduced glutathione (GSH) level and antioxidant enzyme activities. The cardioprotective action of andrographolide was found to coincide in a time-dependent manner with the up-regulation of GSH, indicating the important role of GSH. The cardioprotective action of andrographolide was also completely abolished by buthionine sulfoximine, which acts as a specific gamma-glutamate cysteine ligase (GCL) inhibitor to deplete cellular GSH level. It was subsequently found that the mRNA and protein levels of the GCL catalytic subunit (GCLC) and modifier subunit (GCLM) were up-regulated by andrographolide. Luciferase reporter assay also demonstrated that andrographolide activated both the GCLC and the GCLM promoters in the transfected rat H9C2 cardiomyocyte cell line. The 12-O-tetradecanoylphorbo-13-acetate response element or the antioxidant response element may be involved in the transactivating actions of andrographolide on the GCLC and GCLM promoters. The present study pinpoints andrographolide as a cardioprotective principle in A. paniculata and reveals its cytoprotective mechanism. PMID:18174384

  18. Quantitative analysis of Paratethys sea level change during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    de la Vara, Alba; Meijer, Paul; van Baak, Christiaan; Marzocchi, Alice; Grothe, Arjen

    2016-04-01

    At the time of the Messinian Salinity Crisis in the Mediterranean Sea (i.e., the Pontian stage of the Paratethys), the Paratethys sea level dropped also. Evidence found in the sedimentary record of the Black Sea and the Caspian Sea has been interpreted to indicate that a sea level fall occurred between 5.6 and 5.5 Ma. Estimates for the magnitude of the fall range between tens of meters to more than 1500 m. The purpose of this study is to provide quantitative insight into the sensitivity of the water level of the Black Sea and the Caspian Sea to the hydrologic budget, for the case that the Paratethys is disconnected from the Mediterranean. Using a Late Miocene bathymetry based on a palaeographic map by Popov et al. (2004) we quantify the fall in sea level, the mean salinity, and the time to reach equilibrium for a wide range of negative hydrologic budgets. By combining our results with (i) estimates derived from a recent global Late Miocene climate simulation and (ii) reconstructed basin salinities, we are able to rule out a drop in sea level of the order of 1000 m in the Caspian Sea during this time period. In the Black Sea, however, such a large sea level fall cannot be fully discarded.

  19. Analysis of cellular phosphatidylinositol (3,4,5)-trisphosphate levels and distribution using confocal fluorescent microscopy.

    PubMed

    Palmieri, Michelle; Nowell, Cameron J; Condron, Melanie; Gardiner, James; Holmes, Andrew B; Desai, Jayesh; Burgess, Antony W; Catimel, Bruno

    2010-11-01

    We have developed an immunocytochemistry method for the semiquantitative detection of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) at the cell plasma membrane. This protocol combines the use of a glutathione S-transferase-tagged pleckstrin homology (PH) domain of the general phosphoinositides-1 receptor (GST-GRP1PH) with fluorescence confocal microscopy and image segmentation using cell mask software analysis. This methodology allows the analysis of PI(3,4,5)P3 subcellular distribution in resting and epidermal growth factor (EGF)-stimulated HEK293T cells and in LIM1215 (wild-type phosphoinositide 3-kinase (PI3K)) and LIM2550 (H1047R mutation in PI3K catalytic domain) colonic carcinoma cells. Formation of PI(3,4,5)P3 was observed 5min following EGF stimulation and resulted in an increase of the membrane/cytoplasm fluorescence ratio from 1.03 to 1.53 for HEK293T cells and from 2.2 to 3.3 for LIM1215 cells. Resting LIM2550 cells stained with GST-GRP1PH had an elevated membrane/cytoplasm fluorescence ratio of 9.8, suggesting constitutive PI3K activation. The increase in the membrane/cytoplasm fluorescent ratio was inhibited in a concentration-dependent manner by the PI3K inhibitor LY294002. This cellular confocal imaging assay can be used to directly assess the effects of PI3K mutations in cancer cell lines and to determine the potential specificity and effectiveness of PI3K inhibitors in cancer cells. PMID:20599646

  20. Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?

    PubMed Central

    Carneiro, Renê Gonçalves da Silva; Pacheco, Priscilla; Isaias, Rosy Mary dos Santos

    2015-01-01

    Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum - N. cattleianum, and P. myrtoides - N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities. PMID:26053863

  1. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.

    PubMed

    Schellenberger, Jan; Que, Richard; Fleming, Ronan M T; Thiele, Ines; Orth, Jeffrey D; Feist, Adam M; Zielinski, Daniel C; Bordbar, Aarash; Lewis, Nathan E; Rahmanian, Sorena; Kang, Joseph; Hyduke, Daniel R; Palsson, Bernhard Ø

    2011-09-01

    Over the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include (i) network gap filling, (ii) (13)C analysis, (iii) metabolic engineering, (iv) omics-guided analysis and (v) visualization. As with the first version, the COBRA Toolbox reads and writes systems biology markup language-formatted models. In version 2.0, we improved performance, usability and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the toolbox and validate results. This toolbox lowers the barrier of entry to use powerful COBRA methods. PMID:21886097

  2. Quantitation of tyrosine hydroxylase, protein levels: Spot immunolabeling with an affinity-purified antibody

    SciTech Connect

    Haycock, J.W. )

    1989-09-01

    Tyrosine hydroxylase was purified from bovine adrenal chromaffin cells and rat pheochromocytoma using a rapid (less than 2 days) procedure performed at room temperature. Rabbits were immunized with purified enzyme that was denatured with sodium dodecylsulfate, and antibodies to tyrosine hydroxylase were affinity-purified from immune sera. A Western blot procedure using the affinity-purified antibodies and {sup 125}I-protein A demonstrated a selective labeling of a single Mr approximately 62,000 band in samples from a number of different tissues. The relative lack of background {sup 125}I-protein A binding permitted the development of a quantitative spot immunolabeling procedure for tyrosine hydroxylase protein. The sensitivity of the assay is 1-2 ng of enzyme. Essentially identical standard curves were obtained with tyrosine hydroxylase purified from rat pheochromocytoma, rat corpus striatum, and bovine adrenal medulla. An extract of PC 12 cells (clonal rat pheochromocytoma cells) was calibrated against purified rat pheochromocytoma tyrosine hydroxylase and used as an external standard against which levels of tyrosine hydroxylase in PC12 cells and other tissue were quantified. With this procedure, qualitative assessment of tyrosine hydroxylase protein levels can be obtained in a few hours and quantitative assessment can be obtained in less than a day.

  3. Differential expression of growth factors at the cellular level in virus-infected brain.

    PubMed

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S; Roy, Anirban; Phares, Timothy W; Koprowski, Hilary; Hooper, D Craig

    2003-05-27

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  4. Differential expression of growth factors at the cellular level in virus-infected brain

    PubMed Central

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S.; Roy, Anirban; Phares, Timothy W.; Koprowski, Hilary; Hooper, D. Craig

    2003-01-01

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  5. Levels of acyl-coenzyme A synthetase 5 in urothelial cells and corresponding neoplasias reflect cellular differentiation.

    PubMed

    Gaisa, Nadine T; Reinartz, Andrea; Schneider, Ursula; Klaus, Christina; Heidenreich, Axel; Jakse, Gerhard; Kaemmerer, Elke; Klinkhammer, Barbara Mara; Knuechel, Ruth; Gassler, Nikolaus

    2013-03-01

    Metabolic components like fatty acids and acyl-Coenzyme A (acyl-CoA) thioesters have been implicated in the pathogenesis of various tumours. The activation of fatty acids to acyl-CoAs is catalysed by long chain acyl-CoA synthetases (ACSLs), and impairment of ACSL expression levels has been associated with tumourigenesis and progression. Since ACSLs have never been investigated in bladder tissues, the study aims to characterize ACSL expression and acyl-CoA synthesis in normal and neoplastic bladder tissues, as well as cell lines. ACSL isoforms 1, 3, 4 and 5 and synthesis of acyl-CoAs were analysed using qRT-PCR, western blot analysis, immunohistochemistry and lipid mass spectrometry. In normal urothelium, expression of ACSL1, 3, 4 and 5, with highest levels of ACSL isoform 5 was found. However, ACSL5 expression was reduced in corresponding neoplastic tissues and urothelial cell lines depending on the grade of cellular differentiation. Anti-ACSL5 immunostainings showed expression in normal urothelium and a gradual loss of ACSL5 protein via pre-invasive lesions to invasive carcinomas. High expression of ACSL5 correlated with increased α-galactosidase activity and positive Uroplakin III staining in tumours. In contrast, synthesis of acyl-CoAs was enhanced in neoplastic bladder tissues compared to normal urothelium, and reflected an increase with respect to cellular differentiation. These results confirm an expression of ACSLs, especially isoform 5, in human urothelium, prove enzymatic/lipidomic changes in bladder cancer tissues, and suggest an involvement of ACSL5 in cellular maturation and/or senescence with possible effects onto induction of tumour formation or progression. Further work may identify responsible pathway alterations, and attempting to re-balance the metabolic equilibrium of the urothelium may offer a further opportunity for tumour treatment and prevention. PMID:23348389

  6. Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels.

    PubMed

    Liu, Ying; Wang, Feng; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-01-01

    The influence of nitrogen on the interactions between amoxicillin and Microcystis aeruginosa was investigated using a 7-day exposure test. Growth of M. aeruginosa was not significantly (p>0.05) affected by amoxicillin at the lowest nitrogen level of 0.05 mg L(-1), stimulated by 500 ng L(-1) of amoxicillin at a moderate nitrogen level of 0.5 mg L(-1) and enhanced by 200-500 ng L(-1) of amoxicillin at the highest nitrogen level of 5 mg L(-1). The generation of reactive oxygen species (ROS) and the synthesis of glutathione S-transferases (GST) and glutathione (GSH) were more sensitive to amoxicillin and were stimulated at all nitrogen levels. At the lowest nitrogen level of 0.05 mg L(-1), superoxide dismutase and peroxidase were not effective at eliminating amoxicillin-induced ROS, resulting in the highest malondialdehyde content in M. aeruginosa. The biodegradation of 18.5-30.5% of amoxicillin by M. aeruginosa was coupled to increasing GST activity and GSH content. Elevated nitrogen concentrations significantly enhanced (p<0.05) the stimulation effect of amoxicillin on the growth of M. aeruginosa, the antioxidant responses to amoxicillin and the biodegradation of amoxicillin in M. aeruginosa. The nitrogen-dependent hormesis effect of the coexisting amoxicillin contaminant on the M. aeruginosa bloom should be fully considered during the control of M. aeruginosa bloom. PMID:25450926

  7. The stress response resolution assay. I. Quantitative assessment of environmental agent/condition effects on cellular stress resolution outcomes in epithelium.

    PubMed

    Walker, Dale M; Patrick O'Neill, J; Tyson, Frederick L; Walker, Vernon E

    2013-05-01

    The events or factors that lead from normal cell function to conditions and diseases such as aging or cancer reflect complex interactions between cells and their environment. Cellular stress responses, a group of processes involved in homeostasis and adaptation to environmental change, contribute to cell survival under stress and can be resolved with damage avoidance or damage tolerance outcomes. To investigate the impact of environmental agents/conditions upon cellular stress response outcomes in epithelium, a novel quantitative assay, the "stress response resolution" (SRR) assay, was developed. The SRR assay consists of pretreatment with a test agent or vehicle followed later by a calibrated stress conditions exposure step (here, using 6-thioguanine). Pilot studies conducted with a spontaneously-immortalized murine mammary epithelial cell line pretreated with vehicle or 20 µg N-ethyl-N-nitrososurea/ml medium for 1 hr, or two hTERT-immortalized human bronchial epithelial cell lines pretreated with vehicle or 100 µM zidovudine/lamivudine for 12 days, found minimal alterations in cell morphology, survival, or cell function through 2 weeks post-exposure. However, when these pretreatments were followed 2 weeks later by exposure to calibrated stress conditions of limited duration (for 4 days), significant alterations in stress resolution were observed in pretreated cells compared with vehicle-treated control cells, with decreased damage avoidance survival outcomes in all cell lines and increased damage tolerance outcomes in two of three cell lines. These pilot study results suggest that sub-cytotoxic pretreatments with chemical mutagens have long-term adverse impact upon the ability of cells to resolve subsequent exposure to environmental stressors. PMID:23554083

  8. Low neural exosomal levels of cellular survival factors in Alzheimer’s disease

    PubMed Central

    Goetzl, Edward J; Boxer, Adam; Schwartz, Janice B; Abner, Erin L; Petersen, Ronald C; Miller, Bruce L; Carlson, Olga D; Mustapic, Maja; Kapogiannis, Dimitrios

    2015-01-01

    Transcription factors that mediate neuronal defenses against diverse stresses were quantified in plasma neural-derived exosomes of Alzheimer’s disease or frontotemporal dementia patients and matched controls. Exosomal levels of low-density lipoprotein receptor-related protein 6, heat-shock factor-1, and repressor element 1-silencing transcription factor all were significantly lower in Alzheimer’s disease patients than controls (P < 0.0001). In frontotemporal dementia, the only significant difference was higher levels of repressor element 1-silencing transcription factor than in controls. Exosomal transcription factors were diminished 2–10 years before clinical diagnosis of Alzheimer’s disease. Low exosomal levels of survival proteins may explain decreased neuronal resistance to Alzheimer’s disease neurotoxic proteins. PMID:26273689

  9. Semiautomated hybrid algorithm for estimation of three-dimensional liver surface in CT using dynamic cellular automata and level-sets

    PubMed Central

    Dakua, Sarada Prasad; Abinahed, Julien; Al-Ansari, Abdulla

    2015-01-01

    Abstract. Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as w, Δt, z, α, μ, α1, and α2, play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method. PMID:26158101

  10. Cellular-level mass spectrometry imaging using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) by oversampling.

    PubMed

    Nazari, Milad; Muddiman, David C

    2015-03-01

    Mass spectrometry imaging (MSI) allows for the direct and simultaneous analysis of the spatial distribution of molecular species from sample surfaces such as tissue sections. One of the goals of MSI is monitoring the distribution of compounds at the cellular resolution in order to gain insights about the biology that occurs at this spatial level. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging of cervical tissue sections was performed using a spot-to-spot distance of 10 μm by utilizing the method of oversampling, where the target plate is moved by a distance that is less than the desorption radius of the laser. In addition to high spatial resolution, high mass accuracy (±1 ppm) and high mass resolving power (140,000 at m/z = 200) were achieved by coupling the IR-MALDESI imaging source to a hybrid quadrupole Orbitrap mass spectrometer. Ion maps of cholesterol in tissues were generated from voxels containing <1 cell, on average. Additionally, the challenges of imaging at the cellular level in terms of loss of sensitivity and longer analysis time are discussed. PMID:25486925

  11. Cellular Level Mass Spectrometry Imaging using Infrared Matrix Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) by Oversampling

    PubMed Central

    Nazari, Milad; Muddiman, David C.

    2014-01-01

    Mass spectrometry imaging (MSI) allows for the direct and simultaneous analysis of the spatial distribution of molecular species from sample surfaces such as tissue sections. One of the goals of MSI is monitoring the distribution of compounds at the cellular resolution in order to gain insights about the biology that occurs at this spatial level. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging of cervical tissue sections was performed using a spot-to-spot distance of 10 μm by utilizing the method of oversampling; where the target plate is moved by a distance that is less than the desorption radius of the laser. In addition to high spatial resolution, high mass accuracy (± 1 ppm) and high mass resolving power (140,000 at m/z=200) was achieved by coupling the IR-MALDESI imaging source to a hybrid quadrupole Orbitrap mass spectrometer. Ion maps of cholesterol in tissues were generated from voxels containing <1 cell, on average. Additionally, the challenges of imaging at the cellular level in terms of loss of sensitivity and longer analysis time are discussed. PMID:25486925

  12. Thermal conductivity of biological cells at cellular level and correlation with disease state

    NASA Astrophysics Data System (ADS)

    Park, Byoung Kyoo; Woo, Yunho; Jeong, Dayeong; Park, Jaesung; Choi, Tae-Youl; Simmons, Denise Perry; Ha, Jeonghong; Kim, Dongsik

    2016-06-01

    This paper reports the thermal conductivity k of matched pair cell lines: two pairs of a normal and a cancer cell, one pair of a primary and metastatic cell. The 3ω method with a nanoscale thermal sensor was used to measure k at the single-cell level. To observe the difference in k between normal and cancer cells, the measurements were conducted for Hs 578Bst/Hs 578 T (human breast cells) and TE 353.Sk/TE 354.T (human skin cells). Then k of WM-115/WM-266-4, a primary and metastatic pair of human skin cell, was measured to find the effect of disease progression on k. The measured k data for normal and disease cell samples show statistically meaningful differences. In all cases, k decreased as the disease progressed. This work shows that thermal-analysis schemes, such as the 3ω method, have a potential to detect diseases at the cell level.

  13. Telomere protein RAP1 levels are affected by cellular aging and oxidative stress

    PubMed Central

    Swanson, Mark J.; Baribault, Michelle E.; Israel, Joanna N.; Bae, Nancy S.

    2016-01-01

    Telomeres are important for maintaining the integrity of the genome through the action of the shelterin complex. Previous studies indicted that the length of the telomere did not have an effect on the amount of the shelterin subunits; however, those experiments were performed using immortalized cells with stable telomere lengths. The interest of the present study was to observe how decreasing telomere lengths over successive generations would affect the shelterin subunits. As neonatal human dermal fibroblasts aged and their telomeres became shorter, the levels of the telomere-binding protein telomeric repeat factor 2 (TRF2) decreased significantly. By contrast, the levels of one of its binding partners, repressor/activator protein 1 (RAP1), decreased to a lesser extent than would be expected from the decrease in TRF2. Other subunits, TERF1-interacting nuclear factor 2 and protection of telomeres protein 1, remained stable. The decrease in RAP1 in the older cells occurred in the nuclear and cytoplasmic fractions. Hydrogen peroxide (H2O2) stress was used as an artificial means of aging in the cells, and this resulted in RAP1 levels decreasing, but the effect was only observed in the nuclear portion. Similar results were obtained using U251 glioblastoma cells treated with H2O2 or grown in serum-depleted medium. The present findings indicate that TRF2 and RAP1 levels decrease as fibroblasts naturally age. RAP1 remains more stable compared to TRF2. RAP1 also responds to oxidative stress, but the response is different to that observed in aging. PMID:27446538

  14. Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor.

    PubMed

    Kamerbeek, Constanza B; Mateos, Melina V; Vallés, Ana S; Pediconi, María F; Barrantes, Francisco J; Borroni, Virginia

    2016-05-01

    Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30min-4h) whereas at longer times (18h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity. PMID:26898898

  15. Differential Control of Interleukin-6 mRNA Levels by Cellular Distribution of YB-1

    PubMed Central

    Kang, Sujin; Lee, Taeyun A.; Ra, Eun A.; Lee, Eunhye; Choi, Hyun jin; Lee, Sungwook; Park, Boyoun

    2014-01-01

    Cytokine production is essential for innate and adaptive immunity against microbial invaders and must be tightly controlled. Cytokine messenger RNA (mRNA) is in constant flux between the nucleus and the cytoplasm and in transcription, splicing, or decay; such processes must be tightly controlled. Here, we report a novel function of Y-box-binding protein 1 (YB-1) in modulating interleukin-6 (IL-6) mRNA levels in a cell type-specific manner. In lipopolysaccharide (LPS)-stimulated macrophages, YB-1 interacts with IL-6 mRNA and actively transports it to the extracellular space by YB-1-enriched vesicles, resulting in the proper maintenance of intracellular IL-6 mRNA levels. YB-1 secretion occurs in a cell type-specific manner. Whereas macrophages actively secret YB-1, dendritic cells maintain it predominantly in the cytoplasm even in response to LPS. Intracellular YB-1 has the distinct function of regulating IL-6 mRNA stability in dendritic cells. Moreover, because LPS differentially regulates the expression of histone deacetylase 6 (HDAC6) in macrophages and dendritic cells, this stimulus might control YB-1 acetylation differentially in both cell types. Taken together, these results suggest a unique feature of YB-1 in controlling intracellular IL-6 mRNA levels in a cell type-specific manner, thereby leading to functions that are dependent on the extracellular and intracellular distribution of YB-1. PMID:25398005

  16. Effects of dioxins on the quantitative levels of immune components in infants.

    PubMed

    Kaneko, Hideo; Matsui, Eiko; Shinoda, Shinnji; Kawamoto, Norio; Nakamura, Yosikazu; Uehara, Ritei; Matsuura, Nobuo; Morita, Masatoshi; Tada, Hiroshi; Kondo, Naomi

    2006-04-01

    Dioxins (polychlorinated dibenzo-p-dioxin (PCDD)+polychlorinated dibenzofuran (PCDF)) and polychlorinated biphenyls (PCBs) are potentially hazardous compounds and have structural similarity with thyroid hormones. Animal studies have demonstrated that PCDDs, PCDFs and PCBs can alter immune functions. However, in humans it is not yet elucidated whether dioxins contained in breast milk have any effects on the immune functions in infants. To investigate the effects of dioxins on the immune system, we compared the quantitative levels of immune components between a breast-fed group and bottle-fed group, in which dioxin concentration is almost zero. Ratios of immune cells, such as CD4+ and CD8+ T-lymphocytes, as well as B-lymphocytes (CD19+ and/or CD20+) and NK cells (CD16+, CD56+) in peripheral blood lymphocytes, serum immunoglobulin level, and level of specific IgE antibody to allergens in the venous blood at 12 months of age were assessed in a subgroup of 281 infants. The relationship of post-natal dioxin exposure via breast feeding with the ratio of immunological markers and the level of humoral antibodies up to 12 month of age was not demonstrated. In conclusion, it would appear that the content of dioxins in breast milk in the Japanese general population is not enough to induce any change in theses-examined immunological parameters during the first year of life, although long-term effects remain to be evaluated. PMID:16716043

  17. Quantitative level of protection offered to workers by ACGIH threshold limit values occupational exposure limits.

    PubMed

    Jayjock, M A; Lewis, P G; Lynch, J R

    2001-01-01

    The details of the example or modeling methodologies used herein are not critical to the general point of this article, which advises the estimation of residual risk at the OEL by using some quantitative modeling structure. Specifically, the authors believe that an explicit attempt to gauge the level of residual risk at the OEL based on conceptual stochastic models with transparent and testable assumptions could be seen as an important enhancement to the process. This is especially true in sharing the OEL deliberations and explaining OEL decisions to the stakeholders. Indeed, if this approach is used, it is critically important to understand and continually communicate that this "cloud of uncertainty" represents model estimates in which the true risk would most likely be less than worst case estimates and could possibly be zero. It is also possible but highly unlikely that it could be higher than the worst case upper-bound estimate. The above quantitative estimation scheme represents a possible improvement that could provide a reasoned attempt on the part of the risk assessors to use rational science (i.e., conceptual models with transparent and testable assumptions) to inform all of the OEL users and stakeholders of their meaning. PMID:11258867

  18. A methodology for the extraction of quantitative information from electron microscopy images at the atomic level

    NASA Astrophysics Data System (ADS)

    Galindo, P. L.; Pizarro, J.; Guerrero, E.; Guerrero-Lebrero, M. P.; Scavello, G.; Yáñez, A.; Núñez-Moraleda, B. M.; Maestre, J. M.; Sales, D. L.; Herrera, M.; Molina, S. I.

    2014-06-01

    In this paper we describe a methodology developed at the University of Cadiz (Spain) in the past few years for the extraction of quantitative information from electron microscopy images at the atomic level. This work is based on a coordinated and synergic activity of several research groups that have been working together over the last decade in two different and complementary fields: Materials Science and Computer Science. The aim of our joint research has been to develop innovative high-performance computing techniques and simulation methods in order to address computationally challenging problems in the analysis, modelling and simulation of materials at the atomic scale, providing significant advances with respect to existing techniques. The methodology involves several fundamental areas of research including the analysis of high resolution electron microscopy images, materials modelling, image simulation and 3D reconstruction using quantitative information from experimental images. These techniques for the analysis, modelling and simulation allow optimizing the control and functionality of devices developed using materials under study, and have been tested using data obtained from experimental samples.

  19. ELEVATED GLUTATHIONE LEVELS CONFER CELLULAR SENSITIZATION TO CISPLATIN TOXICITY BY UPREGULATION OF COPPER TRANSPORTER HCTR1*

    PubMed Central

    Chen, Helen H. W.; Song, Im-Sook; Hossain, Anwar; Choi, Min-Koo; Yamane, Yoshiaki; Liang, Zheng D.; Lu, Jia; Wu, Lily Y-H; Siddik, Zahid H.; Klomp, Leo W. J.; Savaraj, Niramol; Tien, Kuo Macus

    2008-01-01

    Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) upregulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme, glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunits. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Since GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into considerations that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through upregulation of human copper transporter 1 (hCtr1), which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. While rates of Cu transport were also upregulated in the transfected cells, these cells exhibited biochemical signature of Cu deficiency, suggesting that GSH functions as an intracellular Cu-chelator and that overexpression of GSH can alter Cu metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes bioavailable Cu pool, leading to upregulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications that modulation of intracellular Cu pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents. PMID:18523133

  20. Quantitative evaluation of berberine subcellular distribution and cellular accumulation in non-small cell lung cancer cells by UPLC-MS/MS.

    PubMed

    Yuan, Zhong-Wen; Leung, Elaine Lai-Han; Fan, Xing-Xing; Zhou, Hua; Ma, Wen-Zhe; Liu, Liang; Xie, Ying

    2015-11-01

    Berberine, an isoquinoline alkaloid, has been demonstrated to be a safe anti-cancer agent with multiple effects on mitochondria. Intracellular concentration and distribution around the targeting sites are determinants of efficacy, but subcellular distribution of berberine has not been fully elucidated yet, which relies on the sensitive and robustness assay. In this study, a sensitive and robust UPLC-MS/MS method has been developed and validated with optimized extraction solvents and detection conditions. Key factors such as the purity and integrity of isolated organelle fractions, and the effects of isolation procedures on the subcellular concentration of berberine were systemically evaluated. With the developed assay, we found that the intracellular accumulations of berberine in two gefitinib resistant NSCLC cell lines H1650 and H1975 were 2-3 folds higher than that of normal epithelial cells BEAS-2B. Moreover, significantly different subcellular distribution profiles in NSCLC cancer cells from that of BEAS-2B cells with a striking increase in content in most organelles may contribute to its selective cytotoxicity to cancer cells. Furthermore, a predominant accumulation of berberine was observed for the first time in microsomal fraction for all three cell lines. Therefore, this method could be used for quantitative evaluation of subcellular distribution and cellular accumulation of berberine and for further evaluation of the concentration-effects relationship. PMID:26452787

  1. Aquatic ecotoxicology: from the ecosystem to the cellular and molecular levels.

    PubMed Central

    Boudou, A; Ribeyre, F

    1997-01-01

    This review of aquatic ecotoxicology is presented in three parts. First, we discuss the fundamental concepts and stress the importance of its ecological basis and the complexity and diversity of the field of investigation, which result from actions and interactions between the physicochemical characteristics of the biotopes, the structural and functional properties of the living organisms, and the contamination modalities. Ecotoxicological mechanisms, regardless of the level of biological complexity, primarily depend on the bioavailability of the toxic products. Numerous processes control the chemical fate of contaminants in the water column and/or sediment compartments; accessibility to the biological barriers that separate the organisms from their surrounding medium depends directly on bioavailability. Second, we review the principal methodologies of the field, from in situ studies at the ecosystem/ecocomplex level to bioassays or single species tests. Third, we focus on mercury, selected as a reference contaminant, in order to illustrate the main ecotoxicological concepts, the complementarity between field and laboratory studies, and the indispensable multidisciplinarity of the approaches. PMID:9114275

  2. Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields.

    PubMed

    Martino, Carlos F; Castello, Pablo R

    2011-01-01

    Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, suggesting that ROS might be involved in the development of these cells. However, recent studies suggest that inducing an excess of ROS in cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumors frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially modulate the development of these cells by controlling their ROS production. Low levels of ROS are also important for the development and survival of normal cells. In this manuscript, we present data on the influence of the suppression of the Earth's magnetic field (low level magnetic fields or LLF) which magnitudes range from 0.2 µT to 2 µT on the modulation of hydrogen peroxide (H(2)O(2)) in human fibrosarcoma cancer cell line HT1080, pancreatic AsPC-1 cancer cell line, and bovine pulmonary artery endothelial cells (PAEC) exposed to geomagnetic field (control; 45 µT-60 µT). Reduction of the Earth's magnetic field suppressed H(2)O(2) production in cancer cells and PAEC. The addition of catalase and superoxide dismutase (SOD) mimetic MnTBAP inhibited the magnetic field effect. Modulating ROS production by magnetic fields may open new venues of biomedical research and therapeutic strategies. PMID:21887222

  3. Perturbation of cellular proteostasis networks identifies pathways that modulate precursor and intermediate but not mature levels of frataxin

    PubMed Central

    Nabhan, Joseph F.; Gooch, Renea L.; Piatnitski Chekler, Eugene L.; Pierce, Betsy; Bulawa, Christine E.

    2015-01-01

    Friedreich’s Ataxia is a genetic disease caused by expansion of an intronic trinucleotide repeat in the frataxin (FXN) gene yielding diminished FXN expression and consequently disease. Since increasing FXN protein levels is desirable to ameliorate pathology, we explored the role of major cellular proteostasis pathways and mitochondrial proteases in FXN processing and turnover. We targeted p97/VCP, the ubiquitin proteasome pathway (UPP), and autophagy with chemical inhibitors in cell lines and patient-derived cells. p97 inhibition by DBeQ increased precursor FXN levels, while UPP and autophagic flux modulators had variable effects predominantly on intermediate FXN. Our data suggest that these pathways cannot be modulated to influence mature functional FXN levels. We also targeted known mitochondrial proteases by RNA interference and discovered a novel protease PITRM1 that regulates intermediate FXN levels. Treatment with the aforementioned chemical and genetic modulators did not have a differential effect in patient cells containing lower amounts of FXN. Interestingly, a number of treatments caused a change in total amount of FXN protein, without an effect on mature FXN. Our results imply that regulation of FXN protein levels is complex and that total amounts can be modulated chemically and genetically without altering the absolute amount of mature FXN protein. PMID:26671574

  4. Quantitative analysis of molecular-level DNA crystal growth on a 2D surface

    PubMed Central

    Lee, Junwye; Hamada, Shogo; Hwang, Si Un; Amin, Rashid; Son, Junyoung; Dugasani, Sreekantha Reddy; Murata, Satoshi; Park, Sung Ha

    2013-01-01

    Crystallization is an essential process for understanding a molecule's aggregation behavior. It provides basic information on crystals, including their nucleation and growth processes. Deoxyribonucleic acid (DNA) has become an interesting building material because of its remarkable properties for constructing various shapes of submicron-scale DNA crystals by self-assembly. The recently developed substrate-assisted growth (SAG) method produces fully covered DNA crystals on various substrates using electrostatic interactions and provides an opportunity to observe the overall crystallization process. In this study, we investigated quantitative analysis of molecular-level DNA crystallization using the SAG method. Coverage and crystal size distribution were studied by controlling the external parameters such as monomer concentration, annealing temperature, and annealing time. Rearrangement during crystallization was also discussed. We expect that our study will provide overall picture of the fabrication process of DNA crystals on the charged substrate and promote practical applications of DNA crystals in science and technology. PMID:23817625

  5. Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level

    PubMed Central

    Korbas, Malgorzata; Blechinger, Scott R.; Krone, Patrick H.; Pickering, Ingrid J.; George, Graham N.

    2008-01-01

    Using synchrotron x-ray fluorescence mapping, we have examined the uptake and localization of organic mercury in zebrafish larvae. Strikingly, the greatest accumulation of methyl and ethyl mercury compounds was highly localized in the rapidly dividing lens epithelium, with lower levels going to brain, optic nerve, and various other organs. The data suggest that the reported impairment of visual processes by mercury may arise not only from previously reported neurological effects, but also from direct effects on the ocular tissue. This novel approach is a powerful tool for directly investigating the molecular toxicology of heavy metals, and should be equally applicable to the study of a wide range of elements in developing embryos. PMID:18719123

  6. Localizing Organomercury Uptake And Accumulation in Zebrafish Larvae at the Tissue And Cellular Level

    SciTech Connect

    Korbas, M.; Blechinger, S.R.; Krone, P.H.; Pickering, I.J.; George, G.N.

    2009-05-20

    Using synchrotron x-ray fluorescence mapping, we have examined the uptake and localization of organic mercury in zebrafish larvae. Strikingly, the greatest accumulation of methyl and ethyl mercury compounds was highly localized in the rapidly dividing lens epithelium, with lower levels going to brain, optic nerve, and various other organs. The data suggest that the reported impairment of visual processes by mercury may arise not only from previously reported neurological effects, but also from direct effects on the ocular tissue. This novel approach is a powerful tool for directly investigating the molecular toxicology of heavy metals, and should be equally applicable to the study of a wide range of elements in developing embryos.

  7. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function

    PubMed Central

    Edmunds, Lia R.; Sharma, Lokendra; Wang, Huabo; Kang, Audry; d’Souza, Sonia; Lu, Jie; McLaughlin, Michael; Dolezal, James M.; Gao, Xiaoli; Weintraub, Susan T.; Ding, Ying; Zeng, Xuemei; Yates, Nathan; Prochownik, Edward V.

    2015-01-01

    The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions. PMID:26230505

  8. A novel family of fluorescent hypoxia sensors reveal strong heterogeneity in tumor hypoxia at the cellular level.

    PubMed

    Erapaneedi, Raghu; Belousov, Vsevolod V; Schäfers, Michael; Kiefer, Friedemann

    2016-01-01

    Hypoxia is an intensively investigated condition with profound effects on cell metabolism, migration, and angiogenesis during development and disease. Physiologically, hypoxia is linked to tissue homeostasis and maintenance of pluripotency. Hypoxia also contributes to pathologies including cardiovascular diseases and cancer. Despite its importance, microscopic visualization of hypoxia is largely restricted to the detection of reductively activated probes by immunostaining. Here, we describe a novel family of genetically encoded fluorescent sensors that detect the activation of HIF transcription factors reported by the oxygen-independent fluorescent protein UnaG. It comprises sensors with different switching and memory behavior and combination sensors that allow the distinction of hypoxic and reoxygenated cells. We tested these sensors on orthotopically transplanted glioma cell lines. Using a cranial window, we could visualize hypoxia intravitally at cellular resolution. In tissue samples, sensor activity was detected in regions, which were largely devoid of blood vessels, correlated with HIF-1α stabilization, and were highly heterogeneous at a cellular level. Frequently, we detected recently reoxygenated cells outside hypoxic areas in the proximity of blood vessels, suggestive of hypoxia-promoted cell migration. PMID:26598532

  9. Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels

    PubMed Central

    WYGANOWSKA-ŚWIĄTKOWSKA, MARZENA; URBANIAK, PAULINA; NOHAWICA, MICHAŁ MAREK; KOTWICKA, MAŁGORZATA; JANKUN, JERZY

    2015-01-01

    Enamel matrix derivative (EMD) is a commercially available protein extract, mainly comprising amelogenins. A number of other polypeptides have been identified in EMD, mostly growth factors, which promote cementogenesis and osteogenesis during the regeneration processes through the regulation of cell proliferation, differentiation and activity; however, not all of their functions are clear. Enamel extracts have been proposed to have numerous activities such as bone morphogenetic protein- and transforming growth factor β (TGF-β)-like activity, and activities similar to those of insulin-like growth factor, fibroblast growth factor, platelet-derived growth factor, vascular endothelial growth factor and epidermal growth factor. These activities have been observed at the molecular and cellular levels and in numerous animal models. Furthermore, it has been suggested that EMD contains an unidentified biologically active factor that acts in combination with TGF-β1, and several studies have reported functional similarities between growth factors and TGF-β in cellular processes. The effects of enamel extracts on the cell cycle and biology are summarized and discussed in this review. PMID:26161150

  10. Quantitative analysis of urinary glycerol levels for doping control purposes using gas chromatography-mass spectrometry.

    PubMed

    Thevis, Mario; Guddat, Sven; Flenker, Ulrich; Schänzer, Wilhelm

    2008-01-01

    The administration of glycerol to endurance athletes results in an increased fluid retention and improved performance, particularly under hot and humid conditions. Consequently, glycerol is considered relevant for sports drug testing and methods for its detection in urine specimens are required. A major issue in this regard is the natural occurrence of trace amounts of glycerol in human urine, which necessitates a quantitative analysis and the determination of normal urinary glycerol levels under various sporting conditions. A quantitative method was established using a gas chromatography/isotope-dilution mass spectrometry-based approach that was validated with regard to lower limit of detection (0.3 microg mL(-1)), lower limit of quantification (0.9 microg mL(-1)), specificity, linearity (1.0-98.0 microg mL(-1)), intraday and interday precision (<20% at 2.4, 24.1 and 48.2 microg mL(-1)) as well as accuracy (92-110%). Sample aliquots of 20 microL were enriched with five-fold deuterated glycerol, dried and derivatised using N-methyl-trimethylsilyltrifluoroacetamide (MSTFA) before analysis. The established method was applied to a total of 1039 doping control samples covering various sport disciplines (349 endurance samples, 286 strength sport samples, 325 game sport samples and 79 other samples) in- and out-of-competition, which provided quantitative information about the glycerol content commonly observed in elite athletes' urine samples. About 85% of all specimens yielded glycerol concentrations < 20.0 microg mL(-1) and few reached values up to 132.6 microg mL(-1). One further sample, however, was found to contain 2690 microg mL(-1), which might indicate the misuse of glycerol, but no threshold for urinary glycerol concentrations has been established yet due to the lack of substantial data. Based on the results obtained from the studied reference population, a threshold for glycerol levels in urine set at 200 microg mL(-1) is suggested, which provides a tool to

  11. Australia’s first national level quantitative environmental justice assessment of industrial air pollution

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayajit; Green, Donna

    2014-04-01

    This study presents the first national level quantitative environmental justice assessment of industrial air pollution in Australia. Specifically, our analysis links the spatial distribution of sites and emissions associated with industrial pollution sources derived from the National Pollution Inventory, to Indigenous status and social disadvantage characteristics of communities derived from Australian Bureau of Statistics indicators. Our results reveal a clear national pattern of environmental injustice based on the locations of industrial pollution sources, as well as volume, and toxicity of air pollution released at these locations. Communities with the highest number of polluting sites, emission volume, and toxicity-weighted air emissions indicate significantly greater proportions of Indigenous population and higher levels of socio-economic disadvantage. The quantities and toxicities of industrial air pollution are particularly higher in communities with the lowest levels of educational attainment and occupational status. These findings emphasize the need for more detailed analysis in specific regions and communities where socially disadvantaged groups are disproportionately impacted by industrial air pollution. Our empirical findings also underscore the growing necessity to incorporate environmental justice considerations in environmental planning and policy-making in Australia.

  12. Interrater reliability of quantitative ultrasound using force feedback among examiners with varied levels of experience

    PubMed Central

    Ismail, Catheeja; Monfaredi, Reza; Hernandez, Haniel J.; Pennington, Donte; Woletz, Paula; McIntosh, Valerie; Adams, Bernadette; Blackman, Marc R.

    2016-01-01

    Background. Quantitative ultrasound measures are influenced by multiple external factors including examiner scanning force. Force feedback may foster the acquisition of reliable morphometry measures under a variety of scanning conditions. The purpose of this study was to determine the reliability of force-feedback image acquisition and morphometry over a range of examiner-generated forces using a muscle tissue-mimicking ultrasound phantom. Methods. Sixty material thickness measures were acquired from a muscle tissue mimicking phantom using B-mode ultrasound scanning by six examiners with varied experience levels (i.e., experienced, intermediate, and novice). Estimates of interrater reliability and measurement error with force feedback scanning were determined for the examiners. In addition, criterion-based reliability was determined using material deformation values across a range of examiner scanning forces (1–10 Newtons) via automated and manually acquired image capture methods using force feedback. Results. All examiners demonstrated acceptable interrater reliability (intraclass correlation coefficient, ICC = .98, p < .001) for material thickness measures obtained using force feedback. Individual examiners exhibited acceptable reliability with the criterion-based reference measures (ICC > .90, p < .001), independent of their level of experience. The measurement error among all examiners was 1.5%–2.9% across all applied stress conditions. Conclusion. Manual image capture with force feedback may aid the reliability of morphometry measures across a range of examiner scanning forces, and allow for consistent performance among examiners with differing levels of experience. PMID:27366647

  13. Low temperature techniques applied for CTEM and STEM analysis of cellular components at a molecular level.

    PubMed

    Sjöstrand, F S

    1982-12-01

    One of the most important problems in tissue preparation for electron microscopic analysis at a molecular level involves the preservation of the tissue without introducing extensive denaturation of the proteins. Low temperature is a most efficient condition for the inhibition of protein denaturation and freeze-drying offers favourable conditions for transferring proteins to a dry state with minimal denaturation of the proteins. However, the embedding of the dried tissue in a plastic leads to extensive denaturation of the proteins when performed in the conventional way. This eliminates very efficiently the advantages of the method. The situation becomes even worse when subjecting the tissue to freeze-substitution. To eliminate as far as possible the denaturing effect of plastic embedding, freeze-drying can be combined with low temperature embedding in a plastic. Freeze-fracturing allows a most efficient use of low temperature to reduce conformation changes in proteins. The value of the freeze-fracturing technique depends entirely on a precise knowledge of the location of the fracture planes. Since this location is not known, it must be determined on the basis of a deduction. If this deduction is wrong, the method becomes misleading. Two methods which allow a certain testing of the correctness of the deduced location of the fracture planes are mentioned. PMID:6759657

  14. Tinnitus: pathology of synaptic plasticity at the cellular and system levels.

    PubMed

    Guitton, Matthieu J

    2012-01-01

    Despite being more and more common, and having a high impact on the quality of life of sufferers, tinnitus does not yet have a cure. This has been mostly the result of limited knowledge of the biological mechanisms underlying this adverse pathology. However, the last decade has witnessed tremendous progress in our understanding on the pathophysiology of tinnitus. Animal models have demonstrated that tinnitus is a pathology of neural plasticity, and has two main components: a molecular, peripheral component related to the initiation phase of tinnitus; and a system-level, central component-related to the long-term maintenance of tinnitus. Using the most recent experimental data and the molecular/system dichotomy as a framework, we describe here the biological basis of tinnitus. We then discuss these mechanisms from an evolutionary perspective, highlighting similarities with memory. Finally, we consider how these discoveries can translate into therapies, and we suggest operative strategies to design new and effective combined therapeutic solutions using both pharmacological (local and systemic) and behavioral tools (e.g., using tele-medicine and virtual reality settings). PMID:22408611

  15. Tinnitus: pathology of synaptic plasticity at the cellular and system levels

    PubMed Central

    Guitton, Matthieu J.

    2012-01-01

    Despite being more and more common, and having a high impact on the quality of life of sufferers, tinnitus does not yet have a cure. This has been mostly the result of limited knowledge of the biological mechanisms underlying this adverse pathology. However, the last decade has witnessed tremendous progress in our understanding on the pathophysiology of tinnitus. Animal models have demonstrated that tinnitus is a pathology of neural plasticity, and has two main components: a molecular, peripheral component related to the initiation phase of tinnitus; and a system-level, central component-related to the long-term maintenance of tinnitus. Using the most recent experimental data and the molecular/system dichotomy as a framework, we describe here the biological basis of tinnitus. We then discuss these mechanisms from an evolutionary perspective, highlighting similarities with memory. Finally, we consider how these discoveries can translate into therapies, and we suggest operative strategies to design new and effective combined therapeutic solutions using both pharmacological (local and systemic) and behavioral tools (e.g., using tele-medicine and virtual reality settings). PMID:22408611

  16. An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets

    NASA Astrophysics Data System (ADS)

    Sonon, B.; François, B.; Massart, T. J.

    2015-08-01

    A general and widely tunable method for the generation of representative volume elements for cellular materials based on distance and level set functions is presented. The approach is based on random tessellations constructed from random inclusion packings. A general methodology to obtain arbitrary-shaped tessellations to produce disordered foams is presented and illustrated. These tessellations can degenerate either in classical Voronoï tessellations potentially additively weighted depending on properties of the initial inclusion packing used, or in Laguerre tessellations through a simple modification of the formulation. A versatile approach to control the particular morphology of the obtained foam is introduced. Specific local features such as concave triangular Plateau borders and non-constant thickness heterogeneous coatings can be built from the tessellation in a straightforward way and are tuned by a small set of parameters with a clear morphological interpretation.

  17. Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses.

    PubMed

    Perceval, Olivier; Couillard, Yves; Pinel-Alloul, Bernadette; Giguère, Anik; Campbell, Peter G C

    2004-09-20

    The use of biomarkers to assess the impacts of contaminants on aquatic ecosystems has noticeably increased over the past few years. Few of these studies, however, have contributed to the prediction of ecologically significant effects (i.e., at the population or community levels). The present field study was designed to evaluate the potential of metallothionein (MT) and sub-cellular metal partitioning measurements for predicting toxic effects at higher levels of the biological organization in freshwater bivalves (Pyganodon grandis) chronically exposed to Cd. For that purpose, we quantitatively sampled P. grandis populations in the littoral zone of nine lakes on the Precambrian Canadian Shield during two consecutive summers (1998 and 1999); lakes were characterized by contrasting Cd levels but similar trophic status. We tested relationships between the population status of P. grandis (i.e., growth parameters, density, biomass, secondary production, turnover ratio and cumulative fecundity) and (i) ambient Cd concentrations, (ii) sub-organismal responses (MT concentrations in the gill cytosol of individuals and Cd concentrations in three metal-ligand pools identified as M-HMW, the high molecular weight pool, M-MT, the metallothionein-like pool and M-LMW, the low molecular weight pool) and (iii) ecological confounding factors (food resources, presence of host fishes for the obligatory parasitic larval stage of P. grandis). Our results show that littoral density, live weight, dry viscera biomass, production and cumulative fecundity decreased with increasing concentrations of the free-cadmium ion in the environment (Pearson's r ranging from -0.63 to -0.78). On the other hand, theoretical maximum shell lengths (L( infinity )) in our populations were related to both the dissolved Ca concentration and food quality (sestonic C and N concentrations). Overall, Cd concentrations in the gill cytosolic HMW pool of the individual molluscs were the biomarker response that was most

  18. Quantitative analysis of glycerol levels in human urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Ying; Ma, Yanhua; Yan, Kuan; Shen, Li; Wang, Xiaobing; Xu, Youxuan; He, Genye; Wu, Yun; Lu, Jianghai; Yang, Zhiyong; Feng, Feifei

    2014-04-15

    Glycerol has the latent capacity to act as a plasma volume expander and disguise blood doping practices. Therefore, it has been prohibited in sports as a masking agent by the World Anti-Doping Agency (WADA) since January 2010 and a urinary threshold (1mg/mL) was recommended recently [1]. The purpose of this study was to establish and validate a novel quantitative method for the determination of urinary glycerol concentrations using a liquid chromatography-tandem mass spectrometry approach. This simple yet highly specific method made use of the derivatization of glycerol by benzoyl chloride in aqueous solution at 40°C followed by analysis via LC-ESI-MS/MS without sample pre-concentration or cleanup. The assay was linear over the concentration range of 1.0-1000μg/mL for glycerol in human urine. The lower limit of detection (LLOD) and lower limit of quantitation (LLOQ) were 0.3μg/mL and 1.0μg/mL, respectively. The intra- and inter-day precision of the method at three concentration levels (3, 500 and 900μg/mL) was less than 12.2%. The method also afforded satisfactory results in terms of accuracy, derivatization yield, extraction recovery, matrix effect and specificity. The method has been successfully applied to the detection of glycerol in "Quality Assurance Program" samples provided by the World Association of Anti-Doping Scientists (WAADS) and routine doping-control samples in our laboratory. PMID:24657408

  19. Galectin-3 level and the severity of cardiac diastolic dysfunction using cellular and animal models and clinical indices

    PubMed Central

    Wu, Cho-Kai; Su, Mao-Yuan; Lee, Jen-Kuang; Chiang, Fu-Tien; Hwang, Juey-Jen; Lin, Jiunn-Lee; Chen, Jin-Jer; Liu, Fu-Tong; Tsai, Chia-Ti

    2015-01-01

    Heart failure with preserved ejection fraction (HFPEF) is characterized by myocardial interstitial fibrosis. A total of 146 patients with HFPEF, were recruited. HFPEF severity was determined using Doppler imaging (E/Em) and also cardiac magnetic resonance imaging (CMRI). Canine modeling of HFPEF was induced by aortic banding. Hemodynamic and echocardiographic data were obtained before and after pressure loading and myocardial Galectin-3 was determined. Mechanical stretch of cultured cardiomyocytes served as the cellular model of HFPEF. Patients with severe HFPEF had significantly higher plasma Galectin-3 levels. Significant correlation between plasma Galectin-3 and E/Em in advanced HFPEF patients was noted. After 2 weeks of pressure overload in canine models, the protein expression of Galectin-3 from LV myocardial tissue was significantly increased (p < 0.01) compared with controls. Galectin-3 expression paralleled the severity of LV diastolic dysfunction by evaluation of CMRI (r = −0.58, p = 0.003) and tissue fibrosis (r = 0.59, p = 0.002). After adjusting for confounders for diastolic dysfunction, Galectin-3 levels were still associated with diastolic parameters both in humans (p < 0.001) and canine model (p = 0.041). Mechanical stretch increased Galectin-3 secretion in cultured cardiomyocytes. Both plasma and myocardial Galectin-3 levels correlated with severity of cardiac diastolic dysfunction. PMID:26582585

  20. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers.

    PubMed

    Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas

    2016-05-13

    Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds. PMID:27086283

  1. Quantitative residue-level structure-evolution relationships in the yeast membrane proteome.

    PubMed

    Franzosa, Eric A; Xue, Ran; Xia, Yu

    2013-01-01

    Membrane proteins exist in distinctly different environments than do soluble proteins, resulting in differences between their respective biophysical and evolutionary properties. In comparison with soluble proteins, relatively little is known about how the unique biophysical properties of membrane proteins affect their evolutionary properties at the residue level. In particular, transmembrane (TM) regions of membrane proteins tend to be more conserved than regions outside of the membrane (extramembrane [EM] regions), but the mechanisms underlying this phenomenon are not well understood. Here, we combine homology-based high-resolution three-dimensional protein models with rigorous evolutionary rate calculations to quantitatively assess residue-level structure-evolution relationships in the yeast membrane proteome. We find that residue evolutionary rate increases linearly with decreasing residue burial, regardless of the hydrophobic or hydrophilic nature of the solvent environment. This finding supports a direct relationship between a residue's selective constraint and the extent of its packing interactions with neighboring residues, independent of hydrophobic effects. Most importantly, for a fixed degree of burial, residues from TM regions tend to evolve more slowly than residues from EM regions. We attribute this difference to the increased importance of packing constraints and the decreased importance of hydrophobic effects in TM regions. This additional selective constraint on TM residues plays a dominant role in explaining why TM regions evolve more slowly than EM regions. In addition to revealing the universality of the linear relationship between residue burial and selective constraint across solvent environments, our work highlights the distinct residue-level evolutionary consequences imposed by the unique biophysical properties of the membrane environment. PMID:23512408

  2. Comparative analysis of cellular immune responses and cytokine levels in sheep experimentally infected with bluetongue virus serotype 1 and 8.

    PubMed

    Sánchez-Cordón, P J; Pérez de Diego, A C; Gómez-Villamandos, J C; Sánchez-Vizcaíno, J M; Pleguezuelos, F J; Garfia, B; del Carmen, P; Pedrera, M

    2015-05-15

    Protective immunity in sheep with bluetongue virus (BTV) infection as well as the role of BTV-induced cytokines during immune response remains unclear. Understanding the basis immunological mechanisms in sheep experimentally infected with serotypes 1 and 8 (BTV-1 and -8) was the aim of this study. A time-course study was carried out in order to evaluate cell-mediated immune response and serum concentrations of cytokines (IL-1β, TNFα, IL-12, IFNγ, IL-4 and IL-10) with inflammatory and immunological functions. Depletion of T cell subsets (mainly CD4(+), γδ and CD25(+)) together with the absence of cytokines (IFNγ and IL-12) involved in the regulation of cell-mediated antiviral immunity at the first stage of the disease suggested that both BTV-1 and BTV-8 might impair host's capability against primary infections which would favor viral replication and spreading. However, cellular immune response and cytokines elicited an immune response in sheep that efficiently reduced viremia in the final stage of the experiment. Recovery of T cell subsets (CD4(+) and CD25(+)) together with a significant increase of CD8(+) T lymphocytes in both infected groups were observed in parallel with the decrease of viremia. Additionally, the recovery of CD4(+) T lymphocytes together with the significant increase of IL-4 serum levels at the final stage of the experiment might contribute to humoral immune response activation and neutralizing antibodies production against BTV previously described in the course of this experiment. These results suggested that both cellular and humoral immune response may contribute to protective immunity against BTV-1 and BTV-8 in sheep. The possible role played by IL-10 and CD25(+) cells in controlling inflammatory and immune response in the final stage of the experiment has also been suggested. PMID:25769647

  3. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    PubMed

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. PMID:26281765

  4. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution.

    PubMed

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-08-18

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology. PMID:19666513

  5. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution

    PubMed Central

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-01-01

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells “as seen in a culture dish” and would be useful for in vivo tumor cell biology. PMID:19666513

  6. Quantitative retrieval of crop water content under different soil moistures levels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahua; Guo, Wenjuan

    2006-12-01

    The characteristics of canopy spectrum and growth status of winter wheat under different soil moisture levels were studied in the field. Correlations between FMC and EWT of leaf and spectral reflectance of canopy were calculated and analysed quantitatively, and the sensitive bands to leaf water were found. Simple ratio water index(SWI)and normalized difference water index(NDWI) were constructed with the sensitive bands. Simple statistical models at different growth stages were established using spectral indices data and FMC and EWT of leaf. Bands centered at 469, 645, 700 and 710nm of VIS region, bands centered at 760, 815, 855, 930, 1075, 1100nm of NIR region and bands centred 550, 1600, 1640, 1750, 2130nm of SWIR were defined as sensitive bands to estimate leaf water content. These bands centered atmosphere windows had the potential to be applied in monitoring canopy leaf content of crop. The SWI and NDWI constructed with the sensitive bands could estimate leaf content more accurately than single band. The four band MODIS combined index: R (1640,2130) / ND (855,555) showed a good indicator to detect canopy water content of winter wheat.

  7. Quantitative Glycoproteomics Analysis Reveals Changes in N-Glycosylation Level Associated with Pancreatic Ductal Adenocarcinoma

    PubMed Central

    2015-01-01

    Glycosylation plays an important role in epithelial cancers, including pancreatic ductal adenocarcinoma. However, little is known about the glycoproteome of the human pancreas or its alterations associated with pancreatic tumorigenesis. Using quantitative glycoproteomics approach, we investigated protein N-glycosylation in pancreatic tumor tissue in comparison with normal pancreas and chronic pancreatitis tissue. The study lead to the discovery of a roster of glycoproteins with aberrant N-glycosylation level associated with pancreatic cancer, including mucin-5AC (MUC5AC), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), insulin-like growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP). Pathway analysis of cancer-associated aberrant glycoproteins revealed an emerging phenomenon that increased activity of N-glycosylation was implicated in several pancreatic cancer pathways, including TGF-β, TNF, NF-kappa-B, and TFEB-related lysosomal changes. In addition, the study provided evidence that specific N-glycosylation sites within certain individual proteins can have significantly altered glycosylation occupancy in pancreatic cancer, reflecting the complexity of the molecular mechanisms underlying cancer-associated glycosylation events. PMID:24471499

  8. Quantitative phase microscopy: automated background leveling techniques and smart temporal phase unwrapping.

    PubMed

    Goldstein, Goldie; Creath, Katherine

    2015-06-01

    In order for time-dynamic quantitative phase microscopy to yield meaningful data to scientists, raw phase measurements must be converted to sequential time series that are consistently phase unwrapped with minimal residual background shape. Beyond the initial phase unwrapping, additional steps must be taken to convert the phase to time-meaningful data sequences. This consists of two major operations both outlined in this paper and shown to operate robustly on biological datasets. An automated background leveling procedure is introduced that consistently removes background shape and minimizes mean background phase value fluctuations. By creating a background phase value that is stable over time, the phase values of features of interest can be examined as a function of time to draw biologically meaningful conclusions. Residual differences between sequential frames of data can be present due to inconsistent phase unwrapping, causing localized regions to have phase values at similar object locations inconsistently changed by large values between frames, not corresponding to physical changes in the sample being observed. This is overcome by introducing a new method, referred to as smart temporal unwrapping that temporally unwraps and filters the phase data such that small motion between frames is accounted for and phase data are unwrapped consistently between frames. The combination of these methods results in the creation of phase data that is stable over time by minimizing errors introduced within the processing of the raw data. PMID:26192681

  9. Quantitative immunocytochemistry at the ultrastructural level: a stereology-based approach to molecular nanomorphomics.

    PubMed

    Mayhew, Terry M

    2015-04-01

    Biological systems span multiple levels of structural organisation from the macroscopic, via the microscopic, to the nanoscale. Therefore, comprehensive investigation of systems biology requires application of imaging modalities that reveal structure at multiple resolution scales. Nanomorphomics is the part of morphomics devoted to the systematic study of functional morphology at the nanoscale and an important element of its achievement is the combination of immunolabelling and transmission electron microscopy (TEM). The ultimate goal of quantitative immunocytochemistry is to estimate numbers of target molecules (usually peptides, proteins or protein complexes) in biological systems and to map their spatial distributions within them. Immunogold cytochemistry utilises target-specific affinity markers (primary antibodies) and visualisation aids (e.g., colloidal gold particles or silver-enhanced nanogold particles) to detect and localise target molecules at high resolution in intact cells and tissues. In the case of post-embedding labelling of ultrathin sections for TEM, targets are localised as a countable digital readout by using colloidal gold particles. The readout comprises a spatial distribution of gold particles across the section and within the context of biological ultrastructure. The observed distribution across structural compartments (whether volume- or surface-occupying) represents both specific and non-specific labelling; an assessment by eye alone as to whether the distribution is random or non-random is not always possible. This review presents a coherent set of quantitative methods for testing whether target molecules exhibit preferential and specific labelling of compartments and for mapping the same targets in two or more groups of cells as their TEM immunogold-labelling patterns alter after experimental manipulation. The set also includes methods for quantifying colocalisation in multiple-labelling experiments and mapping absolute numbers of

  10. Reduction of Cellular Expression Levels Is a Common Feature of Functionally Affected Pendrin (SLC26A4) Protein Variants

    PubMed Central

    de Moraes, Vanessa C S; Bernardinelli, Emanuele; Zocal, Nathalia; Fernandez, Jhonathan A; Nofziger, Charity; Castilho, Arthur M; Sartorato, Edi L; Paulmichl, Markus; Dossena, Silvia

    2016-01-01

    Sequence alterations in the pendrin gene (SLC26A4) leading to functionally affected protein variants are frequently involved in the pathogenesis of syndromic and nonsyndromic deafness. Considering the high number of SLC26A4 sequence alterations reported to date, discriminating between functionally affected and unaffected pendrin protein variants is essential in contributing to determine the genetic cause of deafness in a given patient. In addition, identifying molecular features common to the functionally affected protein variants can be extremely useful to design future molecule-directed therapeutic approaches. Here we show the functional and molecular characterization of six previously uncharacterized pendrin protein variants found in a cohort of 58 Brazilian deaf patients. Two variants (p.T193I and p.L445W) were undetectable in the plasma membrane, completely retained in the endoplasmic reticulum and showed no transport function; four (p.P142L, p.G149R, p.C282Y and p.Q413R) showed reduced function and significant, although heterogeneous, expression levels in the plasma membrane. Importantly, total expression levels of all of the functionally affected protein variants were significantly reduced with respect to the wild-type and a fully functional variant (p.R776C), regardless of their subcellular localization. Interestingly, reduction of expression may also reduce the transport activity of variants with an intrinsic gain of function (p.Q413R). As reduction of overall cellular abundance was identified as a common molecular feature of pendrin variants with affected function, the identification of strategies to prevent reduction in expression levels may represent a crucial step of potential future therapeutic interventions aimed at restoring the transport activity of dysfunctional pendrin variants. PMID:26752218

  11. Exposure of humans to ambient levels of ozone for 6. 6 hours causes cellular and biochemical changes in the lung

    SciTech Connect

    Devlin, R.B.; McDonnell, W.F.; Mann, R.; Becker, S.; House, D.E.; Schreinemachers, D.; Koren, H.S. )

    1991-01-01

    An acute (2 h) exposure of humans to 0.4 ppm ozone initiates biochemical changes in the lung that result in the production of components mediating inflammation and acute lung damage as well as components having the potential to lead to long-term effects such as fibrosis. However, many people are exposed to lower levels of ozone than this, but for periods of several hours. Therefore, it is important to determine if a prolonged exposure to low levels of ozone is also capable of causing cellular and biochemical changes in the lung. Nonsmoking males were randomly exposed to filtered air and either 0.10 ppm ozone or 0.08 ppm ozone for 6.6 h with moderate exercise (40 liters/min). Bronchoalveolar lavage (BAL) was performed 18 h after each exposure, and cells and fluid were analyzed. The BAL fluid of volunteers exposed to 0.10 ppm ozone had significant increases in neutrophils (PMNs), protein, prostaglandin E2 (PGE2), fibronectin, interleukin-6 (IL-6), and lactate dehydrogenase (LDH) compared with BAL fluid from the same volunteers exposed to filtered air. In addition, there was a decrease in the ability of alveolar macrophages to phagocytize yeast via the complement receptor. Exposure to 0.08 ppm ozone resulted in significant increases in PMNs, PGE2, LDH, IL-6, alpha 1-antitrypsin, and decreased phagocytosis via the complement receptor. However, BAL fluid protein and fibronectin were no longer significantly elevated. We conclude that exposure of humans to as low a level as 0.08 ppm for 6.6 h is sufficient to initiate an inflammatory reaction in the lung.

  12. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    ERIC Educational Resources Information Center

    Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M.

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or…

  13. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level.

    PubMed

    Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming

    2016-01-01

    The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071

  14. Application of LDH-release assay to cellular-level evaluation of the toxic potential of harmful algal species.

    PubMed

    Zou, Yanan; Kim, Daekyung; Yagi, Motoaki; Yamasaki, Yasuhiro; Kurita, Jun; Iida, Takaji; Matsuyama, Yukihiko; Yamaguchi, Kenichi; Oda, Tatsuya

    2013-01-01

    Lactate dehydrogenase (LDH)-release assay was applied to estimate the toxic potential of harmful algal species at the cellular level. African green monkey kidney (Vero), yellowtail fin epithelia (MJF), and rainbow trout gill (RTgill-W1) cells were used as target cells. A live cell suspension of Karenia mikimotoi (SUO-1) induced the release of LDH from these cell lines, while the activity of another strain, FUK, was much lower. The cell-free culture supernatants and ruptured cell suspensions of both strains of K. mikimotoi were less effective on LDH-release assay. Exposure experiments against abalone and shrimp revealed that SUO-1 showed much stronger lethal effects on these organisms than FUK. Among six phytoplankton species, three species known to be harmful algal species induced the release of LDH to different extents depending on the cell line, whereas the other three species, known to be non-toxic, showed no effects on any cell lines. These results suggest that LDH-release assay is a useful micro-plate assay for estimation of the toxic potential of harmful phytoplankton. PMID:23391929

  15. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level

    PubMed Central

    Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A.; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming

    2016-01-01

    The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071

  16. In Vivo Venous Assessment of Red Blood Cell Aggregate Sizes in Diabetic Patients with a Quantitative Cellular Ultrasound Imaging Method: Proof of Concept

    PubMed Central

    Tripette, Julien; Nguyen, Linh-Chi; Allard, Louise; Robillard, Pierre; Soulez, Gilles; Cloutier, Guy

    2015-01-01

    Background Diabetic patients present higher level of red blood cell (RBC) aggregation contributing to the development of vascular complications. While it has been suggested that this hematology/rheology parameter could bring additional prognostic information for the management of those patients, RBC aggregation screening is not included as a clinical practice. Most medical centers are not equipped to measure properly this parameter, although sedimentation tests can bring some indication. Here, we aimed at evaluating the feasibility of using ultrasound to assess in-vivo hyper-aggregation in type 2 diabetic patients. Research design and methods Seventeen diabetic patients and 15 control subjects underwent ultrasound measurements of RBC aggregation in both cephalic and great saphenous veins. Non-invasive in-vivo ultrasound measurements were performed using a newly developed cellular imaging technique, the structure factor size and attenuation estimator (SFSAE). Comparisons with an ex-vivo gold standard rheometry technique were done, along with measurements of pro-aggregating plasma molecule concentrations. Results In-vivo RBC aggregation was significantly higher in diabetic patients compared with controls for cephalic vein measurements, while a trend (p = 0.055) was noticed in the great saphenous vein. SFSAE measurements were correlated with gold standard in-vitro measures, fibrinogen and C-reactive protein plasma concentrations. Conclusion RBC aggregation can be measured in-vivo in diabetic patients using ultrasound. Prospective studies are needed to determine whether the SFSAE method could help clinicians in the early management of vascular complications in this patient population. PMID:25906140

  17. Holocene relative sea-level change in Hiroshima Bay, Japan: A semi-quantitative reconstruction based on ostracodes

    USGS Publications Warehouse

    Yasuhara, Moriaki; Seto, Koji

    2006-01-01

    Holocene relative sea-level changes in Hiroshima Bay were reconstructed from fossil ostracodes from a core, using a semi-quantitative method. In Hiroshima Bay, relative sea level rose rapidly (about 25 m) between ca. 9000 cal yr BP and ca. 5800 cal yr BP, after which it gradually fell (about 5 m) to its present level. The peak in relative sea level occurred at ca. 5800 cal yr BP. The sea-level curve for Hiroshima Bay is similar to curves for tectonically stable areas of Japan (e.g., Osaka Bay). ?? by the Palaeontological Society of Japan.

  18. Novel Whole-tissue Quantitative Assay of Nitric Oxide Levels in Drosophila Neuroinflammatory Response

    PubMed Central

    Ajjuri, Rami R.; O'Donnell, Janis M.

    2013-01-01

    Neuroinflammation is a complex innate immune response vital to the healthy function of the central nervous system (CNS). Under normal conditions, an intricate network of inducers, detectors, and activators rapidly responds to neuron damage, infection or other immune infractions. This inflammation of immune cells is intimately associated with the pathology of neurodegenerative disorders, such as Parkinson's disease (PD), Alzheimer's disease and ALS. Under compromised disease states, chronic inflammation, intended to minimize neuron damage, may lead to an over-excitation of the immune cells, ultimately resulting in the exacerbation of disease progression. For example, loss of dopaminergic neurons in the midbrain, a hallmark of PD, is accelerated by the excessive activation of the inflammatory response. Though the cause of PD is largely unknown, exposure to environmental toxins has been implicated in the onset of sporadic cases. The herbicide paraquat, for example, has been shown to induce Parkinsonian-like pathology in several animal models, including Drosophila melanogaster. Here, we have used the conserved innate immune response in Drosophila to develop an assay capable of detecting varying levels of nitric oxide, a cell-signaling molecule critical to the activation of the inflammatory response cascade and targeted neuron death. Using paraquat-induced neuronal damage, we assess the impact of these immune insults on neuroinflammatory stimulation through the use of a novel, quantitative assay. Whole brains are fully extracted from flies either exposed to neurotoxins or of genotypes that elevate susceptibility to neurodegeneration then incubated in cell-culture media. Then, using the principles of the Griess reagent reaction, we are able to detect minor changes in the secretion of nitric oxide into cell-culture media, essentially creating a primary live-tissue model in a simple procedure. The utility of this model is amplified by the robust genetic and molecular

  19. Particle Size Evidence of Intertidal Elevation: A Basis for Quantitative Sea-level Reconstruction

    NASA Astrophysics Data System (ADS)

    Plater, Andrew; Mills, Hayley; Zhang, Weiguo; Dong, Chenyin

    2014-05-01

    The relationship between particle size distributions and bed elevation within the tidal frame is controlled largely by hydroperiod and proximity to tidal ingress. Here, the upper part of the intertidal zone is characterised by poorly sorted, near symmetrical, platy- to mesokurtic, fine-grained particle size distributions due to particle settling from suspension as the tidal flow velocity decreases to high tide slack water. Indeed, an elevational or spatial gradient in particle size distribution can be observed whereby shorter hydroperiods (higher elevations) are accompanied by slower and more variable flow velocities. However, this gradient may become complicated by creek networks, whereby particle size can be observed to decrease away from creek margins, or extant vegetation that increases bed friction. Unvegetated, planar tidal flats in the Yangtze estuary offer an ideal test bed to explore evidence for a quantitative relationship between particle size distributions and bed elevation within the tidal frame. Such a relationship would then serve as an effective proxy for tidal level preserved within sediment cores, and thus a means for reconstructing past sea level. This principle is based largely on ecological transfer function-based reconstructions of Holocene sea level from foraminifera and diatoms. Surface sediment samples were collected along three transects extending eastwards from Chongming Island in South Branch channel of the Yangtze estuary. Sample positions relative to the high water mark were determined using RTK surveying, and particle size analysis was undertaken using laser granulometry. Unconstrained cluster analysis, based on unweighted Euclidean distance, was undertaken on the particle size classes at 0.25 phi intervals (up to 50 size bins) as well as Udden-Wentworth size classes (6-7 size bins). All three transects demonstrate a good clustering of particle size classes with distance and elevation, i.e. sites that are higher within the tidal frame

  20. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model

    PubMed Central

    Lee, Hye-Rim; Shon, Oog-Jin; Park, Se-Il; Kim, Han-Jun; Kim, Sukyoung; Ahn, Myun-Whan; Do, Sun Hee

    2016-01-01

    Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW) rabbits were incubated for 3, 10, 14 and 21 days with PRP(−), 10% PRP (PRP(+)), IL(+) or IL(+)PRP(+). The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR). Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP) catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+) and in IL(+)PRP(+). In PRP(+), the aggrecan expression levels were lower than in the PRP(−) until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+) and IL(+)PRP(+), at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control) or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage. PMID:26784189

  1. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model.

    PubMed

    Lee, Hye-Rim; Shon, Oog-Jin; Park, Se-Il; Kim, Han-Jun; Kim, Sukyoung; Ahn, Myun-Whan; Do, Sun Hee

    2016-01-01

    Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW) rabbits were incubated for 3, 10, 14 and 21 days with PRP(-), 10% PRP (PRP(+)), IL(+) or IL(+)PRP(+). The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR). Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP) catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+) and in IL(+)PRP(+). In PRP(+), the aggrecan expression levels were lower than in the PRP(-) until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+) and IL(+)PRP(+), at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control) or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage. PMID:26784189

  2. Quantitation of Phenol Levels in Oil of Wintergreen Using Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring

    ERIC Educational Resources Information Center

    Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor

    2005-01-01

    Industrial application of gas chromatography-mass spectrometry (GC-MS) analysis is a powerful technique that could be used to elucidate components of a complex mixture while offering the benefits of high-precision quantitative analysis. The natural wintergreen oil is examined for its phenol concentration to determine the level of refining…

  3. Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals

    SciTech Connect

    Roy, D.; Palangat, M.; Chen, Chiao-Wen

    1997-01-01

    Estrogen-like chemical are unique because the estrogenic property of these compounds allows them to act like sex hormones. Whether weak or strong, the estrogenic response of a chemical, if not overcome, will add extra estrogenic burden to the system. At elevated doses, natural estrogens and environmental estrogen-like chemicals are known to produce adverse effects. The source of extra or elevated concentration of estrogen could be either endogenous or exogenous. The potential of exposure for humans and animals to environmental estrogen-like chemicals is high. Only a limited number of estrogen-like compounds, such as diethylstibestrol (DES), bisphenol A, nonylphenol, polychlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane (DDT), have been used to assess the biochemical and molecular changes at the cellular level. This article is focused mainly on DES-related observations. In addition to estrogenic effects, environmental estrogen-like chemical produce multiple and multitype genetic and/or nongenetic hits. Exposure of Syrian hamsters to stilbene estrogen (DES) produces several changes in the nuclei of target organ for carcinogenesis (kidney). Exposure of Noble rats to DES also produces several changes in the mammary gland. Some other estrogenic compounds may also follow a similar pattern of effects to DES, because these compounds alter cell cycle kinetics, produce telomeric associations, and produce chromosomal aberrations. It should be noted that a particular or multitype hit(s) will depend upon the nature of the environmental estrogen-like chemical. The role of individual attack leading to a particular change is not clear at this stage. Consequences of these multitypes of attack on the nuclei of cells could be (1) nuclear toxicity/cell death; (2) repair of all the hits and then acting as normal cells; or (3) sustaining most of the hits and acting as unstable cells. 180 refs., 4 figs., 1 tab.

  4. Hyperoxia-Induced Protein Alterations in Renal Rat Tissue: A Quantitative Proteomic Approach to Identify Hyperoxia-Induced Effects in Cellular Signaling Pathways

    PubMed Central

    Hinkelbein, Jochen; Böhm, Lennert; Spelten, Oliver; Sander, David; Soltész, Stefan; Braunecker, Stefan

    2015-01-01

    Introduction. In renal tissue as well as in other organs, supranormal oxygen pressure may lead to deleterious consequences on a cellular level. Additionally, hyperoxia-induced effect in cells and related free radicals may potentially contribute to renal failure. The aim of this study was to analyze time-dependent alterations of rat kidney protein expression after short-term normobaric hyperoxia using proteomics and bioinformatic approaches. Material and Methods. N = 36 Wistar rats were randomized into six different groups: three groups with normobaric hyperoxia (exposure to 100% oxygen for 3 h) and three groups with normobaric normoxia (NN; room air). After hyperoxia exposure, kidneys were removed immediately, after 3 days and after 7 days. Kidney lysates were analyzed by two-dimensional gel electrophoresis followed by peptide mass fingerprinting using tandem mass spectrometry. Statistical analysis was performed with DeCyder 2D software (p < 0.01). Biological functions of differential regulated proteins were studied using functional network analysis (Ingenuity Pathways Analysis and PathwayStudio). Results. Expression of 14 proteins was significantly altered (p < 0.01): eight proteins (MEP1A_RAT, RSSA_RAT, F16P1_RAT, STML2_RAT, BPNT1_RAT, LGMN_RAT, ATPA_RAT, and VDAC1_RAT) were downregulated and six proteins (MTUS1_RAT, F16P1_RAT, ACTG_RAT, ACTB_RAT, 2ABA_RAT, and RAB1A_RAT) were upregulated. Bioinformatic analyses revealed an association of regulated proteins with inflammation. Conclusions. Significant alterations in renal protein expression could be demonstrated for up to 7 days even after short-term hyperoxia. The identified proteins indicate an association with inflammation signaling cascades. MEP1A and VDAC1 could be promising candidates to identify hyperoxic injury in kidney cells. PMID:26106253

  5. Quantitative relationships between huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into Huntington’s disease molecular pathogenesis

    PubMed Central

    Miller, Jason; Arrasate, Montserrat; Shaby, Benjamin A.; Mitra, Siddhartha; Masliah, Eliezer; Finkbeiner, Steven

    2010-01-01

    An expanded polyglutamine (polyQ) stretch in the protein huntingtin (htt) induces self-aggregation into inclusion bodies (IBs) and causes Huntington’s disease (HD). Defining precise relationships between early observable variables and neuronal death at the molecular and cellular levels should improve our understanding of HD pathogenesis. Here, we utilized an automated microscope that can track thousands of neurons individually over their entire lifetime to quantify interconnected relationships between early variables, such as htt levels, polyQ length, and IB formation, and neuronal death in a primary striatal model of HD. The resulting model revealed that: mutant htt increases the risk of death by tonically interfering with homeostatic coping mechanisms rather than producing accumulated damage to the neuron; htt toxicity is saturable; the rate limiting steps for inclusion body formation and death can be traced to different conformational changes in monomeric htt; and IB formation reduces the impact of a neuron’s starting levels of htt on its risk of death. Finally, the model that emerges from our quantitative measurements places critical limits on the potential mechanisms by which mutant htt might induce neurodegeneration, which should help direct future research. PMID:20685997

  6. Quantitative Targeted Proteomics of Pancreatic Cancer: Deoxycytidine Kinase Protein Level Correlates to Progression-Free Survival of Patients Receiving Gemcitabine Treatment.

    PubMed

    Ohmine, Ken; Kawaguchi, Kei; Ohtsuki, Sumio; Motoi, Fuyuhiko; Ohtsuka, Hideo; Kamiie, Junichi; Abe, Takaaki; Unno, Michiaki; Terasaki, Tetsuya

    2015-09-01

    The purpose of the present study is to identify the determinant(s) of gemcitabine (dFdC)-sensitivity in pancreatic cancer tissues of patients treated with dFdC alone and in pancreatic cancer cell lines exposed to dFdC in vitro. Protein expression levels of 12 enzymes and 13 transporters potentially involved in transport and metabolism of dFdC in pancreatic cancer cell lines and tissues were quantified by means of our LC-MS/MS-based quantitative targeted proteomics technology. Protein expression levels of deoxycytidine kinase (dCK), uridine monophosphate-cytidine monophosphate (UMP-CMP) kinase, cytosolic nucleotidase III (cN-III), and equilibrative nucleoside transporter 1 (ENT1) were significantly correlated with IC50 or 1/IC50 in five cell lines with different sensitivities to dFdC (p < 0.05). Expression levels of the selected proteins in pancreatic cancer tissues of 10 patients with different progression-free survival (PFS) (49-955 days) were quantified, and their relationship with PFS was examined. Only the protein expression level of dCK was significantly correlated with PFS (p < 0.05). Multiple regression analysis was also performed, and combinations of ENT1, UMP-CMP kinase, CTPS1, and dCK were highly correlated with PFS. Our results indicate that the protein expression level of dCK in pancreatic cancer tissue is a good predictor of PFS, and thus dCK may be the best biomarker of dFdC sensitivity in pancreatic cancer patients treated with dFdC, although other proteins would also contribute to dFdC-sensitivity at the cellular level in vivo and in vitro. PMID:26280109

  7. Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing.

    PubMed

    Song, J H; An, N; Chatterjee, S; Kistner-Griffin, E; Mahajan, S; Mehrotra, S; Kraft, A S

    2015-07-01

    The Pim protein kinases contribute to transformation by enhancing the activity of oncogenic Myc and Ras, which drives significant metabolic changes during tumorigenesis. In this report, we demonstrate that mouse embryo fibroblasts (MEFs) lacking all three isoforms of Pim protein kinases, triple knockout (TKO), cannot tolerate the expression of activated K-Ras (K-Ras(G12V)) and undergo cell death. Transduction of K-Ras(G12V) into these cells markedly increased the level of cellular reactive oxygen species (ROS). The addition of N-acetyl cysteine attenuated ROS production and reversed the cytotoxic effects of K-Ras(G12V) in the TKO MEFs. The altered cellular redox state caused by the loss of Pim occurred as a result of lower levels of metabolic intermediates in the glycolytic and pentose phosphate pathways as well as abnormal mitochondrial oxidative phosphorylation. TKO MEFs exhibit reduced levels of superoxide dismutase (Sod), glutathione peroxidase 4 (Gpx4) and peroxiredoxin 3 (Prdx3) that render them susceptible to killing by K-Ras(G12V)-mediated ROS production. In contrast, the transduction of c-Myc into TKO cells can overcome the lack of Pim protein kinases by regulating cellular metabolism and Sod2. In the absence of the Pim kinases, c-Myc transduction permitted K-Ras(G12V)-induced cell growth by decreasing Ras-induced cellular ROS levels. These results demonstrate that the Pim protein kinases have an important role in regulating cellular redox, metabolism and K-Ras-stimulated cell growth. PMID:25241892

  8. Temporal dynamics of changes in reactive oxygen species (ROS) levels and cellular morphology are coordinated during complementary chromatic acclimation in Fremyella diplosiphon.

    PubMed

    Singh, Shailendra P; Miller, Haley L; Montgomery, Beronda L

    2013-10-14

    Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes. PMID:24122367

  9. RoGFP1 is a quantitative biosensor in maize cells for cellular redox changes caused by environmental and endogenous stimuli.

    PubMed

    Liu, Xiaoning; Wu, Jiamei; Liu, Hao; Zong, Na; Zhao, Jun

    2014-09-26

    Reduction-oxidation-sensitive green fluorescent proteins (roGFPs) have been demonstrated to be valuable tools in sensing cellular redox changes in mammalian cells and model plants, yet have not been applied in crops such as maize. Here we report the characteristics of roGFP1 in transiently transformed maize mesophyll protoplasts in response to environmental stimuli and knocked-down expression of ROS-scavenging genes. We demonstrated that roGFP1 in maize cells ratiometrically responds to cellular redox changes caused by H2O2 and DTT, as it does in mammalian cells and model plants. Moreover, we found that roGFP1 is sensitive enough to cellular redox changes caused by genetic perturbation of single ROS genes, as exemplified by knocked-down expression of individual ZmAPXs, in maize protoplasts under controlled culture conditions and under stress conditions imposed by H2O2 addition. These data provide evidence that roGFP1 functions in maize cells as a biosensor for cellular redox changes triggered by genetic lesion of single ROS genes even under stress conditions, and suggest a potential application of roGFP1 in large-scale screening for maize mutants of ROS signaling involved in development and stress resistance. PMID:25173931

  10. Validation of reference genes for real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang.

    PubMed

    Zhao, Wenjing; Li, Yan; Gao, Pengfei; Sun, Zhihong; Sun, Tiansong; Zhang, Heping

    2011-09-01

    Lactobacillus casei Zhang, a potential probiotic strain isolated from homemade koumiss in Inner Mongolia of China, has been sequenced and deposited in GenBank. Real-time quantitative PCR is one of the most widely used methods to study related gene expression levels of Lactobacillus casei Zhang. For accurate and reliable gene expression analysis, normalization of gene expression data using one or more appropriate reference genes is essential. We used three statistical methods (geNorm, NormFinder, and BestKeeper) to evaluate the expression levels of five candidate reference genes (GAPD, gyrB, LDH, 16s rRNA, and recA) under different culture conditions and different growth phases to find a suitable housekeeping gene which can be used as internal standard. The results showed that the best reference gene was GAPD, and a set of two genes, GAPD and gyrB (which were the most stable reference genes), is recommended for normalization of real-time quantitative PCR experiments under all the different experimental conditions tested. The systematic validation of candidate reference genes is important for obtaining reliable analysis results of real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang. PMID:21104423

  11. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels

    PubMed Central

    Cordeau, Emmanuelle; Arnaudguilhem, Carine; Bouyssiere, Brice; Hagège, Agnès; Martinez, Jean; Subra, Gilles; Cantel, Sonia

    2016-01-01

    In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC) associated with elemental mass spectrometry (ICP-MS) to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP)/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se) was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully validated and

  12. Quantitation of protein 3 content of circulating erythrocytes at the single-cell level

    SciTech Connect

    Jennings, L.K.; Brown, L.K.; Dockter, M.E.

    1985-05-01

    The density and size of human erythrocytes has been roughly correlated with cell age, with the denser and smaller cells being older. Observations of this type have led to a hypothesis that the membranes of circulating erythrocytes are dynamic with respect to composition and that material is lost from the membrane during cell maturation and circulation. In this study, flow cytofluorimetry was used to investigate the distribution of the human erythrocyte anion transport protein (protein 3) in heterogeneous samples of circulating red cells. We verified that protein 3 can be specifically and quantitatively labeled in intact human erythrocytes with eosin-5-maleimide, a luminescent probe. Individual cells were accordingly analyzed for size by forward light scattering and for protein 3 content by quantitation of eosin fluorescence. Initial results indicated that the smallest erythrocytes had a protein 3 content equal to that of the largest circulating erythrocytes. This result was independently verified by light scatter-activated cell sorting; direct measurement of cell diameters by microscopy verified that the cell sizes of erythrocytes showing the 10% greatest and 10% smallest light-scattering signal were indeed distinct. Independent analysis of the size-sorted erythrocytes for protein 3 content was accomplished by gel electrophoresis of stroma from 150,000 large and small erythrocytes. Quantitative scanning densitometry of silver-stained gels of prepared stroma showed that protein 3 content of each set of fractionated cells was equal and did not vary as a function of cell size. Taken in combination with the reported correlation between increasing red blood cell age and decreasing cell size, these results indicate that any loss of membranous material during the cell aging process is not random.

  13. Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels.

    PubMed

    Cunningham, Josephine C; Scida, Karen; Kogan, Molly R; Wang, Bo; Ellington, Andrew D; Crooks, Richard M

    2015-01-01

    We report a paper-based assay platform for detection of ricin a chain. The paper platform is assembled by simple origami paper folding. The sensor is based on quantitative, electrochemical detection of silver nanoparticle labels linked to a magnetic microbead support via a ricin immunosandwich. Importantly, ricin was detected at concentrations as low as 34 pM. Additionally, the assay is robust, even in the presence of 100-fold excess hoax materials. Finally, the device is easily remediated after use by incineration. The cost of the device, not including reagents, is just $0.30. The total assay time, including formation of the immunosandwich, is 9.5 min. PMID:26224395

  14. Development of a quantitative diagnostic method of estrogen receptor expression levels by immunohistochemistry using organic fluorescent material-assembled nanoparticles

    SciTech Connect

    Gonda, Kohsuke; Miyashita, Minoru; Watanabe, Mika; Takahashi, Yayoi; Goda, Hideki; Okada, Hisatake; Nakano, Yasushi; Tada, Hiroshi; Amari, Masakazu; Ohuchi, Noriaki

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Organic fluorescent material-assembled nanoparticles for IHC were prepared. Black-Right-Pointing-Pointer New nanoparticle fluorescent intensity was 10.2-fold greater than Qdot655. Black-Right-Pointing-Pointer Nanoparticle staining analyzed a wide range of ER expression levels in tissue. Black-Right-Pointing-Pointer Nanoparticle staining enhanced the quantitative sensitivity for ER diagnosis. -- Abstract: The detection of estrogen receptors (ERs) by immunohistochemistry (IHC) using 3,3 Prime -diaminobenzidine (DAB) is slightly weak as a prognostic marker, but it is essential to the application of endocrine therapy, such as antiestrogen tamoxifen-based therapy. IHC using DAB is a poor quantitative method because horseradish peroxidase (HRP) activity depends on reaction time, temperature and substrate concentration. However, IHC using fluorescent material provides an effective method to quantitatively use IHC because the signal intensity is proportional to the intensity of the photon excitation energy. However, the high level of autofluorescence has impeded the development of quantitative IHC using fluorescence. We developed organic fluorescent material (tetramethylrhodamine)-assembled nanoparticles for IHC. Tissue autofluorescence is comparable to the fluorescence intensity of quantum dots, which are the most representative fluorescent nanoparticles. The fluorescent intensity of our novel nanoparticles was 10.2-fold greater than quantum dots, and they did not bind non-specifically to breast cancer tissues due to the polyethylene glycol chain that coated their surfaces. Therefore, the fluorescent intensity of our nanoparticles significantly exceeded autofluorescence, which produced a significantly higher signal-to-noise ratio on IHC-imaged cancer tissues than previous methods. Moreover, immunostaining data from our nanoparticle fluorescent IHC and IHC with DAB were compared in the same region of adjacent tissues sections to

  15. Genome-wide Linkage Analysis for Identifying Quantitative Trait Loci Involved in the Regulation of Lipoprotein a (Lpa) Levels

    PubMed Central

    López, Sonia; Buil, Alfonso; Ordoñez, Jordi; Souto, Juan Carlos; Almasy, Laura; Lathrop, Mark; Blangero, John; Blanco-Vaca, Francisco; Fontcuberta, Jordi; Soria, José Manuel

    2009-01-01

    Lipoprotein Lp(a) levels are highly heritable and are associated with cardiovascular risk. We performed a genome-wide linkage analysis to delineate the genomic regions that influence the concentration of Lp(a) in families from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. Lp(a) levels were measured in 387 individuals belonging to 21 extended Spanish families. A total of 485 DNA microsatellite markers were genotyped to provide a 7.1 cM genetic map. A variance component linkage method was used to evaluate linkage and to detect quantitative trait loci (QTLs). The main QTL that showed strong evidence of linkage with Lp(a) levels was located at the structural gene for apo(a) on Chromosome 6 (LOD score=13.8). Interestingly, another QTL influencing Lp(a) concentration was located on Chromosome 2 with a LOD score of 2.01. This region contains several candidate genes. One of them is the tissue factor pathway inhibitor (TFPI), which has antithrombotic action and also has the ability to bind lipoproteins. However, quantitative trait association analyses performed with 12 SNPs in TFPI gene revealed no association with Lp(a) levels. Our study confirms previous results on the genetic basis of Lp(a) levels. In addition, we report a new QTL on Chromosome 2 involved in the quantitative variation of Lp(a). These data should serve as the basis for further detection of candidate genes and to elucidate the relationship between the concentration of Lp(a) and cardiovascular risk. PMID:18560444

  16. Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Yangbo; Fox, Daniel S.; Maguire, Pierce; O'Connell, Robert; Masters, Robert; Rodenburg, Cornelia; Wu, Hanchun; Dapor, Maurizio; Chen, Ying; Zhang, Hongzhou

    2016-02-01

    Two-dimensional (2D) materials usually have a layer-dependent work function, which require fast and accurate detection for the evaluation of their device performance. A detection technique with high throughput and high spatial resolution has not yet been explored. Using a scanning electron microscope, we have developed and implemented a quantitative analytical technique which allows effective extraction of the work function of graphene. This technique uses the secondary electron contrast and has nanometre-resolved layer information. The measurement of few-layer graphene flakes shows the variation of work function between graphene layers with a precision of less than 10 meV. It is expected that this technique will prove extremely useful for researchers in a broad range of fields due to its revolutionary throughput and accuracy.

  17. Quantitative and simultaneous non-invasive measurement of skin hydration and sebum levels

    PubMed Central

    Ezerskaia, Anna; Pereira, S. F.; Urbach, H. Paul; Verhagen, Rieko; Varghese, Babu

    2016-01-01

    We report a method on quantitative and simultaneous non-contact in-vivo hydration and sebum measurements of the skin using an infrared optical spectroscopic set-up. The method utilizes differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lay “in between” the prominent water absorption bands. We have used an emulsifier containing hydro- and lipophilic components to mix water and sebum in various volume fractions which was applied to the skin to mimic different oily-dry skin conditions. We also measured the skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli. Good agreement was found between our experimental results and reference values measured using conventional biophysical methods such as Corneometer and Sebumeter. PMID:27375946

  18. Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene

    PubMed Central

    Zhou, Yangbo; Fox, Daniel S; Maguire, Pierce; O’Connell, Robert; Masters, Robert; Rodenburg, Cornelia; Wu, Hanchun; Dapor, Maurizio; Chen, Ying; Zhang, Hongzhou

    2016-01-01

    Two-dimensional (2D) materials usually have a layer-dependent work function, which require fast and accurate detection for the evaluation of their device performance. A detection technique with high throughput and high spatial resolution has not yet been explored. Using a scanning electron microscope, we have developed and implemented a quantitative analytical technique which allows effective extraction of the work function of graphene. This technique uses the secondary electron contrast and has nanometre-resolved layer information. The measurement of few-layer graphene flakes shows the variation of work function between graphene layers with a precision of less than 10 meV. It is expected that this technique will prove extremely useful for researchers in a broad range of fields due to its revolutionary throughput and accuracy. PMID:26878907

  19. Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci

    PubMed Central

    López, Sonia; Buil, Alfonso; Souto, Juan Carlos; Casademont, Jordi; Blangero, John; Martinez-Perez, Angel; Fontcuberta, Jordi; Lathrop, Mark; Almasy, Laura; Soria, Jose Manuel

    2012-01-01

    Altered mitochondrial DNA (mtDNA) levels have been associated with common diseases in humans. We investigated the genetic mechanism that controls mtDNA levels using genome-wide linkage analyses in families from the Genetic Analysis of Idiopathic Thrombophilia Project (GAIT). We measure mtDNA levels by quantitative real-time PCR in 386 subjects from 21 extended Spanish families. A variance component linkage method using 485 microsatellites was conducted to evaluate linkage and to detect quantitative trait loci (QTLs) involved in the control of mtDNA levels. The heritalibility of mtDNA levels was 0.33 (p = 1.82e-05). We identified a QTL on Chromosome 2 (LOD = 2.21) using all of the subjects, independently on their sex. When females and males were analysed separately, three QTLs were identified. Females showed the same QTL on Chromosome 2 (LOD = 3.09), indicating that the QTL identified in the analysis using all of the subjects was a strong female QTL, and another one on Chromosome 3 (LOD = 2.67), whereas in males a QTL was identified on Chromosome 1 (LOD = 2.81). These QTLs were fine-mapped to find associations with mtDNA levels. The most significant SNP association was for the rs10888838 on Chromosome 1 in males. This SNP mapped to the gene MRPL37, involved in mitochondrial protein translation. The rs2140855 on Chromosome 2 showed association in the analysis using all of the subjects. It was near the gene CMPK2, which encodes a mitochondrial enzyme of the salvage pathway of deoxyribonucleotide synthesis. Our results provide evidence of a sex-specific genetic mechanism for the control of mtDNA levels and provide a framework to identify new genes that influence mtDNA levels. PMID:22916149

  20. Sex-specific regulation of mitochondrial DNA levels: genome-wide linkage analysis to identify quantitative trait loci.

    PubMed

    López, Sonia; Buil, Alfonso; Souto, Juan Carlos; Casademont, Jordi; Blangero, John; Martinez-Perez, Angel; Fontcuberta, Jordi; Lathrop, Mark; Almasy, Laura; Soria, Jose Manuel

    2012-01-01

    Altered mitochondrial DNA (mtDNA) levels have been associated with common diseases in humans. We investigated the genetic mechanism that controls mtDNA levels using genome-wide linkage analyses in families from the Genetic Analysis of Idiopathic Thrombophilia Project (GAIT). We measure mtDNA levels by quantitative real-time PCR in 386 subjects from 21 extended Spanish families. A variance component linkage method using 485 microsatellites was conducted to evaluate linkage and to detect quantitative trait loci (QTLs) involved in the control of mtDNA levels. The heritalibility of mtDNA levels was 0.33 (p=1.82e-05). We identified a QTL on Chromosome 2 (LOD=2.21) using all of the subjects, independently on their sex. When females and males were analysed separately, three QTLs were identified. Females showed the same QTL on Chromosome 2 (LOD=3.09), indicating that the QTL identified in the analysis using all of the subjects was a strong female QTL, and another one on Chromosome 3 (LOD=2.67), whereas in males a QTL was identified on Chromosome 1 (LOD=2.81). These QTLs were fine-mapped to find associations with mtDNA levels. The most significant SNP association was for the rs10888838 on Chromosome 1 in males. This SNP mapped to the gene MRPL37, involved in mitochondrial protein translation. The rs2140855 on Chromosome 2 showed association in the analysis using all of the subjects. It was near the gene CMPK2, which encodes a mitochondrial enzyme of the salvage pathway of deoxyribonucleotide synthesis. Our results provide evidence of a sex-specific genetic mechanism for the control of mtDNA levels and provide a framework to identify new genes that influence mtDNA levels. PMID:22916149

  1. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  2. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27{sup Kip1} protein levels

    SciTech Connect

    Butz, Nicole; Ruetz, Stephan; Natt, Francois; Hall, Jonathan; Weiler, Jan; Mestan, Juergen; Ducarre, Monique; Grossenbacher, Rita; Hauser, Patrick; Kempf, Dominique; Hofmann, Francesco . E-mail: francesco.hofmann@pharma.novartis.com

    2005-02-15

    Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27{sup Kip1} was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF{sup Skp2} ubiquitin ligase has been reported to mediate p27{sup Kip1} degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27{sup Kip1}, and prevent cellular proliferation. Elevation of p27{sup Kip1} protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27{sup Kip1} with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF{sup Skp2} ubiquitin ligase substrate p27{sup Kip1}, but has no concomitant effect on the level of IkB{alpha} and {beta}-catenin, which are known substrates of a closely related SCF ligase.

  3. No evident dose-response relationship between cellular ROS level and its cytotoxicity--a paradoxical issue in ROS-based cancer therapy.

    PubMed

    Zhu, Chunpeng; Hu, Wei; Wu, Hao; Hu, Xun

    2014-01-01

    Targeting cancer via ROS-based mechanism has been proposed as a radical therapeutic approach. Cancer cells exhibit higher endogenous oxidative stress than normal cells and pharmacological ROS insults via either enhancing ROS production or inhibiting ROS-scavenging activity can selectively kill cancer cells. In this study, we randomly chose 4 cancer cell lines and primary colon or rectal cancer cells from 4 patients to test the hypothesis and obtained following paradoxical results: while piperlongumin (PL) and β-phenylethyl isothiocyanate (PEITC), 2 well-defined ROS-based anticancer agents, induced an increase of cellular ROS and killed effectively the tested cells, lactic acidosis (LA), a common tumor environmental factor that plays multifaceted roles in promoting cancer progression, induced a much higher ROS level in the tested cancer cells than PL and PEITC, but spared them; L-buthionine sulfoximine (L-BSO, 20 μM) depleted cellular GSH more effectively and increased higher ROS level than PL or PEITC but permitted progressive growth of the tested cancer cells. No evident dose-response relationship between cellular ROS level and cytotoxicity was observed. If ROS is the effecter, it should obey the fundamental therapeutic principle - the dose-response relationship. This is a major concern. PMID:24848642

  4. Cellular resilience.

    PubMed

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  5. Ultratrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods.

    PubMed

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E; Wang, Weiwei; Reeves, W Brian; Hahm, Jong-in

    2016-02-28

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification

  6. Ultratrace Level Determination and Quantitative Analysis of Kidney Injury Biomarkers in Patient Samples Attained by Zinc Oxide Nanorods

    PubMed Central

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-in

    2016-01-01

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg/mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of

  7. A Quantitative Assessment of the Sea Level Drop in the Messinian Mediterranean

    NASA Astrophysics Data System (ADS)

    Bartol, J.; Topper, R. P.

    2014-12-01

    In the Late Miocene progressive restriction of the gateway(s) between the Mediterranean Sea and the Atlantic Ocean initiated the Messinian Salinity Crisis (MSC). The restriction caused a salinity rise and the formation of extremely thick evaporite deposits within the Mediterranean basin. Subsequently, the closure of the connection between the Mediterranean Sea and Atlantic Ocean resulted in a dramatic sea level drop. The lithosphere adepts to changes in loads (sediments and water) on the surface by flexural adjustment of the Earth's surface. This can have a significant impact on the connectivity of basins and the temporal evolution of the sea level drop in each basin. The Mediterranean Sea is characterized by two deep basins with different amounts of river input (western/eastern Mediterranean basin) separated by the relatively shallow Sicily sill. The temporal evolution of the sea level drop in the western/eastern Mediterranean basin is therefore very sensitive to the temporal and spatial evolution of the Sicily gateway and hence flexure response of the earth surface due to the changes in waterload. However, studies of the MSC sea level drop haven't taken this flexural response into consideration (e.g. Meijer and Krijgsman, 2005). Here we use an elastic model (TISC) coupled with a simple hydrology model to calculate the temporal evolution of the sea level drop in and the flexural response of the western and eastern Mediterranean basins. Preliminary results show that when sea level drops below the Sicily sill, the rate of sea level increases in the western but decreases in the eastern Mediterranean. Following a relative sea level drop of ~1300 m, resulting in a flexural uplift of ~700m, the eastern Mediterranean reaches equilibrium. At the time the western Mediterranean (flexural uplift of ~900m) reaches an equilibrium it is almost completely desiccated. The magnitudes of the sea level drops and flexural response are, however, highly dependent on the hypsometry

  8. Cellular automata model for citrus variegated chlorosis.

    PubMed

    Martins, M L; Ceotto, G; Alves, S G; Bufon, C C; Silva, J M; Laranjeira, F F

    2000-11-01

    A cellular automata model is proposed to analyze the progress of citrus variegated chlorosis epidemics in São Paulo orange plantations. In this model epidemiological and environmental features, such as motility of sharpshooter vectors that perform Lévy flights, level of plant hydric and nutritional stress, and seasonal climatic effects, are included. The observed epidemic data were quantitatively reproduced by the proposed model on varying the parameters controlling vector motility, plant stress, and initial population of diseased plants. PMID:11102058

  9. The Relationship between Serum Vitamin D Levels and Spinal Fusion Success: A Quantitative Analysis

    PubMed Central

    Metzger, Melodie F.; Kanim, Linda E.; Zhao, Li; Robinson, Samuel T.; Delamarter, Rick B.

    2015-01-01

    Study Design An in vivo dosing study of vitamin D in a rat posterolateral spinal fusion model with autogenous bone grafting. Rats randomized to four levels of Vitamin D adjusted rat chow, longitudinal serum validation, surgeons/observers blinded to dietary conditions, and rats followed prospectively for fusion endpoint. Objective To assess the impact of dietary and serum levels of Vitamin D on fusion success, consolidation of fusion mass, and biomechanical stiffness after posterolateral spinal fusion procedure. Summary of Background Data Metabolic risk factors, including vitamin D insufficiency, are often overlooked by spine surgeons. Currently there are no published data on the causal effect of insufficient or deficient vitamin D levels on the success of establishing solid bony union after a spinal fusion procedure. Methods 50 rats were randomized to four experimentally controlled rat chow diets: normal control, vitamin D-deficient, vitamin-D insufficient, and a non-toxic high dose of vitamin D, four weeks prior to surgery and maintained post-surgery until sacrifice. Serum levels of 25(OH)D were determined at surgery and sacrifice using radioimmunoassay. Posterolateral fusion surgery with tail autograft was performed. Rats were sacrificed 12 weeks post-operatively and fusion was evaluated via manual palpation, high resolution radiographs, μCT, and biomechanical testing. Results Serum 25(OH)D and calcium levels were significantly correlated with vitamin-D adjusted chow (p<0.001). There was a dose dependent relationship between vitamin D adjusted chow and manual palpation fusion with greatest differences found in measures of radiographic density between high and deficient vitamin D (p<0.05). Adequate levels of vitamin D (high and normal control) yielded stiffer fusion than inadequate levels (insufficient and deficient) (p<0.05). Conclusions Manual palpation fusion rates increased with supplementation of dietary vitamin D. Biomechanical stiffness, bone volume and

  10. Quantitative Proteomics of Zea mays Hybrids Exhibiting Different Levels of Heterosis.

    PubMed

    Dahal, Diwakar; Newton, Kathleen J; Mooney, Brian P

    2016-08-01

    Maize hybrids exhibiting heterosis (hybrid vigor) were generated from inbred parents with increasing genetic distance. B73 was used as the common female parent in crosses with N192 (low heterosis), MO17 (high-heterosis 1), and NC350 (high-heterosis 2). Total and mitochondria-enriched proteomes were analyzed from ear shoots of field-grown hybrids and their inbred parents. GeLCMS (1D SDS-PAGE fractionation, trypsin digestion, LTQ Orbitrap nano-RP-LC MS/MS) was used to analyze proteins, and spectral counting was used for quantitation. In total, 3,568 proteins were identified and quantified in hybrids including 2,489 in the mitochondria-enriched fraction and 2,162 in the total protein fraction. Sixty-one proteins were differentially abundant (p < 0.05) in one or both of the high-heterosis hybrids compared with the low-heterosis hybrid. For the total proteome, eight of these showed similar trends in abundance in both of the higher-heterosis hybrids. Nine proteins showed this heterosis-correlated pattern in the mitochondrial proteome, including a mitochondria-associated target of rapamycin (TOR) protein. Although differentially abundant proteins belong to various pathways, protein, and RNA metabolism, and stress responsive proteins were the major classes changed in response to increasing heterosis. PMID:27297264