Science.gov

Sample records for quantitative detection approach

  1. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    SciTech Connect

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-12-27

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm⁻¹ spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and ({25.4±1.3)%, respectively.

  2. Novel Approach to Quantitative Detection of Specific rRNA in a Microbial Community, Using Catalytic DNA

    PubMed Central

    Suenaga, Hikaru; Liu, Rui; Shiramasa, Yuko; Kanagawa, Takahiro

    2005-01-01

    We developed a novel method for the quantitative detection of the 16S rRNA of a specific bacterial species in the microbial community by using deoxyribozyme (DNAzyme), which possesses the catalytic function to cleave RNA in a sequence-specific manner. A mixture of heterogeneous 16S rRNA containing the target 16S rRNA was incubated with a species-specific DNAzyme. The cleaved target 16S rRNA was separated from the intact 16S rRNA by electrophoresis, and then their amounts were compared for the quantitative detection of target 16S rRNA. This method was used to determine the abundance of the 16S rRNA of a filamentous bacterium, Sphaerotilus natans, in activated sludge, which is a microbial mixture used in wastewater treatment systems. The result indicated that this DNAzyme-based approach would be applicable to actual microbial communities. PMID:16085888

  3. A generalized estimating equations approach to quantitative trait locus detection of non-normal traits

    PubMed Central

    Thomson, Peter C

    2003-01-01

    To date, most statistical developments in QTL detection methodology have been directed at continuous traits with an underlying normal distribution. This paper presents a method for QTL analysis of non-normal traits using a generalized linear mixed model approach. Development of this method has been motivated by a backcross experiment involving two inbred lines of mice that was conducted in order to locate a QTL for litter size. A Poisson regression form is used to model litter size, with allowances made for under- as well as over-dispersion, as suggested by the experimental data. In addition to fixed parity effects, random animal effects have also been included in the model. However, the method is not fully parametric as the model is specified only in terms of means, variances and covariances, and not as a full probability model. Consequently, a generalized estimating equations (GEE) approach is used to fit the model. For statistical inferences, permutation tests and bootstrap procedures are used. This method is illustrated with simulated as well as experimental mouse data. Overall, the method is found to be quite reliable, and with modification, can be used for QTL detection for a range of other non-normally distributed traits. PMID:12729549

  4. A generalized estimating equations approach to quantitative trait locus detection of non-normal traits.

    PubMed

    Thomson, Peter C

    2003-01-01

    To date, most statistical developments in QTL detection methodology have been directed at continuous traits with an underlying normal distribution. This paper presents a method for QTL analysis of non-normal traits using a generalized linear mixed model approach. Development of this method has been motivated by a backcross experiment involving two inbred lines of mice that was conducted in order to locate a QTL for litter size. A Poisson regression form is used to model litter size, with allowances made for under- as well as over-dispersion, as suggested by the experimental data. In addition to fixed parity effects, random animal effects have also been included in the model. However, the method is not fully parametric as the model is specified only in terms of means, variances and covariances, and not as a full probability model. Consequently, a generalized estimating equations (GEE) approach is used to fit the model. For statistical inferences, permutation tests and bootstrap procedures are used. This method is illustrated with simulated as well as experimental mouse data. Overall, the method is found to be quite reliable, and with modification, can be used for QTL detection for a range of other non-normally distributed traits. PMID:12729549

  5. Computational vaccinology: quantitative approaches.

    PubMed

    Flower, Darren R; McSparron, Helen; Blythe, Martin J; Zygouri, Christianna; Taylor, Debra; Guan, Pingping; Wan, Shouzhan; Coveney, Peter V; Walshe, Valerie; Borrow, Persephone; Doytchinova, Irini A

    2003-01-01

    The immune system is hierarchical and has many levels, exhibiting much emergent behaviour. However, at its heart are molecular recognition events that are indistinguishable from other types of biomacromolecular interaction. These can be addressed well by quantitative experimental and theoretical biophysical techniques, and particularly by methods from drug design. We review here our approach to computational immunovaccinology. In particular, we describe the JenPep database and two new techniques for T cell epitope prediction. One is based on quantitative structure-activity relationships (a 3D-QSAR method based on CoMSIA and another 2D method based on the Free-Wilson approach) and the other on atomistic molecular dynamic simulations using high performance computing. JenPep (http://www.jenner.ar.uk/ JenPep) is a relational database system supporting quantitative data on peptide binding to major histocompatibility complexes, TAP transporters, TCR-pMHC complexes, and an annotated list of B cell and T cell epitopes. Our 2D-QSAR method factors the contribution to peptide binding from individual amino acids as well as 1-2 and 1-3 residue interactions. In the 3D-QSAR approach, the influence of five physicochemical properties (volume, electrostatic potential, hydrophobicity, hydrogen-bond donor and acceptor abilities) on peptide affinity were considered. Both methods are exemplified through their application to the well-studied problem of peptide binding to the human class I MHC molecule HLA-A*0201. PMID:14712934

  6. Quantitative assessment of hyperspectral imaging in detection of plasmonic nanoparticles: a modified contrast-detail analysis approach

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Chen, Yu; Pfefer, T. Joshua

    2016-03-01

    Hyperspectral reflectance imaging (HRI) is an emerging imaging modality being applied for clinical indications such as tissue oximetry, and cancer detection based on endogenous biological constituents including plasmonic nanoparticles. However, there is currently a lack of standardized test methods for objective, quantitative evaluation of HRI system performance. Contrast-detail analysis (CDA) is a phantom-based test method commonly used to evaluate medical imaging devices (e.g., mammography systems) in terms of their lower detection limit. We investigated a modified CDA (mCDA) method to quantify the detectability of gold nanoparticles by HRI systems. Silicone-based turbid phantoms containing micro-fluidic channels were developed for the mCDA tests. Polydimethylsiloxane (PDMS) phantom materials were doped with chromophores and scatterers to achieve biologically relevant optical properties (OPs). Molds were used to produce cylindrical channels of diameters 0.3 to 1.65 mm and depths of 0.2 mm inside the phantoms. Channels were filled with a mixture of hemoglobin and concentrations of gold nanorods (GNR) and measured with our HRI system. The contrast of GNRs was solved with a spectral unmixing algorithm from the reflectance spectra. The lowest detectable concentration was determined as a function of inclusion size and depth and plotted as modified contrast detail curve (mCDC). mCDCs were used to compare the detectabilities of the HRI system with different data processing algorithms. It is demonstrated that our mCDA test method involving turbid microchannel phantoms can help to elucidate the combined performance of imaging devices and plasmonic nanoparticle contrast agents. This approach may be useful for performing clinical trial standardization and device re-calibration, thus ensuring quality control and clinical performance.

  7. A Quantitative Proteomic Approach for Detecting Protein Profiles of Activated Human Myeloid Dendritic Cells

    PubMed Central

    Schlatzer, Daniela M; Sugalski, Julia; Dazard, Jean-Eudes; Chance, Mark R; Anthony, Donald D.

    2011-01-01

    Dendritic cells (DC) direct the magnitude, polarity and effector function of the adaptive immune response. DC express toll-like receptors (TLR), antigen capturing and processing machinery, and costimulatory molecules, which facilitate innate sensing and T cell activation. Once activated, DC can efficiently migrate to lymphoid tissue and prime T cell responses. Therefore, DC play an integral role as mediators of the immune response to multiple pathogens. Elucidating the molecular mechanisms involved in DC activation is therefore central in gaining an understanding of host response to infection. Unfortunately, technical constraints have limited system-wide ‘omic’ analysis of human DC subsets collected ex vivo. Here we have applied novel proteomic approaches to human myeloid dendritic cells (mDCs) purified from 100 milliliters of peripheral blood to characterize specific molecular networks of cell activation at the individual patient level, and have successfully quantified over 700 proteins from individual samples containing as little as 200,000 mDCs. The proteomic and network readouts after ex vivo stimulation of mDCs with TLR3 agonists is measured and verified using flow cytometry. PMID:21945394

  8. Quantitative multiplex detection of pathogen biomarkers

    SciTech Connect

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  9. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  10. Quantitative approaches to computational vaccinology.

    PubMed

    Doytchinova, Irini A; Flower, Darren R

    2002-06-01

    This article reviews the newly released JenPep database and two new powerful techniques for T-cell epitope prediction: (i) the additive method; and (ii) a 3D-Quantitative Structure Activity Relationships (3D-QSAR) method, based on Comparative Molecular Similarity Indices Analysis (CoMSIA). The JenPep database is a family of relational databases supporting the growing need of immunoinformaticians for quantitative data on peptide binding to major histocompatibility complexes and to the Transporters associated with Antigen Processing (TAP). It also contains an annotated list of T-cell epitopes. The database is available free via the Internet (http://www.jenner.ac.uk/JenPep). The additive prediction method is based on the assumption that the binding affinity of a peptide depends on the contributions from each amino acid as well as on the interactions between the adjacent and every second side-chain. In the 3D-QSAR approach, the influence of five physicochemical properties (steric bulk, electrostatic potential, local hydrophobicity, hydrogen-bond donor and hydrogen-bond acceptor abilities) on the affinity of peptides binding to MHC molecules were considered. Both methods were exemplified through their application to the well-studied problem of peptides binding to the human class I MHC molecule HLA-A*0201. PMID:12067414

  11. Detecting and Quantitating Physiological Endoplasmic Reticulum Stress

    PubMed Central

    Qi, Ling; Yang, Liu; Chen, Hui

    2012-01-01

    Unfolded protein response (UPR) is a key cellular defense mechanism associated with many human “conformational” diseases, including heart diseases, neurodegeneration and metabolic syndrome. One of the major obstacles that have hindered our further understanding of physiological UPR and its future therapeutic potential is our inability to detect and quantitate ER stress and UPR activation under physiological and pathological conditions, where ER stress is perceivably very mild. Here we describe a Phos-tag-based Western blot approach that allows for direct visualization and quantitative assessment of mild ER stress and UPR signaling, directly at the levels of UPR sensors, in various in vivo conditions. This method will likely pave the foundation for future studies on physiological UPR, aid in the diagnosis of ER-associated diseases and facilitate therapeutic strategies targeting UPR in vivo. PMID:21266248

  12. Quantitative approach of speleothems fluorescence

    NASA Astrophysics Data System (ADS)

    Quiers, Marine; Perrette, Yves; Poulenard, Jérôme; Chalmin, Emilie; Revol, Morgane

    2014-05-01

    In this study, we propose a framework to interpret quantitatively the fluorescence of speleothems organic matter (OM) by the way of a bank of water-extracted organic matter. Due to its efficiency to described dissolved organic matter (DOM) characteritics, fluorescence has been used to determined DOM signatures in natural systems, water circulations, OM transfer from soils, OM evolution in soils or recently, DOM changes in engineered treatment systems. Fluorescence has also been used in speleothems studies, mainly as a growth indicator. Only few studies interpret it as an environmental proxy. Indeed, the fluorescence of OM provides information on the type of organic molecules trapped in speleothems and their evolutions. But the most direct information given by fluorescence is the variation of OM quantities. Actually, increase of fluorescence intensity is generally related to an increase in OM quantity but may also be induced by calcite optical effect or qualitative change of OM. However, analytical technics used in water environments cannot be used for speleothem samples. In this study we propose to give a frame to interpret quantitatively the fluorescence signal of speleothems. 3 different samples of stalagmites from french northern Prealps were used. To allow the quantification of the fluorescence signal, we need to measure the fluorescence and the quantity of organic matter on the same sample. OM of speleothems was extracted by an acid digestion method and analysed with a spectrofluorimeter. However, it was not possible to quantify directly the OM, as the extract solvant was a high-concentrated acid. To solve this problem, a calibration using soil extracts was realised. Soils were chosen in order to represent the diversity of OM present in the environment above the caves. Attention was focused on soil and vegetation types, and landuse. Organic material was water extracted from soils and its fluorescence was also measured. Total organic carbon was performed on the

  13. Aptasensors for quantitative detection of kanamycin.

    PubMed

    Robati, Rezvan Yazdian; Arab, Atefeh; Ramezani, Mohammad; Langroodi, Fatemeh Alebooye; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2016-08-15

    Up till now, various techniques have been developed to detect kanamycin in biological samples. However, due to some problems involved in these methods including time-consuming, expensive equipment and high consumption of reagents, new strategies for detection and quantitative determination of kanamycin are needed. Aptamer-based biosensors with unique recognition capability have attracted more attention of scientists because of its rapid response, high sensitivity and simple fabrication. Hence, we summarized optical and electrochemical kanamycin aptasensors and focuses on recent advances and modern techniques in aptasensor-based kanamycin detection techniques in order to provide readers with an inclusive understanding of its improvement and progress. PMID:27085947

  14. A novel quantitation approach for maximizing detectable targets for offensive/volatile odorants with diverse functional groups by thermal desorption-gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2016-07-01

    A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at ‑25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity.

  15. A novel quantitation approach for maximizing detectable targets for offensive/volatile odorants with diverse functional groups by thermal desorption-gas chromatography-mass spectrometry

    PubMed Central

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2016-01-01

    A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at −25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity. PMID:27404037

  16. A novel quantitation approach for maximizing detectable targets for offensive/volatile odorants with diverse functional groups by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2016-01-01

    A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at -25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity. PMID:27404037

  17. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  18. Toward a quantitative approach to migrants integration

    NASA Astrophysics Data System (ADS)

    Barra, A.; Contucci, P.

    2010-03-01

    Migration phenomena and all the related issues, like integration of different social groups, are intrinsically complex problems since they strongly depend on several competitive mechanisms as economic factors, cultural differences and many others. By identifying a few essential assumptions, and using the statistical mechanics of complex systems, we propose a novel quantitative approach that provides a minimal theory for those phenomena. We show that the competitive interactions in decision making between a population of N host citizens and P immigrants, a bi-partite spin-glass, give rise to a social consciousness inside the host community in the sense of the associative memory of neural networks. The theory leads to a natural quantitative definition of migrant's "integration" inside the community. From the technical point of view this minimal picture assumes, as control parameters, only general notions like the strength of the random interactions, the ratio between the sizes of the two parties and the cultural influence. Few steps forward, toward more refined models, which include a digression on the kind of the felt experiences and some structure on the random interaction topology (as dilution to avoid the plain mean-field approach) and correlations of experiences felt between the two parties (biasing the distribution of the coupling) are discussed at the end, where we show the robustness of our approach.

  19. The detection and quantitation of protein oligomerization.

    PubMed

    Gell, David A; Grant, Richard P; Mackay, Joel P

    2012-01-01

    There are many different techniques available to biologists and biochemists that can be used to detect and characterize the self-association of proteins. Each technique has strengths and weaknesses and it is often useful to combine several approaches to maximize the former and minimize the latter. Here we review a range of methodologies that identify protein self-association and/or allow the stoichiometry and affinity of the interaction to be determined, placing an emphasis on what type of information can be obtained and outlining the advantages and disadvantages involved. In general, in vitro biophysical techniques, such as size exclusion chromatography, analytical ultracentrifugation, scattering techniques, NMR spectroscopy, isothermal titration calorimetry, fluorescence anisotropy and mass spectrometry, provide information on stoichiometry and/or binding affinities. Other approaches such as cross-linking, fluorescence methods (e.g., fluorescence correlation spectroscopy, FCS; Förster resonance energy transfer, FRET; fluorescence recovery after photobleaching, FRAP; and proximity imaging, PRIM) and complementation approaches (e.g., yeast two hybrid assays and bimolecular fluorescence complementation, BiFC) can be used to detect protein self-association in a cellular context. PMID:22949109

  20. An approach for quantitative analysis of vitamins D and B9 and their metabolites in human biofluids by on-line orthogonal sample preparation and sequential mass spectrometry detection.

    PubMed

    Ferreiro-Vera, Carlos; Priego-Capote, Feliciano; Luque de Castro, María Dolores

    2013-04-01

    An approach for quantitative analysis of two vitamins with different polarities (vitamins D and B9) and their metabolites is presented here. The approach is based on an experimental setup based on hyphenation of an automated workstation for preparation of liquid samples and an LC-MS/MS system with a triple quadrupole mass spectrometer. This configuration enabled development of an orthogonal protocol for sequential SPE retention of analytes with different polarities for subsequent elution and chromatographic separation prior to detection. The resulting method was validated by application to three human biofluids. Estimation of recovery factors in the SPE step led to values from 85.2 to 100% for vitamin D and metabolites and from 93.1 to 100% for vitamin B9 and metabolites (folic acid and folates). The influence of sample matrix variability by analysis of human serum, urine and breast milk was minimized with a complete optimization of the SPE step. The utility of the proposed configuration is shown by the sensitivity and precision of the method, expressed as limits of detection (between 0.2 and 0.30 ng mL(-1) or 4 and 60 pg on-column) and within-laboratory reproducibility (lower than 6.7%, as relative standard deviation). The present application represents an example of determination methods involving targeted analysis of compounds with different polarities using a single aliquot of the sample. PMID:23435066

  1. Nested-quantitative PCR approach with improved sensitivity for the detection of low titer levels of Candidatus Liberibacter asiaticus in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    PubMed

    Coy, M R; Hoffmann, M; Kingdom Gibbard, H N; Kuhns, E H; Pelz-Stelinski, K S; Stelinski, L L

    2014-07-01

    Candidatus Liberibacter asiaticus (CLas) is a phloem-limited bacterium transmitted by the Asian citrus psyllid, Diaphorina citri, and the presumptive causal agent of citrus greening disease. The current method of detection for CLas within plant and insect samples is by a presence/absence qPCR assay using the CLas 16S rDNA gene target. Although qPCR is highly sensitive, low bacterial titers or suboptimal qPCR conditions can result in false-negatives. Using a nested qPCR assay, we determined the false-negative rate of the 16S presence/absence qPCR assay was greater than 50%. Studies to determine the performance parameters of the qPCR assays for CLas 16S and Wingless (Wg), the D. citri endogenous gene, using plasmid and psyllid DNA, revealed suboptimal and variable performance of the 16S assay in psyllid samples. Average efficiencies and sensitivity limits of the plasmid assays were 99.0% and 2.7 copies of template for Wg, respectively, and 98.5% and 2.2-22.1 copies for 16S, respectively. Variability in efficiency was significantly greater in psyllid samples for both gene targets compared to the corresponding plasmid assays, and efficiencies as low as 76% were obtained for 16S. A secondary structure analysis revealed the formation of two stem-loop structures that block the forward and probe binding sites in the 16S template, which could hinder amplification. In summary, our results suggest that suboptimal qPCR efficiency is not uncommon for the 16S presence/absence qPCR assay, which combined with lowCLas titers in some samples, could contribute significantly to the under-reporting of CLas infection in psyllid and plant samples. PMID:24769405

  2. A Quantitative Approach to Assessing System Evolvability

    NASA Technical Reports Server (NTRS)

    Christian, John A., III

    2004-01-01

    When selecting a system from multiple candidates, the customer seeks the one that best meets his or her needs. Recently the desire for evolvable systems has become more important and engineers are striving to develop systems that accommodate this need. In response to this search for evolvability, we present a historical perspective on evolvability, propose a refined definition of evolvability, and develop a quantitative method for measuring this property. We address this quantitative methodology from both a theoretical and practical perspective. This quantitative model is then applied to the problem of evolving a lunar mission to a Mars mission as a case study.

  3. Anomaly Detection Using Behavioral Approaches

    NASA Astrophysics Data System (ADS)

    Benferhat, Salem; Tabia, Karim

    Behavioral approaches, which represent normal/abnormal activities, have been widely used during last years in intrusion detection and computer security. Nevertheless, most works showed that they are ineffective for detecting novel attacks involving new behaviors. In this paper, we first study this recurring problem due on one hand to inadequate handling of anomalous and unusual audit events and on other hand to insufficient decision rules which do not meet behavioral approach objectives. We then propose to enhance the standard decision rules in order to fit behavioral approach requirements and better detect novel attacks. Experimental studies carried out on real and simulated http traffic show that these enhanced decision rules improve detecting most novel attacks without triggering higher false alarm rates.

  4. Quantitative Trait Loci (QTL) Detection in Multicross Inbred Designs

    PubMed Central

    Crepieux, Sébastien; Lebreton, Claude; Servin, Bertrand; Charmet, Gilles

    2004-01-01

    Mapping quantitative trait loci in plants is usually conducted using a population derived from a cross between two inbred lines. The power of such QTL detection and the parameter estimates depend largely on the choice of the two parental lines. Thus, the QTL detected in such populations represent only a small part of the genetic architecture of the trait. In addition, the effects of only two alleles are characterized, which is of limited interest to the breeder, while common pedigree breeding material remains unexploited for QTL mapping. In this study, we extend QTL mapping methodology to a generalized framework, based on a two-step IBD variance component approach, applicable to any type of breeding population obtained from inbred parents. We then investigate with simulated data mimicking conventional breeding programs the influence of different estimates of the IBD values on the power of QTL detection. The proposed method would provide an alternative to the development of specifically designed recombinant populations, by utilizing the genetic variation actually managed by plant breeders. The use of these detected QTL in assisting breeding would thus be facilitated. PMID:15579720

  5. Nanoplasmonic Quantitative Detection of Intact Viruses from Unprocessed Whole Blood

    PubMed Central

    Inci, Fatih; Tokel, Onur; Wang, ShuQi; Gurkan, Umut Atakan; Tasoglu, Savas; Kuritzkes, Daniel R.; Demirci, Utkan

    2013-01-01

    Infectious diseases such as HIV and Hepatitis B infection pose an omnipresent threat to global health. Reliable, fast, accurate and sensitive platforms that can be deployed at the point-of-care (POC) in multiple settings, such as airports and offices for detection of infectious pathogens are essential for the management of epidemics and possible biological attacks. To the best of our knowledge, no viral load technology adaptable to the POC settings exists today due to critical technical and biological challenges. Here, we present for the first time a broadly applicable technology for quantitative, nanoplasmonic-based intact virus detection at clinically relevant concentrations. The sensing platform is based on unique nanoplasmonic properties of nanoparticles utilizing immobilized antibodies to selectively capture rapidly evolving viral subtypes. We demonstrate the capture, detection and quantification of multiple HIV subtypes (A, B, C, D, E, G, and subtype panel) with high repeatability, sensitivity and specificity down to 98 ± 39 copies/mL (i.e., subtype D) using spiked whole blood samples and clinical discarded HIV-infected patient whole blood samples validated by the gold standard, i.e., RT-qPCR. This platform technology offers an assay time of 1 hour and 10 minutes (1 hour for capture, 10 minutes for detection and data analysis). The presented platform is also able to capture intact viruses at high efficiency using immuno-surface chemistry approaches directly from whole blood samples without any sample preprocessing steps such as spin-down or sorting. Evidence is presented showing the system to be accurate, repeatable and reliable. Additionally, the presented platform technology can be broadly adapted to detect other pathogens having reasonably well-described biomarkers by adapting the surface chemistry. Thus, this broadly applicable detection platform holds great promise to be implemented potentially at POC settings, hospital and primary care settings. PMID

  6. Quantitative spectroscopic imaging for non-invasive early cancer detection.

    PubMed

    Yu, Chung-Chieh; Lau, Condon; O'Donoghue, Geoffrey; Mirkovic, Jelena; McGee, Sasha; Galindo, Luis; Elackattu, Alphi; Stier, Elizabeth; Grillone, Gregory; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2008-09-29

    We report a fully quantitative spectroscopy imaging instrument for wide area detection of early cancer (dysplasia). This instrument provides quantitative maps of tissue biochemistry and morphology, making it a potentially powerful surveillance tool for objective early cancer detection. We describe the design, construction, calibration, and first clinical application of this new system. We demonstrate its accuracy using physical tissue models. We validate its diagnostic ability on a resected colon adenoma, and demonstrate feasibility of in vivo imaging in the oral cavity. PMID:18825262

  7. Towards Alignment Independent Quantitative Assessment of Homology Detection

    PubMed Central

    Kliger, Yossef

    2006-01-01

    Identification of homologous proteins provides a basis for protein annotation. Sequence alignment tools reliably identify homologs sharing high sequence similarity. However, identification of homologs that share low sequence similarity remains a challenge. Lowering the cutoff value could enable the identification of diverged homologs, but also introduces numerous false hits. Methods are being continuously developed to minimize this problem. Estimation of the fraction of homologs in a set of protein alignments can help in the assessment and development of such methods, and provides the users with intuitive quantitative assessment of protein alignment results. Herein, we present a computational approach that estimates the amount of homologs in a set of protein pairs. The method requires a prevalent and detectable protein feature that is conserved between homologs. By analyzing the feature prevalence in a set of pairwise protein alignments, the method can estimate the number of homolog pairs in the set independently of the alignments' quality. Using the HomoloGene database as a standard of truth, we implemented this approach in a proteome-wide analysis. The results revealed that this approach, which is independent of the alignments themselves, works well for estimating the number of homologous proteins in a wide range of homology values. In summary, the presented method can accompany homology searches and method development, provides validation to search results, and allows tuning of tools and methods. PMID:17205117

  8. Lesion detection and quantitation of positron emission mammography

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2001-12-01

    A Positron Emission Mammography (PEM) scanner dedicated to breast imaging is being developed at our laboratory. We have developed a list mode likelihood reconstruction algorithm for this scanner. Here we theoretically study the lesion detection and quantitation. The lesion detectability is studied theoretically using computer observers. We found that for the zero-order quadratic prior, the region of interest observer can achieve the performance of the prewhitening observer with a properly selected smoothing parameter. We also study the lesion quantitation using the test statistic of the region of interest observer. The theoretical expressions for the bias, variance, and ensemble mean squared error of the quantitation are derived. Computer simulations show that the theoretical predictions are in good agreement with the Monte Carlo results for both lesion detection and quantitation.

  9. Use of quantitative approaches in plan development.

    PubMed

    Palmer, B Z

    1978-04-01

    Health Planning as mandated by P.L. 93-641 requires considerable emphasis on technical procedures, especially during the development of the 5 year Health Systems Plans (HSP) and the one year Annual Implementation Plans (AIP). In addition, the State Health Plans and the State Medical Facilities Plans, which are to be developed in part on the basis of HSPs and AIPs of the Health Systems Agencies (HSAs) in each state, are expected to have solid quantitative documentation. The gap between these expectations and the state of the art reality are reviewed in this article. PMID:10307191

  10. Quantitative Detection of Spiroplasma Citri by Real Time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop an accurate and rapid method to detect Spiroplasma citri, the causal agent of citrus stubborn disease for use in epidemiology studies. Quantitative real-time PCR was developed for detection of S. citri. Two sets of primers based on sequences from the P58 putative adhesin ...

  11. A quantitative approach to painting styles

    NASA Astrophysics Data System (ADS)

    Vieira, Vilson; Fabbri, Renato; Sbrissa, David; da Fontoura Costa, Luciano; Travieso, Gonzalo

    2015-01-01

    This research extends a method previously applied to music and philosophy (Vilson Vieira et al., 2012), representing the evolution of art as a time-series where relations like dialectics are measured quantitatively. For that, a corpus of paintings of 12 well-known artists from baroque and modern art is analyzed. A set of 99 features is extracted and the features which most contributed to the classification of painters are selected. The projection space obtained provides the basis to the analysis of measurements. These quantitative measures underlie revealing observations about the evolution of painting styles, specially when compared with other humanity fields already analyzed: while music evolved along a master-apprentice tradition (high dialectics) and philosophy by opposition, painting presents another pattern: constant increasing skewness, low opposition between members of the same movement and opposition peaks in the transition between movements. Differences between baroque and modern movements are also observed in the projected "painting space": while baroque paintings are presented as an overlapped cluster, the modern paintings present minor overlapping and are disposed more widely in the projection than the baroque counterparts. This finding suggests that baroque painters shared aesthetics while modern painters tend to "break rules" and develop their own style.

  12. New optical approaches to the quantitative characterization of crystal growth, segregation and defect formation

    NASA Technical Reports Server (NTRS)

    Carlson, D. J.; Wargo, M. J.; Cao, X. Z.; Witt, A. F.

    1991-01-01

    Elemental and compound semiconductors were characterized using new optical approach based on NIR microscopy in conjunction with computational image analysis and contrast enhancement. The approach made it possible to perform a quantitative microsegregation analysis of GaAs and InP. NIR dark file illumination in transmission mode makes it possible to detect submicron precipitates in semiinsulating GaAs.

  13. [Quantitative Detection of Chinese Cabbage Clubroot Based on FTIR Spectroscopy].

    PubMed

    Wang, Wei-ping; Chai, A-li; Shi, Yan-xia; Xie, Xue-wen; Li, Bao-ju

    2015-05-01

    Clubroot, caused by Plasmodiophora brassicae, is considered the most devastating soilborne disease in Brassica crops. It has emerged as a serious disease threatening the cruciferous crop production industry in China. Nowadays, the detection techniques for P. brassicae are laborious, time-consuming and low sensitivity. Rapid and effective detection methods are needed. The objective of this study is to develop a Fourier transform infrared spectrometer (FTIR) technique for detection of P. brassicae effectively and accurately. FTIR and Real-time PCR techniques were applied in quantitative detection of P. brassicae. Chinese cabbages were inoculated with P. brassicae. By analyzing the FTIR spectra of P. brassicae, infected clubroots and healthy roots, three specific bands 1 105, 1 145 and 1 228 cm-1 were selected. According to the correlation between the peak areas at these sensitive bands and Real-time PCR Ct value, quantitative evaluation model of P. brassicae was established based on FTIR y=34. 17 +12. 24x - 9. 81x2 - 6. 05x3, r=0. 98 (p<0. 05). To validate accuracy of the model, 10 clubroot samples were selected randomly from field, and detected by FTIR spectrum model, the results showed that the average error is 1. 60%. This demonstrated that the FTIR technology is an available one for the quantitative detection of P. brassicae in clubroot, and it provides a new method for quantitative and quickly detection of Chinese cabbage clubroot. PMID:26415436

  14. Developing a Research Program Using Qualitative and Quantitative Approaches.

    ERIC Educational Resources Information Center

    Beck, Cheryl Tatano

    1997-01-01

    A research program on postpartum depression is used to illustrate the use of both qualitative and quantitative approaches. The direction of a research program is thus not limited by the type of methods in which a researcher has expertise. (SK)

  15. New approaches in GMO detection.

    PubMed

    Querci, Maddalena; Van den Bulcke, Marc; Zel, Jana; Van den Eede, Guy; Broll, Hermann

    2010-03-01

    The steady rate of development and diffusion of genetically modified plants and their increasing diversification of characteristics, genes and genetic control elements poses a challenge in analysis of genetically modified organisms (GMOs). It is expected that in the near future the picture will be even more complex. Traditional approaches, mostly based on the sequential detection of one target at a time, or on a limited multiplexing, allowing only a few targets to be analysed at once, no longer meet the testing requirements. Along with new analytical technologies, new approaches for the detection of GMOs authorized for commercial purposes in various countries have been developed that rely on (1) a smart and accurate strategy for target selection, (2) the use of high-throughput systems or platforms for the detection of multiple targets and (3) algorithms that allow the conversion of analytical results into an indication of the presence of individual GMOs potentially present in an unknown sample. This paper reviews the latest progress made in GMO analysis, taking examples from the most recently developed strategies and tools, and addresses some of the critical aspects related to these approaches. PMID:19876618

  16. Quantitative Proteomic Approaches for Studying Phosphotyrosine Signaling

    SciTech Connect

    Ding, Shi-Jian; Qian, Weijun; Smith, Richard D.

    2007-02-01

    Protein tyrosine phosphorylation is a fundamental mechanism for controlling many aspects of cellular processes, as well as aspects of human health and diseases. Compared to phosphoserine (pSer) and phosphothreonine (pThr), phosphotyrosine (pTyr) signaling is more tightly regulated, but often more challenging to characterize due to significantly lower level of tyrosine phosphorylation (a relative abundance of 1800:200:1 was estimated for pSer/pThr/pTyr in vertebrate cells[1]). In this review, we outline the recent advances in analytical methodologies for enrichment, identification, and accurate quantitation of tyrosine phosphorylated proteins and peptides using antibody-based technologies, capillary liquid chromatography (LC) coupled with mass spectrometry (MS), and various stable isotope labeling strategies, as well as non-MS-based methods such as protein or peptide array methods. These proteomic technological advances provide powerful tools for potentially understanding signal transduction at the system level and provide a basis for discovering novel drug targets for human diseases. [1] Hunter, T. (1998) The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 583–605

  17. Current Approaches Toward Quantitative Mapping of the Interactome

    PubMed Central

    Buntru, Alexander; Trepte, Philipp; Klockmeier, Konrad; Schnoegl, Sigrid; Wanker, Erich E.

    2016-01-01

    Protein–protein interactions (PPIs) play a key role in many, if not all, cellular processes. Disease is often caused by perturbation of PPIs, as recently indicated by studies of missense mutations. To understand the associations of proteins and to unravel the global picture of PPIs in the cell, different experimental detection techniques for PPIs have been established. Genetic and biochemical methods such as the yeast two-hybrid system or affinity purification-based approaches are well suited to high-throughput, proteome-wide screening and are mainly used to obtain qualitative results. However, they have been criticized for not reflecting the cellular situation or the dynamic nature of PPIs. In this review, we provide an overview of various genetic methods that go beyond qualitative detection and allow quantitative measuring of PPIs in mammalian cells, such as dual luminescence-based co-immunoprecipitation, Förster resonance energy transfer or luminescence-based mammalian interactome mapping with bait control. We discuss the strengths and weaknesses of different techniques and their potential applications in biomedical research. PMID:27200083

  18. Quantitative Proteomic Approaches to Studying Histone Modifications

    PubMed Central

    Zee, Barry M; Young, Nicolas L; Garcia, Benjamin A

    2011-01-01

    Histone post-translational modifications (PTMs) positively and negatively regulate gene expression, and are consequently a vital influence on the genomic profile of all eukaryotic species. The study of histone PTMs using classical methods in molecular biology, such as immunofluorescence and Western blotting, is challenging given the technical issues of the approaches, and chemical diversity and combinatorial patterns of the modifications. In light of these many technical limitations, mass spectrometry (MS) is emerging as the most unbiased and rigorous experimental platform to identify and quantify histone PTMs in a high-throughput manner. This review covers the latest developments in mass spectrometry for the analysis of histone PTMs, with the hope of inspiring the continued integration of proteomic, genomic and epigenetic research. PMID:21966350

  19. Quantitation and detection of vanadium in biologic and pollution materials

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1974-01-01

    A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.

  20. Quantitative proteomics: assessing the spectrum of in-gel protein detection methods

    PubMed Central

    Gauci, Victoria J.; Wright, Elise P.

    2010-01-01

    Proteomics research relies heavily on visualization methods for detection of proteins separated by polyacrylamide gel electrophoresis. Commonly used staining approaches involve colorimetric dyes such as Coomassie Brilliant Blue, fluorescent dyes including Sypro Ruby, newly developed reactive fluorophores, as well as a plethora of others. The most desired characteristic in selecting one stain over another is sensitivity, but this is far from the only important parameter. This review evaluates protein detection methods in terms of their quantitative attributes, including limit of detection (i.e., sensitivity), linear dynamic range, inter-protein variability, capacity for spot detection after 2D gel electrophoresis, and compatibility with subsequent mass spectrometric analyses. Unfortunately, many of these quantitative criteria are not routinely or consistently addressed by most of the studies published to date. We would urge more rigorous routine characterization of stains and detection methodologies as a critical approach to systematically improving these critically important tools for quantitative proteomics. In addition, substantial improvements in detection technology, particularly over the last decade or so, emphasize the need to consider renewed characterization of existing stains; the quantitative stains we need, or at least the chemistries required for their future development, may well already exist. PMID:21686332

  1. A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches.

    PubMed

    Meyer, Markus R; Caspar, Achim; Brandt, Simon D; Maurer, Hans H

    2014-01-01

    The first synthetic tryptamines have entered the designer drug market in the late 1990s and were distributed as psychedelic recreational drugs. In the meantime, several analogs have been brought onto the market indicating a growing interest in this drug class. So far, only scarce analytical data were available on the detectability of tryptamines in human biosamples. Therefore, the aim of the presented study was the development and full validation of a method for their detection in human urine and plasma and their quantification in human plasma. The liquid chromatography-linear ion trap mass spectrometry method presented covered 37 tryptamines as well as five β-carbolines, ibogaine, and yohimbine. Compounds were analyzed after protein precipitation of urine or fast liquid-liquid extraction of plasma using an LXQ linear ion trap coupled to an Accela ultra ultra high-performance liquid chromatography system. Data mining was performed via information-dependent acquisition or targeted product ion scan mode with positive electrospray ionization. The assay was selective for all tested substances with limits of detection in urine between 10 and 100 ng/mL and in plasma between 1 and 100 ng/mL. A validated quantification in plasma according to international recommendation could be demonstrated for 33 out of 44 analytes. PMID:24173660

  2. Problems in Achieving a Quantitative Approach to Technologic Proliferation Resistance

    SciTech Connect

    Wiborg, James C.; Omberg, Ronald P.; Zentner, Michael D.

    2001-07-06

    In spite of setbacks, substantial success has been achieved by the various nonproliferation efforts over the past 50 years. Because the pace of technology evolution remains high and the cost of entry to nuclear weapons technology is decreasing, improved approaches are critical if similar success is to be achieved over the next 20 years. Recent analyses have been published that provide a semi-quantitative assessment of proliferation risk, which can serve as the foundation for a meaningful quantitative approach to assessing proliferation risk. These methods represent an important step, but represent only one step in the work that must be achieved in the next few years. This paper presents perspectives on evaluating the merits of institutional arrangements and the role of design versus institutional features in proliferation prevention. It concludes by proposing methodology and quantitative approaches to be considered for evaluating proliferation-resistant measures in innovative reactor and fuel cycle technologies.

  3. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  4. Rapid and quantitative detection of hepatitis B virus

    PubMed Central

    Liu, Yue-Ping; Yao, Chun-Yan

    2015-01-01

    Despite availability of a universal vaccine, hepatitis B virus (HBV) infection has a huge impact on public health worldwide. Accurate and timely diagnosis of HBV infection is needed. Rapid developments have been made in the diagnostic and monitoring methods for HBV infection, including serological and molecular assays. In clinical practice, qualitative hepatitis B surface antigen (HBsAg) testing has long served as a diagnostic marker for individuals infected with HBV. More recently, HBsAg level has been used to predict treatment outcome when determined early during treatment or at baseline. However, identification of HBV DNA positive cases that do not have detectable HBsAg has encouraged the application of molecular tests. Hence, combination of quantitative detection of HBV DNA and HBsAg can be used to discriminate patients during the course of HBV infection and to monitor therapy. This article reviews the most commonly used quantitative methods for HBsAg and HBV DNA. PMID:26576084

  5. Fast and Accurate Detection of Multiple Quantitative Trait Loci

    PubMed Central

    Nettelblad, Carl; Holmgren, Sverker

    2013-01-01

    Abstract We present a new computational scheme that enables efficient and reliable quantitative trait loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive search effectively prohibits accurate QTL scans involving more than two loci to be performed in practice, at least if permutation testing is used to determine significance. Some more elaborate global optimization approaches, for example, DIRECT have been adopted earlier to QTL search problems. Dramatic speedups have been reported for high-dimensional scans. However, since a heuristic termination criterion must be used in these types of algorithms, the accuracy of the optimization process cannot be guaranteed. Indeed, earlier results show that a small bias in the significance thresholds is sometimes introduced. Our new optimization scheme, PruneDIRECT, is based on an analysis leading to a computable (Lipschitz) bound on the slope of a transformed objective function. The bound is derived for both infinite- and finite-size populations. Introducing a Lipschitz bound in DIRECT leads to an algorithm related to classical Lipschitz optimization. Regions in the search space can be permanently excluded (pruned) during the optimization process. Heuristic termination criteria can thus be avoided. Hence, PruneDIRECT has a well-defined error bound and can in practice be guaranteed to be equivalent to a corresponding exhaustive search. We present simulation results that show that for simultaneous mapping of three QTLS using permutation testing, PruneDIRECT is typically more than 50 times faster than exhaustive search. The speedup is higher for stronger QTL. This could be used to quickly detect strong candidate eQTL networks. PMID:23919387

  6. Infusing Quantitative Approaches throughout the Biological Sciences Curriculum

    ERIC Educational Resources Information Center

    Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kären C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle

    2013-01-01

    A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's…

  7. A simple graphical approach to quantitative monitoring of rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term monitoring is an essential part of good rangeland management – but is often overlooked because managers perceive it to be complicated, technical, or time-consuming. We introduce a quick, easy, and quantitative approach to monitoring changes in plant and ground cover, plant density, and veg...

  8. Biotechnology Approaches to Life Detection

    NASA Technical Reports Server (NTRS)

    Steele, Andrew; McKay, David; Schweitzer, Mary

    2001-01-01

    The direct detection of organic biomarkers for living or fossil microbes on Mars by an in situ instrument is a worthy goal for future lander missions. Several new and innovative biotechnology approaches are being explored. Firstly we have proposed an instrument based on immunological reactions to specific antibodies to cause activation of fluorescent stains. Antibodies are raised or acquired to a variety of general and specific substances that might be in Mars soil. These antibodies are then combined with various fluorescent stains and applied to micron sized numbered spots on a small (2-3 cm) test plate where they become firmly attached after freeze drying. Using technology that has been developed for gene mining in DNA technology up to 10,000 tests per square inch can now be applied to a test plate. On Mars or the planet/moon of interest, a sample of soil from a trench or drill core is extracted with water and/or an organic solvent and ultrasonication and then applied to the test plate. Any substance, which has an antibody on the test plate, will react with its antibody and activate its fluorescent stain. At the moment a small UV light source will illuminate the test plate, which is observed with a small CCD camera, although other detection systems will be applied. The numbered spots that fluoresce indicate the presence of the tested-for substance, and the intensity indicates relative amounts. Furthermore with up to a thousand test plates available false positives and several variations of antibody can also be screened for. The entire instrument can be quite small and light, on the order of 10 cm in each dimension. A possible choice for light source may be small UV lasers at several wavelengths. Some of the wells or spots can contain simply standard fluorescent stains used to detect live cells, dead cells, DNA, etc. The stains in these spots may be directly activated, with no antibodies being necessary. The proposed system will look for three classes of

  9. A microfabrication-based approach to quantitative isothermal titration calorimetry.

    PubMed

    Wang, Bin; Jia, Yuan; Lin, Qiao

    2016-04-15

    Isothermal titration calorimetry (ITC) directly measures heat evolved in a chemical reaction to determine equilibrium binding properties of biomolecular systems. Conventional ITC instruments are expensive, use complicated design and construction, and require long analysis times. Microfabricated calorimetric devices are promising, although they have yet to allow accurate, quantitative ITC measurements of biochemical reactions. This paper presents a microfabrication-based approach to integrated, quantitative ITC characterization of biomolecular interactions. The approach integrates microfabricated differential calorimetric sensors with microfluidic titration. Biomolecules and reagents are introduced at each of a series of molar ratios, mixed, and allowed to react. The reaction thermal power is differentially measured, and used to determine the thermodynamic profile of the biomolecular interactions. Implemented in a microdevice featuring thermally isolated, well-defined reaction volumes with minimized fluid evaporation as well as highly sensitive thermoelectric sensing, the approach enables accurate and quantitative ITC measurements of protein-ligand interactions under different isothermal conditions. Using the approach, we demonstrate ITC characterization of the binding of 18-Crown-6 with barium chloride, and the binding of ribonuclease A with cytidine 2'-monophosphate within reaction volumes of approximately 0.7 µL and at concentrations down to 2mM. For each binding system, the ITC measurements were completed with considerably reduced analysis times and material consumption, and yielded a complete thermodynamic profile of the molecular interaction in agreement with published data. This demonstrates the potential usefulness of our approach for biomolecular characterization in biomedical applications. PMID:26655185

  10. Quantitative bioanalysis: an integrated approach for drug discovery and development

    NASA Astrophysics Data System (ADS)

    Ong, Voon S.; Cook, Kevin L.; Kosara, Christine M.; Brubaker, William F.

    2004-11-01

    An integrated approach to quantitative bioanalysis, incorporating turbulent flow chromatography (TFC) with mass spectrometric detection, was developed to support in-house drug discovery and development efforts. Activities such as metabolic stability screening and pharmacokinetic characterization support are carried out on a single unified platform. Two different TFC column-switching configurations, parallel and serial, are presented. The first, a parallel TFC column configuration, is capable of high-throughput analysis but carryover can reach as high as 0.24%. The characteristics of the instrument operating in the parallel configuration are provided for analysis of samples generated during in vitro metabolic stability assessments, a key screen during the lead optimization phase of drug discovery. Operating in this configuration, the system has the capability of performing on-line solid phase extraction and analysis of approximately 400 samples containing phosphate-buffered saline in approximately 14 h. The second, a serial TFC column configuration, was used to perform direct plasma injection analysis. The advantage of the serial configuration is the relatively low carryover (<0.040%) observed due to increased number of valve washes; however these extra washes lead to increased injection cycle times. A method developed using the serial TFC column configuration for the determination of dihydropyridines in plasma samples is given as an example. Analytical performance criteria examined during method development and validation included linearity, accuracy, precision, and recovery. The robustness of the technique was demonstrated by applying the method in the analysis of over 2500 plasma samples generated during preclinical drug development studies. Further, combined analysis of plasma and brain tissue was performed using acetonitrile precipitation as sample pretreatment for both matrices.

  11. Analysis of quantitative phase detection based on optical information processing

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Tu, Jiang-Chen; Chun, Kuang-Tao; Yu, Han-Wang; Xin, Du

    2009-07-01

    Phase object exists widely in nature, such as biological cells, optical components, atmospheric flow field and so on. The phase detection of objects has great significance in the basic research, nondestructive testing, aerospace, military weapons and other areas. The usual methods of phase object detection include interference method, grating method, schlieren method, and phase-contrast method etc. These methods have their own advantages, but they also have some disadvantages on detecting precision, environmental requirements, cost, detection rate, detection range, detection linearity in various applications, even the most sophisticated method-phase contrast method mainly used in microscopic structure, lacks quantitative analysis of the size of the phase of the object and the relationship between the image contrast and the optical system. In this paper, various phase detection means and the characteristics of different applications are analyzed based on the optical information processing, and a phase detection system based on optical filtering is formed. Firstly the frequency spectrum of the phase object is achieved by Fourier transform lens in the system, then the frequency spectrum is changed reasonably by the filter, at last the image which can represent the phase distribution through light intensity is achieved by the inverse Fourier transform. The advantages and disadvantages of the common used filters such as 1/4 wavelength phase filter, high-pass filter and edge filter are analyzed, and their phase resolution is analyzed in the same optical information processing system, and the factors impacting phase resolution are pointed out. The paper draws a conclusion that there exists an optimal filter which makes the detect accuracy best for any application. At last, we discussed how to design an optimal filter through which the ability of the phase testing of optical information processing system can be improved most.

  12. Quantitative detection of settled dust over green canopy

    NASA Astrophysics Data System (ADS)

    Brook, Anna

    2016-04-01

    NMF (SS-NMF), 6) Alternating Least-Square (ALS), and 2) Lin's Projected Gradient (LPG). The performance is evaluated on real hyperspectral imagery data via detailed experimental assessment. The study showed that in certain compression tasks content-adapted sparse representation is provided by state-of-the-art solutions. The NMF algorithm estimates endmembers that are used to remove spurious information. If computationally feasible, it should include interaction terms to make the model more flexible. The optimal NMF algorithms, such as ALS and LPG, are assumed to be the simplest methods that achieve the minimum error on the test set. In summary, this work shows that sediment dust can be assessed using airborne HSI data, making it a potentially powerful tool for environmental studies. References Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Chudnovsky, A., & Ben-Dor, E. (2009). Reflectance spectroscopy as a tool for settled dust monitoring in office environment. International Journal of Environment and Waste Management, 4(1), 32-49. Brook, A. (2014). Quantitative Detection of Settled dust over Green Canopy using Sparse Unmixing of Airborne Hyperspectral Data. IEEE-Whispers 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2014, Switzerland, 4-8. Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Bioucas-Dias et al. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354 -379.

  13. Quantitative Genetic Interaction Mapping Using the E-MAP Approach

    PubMed Central

    Collins, Sean R.; Roguev, Assen; Krogan, Nevan J.

    2010-01-01

    Genetic interactions represent the degree to which the presence of one mutation modulates the phenotype of a second mutation. In recent years, approaches for measuring genetic interactions systematically and quantitatively have proven to be effective tools for unbiased characterization of gene function and have provided valuable data for analyses of evolution. Here, we present protocols for systematic measurement of genetic interactions with respect to organismal growth rate for two yeast species. PMID:20946812

  14. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system

    PubMed Central

    2012-01-01

    Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR) that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG) phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA) in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was <6 % for repeatability and <2 % for reproducibility. The assay detection limit was 13 fg/mL, which is 1,500-times more sensitive than current clinical assays for CEA. An ILPCR assay to quantify HIV-1 p24 core protein in buffer was also developed. Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the

  15. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri.

    PubMed

    Zhao, Yun; Xia, Qingyan; Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  16. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri

    PubMed Central

    Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  17. A quantitative approach to evolution of music and philosophy

    NASA Astrophysics Data System (ADS)

    Vieira, Vilson; Fabbri, Renato; Travieso, Gonzalo; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano

    2012-08-01

    The development of new statistical and computational methods is increasingly making it possible to bridge the gap between hard sciences and humanities. In this study, we propose an approach based on a quantitative evaluation of attributes of objects in fields of humanities, from which concepts such as dialectics and opposition are formally defined mathematically. As case studies, we analyzed the temporal evolution of classical music and philosophy by obtaining data for 8 features characterizing the corresponding fields for 7 well-known composers and philosophers, which were treated with multivariate statistics and pattern recognition methods. A bootstrap method was applied to avoid statistical bias caused by the small sample data set, with which hundreds of artificial composers and philosophers were generated, influenced by the 7 names originally chosen. Upon defining indices for opposition, skewness and counter-dialectics, we confirmed the intuitive analysis of historians in that classical music evolved according to a master-apprentice tradition, while in philosophy changes were driven by opposition. Though these case studies were meant only to show the possibility of treating phenomena in humanities quantitatively, including a quantitative measure of concepts such as dialectics and opposition, the results are encouraging for further application of the approach presented here to many other areas, since it is entirely generic.

  18. Hyperspectral imaging and quantitative analysis for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Halig, Luma V.; Schuster, David M.; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T.; Chen, Georgia Z.; Fei, Baowei

    2012-07-01

    Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology.

  19. Hyperspectral imaging and quantitative analysis for prostate cancer detection

    PubMed Central

    Akbari, Hamed; Halig, Luma V.; Schuster, David M.; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T.; Chen, Georgia Z.

    2012-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology. PMID:22894488

  20. Hyperspectral imaging and quantitative analysis for prostate cancer detection.

    PubMed

    Akbari, Hamed; Halig, Luma V; Schuster, David M; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T; Chen, Georgia Z; Fei, Baowei

    2012-07-01

    Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology. PMID:22894488

  1. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-01

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed. PMID:26928571

  2. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-06-16

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27333265

  3. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  4. Fast detection of deletion breakpoints using quantitative PCR

    PubMed Central

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    Abstract The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  5. Towards a quantitative prediction of the blob detection rate

    NASA Astrophysics Data System (ADS)

    Fuchert, G.; Carralero, D.; Manz, P.; Stroth, U.; Wolfrum, E.; ASDEX Upgrade Team

    2016-05-01

    To estimate the particle and energy flux to the plasma facing components of a future fusion power plant, the transport carried by filaments of increased pressure, called blobs, is of critical importance. To understand this transport the rate of the filaments has to be known. The novel approach presented here allows the prediction of both the blob generation and detection rates based on background plasma parameters only. The prediction is in a good overall agreement with recent experiments in ASDEX Upgrade.

  6. Detecting contingencies: an infomax approach.

    PubMed

    Butko, Nicholas J; Movellan, Javier R

    2010-01-01

    The ability to detect social contingencies plays an important role in the social and emotional development of infants. Analyzing this problem from a computational perspective may provide important clues for understanding social development, as well as for the synthesis of social behavior in robots. In this paper, we show that the turn-taking behaviors observed in infants during contingency detection situations are tuned to optimally gather information as to whether a person is responsive to them. We show that simple reinforcement learning mechanisms can explain how infants acquire these efficient contingency detection schemas. The key is to use the reduction of uncertainty (information gain) as a reward signal. The result is an interesting form of learning in which the learner rewards itself for conducting actions that help reduce its own sense of uncertainty. This paper illustrates the possibilities of an emerging area of computer science and engineering that focuses on the computational understanding of human behavior and on its synthesis in robots. We believe that the theory of stochastic optimal control will play a key role providing a formal mathematical foundation for this newly emerging discipline. PMID:20951334

  7. Salient object detection approach in UAV video

    NASA Astrophysics Data System (ADS)

    Zhang, Yueqiang; Su, Ang; Zhu, Xianwei; Zhang, Xiaohu; Shang, Yang

    2013-10-01

    The automatic detection of visually salient information from abundant video imagery is crucial, as it plays an important role in surveillance and reconnaissance tasks for Unmanned Aerial Vehicle (UAV). A real-time approach for the detection of salient objects on road, e.g. stationary and moving vehicle or people, is proposed, which is based on region segmentation and saliency detection within related domains. Generally, the traditional method specifically depends upon additional scene information and auxiliary thermal or IR sensing for secondary confirmation. However, this proposed approach can detect the interesting objects directly from video imagery captured by optical camera fixed on the small level UAV platform. To validate this proposed salient object detection approach, the 25 Hz video data from our low speed small UAV are tested. The results have demonstrated the proposed approach performs excellently in isolated rural environments.

  8. A Nonparametric Approach for Mapping Quantitative Trait Loci

    PubMed Central

    Kruglyak, L.; Lander, E. S.

    1995-01-01

    Genetic mapping of quantitative trait loci (QTLs) is performed typically by using a parametric approach, based on the assumption that the phenotype follows a normal distribution. Many traits of interest, however, are not normally distributed. In this paper, we present a nonparametric approach to QTL mapping applicable to any phenotypic distribution. The method is based on a statistic Z(w), which generalizes the nonparametric Wilcoxon rank-sum test to the situation of whole-genome search by interval mapping. We determine the appropriate significance level for the statistic Z(w), by showing that its asymptotic null distribution follows an Ornstein-Uhlenbeck process. These results provide a robust, distribution-free method for mapping QTLs. PMID:7768449

  9. A novel logic-based approach for quantitative toxicology prediction.

    PubMed

    Amini, Ata; Muggleton, Stephen H; Lodhi, Huma; Sternberg, Michael J E

    2007-01-01

    There is a pressing need for accurate in silico methods to predict the toxicity of molecules that are being introduced into the environment or are being developed into new pharmaceuticals. Predictive toxicology is in the realm of structure activity relationships (SAR), and many approaches have been used to derive such SAR. Previous work has shown that inductive logic programming (ILP) is a powerful approach that circumvents several major difficulties, such as molecular superposition, faced by some other SAR methods. The ILP approach reasons with chemical substructures within a relational framework and yields chemically understandable rules. Here, we report a general new approach, support vector inductive logic programming (SVILP), which extends the essentially qualitative ILP-based SAR to quantitative modeling. First, ILP is used to learn rules, the predictions of which are then used within a novel kernel to derive a support-vector generalization model. For a highly heterogeneous dataset of 576 molecules with known fathead minnow fish toxicity, the cross-validated correlation coefficients (R2CV) from a chemical descriptor method (CHEM) and SVILP are 0.52 and 0.66, respectively. The ILP, CHEM, and SVILP approaches correctly predict 55, 58, and 73%, respectively, of toxic molecules. In a set of 165 unseen molecules, the R2 values from the commercial software TOPKAT and SVILP are 0.26 and 0.57, respectively. In all calculations, SVILP showed significant improvements in comparison with the other methods. The SVILP approach has a major advantage in that it uses ILP automatically and consistently to derive rules, mostly novel, describing fragments that are toxicity alerts. The SVILP is a general machine-learning approach and has the potential of tackling many problems relevant to chemoinformatics including in silico drug design. PMID:17451225

  10. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins.

    PubMed

    Kong, Dezhao; Liu, Liqiang; Song, Shanshan; Suryoprabowo, Steven; Li, Aike; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2016-02-25

    A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg(-1), and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg(-1), respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg(-1), respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination. PMID:26879591

  11. Quantitative phase imaging applied to laser damage detection and analysis.

    PubMed

    Douti, Dam-Bé L; Chrayteh, Mhamad; Aknoun, Sherazade; Doualle, Thomas; Hecquet, Christophe; Monneret, Serge; Gallais, Laurent

    2015-10-01

    We investigate phase imaging as a measurement method for laser damage detection and analysis of laser-induced modification of optical materials. Experiments have been conducted with a wavefront sensor based on lateral shearing interferometry associated with a high-magnification optical microscope. The system has been used for the in-line observation of optical thin films and bulk samples, laser irradiated in two different conditions: 500 fs pulses at 343 and 1030 nm, and millisecond to second irradiation with a CO2 laser at 10.6 μm. We investigate the measurement of the laser-induced damage threshold of optical material by detection and phase changes and show that the technique realizes high sensitivity with different optical path measurements lower than 1 nm. Additionally, the quantitative information on the refractive index or surface modification of the samples under test that is provided by the system has been compared to classical metrology instruments used for laser damage or laser ablation characterization (an atomic force microscope, a differential interference contrast microscope, and an optical surface profiler). An accurate in-line measurement of the morphology of laser-ablated sites, from few nanometers to hundred microns in depth, is shown. PMID:26479612

  12. Quantitative Thallium-201 exercise scintigraphy for detection of coronary artery disease

    SciTech Connect

    Berger, B.C.; Watson, D.D.; Taylor, G.J.; Craddock, G.B.; Martin, R.P.; Teates, C.D.; Beller, G.A.

    1981-07-01

    In 140 patients with chest pain quantitation of regional myocardial Tl-201 activity was performed by serial scintigraphic images after treadmill exercise. Criteria for an abnormal thallium scintigram included: (a) greater than or equal to 25% persistent reduction in Tl-201 uptake in anterolateral, anteroseptal, posterolateral, and inferoapical segments, or greater than or equal to 35% reduction in the inferior segment; (b) an initial defect with delayed redistribution; and (c) abnormal Tl-201 washout. Of 110 patients with significant coronary artery disease (CAD), 100 had abnormal Tl-201 scintigrams, while 27 of 30 patients with angiographically normal coronary arteries had normal scintigrams; 91% sensitivity, 90% specificity, and 97% predictive accuracy. Sensitivity and specificity were not significantly different when the 95 patients with diagnostic (greater than or equal to 85% maximum heart rate) and 45 with inconclusive (less than or equal to 85% maximum HR) Ex tests were compared. Comparison of qualitative and quantitative image analyses in a subset of these patients showed that both specificity and multivessel disease prediction were greater when the quantitative approach was used (90 against 73% and 78 against 39%, respectively). Sensitivity for CAD detection was reduced by 10% with visual interpretation alone. Thus, quantitative exercise Tl-201 scintigraphy appears highly sensitive and specific for CAD detection in patients with chest pain.

  13. Sonar detection range index estimation approach in uncertain environments

    NASA Astrophysics Data System (ADS)

    Li, Fan; Guo, Sheng-ming; Chen, Yao-ming

    2010-09-01

    The traditional detection range index prediction of sonar systems assumes a deterministic environment and causes overestimation of the detection range index. The realistic ocean environment consists of a quantitative measure of environmental uncertainty such as sound speed profile, sea depth and so on. An estimation approach that incorporates the effects of environmental uncertainty into the sonar detection range index is proposed in this paper. The sonar detection range index prediction has been implemented by using Monte Carlo simulation. In simulation, the sound speed gradient, sea depth and bottom geo-acoustic parameters as important uncertainty environmental parameters are generalized to stochastic variables and satisfy the normal distribution. The sonar detection range index with unknown source depth is also considered.

  14. Quantitative proteomic approach for cellulose degradation by Neurospora crassa.

    PubMed

    Phillips, Christopher M; Iavarone, Anthony T; Marletta, Michael A

    2011-09-01

    Conversion of plant biomass to soluble sugars is the primary bottleneck associated with production of economically viable cellulosic fuels and chemicals. To better understand the biochemical route that filamentous fungi use to degrade plant biomass, we have taken a quantitative proteomics approach to characterizing the secretome of Neurospora crassa during growth on microcrystalline cellulose. Thirteen proteins were quantified in the N. crassa secretome using a combination of Absolute Quantification (AQUA) and Absolute SILAC to verify protein concentrations. Four of these enzymes including 2 cellobiohydrolases (CBH-1 and GH6-2), an endoglucanase (GH5-1), and a β-glucosidase (GH3-4) were then chosen to reconstitute a defined cellulase mixture in vitro. These enzymes were assayed alone and in mixtures and the activity of the reconstituted set was then compared to the crude mixture of N. crassa secretome proteins. Results show that while these 4 proteins represent 63-65% of the total secretome by weight, they account for just 43% of the total activity on microcrystalline cellulose after 24 h of hydrolysis. This result and quantitative proteomic data on other less abundant proteins secreted by Neurospora suggest that proteins other than canonical fungal cellulases may play an important role in cellulose degradation by fungi. PMID:21744778

  15. Sequence specificity of psoralen photobinding to DNA: a quantitative approach.

    PubMed

    Gia, O; Magno, S M; Garbesi, A; Colonna, F P; Palumbo, M

    1992-12-01

    The effects of different DNA sequences on the photoreaction of various furocoumarin derivatives was investigated from a quantitative point of view using a number of self-complementary oligonucleotides. These contained 5'-TA and 5'-AT residues, having various flanking sequences. The furocoumarins included classical bifunctional derivatives, such as 8-methoxy- and 5-methoxypsoralen, as well as monofunctional compounds, such as angelicin and benzopsoralen. Taking into an account the thermodynamic constant for noncovalent binding of each psoralen to each DNA sequence, the rate constants for the photobinding process to each fragment were evaluated. The extent of photoreaction is greatly affected by the DNA sequence examined. While sequences of the type 5'-(GTAC)n are quite reactive towards all furocoumarins, 5'-TATA exhibited a reduced rate of photobinding using monofunctional psoralens. In addition terminal 5'-TA groups were the least reactive with 5- and 8-methoxypsoralen, but not with angelicin or benzopsoralen. Also 5'-AT-containing fragments exhibited remarkably variable responses toward monofunctional or bifunctional psoralen derivatives. As a general trend the photoreactivity rate of the former is less sequence-sensitive, the ratio between maximum and minimum being less than 2 for the examined fragments. The same ratio is about 3.4 for 8-methoxypsoralen and 6.2 for 5-methoxypsoralen. This approach, in combination with footprinting studies, appears to be quite useful for a quantitative investigation of the process of covalent binding of psoralens to specific sites in DNA. PMID:1445915

  16. A New, Principled Approach to Anomaly Detection

    SciTech Connect

    Ferragut, Erik M; Laska, Jason A; Bridges, Robert A

    2012-01-01

    Intrusion detection is often described as having two main approaches: signature-based and anomaly-based. We argue that only unsupervised methods are suitable for detecting anomalies. However, there has been a tendency in the literature to conflate the notion of an anomaly with the notion of a malicious event. As a result, the methods used to discover anomalies have typically been ad hoc, making it nearly impossible to systematically compare between models or regulate the number of alerts. We propose a new, principled approach to anomaly detection that addresses the main shortcomings of ad hoc approaches. We provide both theoretical and cyber-specific examples to demonstrate the benefits of our more principled approach.

  17. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    SciTech Connect

    Goldman, D.; Merril, C.R.

    1983-09-01

    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of /sup 14/C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses.

  18. High-throughput and quantitative approaches for measuring circadian rhythms in cyanobacteria using bioluminescence.

    PubMed

    Shultzaberger, Ryan K; Paddock, Mark L; Katsuki, Takeo; Greenspan, Ralph J; Golden, Susan S

    2015-01-01

    The temporal measurement of a bioluminescent reporter has proven to be one of the most powerful tools for characterizing circadian rhythms in the cyanobacterium Synechococcus elongatus. Primarily, two approaches have been used to automate this process: (1) detection of cell culture bioluminescence in 96-well plates by a photomultiplier tube-based plate-cycling luminometer (TopCount Microplate Scintillation and Luminescence Counter, Perkin Elmer) and (2) detection of individual colony bioluminescence by iteratively rotating a Petri dish under a cooled CCD camera using a computer-controlled turntable. Each approach has distinct advantages. The TopCount provides a more quantitative measurement of bioluminescence, enabling the direct comparison of clock output levels among strains. The computer-controlled turntable approach has a shorter set-up time and greater throughput, making it a more powerful phenotypic screening tool. While the latter approach is extremely useful, only a few labs have been able to build such an apparatus because of technical hurdles involved in coordinating and controlling both the camera and the turntable, and in processing the resulting images. This protocol provides instructions on how to construct, use, and process data from a computer-controlled turntable to measure the temporal changes in bioluminescence of individual cyanobacterial colonies. Furthermore, we describe how to prepare samples for use with the TopCount to minimize experimental noise and generate meaningful quantitative measurements of clock output levels for advanced analysis. PMID:25662451

  19. High throughput and quantitative approaches for measuring circadian rhythms in cyanobacteria using bioluminescence

    PubMed Central

    Shultzaberger, Ryan K.; Paddock, Mark L.; Katsuki, Takeo; Greenspan, Ralph J.; Golden, Susan S.

    2016-01-01

    The temporal measurement of a bioluminescent reporter has proven to be one of the most powerful tools for characterizing circadian rhythms in the cyanobacterium Synechococcus elongatus. Primarily, two approaches have been used to automate this process: (1) detection of cell culture bioluminescence in 96-well plates by a photomultiplier tube-based plate-cycling luminometer (TopCount Microplate Scintillation and Luminescence Counter, Perkin Elmer) and (2) detection of individual colony bioluminescence by iteratively rotating a Petri dish under a cooled CCD camera using a computer-controlled turntable. Each approach has distinct advantages. The TopCount provides a more quantitative measurement of bioluminescence, enabling the direct comparison of clock output levels among strains. The computer-controlled turntable approach has a shorter set-up time and greater throughput, making it a more powerful phenotypic screening tool. While the latter approach is extremely useful, only a few labs have been able to build such an apparatus because of technical hurdles involved in coordinating and controlling both the camera and the turntable, and in processing the resulting images. This protocol provides instructions on how to construct, use, and process data from a computer-controlled turntable to measure the temporal changes in bioluminescence of individual cyanobacterial colonies. Furthermore, we describe how to prepare samples for use with the TopCount to minimize experimental noise, and generate meaningful quantitative measurements of clock output levels for advanced analysis. PMID:25662451

  20. Quantitative PCR for detection of Nosema bombycis in single silkworm eggs and newly hatched larvae.

    PubMed

    Fu, Zhangwuke; He, Xiangkang; Cai, Shunfeng; Liu, Han; He, Xinyi; Li, Mingqian; Lu, Xingmeng

    2016-01-01

    Pebrine disease is the only mandatory quarantine item in sericultural production due to its destructive consequences. So far, the mother moth microscopic examination method established by Pasteur (1870) remains the only detection method for screening for the causative agent Nosema bombycis (N. bombycis). Because pebrine is a horizontal and vertical transmission disease, it is better to inspect silkworm eggs and newly hatched larvae to investigate the infection rate, vertical transmission rate and spore load of the progenies. There is a rising demand for a more direct, effective and accurate detection approach in the sericultural industry. Here, we developed a molecular detection approach based on real-time quantitative PCR (qPCR) for pebrine inspection in single silkworm eggs and newly hatched larvae. Targeting the small-subunit rRNA gene of N. bombycis, this assay showed high sensitivity and reproducibility. Ten spores in a whole sample or 0.1 spore DNA (1 spore DNA represents the DNA content of one N. bombycis spore) in a reaction system was estimated as the detection limit of the isolation and real-time qPCR procedure. Silkworm egg tissues impact the detection sensitivity but are not significant in single silkworm egg detection. Of 400 samples produced by infected moths, 167 and 195 were scored positive by light microscopy and real-time qPCR analysis, respectively. With higher accuracy and the potential capability of high-throughput screening, this method is anticipated to be adaptable for pebrine inspection and surveillance in the sericultural industry. In addition, this method can be applied to ecology studies of N. bombycis-silkworm interactions due to its quantitative function. PMID:26658327

  1. Alternative approach to community detection in networks.

    PubMed

    Medus, A D; Dorso, C O

    2009-06-01

    The problem of community detection is relevant in many disciplines of science and modularity optimization is the widely accepted method for this purpose. It has recently been shown that this approach presents a resolution limit by which it is not possible to detect communities with sizes smaller than a threshold, which depends on the network size. Moreover, it might happen that the communities resulting from such an approach do not satisfy the usual qualitative definition of commune; i.e., nodes in a commune are more connected among themselves than to nodes outside the commune. In this paper we present a different method for community detection in complex networks. We define merit factors based on the weak and strong community definitions formulated by Radicchi [Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)] and we show that these local definitions avoid the resolution limit problem found in the modularity optimization approach. PMID:19658568

  2. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins

    NASA Astrophysics Data System (ADS)

    Kong, Dezhao; Liu, Liqiang; Song, Shanshan; Suryoprabowo, Steven; Li, Aike; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2016-02-01

    A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg-1, respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination.A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan

  3. Radioactive Contraband Detection: A Bayesian Approach

    SciTech Connect

    Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Sale, K; Chambers, D; Axelrod, M; Meyer, A

    2009-03-16

    Radionuclide emissions from nuclear contraband challenge both detection and measurement technologies to capture and record each event. The development of a sequential Bayesian processor incorporating both the physics of gamma-ray emissions and the measurement of photon energies offers a physics-based approach to attack this challenging problem. It is shown that a 'physics-based' structure can be used to develop an effective detection technique, but also motivates the implementation of this approach using or particle filters to enhance and extract the required information.

  4. Quantitative detection of settled dust over green canopy

    NASA Astrophysics Data System (ADS)

    Brook, Anna

    2016-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing in order to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semi-supervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Atmospheric dust transports a variety of chemicals, some of which pose a risk to the ecosystem and human health (Kaskaoutis, et al., 2008). Many studies deal with the impact of dust on particulate matter (PM) and atmospheric pollution. Considering the potential impact of industrial pollutants, one of the most important considerations is the fact that suspended PM can have both a physical and a chemical impact on plants, soils, and water bodies. Not only can the particles covering surfaces cause physical distortion, but particles of diverse origin and different chemistries can also serve as chemical stressors and cause irreversible damage. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and

  5. Good continuation in dot patterns: A quantitative approach based on local symmetry and non-accidentalness.

    PubMed

    Lezama, José; Randall, Gregory; Morel, Jean-Michel; Grompone von Gioi, Rafael

    2016-09-01

    We propose a novel approach to the grouping of dot patterns by the good continuation law. Our model is based on local symmetries, and the non-accidentalness principle to determine perceptually relevant configurations. A quantitative measure of non-accidentalness is proposed, showing a good correlation with the visibility of a curve of dots. A robust, unsupervised and scale-invariant algorithm for the detection of good continuation of dots is derived. The results of the proposed method are illustrated on various datasets, including data from classic psychophysical studies. An online demonstration of the algorithm allows the reader to directly evaluate the method. PMID:26408332

  6. Rock Slide Risk Assessment: A Semi-Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Duzgun, H. S. B.

    2009-04-01

    Rock slides can be better managed by systematic risk assessments. Any risk assessment methodology for rock slides involves identification of rock slide risk components, which are hazard, elements at risk and vulnerability. For a quantitative/semi-quantitative risk assessment for rock slides, a mathematical value the risk has to be computed and evaluated. The quantitative evaluation of risk for rock slides enables comparison of the computed risk with the risk of other natural and/or human-made hazards and providing better decision support and easier communication for the decision makers. A quantitative/semi-quantitative risk assessment procedure involves: Danger Identification, Hazard Assessment, Elements at Risk Identification, Vulnerability Assessment, Risk computation, Risk Evaluation. On the other hand, the steps of this procedure require adaptation of existing or development of new implementation methods depending on the type of landslide, data availability, investigation scale and nature of consequences. In study, a generic semi-quantitative risk assessment (SQRA) procedure for rock slides is proposed. The procedure has five consecutive stages: Data collection and analyses, hazard assessment, analyses of elements at risk and vulnerability and risk assessment. The implementation of the procedure for a single rock slide case is illustrated for a rock slope in Norway. Rock slides from mountain Ramnefjell to lake Loen are considered to be one of the major geohazards in Norway. Lake Loen is located in the inner part of Nordfjord in Western Norway. Ramnefjell Mountain is heavily jointed leading to formation of vertical rock slices with height between 400-450 m and width between 7-10 m. These slices threaten the settlements around Loen Valley and tourists visiting the fjord during summer season, as the released slides have potential of creating tsunami. In the past, several rock slides had been recorded from the Mountain Ramnefjell between 1905 and 1950. Among them

  7. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches.

    PubMed

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-01-01

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points. PMID:27136541

  8. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches

    PubMed Central

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-01-01

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points. PMID:27136541

  9. A Novel Quantitative Approach to Concept Analysis: The Internomological Network

    PubMed Central

    Cook, Paul F.; Larsen, Kai R.; Sakraida, Teresa J.; Pedro, Leli

    2012-01-01

    Background When a construct such as patients’ transition to self-management of chronic illness is studied by researchers across multiple disciplines, the meaning of key terms can become confused. This results from inherent problems in language where a term can have multiple meanings (polysemy) and different words can mean the same thing (synonymy). Objectives To test a novel quantitative method for clarifying the meaning of constructs by examining the similarity of published contexts in which they are used. Method Published terms related to the concept transition to self-management of chronic illness were analyzed using the internomological network (INN), a type of latent semantic analysis to calculate the mathematical relationships between constructs based on the contexts in which researchers use each term. This novel approach was tested by comparing results to those from concept analysis, a best-practice qualitative approach to clarifying meanings of terms. By comparing results of the two methods, the best synonyms of transition to self-management, as well as key antecedent, attribute, and consequence terms, were identified. Results Results from INN analysis were consistent with those from concept analysis. The potential synonyms self-management, transition, and adaptation had the greatest utility. Adaptation was the clearest overall synonym, but had lower cross-disciplinary use. The terms coping and readiness had more circumscribed meanings. The INN analysis confirmed key features of transition to self-management, and suggested related concepts not found by the previous review. Discussion The INN analysis is a promising novel methodology that allows researchers to quantify the semantic relationships between constructs. The method works across disciplinary boundaries, and may help to integrate the diverse literature on self-management of chronic illness. PMID:22592387

  10. High sensitivity detection of active botulinum neurotoxin by glyco-quantitative polymerase chain-reaction.

    PubMed

    Kwon, Seok Joon; Jeong, Eun Ji; Yoo, Yung Choon; Cai, Chao; Yang, Gi-Hyeok; Lee, Jae Chul; Dordick, Jonathan S; Linhardt, Robert J; Lee, Kyung Bok

    2014-03-01

    The sensitive detection of highly toxic botulinum neurotoxin (BoNT) from Clostridium botulinum is of critical importance because it causes human illnesses if foodborne or introduced in wounds and as an iatrogenic substance. Moreover, it has been recently considered a possible biological warfare agent. Over the past decade, significant progress has been made in BoNT detection technologies, including mouse lethality assays, enzyme-linked immunosorbent assays, and endopeptidase assays and by mass spectrometry. Critical assay requirements, including rapid assay, active toxin detection, sensitive and accurate detection, still remain challenging. Here, we present a novel method to detect active BoNTs using a Glyco-quantitative polymerase chain-reaction (qPCR) approach. Sialyllactose, which interacts with the binding-domain of BoNTs, is incorporated into a sialyllactose-DNA conjugate as a binding-probe for active BoNT and recovered through BoNT-immunoprecipitation. Glyco-qPCR analysis of the bound sialyllactose-DNA is then used to detect low attomolar concentrations of BoNT and attomolar to femtomolar concentrations of BoNT in honey, the most common foodborne source of infant botulism. PMID:24506443

  11. Nonlinear sensors: an approach to the residence time detection strategy.

    PubMed

    Dari, A; Bosi, L; Gammaitoni, L

    2010-01-01

    The monitoring of the residence time difference in bistable sensors has been recently proposed as a valid scheme for improving the detection capabilities of sensors as diverse as fluxgate magnetometers, ferroelectric sensors and mechanical sensors. In this paper we propose an approach to the residence time based detection strategy based on the measurement of the slope m of the sensor output integral. We demonstrate that such a method, far from degrading the detection performances can provide an easier way to realize fast and reliable sensors without the computationally demanding task related with the computation of the residence time difference. We introduce the receiver operating characteristic curve as a quantitative estimator for the comparison of the two methods and show that the detector performances increase with increasing the periodic bias amplitude A up to a maximum value. This condition has potentially relevant consequences in the future detectors design. PMID:20365331

  12. Anomalous human behavior detection: an adaptive approach

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Coen; Halma, Arvid; Schutte, Klamer

    2013-05-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous behavior in videos from DARPA's Mind's Eye program, containing a variety of human activities. In this semi-unsupervised task a set of normal instances is provided for training, after which unknown abnormal behavior has to be detected in a test set. The features extracted from the video data have high dimensionality, are sparse and inhomogeneously distributed in the feature space making it a challenging task. Given these characteristics a distance-based method is preferred, but choosing a threshold to classify instances as (ab)normal is non-trivial. Our novel aproach, the Adaptive Outlier Distance (AOD) is able to detect outliers in these conditions based on local distance ratios. The underlying assumption is that the local maximum distance between labeled examples is a good indicator of the variation in that neighborhood, and therefore a local threshold will result in more robust outlier detection. We compare our method to existing state-of-art methods such as the Local Outlier Factor (LOF) and the Local Distance-based Outlier Factor (LDOF). The results of the experiments show that our novel approach improves the quality of the anomaly detection.

  13. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    NASA Astrophysics Data System (ADS)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  14. A generalized approach and computer tool for quantitative genetics study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative genetics is one of the most important components to provide valuable genetic information for improving production and quality of plants and animals. The research history of quantitative genetics study could be traced back more than one hundred years. Since the Analysis of Variance (ANOV...

  15. Fluorescent microscopy approaches of quantitative soil microbial analysis

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin; Polyanskaya, Lubov

    2015-04-01

    Classical fluorescent microscopy method was used during the last decades in various microbiological studies of terrestrial ecosystems. The method provides representative results and simple application which is allow to use it both as routine part of amplitudinous research and in small-scaled laboratories. Furthermore, depending on research targets a lot of modifications of fluorescent microscopy method were established. Combination and comparison of several approaches is an opportunity of quantitative estimation of microbial community in soil. The first analytical part of the study was dedicated to soil bacterial density estimation by fluorescent microscopy in dynamic of several 30-days experiments. The purpose of research was estimation of changes in soil bacterial community on the different soil horizons under aerobic and anaerobic conditions with adding nutrients in two experimental sets: cellulose and chitin. Was modified the nalidixic acid method for inhibition of DNA division of gram-negative bacteria, and the method provides the quantification of this bacterial group by fluorescent microscopy. Established approach allowed to estimate 3-4 times more cells of gram-negative bacteria in soil. The functions of actinomyces in soil polymer destruction are traditionally considered as dominant in comparison to gram-negative bacterial group. However, quantification of gram-negative bacteria in chernozem and peatland provides underestimation of classical notion for this bacterial group. Chitin introduction had no positive effect to gram-negative bacterial population density changes in chernozem but concurrently this nutrient provided the fast growing dynamics at the first 3 days of experiment both under aerobic and anaerobic conditions. This is confirming chitinolytic activity of gram-negative bacteria in soil organic matter decomposition. At the next part of research modified method for soil gram-negative bacteria quantification was compared to fluorescent in situ

  16. A Quantitative Approach to Screen for Nephrotoxic Compounds In Vitro.

    PubMed

    Adler, Melanie; Ramm, Susanne; Hafner, Marc; Muhlich, Jeremy L; Gottwald, Esther Maria; Weber, Elijah; Jaklic, Alenka; Ajay, Amrendra Kumar; Svoboda, Daniel; Auerbach, Scott; Kelly, Edward J; Himmelfarb, Jonathan; Vaidya, Vishal S

    2016-04-01

    Nephrotoxicity due to drugs and environmental chemicals accounts for significant patient mortality and morbidity, but there is no high throughputin vitromethod for predictive nephrotoxicity assessment. We show that primary human proximal tubular epithelial cells (HPTECs) possess characteristics of differentiated epithelial cells rendering them desirable to use in suchin vitrosystems. To identify a reliable biomarker of nephrotoxicity, we conducted multiplexed gene expression profiling of HPTECs after exposure to six different concentrations of nine human nephrotoxicants. Only overexpression of the gene encoding heme oxygenase-1 (HO-1) significantly correlated with increasing dose for six of the compounds, and significant HO-1 protein deregulation was confirmed with each of the nine nephrotoxicants. Translatability of HO-1 increase across species and platforms was demonstrated by computationally mining two large rat toxicogenomic databases for kidney tubular toxicity and by observing a significant increase in HO-1 after toxicity using anex vivothree-dimensional microphysiologic system (kidney-on-a-chip). The predictive potential of HO-1 was tested using an additional panel of 39 mechanistically distinct nephrotoxic compounds. Although HO-1 performed better (area under the curve receiver-operator characteristic curve [AUC-ROC]=0.89) than traditional endpoints of cell viability (AUC-ROC for ATP=0.78; AUC-ROC for cell count=0.88), the combination of HO-1 and cell count further improved the predictive ability (AUC-ROC=0.92). We also developed and optimized a homogenous time-resolved fluorescence assay to allow high throughput quantitative screening of nephrotoxic compounds using HO-1 as a sensitive biomarker. This cell-based approach may facilitate rapid assessment of potential nephrotoxic therapeutics and environmental chemicals. PMID:26260164

  17. Approaches to detection of airborne biological agents

    NASA Astrophysics Data System (ADS)

    Chang, An-Cheng; Tabacco, Mary Beth

    2009-05-01

    Three approaches to detection of biological agents based on biological processes will be presented. The first example demonstrates the use of dendrimers to deliver a membrane-impermeable fluorescent dye into live bacteria, similar to viral infection and delivery of DNA/RNA into a bacterial cell. The second example mimics collection and capture of airborne biological particles by the respiratory mucosa through the use of a hygroscopic sensing membrane. The third example is based on the use of multiple fluorescent probes with diverse functionalities to detect airborne biological agents in a manner similar to the olfactory receptors in the nasal tract.

  18. A quantitative strategy to detect changes in accessibility of protein regions to chemical modification on heterodimerization

    PubMed Central

    Dreger, Mathias; Leung, Bo Wah; Brownlee, George G; Deng, Tao

    2009-01-01

    We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1-PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N-hydroxysuccinimidobiotin (NHS-biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS-biotin when compared with the [PB1-PA] heterodimer. Mutational analysis of residues in two such regions—at K265 and K481 of PB1, which were about three- and twofold, respectively, less accessible to biotinylation in the PB1-PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q-POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein–protein interaction interfaces. The Q-POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs. PMID:19517532

  19. A quantitative strategy to detect changes in accessibility of protein regions to chemical modification on heterodimerization.

    PubMed

    Dreger, Mathias; Leung, Bo Wah; Brownlee, George G; Deng, Tao

    2009-07-01

    We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1-PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N-hydroxysuccinimidobiotin (NHS-biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS-biotin when compared with the [PB1-PA] heterodimer. Mutational analysis of residues in two such regions-at K265 and K481 of PB1, which were about three- and twofold, respectively, less accessible to biotinylation in the PB1-PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q-POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein-protein interaction interfaces. The Q-POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs. PMID:19517532

  20. Glucose encapsulating liposome for signal amplification for quantitative detection of biomarkers with glucometer readout.

    PubMed

    Zhao, Yuting; Du, Dan; Lin, Yuehe

    2015-10-15

    A new technology was developed to quantitatively detect a broad range of disease biomarkers and proven to be portable, economical, and conveniently accessible. Measurements were performed based on releasing encapsulated glucose from antibody-tagged liposomes and subsequently detecting the released glucose using a commercial personal glucose meter (GM). The innovative aspect of this approach lies in the quantification of target biomarkers through the detection of glucose, thus expanding the applicability of the GM by broadening the range of target biomarkers instead of detecting only one analyte, glucose. Because of the bilayer membrane of liposomes, which can accommodate tens of thousands of glucose molecules, the sensitivity was greatly enhanced by using glucose encapsulating liposomes as a signal output and an amplifier. Here, the model analyte, protein 53 phosphorylated on Serine 15 (phospho-p53(15)), was captured by primary antibodies bound on magnetic Fe3O4 nanoparticles and then recognized by reporting antibodies conjugated to glucose encapsulating liposomes. Finally, the target phospho-p53(15) was detected by lysing the bound liposomes to release the encapsulated glucose (4 × 10(5) glucose molecules per liposome), which is detected with the GM. This approach was demonstrated to be a universal technology that can be easily produced to quantify a wide variety of biomarkers in medical diagnostics, food safety, public health, and environmental monitoring. In the near future, it is expected that these sensors, in combination with a portable GM, can be used in many fields such as physicians' laboratories, hospitals and the common household. PMID:26005847

  1. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    SciTech Connect

    Xie, Hongzhi; Mukundan, Harshini; Martinez, Jennifer S; Swanson, Basil I; Anderson, Aaron S; Grace, Kevin

    2009-01-01

    imaging of live cells using QD-bioconjugates [Jaiswal 2003]. Gao [Gao 2004] and So [So 2006] have used QDs as probes for in-vivo cancer targeting and imaging. Medintz et al. reported self-assembled QD-based biosensors for detection of analytes based on energy transfer [Medintz 2003]. Others have developed an approach for multiplex optical encoding of biomolecules using QDs [Han 2001]. Immunoassays have also benefited from the advantages of QDs. Recently, dihydrolipoic acid (DHLA) capped-QDs have been attached to antibodies and used as fluorescence reporters in plate-based multiplex immunoassays [Goodman 2004]. However, DHLA-QDs are associated with low quantum efficiency and are unstable at neutral pH. These problems limit the application of this technology to the sensitive detection of biomolecules, especially in complex biological samples. Thus, the development of a rapid, sensitive, quantitative, and specific multiplex platform for the detection of biomarkers in difficult samples remains an elusive target. The goal stated above has applications in many fields including medical diagnostics, biological research, and threat reduction. The current decade alone has seen the development of a need to rapidly and accurately detect potential biological warfare agents. For example, current methods for the detection of anthrax are grossly inadequate for a variety of reasons including long incubation time (5 days from time of exposure to onset of symptoms) and non-specific ('flu-like') symptoms. When five employees of the United State Senate were exposed to B. anthracis in the mail (2001), only one patient had a confirmed diagnosis before death. Since then, sandwich immunoassays using both colorimetric and fluorescence detectors have been developed for key components of the anthrax lethal toxin, namely protective antigen (PA), lethal factor (LF), and the edema factor [Mourez 2001]. While these platforms were successful in assays against anthrax toxins, the sensitivity was poor

  2. Novel image processing approach to detect malaria

    NASA Astrophysics Data System (ADS)

    Mas, David; Ferrer, Belen; Cojoc, Dan; Finaurini, Sara; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev

    2015-09-01

    In this paper we present a novel image processing algorithm providing good preliminary capabilities for in vitro detection of malaria. The proposed concept is based upon analysis of the temporal variation of each pixel. Changes in dark pixels mean that inter cellular activity happened, indicating the presence of the malaria parasite inside the cell. Preliminary experimental results involving analysis of red blood cells being either healthy or infected with malaria parasites, validated the potential benefit of the proposed numerical approach.

  3. Surface-enhanced Raman scattering for quantitative detection of ethyl carbamate in alcoholic beverages.

    PubMed

    Yang, Danting; Zhou, Haibo; Ying, Yibin; Niessner, Reinhard; Haisch, Christoph

    2013-11-01

    Ethyl carbamate, a by-product of fermentation and storage with widespread occurrence in fermented food and alcoholic beverages, is a compound potentially toxic to humans. In this work, a new approach for quantitative detection of ethyl carbamate in alcoholic beverages, based on surface-enhanced Raman scattering (SERS), is reported. Individual silver-coated gold nanoparticle colloids are used as SERS amplifiers, yielding high Raman enhancement of ethyl carbamate in three kinds of alcoholic beverages (vodka, Obstler, and white rum). The characteristic band at 1,003 cm(-1), which is the strongest and best reproducible peak in the SERS spectra, was used for quantitative evaluation of ethyl carbamate. The limit of detection, which corresponds to a signal-to-noise ratio of 3, was 9.0 × 10(-9) M (0.8 μg · L(-1)), 1.3 × 10(-7) M (11.6 μg · L(-1)), and 7.8 × 10(-8) M (6.9 μg · L(-1)), respectively. Surface-enhanced Raman spectroscopy offers great practical potential for the in situ assessment and identification of ethyl carbamate in the alcoholic beverage industry. PMID:24154926

  4. Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection

    PubMed Central

    Eldridge, Will J.; Meiri, Amihai; Sheinfeld, Adi; Rinehart, Matthew T.; Wax, Adam

    2014-01-01

    We present a fast, wide-field holography system for detecting photothermally excited gold nanospheres with combined quantitative phase imaging. An interferometric photothermal optical lock-in approach (POLI) is shown to improve SNR for detecting nanoparticles (NPs) on multiple substrates, including a monolayer of NPs on a silanized coverslip, and NPs bound to live cells. Furthermore, the set up allowed for co-registered quantitative phase imaging (QPI) to be acquired in an off-axis holographic set-up. An SNR of 103 was obtained for NP-tagging of epidermal growth factor receptor (EGFR) in live cells with a 3 second acquisition, while an SNR of 47 was seen for 20 ms acquisition. An analysis of improvements in SNR due to averaging multiple frames is presented, which suggest that residual photothermal signal can be a limiting factor. The combination of techniques allows for high resolution imaging of cell structure via QPI with the ability to identify receptor expression via POLI. PMID:25136482

  5. [Technical Approaches for Quantitative Treatment Responses Using 18F-FDG PET].

    PubMed

    Miwa, Kenta; Miyaji, Noriaki; Umeda, Takuro; Murata, Taisuke; Wagatsuma, Kei; Sasaki, Masayuki

    2015-01-01

    Quantitative assessment of 18F-FDG PET can predict treatment responses or outcomes. Here, I briefly describe some world trends in standardizing PET images for image-based assessments of treatment responses, followed by present and future strategies for defining the optimal acquisition conditions for quantitative PET imaging. Finally, information is provided about new technical approaches to improving the quantitation of semi-quantitative indexes such as point spread function, time-of-flight and respiratory gating. PMID:26753394

  6. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27041659

  7. A Quantitative Approach to Flash Flood Prediction in Southern Utah

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Gibson, C. V.; Jackson, M.; McInerney, B.

    2005-05-01

    Flash flood monitoring and prediction is considered to be a critical part of National Weather Service (NWS) severe weather operations in the semi-arid western United States. The complex terrain and steep slopes in this area, combined with impervious rock and soils, can induce flash flooding with relatively light rainfall. This reduces the value of using the more common conceptual flash flood models developed for the central and eastern United States. Thus, forecasters at the NWS Weather Forecast Office in Salt Lake City, Utah, have relied on a locally developed conceptual model to predict the likelihood of flash flooding on a given day. Until this study, common practice was to assume that humid and unstable air combined with low wind speeds in the lower troposphere would yield rainfall conductive to flash flooding. A new approach to flash flood prediction, exploring the connection between atmospheric variables and flash flood reports, will increase situational awareness and provide forecasters with quantitative flash flood guidance. A record of historical flash floods in southern Utah was compiled to determine the frequency of events from 1959 to 2003. A complete data set, consisting of both historical flash flooding days and non-event days, was assembled. A trial of the 2003 three-month flash flood season assessed which variables and which dataset to use in studying the eight flash flood seasons from 1996 to 2003; the trial concluded that the best source of atmospheric data was a set of soundings from Flagstaff, Arizona, a location close to and generally upstream of southern Utah. Neural networks were used to determine the relationship between the atmospheric state and a particular day's flash flood severity. The final neural network used six input variables and a discretized output variable. Precipitable water, low-level relative humidity, convective available potential energy, the 500hPa height change between 12Z and 0Z the following day, and the previous day

  8. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.

    PubMed

    Zhang, Pingye; Lewinger, Juan Pablo; Conti, David; Morrison, John L; Gauderman, W James

    2016-07-01

    A genome-wide association study (GWAS) typically is focused on detecting marginal genetic effects. However, many complex traits are likely to be the result of the interplay of genes and environmental factors. These SNPs may have a weak marginal effect and thus unlikely to be detected from a scan of marginal effects, but may be detectable in a gene-environment (G × E) interaction analysis. However, a genome-wide interaction scan (GWIS) using a standard test of G × E interaction is known to have low power, particularly when one corrects for testing multiple SNPs. Two 2-step methods for GWIS have been previously proposed, aimed at improving efficiency by prioritizing SNPs most likely to be involved in a G × E interaction using a screening step. For a quantitative trait, these include a method that screens on marginal effects [Kooperberg and Leblanc, 2008] and a method that screens on variance heterogeneity by genotype [Paré et al., 2010] In this paper, we show that the Paré et al. approach has an inflated false-positive rate in the presence of an environmental marginal effect, and we propose an alternative that remains valid. We also propose a novel 2-step approach that combines the two screening approaches, and provide simulations demonstrating that the new method can outperform other GWIS approaches. Application of this method to a G × Hispanic-ethnicity scan for childhood lung function reveals a SNP near the MARCO locus that was not identified by previous marginal-effect scans. PMID:27230133

  9. A general approach for the purification and quantitative glycomic analysis of human plasma.

    PubMed

    Tep, Samnang; Hincapie, Marina; Hancock, William S

    2012-03-01

    The development of a general method for the purification and quantitative glycomic analysis of human plasma samples to characterize global glycosylation changes shall be presented. The method involves multiple steps, including the depletion of plasma via multi-affinity chromatography to remove high abundant proteins, the enrichment of the lower abundant glycoproteins via multi-lectin affinity chromatography, the isotopic derivatization of released glycans, and quantitative analysis by MALDI-TOF MS. Isotopic derivatization of glycans is accomplished using the well-established chemistry of reductive amination to derivatize glycans with either a light analog ((12)C anthranilic acid) or a heavy analog ((13)C(7) anthranilic acid), which allows for the direct comparison of the alternately labeled glycans by MALDI-TOF MS. The method displays a tenfold linear dynamic range for both neutral and sialylated glycans with sub-picomolar sensitivity. Additionally, by using anthranilic acid, a very sensitive fluorophore, as the derivatization reagent, the glycans can be analyzed by chromatography with fluorescence detection. The utility of this methodology is highlighted by the many diseases and disorders that are known to either show or be the result of changes in glycosylation. A method that provides a generic approach for sample preparation and quantitative data will help to further advance the field of glycomics. PMID:22274286

  10. Quantitative Detection of Pharmaceuticals Using a Combination of Paper Microfluidics and Wavelength Modulated Raman Spectroscopy

    PubMed Central

    Craig, Derek; Mazilu, Michael; Dholakia, Kishan

    2015-01-01

    Raman spectroscopy has proven to be an indispensable technique for the identification of various types of analytes due to the fingerprint vibration spectrum obtained. Paper microfluidics has also emerged as a low cost, easy to fabricate and portable approach for point of care testing. However, due to inherent background fluorescence, combining Raman spectroscopy with paper microfluidics is to date an unmet challenge in the absence of using surface enhanced mechanisms. We describe the first use of wavelength modulated Raman spectroscopy (WMRS) for analysis on a paper microfluidics platform. This study demonstrates the ability to suppress the background fluorescence of the paper using WMRS and the subsequent implementation of this technique for pharmaceutical analysis. The results of this study demonstrate that it is possible to discriminate between both paracetamol and ibuprofen, whilst, also being able to detect the presence of each analyte quantitatively at nanomolar concentrations. PMID:25938464

  11. Differential Classroom Interactions by Ethnicity: A Quantitative Approach

    ERIC Educational Resources Information Center

    Tennant, Geoff

    2004-01-01

    Concerns regarding differentials in classroom experience and academic attainment by ethnicity have been expressed for some time. This study explores, from a quantitative viewpoint based on fieldwork in 10 London schools, one particular aspect of this, namely classroom interactions between teachers and pupils from different ethnic origins. It was…

  12. Resolving the Quantitative-Qualitative Dilemma: A Critical Realist Approach

    ERIC Educational Resources Information Center

    Scott, David

    2007-01-01

    The philosophical issues underpinning the quantitative-qualitative divide in educational research are examined. Three types of argument which support a resolution are considered: pragmatism, false duality and warranty through triangulation. In addition a number of proposed strategies--alignment, sequencing, translation and triangulation--are…

  13. Quantitative and sensitive RNA based detection of Bacillus spores

    PubMed Central

    Osmekhina, Ekaterina; Shvetsova, Antonina; Ruottinen, Maria; Neubauer, Peter

    2014-01-01

    The fast and reliable detection of bacterial spores is of great importance and still remains a challenge. Here we describe a direct RNA-based diagnostic method for the specific detection of viable bacterial spores which does not depends on an enzymatic amplification step and therefore is directly appropriate for quantification. The procedure includes the following steps: (i) heat activation of spores, (ii) germination and enrichment cultivation, (iii) cell lysis, and (iv) analysis of 16S rRNA in crude cell lysates using a sandwich hybridization assay. The sensitivity of the method is dependent on the cultivation time and the detection limit; it is possible to detect 10 spores per ml when the RNA analysis is performed after 6 h of enrichment cultivation. At spore concentrations above 106 spores per ml the cultivation time can be shortened to 30 min. Total analysis times are in the range of 2–8 h depending on the spore concentration in samples. The developed procedure is optimized at the example of Bacillus subtilis spores but should be applicable to other organisms. The new method can easily be modified for other target RNAs and is suitable for specific detection of spores from known groups of organisms. PMID:24653718

  14. An electrochemical immunosensor for quantitative detection of ficolin-3

    NASA Astrophysics Data System (ADS)

    San, Lili; Zeng, Dongdong; Song, Shiping; Zuo, Xiaolei; Zhang, Huan; Wang, Chenguang; Wu, Jiarui; Mi, Xianqiang

    2016-06-01

    Diabetes mellitus (DM) is one of the most common metabolic disorders in the world, of which more than 90% is type-2 diabetes mellitus (T2DM). There is a rather urgent need for reliable, sensitive and quick detection techniques in clinical application of T2DM. Ficolin-3 is a potential biomarker of T2DM, because serum ficolin-3 levels are associated with insulin resistance and predict the incidence of T2DM. Herein, a sandwich-type electrochemical immunosensor was developed for the detection of ficolin-3 in human serum. Cyclic voltammetry and the amperometric current versus time were used to characterize the performance of the immunosensor. Under optimal conditions, the detection limitation of ficolin-3 was 100 ng ml–1 and the linear dynamic range was between 2 and 50 μg ml–1. The method has ideal accuracy, excellent stability and selectivity and has wide application prospects in clinical research.

  15. An electrochemical immunosensor for quantitative detection of ficolin-3.

    PubMed

    San, Lili; Zeng, Dongdong; Song, Shiping; Zuo, Xiaolei; Zhang, Huan; Wang, Chenguang; Wu, Jiarui; Mi, Xianqiang

    2016-06-24

    Diabetes mellitus (DM) is one of the most common metabolic disorders in the world, of which more than 90% is type-2 diabetes mellitus (T2DM). There is a rather urgent need for reliable, sensitive and quick detection techniques in clinical application of T2DM. Ficolin-3 is a potential biomarker of T2DM, because serum ficolin-3 levels are associated with insulin resistance and predict the incidence of T2DM. Herein, a sandwich-type electrochemical immunosensor was developed for the detection of ficolin-3 in human serum. Cyclic voltammetry and the amperometric current versus time were used to characterize the performance of the immunosensor. Under optimal conditions, the detection limitation of ficolin-3 was 100 ng ml(-1) and the linear dynamic range was between 2 and 50 μg ml(-1). The method has ideal accuracy, excellent stability and selectivity and has wide application prospects in clinical research. PMID:27183363

  16. Groundtruth approach to accurate quantitation of fluorescence microarrays

    SciTech Connect

    Mascio-Kegelmeyer, L; Tomascik-Cheeseman, L; Burnett, M S; van Hummelen, P; Wyrobek, A J

    2000-12-01

    To more accurately measure fluorescent signals from microarrays, we calibrated our acquisition and analysis systems by using groundtruth samples comprised of known quantities of red and green gene-specific DNA probes hybridized to cDNA targets. We imaged the slides with a full-field, white light CCD imager and analyzed them with our custom analysis software. Here we compare, for multiple genes, results obtained with and without preprocessing (alignment, color crosstalk compensation, dark field subtraction, and integration time). We also evaluate the accuracy of various image processing and analysis techniques (background subtraction, segmentation, quantitation and normalization). This methodology calibrates and validates our system for accurate quantitative measurement of microarrays. Specifically, we show that preprocessing the images produces results significantly closer to the known ground-truth for these samples.

  17. RNA-seq analysis for detecting quantitative trait-associated genes

    PubMed Central

    Seo, Minseok; Kim, Kwondo; Yoon, Joon; Jeong, Jin Young; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal

    2016-01-01

    Many recent RNA-seq studies were focused mainly on detecting the differentially expressed genes (DEGs) between two or more conditions. In contrast, only a few attempts have been made to detect genes associated with quantitative traits, such as obesity index and milk yield, on RNA-seq experiment with large number of biological replicates. This study illustrates the linear model application on trait associated genes (TAGs) detection in two real RNA-seq datasets: 89 replicated human obesity related data and 21 replicated Holsteins’ milk production related RNA-seq data. Based on these two datasets, the performance between suggesting methods, such as ordinary regression and robust regression, and existing methods: DESeq2 and Voom, were compared. The results indicate that suggesting methods have much lower false discoveries compared to the precedent two group comparisons based approaches in our simulation study and qRT-PCR experiment. In particular, the robust regression outperforms existing DEG finding method as well as ordinary regression in terms of precision. Given the current trend in RNA-seq pricing, we expect our methods to be successfully applied in various RNA-seq studies with numerous biological replicates that handle continuous response traits. PMID:27071914

  18. Tools for the Quantitative Analysis of Sedimentation Boundaries Detected by Fluorescence Optical Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Casillas, Ernesto; Shroff, Hari; Patterson, George H.; Schuck, Peter

    2013-01-01

    Fluorescence optical detection in sedimentation velocity analytical ultracentrifugation allows the study of macromolecules at nanomolar concentrations and below. This has significant promise, for example, for the study of systems of high-affinity protein interactions. Here we describe adaptations of the direct boundary modeling analysis approach implemented in the software SEDFIT that were developed to accommodate unique characteristics of the confocal fluorescence detection system. These include spatial gradients of signal intensity due to scanner movements out of the plane of rotation, temporal intensity drifts due to instability of the laser and fluorophores, and masking of the finite excitation and detection cone by the sample holder. In an extensive series of experiments with enhanced green fluorescent protein ranging from low nanomolar to low micromolar concentrations, we show that the experimental data provide sufficient information to determine the parameters required for first-order approximation of the impact of these effects on the recorded data. Systematic deviations of fluorescence optical sedimentation velocity data analyzed using conventional sedimentation models developed for absorbance and interference optics are largely removed after these adaptations, resulting in excellent fits that highlight the high precision of fluorescence sedimentation velocity data, thus allowing a more detailed quantitative interpretation of the signal boundaries that is otherwise not possible for this system. PMID:24204779

  19. RNA-seq analysis for detecting quantitative trait-associated genes.

    PubMed

    Seo, Minseok; Kim, Kwondo; Yoon, Joon; Jeong, Jin Young; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal

    2016-01-01

    Many recent RNA-seq studies were focused mainly on detecting the differentially expressed genes (DEGs) between two or more conditions. In contrast, only a few attempts have been made to detect genes associated with quantitative traits, such as obesity index and milk yield, on RNA-seq experiment with large number of biological replicates. This study illustrates the linear model application on trait associated genes (TAGs) detection in two real RNA-seq datasets: 89 replicated human obesity related data and 21 replicated Holsteins' milk production related RNA-seq data. Based on these two datasets, the performance between suggesting methods, such as ordinary regression and robust regression, and existing methods: DESeq2 and Voom, were compared. The results indicate that suggesting methods have much lower false discoveries compared to the precedent two group comparisons based approaches in our simulation study and qRT-PCR experiment. In particular, the robust regression outperforms existing DEG finding method as well as ordinary regression in terms of precision. Given the current trend in RNA-seq pricing, we expect our methods to be successfully applied in various RNA-seq studies with numerous biological replicates that handle continuous response traits. PMID:27071914

  20. Optical digital coherent detection technology enabled flexible and ultra-fast quantitative phase imaging.

    PubMed

    Feng, Yuan-Hua; Lu, Xing; Song, Lu; Guo, Xiaojie; Wang, Yawei; Zhu, Linyan; Sui, Qi; Li, Jianping; Shi, Kebin; Li, Zhaohui

    2016-07-25

    Quantitative phase imaging has been an important labeling-free microscopy modality for many biomedical and material science applications. In which, ultra-fast quantitative phase imaging is indispensable for dynamic or transient characteristics analysis. Conventional wide field optical interferometry is a common scheme for quantitative phase imaging, while its data acquisition rate is usually hindered by the frame rate of arrayed detector. By utilizing novel balanced-photo-detector based digital optics coherent detection techniques, we report on a method of constructing ultra-fast quantitative phase microscopy at the line-scan rate of 100 MHz with ~2 μm spatial resolution. PMID:27464166

  1. TaqMan probe array for quantitative detection of DNA targets

    PubMed Central

    Liu, Heping; Wang, Hong; Shi, Zhiyang; Wang, Hua; Yang, Chaoyong; Silke, Spering; Tan, Weihong; Lu, Zuhong

    2006-01-01

    To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format.

  2. Optimization of Quantitative PCR Methods for Enteropathogen Detection

    PubMed Central

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M.; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R.

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen’s extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  3. Dual core quantum dots for highly quantitative ratiometric detection of trypsin activity in cystic fibrosis patients

    NASA Astrophysics Data System (ADS)

    Castelló Serrano, Iván; Stoica, Georgiana; Matas Adams, Alba; Palomares, Emilio

    2014-10-01

    We present herein two colour encoded silica nanospheres (2nanoSi) for the fluorescence quantitative ratiometric determination of trypsin in humans. Current detection methods for cystic fibrosis diagnosis are slow, costly and suffer from false positives. The 2nanoSi proved to be a highly sensitive, fast (minutes), and single-step approach nanosensor for the screening and diagnosis of cystic fibrosis, allowing the quantification of trypsin concentrations in a wide range relevant for clinical applications (25-350 μg L-1). Furthermore, as trypsin is directly related to the development of cystic fibrosis (CF), different human genotypes, i.e. CF homozygotic, CF heterozygotic, and unaffected, respectively, can be determined using our 2nanoSi nanospheres. We anticipate the 2nanoSi system to be a starting point for non-invasive, easy-to-use and cost effective ratiometric fluorescent biomarkers for recessive genetic diseases like human cystic fibrosis. In a screening program in which the goal is to detect disease and also the carrier status, early diagnosis could be of great help.We present herein two colour encoded silica nanospheres (2nanoSi) for the fluorescence quantitative ratiometric determination of trypsin in humans. Current detection methods for cystic fibrosis diagnosis are slow, costly and suffer from false positives. The 2nanoSi proved to be a highly sensitive, fast (minutes), and single-step approach nanosensor for the screening and diagnosis of cystic fibrosis, allowing the quantification of trypsin concentrations in a wide range relevant for clinical applications (25-350 μg L-1). Furthermore, as trypsin is directly related to the development of cystic fibrosis (CF), different human genotypes, i.e. CF homozygotic, CF heterozygotic, and unaffected, respectively, can be determined using our 2nanoSi nanospheres. We anticipate the 2nanoSi system to be a starting point for non-invasive, easy-to-use and cost effective ratiometric fluorescent biomarkers for

  4. Detection of cardiomyopathy in an animal model using quantitative autoradiography

    SciTech Connect

    Kubota, K.; Som, P.; Oster, Z.H.; Brill, A.B.; Goodman, M.M.; Knapp, F.F. Jr.; Atkins, H.L.; Sole, M.J.

    1988-10-01

    A fatty acid analog (15-p-iodophenyl)-3,3 dimethyl-pentadecanoic acid (DMIPP) was studied in cardiomyopathic (CM) and normal age-matched Syrian hamsters. Dual tracer quantitative wholebody autoradiography (QARG) with DMIPP and 2-(/sup 14/C(U))-2-deoxy-2-fluoro-D-glucose (FDG) or with FDG and /sup 201/Tl enabled comparison of the uptake of a fatty acid and a glucose analog with the blood flow. These comparisons were carried out at the onset and mid-stage of the disease before congestive failure developed. Groups of CM and normal animals were treated with verapamil from the age of 26 days, before the onset of the disease for 41 days. In CM hearts, areas of decreased DMIPP uptake were seen. These areas were much larger than the decrease in uptake of FDG or /sup 201/Tl. In early CM only minimal changes in FDG or /sup 201/Tl uptake were observed as compared to controls. Treatment of CM-prone animals with verapamil prevented any changes in DMIPP, FDG, or /sup 201/Tl uptake. DMIPP seems to be a more sensitive indicator of early cardiomyopathic changes as compared to /sup 201/Tl or FDG. The trial of DMIPP and SPECT in the diagnosis of human disease, as well as for monitoring the effects of drugs which may prevent it seems to be warranted.

  5. Quantitative computed tomography detects peripheral airway disease in asthmatic children.

    PubMed

    Jain, Neal; Covar, Ronina A; Gleason, Melanie C; Newell, John D; Gelfand, Erwin W; Spahn, Joseph D

    2005-09-01

    The aim of this study was to compare air-trapping as quantified by high-resolution computed tomography (HRCT) of the chest with measures of lung function and airway inflammation in children with mild to moderate asthma. Plethysmography indices, respiratory resistance, and reactance before and after bronchodilator with impulse oscillation (IOS), exhaled nitric oxide (eNO), total eosinophil count (TEC), and serum eosinophil cationic protein (ECP) levels were measured in 21 subjects. A single-cut HRCT image at end-expiration was obtained. Air-trapping was quantified and expressed in terms of the pixel index (PI) by determining the percentage of pixels in lung fields below -856 and -910 Hounsfeld units (HU). Pairwise linear correlations between PI and other parameters were evaluated. Subjects had only mild airflow limitation based on prebronchodilator forced expiratory volume in 1 sec (FEV(1)), but were hyperinflated and had air-trapping based on elevated total lung capacity (TLC) and residual volume (RV)/TLC ratio, respectively. The PI at -856 HU was positively correlated with % predicted TLC, total gas volume (TGV), and ECP level, and was inversely correlated with FEV(1)/forced vital capacity (FVC) and % predicted forced expiratory flow between 25-75% FVC (FEF(25-75)). The PI at -910 HU correlated similarly with these variables, and also correlated positively with IOS bronchodilator reversibility. This data suggest that quantitative HRCT may be a useful tool in the evaluation of peripheral airflow obstruction in children with asthma. PMID:16015663

  6. Quantitative and qualitative approaches to identifying migration chronology in a continental migrant

    USGS Publications Warehouse

    Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2013-01-01

    The degree to which extrinsic factors influence migration chronology in North American waterfowl has not been quantified, particularly for dabbling ducks. Previous studies have examined waterfowl migration using various methods, however, quantitative approaches to define avian migration chronology over broad spatio-temporal scales are limited, and the implications for using different approaches have not been assessed. We used movement data from 19 female adult mallards (Anas platyrhynchos) equipped with solar-powered global positioning system satellite transmitters to evaluate two individual level approaches for quantifying migration chronology. The first approach defined migration based on individual movements among geopolitical boundaries (state, provincial, international), whereas the second method modeled net displacement as a function of time using nonlinear models. Differences in migration chronologies identified by each of the approaches were examined with analysis of variance. The geopolitical method identified mean autumn migration midpoints at 15 November 2010 and 13 November 2011, whereas the net displacement method identified midpoints at 15 November 2010 and 14 November 2011. The mean midpoints for spring migration were 3 April 2011 and 20 March 2012 using the geopolitical method and 31 March 2011 and 22 March 2012 using the net displacement method. The duration, initiation date, midpoint, and termination date for both autumn and spring migration did not differ between the two individual level approaches. Although we did not detect differences in migration parameters between the different approaches, the net displacement metric offers broad potential to address questions in movement ecology for migrating species. Ultimately, an objective definition of migration chronology will allow researchers to obtain a comprehensive understanding of the extrinsic factors that drive migration at the individual and population levels. As a result, targeted

  7. Quantitative and Qualitative Approaches to Identifying Migration Chronology in a Continental Migrant

    PubMed Central

    Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2013-01-01

    The degree to which extrinsic factors influence migration chronology in North American waterfowl has not been quantified, particularly for dabbling ducks. Previous studies have examined waterfowl migration using various methods, however, quantitative approaches to define avian migration chronology over broad spatio-temporal scales are limited, and the implications for using different approaches have not been assessed. We used movement data from 19 female adult mallards (Anas platyrhynchos) equipped with solar-powered global positioning system satellite transmitters to evaluate two individual level approaches for quantifying migration chronology. The first approach defined migration based on individual movements among geopolitical boundaries (state, provincial, international), whereas the second method modeled net displacement as a function of time using nonlinear models. Differences in migration chronologies identified by each of the approaches were examined with analysis of variance. The geopolitical method identified mean autumn migration midpoints at 15 November 2010 and 13 November 2011, whereas the net displacement method identified midpoints at 15 November 2010 and 14 November 2011. The mean midpoints for spring migration were 3 April 2011 and 20 March 2012 using the geopolitical method and 31 March 2011 and 22 March 2012 using the net displacement method. The duration, initiation date, midpoint, and termination date for both autumn and spring migration did not differ between the two individual level approaches. Although we did not detect differences in migration parameters between the different approaches, the net displacement metric offers broad potential to address questions in movement ecology for migrating species. Ultimately, an objective definition of migration chronology will allow researchers to obtain a comprehensive understanding of the extrinsic factors that drive migration at the individual and population levels. As a result, targeted

  8. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes.

    PubMed

    Lee, Sang-Hee; Ahn, Ji-Young; Lee, Kyeong-Ah; Um, Hyun-Ju; Sekhon, Simranjeet Singh; Sun Park, Tae; Min, Jiho; Kim, Yang-Hoon

    2015-06-15

    As a major human pathogen in the Listeria genus, Listeria monocytogenes causes the bacterial disease listeriosis, which is a serious infection caused by eating food contaminated with the bacteria. We have developed an aptamer-based sandwich assay (ABSA) platform that demonstrates a promising potential for use in pathogen detection using aptamers as analytical bioconjugates. The whole-bacteria SELEX (WB-SELEX) strategy was adopted to generate aptamers with high affinity and specificity against live L. monocytogenes. Of the 35 aptamer candidates tested, LMCA2 and LMCA26 reacted to L. monocytogenes with high binding, and were consequently chosen as sensing probes. The ABSA platform can significantly enhance the sensitivity by employing a very specific aptamer pair for the sandwich complex. The ABSA platform exhibited a linear response over a wide concentration range of L. monocytogenes from 20 to 2×10(6) CFU per mL and was closely correlated with the following relationship: y=9533.3x+1542.3 (R(2)=0.99). Our proposed ABSA platform also provided excellent specificity for the tests to distinguish L. monocytogenes from other Listeria species and other bacterial genera (3 Listeria spp., 4 Salmonella spp., 2 Vibrio spp., 3 Escherichia coli and 3 Shigella spp.). Improvements in the sensitivity and specificity have not only facilitated the reliable detection of L. monocytogenes at extremely low concentrations, but also allowed for the development of a 96-well plate-based routine assay platform for multivalent diagnostics. PMID:25590973

  9. A Quantitative Proteomic Approach to Prion Disease Biomarker Research: Delving into the Glycoproteome

    PubMed Central

    Wei, Xin; Herbst, Allen; Ma, Di; Aiken, Judd; Li, Lingjun

    2011-01-01

    Mass spectrometry (MS) – based proteomic approaches have evolved as powerful tools for the discovery of biomarkers. However, the identification of potential protein biomarkers from biofluid samples is challenging because of the limited dynamic range of detection. Currently there is a lack of sensitive and reliable pre-mortem diagnostic test for prion diseases. Here, we describe the use of a combined MS-based approach for biomarker discovery in prion diseases from mouse plasma samples. To overcome the limited dynamic range of detection and sample complexity of plasma samples, we used lectin affinity chromatography and multi-dimensional separations to enrich and isolate glycoproteins at low abundance. Relative quantitation of a panel of proteins was obtained by a combination of isotopic labeling and validated by spectral counting. Overall 708 proteins were identified, 53 of which showed more than 2-fold increase in concentration whereas 58 exhibited more than 2-fold decrease. A few of the potential candidate markers were previously associated with prion or other neurodegenerative diseases. PMID:21469646

  10. Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead.

    PubMed

    Huang, Yishun; Ma, Yanli; Chen, Yahong; Wu, Xuemeng; Fang, Luting; Zhu, Zhi; Yang, Chaoyong James

    2014-11-18

    Because of the severe health risks associated with lead pollution, rapid, sensitive, and portable detection of low levels of Pb(2+) in biological and environmental samples is of great importance. In this work, a Pb(2+)-responsive hydrogel was prepared using a DNAzyme and its substrate as cross-linker for rapid, sensitive, portable, and quantitative detection of Pb(2+). Gold nanoparticles (AuNPs) were first encapsulated in the hydrogel as an indicator for colorimetric analysis. In the absence of lead, the DNAzyme is inactive, and the substrate cross-linker maintains the hydrogel in the gel form. In contrast, the presence of lead activates the DNAzyme to cleave the substrate, decreasing the cross-linking density of the hydrogel and resulting in dissolution of the hydrogel and release of AuNPs for visual detection. As low as 10 nM Pb(2+) can be detected by the naked eye. Furthermore, to realize quantitative visual detection, a volumetric bar-chart chip (V-chip) was used for quantitative readout of the hydrogel system by replacing AuNPs with gold-platinum core-shell nanoparticles (Au@PtNPs). The Au@PtNPs released from the hydrogel upon target activation can efficiently catalyze the decomposition of H2O2 to generate a large volume of O2. The gas pressure moves an ink bar in the V-chip for portable visual quantitative detection of lead with a detection limit less than 5 nM. The device was able to detect lead in digested blood with excellent accuracy. The method developed can be used for portable lead quantitation in many applications. Furthermore, the method can be further extended to portable visual quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other DNAzymes. PMID:25340621

  11. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  12. New quantitative detection of pathogens in heterogeneous environmental samples

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Wang, Xiaofang; Mitchell, Kristi; Chae, Seon-Ha; Son, Ahjeong

    2015-04-01

    Quantum dots and magnetic beads based genomic assay (NanoGene assay) has been developed for sensitive and inhibition resistant gene quantification to achieve in-situ bacteria monitoring in environmental samples. In this study, eaeA gene of pathogenic E. coli O157:H7 was quantified. The result demonstrated the excellent sensitivity (i.e., limit of detection: 87 gene copies for dsDNA and 890 zeptomolar for ssDNA) in the presence of nonspecific microbial populations (Kim et al., 2010; 2011a). The feasibility of the developed gene quantification for non-laboratory environment usage (in-situ use) was investigated. Therefore, DNA hybridization was achieved at ambient temperature and minimum agitation, and the analysis was completed within hours. Most importantly, the NanoGene assay demonstrated the resistance to the presence of naturally occurring inhibitors (humic acids, cations) and residual reagents (surfactants, alcohols) from DNA extraction (Kim et al., 2011b). The assay was also applied to humic acids laden soils (7 types of soils with various amount of organic matters) and successfully quantified 105 to 108 CFU of E. coli O157:H7 per gram soil (R2 = 0.99). The results indicate that the presented NanoGene assay is suitable for further development as an in-situ bacteria monitoring method for working with heterogeneous environmental samples (Wang et al., 2013). Another aspect of the method is to transform the NanoGene assay into a portable device that can be used as a pathogenic bacteria detector in environment. The project consisted of the first inline fluidic components development and characterization as well as the first integration effort on a briefcase platform for the in-situ pathogen detection system (IPDS) (Mitchell et al., 2014). Our long term vision is to further miniaturize the briefcase platform implementation of the IPDS and to commercialize the handheld version of the IPDS.

  13. The conceptual approach to quantitative modeling of guard cells

    PubMed Central

    Blatt, Michael R.; Hills, Adrian; Chen, Zhong-Hua; Wang, Yizhou; Papanatsiou, Maria; Lew, Vigilio L.

    2013-01-01

    Much of the 70% of global water usage associated with agriculture passes through stomatal pores of plant leaves. The guard cells, which regulate these pores, thus have a profound influence on photosynthetic carbon assimilation and water use efficiency of plants. We recently demonstrated how quantitative mathematical modeling of guard cells with the OnGuard modeling software yields detail sufficient to guide phenotypic and mutational analysis. This advance represents an all-important step toward applications in directing “reverse-engineering” of guard cell function for improved water use efficiency and carbon assimilation. OnGuard is nonetheless challenging for those unfamiliar with a modeler’s way of thinking. In practice, each model construct represents a hypothesis under test, to be discarded, validated or refined by comparisons between model predictions and experimental results. The few guidelines set out here summarize the standard and logical starting points for users of the OnGuard software. PMID:23221747

  14. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    PubMed

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-08-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component. PMID:26737722

  15. A quantitative confidence signal detection model: 1. Fitting psychometric functions.

    PubMed

    Yi, Yongwoo; Merfeld, Daniel M

    2016-04-01

    Perceptual thresholds are commonly assayed in the laboratory and clinic. When precision and accuracy are required, thresholds are quantified by fitting a psychometric function to forced-choice data. The primary shortcoming of this approach is that it typically requires 100 trials or more to yield accurate (i.e., small bias) and precise (i.e., small variance) psychometric parameter estimates. We show that confidence probability judgments combined with a model of confidence can yield psychometric parameter estimates that are markedly more precise and/or markedly more efficient than conventional methods. Specifically, both human data and simulations show that including confidence probability judgments for just 20 trials can yield psychometric parameter estimates that match the precision of those obtained from 100 trials using conventional analyses. Such an efficiency advantage would be especially beneficial for tasks (e.g., taste, smell, and vestibular assays) that require more than a few seconds for each trial, but this potential benefit could accrue for many other tasks. PMID:26763777

  16. Can we predict indirect interactions from quantitative food webs?--an experimental approach.

    PubMed

    Tack, Ayco J M; Gripenberg, Sofia; Roslin, Tomas

    2011-01-01

    1. Shared enemies may link the dynamics of their prey. Recently, quantitative food webs have been used to infer that herbivorous insect species attacked by the same major parasitoid species will affect each other negatively through apparent competition. Nonetheless, theoretical work predicts several alternative outcomes, including positive effects. 2. In this paper, we use an experimental approach to link food web patterns to realized population dynamics. First, we construct a quantitative food web for three dominant leaf miner species on the oak Quercus robur. We then measure short- and long-term indirect effects by increasing leaf miner densities on individual trees. Finally, we test whether experimental results are consistent with natural leaf miner dynamics on unmanipulated trees. 3. The quantitative food web shows that all leaf miner species share a minimum of four parasitoid species. While only a small fraction of the parasitoid pool is shared among Tischeria ekebladella and each of two Phyllonorycter species, the parasitoid communities of the congeneric Phyllonorycter species overlap substantially. 4. Based on the structure of the food web, we predict strong short- and long-term indirect interactions between the Phyllonorycter species, and limited interactions between them and T. ekebladella. As T. ekebladella is the main source of its own parasitoids, we expect to find intraspecific density-dependent parasitism in this species. 5. Consistent with these predictions, parasitism in T. ekebladella was high on trees with high densities of conspecifics in the previous generation. Among leaf miner species sharing more parasitoids, we found positive rather than negative interactions among years. No short-term indirect interactions (i.e. indirect interactions within a single generation) were detected. 6. Overall, this study is the first to experimentally demonstrate that herbivores with overlapping parasitoid communities may exhibit independent population dynamics

  17. Calculation of measurement uncertainty in quantitative analysis of genetically modified organisms using intermediate precision--a practical approach.

    PubMed

    Zel, Jana; Gruden, Kristina; Cankar, Katarina; Stebih, Dejan; Blejec, Andrej

    2007-01-01

    Quantitative characterization of nucleic acids is becoming a frequently used method in routine analysis of biological samples, one use being the detection of genetically modified organisms (GMOs). Measurement uncertainty is an important factor to be considered in these analyses, especially where precise thresholds are set in regulations. Intermediate precision, defined as a measure between repeatability and reproducibility, is a parameter describing the real situation in laboratories dealing with quantitative aspects of molecular biology methods. In this paper, we describe the top-down approach to calculating measurement uncertainty, using intermediate precision, in routine GMO testing of food and feed samples. We illustrate its practicability in defining compliance of results with regulations. The method described is also applicable to other molecular methods for a variety of laboratory diagnostics where quantitative characterization of nucleic acids is needed. PMID:17474528

  18. Drosophila wing modularity revisited through a quantitative genetic approach.

    PubMed

    Muñoz-Muñoz, Francesc; Carreira, Valeria Paula; Martínez-Abadías, Neus; Ortiz, Victoria; González-José, Rolando; Soto, Ignacio M

    2016-07-01

    To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing. PMID:27272402

  19. Furfural as a marker of cellulose degradation. A quantitative approach

    NASA Astrophysics Data System (ADS)

    Łojewski, Tomasz; Sawoszczuk, Tomasz; Łagan, Janusz Marek; Zięba, Katarzyna; Barański, Andrzej; Łojewska, Joanna

    2010-09-01

    Non-destructive methods of sampling during the physicochemical studies of historical objects such as old books and manuscripts seem to be an obvious choice. Since furfural has been shown to be one of the most abundant gaseous products of cellulose degradation, it can be considered as a convenient marker of degradation progress. The number of quantitative data concerning correlations between the emission of furfural and physicochemical and mechanical properties of paper is rather scarce in the literature. In the present studies, a model paper containing more than 99% of cellulose was aged inside closed vials at 90°C. Gaseous products of paper degradation were measured using sorption tubes filled with Tenax TA sorbent and GC-MS. The method has proved to be sufficiently sensitive for measuring furfural emission not only in accelerated degradation at 90°C but also during natural ageing of paper at room temperature even in relatively short time intervals of 2-28 days. The correlations between furfural emission and polymerization degree, pH, color, tear index, number of double folds and breaking length have been statistically confirmed at confidence level α=0.001. Basing on them it was possible to estimate the number of broken glycosidic bonds per one molecule of furfural formed during degradation—we found a value equal to 9.2.

  20. Ecohydrology of agroecosystems: quantitative approaches towards sustainable irrigation.

    PubMed

    Vico, Giulia; Porporato, Amilcare

    2015-02-01

    Irrigation represents one of the main strategies to enhance and stabilize agricultural productivity, by mitigating the effects of rainfall vagaries. In the face of the projected growth in population and in biofuel demands, as well as shifts in climate and dietary habits, a more sustainable management of water resources in agroecosystems is needed. The field of ecohydrology, traditionally focusing on natural ecosystems, has the potential to offer the necessary quantitative tools to assess and compare agricultural enterprises across climates, soil types, crops, and irrigation strategies, accounting for the unpredictability of the hydro-climatic forcing. Here, agricultural sustainability and productivity are assessed with reference to water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability-a crucial element for food security and resource allocation planning. These synthetic indicators are quantified by means of a probabilistic description of the soil water balance and crop development. The model results allow the interpretation of patterns of water productivity observed in Zea mays (maize) and Triticum aestivum (wheat), grown under a variety of soils, climates, and irrigation strategies. Employing the same modeling framework, the impact of rainfall pattern and irrigation strategy on yield and water requirements is further explored. The obtained standard deviations of yield and water requirements suggest the existence of a nonlinear tradeoff between yield stabilization and variability of water requirements, which in turn is strongly impacted by irrigation strategy. Moreover, intermediate rainfall amounts are associated to the highest variability in yields and irrigation requirements, although allowing the maximum water productivity. The existence of these tradeoffs between productivity, reliability, and sustainability poses a problem for water management, in particular in mesic climates. PMID

  1. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  2. Quantitative hopanoid analysis enables robust pattern detection and comparison between laboratories

    PubMed Central

    Wu, C-H; Kong, L; Bialecka-Fornal, M; Park, S; Thompson, A L; Kulkarni, G; Conway, S J; Newman, D K

    2015-01-01

    external diplopterol standards. These new quantitative approaches permit meaningful comparisons between studies, allowing more accurate hopanoid pattern detection in both laboratory and environmental samples. PMID:25865768

  3. Quantitative hopanoid analysis enables robust pattern detection and comparison between laboratories.

    PubMed

    Wu, C-H; Kong, L; Bialecka-Fornal, M; Park, S; Thompson, A L; Kulkarni, G; Conway, S J; Newman, D K

    2015-07-01

    external diplopterol standards. These new quantitative approaches permit meaningful comparisons between studies, allowing more accurate hopanoid pattern detection in both laboratory and environmental samples. PMID:25865768

  4. A quantitative neural network approach to understanding aging phenotypes.

    PubMed

    Ash, Jessica A; Rapp, Peter R

    2014-05-01

    Basic research on neurocognitive aging has traditionally adopted a reductionist approach in the search for the basis of cognitive preservation versus decline. However, increasing evidence suggests that a network level understanding of the brain can provide additional novel insight into the structural and functional organization from which complex behavior and dysfunction emerge. Using graph theory as a mathematical framework to characterize neural networks, recent data suggest that alterations in structural and functional networks may contribute to individual differences in cognitive phenotypes in advanced aging. This paper reviews literature that defines network changes in healthy and pathological aging phenotypes, while highlighting the substantial overlap in key features and patterns observed across aging phenotypes. Consistent with current efforts in this area, here we outline one analytic strategy that attempts to quantify graph theory metrics more precisely, with the goal of improving diagnostic sensitivity and predictive accuracy for differential trajectories in neurocognitive aging. Ultimately, such an approach may yield useful measures for gauging the efficacy of potential preventative interventions and disease modifying treatments early in the course of aging. PMID:24548925

  5. Liquid crystal-based sensors for selective and quantitative detection of nitrogen dioxide.

    PubMed

    Sen, Avijit; Kupcho, Kurt A; Grinwald, Bart A; Vantreeck, Heidi J; Acharya, Bharat R

    2013-03-01

    A highly sensitive nitrogen dioxide (NO2) sensor based on orientational transition of a thin film of liquid crystal (LC) supported on a gold surface is reported. Transport of NO2 molecules through the LC film to the LC-gold interface induces an orientation transition in the LC film. The dynamic behavior of the sensor response exhibits a concentration-dependent response rate that is employed to generate an algorithm for quantitative determination of unknown concentrations. Sensitive, selective and reversible detection with minimal effects of environmental fluctuations suggest that these sensors can be used for quantitative NO2 detection for a number of applications. PMID:23526230

  6. Extending the detectability index to quantitative imaging performance: applications in tomosynthesis and CT

    NASA Astrophysics Data System (ADS)

    Richard, Samuel; Chen, Baiyu; Samei, Ehsan

    2010-04-01

    This study aimed to extend Fourier-based imaging metrics for the modeling of quantitative imaging performance. Breast tomosynthesis was used as a platform for investigating acquisition and processing parameters (e.g., acquisition angle and dose) that can significantly affect 3D signal and noise, and consequently quantitative imaging performance. The detectability index was computed using the modulation transfer function and noise-power spectrum combined with a Fourier description of imaging task. Three imaging tasks were considered: detection, area estimation (in coronal slice), and volume estimation of a 4 mm diameter spherical target. Task functions for size estimation were generated by using measured performance of the maximum-likelihood estimator as training data. The detectability index computed with the size estimation tasks correlated well with precision measurements for area and volume estimation over a fairly broad range of imaging conditions and provided a meaningful figure of merit for quantitative imaging performance. Furthermore, results highlighted that optimal breast tomosynthesis acquisition parameters depend significantly on imaging task. Mass detection was optimal at an acquisition angle of 85° while area and volume estimation for the same mass were optimal at ~100° and 125° acquisition angles, respectively. These findings provide key initial validation that the Fourier-based detectability index extended to estimation tasks can represent a meaningful metric and predictor of quantitative imaging performance.

  7. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.

    PubMed

    Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong

    2016-08-01

    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging. PMID:27385563

  8. Predicting Outbreak Detection in Public Health Surveillance: Quantitative Analysis to Enable Evidence-Based Method Selection

    PubMed Central

    Buckeridge, David L.; Okhmatovskaia, Anna; Tu, Samson; O’Connor, Martin; Nyulas, Csongor; Musen, Mark A.

    2008-01-01

    Public health surveillance is critical for accurate and timely outbreak detection and effective epidemic control. A wide range of statistical algorithms is used for surveillance, and important differences have been noted in the ability of these algorithms to detect outbreaks. The evidence about the relative performance of these algorithms, however, remains limited and mainly qualitative. Using simulated outbreak data, we developed and validated quantitative models for predicting the ability of commonly used surveillance algorithms to detect different types of outbreaks. The developed models accurately predict the ability of different algorithms to detect different types of outbreaks. These models enable evidence-based algorithm selection and can guide research into algorithm development. PMID:18999264

  9. Predicting outbreak detection in public health surveillance: quantitative analysis to enable evidence-based method selection.

    PubMed

    Buckeridge, David L; Okhmatovskaia, Anna; Tu, Samson; O'Connor, Martin; Nyulas, Csongor; Musen, Mark A

    2008-01-01

    Public health surveillance is critical for accurate and timely outbreak detection and effective epidemic control. A wide range of statistical algorithms is used for surveillance, and important differences have been noted in the ability of these algorithms to detect outbreaks. The evidence about the relative performance of these algorithms, however, remains limited and mainly qualitative. Using simulated outbreak data, we developed and validated quantitative models for predicting the ability of commonly used surveillance algorithms to detect different types of outbreaks. The developed models accurately predict the ability of different algorithms to detect different types of outbreaks. These models enable evidence-based algorithm selection and can guide research into algorithm development. PMID:18999264

  10. Application of Person-Centered Approaches to Critical Quantitative Research: Exploring Inequities in College Financing Strategies

    ERIC Educational Resources Information Center

    Malcom-Piqueux, Lindsey

    2014-01-01

    This chapter discusses the utility of person-centered approaches to critical quantitative researchers. These techniques, which identify groups of individuals who share similar attributes, experiences, or outcomes, are contrasted with more commonly used variable-centered approaches. An illustrative example of a latent class analysis of the college…

  11. A quantitative approach to identifying predators from nest remains

    USGS Publications Warehouse

    Anthony, R.M.; Grand, J.B.; Fondell, T.F.; Manly, B.F.

    2004-01-01

    Nesting success of Dusky Canada Geese (Branta canadensis occidentalis) has declined greatly since a major earthquake affected southern Alaska in 1964. To identify nest predators, we collected predation data at goose nests and photographs of predators at natural nests containing artificial eggs in 1997-2000. To document feeding behavior by nest predators, we compiled the evidence from destroyed nests with known predators on our study site and from previous studies. We constructed a profile for each predator group and compared the evidence from 895 nests with unknown predators to our predator profiles using mixture-model analysis. This analysis indicated that 72% of destroyed nests were depredated by Bald Eagles and 13% by brown bears, and also yielded the probability that each nest was correctly assigned to a predator group based on model fit. Model testing using simulations indicated that the proportion estimated for eagle predation was unbiased and the proportion for bear predation was slightly overestimated. This approach may have application whenever there are adequate data on nests destroyed by known predators and predators exhibit different feeding behavior at nests.

  12. A quantitative epigenetic approach for the assessment of cigarette consumption

    PubMed Central

    Philibert, Robert; Hollenbeck, Nancy; Andersen, Eleanor; Osborn, Terry; Gerrard, Meg; Gibbons, Frederick X.; Wang, Kai

    2015-01-01

    Smoking is the largest preventable cause of morbidity and mortality in the world. Despite the development of numerous preventive and treatment interventions, the rate of daily smoking in the United States is still approximately 22%. Effective psychosocial interventions and pharmacologic agents exist for the prevention and treatment of smoking. Unfortunately, both approaches are hindered by our inability to accurately quantify amount of cigarette consumption from the point of initial experimentation to the point of total dependency. Recently, we and others have demonstrated that smoking is associated with genome-wide changes in DNA methylation. However, whether this advance in basic science can be employed as a reliable assay that is useful for clinical diagnosis and treatment has not been shown. In this communication, we determine the sensitivity and specificity of five of the most consistently replicated CpG loci with respect to smoking status using data from a publically available dataset. We show that methylation status at a CpG locus in the aryl hydrocarbon receptor repressor, cg05575921, is both sensitive and specific for smoking status in adults with a receiver operated curve characteristic area under the curve of 0.99. Given recent demonstrations that methylation at this locus reflects both intensity of smoking and the degree of smoking cessation, we conclude that a methylation-based diagnostic at this locus could have a prominent role in understanding the impact of new products, such as e-cigarettes on initiation of cigarette smoking among adolescents, while improving the prevention and treatment of smoking, and smoking related disorders. PMID:26082730

  13. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    PubMed

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-01

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays. PMID:26631264

  14. Quantitative approaches for assessment of white matter hyperintensities in elderly populations

    PubMed Central

    Brickman, Adam M.; Sneed, Joel R.; Provenzano, Frank A.; Garcon, Ernst; Johnert, Lauren; Muraskin, Jordan; Yeung, Lok-Kin; Zimmerman, Molly E.; Roose, Steven P.

    2011-01-01

    White matter hyperintensities (WMH) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI), including fluid attenuated inverse recovery sequences. Total and regional WMH burden (i.e., volume or severity) has been associated with myriad cognitive, neurological, and psychiatric conditions among older adults. In the current report, we illustrate two approaches to quantify periventricular, deep, and total WMH and examine their reliability and criterion validity among 28 elderly patients enrolled in a depression treatment trial. The first approach, an operator-driven quantitative approach, involves visual inspection of individual MRI scans and manual labeling using a three-step series of procedures. The second approach, a fully automated quantitative approach, uses a processing stream that involves image segmentation, voxel intensity thresholding, and seed growing to label WMH and calculate their volume automatically. There was good agreement in WMH quantification between the two approaches (Cronbach’s alpha values from 0.835 to 0.968). Further, severity of WMH was significantly associated with worse depression and increased age, and these associations did not differ significantly between the two quantification approaches. We provide evidence for good reliability and criterion validity for two approaches for WMH volume determination. The operator-driven approach may be better suited for smaller studies with highly trained raters, whereas the fully automated quantitative approach may be more appropriate for larger, high-throughput studies. PMID:21680159

  15. Tomographic thallium-201 myocardial perfusion scintigrams after maximal coronary artery vasodilation with intravenous dipyridamole: comparison of qualitative and quantitative approaches

    SciTech Connect

    Francisco, D.A.; Collins, S.M.; Go, R.T.; Ehrhardt, J.C.; Van Kirk, O.C.; Marcus, M.L.

    1982-08-01

    Eighty-six patients had thallium-201 (/sup 201/Tl) myocardial perfusion scintigrams after intense coronary artery dilation with i.v. dipyridamole. Tomographic and planar /sup 201/Tl scintigrams were obtained in each patient. Tomographic scintigrams were interpreted using quantitative or visual criteria; planar scintigrams were assessed using visual criteria only. When visual criteria were used, interobserver variability was 40% for tomographic scintigrams and 44% for planar scintigrams. In the 24 patients with normal or nonsignificant CAD, quantitative analysis of the tomograms (range approach) indicated that one of 24 (4%) had a positive image (specificity 96%%); in contrast, when visual criteria were used to interpret the tomographic or planar /sup 201/Tl scintigrams, eight of 24 (33%) had positive scintigrams (specificity 67%). In the 51 abnormal patients, the sensitivity of detecting CAD was 46 of 51 (90%) for tomographic scintigrams interpreted quantitatively, 39 of 51 (76%) for tomographic scintigrams interpreted visually and 41 of 51 (80%) for planar scintigrams assessed visually. The tomographic imaging procedure (quantitative interpretation) also demonstrated a high sensitivity (89%) and specificity (100%) in 28 patients (10 normal and 18 CAD), with a clinical diagnosis of unstable angina pectoris. Overall, the predictive accuracy of an abnormal scintigram with quantitative tomographic imaging (98%) was significantly better (p<0.05) than either qualitative planar or pinhole imaging. (JMT)

  16. Temporal Lobe Epilepsy: Quantitative MR Volumetry in Detection of Hippocampal Atrophy

    PubMed Central

    Farid, Nikdokht; Girard, Holly M.; Kemmotsu, Nobuko; Smith, Michael E.; Magda, Sebastian W.; Lim, Wei Y.; Lee, Roland R.

    2012-01-01

    Purpose: To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). Materials and Methods: This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration–cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Results: Quantitative MR imaging–derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%–89.5%) and specificity (92.2%–94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Conclusion: Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a

  17. Type-A influenza virus detection and quantitation by real-time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time RT-PCR (RRT-PCR) is a relatively new technology which has been used for AIV detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of RRT-PCR are: quantitative nature, scalability, cost, high sensitivity, high specificity, and ...

  18. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples

    SciTech Connect

    Wang, Rong-Fu; Cao, Wei-Wen; Cerniglia, C.E.

    1996-04-01

    PCR procedures based on 16S rRNA genen sequence specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human feces and animal feces. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps.

  19. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  20. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  1. DETECTION OF RENIBACTERIUM SALMONINARUM IN CHINOOK SALMON ONCORHYNCHUS TSHAWYTSCHA USING QUANTITATIVE PCR.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed a quantitative PCR assay to detect varying levels of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). This assay allows for the direct enumeration of bacterial DNA or RNA copy number within tissues and body fluids. The assay can be applied nonletha...

  2. DETECTION AND QUANTITATION OF SOLENOPSIS INVICTA VIRUS IN FIRE ANTS BY REAL-TIME PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantitative real-time PCR (QPCR) method was developed to detect and quantify the amount of Solenopsis invicta virus (SINV) infecting individual ants of Solenopsis invicta. The two-step method utilized a gene-specific oligonucleotide primer targeting the SINV RNA-dependent RNA polymerase (RdRp) f...

  3. Comparative analysis of techniques for detection of quiescent Botrytis cinerea in grapes by quantitative PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to quiescent Botrytis cinerea infections of grape berries identified some specific limitations. In this study, four DNA extraction methods, two tissue-grinding methods, two gra...

  4. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  5. A new molecular diagnostic tool for quantitatively detecting and genotyping “Candidatus Liberibacter species”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new molecular diagnostic method was developed for quantitative detection of “Candidatus Liberibacter” species associated with citrus Huanglongbing (“Ca. Liberibacter asiaticus”, “Ca. Liberibacter africanus” and “Ca. Liberibacter americanus”) and potato zebra chip disorder (“Ca. Liberibacter solana...

  6. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    EPA Science Inventory

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  7. Quantitative Detection of Listeria monocytogenes in Biofilms by Real-Time PCR

    PubMed Central

    Guilbaud, Morgan; de Coppet, Pierre; Bourion, Fabrice; Rachman, Cinta; Prévost, Hervé; Dousset, Xavier

    2005-01-01

    A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 × 102 CFU/cm2. PMID:15812058

  8. Application of quantitative PCR assays to detection of human Bacteroides species in the intestines of pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When evaluating the efficacy of probiotic bacteria, it is beneficial to know whether a fed bacterium reaches the appropriate location in the digestive tract. Use of quantitative PCR could detect specific bacteria in a sample with a complex microbial community. In order to determine whether three Bac...

  9. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  10. Quantitative and qualitative approaches in the study of poverty and adolescent development: separation or integration?

    PubMed

    Leung, Janet T Y; Shek, Daniel T L

    2011-01-01

    This paper examines the use of quantitative and qualitative approaches to study the impact of economic disadvantage on family processes and adolescent development. Quantitative research has the merits of objectivity, good predictive and explanatory power, parsimony, precision and sophistication of analysis. Qualitative research, in contrast, provides a detailed, holistic, in-depth understanding of social reality and allows illumination of new insights. With the pragmatic considerations of methodological appropriateness, design flexibility, and situational responsiveness in responding to the research inquiry, a mixed methods approach could be a possibility of integrating quantitative and qualitative approaches and offers an alternative strategy to study the impact of economic disadvantage on family processes and adolescent development. PMID:21870673

  11. Quantitative risk assessment & leak detection criteria for a subsea oil export pipeline

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Yuan; Bai, Yong; Badaruddin, Mohd Fauzi; Tuty, Suhartodjo

    2009-06-01

    A quantitative risk assessment (QRA) based on leak detection criteria (LDC) for the design of a proposed subsea oil export pipeline is presented in this paper. The objective of this QRA/LDC study was to determine if current leak detection methodologies were sufficient, based on QRA results, while excluding the use of statistical leak detection; if not, an appropriate LDC for the leak detection system would need to be established. The famous UK PARLOC database was used for the calculation of pipeline failure rates, and the software POSVCM from MMS was used for oil spill simulations. QRA results revealed that the installation of a statistically based leak detection system (LDS) can significantly reduce time to leak detection, thereby mitigating the consequences of leakage. A sound LDC has been defined based on QRA study results and comments from various LDS vendors to assist the emergency response team (ERT) to quickly identify and locate leakage and employ the most effective measures to contain damage.

  12. Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test.

    PubMed

    Worbs, Sylvia; Fiebig, Uwe; Zeleny, Reinhard; Schimmel, Heinz; Rummel, Andreas; Luginbühl, Werner; Dorner, Brigitte G

    2015-12-01

    In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as "gold standard" for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay. PMID:26703724

  13. Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test

    PubMed Central

    Worbs, Sylvia; Fiebig, Uwe; Zeleny, Reinhard; Schimmel, Heinz; Rummel, Andreas; Luginbühl, Werner; Dorner, Brigitte G.

    2015-01-01

    In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as “gold standard” for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay. PMID:26703724

  14. Quantitative PCR for detection of DNA damage in mitochondrial DNA of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Senoo, Takanori; Yamanaka, Mayumi; Nakamura, Atori; Terashita, Tomoki; Kawano, Shinji; Ikeda, Shogo

    2016-08-01

    Quantitative polymerase chain reaction (QPCR) has been employed to detect DNA damage and repair in mitochondrial DNA (mtDNA) of human and several model organisms. The assay also permits the quantitation of relative mtDNA copy number in cells. Here, we developed the QPCR assay primers and reaction conditions for the fission yeast Schizosaccharomyces pombe, an important model of eukaryote biology, not previously described. Under these conditions, long targets (approximately 10kb) in mtDNA were quantitatively amplified using 0.1ng of crude DNA templates without isolation of mitochondria and mtDNA. Quantitative detection of oxidative DNA damage in mtDNA was illustrated by using a DNA template irradiated with UVA in the presence of riboflavin. The damage to mtDNA in S. pombe cells treated with hydrogen peroxide and paraquat was also quantitatively measured. Finally, we found that mtDNA copy number in S. pombe cells increased after transition into a stationary phase and that the damage to mtDNA due to endogenous cellular processes accumulated during chronological aging. PMID:27236021

  15. Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels.

    PubMed

    Cunningham, Josephine C; Scida, Karen; Kogan, Molly R; Wang, Bo; Ellington, Andrew D; Crooks, Richard M

    2015-01-01

    We report a paper-based assay platform for detection of ricin a chain. The paper platform is assembled by simple origami paper folding. The sensor is based on quantitative, electrochemical detection of silver nanoparticle labels linked to a magnetic microbead support via a ricin immunosandwich. Importantly, ricin was detected at concentrations as low as 34 pM. Additionally, the assay is robust, even in the presence of 100-fold excess hoax materials. Finally, the device is easily remediated after use by incineration. The cost of the device, not including reagents, is just $0.30. The total assay time, including formation of the immunosandwich, is 9.5 min. PMID:26224395

  16. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    PubMed

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology. PMID:18346452

  17. Detection of Prostate Cancer: Quantitative Multiparametric MR Imaging Models Developed Using Registered Correlative Histopathology.

    PubMed

    Metzger, Gregory J; Kalavagunta, Chaitanya; Spilseth, Benjamin; Bolan, Patrick J; Li, Xiufeng; Hutter, Diane; Nam, Jung W; Johnson, Andrew D; Henriksen, Jonathan C; Moench, Laura; Konety, Badrinath; Warlick, Christopher A; Schmechel, Stephen C; Koopmeiners, Joseph S

    2016-06-01

    Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment. All MR imaging voxels in the prostate were classified as cancer or noncancer on the basis of coregistered histopathologic data. Predictive models were developed by using more than one quantitative MR imaging parameter to generate CBS maps. Model development and evaluation of quantitative MR imaging parameters and CBS were performed separately for the peripheral zone and the whole gland. Model accuracy was evaluated by using the area under the receiver operating characteristic curve (AUC), and confidence intervals were calculated with the bootstrap procedure. The improvement in classification accuracy was evaluated by comparing the AUC for the multiparametric model and the single best-performing quantitative MR imaging parameter at the individual level and in aggregate. Results Quantitative T2, apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), reflux rate constant (kep), and area under the gadolinium concentration curve at 90 seconds (AUGC90) were significantly different between cancer and noncancer voxels (P < .001), with ADC showing the best accuracy (peripheral zone AUC, 0.82; whole gland AUC, 0.74). Four-parameter models demonstrated the best performance in both the peripheral zone (AUC, 0.85; P = .010 vs ADC alone) and whole gland (AUC, 0.77; P = .043 vs ADC alone). Individual-level analysis showed statistically significant improvement in AUC in 82% (23 of 28) and 71% (24 of 34

  18. A New Approach for Quantitative Evaluation of Ultrasonic Wave Attenuation in Composites

    NASA Astrophysics Data System (ADS)

    Ni, Qing-Qing; Li, Ran; Xia, Hong

    2016-06-01

    When ultrasonic waves propagate in composite materials, the propagation behaviors result from the combination effects of various factors, such as material anisotropy and viscoelastic property, internal microstructure and defects, incident wave characteristics and interface condition between composite components. It is essential to make it clear how these factors affect the ultrasonic wave propagation and attenuation characteristics, and how they mutually interact on each other. In the present paper, based on a newly developed time-domain finite element analysis code, PZflex, a unique approach for clarifying the detailed influence mechanism of aforementioned factors is proposed, in which each attenuation component can be extracted from the overall attenuation and analyzed respectively. By taking into consideration the interrelation between each individual attenuation component, the variation behaviors of each component and internal dynamic stress distribution against material anisotropy and matrix viscosity are separately and quantitatively evaluated. From the detailed analysis results of each attenuation component, the energy dissipation at interface is a major component in ultrasonic wave attenuation characteristics, which can provide a maximum contribution rate of 68.2 % to the overall attenuation, and each attenuation component is closely related to the material anisotropy and viscoelasticity. The results clarify the correlation between ultrasonic wave propagation characteristics and material viscoelastic properties, which will be useful in the further development of ultrasonic technology in defect detection.

  19. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  20. Fraud detection in medicare claims: A multivariate outlier detection approach

    SciTech Connect

    Burr, T.; Hale, C.; Kantor, M.

    1997-04-01

    We apply traditional and customized multivariate outlier detection methods to detect fraud in medicare claims. We use two sets of 11 derived features, and one set of the 22 combined features. The features are defined so that fraudulent medicare providers should tend to have larger features values than non-fraudulent providers. Therefore we have an apriori direction ({open_quotes}large values{close_quotes}) in high dimensional feature space to search for the multivariate outliers. We focus on three issues: (1) outlier masking (Example: the presence of one outlier can make it difficult to detect a second outlier), (2) the impact of having an apriori direction to search for fraud, and (3) how to compare our detection methods. Traditional methods include Mahalanobis distances, (with and without dimension reduction), k-nearest neighbor, and density estimation methods. Some methods attempt to mitigate the outlier masking problem (for example: minimum volume ellipsoid covariance estimator). Customized methods include ranking methods (such as Spearman rank ordering) that exploit the {open_quotes}large is suspicious{close_quotes} notion. No two methods agree completely which providers are most suspicious so we present ways to compare our methods. One comparison method uses a list of known-fraudulent providers. All comparison methods restrict attention to the most suspicious providers.

  1. Sensitive and quantitative detection of botulinum neurotoxin in neurons derived from mouse embryonic stem cells.

    PubMed

    Pellett, Sabine; Du, Zhong-wei; Pier, Christina L; Tepp, William H; Zhang, Su-chun; Johnson, Eric A

    2011-01-01

    Botulinum neurotoxins (BoNTs), the most poisonous protein toxins known, represent a serious bioterrorism threat but are also used as a unique and important bio-pharmaceutical to treat an increasing myriad of neurological disorders. The only currently accepted detection method by the United States Food and Drug Administration for biological activity of BoNTs and for potency determination of pharmaceutical preparations is the mouse bioassay (MBA). Recent advances have indicated that cell-based assays using primary neuronal cells can provide an equally sensitive and robust detection platform as the MBA to reliably and quantitatively detect biologically active BoNTs. This study reports for the first time a BoNT detection assay using mouse embryonic stem cells to produce a neuronal cell culture. The data presented indicate that this assay can reliably detect BoNT/A with a similar sensitivity as the MBA. PMID:21130748

  2. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay

    PubMed Central

    Zhang, Pengfei; Bao, Yan; Draz, Mohamed Shehata; Lu, Huiqi; Liu, Chang; Han, Huanxing

    2015-01-01

    Convenient and rapid immunofiltration assays (IFAs) enable on-site “yes” or “no” determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs)-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP). CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG) and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test. PMID:26491289

  3. Noninvasive imaging of hemoglobin concentration and oxygen saturation for detection of osteoarthritis in the finger joints using multispectral three-dimensional quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Sobel, Eric; Jiang, Huabei

    2013-05-01

    We present quantitative imaging of hemoglobin concentration and oxygen saturation in in vivo finger joints and evaluate the feasibility of detecting osteoarthritis (OA) in the hand using three-dimensional (3D) multispectral quantitative photoacoustic tomography (3D qPAT). The results show that both the anatomical structures and quantitative chromophore concentrations (oxy-hemoglobin and deoxy-hemoglobin) of different joint tissues (hard phalanges and soft cartilage/synovial fluid between phalanges) can be imaged in vivo with the multispectral 3D qPAT. Enhanced hemoglobin concentrations and dropped oxygen saturations in osteoarthritic phalanges and soft joint tissues in joint cavities have been observed. This study indicates that the multispectral 3D qPAT is a promising approach to detect the angiogenesis and hypoxia associated with OA disease and a potential clinical tool for early OA detection in the finger joints.

  4. Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers.

    PubMed

    Tao, Shujuan; Huang, Yining; Boyes, Barry E; Orlando, Ron

    2014-11-01

    The study of N-linked glycans is among the most challenging bioanalytical tasks because of their complexity and variety. The presence of glycoform families that differ only in branching and/or linkage position makes the identification and quantitation of individual glycans exceedingly difficult. Quantitation of these individual glycans is important because changes in the abundance of these isomers are often associated with significant biomedical events. For instance, previous studies have shown that the ratio of α2-3 to α2-6 linked sialic acid (SA) plays an important role in cancer biology. Consequently, quantitative methods to detect alterations in the ratios of glycans based on their SA linkages could serve as a diagnostic tool in oncology, yet traditional glycomic profiling cannot readily differentiate between these linkage isomers. Here, we present a liquid chromatography-selected reaction monitoring (LC-SRM) approach that we demonstrate is capable of quantitating the individual SA linkage isomers. The LC method is capable of separating sialylated N-glycan isomers differing in α2-3 and α2-6 linkages using a novel superficially porous particle (Fused-Core) Penta-HILIC (hydrophilic interaction liquid chromatography) column. SRM detection provides the relative quantitation of each SA linkage isomer, and minimizes interferences from coeluting glycans that are problematic for UV/Fluorescence based quantitation. With our approach, the relative quantitation of each SA linkage isomer is obtained from a straightforward liquid chromatography-mass spectrometry (LC-MS) experiment. PMID:25299151

  5. Liquid Chromatography-Selected Reaction Monitoring (LC-SRM) Approach for the Separation and Quantitation of Sialylated N-Glycans Linkage Isomers

    PubMed Central

    2015-01-01

    The study of N-linked glycans is among the most challenging bioanalytical tasks because of their complexity and variety. The presence of glycoform families that differ only in branching and/or linkage position makes the identification and quantitation of individual glycans exceedingly difficult. Quantitation of these individual glycans is important because changes in the abundance of these isomers are often associated with significant biomedical events. For instance, previous studies have shown that the ratio of α2-3 to α2-6 linked sialic acid (SA) plays an important role in cancer biology. Consequently, quantitative methods to detect alterations in the ratios of glycans based on their SA linkages could serve as a diagnostic tool in oncology, yet traditional glycomic profiling cannot readily differentiate between these linkage isomers. Here, we present a liquid chromatography-selected reaction monitoring (LC-SRM) approach that we demonstrate is capable of quantitating the individual SA linkage isomers. The LC method is capable of separating sialylated N-glycan isomers differing in α2-3 and α2-6 linkages using a novel superficially porous particle (Fused-Core) Penta-HILIC (hydrophilic interaction liquid chromatography) column. SRM detection provides the relative quantitation of each SA linkage isomer, and minimizes interferences from coeluting glycans that are problematic for UV/Fluorescence based quantitation. With our approach, the relative quantitation of each SA linkage isomer is obtained from a straightforward liquid chromatography-mass spectrometry (LC-MS) experiment. PMID:25299151

  6. Object-Oriented Change Detection Based on Multi-Scale Approach

    NASA Astrophysics Data System (ADS)

    Jia, Yonghong; Zhou, Mingting; Jinshan, Ye

    2016-06-01

    The change detection of remote sensing images means analysing the change information quantitatively and recognizing the change types of the surface coverage data in different time phases. With the appearance of high resolution remote sensing image, object-oriented change detection method arises at this historic moment. In this paper, we research multi-scale approach for high resolution images, which includes multi-scale segmentation, multi-scale feature selection and multi-scale classification. Experimental results show that this method has a stronger advantage than the traditional single-scale method of high resolution remote sensing image change detection.

  7. A combined algorithm for T-wave alternans qualitative detection and quantitative measurement

    PubMed Central

    2013-01-01

    Background T-wave alternans (TWA) provides a noninvasive and clinically useful marker for the risk of sudden cardiac death (SCD). Current most widely used TWA detection algorithms work in two different domains: time and frequency. The disadvantage of the spectral analytical techniques is that they treat the alternans signal as a stationary wave with a constant amplitude and a phase. They cannot detect non-stationary characteristics of the signal. The temporal domain methods are sensitive to the alignment of the T-waves. In this study, we sought to develop a robust combined algorithm (CA) to assess T-wave alternans, which can qualitatively detect and quantitatively measure TWA in time domain. Methods The T wave sequences were extracted and the total energy of each T wave within the specified time-frequency region was calculated. The rank-sum test was applied to the ranked energy sequences of T waves to detect TWA qualitatively. The ECG containing TWA was quantitatively analyzed with correlation method. Results Simulation test result proved a mean sensitivity of 91.2% in detecting TWA, and for the SNR not less than 30 dB, the accuracy rate of detection achieved 100%. The clinical data experiment showed that the results from this method vs. spectral method had the correlation coefficients of 0.96. Conclusions A novel TWA analysis algorithm utilizing the wavelet transform and correlation technique is presented in this paper. TWAs are not only correctly detected qualitatively in frequency domain by energy value of T waves, but the alternans frequency and amplitude in temporal domain are measured quantitatively. PMID:23311454

  8. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  9. Qualitative Research on College Students: Philosophical and Methodological Comparisons with the Quantitative Approach.

    ERIC Educational Resources Information Center

    Patton, Michael J.

    1991-01-01

    Describes and contrasts philosophical and methodological assumptions, goals, and data collection methods of qualitative and quantitative approaches to research on college student behavior. Provides brief illustrations of two qualitative studies of college students using interview methods, ethnomethodology, and conversation analysis. (Author/NB)

  10. A Novel Approach to Teach the Generation of Bioelectrical Potentials from a Descriptive and Quantitative Perspective

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2013-01-01

    In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are…

  11. Qualitative and Quantitative Approaches to the Study of Poverty: Taming the Tensions and Appreciating the Complementarities

    ERIC Educational Resources Information Center

    Balarabe Kura, Sulaiman Y.

    2012-01-01

    There is a germane relationship between qualitative and quantitative approaches to social science research. The relationship is empirically and theoretically demonstrated by poverty researchers. The study of poverty, as argued in this article, is a study of both numbers and contextualities. This article provides a general overview of qualitative…

  12. Pro-Social Behavior Amongst Students of Tertiary Institutions: An Explorative and a Quantitative Approach

    ERIC Educational Resources Information Center

    Quain, Samuel; Yidana, Xiaaba Dantallah; Ambotumah, Bernard Baba; Mensah-Livivnstone, Ike Joe Nii Annang

    2016-01-01

    The purpose of this paper was to explore antecedents of pro-social behavior amongst university students, using a private university as a case study. Following an explorative research, the study was guided by some theories relating to the phenomenon, focusing on gender and location factors. A quantitative approach was used in the follow up to the…

  13. A Quantitative Corpus-Based Approach to English Spatial Particles: Conceptual Symmetry and Its Pedagogical Implications

    ERIC Educational Resources Information Center

    Chen, Alvin Cheng-Hsien

    2014-01-01

    The present study aims to investigate how conceptual symmetry plays a role in the use of spatial particles in English and to further examine its pedagogical implications via a corpus-based evaluation of the course books in senior high schools in Taiwan. More specifically, we adopt a quantitative corpus-based approach to investigate whether bipolar…

  14. Poem Generator: A Comparative Quantitative Evaluation of a Microworlds-Based Learning Approach for Teaching English

    ERIC Educational Resources Information Center

    Jenkins, Craig

    2015-01-01

    This paper is a comparative quantitative evaluation of an approach to teaching poetry in the subject domain of English that employs a "guided discovery" pedagogy using computer-based microworlds. It uses a quasi-experimental design in order to measure performance gains in computational thinking and poetic thinking following a…

  15. Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N6-methyladenosine.

    PubMed

    Dai, Qing; Fong, Robert; Saikia, Mridusmita; Stephenson, David; Yu, Yi-tao; Pan, Tao; Piccirilli, Joseph A

    2007-01-01

    Over 100 chemical types of RNA modifications have been identified in thousands of sites in all three domains of life. Recent data suggest that modifications function synergistically to mediate biological function, and that cells may coordinately modulate modification levels for regulatory purposes. However, this area of RNA biology remains largely unexplored due to the lack of robust, high-throughput methods to quantify the extent of modification at specific sites. Recently, we developed a facile enzymatic ligation-based method for detection and quantitation of methylated 2'-hydroxyl groups within RNA. Here we exploit the principles of molecular recognition and nucleic acid chemistry to establish the experimental parameters for ligation-based detection and quantitation of pseudouridine (Psi) and N6-methyladenosine (m6A), two abundant modifications in eukaryotic rRNA/tRNA and mRNA, respectively. Detection of pseudouridylation at several sites in the large subunit rRNA derived from yeast demonstrates the feasibility of the approach for analysis of pseudouridylation in biological RNA samples. PMID:17881375

  16. Quantification of HIV-1 using multiple quantitative polymerase chain reaction standards and bioluminometric detection.

    PubMed

    Nygren, M; Ronaghi, M; Nyrén, P; Albert, J; Lundeberg, J

    2001-01-01

    A non-gel-based quantification assay based on competitive PCR and bioluminometric detection has been developed. Samples containing human immunodeficiency virus type 1 (HIV-1) DNA and three quantitative standards at discrete concentrations were coamplified by PCR with primers annealing in the polymerase gene region. The quantitative standards contained the same primer binding sequences and had the same amplicon length as the wild-type DNA, but differed in an internal homopolymeric stretch (A, C, or T) over three base pairs. The PCR products were captured onto a solid support and treated with NaOH to separate the strands. Discrimination between the wild-type DNA and the three quantitative standard amplicons was achieved on the solid support by four parallel extension reactions with 3'-end specific primers. Inorganic pyrophosphate (PPi) released as a result of successful extension was converted to ATP by ATP sulfurylase and the level of ATP was sensed by firefly luciferase, generating a proportional amount of visible light which was detected by a luminometer. Here, we show that the obtained calibration curves, using the signal intensities of the three quantitative standards, enabled determination of the amount of target HIV-1 DNA. PMID:11141303

  17. Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology

    NASA Astrophysics Data System (ADS)

    Tang, Qingju; Dai, Jingmin; Liu, Junyan; Liu, Chunsheng; Liu, Yuanlin; Ren, Chunping

    2016-07-01

    Quantitative detection of debonding defects' diameter and depth in TBCs has been carried out using pulsed infrared thermography technology. By combining principal component analysis with neural network theory, the Markov-PCA-BP algorithm was proposed. The principle and realization process of the proposed algorithm was described. In the prediction model, the principal components which can reflect most characteristics of the thermal wave signal were set as the input, and the defect depth and diameter was set as the output. The experimental data from pulsed infrared thermography tests of TBCs with flat bottom hole defects was selected as the training and testing sample. Markov-PCA-BP predictive system was arrived, based on which both the defect depth and diameter were identified accurately, which proved the effectiveness of the proposed method for quantitative detection of debonding defects in TBCs.

  18. Detection and quantitation of proteoglycans extracted from cell culture medium and cultured cartilage slices

    SciTech Connect

    Hronowski, L.J.; Anastassiades, T.P.

    1988-11-01

    Detection and quantitation of extracted proteoglycans, by staining with the dye Alcian blue on cellulose acetate followed by dissolution of the stained cellulose acetate strips in dimethyl sulfoxide containing 0.5% (v/v) sulfuric acid for absorbance measurement, is described. It is shown that, in the present system, the dye uptake by the proteoglycan is dependent only on the glycosaminoglycan content of the proteoglycan. The method is applied to the quantitation and characterization of proteoglycans and glycosaminoglycans, which have been extracted from radiolabeled bovine ankle cartilage and from mononuclear cell supernatant and which have been separated by DEAE-Sephacel column chromatography. The high sensitivity of the method allows detection of proteoglycans in 25-microliters samples of solutions containing as little as 1 microgram of glycosaminoglycan per milliliter of solution.

  19. Terahertz absorbance spectrum fitting method for quantitative detection of concealed contraband

    NASA Astrophysics Data System (ADS)

    Wang, Yingxin; Zhao, Ziran; Chen, Zhiqiang; Kang, Kejun; Feng, Bing; Zhang, Yan

    2007-12-01

    We present a quantitative method for the nondestructive detection of concealed contraband based on terahertz transmission spectroscopy. Without knowing the prior information of barrier materials, the amount of concealed contraband can be extracted by approximating the terahertz absorbance spectrum of the barrier material with a low-order polynomial and then fitting the measured absorbance spectrum of the inspected object with the polynomial and the known standard spectrum of this kind of contraband. We verify the validity of this method using a sample of explosive 1,3,5-trinitro-s-triazine (RDX) covered with several different barrier materials which are commonly encountered in actual inspection, and good agreement between the calculated and actual value of the amount of RDX is obtained for the experiments performed under both nitrogen and air atmospheres. This indicates that the presented method can achieve quantitative detection of hidden contraband, which is important for security inspection applications.

  20. A Pedagogical Approach to Detective Fiction

    ERIC Educational Resources Information Center

    Reyes-Torres, Agustín

    2011-01-01

    One of the main concerns when teaching a foreign language is how to encourage students to read and become interested in its literature. This article presents detective fiction as a pedagogical tool that provides the key elements to make it appealing for young readers. In this way, the mystery, the action and the suspense in the story; the figure…

  1. Sequential Changepoint Approach for Online Community Detection

    NASA Astrophysics Data System (ADS)

    Marangoni-Simonsen, David; Xie, Yao

    2015-08-01

    We present new algorithms for detecting the emergence of a community in large networks from sequential observations. The networks are modeled using Erdos-Renyi random graphs with edges forming between nodes in the community with higher probability. Based on statistical changepoint detection methodology, we develop three algorithms: the Exhaustive Search (ES), the mixture, and the Hierarchical Mixture (H-Mix) methods. Performance of these methods is evaluated by the average run length (ARL), which captures the frequency of false alarms, and the detection delay. Numerical comparisons show that the ES method performs the best; however, it is exponentially complex. The mixture method is polynomially complex by exploiting the fact that the size of the community is typically small in a large network. However, it may react to a group of active edges that do not form a community. This issue is resolved by the H-Mix method, which is based on a dendrogram decomposition of the network. We present an asymptotic analytical expression for ARL of the mixture method when the threshold is large. Numerical simulation verifies that our approximation is accurate even in the non-asymptotic regime. Hence, it can be used to determine a desired threshold efficiently. Finally, numerical examples show that the mixture and the H-Mix methods can both detect a community quickly with a lower complexity than the ES method.

  2. Detection and quantitation of low abundance oligosaccharides in recombinant monoclonal antibodies.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Gonzalez, Nidia; Miano, Dino; Liu, Hongcheng

    2015-03-01

    Oligosaccharides are critical for structural integrity, stability, and biological functions of recombinant monoclonal antibodies. It is relatively easy to characterize, quantify, and determine the impact of major glycoforms. While challenging to detect and quantify, certain low abundance oligosaccharides are highly relevant to the stability and functions of recombinant monoclonal antibodies. Methods were established in this study based on enzymatic digestion to consolidate peaks of the same type of oligosaccharides by removing heterogeneity and thus increase detectability of low abundance peaks. Endo H was used to collapse high mannose oligosaccharides to a single peak of GlcNAc for ease of detection and quantitation. β-Galactosidase and β-N-acetylhexosaminidase were used to convert complex oligosaccharides into two peaks containing either GlcNAc2Man3Fuc or GlcNAc2Man3, which simplified the chromatograms and data analysis. More importantly, low abundance hybrid oligosaccharides can only be detected and qualified after β-galactosidase and β-N-acetylhexosaminidase digestion. Detection and quantitation of low abundance oligosaccharides can also be achieved using a combination of all three enzymes. These methods can be applied to the development of recombinant monoclonal antibody therapeutics. PMID:25647617

  3. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples.

    PubMed

    Mohammed, Muzaffer; Syed, Maleeha F; Aslan, Kadir

    2016-01-15

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique. PMID:26356762

  4. Simple, sensitive, and quantitative electrochemical detection method for paper analytical devices.

    PubMed

    Scida, Karen; Cunningham, Josephine C; Renault, Christophe; Richards, Ian; Crooks, Richard M

    2014-07-01

    We report a new type of paper analytical device that provides quantitative electrochemical output and detects concentrations as low as 767 fM. The model analyte is labeled with silver nanoparticles (AgNPs), which provide 250,000-fold amplification. AgNPs eliminate the need for enzymatic amplification, thereby improving device stability and response time. The use of magnetic beads to preconcentrate the AgNPs at the detection electrode further improves sensitivity. Response time is improved by incorporation of a hollow channel, which increases the flow rate in the device by a factor of 7 and facilitates the use of magnetic beads. A key reaction necessary for label detection is made possible by the presence of a slip layer, a fluidic switch that can be actuated by manually slipping a piece of paper. The design of the device is versatile and should be useful for detection of proteins, nucleic acids, and microbes. PMID:24918259

  5. Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration

    PubMed Central

    Yu, J; Cilfone, NA; Large, EM; Sarkar, U; Wishnok, JS; Tannenbaum, SR; Hughes, DJ; Lauffenburger, DA; Griffith, LG; Stokes, CL; Cirit, M

    2015-01-01

    Our goal in developing Microphysiological Systems (MPS) technology is to provide an improved approach for more predictive preclinical drug discovery via a highly integrated experimental/computational paradigm. Success will require quantitative characterization of MPSs and mechanistic analysis of experimental findings sufficient to translate resulting insights from in vitro to in vivo. We describe herein a systems pharmacology approach to MPS development and utilization that incorporates more mechanistic detail than traditional pharmacokinetic/pharmacodynamic (PK/PD) models. A series of studies illustrates diverse facets of our approach. First, we demonstrate two case studies: a PK data analysis and an inflammation response––focused on a single MPS, the liver/immune MPS. Building on the single MPS modeling, a theoretical investigation of a four-MPS interactome then provides a quantitative way to consider several pharmacological concepts such as absorption, distribution, metabolism, and excretion in the design of multi-MPS interactome operation and experiments. PMID:26535159

  6. Simplified approach for quantitative digital holographic phase contrast imaging of living cells

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Vollmer, Angelika; Rommel, Christina E.; Schnekenburger, Jürgen; Bally, Gert Von

    2011-02-01

    Many interferometry-based quantitative phase contrast imaging techniques require a separately generated coherent reference wave. This results in a low phase stability and the demand for a precise adjustment of the intensity ratio between object and reference wave. To overcome these problems, the performance of a Michelson interferometer approach for digital holographic microscopy was analyzed that avoids a separately generated reference wave by superposition of different image areas. It is shown that this simplified arrangement yields improved phase stability. Furthermore, results from time-lapse investigations on living pancreas tumor cells demonstrate the capability of the method for reliable quantitative phase contrast imaging.

  7. Application of Programmable Bio-Nano-Chip System for the Quantitative Detection of Drugs of Abuse in Oral Fluids*

    PubMed Central

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W.; McRae, Michael P.; Wong, Jorge; Newton, Thomas F.; Smith, Regina; Mahoney, James J.; Hohenstein, Justin; Gomez, Sobeyda; Floriano, Pierre N.; Talavera, Humberto; Sloan, Daniel J.; Moody, David E.; Andrenyak, David M.; Kosten, Thomas R.; Haque, Ahmed; McDevitt, John T.

    2015-01-01

    Objective There is currently a gap in on-site drug of abuse monitoring. Current detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. While remote laboratories then may provide confirmation and quantitative assessment of a presumptive positive, this instrumentation is expensive and decoupled from the initial sampling making the current drug-screening program inefficient and costly. The authors applied a noninvasive oral fluid sampling approach integrated with the in-development chip-based Programmable Bio-Nano-Chip (p-BNC) platform for the detection of drugs of abuse. Method The p-BNC assay methodology was applied for the detection of tetrahydrocannabinol, morphine, amphetamine, methamphetamine, cocaine, methadone and benzodiazepines, initially using spiked buffered samples and, ultimately, using oral fluid specimen collected from consented volunteers. Results Rapid (~10 minutes), sensitive detection (~ng/ml) and quantitation of 12 drugs of abuse was demonstrated on the p-BNC platform. Furthermore, the system provided visibility to time-course of select drug and metabolite profiles in oral fluids; for the drug cocaine, three regions of slope were observed that, when combined with concentration measurements from this and prior impairment studies, information about cocaine-induced impairment may be revealed. Conclusions This chip-based p-BNC detection modality has significant potential to be used in the future by law enforcement officers for roadside drug testing and to serve a variety of other settings, including outpatient and inpatient drug rehabilitation centers, emergency rooms, prisons, schools, and in the workplace. PMID:26048639

  8. Rapid tests for detection and quantitation of Enterococcus contamination in recreational waters.

    PubMed

    Morgan, Rhian; Morris, Ceri; Livzey, Kristin; Hogan, James; Buttigieg, Neil; Pollner, Reinhold; Kacian, Daniel; Weeks, Ian

    2007-05-01

    Presently, growth-based tests are used for the detection and quantitation of microbiological contaminants in the environment. These tests take a minimum of 24 h to generate a result, which compromises the ability to take the most appropriate action. This report describes a rapid test for Enterococcus in recreational water as an indicator of faecal contamination. This method involves (1) isolation and lysis of the target organism, (2) purification of ribosomal RNA (rRNA) from the lysate and (3) amplification and detection of the purified rRNA. rRNA is used as the target since, in contrast to DNA, there are hundreds to thousands of copies in the cell. The rRNA is purified from the lysate by target capture onto magnetic microspheres, which removes interfering substances present in the sample. The rRNA is then quantitated using transcription-mediated amplification (TMA) with real-time homogeneous detection of amplicon using a fluorescent oligonucleotide probe. Compared to polymerase chain reaction (PCR) amplification, TMA is isothermal, more rapid, and ideally suited to RNA detection. The test described here demonstrates sensitive detection and quantitation of enterococci over a wide dynamic range with a high level of analytical specificity. The latter is particularly important for accurate and relevant monitoring both for protecting public health and for source tracking. Many conventional microbiological tests are time-consuming, exhibit limited dynamic range and are known to lack specificity. This assay demonstrates the advantages achievable by the application of TMA of rRNA targets to current environmental testing challenges. PMID:17492087

  9. Detecting initial orthostatic hypotension: a novel approach

    PubMed Central

    McJunkin, Brittain; Rose, Brandon; Amin, Om; Shah, Nirmita; Sharma, Sachin; Modi, Sujal; Kemper, Suzanne; Yousaf, Muhammad

    2015-01-01

    Our purpose, by modification of standard bedside tilt–testing, was to search for lesser known but important initial orthostatic hypotension (IOH), occurring transiently within the first 30 seconds of standing, heretofore only detectable with sophisticated continuous photoplethysmographic monitoring systems, not readily available in most medical facilities. In screened outpatients over 60 years of age, supine blood pressure (BP) parameters were recorded. To achieve readiness for immediate BP after standing, the cuff was re–inflated prior to standing, rather than after. Immediate, 1–, and 3–minute standing BPs were recorded. One hundred fifteen patients were studied (mean age, 71.1 years; 50.5% male). Eighteen (15.6%) had OH, of whom 14 (12.1%) had classical OH, and four (3.5%) had IOH. Early standing BP detection time was 20.1 ± 5.3 seconds. Immediate transient physiologic systolic BP decline was detected in non–OH (−8.8 ± 9.9 mm Hg; P < .0001). In contrast to classical OH (with lesser but persistent orthostatic BP decrements), IOH patients had immediate mean orthostatic systolic/diastolic BP change of −32.8 (±13.8) mm Hg/−14.0 (±8.5) mm Hg (P < .02), with recovery back to baseline by 1 minute. Two of the four IOH patients had pre–syncopal symptoms. For the first time, using standard inflation–deflation BP equipment, immediate transient standing physiologic BP decrement and IOH were demonstrated. This preliminary study confirms proof of principle that manual BP cuff inflation prior to standing may be useful and practical in diagnosing IOH, and may stimulate direct comparative studies with continuous monitoring systems. PMID:25816712

  10. Design of an Evolutionary Approach for Intrusion Detection

    PubMed Central

    2013-01-01

    A novel evolutionary approach is proposed for effective intrusion detection based on benchmark datasets. The proposed approach can generate a pool of noninferior individual solutions and ensemble solutions thereof. The generated ensembles can be used to detect the intrusions accurately. For intrusion detection problem, the proposed approach could consider conflicting objectives simultaneously like detection rate of each attack class, error rate, accuracy, diversity, and so forth. The proposed approach can generate a pool of noninferior solutions and ensembles thereof having optimized trade-offs values of multiple conflicting objectives. In this paper, a three-phase, approach is proposed to generate solutions to a simple chromosome design in the first phase. In the first phase, a Pareto front of noninferior individual solutions is approximated. In the second phase of the proposed approach, the entire solution set is further refined to determine effective ensemble solutions considering solution interaction. In this phase, another improved Pareto front of ensemble solutions over that of individual solutions is approximated. The ensemble solutions in improved Pareto front reported improved detection results based on benchmark datasets for intrusion detection. In the third phase, a combination method like majority voting method is used to fuse the predictions of individual solutions for determining prediction of ensemble solution. Benchmark datasets, namely, KDD cup 1999 and ISCX 2012 dataset, are used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover individual solutions and ensemble solutions thereof with a good support and a detection rate from benchmark datasets (in comparison with well-known ensemble methods like bagging and boosting). In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting

  11. Localization of Epileptogenic Zone on Pre-surgical Intracranial EEG Recordings: Toward a Validation of Quantitative Signal Analysis Approaches.

    PubMed

    Andrzejak, Ralph G; David, Olivier; Gnatkovsky, Vadym; Wendling, Fabrice; Bartolomei, Fabrice; Francione, Stefano; Kahane, Philippe; Schindler, Kaspar; de Curtis, Marco

    2015-11-01

    In patients diagnosed with pharmaco-resistant epilepsy, cerebral areas responsible for seizure generation can be defined by performing implantation of intracranial electrodes. The identification of the epileptogenic zone (EZ) is based on visual inspection of the intracranial electroencephalogram (IEEG) performed by highly qualified neurophysiologists. New computer-based quantitative EEG analyses have been developed in collaboration with the signal analysis community to expedite EZ detection. The aim of the present report is to compare different signal analysis approaches developed in four different European laboratories working in close collaboration with four European Epilepsy Centers. Computer-based signal analysis methods were retrospectively applied to IEEG recordings performed in four patients undergoing pre-surgical exploration of pharmaco-resistant epilepsy. The four methods elaborated by the different teams to identify the EZ are based either on frequency analysis, on nonlinear signal analysis, on connectivity measures or on statistical parametric mapping of epileptogenicity indices. All methods converge on the identification of EZ in patients that present with fast activity at seizure onset. When traditional visual inspection was not successful in detecting EZ on IEEG, the different signal analysis methods produced highly discordant results. Quantitative analysis of IEEG recordings complement clinical evaluation by contributing to the study of epileptogenic networks during seizures. We demonstrate that the degree of sensitivity of different computer-based methods to detect the EZ in respect to visual EEG inspection depends on the specific seizure pattern. PMID:24929558

  12. A new systematic and quantitative approach to characterization of surface nanostructures using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Al-Mousa, Amjed A.

    Thin films are essential constituents of modern electronic devices and have a multitude of applications in such devices. The impact of the surface morphology of thin films on the device characteristics where these films are used has generated substantial attention to advanced film characterization techniques. In this work, we present a new approach to characterize surface nanostructures of thin films by focusing on isolating nanostructures and extracting quantitative information, such as the shape and size of the structures. This methodology is applicable to any Scanning Probe Microscopy (SPM) data, such as Atomic Force Microscopy (AFM) data which we are presenting here. The methodology starts by compensating the AFM data for some specific classes of measurement artifacts. After that, the methodology employs two distinct techniques. The first, which we call the overlay technique, proceeds by systematically processing the raster data that constitute the scanning probe image in both vertical and horizontal directions. It then proceeds by classifying points in each direction separately. Finally, the results from both the horizontal and the vertical subsets are overlaid, where a final decision on each surface point is made. The second technique, based on fuzzy logic, relies on a Fuzzy Inference Engine (FIE) to classify the surface points. Once classified, these points are clustered into surface structures. The latter technique also includes a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and then tune the fuzzy technique system uniquely for that surface. Both techniques have been applied to characterize organic semiconductor thin films of pentacene on different substrates. Also, we present a case study to demonstrate the effectiveness of our methodology to identify quantitatively particle sizes of two specimens of gold nanoparticles of different nominal dimensions dispersed on a mica surface. A comparison

  13. Quantitative subpixel spectral detection of targets in multispectral images. [terrestrial and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Adams, John B.; Smith, Milton O.

    1992-01-01

    The conditions that affect the spectral detection of target materials at the subpixel scale are examined. Two levels of spectral mixture analysis for determining threshold detection limits of target materials in a spectral mixture are presented, the cases where the target is detected as: (1) a component of a spectral mixture (continuum threshold analysis) and (2) residuals (residual threshold analysis). The results of these two analyses are compared under various measurement conditions. The examples illustrate the general approach that can be used for evaluating the spectral detectability of terrestrial and planetary targets at the subpixel scale.

  14. A metabolomics approach to identify and quantify the phytochemicals in watermelons by quantitative (1)HNMR.

    PubMed

    Jayaprakasha, G K; Patil, Bhimanagouda S

    2016-06-01

    Watermelon (Citrullus vulgaris) contains many health-promoting compounds, such as ascorbic acid, carotenoids, phenolic acids and amino acids including l-citrulline, arginine, and glutathione. Reported HPLC method for quantification of l-citrulline and sugars in watermelon involves, time-consuming sample preparation, post-column color development and detection with fluorescence and refractive index detectors. The present study describes development of a method to identify and quantify amino acids and sugars simultaneously from watermelon samples using quantitative proton NMR. Lyophilized watermelon samples (30-50mg) were extracted with deuterium oxide (D2O) by sonication and the centrifuged extract was directly used for quantification and identification with (1)HNMR. An external coaxial insert containing a 65µL of 0.012% 3-(trimethylsilyl) propionic-(2,2,3,3-d4) acid sodium salt (TSP-d4) in D2O was used as a quantitative reference. The levels of l-citrulline and sugars were measured in less than 6min. This rapid quantitation method was validated for specificity, linearity, accuracy, precision, reproducibility, and robustness. The limit of detection for l-citrulline was 38µg/mL and the limit of quantification was 71µg/mL; for sugars, the limits were 59-94µg/mL and 120µg/mL, respectively. This method can be used widely for confirmation and rapid quantitation of multiple compounds in large number of biological or breeding samples for routine analysis. PMID:27130118

  15. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy

    PubMed Central

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H.; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C.; Heth, Jason A.; Maher, Cormac O.; Sanai, Nader; Johnson, Timothy D.; Freudiger, Christian W.; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A.

    2016-01-01

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a non-destructive, label-free optical method, to reveal glioma infiltration in animal models. Here we show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ=0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density and protein:lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density and protein:lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Importantly, quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery. PMID:26468325

  16. Quantitative Detection of Clostridium perfringens in the Broiler Fowl Gastrointestinal Tract by Real-Time PCR

    PubMed Central

    Wise, Mark G.; Siragusa, Gregory R.

    2005-01-01

    Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract. PMID:16000804

  17. Validation of a quantitative PCR assay for detection and quantification of 'Candidatus Xenohaliotis californiensis'.

    PubMed

    Friedman, Carolyn S; Wight, Nate; Crosson, Lisa M; White, Samuel J; Strenge, Robyn M

    2014-04-01

    Withering syndrome (WS), a serious disease affecting abalone Haliotis spp., is caused by infection from an intracellular Rickettsia-like organism (WS-RLO). Diagnosis of the disease currently relies on a combination of histological examination and molecular methods (in situ hybridization, standard PCR, and sequence analysis). However, these techniques only provide a semi-quantitative assessment of bacterial load. We created a real-time quantitative PCR (qPCR) assay to specifically identify and enumerate bacterial loads of WS-RLO in abalone tissue, fecal, and seawater samples based on 16S rDNA gene copy numbers. The qPCR assay designed to detect DNA of the WS-RLO was validated according to standards set by the World Organisation for Animal Health. Standard curves derived from purified plasmid dilutions were linear across 7 logs of concentration, and efficiencies ranged from 90.2 to 97.4%. The limit of detection was 3 gene copies per reaction. Diagnostic sensitivity was 100% and specificity was 99.8%. The qPCR assay was robust, as evidenced by its high level of repeatability and reproducibility. This study has shown for the first time that WS-RLO DNA can be detected and quantified in abalone tissue, fecal, and seawater samples. The ability to detect and quantify RLO gene copies in a variety of materials will enable us to better understand transmission dynamics in both farmed and natural environments. PMID:24695238

  18. Portable SERS-enabled micropipettes for microarea sampling and reliably quantitative detection of surface organic residues.

    PubMed

    Fang, Wei; Zhang, Xinwei; Chen, Yong; Wan, Liang; Huang, Weihua; Shen, Aiguo; Hu, Jiming

    2015-09-15

    We report the first microsampling device for reliably quantitative, label-free and separation-free detection of multicomponents of surface organic residues (SORs) by means of a quality controllable surface-enhanced Raman scattering (SERS)-enabled micropipette. The micropipette is comprised of a drawn glass capillary with a tiny orifice (∼50 μm) at the distal tip, where the specially designed nanorattles (NRs) are compactly coated on the inner wall surface. SERS signals of 4-mercapto benzoic acid (MBA) anchored inside the internal gap of NRs could be used to evaluate and control the quality of micropipettes and, therefore, allow us to overcome the limitations of a reliably quantitative SERS assay using traditional substrates without an internal standard. By dropping a trace extraction agent on targeting SORs located on a narrow surface, the capillary and SERS functionalities of these micropipettes allow on-site microsampling via capillary action and subsequent multiplex distinction/detection due to their molecularly narrow Raman peaks. For example, 8 nM thiram (TMTD), 8 nM malachite green (MG), and 1.5 μM (400 ppb) methyl parathion (MPT) on pepper and cucumber peels have been simultaneously detected in a wide detection range. The portable SERS-enabled device could potentially be facilely incorporated with liquid-liquid or solid phase micro-extracting devices for a broader range of applications in rapid and field analysis of food/public/environment security related SORs. PMID:26274894

  19. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.

    PubMed

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C; Heth, Jason A; Maher, Cormac O; Sanai, Nader; Johnson, Timothy D; Freudiger, Christian W; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A

    2015-10-14

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a nondestructive, label-free optical method, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ = 0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density, and protein/lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density, and protein/lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery. PMID:26468325

  20. Quantitative approaches to monitor protein–nucleic acid interactions using fluorescent probes

    PubMed Central

    Pagano, John M.; Clingman, Carina C.; Ryder, Sean P.

    2011-01-01

    Sequence-specific recognition of nucleic acids by proteins is required for nearly every aspect of gene expression. Quantitative binding experiments are a useful tool to measure the ability of a protein to distinguish between multiple sequences. Here, we describe the use of fluorophore-labeled oligonucleotide probes to quantitatively monitor protein/nucleic acid interactions. We review two complementary experimental methods, fluorescence polarization and fluorescence electrophoretic mobility shift assays, that enable the quantitative measurement of binding affinity. We also present two strategies for post-synthetic end-labeling of DNA or RNA oligonucleotides with fluorescent dyes. The approaches discussed here are efficient and sensitive, providing a safe and accessible alternative to the more commonly used radio-isotopic methods. PMID:21098142

  1. A Slot Blot Immunoassay for Quantitative Detection of Plasmodium falciparum Circumsporozoite Protein in Mosquito Midgut Oocyst

    PubMed Central

    Kumar, Sanjai; Zheng, Hong; Deng, Bingbing; Mahajan, Babita; Grabias, Bryan; Kozakai, Yukiko; Morin, Merribeth J.; Locke, Emily; Birkett, Ashley; Miura, Kazutoyo; Long, Carole

    2014-01-01

    There is still a need for sensitive and reproducible immunoassays for quantitative detection of malarial antigens in preclinical and clinical phases of vaccine development and in epidemiology and surveillance studies, particularly in the vector host. Here we report the results of sensitivity and reproducibility studies for a research-grade, quantitative enhanced chemiluminescent-based slot blot assay (ECL-SB) for detection of both recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP) and native PfCSP from Oocysts (Pf Oocyst) developing in the midguts of Anopheles stephensi mosquitoes. The ECL-SB detects as little as 1.25 pg of rPfCSP (linear range of quantitation 2.5–20 pg; R2 = 0.9505). We also find the earliest detectable expression of native PfCSP in Pf Oocyst by ECL-SB occurs on day 7 post feeding with infected blood meal. The ECL-SB was able to detect approximately as few as 0.5 day 8 Pf Oocysts (linear quantitation range 1–4, R2 = 0.9795) and determined that one Pf Oocyst expressed approximately 2.0 pg (0.5–3 pg) of native PfCSP, suggesting a similar range of detection for recombinant and native forms of Pf CSP. The ECL-SB is highly reproducible; the Coefficient of Variation (CV) for inter-assay variability for rPf CSP and native PfCSP were 1.74% and 1.32%, respectively. The CVs for intra-assay variability performed on three days for rPf CSP were 2.41%, 0.82% and 2% and for native Pf CSP 1.52%, 0.57%, and 1.86%, respectively. In addition, the ECL-SB was comparable to microscopy in determining the P. falciparum prevalence in mosquito populations that distinctly contained either high and low midgut Pf Oocyst burden. In whole mosquito samples, estimations of positivity for P. falciparum in the high and low burden groups were 83.3% and 23.3% by ECL-SB and 85.7% and 27.6% by microscopy. Based on its performance characteristics, ECL-SB could be valuable in vaccine development and to measure the parasite prevalence in mosquitoes and

  2. Quantitative approach of risk management strategies for hepatitis a virus-contaminated oyster production areas.

    PubMed

    Thebault, A; Le Saux, J-C; Pommepuy, M; Le Guyader, S; Lailler, R; Denis, J-B

    2012-07-01

    It is not yet known whether using the new molecular tools to monitor hepatitis A virus (HAV) in shellfish production areas could be useful for improving food safety. HAV contamination can be acute in coastal areas, such as Brittany, France, where outbreaks of hepatitis A have already occurred and have been linked to the consumption of raw shellfish. A quantitative probabilistic approach was carried out to estimate the mean annual risk of hepatitis A in an adult population of raw oyster consumers. Two hypothetical scenarios of contamination were considered, the first for a rare and brief event and the second for regular and prolonged episodes of contamination. Fourteen monitoring and management strategies were simulated. Their effects were assessed by the relative risk reduction in mean annual risk. The duration of closure after abnormal detection in the shellfish area was also considered. Among the strategies tested, results show that monthly molecular reverse transcription PCR monitoring of HAV is more useful than bacterial surveys. In terms of management measures, early closure of the shellfish area without waiting for confirmatory analysis was shown to be the most efficient strategy. When contamination is very short-lived and homogeneous in the shellfish production area, waiting for three negative results before reopening the area for harvest is time wasting. When contamination is not well identified or if contamination is heterogeneous, it can be harmful not to wait for three negative results. In addition, any preventive measures, such as improving sewage treatment or producing shellfish in safer areas, that can reduce contamination by at least 2 log units are more efficient and less costly. Finally we show that controlling and managing transferred shellfish are useful and can play an important role in preventing cases. Qualitative results from HAV monitoring can advantageously supplement other measures that improve the safety of shellfish products in exposed

  3. No heightened condition dependence of zebra finch ornaments--a quantitative genetic approach.

    PubMed

    Bolund, E; Schielzeth, H; Forstmeier, W

    2010-03-01

    The developmental stress hypothesis offers a mechanism to maintain honesty of sexually selected ornaments, because only high quality individuals will be able to develop full ornamentation in the face of stress during early development. Experimental tests of this hypothesis have traditionally involved the manipulation of one aspect of the rearing conditions and an examination of effects on adult traits. Here, we instead use a statistically powerful quantitative genetic approach to detect condition dependence. We use animal models to estimate environmental correlations between a measure of early growth and adult traits. This way, we could make use of the sometimes dramatic differences in early growth of more than 800 individually cross-fostered birds and measure the effect on a total of 23 different traits after birds reached maturity. We find strong effects of environmental growth conditions on adult body size, body mass and fat deposition, moderate effects on beak colour in both sexes, but no effect on song and plumage characters. Rather surprisingly, there was no effect on male attractiveness, both measured in mate choice trials and under socially complex conditions in aviaries. There was a trend for a positive effect of good growth conditions on the success at fertilizing eggs in males breeding in aviaries whereas longevity was not affected in either sex. We conclude that zebra finches are remarkably resilient to food shortage during growth and can compensate for poor growth conditions without much apparent life-history trade-offs. Our results do not support the hypothesis that sexually selected traits show heightened condition dependence compared to nonsexually selected traits. PMID:20074304

  4. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    NASA Astrophysics Data System (ADS)

    Saarakkala, Simo; Laasanen, Mikko S.; Jurvelin, Jukka S.; Töyräs, Juha

    2006-10-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair.

  5. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone.

    PubMed

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Töyräs, Juha

    2006-10-21

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p<0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p<0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair. PMID:17019042

  6. Methods for quantitative detection of antibody-induced complement activation on red blood cells.

    PubMed

    Meulenbroek, Elisabeth M; Wouters, Diana; Zeerleder, Sacha

    2014-01-01

    Antibodies against red blood cells (RBCs) can lead to complement activation resulting in an accelerated clearance via complement receptors in the liver (extravascular hemolysis) or leading to intravascular lysis of RBCs. Alloantibodies (e.g. ABO) or autoantibodies to RBC antigens (as seen in autoimmune hemolytic anemia, AIHA) leading to complement activation are potentially harmful and can be - especially when leading to intravascular lysis - fatal(1). Currently, complement activation due to (auto)-antibodies on RBCs is assessed in vitro by using the Coombs test reflecting complement deposition on RBC or by a nonquantitative hemolytic assay reflecting RBC lysis(1-4). However, to assess the efficacy of complement inhibitors, it is mandatory to have quantitative techniques. Here we describe two such techniques. First, an assay to detect C3 and C4 deposition on red blood cells that is induced by antibodies in patient serum is presented. For this, FACS analysis is used with fluorescently labeled anti-C3 or anti-C4 antibodies. Next, a quantitative hemolytic assay is described. In this assay, complement-mediated hemolysis induced by patient serum is measured making use of spectrophotometric detection of the released hemoglobin. Both of these assays are very reproducible and quantitative, facilitating studies of antibody-induced complement activation. PMID:24514151

  7. Quantitative Genetics and Functional–Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    PubMed Central

    Letort, Véronique; Mahe, Paul; Cournède, Paul-Henry; de Reffye, Philippe; Courtois, Brigitte

    2008-01-01

    Background and Aims Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype × environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional–structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods The GREENLAB model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. Key Results and Conclusions By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits – such as cob weight – and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GREENLAB maize model. The paper discusses the potentials of GREENLAB to represent environment × genotype

  8. A revisited hemolytic assay for palytoxin detection: Limitations for its quantitation in mussels.

    PubMed

    Brovedani, Valentina; Sosa, Silvio; Poli, Mark; Forino, Martino; Varello, Katia; Tubaro, Aurelia; Pelin, Marco

    2016-09-01

    Palytoxin (PLTX) and its analogues have been detected as seafood contaminants associated with a series of human foodborne poisonings. Due to a number of fatalities ascribed to the ingestion of PLTX-contaminated marine organisms, the development of methods for its detection in seafood has been recommended by the European Food Safety Authority (EFSA). Due to its feasibility, the spectrophotometric hemolytic assay is widely used to detect PLTX in different matrices, even though a standardized protocol is still lacking. Thus, on the basis of available assay procedures, a new standardized protocol was set up using purified human erythrocytes exposed to PLTX (working range: 3.9 × 10(-10)-2.5 × 10(-8) M) in a K(+)-free phosphate buffered saline solution, employing a 5 h incubation at 41 °C. An intra-laboratory characterization demonstrated its sensitivity (limit of detection, LOD = 1.4 × 10(-10) M and quantitation, LOQ = 3.4 × 10(-10) M), accuracy (bias = -0.8%), repeatability (RSDr = 15% and 6% for intra- and inter-day repeatability, respectively) and specificity. However, the standardized method seems not to be suitable for PLTX quantitation in complex matrices, such as mussel (Mytilus galloprovincialis) extracts, at least below the limit suggested by EFSA (30 μg PLTXs/Kg shellfish meat). Thus, the hemolytic assay for PLTX quantitation in seafood should be used only after a careful evaluation of the specific matrix effects. PMID:27343702

  9. Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett's-associated neoplasia

    NASA Astrophysics Data System (ADS)

    Thekkek, Nadhi; Lee, Michelle H.; Polydorides, Alexandros D.; Rosen, Daniel G.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-05-01

    Current imaging tools are associated with inconsistent sensitivity and specificity for detection of Barrett's-associated neoplasia. Optical imaging has shown promise in improving the classification of neoplasia in vivo. The goal of this pilot study was to evaluate whether in vivo vital dye fluorescence imaging (VFI) has the potential to improve the accuracy of early-detection of Barrett's-associated neoplasia. In vivo endoscopic VFI images were collected from 65 sites in 14 patients with confirmed Barrett's esophagus (BE), dysplasia, or esophageal adenocarcinoma using a modular video endoscope and a high-resolution microendoscope (HRME). Qualitative image features were compared to histology; VFI and HRME images show changes in glandular structure associated with neoplastic progression. Quantitative image features in VFI images were identified for objective image classification of metaplasia and neoplasia, and a diagnostic algorithm was developed using leave-one-out cross validation. Three image features extracted from VFI images were used to classify tissue as neoplastic or not with a sensitivity of 87.8% and a specificity of 77.6% (AUC=0.878). A multimodal approach incorporating VFI and HRME imaging can delineate epithelial changes present in Barrett's-associated neoplasia. Quantitative analysis of VFI images may provide a means for objective interpretation of BE during surveillance.

  10. Nanomolar colorimetric quantitative detection of Fe3 + and PPi with high selectivity

    NASA Astrophysics Data System (ADS)

    Li, Zhanxian; Li, Haixia; Shi, Caixia; Yu, Mingming; Wei, Liuhe; Ni, Zhonghai

    2016-04-01

    A novel rhodamine and 8-hydroxyquinoline-based derivative was synthesized, which is shown to act as a colorimetric chemosensor for Fe3 + in aqueous solution with high selectivity over various environmentally and biologically relevant metal ions and anions with a distinct color change from colorless to pink in very fast response time (< 1 min). Fe3 + can be detected quantitatively in the concentration range from 6.7 to 16 μM and the detection limit (LOD) on UV-vis response of the sensor can be as low as 15 nM. The 'in situ' prepared Fe3 + complex (1 ṡ Fe) showed high selectivity toward PPi against many common anions, and sensitivity (the LOD can be as low as 71 nM). In addition, both the chemosensor and the 'in situ' prepared Fe3 + complex are reusable for the detection of Fe3 + and PPi respectively.

  11. Nanomolar colorimetric quantitative detection of Fe(3+) and PPi with high selectivity.

    PubMed

    Li, Zhanxian; Li, Haixia; Shi, Caixia; Yu, Mingming; Wei, Liuhe; Ni, Zhonghai

    2016-04-15

    A novel rhodamine and 8-hydroxyquinoline-based derivative was synthesized, which is shown to act as a colorimetric chemosensor for Fe(3+) in aqueous solution with high selectivity over various environmentally and biologically relevant metal ions and anions with a distinct color change from colorless to pink in very fast response time (<1min). Fe(3+) can be detected quantitatively in the concentration range from 6.7 to 16μM and the detection limit (LOD) on UV-vis response of the sensor can be as low as 15nM. The 'in situ' prepared Fe(3+) complex (1⋅Fe) showed high selectivity toward PPi against many common anions, and sensitivity (the LOD can be as low as 71nM). In addition, both the chemosensor and the 'in situ' prepared Fe(3+) complex are reusable for the detection of Fe(3+) and PPi respectively. PMID:26878355

  12. A self-referential outlier detection method for quantitative motor unit action potential analysis.

    PubMed

    Sheean, Geoffrey L

    2012-04-01

    Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data. PMID:22285626

  13. Detection of social approach in inbred mice.

    PubMed

    Pratte, Michel; Jamon, Marc

    2009-10-12

    An experiment was designed to automatically assess the relative level of social interaction during encounters involving trios of inbred mice consisting of two familiar cage mate males plus an unfamiliar third male. The automation of the spatial positioning was obtained by using a video-tracking program. In addition social behaviours were manually scored. To evaluate the influence of basic motor properties on the evaluation of the level of social interaction, we analysed two strains (C57BL/6J and 129S2/Sv) that are frequently employed in transgenic research, and show very different levels of motor activity. Correlations between manual and automated parameters showed that spatial parameters correctly fitted the level of social interaction between mice. In both strains C57BL/6J and 129S2/Sv, a proximity parameter (duration of bouts during which two individuals were close to each other) defined the social approach and correctly assessed the discrimination of social novelty. PMID:19379777

  14. A Statistical Approach to Autocorrelation Detection of Low Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Aguiar, A. C.; Beroza, G. C.

    2012-12-01

    We have analyzed tremor data during the April, 2006 tremor episode in the Nankai Trough in SW Japan using the auto-correlation approach of Brown et al. (2008), which detects low frequency earthquakes (LFEs) based on pair-wise matching. We have found that the statistical behavior of the autocorrelations of each station is different and for this reason we have based our LFE detection method on the autocorrelation of each station individually. Analyzing one station at a time assures that the detection threshold will only depend on the station being analyzed. Once detections are found on each station individually, using a low detection threshold based on a Gaussian distribution of the correlation coefficients, the results are compared within stations and declared a detection if they are found in a statistically significant number of the stations, following multinomial statistics. We have compared our detections using the single station method to the detections found by Shelly et al. (2007) for the 2006 April 16 events and find a significant number of similar detections as well as many new detections that were not found using templates from known LFEs. We are working towards developing a sound statistical basis for event detection. This approach should improve our ability to detect LFEs within weak tremor signals where they are not already identified, and should be applicable to earthquake swarms and sequences in general.

  15. Molecular detection of Mikrocytos mackini in Pacific oysters using quantitative PCR.

    PubMed

    Polinski, Mark; Lowe, Geoff; Meyer, Gary; Corbeil, Serge; Colling, Axel; Caraguel, Charles; Abbott, Cathryn L

    2015-01-01

    Mikrocytos mackini is an internationally regulated pathogen and causative agent of Denman Island disease in Pacific oysters Crassostrea gigas. Recent phylogenetic breakthroughs have placed this parasite within a highly divergent and globally distributed eukaryotic lineage that has been designated a new taxonomic order, Mikrocytida. The discovery of this new radiation of parasites is accompanied by a heightened awareness of the many knowledge gaps that exist with respect to the general biology, epizootiology, and potential impact of mikrocytid parasites on hosts, ecosystems, and commercial fisheries. It has also highlighted current shortcomings regarding our ability to detect these organisms. In this study, we developed a species-specific, sensitive, and quantitative method for detecting M. mackini DNA from host tissues using probe-based real-time qPCR technology. A limit of sensitivity between 2 and 5 genome copy equivalents was achieved in a reaction matrix containing ≥ 40 ng/μL host gDNA without inhibition. This detection proved superior to existing methods based on conventional PCR, histology or gross pathology and is the first species-specific diagnostic test for M. mackini. Quantitative assessment of parasite DNA using this assay remained accurate to between 10 and 50 copies identifying that during infection, M. mackini DNA was significantly more prevalent in hemolymph, labial palp, and mid-body cross-sections compared to mantle or adductor muscle. DNA extracted from a mid-body cross-section also provided the highest likelihood for detection during diagnostic screening of infected oysters. Taken together, these findings provide strong analytical evidence for the adoption of qPCR as the new reference standard for detecting M. mackini and give preliminary insight into the distribution of the parasite within host tissues. Standardised operating methodologies for sample collection and qPCR testing are provided to aid in the international regulatory diagnosis of

  16. A competitive enzyme immunoassay for the quantitative detection of cocaine from banknotes and latent fingermarks.

    PubMed

    van der Heide, Susan; Garcia Calavia, Paula; Hardwick, Sheila; Hudson, Simon; Wolff, Kim; Russell, David A

    2015-05-01

    A sensitive and versatile competitive enzyme immunoassay (cEIA) has been developed for the quantitative detection of cocaine in complex forensic samples. Polyclonal anti-cocaine antibody was purified from serum and deposited onto microtiter plates. The concentration of the cocaine antibody adsorbed onto the plates, and the dilution of the cocaine-HRP hapten were both studied to achieve an optimised immunoassay. The method was successfully used to quantify cocaine in extracts taken from both paper currency and latent fingermarks. The limit of detection (LOD) of 0.162ngmL(-1) achieved with the assay compares favourably to that of conventional chromatography-mass spectroscopy techniques, with an appropriate sensitivity for the quantification of cocaine at the low concentrations present in some forensic samples. The cEIA was directly compared to LC-MS for the analysis of ten UK banknote samples. The results obtained from both techniques were statistically similar, suggesting that the immunoassay was unaffected by cross-reactivity with potentially interfering compounds. The cEIA was used also for the detection of cocaine in extracts from latent fingermarks. The results obtained were compared to the cocaine concentrations detected in oral fluid sampled from the same individual. Using the cEIA, we have shown, for the first time, that endogeneously excreted cocaine can be detected and quantified from a single latent fingermark. Additionally, it has been shown that the presence of cocaine, at similar concentrations, in more than one latent fingermark from the same individual can be linked with those concentrations found in oral fluid. These results show that detection of drugs in latent fingermarks could directly indicate whether an individual has consumed the drug. The specificity and feasibility of measuring low concentrations of cocaine in complex forensic samples demonstrate the effectiveness and robustness of the assay. The immunoassay presents a simple and cost

  17. Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay

    PubMed Central

    Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto

    2013-01-01

    Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499

  18. Profiling and Quantitation of Bacterial Carotenoids by Liquid Chromatography and Photodiode Array Detection

    PubMed Central

    Nelis, H. J.; De Leenheer, A. P.

    1989-01-01

    An analytical method for the profiling and quantitative determination of carotenoids in bacteria is described. Exhaustive extraction of the pigments from four selected bacterial strains required treatment of the cells with potassium hydroxide or liquefied phenol or both before the addition of the extracting solvent (methanol or diethyl ether). The carotenoids in the extracts were separated by nonaqueous reversed-phase liquid chromatography in conjunction with photodiode array absorption detection. The identity of a peak was considered definitive only when both its retention time and absorption spectrum, before and after chemical reactions, matched those of a reference component. In the absence of the latter, most peaks could be tentatively identified. Two examples illustrate how in the analysis of pigmented bacteria errors may result from using nonchromatographic procedures or liquid chromatographic methods lacking sufficient criteria for peak identification. Carotenoids of interest were determined quantitatively when the authentic reference substance was available or, alternatively, were determined semiquantitatively. PMID:16348068

  19. Qualitative and Quantitative Assays for Detection and Characterization of Protein Antimicrobials.

    PubMed

    Farris, M Heath; Ford, Kara A; Doyle, Richard C

    2016-01-01

    Initial evaluations of large microbial libraries for potential producers of novel antimicrobial proteins require both qualitative and quantitative methods to screen for target enzymes prior to investing greater research effort and resources. The goal of this protocol is to demonstrate two complementary assays for conducting these initial evaluations. The microslide diffusion assay provides an initial or simple detection screen to enable the qualitative and rapid assessment of proteolytic activity against an array of both viable and heat-killed bacterial target substrates. As a counterpart, the increased sensitivity and reproducibility of the dye-release assay provides a quantitative platform for evaluating and comparing environmental influences affecting the hydrolytic activity of protein antimicrobials. The ability to label specific heat-killed cell culture substrates with Remazol brilliant blue R dye expands this capability to tailor the dye-release assay to characterize enzymatic activity of interest. PMID:27166738

  20. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule.

    PubMed

    Yang, Litao; Guo, Jinchao; Pan, Aihu; Zhang, Haibo; Zhang, Kewei; Wang, Zhengming; Zhang, Dabing

    2007-01-10

    With the development of genetically modified organism (GMO) detection techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and real-time PCR is the most effective and important method for GMO quantification. An event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity. This study establishes the event-specific detection methods for TC1507 and CBH351 maizes. In addition, the event-specific TaqMan real-time PCR detection methods for another seven GM maize events (Bt11, Bt176, GA21, MON810, MON863, NK603, and T25) were systematically optimized and developed. In these PCR assays, the fluorescent quencher, TAMRA, was dyed on the T-base of the probe at the internal position to improve the intensity of the fluorescent signal. To overcome the difficulties in obtaining the certified reference materials of these GM maizes, one novel standard reference molecule containing all nine specific integration junction sequences of these GM maizes and the maize endogenous reference gene, zSSIIb, was constructed and used for quantitative analysis. The limits of detection of these methods were 20 copies for these different GM maizes, the limits of quantitation were about 20 copies, and the dynamic ranges for quantification were from 0.05 to 100% in 100 ng of DNA template. Furthermore, nine groups of the mixed maize samples of these nine GM maize events were quantitatively analyzed to evaluate the accuracy and precision. The accuracy expressed as bias varied from 0.67 to 28.00% for the nine tested groups of GM maize samples, and the precision expressed as relative standard deviations was from 0.83 to 26.20%. All of these indicated that the established event-specific real-time PCR detection systems and the reference molecule in this study are suitable for the identification and quantification of these GM

  1. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use. PMID:20087729

  2. Quantitative analysis of PEG-functionalized colloidal gold nanoparticles using charged aerosol detection.

    PubMed

    Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E

    2015-05-01

    Surface characteristics of a nanoparticle, such as functionalization with polyethylene glycol (PEG), are critical to understand and achieve optimal biocompatibility. Routine physicochemical characterization such as UV-vis spectroscopy (for gold nanoparticles), dynamic light scattering, and zeta potential are commonly used to assess the presence of PEG. However, these techniques are merely qualitative and are not sensitive enough to distinguish differences in PEG quantity, density, or presentation. As an alternative, two methods are described here which allow for quantitative measurement of PEG on PEGylated gold nanoparticles. The first, a displacement method, utilizes dithiothreitol to displace PEG from the gold surface. The dithiothreitol-coated gold nanoparticles are separated from the mixture via centrifugation, and the excess dithiothreitol and dissociated PEG are separated through reversed-phase high-performance liquid chromatography (RP-HPLC). The second, a dissolution method, utilizes potassium cyanide to dissolve the gold nanoparticles and liberate PEG. Excess CN(-), Au(CN)2 (-), and free PEG are separated using RP-HPLC. In both techniques, the free PEG can be quantified against a standard curve using charged aerosol detection. The displacement and dissolution methods are validated here using 2-, 5-, 10-, and 20-kDa PEGylated 30-nm colloidal gold nanoparticles. Further value in these techniques is demonstrated not only by quantitating the total PEG fraction but also by being able to be adapted to quantitate the free unbound PEG and the bound PEG fractions. This is an important distinction, as differences in the bound and unbound PEG fractions can affect biocompatibility, which would not be detected in techniques that only quantitate the total PEG fraction. PMID:25749798

  3. Methods for the Specific Detection and Quantitation of Amyloid-β Oligomers in Cerebrospinal Fluid.

    PubMed

    Schuster, Judith; Funke, Susanne Aileen

    2016-05-01

    Protein misfolding and aggregation are fundamental features of the majority of neurodegenerative diseases, like Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia, and prion diseases. Proteinaceous deposits in the brain of the patient, e.g., amyloid plaques consisting of the amyloid-β (Aβ) peptide and tangles composed of tau protein, are the hallmarks of AD. Soluble oligomers of Aβ and tau play a fundamental role in disease progression, and specific detection and quantification of the respective oligomeric proteins in cerebrospinal fluid may provide presymptomatically detectable biomarkers, paving the way for early diagnosis or even prognosis. Several studies on the development of techniques for the specific detection of Aβ oligomers were published, but some of the existing tools do not yet seem to be satisfactory, and the study results are contradicting. The detection of oligomers is challenging due to their polymorphous and unstable nature, their low concentration, and the presence of competing proteins and Aβ monomers in body fluids. Here, we present an overview of the current state of the development of methods for Aβ oligomer specific detection and quantitation. The methods are divided in the three subgroups: (i) enzyme linked immunosorbent assays (ELISA), (ii) methods for single oligomer detection, and (iii) others, which are mainly biosensor based methods. PMID:27163804

  4. A new algorithmic approach for fingers detection and identification

    NASA Astrophysics Data System (ADS)

    Mubashar Khan, Arslan; Umar, Waqas; Choudhary, Taimoor; Hussain, Fawad; Haroon Yousaf, Muhammad

    2013-03-01

    Gesture recognition is concerned with the goal of interpreting human gestures through mathematical algorithms. Gestures can originate from any bodily motion or state but commonly originate from the face or hand. Hand gesture detection in a real time environment, where the time and memory are important issues, is a critical operation. Hand gesture recognition largely depends on the accurate detection of the fingers. This paper presents a new algorithmic approach to detect and identify fingers of human hand. The proposed algorithm does not depend upon the prior knowledge of the scene. It detects the active fingers and Metacarpophalangeal (MCP) of the inactive fingers from an already detected hand. Dynamic thresholding technique and connected component labeling scheme are employed for background elimination and hand detection respectively. Algorithm proposed a new approach for finger identification in real time environment keeping the memory and time constraint as low as possible.

  5. [Self-perception of oral health and impact on quality of life among the elderly: a quantitative-qualitative approach].

    PubMed

    Haikal, Desirée Sant'Ana; Paula, Alfredo Maurício Batista de; Martins, Andrea Maria Eleutério de Barros Lima; Moreira, Allyson Nogueira; Ferreira, Efigênia Ferreira e

    2011-07-01

    A qualitative-quantitative approach was used in this study to obtain a clearer understanding of the relationship between self-perception, impact on quality of life and oral health among the elderly. Clinical examination and recorded interviews with objective and discursive questions were conducted with 45 institutionalized elderly people. Descriptive analyses of quantitative data were made. The interviews were transcribed and a systematic reading of the interviews was carried out selecting the components related to the categories under analysis. Photographic images of the oral clinical status were correlated with participants' speech. Quantitative analysis revealed: an average of 4.8 teeth; DMFT were 29.9; 57.7 % were toothless; 60% believed they did not need dental care; 75% suffered a great impact on quality of life due to oral health conditions, despite the fact that 67% evaluated their oral health positively. Underestimation of symptoms, lack of hope and resignation due to limitations regarding poor clinical status were detected. Most elderly people viewed such limitations as a consequence of aging and not as a problem that may be solved. This reality can be changed through information and guidance for elderly people. PMID:21808919

  6. Quantitative detection of the colloidal gold immunochromatographic strip in HSV color space

    NASA Astrophysics Data System (ADS)

    Wu, Yuanshu; Gao, Yueming; Du, Min

    2014-09-01

    In this paper, a fast, reliable and accurate quantitative detection method for the colloidal gold immunochromatographic strip(GICA) is presented. An image acquisition device which is mainly composed of annular LED source, zoom ratio lens, and 10bit CMOS image sensors with 54.5dB SNR is designed for the detection. Firstly, the test line is extracted from the strip window through using the H component peak points of the HSV space as the clustering centers via the Fuzzy C-Means(FCM) clustering method. Then, a two dimensional eigenvalue composed with the hue(H) and saturation(S) of HSV space was proposed to improve the accuracy of the quantitative detection. At last, the experiment of human chorionic gonadotropin(HCG) with the concentration range 0-500mIU/mL is carried out. The results show that the linear correlation coefficient between this method and optical density(OD) values measured by the fiber optical sensor reach 96.74%. Meanwhile, the linearity of fitting curve constructed with concentration was greater than 95.00%.

  7. High resolution quantitative phase imaging of live cells with constrained optimization approach

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2016-03-01

    Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.

  8. Quantitative high resolution electron microscopy of III-V compounds: A fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Hillebrand, R.; Hofmeister, H.; Werner, P.; Gösele, U.

    1995-09-01

    In the study of interdiffusion phenomena in layered structures of III-V compounds by high resolution electron microscopy, contrast features in the micrographs can be correlated with the variation of the chemical composition of the crystals. For quantitative interpretation of the micrographs a fuzzy logic approach is adapted to extract chemical information. The linguistic variable ``similarity of images'' is derived from the standard deviation (SD) of their difference patterns, which proved to be an appropriate measure. The approach developed is used to analyze simulated contrast tableaus of GaAs/P (As/P variation) and experimental micrographs of Al/GaAs (Al/Ga variation).

  9. Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite

    NASA Astrophysics Data System (ADS)

    Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris

    2004-02-01

    Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.

  10. Quantitative detection of Vibrio cholera toxin by real-time and dynamic cytotoxicity monitoring.

    PubMed

    Jin, Dazhi; Luo, Yun; Zheng, Min; Li, Haijing; Zhang, Jing; Stampfl, Melinda; Xu, Xiao; Ding, Gangqiang; Zhang, Yanjun; Tang, Yi-Wei

    2013-12-01

    We report here the quantitative detection of Vibrio cholerae toxin (CT) in isolates and stool specimens by dynamic monitoring of the full course of CT-mediated cytotoxicity in a real-time cell analysis (RTCA) system. Four cell lines, including Y-1 mouse adrenal tumor cells, Chinese hamster ovary (CHO) cells, small intestine epithelial (FHs74Int) cells, and mouse adrenal gland (PC12-Adh) cells, were evaluated for their suitability for CT-induced cytotoxicity testing. Among them, the Y-1 line was demonstrated to be the most sensitive for CT-mediated cytotoxicity, with limits of detection of 7.0 pg/ml for purified CT and 0.11 ng/ml for spiked CT in pooled negative stool specimens. No CT-mediated cytotoxicity was observed for nontoxigenic V. cholerae, non-V. cholerae species, or non-V. cholerae enterotoxins. The CT-RTCA assay was further validated with 100 stool specimens consecutively collected from patients with diarrhea and 200 V. cholerae isolates recovered from patients and the environment, in comparison to a reference using three detection methods. The CT-RTCA assay had sensitivities and specificities of 97.5% and 100.0%, respectively, for V. cholerae isolates and 90.0% and 97.2% for stool specimens. For stool specimens spiked with CT concentrations ranging from 3.5 pg/ml to 1.8 ng/ml, the inoculation-to-detection time was 1.12 ± 0.38 h, and the values were inversely correlated with CT concentrations (ρ = -1; P = 0.01). The results indicate that the CT-RTCA assay with the Y-1 cell line provides a rapid and sensitive tool for the quantitative detection of CT activities in clinical specimens. PMID:24048535