Science.gov

Sample records for quantitative electron microscopy

  1. Quantitative characterization of electron detectors for transmission electron microscopy.

    PubMed

    Ruskin, Rachel S; Yu, Zhiheng; Grigorieff, Nikolaus

    2013-12-01

    A new generation of direct electron detectors for transmission electron microscopy (TEM) promises significant improvement over previous detectors in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE). However, the performance of these new detectors needs to be carefully monitored in order to optimize imaging conditions and check for degradation over time. We have developed an easy-to-use software tool, FindDQE, to measure MTF and DQE of electron detectors using images of a microscope's built-in beam stop. Using this software, we have determined the DQE curves of four direct electron detectors currently available: the Gatan K2 Summit, the FEI Falcon I and II, and the Direct Electron DE-12, under a variety of total dose and dose rate conditions. We have additionally measured the curves for the Gatan US4000 and TVIPS TemCam-F416 scintillator-based cameras. We compare the results from our new method with published curves. PMID:24189638

  2. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In addition, NRR allowed for measuring the 3D atomic structure of the nanoparticles with less than 1 atom uncertainty, a long-standing problem in EM. Finally, NRR was adapted to EDS spectrum images, significantly enhancing the signal to noise ratio and resolution of an EDS spectrum image of Ca-doped NdTiO3 compared to conventional methods.

  3. Effects of instrument imperfections on quantitative scanning transmission electron microscopy.

    PubMed

    Krause, Florian F; Schowalter, Marco; Grieb, Tim; Mller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2016-02-01

    Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity. PMID:26686661

  4. Quantitative electron microscopy of InN-GaN alloys

    NASA Astrophysics Data System (ADS)

    Bartel, T.; Jinschek, J. R.; Freitag, B.; Specht, P.; Kisielowski, C.

    2006-01-01

    The local element distribution in quantum wells largely affects physical properties of devices made from such materials. In the past, quantitative electron microscopy was developed to access the stoichiometry on an atomic scale as shown on the cover page of this issue's Editor's Choice [1] for the GaN/InxGa1-xN/GaN and the GaAs/AlxGa1-xAs/GaAs system by the application of QUANTITEM and Chemical Imaging, respectively. In case of GaN/InxGa1-xN/GaN local strain mapping allows for extracting similar data and an unusual large indium fluctuation can be observed if compared with the aluminum distribution in GaAs/AlxGa1-xAs/GaAs quantum well structures. However, radiation damage, sample preparation and microscope stability affect the data analyses and it is of essence to monitor and control such effects as outlined in the related paper.The first author Til Bartel is a PhD candidate in physics at the Technical University of Berlin, currently visiting LBNL in California to apply transmission electron microscopy to III-nitride semiconductors. Christian Kisielowski is Staff Scientist and Principle Investigator at the National Center for Electron Microscopy (NCEM) and is responsible for the development and application of high resolution electron microscopy.The present special issue of physica status solidi (a) is a compilation of presentations from the recent symposium on Indium Nitride and Indium Rich Related Alloys at the E-MRS 2005 Fall Meeting in Warsaw.

  5. Quantitative intercomparison of transmission electron microscopy, flow cytometry, and epifluorescence microscopy for nanometric particle analysis.

    PubMed

    Ferris, Matthew M; Stoffel, Carrie L; Maurer, Thain T; Rowlen, Kathy L

    2002-05-15

    Nanometric biological particles such as viruses have received increased attention in a wide range of scientific fields. Evaluation of viral contributions to environmental processes and the use of viruses in medical applications such as gene therapy require viruses to be routinely and accurately enumerated. There are a variety of existing techniques for counting viruses, namely, plaque assays, transmission electron microscopy (TEM), epifluorescence microscopy (EFM), and flow cytometry (FCM); each has advantages and disadvantages. While there have been attempts to intercompare some of these techniques to determine the most effective means to count viruses, no previous study used a technique-independent standard for quantitative comparison of collection efficiency, accuracy, and precision. In this work, polystyrene nanospheres were used as standards for the intercomparison of performance characteristics for TEM, EFM, FCM, as well as a custom-built flow cytometer (the Single Nanometric Particle Enumerator, SNaPE). EFM and SNaPE exhibited the highest degree of accuracy and precision, with particle concentrations deviating < or =5% from true and relative errors less than half that of TEM, EFM and SNaPE are also significantly more time and cost efficient than TEM. PMID:12009703

  6. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  7. Compositional analysis of GaAs/AlGaAs heterostructures using quantitative scanning transmission electron microscopy

    SciTech Connect

    Kauko, H.; Helvoort, A. T. J. van; Zheng, C. L.; Glanvill, S.; Zhu, Y.; Etheridge, J.; Dwyer, C.; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich ; Munshi, A. M.; Fimland, B. O.

    2013-12-02

    We demonstrate a method for compositional mapping of Al{sub x}Ga{sub 1–x}As heterostructures with high accuracy and unit cell spatial resolution using quantitative high angle annular dark field scanning transmission electron microscopy. The method is low dose relative to spectroscopic methods and insensitive to the effective source size and higher order lens aberrations. We apply the method to study the spatial variation in Al concentration in cross-sectioned GaAs/AlGaAs core-shell nanowires and quantify the concentration in the Al-rich radial band and the AlGaAs shell segments.

  8. Quantitative high resolution electron microscopy of III-V compounds: A fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Hillebrand, R.; Hofmeister, H.; Werner, P.; Gösele, U.

    1995-09-01

    In the study of interdiffusion phenomena in layered structures of III-V compounds by high resolution electron microscopy, contrast features in the micrographs can be correlated with the variation of the chemical composition of the crystals. For quantitative interpretation of the micrographs a fuzzy logic approach is adapted to extract chemical information. The linguistic variable ``similarity of images'' is derived from the standard deviation (SD) of their difference patterns, which proved to be an appropriate measure. The approach developed is used to analyze simulated contrast tableaus of GaAs/P (As/P variation) and experimental micrographs of Al/GaAs (Al/Ga variation).

  9. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy

    PubMed Central

    Mühlfeld, Christian; Rothen-Rutishauser, Barbara; Vanhecke, Dimitri; Blank, Fabian; Gehr, Peter; Ochs, Matthias

    2007-01-01

    Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions. This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells. This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy. PMID:17996124

  10. Second harmonic generation quantitative measurements on collagen fibrils through correlation to electron microscopy

    NASA Astrophysics Data System (ADS)

    Bancelin, S.; Aimé, C.; Gusachenko, I.; Kowalczuk, L.; Latour, G.; Coradin, T.; Schanne-Klein, M.-C.

    2015-03-01

    Type I collagen is a major structural protein in mammals that shows highly structured macromolecular organizations specific to each tissue. This biopolymer is synthesized as triple helices, which self-assemble into fibrils (Ø =10-300 nm) and further form various 3D organization. In recent years, Second Harmonic Generation (SHG) microscopy has emerged as a powerful technique to probe in situ the fibrillar collagenous network within tissues. However, this optical technique cannot resolve most of the fibrils and is a coherent process, which has impeded quantitative measurements of the fibril diameter so far. In this study, we correlated SHG microscopy with Transmission Electron Microscopy to determine the sensitivity of SHG microscopy and to calibrate SHG signals as a function of the fibril diameter in reconstructed collagen gels. To that end, we synthetized isolated fibrils with various diameters and successfully imaged the very same fibrils with both techniques, down to 30 nm diameter. We observed that SHG signals scaled as the fourth power of the fibril diameter, as expected from analytical and numerical calculations. This calibration was then applied to diabetic rat cornea in which we successfully recovered the diameter of hyperglycemia-induced fibrils in the Descemet's membrane without having to resolve them. Finally we derived the first hyperpolarizability from a single collagen triple helix which validates the bottom-up approach used to calculate the non-linear response at the fibrillar scale and denotes a parallel alignment of triple helices within the fibrils. These results represent a major step towards quantitative SHG imaging of nm-sized collagen fibrils.

  11. Quantitative magnetic imaging at the nanometer scale by ballistic electron magnetic microscopy

    SciTech Connect

    Herve, M.; Tricot, S.; Guezo, S.; Delhaye, G.; Lepine, B.; Schieffer, P.; Turban, P.

    2013-06-21

    We demonstrate quantitative ballistic electron magnetic microscopy (BEMM) imaging of simple model Fe(001) nanostructures. We use in situ nanostencil shadow mask resistless patterning combined with molecular beam epitaxy deposition to prepare under ultra-high vacuum conditions nanostructured epitaxial Fe/Au/Fe/GaAs(001) spin-valves. In this epitaxial system, the magnetization of the bottom Fe/GaAs(001) electrode is parallel to the [110] direction, defining accurately the analysis direction for the BEMM experiments. The large hot-electron magnetoresistance of the Fe/Au/Fe/GaAs(001) epitaxial spin-valve allows us to image various stable magnetic configurations on the as-grown Fe(001) microstructures with a high sensitivity, even for small misalignments of both magnetic electrodes. The angular dependence of the hot-electron magnetocurrent is used to convert magnetization maps calculated by micromagnetic simulations into simulated BEMM images. The calculated BEMM images and magnetization rotation profiles show quantitative agreement with experiments and allow us to investigate the magnetic phase diagram of these model Fe(001) microstructures. Finally, magnetic domain reversals are observed under high current density pulses. This opens the way for further BEMM investigations of current-induced magnetization dynamics.

  12. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. PMID:22886950

  13. A Quantitative Nanodiffraction System for Ultrahigh Vacuum Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Hembree, Gary G.; Koch, Christoph; Spence, John C. H.

    2003-10-01

    Of all the long-lived particles available as probes of condensed matter, and of all the signals available on a modern electron microscope, electron nanodiffraction patterns provide the strongest signal from the smallest volume. The technique is therefore perfectly suited to nanostructural investigations in inorganic chemistry and materials science. The Vacuum Generators HB501S, an ultrahigh vacuum (UHV) variant of the HB501 scanning transmission electron microscope (STEM), with side-entry double-tilt stage, specimen preparation and analysis chamber, three postspecimen lenses, and cold field-emission tip with integral magnetic gun lens, has therefore been modified to optimize nanodiffraction and quantitative convergent beam electron diffraction (QCBED) performance. A one-micrometer grain-size phosphor screen lying on a fiber-optic faceplate atop the instrument is fiber-optically coupled to a 2048 × 2048 charge-coupled device (CCD), 16-bit camera. This arrangement promises to provide much greater sensitivity, larger dynamic range, and a better modulation transfer function (MTF) than conventional single crystal scintillator (YAG) CCD systems, with noticeable absence of cross talk between pixels. The design of the nanodiffraction detector system is discussed, the gain of the detector is measured, the spherical aberration constant of the objective lens is measured by the Ronchigram method, and preliminary results from the modified instrument are shown.

  14. A quantitative nanodiffraction system for ultrahigh vacuum scanning transmission electron microscopy.

    PubMed

    Hembree, Gary G; Koch, Christoph; Spence, John C H

    2003-10-01

    Of all the long-lived particles available as probes of condensed matter, and of all the signals available on a modern electron microscope, electron nanodiffraction patterns provide the strongest signal from the smallest volume. The technique is therefore perfectly suited to nanostructural investigations in inorganic chemistry and materials science. The Vacuum Generators HB501S, an ultrahigh vacuum (UHV) variant of the HB501 scanning transmission electron microscope (STEM), with side-entry double-tilt stage, specimen preparation and analysis chamber, three postspecimen lenses, and cold field-emission tip with integral magnetic gun lens, has therefore been modified to optimize nanodiffraction and quantitative convergent beam electron diffraction (QCBED) performance. A one-micrometer grain-size phosphor screen lying on a fiber-optic faceplate atop the instrument is fiber-optically coupled to a 2048 x 2048 charge-coupled device (CCD), 16-bit camera. This arrangement promises to provide much greater sensitivity, larger dynamic range, and a better modulation transfer function (MTF) than conventional single crystal scintillator (YAG) CCD systems, with noticeable absence of cross talk between pixels. The design of the nanodiffraction detector system is discussed, the gain of the detector is measured, the spherical aberration constant of the objective lens is measured by the Ronchigram method, and preliminary results from the modified instrument are shown. PMID:19771702

  15. Size-dependent second virial coefficients of quantum dots from quantitative cryogenic electron microscopy.

    PubMed

    van Rijssel, J; Peters, V F D; Meeldijk, J D; Kortschot, R J; van Dijk-Moes, R J A; Petukhov, A V; Erné, B H; Philipse, A P

    2014-09-18

    Cryogenic transmission electron microscopy (cryo-TEM) is utilized to determine the second virial coefficient of osmotic pressure of PbSe quantum dots (QDs) dispersed in apolar liquid. Cryo-TEM images from vitrified samples provide snapshots of the equilibrium distribution of the particles. These snapshots yield radial distribution functions from which second virial coefficients are calculated, which agree with second virial coefficients determined with analytical centrifugation and small-angle X-ray scattering. The size dependence of the second virial coefficient points to an interparticle interaction that is proportional to the QD surface area. A plausible cause for this attraction is the interaction between the surface ions on adjacent QDs. PMID:25153168

  16. Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting: What are the limits?

    NASA Astrophysics Data System (ADS)

    De Backer, A.; De Wael, A.; Gonnissen, J.; Martinez, G. T.; Bch, A.; MacArthur, K. E.; Jones, L.; Nellist, P. D.; Van Aert, S.

    2015-10-01

    Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations.

  17. Application of Quantitative Analytical Electron Microscopy to the Mineral Content of Insect Cuticle

    NASA Astrophysics Data System (ADS)

    Rasch, Ron; Cribb, Bronwen W.; Barry, John; Palmer, Christopher M.

    2003-04-01

    Quantification of calcium in the cuticle of the fly larva Exeretonevra angustifrons was undertaken at the micron scale using wavelength dispersive X-ray microanalysis, analytical standards, and a full matrix correction. Calcium and phosphorus were found to be present in the exoskeleton in a ratio that indicates amorphous calcium phosphate. This was confirmed through electron diffraction of the calcium-containing tissue. Due to the pragmatic difficulties of measuring light elements, it is not uncommon in the field of entomology to neglect the use of matrix corrections when performing microanalysis of bulk insect specimens. To determine, firstly, whether such a strategy affects the outcome and secondly, which matrix correction is preferable, phi-rho (z) and ZAF matrix corrections were contrasted with each other and without matrix correction. The best estimate of the mineral phase was found to be given by using the phi-rho (z) correction. When no correction was made, the ratio of Ca to P fell outside the range for amorphous calcium phosphate, possibly leading to flawed interpretation of the mineral form when used on its own.

  18. Diagnostic electron microscopy

    SciTech Connect

    Dickersin, G.R.

    1988-01-01

    In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.

  19. QEMSCAN° (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems

    NASA Astrophysics Data System (ADS)

    Ayling, B.; Rose, P. E.; Zemach, E.; Drakos, P. S.; Petty, S.

    2011-12-01

    Fractures are important conduits for fluids in geothermal systems, and the creation and maintenance of fracture permeability is a fundamental aspect of EGS (Engineered Geothermal System) development. Hydraulic or chemical stimulation techniques are often employed to achieve this. In the case of chemical stimulation, an understanding of the minerals present in the fractures themselves is desirable to better design a stimulation effort (i.e. which chemical to use and how much). Borehole televiewer surveys provide important information about regional and local stress regimes and fracture characteristics (e.g. fracture aperture), and XRD is useful for examining bulk rock mineralogy, but neither technique is able to quantify the distribution of these minerals in fractures. QEMSCAN° is a fully-automated micro-analysis system that enables quantitative chemical analysis of materials and generation of high-resolution mineral maps and images as well as porosity structure. It uses a scanning electron microscopy platform (SEM) with an electron beam source in combination with four energy-dispersive X-ray spectrometers (EDS). The measured backscattered electron and electron-induced secondary X-ray emission spectra are used to classify sample mineralogy. Initial applications of QEMSCAN° technology were predominantly in the minerals industry and application to geothermal problems has remained limited to date. In this pilot study, the potential application of QEMSCAN° technology to fracture characterization was evaluated using samples of representative mineralized fractures in two geothermal systems (Newberry Volcano, Oregon and Brady's geothermal field, Nevada). QEMSCAN° results were compared with XRD and petrographic techniques. Nine samples were analyzed from each field, collected from the drill core in the 1000-1500 m depth range in two shallow wells (GEO-N2 at Newberry Volcano and BCH-3 at Brady's). The samples were prepared as polished thin sections for QEMSCAN° analysis. Results indicate that a sampling resolution of 10 μm is sufficient to resolve fracture morphology and mineral zonation (where multiple episodes of mineralization occurred), and enables relatively fast data acquisition (3 cm2 can be analyzed in approximately 3 hours). Finer resolutions (down to 2.5 μm) take significantly longer, but can be used to provide additional spatial detail in areas of interest after a low resolution (10 μm) scan. Use of XRD data in conjunction with QEMSCAN° data is sometimes needed to distinguish geothermal alteration minerals with similar chemical compositions (clay minerals, micas and chlorite), however overall the technique appears to have excellent potential for geothermal applications.

  20. Computation in electron microscopy.

    PubMed

    Kirkland, Earl J

    2016-01-01

    Some uses of the computer and computation in high-resolution transmission electron microscopy are reviewed. The theory of image calculation using Bloch wave and multislice methods with and without aberration correction is reviewed and some applications are discussed. The inverse problem of reconstructing the specimen structure from an experimentally measured electron microscope image is discussed. Some future directions of software development are given. PMID:26697863

  1. Analysis of Transient Polyhydroxybutyrate Production in Wautersia eutropha H16 by Quantitative Western Analysis and Transmission Electron Microscopy

    PubMed Central

    Tian, Jiamin; He, Aimin; Lawrence, Adam G.; Liu, Pinghua; Watson, Nicki; Sinskey, Anthony J.; Stubbe, JoAnne

    2005-01-01

    Polyhydroxybutyrates (PHBs) are polyoxoesters generated from (R)3-hydroxybutyryl coenzyme A by PHB synthase. During the polymerization reaction, the polymers undergo a phase transition and generate granules. Wautersia eutropha can transiently accumulate PHB when it is grown in a nutrient-rich medium (up to 23% of the cell dry weight in dextrose-free tryptic soy broth [TSB]). PHB homeostasis under these growth conditions was examined by quantitative Western analysis to monitor the proteins present, their levels, and changes in their levels over a 48-h growth period. The proteins examined include PhaC (the synthase), PhaP (a phasin), PhaR (a transcription factor), and PhaZ1a, PhaZ1b, and PhaZ1c (putative intracellular depolymerases), as well as PhaZ2 (a hydroxybutyrate oligomer hydrolase). The results show that PhaC and PhaZ1a were present simultaneously. No PhaZ1b or PhaZ1c was detected at any time throughout growth. PhaZ2 was observed and exhibited an expression pattern different from that of PhaZ1a. The levels of PhaP changed dramatically and corresponded kinetically to the levels of PHB. Transmission electron microscopy (TEM) provided the dimensions of the average cell and the average granule at 4 h and 24 h of growth (J. Tian, A. J. Sinskey, and J. Stubbe, J. Bacteriol. 187:3814-3824, 2005). This information allowed us to calculate the amount of each protein and number of granules per cell and the granule surface coverage by proteins. The molecular mass of PHB (106 Da) was determined by dynamic light scattering at 4 h, the time of maximum PHB accumulation. At this time, the surface area of the granules was maximally covered with PhaP (27 to 54%), and there were one or two PhaP molecules/PHB chain. The ratio of PHB chains to PhaC was ∼60, which required reinitiation of polymer formation on PhaC. The TEM studies of wild-type and ΔphaR strains in TSB provided further support for an alternative mechanism of granule formation (Tian et al., J. Bacteriol. 187:3814-3824, 2005). PMID:15901707

  2. Dynamic Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  3. Quantitative Electron Nanodiffraction.

    SciTech Connect

    Spence, John

    2015-01-30

    This Final report summarizes progress under this award for the final reporting period 2002 - 2013 in our development of quantitive electron nanodiffraction to materials problems, especially devoted to atomistic processes in semiconductors and electronic oxides such as the new artificial oxide multilayers, where our microdiffraction is complemented with energy-loss spectroscopy (ELNES) and aberration-corrected STEM imaging (9). The method has also been used to map out the chemical bonds in the important GaN semiconductor (1) used for solid state lighting, and to understand the effects of stacking sequence variations and interfaces in digital oxide superlattices (8). Other projects include the development of a laser-beam Zernike phase plate for cryo-electron microscopy (5) (based on the Kapitza-Dirac effect), work on reconstruction of molecular images using the scattering from many identical molecules lying in random orientations (4), a review article on space-group determination for the International Tables on Crystallography (10), the observation of energy-loss spectra with millivolt energy resolution and sub-nanometer spatial resolution from individual point defects in an alkali halide, a review article for the Centenary of X-ray Diffration (17) and the development of a new method of electron-beam lithography (12). We briefly summarize here the work on GaN, on oxide superlattice ELNES, and on lithography by STEM.

  4. Silver stain for electron microscopy

    NASA Technical Reports Server (NTRS)

    Corbett, R. L.

    1972-01-01

    Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.

  5. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter

    2014-12-01

    The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following relative shares were obtained for PM10: 22% exhaust, 22% abrasion and 56% resuspension (40%, 27%, 33% for PM1). Compared to previous publications we have observed a significantly lower portion of exhaust particles and a significantly higher portion of resuspension particles. The high abundance of resuspension particles underlines their significance for the observed adverse health effects of traffic emissions and for mitigation measures.

  6. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  7. Non-amplified Quantitative Detection of Nucleic Acid Sequences Using a Gold Nanoparticle Probe Set and Field-Emission Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hyonchol; Kira, Atsushi; Yasuda, Kenji

    2010-06-01

    For the precise detection of the number of expressed biomarkers at the single-cell level, we have developed a method of quantifying and specifying target DNA fragments by using a set of gold nanoparticles as labels and field-emission scanning electron microscopy (FE-SEM) to measure the number and sizes of gold nanoparticles attached to target samples. One or more target DNAs on a substrate were labeled with a set of different-sized gold nanoparticle probes having complementary sequences to different target candidates. The type and number of the target DNAs having a specific sequence were identified by counting the attached nanoparticles of a specific size in FE-SEM images. The results evaluated using a DNA microarray showed high specificity and sensitivity, and a linear correlation between the number of attached particles and the target DNA concentration, indicating the feasibility of quantitative detection in the femtomolar to nanomolar concentration range.

  8. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  9. Electron microscopy and forensic practice

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Turková, Ivana

    2013-05-01

    Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).

  10. Scanning Transmission Electron Microscopy

    SciTech Connect

    Lupini, Andrew R; Rashkeev, Sergey; Varela del Arco, Maria; Borisevich, Albina Y; Oxley, Mark P; van Benthem, Klaus; Peng, Yiping; De Jonge, Niels; Veith, Gabriel M; Chisholm, Matthew F; Pantelides, Sokrates T.; Pennycook, Stephen J

    2007-01-01

    Chemical characterization techniques have been essential tools in underpinning the explosion in nanotechnology in recent years and nanocharacterisation is a rapidly developing field. Contributions in this book from leading teams across the globe provide an overview of the different microscopic techniques now in regular use for the characterization of nanostructures. Essentially a handbook to all working in the field this indispensable resource provides a survey of microscopy based techniques with experimental procedures and extensive examples of state of the art characterization methods.

  11. Soil microstructure and electron microscopy

    NASA Technical Reports Server (NTRS)

    Smart, P.; Fryer, J. R.

    1988-01-01

    As part of the process of comparing Martian soils with terrestial soils, high resolution electron microscopy and associated techniques should be used to examine the finer soil particles, and various techniques of electron and optical microscopy should be used to examine the undisturbed structure of Martian soils. To examine the structure of fine grained portions of the soil, transmission electron microscopy may be required. A striking feature of many Martian soils is their red color. Although the present-day Martian climate appears to be cold, this color is reminiscent of terrestial tropical red clays. Their chemical contents are broadly similar.

  12. Quantitative analysis of the myelin g-ratio from electron microscopy images of the macaque corpus callosum

    PubMed Central

    Stikov, Nikola; Campbell, Jennifer S.W.; Stroh, Thomas; Lavelée, Mariette; Frey, Stephen; Novek, Jennifer; Nuara, Stephen; Ho, Ming-Kai; Bedell, Barry J.; Dougherty, Robert F.; Leppert, Ilana R.; Boudreau, Mathieu; Narayanan, Sridar; Duval, Tanguy; Cohen-Adad, Julien; Picard, Paul-Alexandre; Gasecka, Alicja; Côté, Daniel; Pike, G. Bruce

    2015-01-01

    We provide a detailed morphometric analysis of eight transmission electron micrographs (TEMs) obtained from the corpus callosum of one cynomolgus macaque. The raw TEM images are included in the article, along with the distributions of the axon caliber and the myelin g-ratio in each image. The distributions are analyzed to determine the relationship between axon caliber and g-ratio, and compared against the aggregate metrics (myelin volume fraction, fiber volume fraction, and the aggregate g-ratio), as defined in the accompanying research article entitled ‘In vivo histology of the myelin g-ratio with magnetic resonance imaging’ (Stikov et al., NeuroImage, 2015). PMID:26217818

  13. Quantitative analysis of the myelin g-ratio from electron microscopy images of the macaque corpus callosum.

    PubMed

    Stikov, Nikola; Campbell, Jennifer S W; Stroh, Thomas; Lavelée, Mariette; Frey, Stephen; Novek, Jennifer; Nuara, Stephen; Ho, Ming-Kai; Bedell, Barry J; Dougherty, Robert F; Leppert, Ilana R; Boudreau, Mathieu; Narayanan, Sridar; Duval, Tanguy; Cohen-Adad, Julien; Picard, Paul-Alexandre; Gasecka, Alicja; Côté, Daniel; Pike, G Bruce

    2015-09-01

    We provide a detailed morphometric analysis of eight transmission electron micrographs (TEMs) obtained from the corpus callosum of one cynomolgus macaque. The raw TEM images are included in the article, along with the distributions of the axon caliber and the myelin g-ratio in each image. The distributions are analyzed to determine the relationship between axon caliber and g-ratio, and compared against the aggregate metrics (myelin volume fraction, fiber volume fraction, and the aggregate g-ratio), as defined in the accompanying research article entitled 'In vivo histology of the myelin g-ratio with magnetic resonance imaging' (Stikov et al., NeuroImage, 2015). PMID:26217818

  14. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  15. Nanomeasurements in Transmission Electron Microscopy.

    PubMed

    Wang; Poncharal; de Heer WA

    2000-05-01

    Nanomaterials have attracted a great deal of research interest recently. The small size of nanostructures constrains the applications of well-established testing and measurement techniques, thus new methods and approaches must be developed for quantitative measurement of the properties of individual nanostructures. This article reports our progress in using in situ transmission electron microscopy to measure the electrical, mechanical, and field-emission properties of individual carbon nanotubes whose microstructure is well-characterized. The bending modulus of a single carbon nanotube has been measured by an electric field-induced resonance effect. A nanobalance technique is demonstrated that can be applied to measure the mass of a tiny particle as light as 22 fg (1 fg = 10(-15) g), the smallest balance in the world. Quantum conductance was observed in defect-free nanotubes, which led to the transport of a superhigh current density at room temperature without heat dissipation. Finally, the field-emission properties of a single carbon nanotube are observed, and the field-induced structural damage is reported. PMID:10790491

  16. Computational Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Rad, Leili Baghaei; Feng, Hanying; Ye, Jun; Pease, R. F. W.

    2007-09-01

    Current methods for reconstructing surface topography from SEM images are either not suitable at nanometer scales, restricted to simple shapes described by a limited number of parameters or involve time consuming steps. We describe a reconstruction algorithm whereby an initial surface is iteratively updated. This algorithm performs a full three dimensional reconstruction at the resolution of the SEM image. It employs accelerated techniques to compute a simulated SEM image at each iteration so that the simulated image is obtained in less than 10% of the time taken by current reported Monte Carlo methods. The simulated SEM images are compared with actual SEM images and this comparison leads to further refinement of the reconstructed surface. Further acceleration can be achieved using approximate models for the generation of SE-I, SE-II and backscattered electrons.

  17. Four-dimensional electron microscopy.

    PubMed

    Zewail, Ahmed H

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy. PMID:20378810

  18. Four-Dimensional Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zewail, Ahmed H.

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope’s ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  19. Quantitative study of particle size distribution in an in-situ grown Al–TiB{sub 2} composite by synchrotron X-ray diffraction and electron microscopy

    SciTech Connect

    Tang, Y.; Chen, Z.; Borbély, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.

    2015-04-15

    Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB{sub 2} particles and TiB{sub 2} particles in an in-situ grown Al–TiB{sub 2} composite. The detailed evaluations were carried out by X-ray line profile analysis using the restricted moment method and multiple whole profile fitting procedure (MWP). Both numerical methods indicate that the formed TiB{sub 2} particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. The MWP method has shown that the in-situ grown TiB{sub 2} particles have a very low dislocation density (~ 10{sup 11} m{sup −} {sup 2}) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM. - Highlights: • Accurate quantitative characterization of in-situ grown T{sub i}B{sub 2} particles has been achieved. • Particle size anisotropy was revealed indicating 110 facets being largest during T{sub i}B{sub 2} growth. • A wide size distribution was observed for T{sub i}B{sub 2} particles with a dominant size smaller than 100 nm.

  20. Dynamic imaging with electron microscopy

    SciTech Connect

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-02-20

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  1. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  2. Correlative Fluorescence and Electron Microscopy

    PubMed Central

    Schirra, Randall T.; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959

  3. Quantitative phase imaging via Fourier ptychographic microscopy

    PubMed Central

    Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei; Zheng, Guoan

    2014-01-01

    Fourier ptychographic microscopy (FPM) is a recently developed imaging modality that uses angularly varying illumination to extend a system’s performance beyond the limit defined by its optical components. The FPM technique applies a novel phase-retrieval procedure to achieve resolution enhancement and complex image recovery. In this Letter, we compare FPM data to theoretical prediction and phase-shifting digital holography measurement to show that its acquired phase maps are quantitative and artifact-free. We additionally explore the relationship between the achievable spatial and optical thickness resolution offered by a reconstructed FPM phase image. We conclude by demonstrating enhanced visualization and the collection of otherwise unobservable sample information using FPM’s quantitative phase. PMID:24322147

  4. Quantitative Aspects of Single Molecule Microscopy

    PubMed Central

    Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally

    2015-01-01

    Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102

  5. Image reconstruction in electron microscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Yili; Lee, Seunghee; Doerschuk, Peter C.

    2008-08-01

    Maximum likelihood statistical algorithms are described for estimating the 3-D variation of the electron scattering intensity of biological objects from cryo electron microscopy images of multiple instances of the object. Three virus objects, two spherical and one helical, are considered. Solution of the maximum likelihood problem by expectation maximization algorithms or by direct maximization of the log likelihood requires large scale computing and end-to-end codesign of biological problem formulation, statistical models, algorithms, and software design and implementation have contributed to achieving practical results.

  6. ELECTRON MICROSCOPY OF RHODOTORULA GLUTINIS

    PubMed Central

    Thyagarajan, T. R.; Conti, S. F.; Naylor, H. B.

    1962-01-01

    Thyagarajan, T. R. (Dartmouth Medical School, Hanover, N. H.), S. F. Conti, and H. B. Naylor. Electron microscopy of Rhodotorula glutinis. J. Bacteriol. 83:381394. 1962.The structure and manner of nuclear division in Rhodotorula glutinis was studied by electron microscopy of ultrathin sections. Parallel studies with the light microscope, employing conventional staining techniques and phase-contrast microscope observations on nuclei in living cells, were carried out. The nucleus is spherical to oval and is bounded by a nuclear membrane. Intranuclear structures, identified as nucleoli, and electron-transparent areas were observed. The nuclear membrane persists throughout the various stages of cell division. Observations of the nucleus with the electron microscope revealed that nuclear division occurs by a process of elongation and constriction similar to that seen in both living and stained cells. The fine structure of mitochondria and other components of the yeast cell and their behavior during cell division are described. The absence of vacuoles in actively dividing cells of Rhodotorula glutinis lends further support to the view that the vacuole is not an integral part of the nucleus. The results with the electron microscope generally support and considerably extend those obtained with living and stained cells. Images PMID:13921132

  7. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  8. Correlative fluorescence and electron microscopy.

    PubMed

    Schirra, Randall T; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associated with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology has led to rapid improvement in the protocols and has ushered in a new generation of instruments to reach the next level of correlation-integration. Curr. Protoc. Cytom. 70:12.36.1-12.36.10. 2014 by John Wiley & Sons, Inc. PMID:25271959

  9. Direct Detectors for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Clough, R. N.; Moldovan, G.; Kirkland, A. I.

    2014-06-01

    There is interest in improving the detectors used to capture images in transmission electron microscopy. Detectors with an improved modulation transfer function at high spatial frequencies allow for higher resolution in images at lower magnification, which leads to an increased effective field of view. Detectors with improved detective quantum efficiency are important for low dose applications. One way in which these performance enhancements can be achieved is through direct detection, where primary electrons are converted directly into suitable electrical signals by the detector rather than relying on an indirect electron to photon conversion before detection. In this paper we present the characterisation of detector performance for a number of different direct detection technologies, and compare these technologies to traditional indirect detectors. Overall our results show that direct detection enables a significant improvement in all aspects of detector performance.

  10. Prototype cantilevers for quantitative lateral force microscopy

    SciTech Connect

    Reitsma, Mark G.; Gates, Richard S.; Friedman, Lawrence H.; Cook, Robert F.

    2011-09-15

    Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The ''hammerhead'' cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever ''torque sensitivity'' to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements.

  11. Prototype cantilevers for quantitative lateral force microscopy

    NASA Astrophysics Data System (ADS)

    Reitsma, Mark G.; Gates, Richard S.; Friedman, Lawrence H.; Cook, Robert F.

    2011-09-01

    Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The "hammerhead" cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever "torque sensitivity" to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements

  12. Magnetic force microscopy: quantitative issues in biomaterials.

    PubMed

    Passeri, Daniele; Dong, Chunhua; Reggente, Melania; Angeloni, Livia; Barteri, Mario; Scaramuzzo, Francesca A; De Angelis, Francesca; Marinelli, Fiorenzo; Antonelli, Flavia; Rinaldi, Federica; Marianecci, Carlotta; Carafa, Maria; Sorbo, Angela; Sordi, Daniela; Arends, Isabel Wce; Rossi, Marco

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples at the nanoscale. Being a well established tool for the characterization of magnetic recording media, superconductors and magnetic nanomaterials, MFM is finding constantly increasing application in the study of magnetic properties of materials and systems of biological and biomedical interest. After reviewing these latter applications, three case studies are presented in which MFM is used to characterize: (i) magnetoferritin synthesized using apoferritin as molecular reactor; (ii) magnetic nanoparticles loaded niosomes to be used as nanocarriers for drug delivery; (iii) leukemic cells labeled using folic acid-coated core-shell superparamagnetic nanoparticles in order to exploit the presence of folate receptors on the cell membrane surface. In these examples, MFM data are quantitatively analyzed evidencing the limits of the simple analytical models currently used. Provided that suitable models are used to simulate the MFM response, MFM can be used to evaluate the magnetic momentum of the core of magnetoferritin, the iron entrapment efficiency in single vesicles, or the uptake of magnetic nanoparticles into cells. PMID:25050758

  13. Quantitative imaging of flux vortices in the type-II superconductor MgB2 using cryo-Lorentz transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Cottet, M. J. G.; Cantoni, M.; Mansart, B.; Alexander, D. T. L.; Hébert, C.; Zhigadlo, N. D.; Karpinski, J.; Carbone, F.

    2013-07-01

    Imaging of flux vortices in high quality MgB2 single crystals has been successfully performed in a commercial field-emission gun-based transmission electron microscope. In cryo-Lorentz microscopy, the sample quality and the vortex lattice can be monitored simultaneously, allowing one to relate microscopically the surface quality and the vortex dynamics. Such a vortex motion ultimately determines the flow resistivity ρf, the knowledge of which is indispensable for practical applications such as superconducting magnets or wires for magnetic resonance imaging. The observed patterns have been analyzed and compared with other studies by cryo-Lorentz microscopy or Bitter decoration. We find that the vortex lattice arrangement depends strongly on the surface quality obtained during the specimen preparation, and tends to form a hexagonal Abrikosov lattice at a relatively low magnetic field. Stripes or gossamerlike patterns, recently suggested as potential signatures of an unconventional behavior of MgB2, were not observed.

  14. Liquid Cell Transmission Electron Microscopy.

    PubMed

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-27

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM. PMID:27215823

  15. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  16. Low-magnification Quantitative X-ray Mapping of Grain-boundary Segregation in Aluminum-4 wt.% Copper by Analytical Electron Microscopy.

    PubMed

    Carpenter; Watanabe; Barmak; Williams

    1999-07-01

    : Quantitative X-ray mapping in the analytical electron microscope (AEM) could improve the statistics of grain-boundary segregation measurements if high spatial resolution can be maintained at lower magnifications (<500 kX). Typically, only about 10 boundaries are analyzed because of the difficulty of conventional AEM measurements; however, a low-magnification quantitative X-ray map could contain twice this number of boundaries in a single field of view. Microscope conditions and mapping parameters have been explored for operation at approximately 250 kX, under a variety of conditions to illustrate the trade-offs between various characteristics, such as analytical resolution, counting statistics, magnification, and acquisition time. From these data, it is possible to extrapolate to maps generated under different conditions and estimate their limitations with respect to these characteristics. A simple model has been developed to describe the behavior of inclined grain boundaries that can be used to estimate the detectability of segregant as a function of boundary tilt. Using quantitative X-ray maps, grain boundary Cu coverage has been measured from 55 boundaries in Al-4 wt.% Cu with minimal user effort. For fine-grained thin films, mapping is substantially more efficient than other methods of data acquisition and may be used to measure segregation at large numbers of boundaries. PMID:10421810

  17. Visualizing quantitative microscopy data: History and challenges

    PubMed Central

    Sailem, Heba Z.; Cooper, Sam; Bakal, Chris

    2016-01-01

    Abstract Data visualization is a fundamental aspect of science. In the context of microscopy-based studies, visualization typically involves presentation of the images themselves. However, data visualization is challenging when microscopy experiments entail imaging of millions of cells, and complex cellular phenotypes are quantified in a high-content manner. Most well-established visualization tools are inappropriate for displaying high-content data, which has driven the development of new visualization methodology. In this review, we discuss how data has been visualized in both classical and high-content microscopy studies; as well as the advantages, and disadvantages, of different visualization methods. PMID:26906253

  18. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    NASA Astrophysics Data System (ADS)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  19. Quantitative transmission electron microscopy analysis of multi-variant grains in present L1{sub 0}-FePt based heat assisted magnetic recording media

    SciTech Connect

    Ho, Hoan; Zhu, Jingxi; Kulovits, Andreas; Laughlin, David E.; Zhu, Jian-Gang

    2014-11-21

    We present a study on atomic ordering within individual grains in granular L1{sub 0}-FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It was also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1{sub 0}-FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology.

  20. Quantitative transmission electron microscopy analysis of multi-variant grains in present L10-FePt based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Ho, Hoan; Zhu, Jingxi; Kulovits, Andreas; Laughlin, David E.; Zhu, Jian-Gang

    2014-11-01

    We present a study on atomic ordering within individual grains in granular L10-FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It was also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L10-FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology.

  1. The future of electron microscopy

    SciTech Connect

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifies to the importance of modern microscopy.

  2. The future of electron microscopy

    DOE PAGESBeta

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore » to the importance of modern microscopy.« less

  3. Fast electron microscopy via compressive sensing

    SciTech Connect

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  4. Atomic resolution 3D electron diffraction microscopy

    SciTech Connect

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O'Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  5. Cell cycle imaging with quantitative differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kostyk, Piotr; Phelan, Shelley; Xu, Min

    2013-02-01

    We report a microscopic approach for determining cell cycle stages by measuring the nuclear optical path length (OPL) with quantitative differential interference contrast (DIC) microscopy. The approach is validated by the excellent agreement between the proportion of proliferating-to-quiescent cancerous breast epithelial cells obtained from DIC microscopy, and that from a standard immunofluorescence assay.

  6. Probing the Proton with Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Friedman, Jerome I.

    2014-01-01

    This article is written as a tribute and memorial to Dr. Akira Tonomura who was an outstanding experimental physicist and a friend. Early in his career, he opened a new era in electron microscopy by demonstrating in 1968 that electron holography, proposed by Gabor in 1949, was possible; and later he developed Lorentz "phase" microscopy, which allows one to generate real-space, real-time images. All through his career, he perfected these designs into superb instruments that he employed to investigate fundamental questions in physics. Dr. Tonomura set world standards for electron microscopy.

  7. Fluorescence-integrated transmission electron microscopy images: integrating fluorescence microscopy with transmission electron microscopy.

    PubMed

    Sims, Paul A; Hardin, Jeff D

    2007-01-01

    This chapter describes high-pressure freezing (HPF) techniques for correlative light and electron microscopy on the same sample. Laser scanning confocal microscopy (LSCM) is exploited for its ability to collect fluorescent, as well as transmitted and back scattered light (BSL) images at the same time. Fluorescent information from a whole mount (preembedding) or from thin sections (post-embedding) can be displayed as a color overlay on transmission electron microscopy (TEM) images. Fluorescence-integrated TEM (F-TEM) images provide a fluorescent perspective to TEM images. The pre-embedding method uses a thin two-part agarose pad to immobilize live Caenorhabditis elegans embryos for LSCM, HPF, and TEM. Pre-embedding F-TEM images display fluorescent information collected from a whole mount of live embryos onto all thin sections collected from that sample. In contrast, the postembedding method uses HPF and freeze substitution with 1% paraformaldehyde in 95% ethanol followed by low-temperature embedding in methacrylate resin. This procedure preserves the structure and function of green fluorescent protein (GFP) as determined by immunogold labeling of GFP, when compared with GFP expression, both demonstrated in the same thin section. PMID:17656756

  8. Transmission Electron Microscopy: Overview and Challenges

    SciTech Connect

    Pennycook, Stephen J; Lupini, Andrew R; Borisevich, Albina Y; Varela del Arco, Maria; Peng, Yiping; Nellist, Peter D.; Duscher, Gerd J M; Buczko, R.; Pantelides, Sokrates T

    2003-01-01

    We review recent advances in aberration-corrected scanning transmission electron microscopy that allow sub-Angstrom beams to be used for imaging and spectroscopy, with enormous improvement in sensitivity for single atom detection and the investigation of interfacial electronic structure. Comparison is made between the electronic and structural width of gate oxides, with interpretation through first-principles theory. Future developments are discussed.

  9. Correlative light and electron microscopy of GFP.

    PubMed

    Grabenbauer, Markus

    2012-01-01

    The correlation of light and electron microscopy (EM) is a powerful tool as it combines the investigation of dynamic processes in vivo with the resolution power of the electron microscope. The green fluorescent proteins (GFPs) and its derivatives revolutionized live-cell light microscopy. Hence, this review outlines correlative microscopy of GFP through photo-oxidation, a method that allows for the direct ultrastructural visualization of fluorophores upon illumination. Oxygen radicals generated during the GFP bleaching process photo-oxidize diaminobenzidine (DAB) into an electron dense precipitate that can be visualized both by routine EM of thin sections and by electron tomography for 3D analysis. There are different levels of correlative microscopy, i.e. the correlation of certain areas, cells, or organelles from light to EM, where photo-oxidation of DAB through GFP allows the highest possible degree--the correlation of specific molecules. PMID:22857926

  10. Quantitative comparison of the void distribution in a. beta. '-phase Ni-Al-In alloy using x-ray small-angle scattering and transmission-electron microscopy. [Ni-51. 2 at. % Al-2. 6 at. % In

    SciTech Connect

    Epperson, J.E.; Loomis, B.A.; Lin, J.S.

    1981-11-01

    Small-angle scattering is a rather mature discipline which can yield valuable information on the size, amount, and distribution of inhomogeneities encountered in materials-science research. Methods have been publisheed which permit one to extend the standard analysis of data from a small-angle-scattering experiment to include determination of the distribution of particle sizes. This extended analysis has been carried out for voids in a ..beta..'-phase Ni-Al-In alloy, and, in order to assess the reliability of the procedure, the identical void distribution as been characterized by transmission-electron microscopy. A quantitative comparison is made of the results from thses two independent experiments, and the general performance of the Brill-Schmidt method for particle-size determinations is discussed. 6 figures, 1 table.

  11. Photoemission electron microscopy of graphene

    NASA Astrophysics Data System (ADS)

    Saliba, Sebastian; Wardini, Jenna; Fitzgerald, J. P. S.; Word, Robert C.; Kevek, Josh; Minot, Ethan; Koenenkamp, Rolf

    2012-10-01

    A study of chemical vapor deposited graphene on copper foil is conducted using an aberration-corrected photoemission electron microscope (PEEM). We demonstrate the efficacy such a PEEM has in identifying multi-layer graphene, defects and cracking. A model is developed to describe the observed reduction in photoemission rate where electrons originate from the copper foil and scatter through the graphene. A survey of several multi-layer feature line profiles demonstrates the reduced photoemission rate as the number of graphene layers increases. A mean-free-path length of l=3.8±0.8 nm is inferred assuming the layer spacing in graphene is δz=0.35 nm. The PEEM's high spatial resolution and surface sensitivity combined with no electron beam damage are promising for characterizing biosensors and other nanoscale graphene devices.

  12. Quantitative Probes of Entanglement Using Collisional Microscopy

    NASA Astrophysics Data System (ADS)

    Price, Craig; Liu, Qi; Gemelke, Nathan

    2015-05-01

    Though entanglement is understood to play a critical role in determining the ground state structure and macroscopic properties of many known physical systems, its definitive quantification has until recently, through the creation of entanglement entropy (EE), spectrum and related measures, escaped a simple definition. Moreover, few if any of these measures have been directly extracted in experiments on strongly correlated matter. In this talk, we present a novel method to measure quantifiers of many-body entanglement by pair-wise entangling a small portion of an atomic gas with an optical-lattice-bound array of secondary atoms serving as quantum-non-destructive probes. For a sample with significant pre-existing long range entanglement, such as in a Bose-Hubbard system near its quantum critical point, the quantum back-action following probe detection affects the sample gas in regions spatially extended beyond where measured. This results in a non-local thermal effect; subsequent measurement of the thermal entropy through the local equation of state can reveal the EE. Quantitative analysis of thermodynamic back action and background effects, such as classical propagation of entropy after a measurement quench, will be discussed.

  13. Low voltage transmission electron microscopy of graphene.

    PubMed

    Bachmatiuk, Alicja; Zhao, Jiong; Gorantla, Sandeep Madhukar; Martinez, Ignacio Guillermo Gonzalez; Wiedermann, Jerzy; Lee, Changgu; Eckert, Juergen; Rummeli, Mark Hermann

    2015-02-01

    The initial isolation of graphene in 2004 spawned massive interest in this two-dimensional pure sp(2) carbon structure due to its incredible electrical, optical, mechanical, and thermal effects. This in turn led to the rapid development of various characterization tools for graphene. Examples include Raman spectroscopy and scanning tunneling microscopy. However, the one tool with the greatest prowess for characterizing and studying graphene is the transmission electron microscope. State-of-the-art (scanning) transmission electron microscopes enable one to image graphene with atomic resolution, and also to conduct various other characterizations simultaneously. The advent of aberration correctors was timely in that it allowed transmission electron microscopes to operate with reduced acceleration voltages, so that damage to graphene is avoided while still providing atomic resolution. In this comprehensive review, a brief introduction is provided to the technical aspects of transmission electron microscopes relevant to graphene. The reader is then introduced to different specimen preparation techniques for graphene. The different characterization approaches in both transmission electron microscopy and scanning transmission electron microscopy are then discussed, along with the different aspects of electron diffraction and electron energy loss spectroscopy. The use of graphene for other electron microscopy approaches such as in-situ investigations is also presented. PMID:25408379

  14. Electron microscopy of Paramecium (Ciliata).

    PubMed

    Hausmann, Klaus; Allen, Richard D

    2010-01-01

    Paramecium may be the best known single-celled organism in existence (Hausmann et al., 2003). Today its image often appears on television programs where the producers use it to illustrate a stereotypic microorganism, be it pathogenic or nonpathogenic, prokaryotic or eukaryotic. Paramecium was probably one of the first single-celled organisms observed with a light microscope by the Dutch cloth vendor and amateur lens maker Antoni van Leuwenhoek (1632-1723) (Dobell, 1932), and it is still being investigated in the 21st century in the days of the modern electron microscopes. PMID:20869522

  15. Low voltage scanning electron microscopy.

    PubMed

    Pawley, J

    1984-10-01

    The scanning electron microscope (SEM) is usually operated with a beam voltage, V0, in the range of 10-30 kV, even though many early workers had suggested the use of lower voltages to increase topographic contrast and to reduce specimen charging and beam damage. The chief reason for this contradiction is poor instrumental performance when V0 = 1-3 kV, The problems include low source brightness, greater defocusing due to chromatic aberration greater sensitivity to stray fields, and difficulty in collecting the secondary electron signal. Responding to the needs of the semiconductor industry, which uses low V0 to reduce beam damage, considerable efforts have been made to overcome these problems. The resulting equipment has greatly improved performance at low kV and substantially removes the practical deterrents to operation in this mode. This paper reviews the advantages of low voltage operation, recent progress in instrumentation and describes a prototype instrument designed and built for optimum performance at 1 kV. Other limitations to high resolution topographic imaging such as surface contamination, the de-localized nature of the inelastic scattering event and radiation damage are also discussed. PMID:6512855

  16. Resolution measures in molecular electron microscopy

    PubMed Central

    Penczek, Pawel A.

    2011-01-01

    Resolution measures in molecular electron microscopy provide means to evaluate quality of macromolecular structures computed from sets of their two-dimensional line projections. When the amount of detail in the computed density map is low there are no external standards by which the resolution of the result can be judged. Instead, resolution measures in molecular electron microscopy evaluate consistency of the results in reciprocal space and present it as a one-dimensional function of the modulus of spatial frequency. Here we provide description of standard resolution measures commonly used in electron microscopy. We point out that the organizing principle is the relationship between these measures and the Spectral Signal-to-Noise Ratio of the computed density map. Within this framework it becomes straightforward to describe the connection between the outcome of resolution evaluations and the quality of electron microscopy maps, in particular, the optimum filtration, in the Wiener sense, of the computed map. We also provide a discussion of practical difficulties of evaluation of resolution in electron microscopy, particularly in terms of its sensitivity to data processing operations used during structure determination process in single particle analysis and in electron tomography. PMID:20888958

  17. Electron microscopy: Phase transition singled out

    NASA Astrophysics Data System (ADS)

    Browning, Nigel D.

    2013-05-01

    Four-dimensional electron microscopy has been applied to the detailed characterization of metal-organic-framework nanoparticles undergoing an electronic transition. The transition characteristics of a single particle were found to differ from those of an ensemble, and also to vary from one nanoparticle to the next.

  18. Electron Microscopy of Natural and Epitaxial Diamond

    NASA Technical Reports Server (NTRS)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  19. Electron Microscopy of the Cell

    PubMed Central

    Leeson, T. S.

    1965-01-01

    The use of the electron microscope has added much to our knowledge of the cell. The fine structure of the component parts of the nucleus and the cytoplasm is described, and their functions are indicated. The nature and structural modifications of the plasma membrane are illustrated with particular reference to function. To illustrate the interrelationships of the nucleus and cytoplasm, the theory of protein secretion is discussed, the secretion of a particular protein or polypeptide being determined by a particular nucleotide sequence in the desoxyribonucleic acid of a chromosome, that is, by a gene. This information is transferred from nucleus to cytoplasm. It is in the cytoplasm that the majority of the work is performed while the nucleus directs the work of the cell. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 PMID:5829410

  20. Near field emission scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Kirk, Taryl; de Pietro, Lorenzo; Scholder, Olivier; Baehler, Thomas; Ramsperger, Urs; Pescia, Danilo

    2009-03-01

    We present a simple ``near field emission scanning electron microscope'' (NFESEM) capable of imaging conducting surfaces with high spatial resolution. In this instrument electrons are excited from the sample surface after undergoing interactions with a low-voltage (< 60V) primary beam of electrons field-emitted from a Tungsten tip positioned tens of nanometers above the sample. Topographic images, determined from the intensity variations of secondary and backscattered electrons, yield a vertical resolution on an atomic scale and a lateral resolution of less than two nanometers. We report on the first topographic electron intensity images of terraces and mono-atomic steps on a single crystal substrate, not yet attained with a remote electron gun in conventional scanning electron microscopy. The topographic contrast of the extracted electrons and the field emission (FE) current are indistinguishable, in agreement with theoretical models of optimal spatial resolution. We assert that additional analysis of the secondary electrons will also exhibit a comparable resolution.

  1. Integrated fluorescence and transmission electron microscopy.

    PubMed

    Agronskaia, Alexandra V; Valentijn, Jack A; van Driel, Linda F; Schneijdenberg, Chris T W M; Humbel, Bruno M; van Bergen en Henegouwen, Paul M P; Verkleij, Arie J; Koster, Abraham J; Gerritsen, Hans C

    2008-11-01

    Correlative microscopy is a powerful technique that combines the strengths of fluorescence microscopy and electron microscopy. The first enables rapid searching for regions of interest in large fields of view while the latter exhibits superior resolution over a narrow field of view. Routine use of correlative microscopy is seriously hampered by the cumbersome and elaborate experimental procedures. This is partly due to the use of two separate microscopes for fluorescence and electron microscopy. Here, an integrated approach to correlative microscopy is presented based on a laser scanning fluorescence microscope integrated in a transmission electron microscope. Using this approach the search for features in the specimen is greatly simplified and the time to carry out the experiment is strongly reduced. The potential of the integrated approach is demonstrated at room temperature on specimens of rat intestine cells labeled with AlexaFluor488 conjugated to wheat germ agglutinin and on rat liver peroxisomes immunolabeled with anti-catalase antibodies and secondary AlexaFluor488 antibodies and 10nm protein A-gold. PMID:18664385

  2. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy.

    PubMed

    Liv, Nalan; van Oosten Slingeland, Daan S B; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W; Hoogenboom, Jacob P

    2016-01-26

    We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231

  3. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy.

    Robert M. Zucker 1 and Jeremy M. Lerner 2,
    1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...

  4. Active Pixel Sensors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Denes, P.; Bussat, J.-M.; Lee, Z.; Radmillovic, V.

    2007-09-01

    The technology used for monolithic CMOS imagers, popular for cell phone cameras and other photographic applications, has been explored for charged particle tracking by the high-energy physics community for several years. This technology also lends itself to certain imaging detector applications in electron microscopy. We have been developing such detectors for several years at Lawrence Berkeley National Laboratory, and we and others have shown that this technology can offer excellent point-spread function, direct detection and high readout speed. In this paper, we describe some of the design constraints peculiar to electron microscopy and summarize where such detectors could play a useful role.

  5. Quantitative biological imaging by ptychographic x-ray diffraction microscopy

    PubMed Central

    Giewekemeyer, Klaus; Thibault, Pierre; Kalbfleisch, Sebastian; Beerlink, André; Kewish, Cameron M.; Dierolf, Martin; Pfeiffer, Franz; Salditt, Tim

    2010-01-01

    Recent advances in coherent x-ray diffractive imaging have paved the way to reliable and quantitative imaging of noncompact specimens at the nanometer scale. Introduced a year ago, an advanced implementation of ptychographic coherent diffractive imaging has removed much of the previous limitations regarding sample preparation and illumination conditions. Here, we apply this recent approach toward structure determination at the nanoscale to biological microscopy. We show that the projected electron density of unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiodurans can be derived from the reconstructed phase in a straightforward and reproducible way, with quantified and small errors. Thus, the approach may contribute in the future to the understanding of the highly disputed nucleoid structure of bacterial cells. In the present study, the estimated resolution for the cells was 85 nm (half-period length), whereas 50-nm resolution was demonstrated for lithographic test structures. With respect to the diameter of the pinhole used to illuminate the samples, a superresolution of about 15 was achieved for the cells and 30 for the test structures, respectively. These values should be assessed in view of the low dose applied on the order of ≃1.3·105 Gy, and were shown to scale with photon fluence. PMID:20018650

  6. [Pili annulati. A scanning electron microscopy study].

    PubMed

    Lalević-Vasić, B; Polić, D

    1988-01-01

    A case of ringed hair studied by light and electron microscopy is reported. The patient, a 20-year old girl, had been presenting with the hair abnormality since birth. At naked eye examination the hairs were dry, 6 to 7 cm long, and they showed dull and shining areas giving the scalp hair a scintillating appearance (fig. 1). Several samples of hair were taken and examined by light microscopy under white and polarized light. Hair shafts and cryo-fractured surfaces were examined by scanning electron microscopy. RESULTS. 1. Light microscopy. Lesions were found in every hair examined. There were abnormal, opaque and fusiform areas alternating with normal areas all along the hair shaft (fig. 2). The abnormal areas resulted from intracortical air-filled cavities. Fractures similar to those of trichorrhexis nodosa were found in the opaque areas of the distal parts of the hairs. 2. Scanning electron microscopy. A. Hair shaft surface. The abnormal areas showed a longitudinal, "curtain-like" folding of the cuticular cells which had punctiform depressions on their surface and worn free edges (fig. 4, 5, 6); trichorrhexis-type fractures were seen in the distal parts of the hair shafts (fig. 7, 8). Normal areas regularly presented with longitudinal, superficial, short and non-systematized depressions (fig. 9); the cuticular cells were worn, and there were places where the denuded cortex showed dissociated cortical fibres (fig. 10).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3415147

  7. Low-pass secondary electron detector for outlens scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Takashi; Iwai, Hideo

    2015-08-01

    A low-pass secondary electron detector has been invented for outlens scanning electron microscopy. This detector is composed of a bias grid above and an electron detector below the specimen. The upward low-energy electrons emitted from the specimen are reflected downward by the bias grid and reach the secondary electron detector. The high-energy electrons penetrate the grid and are not detected. This detector has an advantage of quantitative analysis because the secondary electron trajectories are easily traced with simple parabolic motion. The energy-filtered images of the GaN/Si sample are obtained using this detector.

  8. The rapidly changing face of electron microscopy

    NASA Astrophysics Data System (ADS)

    Thomas, John Meurig; Leary, Rowan K.; Eggeman, Alexander S.; Midgley, Paul A.

    2015-07-01

    This short but wide-ranging review is intended to convey to chemical physicists and others engaged in the interfaces between solid-state chemistry and solid-state physics the growing power and extensive applicability of multiple facets of the technique of electron microscopy.

  9. Electron microscopy of ancient Egyptian skin.

    PubMed

    Lewin, P K; Cutz, E

    1976-05-01

    Sections of skin were examined by electron microscopy from the sole of the foot of a 14-year-old Egyptian, who died 3200 years ago and was preserved naturally by desiccation. Remarkable ultrastructural preservation of the epidermal cells and their components was found. PMID:773409

  10. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  11. Photon-induced near field electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Tae; Zewail, Ahmed H.

    2013-09-01

    Ultrafast electron microscopy in the space and time domains utilizes a pulsed electron probe to directly map structural dynamics of nanomaterials initiated by an optical pump pulse, in imaging, di raction, spectroscopy, and their combinations. It has demonstrated its capability in the studies of phase transitions, mechanical vibrations, and chemical reactions. Moreover, electrons can directly interact with photons via the near eld component of light scattering by nanostructures, and either gain or lose light quanta discretely in energy. By energetically selecting those electrons that exchanged photon energies, we can map this photon-electron interaction, and the technique is termed photon-induced near eld electron microscopy (PINEM). Here, we give an account of the theoretical understanding of PINEM. Experimentally, nanostructures such as a sphere, cylinder, strip, and triangle have been investigated. Theoretically, time-dependent Schrodinger and Dirac equations for an electron under light are directly solved to obtain analytical solutions. The interaction probability is expressed by the mechanical work done by an optical wave on a traveling electron, which can be evaluated analytically by the near eld components of the Rayleigh scattering for small spheres and thin cylinders, and numerically by the discrete dipole approximation for other geometries. Application in visualization of plasmon elds is discussed.

  12. Macrocyclization of polysaccharides visualized by electron microscopy.

    PubMed

    Stokke, B T; Elgsaeter, A; Kitamura, S

    1993-02-01

    Topological features of the polysaccharides schizophyllan, l-carrageenan and gellan gum were studied using electron microscopy. Electron micrographs of schizophyllan not subjected to any thermal or solvent composition history destabilizing the triple helix, show stiff, linear chains consistent with the structure being triple helical and with contour length proportional to the molecular weight in solution. A blend of linear, cyclic and hairpin topologies and higher molecular weight clusters were observed after renaturation, i.e. return to conditions favouring the triple helical structure, from solvent conditions dissociating the triple helix. Electron micrographs of l-carrageenan in salt-free solution reveal linear extended structures. Addition of 0.15 M LiI to the solution before preparation for electron microscopy, i.e. salt conditions that favour ordering but not gelation, yields a large fraction of cyclic structures with circumference of different lengths. Likewise, adding KCl to aqueous gellan gum changes their appearance from dispersed polymers to suprastrands with several associated chains. Macrocyclic species can also be observed in gellan gum after the addition of a gel-promoting salt. The tendency to form macrocyclic structures in competition with intermolecular aggregates is determined by the three factors: (1) chain stiffness relative to overall length; (2) parallel or antiparallel alignment of interacting chain segments; and (3) polymer concentration. The present study indicates that electron microscopy provides information about the topology adopted by polysaccharides. PMID:8443135

  13. DNA base identification by electron microscopy.

    PubMed

    Bell, David C; Thomas, W Kelley; Murtagh, Katelyn M; Dionne, Cheryl A; Graham, Adam C; Anderson, Jobriah E; Glover, William R

    2012-10-01

    Advances in DNA sequencing, based on fluorescent microscopy, have transformed many areas of biological research. However, only relatively short molecules can be sequenced by these technologies. Dramatic improvements in genomic research will require accurate sequencing of long (>10,000 base-pairs), intact DNA molecules. Our approach directly visualizes the sequence of DNA molecules using electron microscopy. This report represents the first identification of DNA base pairs within intact DNA molecules by electron microscopy. By enzymatically incorporating modified bases, which contain atoms of increased atomic number, direct visualization and identification of individually labeled bases within a synthetic 3,272 base-pair DNA molecule and a 7,249 base-pair viral genome have been accomplished. This proof of principle is made possible by the use of a dUTP nucleotide, substituted with a single mercury atom attached to the nitrogenous base. One of these contrast-enhanced, heavy-atom-labeled bases is paired with each adenosine base in the template molecule and then built into a double-stranded DNA molecule by a template-directed DNA polymerase enzyme. This modification is small enough to allow very long molecules with labels at each A-U position. Image contrast is further enhanced by using annular dark-field scanning transmission electron microscopy (ADF-STEM). Further refinements to identify additional base types and more precisely determine the location of identified bases would allow full sequencing of long, intact DNA molecules, significantly improving the pace of complex genomic discoveries. PMID:23046798

  14. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum's magnetosome chains.

    PubMed

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M; Westphal, Carsten

    2014-10-01

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains. PMID:25229674

  15. Quantitative low-cost webcam-based microscopy

    NASA Astrophysics Data System (ADS)

    Parikesit, Gea Oswah Fatah; Darmawan, Marten; Faisal, Amir

    2010-11-01

    Digital web cameras (popularly known as webcams) have recently gained a significant increase of relevance in the field of optical microscopy, in particular to allow for quick and do-it-yourself methods in developing low-cost and portable microscopes suitable for life sciences and engineering applications in low-resource areas. Unfortunately, these methods were published without any systematic explanation and quantitative assessment of the imaging performances. We reproduce these do-it-yourself methods, discuss the optical considerations that are relevant for them, and quantitatively compare their imaging performances to a commercial digital microscope in order to clarify both the advantages and disadvantages of the webcam-based microscopes.

  16. A quantitative study of the microstructure and crystallographic fiber texture in nickel electrodeposits used in radio-frequency MEMS switches, including a new transmission electron microscopy (TEM) technique for polycrystalline films

    NASA Astrophysics Data System (ADS)

    Cantwell, Patrick R.

    The microstructure of electrodeposited nickel films in radio-frequency (RF) microelectromechanical systems (MEMS) switches has been quantitatively studied to inform and validate multi-scale, multi-physics computer simulations that aim to predict the lifetime and failure mechanisms of the RF MEMS switches. The RF MEMS switches are currently under study at the Purdue University center for the Prediction of Reliability, Integrity, and Survivability of Microsystems (PRISM). An array of microstructural characterization techniques including focused ion beam (FIB) microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy have be used to study the nickel film and to quantify grain size and crystallographic texture and provide information about elemental impurities and surface roughness and impurity elements. Particular emphasis has been placed on quantifying the crystallographic fiber texture of the polycrystalline nickel film as a function of film height within a single specimen using a new transmission electron microscopy (TEM) microtexture method. The TEM method employs a special type of plan view TEM sample and uses hollow cone dark field (HCDF) TEM imaging to spatially map the orientation of individual crystallites at discrete film heights. A trend of increasing 001 fiber texture with film height was discovered, which has implications for the elastic behavior of the MEMS device. The method can be applied to study fiber texture evolution as a function of height in polycrystalline films to gather data that may elucidate fundamental film growth mechanisms. The method is explained in detail. It is well-known that the elastic properties of polycrystalline thin films used in MEMS devices can deviate from bulk isotropic values and become directionally-dependent if a crystallographic texture is present. Hence, the ability to predict the actual anisotropic elastic properties of textured films is important for MEMS design and analysis. An integrated technique combining X-ray diffraction (XRD) and density functional theory (DFT) simulation is presented here for the quantification and prediction of the elastic properties of crystallographically textured polycrystalline films used in MEMS devices. The technique is rapid, efficient, and capable of analyzing individual devices in an array, making it ideal for MEMS design, analysis, and quality control. Application of the technique to the electroplated nickel bridge of an RF MEMS switch, whose critical operating parameters depend on the in-plane Young's modulus, is demonstrated. It is shown that the in-plane Young's modulus of nickel films with a perfect, single fiber texture can vary over a large range from 172 GPa to 232 GPa. Experimental results significantly outside this range cannot be explained by crystallographic texture alone. The range of Young's modulus for real films is expected to be somewhat smaller because real films rarely have a near- perfect fiber texture and sometimes have a texture that cannot be described by a single fiber of orientation. The nickel bridge of the RF MEMS switch, which has a relatively strong 001 fiber texture component as well as a weak 111 fiber texture component, exemplifies such a case. The present technique takes these texture features into account to estimate the in-plane Young's modulus of the nickel bridge in several RF MEMS switches.

  17. Determining absolute protein numbers by quantitative fluorescence microscopy

    PubMed Central

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers—fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. PMID:24974037

  18. Quantitative sectioning and noise analysis for structured illumination microscopy

    PubMed Central

    Hagen, Nathan; Gao, Liang; Tkaczyk, Tomasz S.

    2011-01-01

    Structured illumination (SI) has long been regarded as a nonquantitative technique for obtaining sectioned microscopic images. Its lack of quantitative results has restricted the use of SI sectioning to qualitative imaging experiments, and has also limited researchers’ ability to compare SI against competing sectioning methods such as confocal microscopy. We show how to modify the standard SI sectioning algorithm to make the technique quantitative, and provide formulas for calculating the noise in the sectioned images. The results indicate that, for an illumination source providing the same spatially-integrated photon flux at the object plane, and for the same effective slice thicknesses, SI sectioning can provide higher SNR images than confocal microscopy for an equivalent setup when the modulation contrast exceeds about 0.09. PMID:22274364

  19. Fast pixel shifting phase unwrapping algorithm in quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Mingfei; Shan, Yanke; Yan, Keding; Xue, Liang; Wang, Shouyu; Liu, Fei

    2014-11-01

    Quantitative interferometric microscopy is an important method for observing biological samples such as cells and tissues. In order to obtain continuous phase distribution of the sample from the interferogram, phase extracting and phase unwrapping are both needed in quantitative interferometric microscopy. Phase extracting includes fast Fourier transform method and Hilbert transform method, etc., almost all of them are rapid methods. However, traditional unwrapping methods such as least squares algorithm, minimum network flow method, etc. are time-consuming to locate the phase discontinuities which lead to low processing efficiency. Other proposed high-speed phase unwrapping methods always need at least two interferograms to recover final phase distributions which cannot realize real time processing. Therefore, high-speed phase unwrapping algorithm for single interferogram is required to improve the calculation efficiency. Here, we propose a fast phase unwrapping algorithm to realize high-speed quantitative interferometric microscopy, by shifting mod 2π wrapped phase map for one pixel, then multiplying the original phase map and the shifted one, then the phase discontinuities location can be easily determined. Both numerical simulation and experiments confirm that the algorithm features fast, precise and reliable.

  20. Frontiers of in situ electron microscopy

    DOE PAGESBeta

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  1. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    PubMed Central

    Jensen, Thomas; Holten-Rossing, Henrik; Svendsen, Ida M H; Jacobsen, Christina; Vainer, Ben

    2016-01-01

    Background: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including staining may benefit. Methods: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm are presented. Results: It is shown that the autofluorescence intensity of unstained microsections at two different wavelengths is a suitable starting point for automated digital analysis of myocytes, fibrous tissue, lipofuscin, and the extracellular compartment. The output of the method is absolute quantitation along with accurate outlines of above-mentioned components. The digital quantitations are verified by comparison to point grid quantitations performed on the microsections after Van Gieson staining. Conclusion: The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue. The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework. PMID:27141321

  2. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    PubMed Central

    Indebetouw, Guy; Tada, Yoshitaka; Leacock, John

    2006-01-01

    This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example), while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies. PMID:17132171

  3. Connecting μ-fluidics to electron microscopy.

    PubMed

    Kemmerling, Simon; Ziegler, Jörg; Schweighauser, Gabriel; Arnold, Stefan A; Giss, Dominic; Müller, Shirley A; Ringler, Philippe; Goldie, Kenneth N; Goedecke, Nils; Hierlemann, Andreas; Stahlberg, Henning; Engel, Andreas; Braun, Thomas

    2012-01-01

    A versatile methodology for electron microscopy (EM) grid preparation enabling total content sample analysis is presented. A microfluidic-dialysis conditioning module to desalt or mix samples with negative stain solution is used, combined with a robotic writing table to micro-pattern the EM grids. The method allows heterogeneous samples of minute volumes to be processed at physiological pH for structure and mass analysis, and allows the preparation characteristics to be finely tuned. PMID:22094535

  4. Scanning electron microscopy of superficial white onychomycosis.

    PubMed

    Almeida, Hiram Larangeira de; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques E; Castro, Luis Antonio Suita de

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  5. Scanning electron microscopy of superficial white onychomycosis*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  6. 4D electron microscopy: principles and applications.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2012-10-16

    The transmission electron microscope (TEM) is a powerful tool enabling the visualization of atoms with length scales smaller than the Bohr radius at a factor of only 20 larger than the relativistic electron wavelength of 2.5 pm at 200 keV. The ability to visualize matter at these scales in a TEM is largely due to the efforts made in correcting for the imperfections in the lens systems which introduce aberrations and ultimately limit the achievable spatial resolution. In addition to the progress made in increasing the spatial resolution, the TEM has become an all-in-one characterization tool. Indeed, most of the properties of a material can be directly mapped in the TEM, including the composition, structure, bonding, morphology, and defects. The scope of applications spans essentially all of the physical sciences and includes biology. Until recently, however, high resolution visualization of structural changes occurring on sub-millisecond time scales was not possible. In order to reach the ultrashort temporal domain within which fundamental atomic motions take place, while simultaneously retaining high spatial resolution, an entirely new approach from that of millisecond-limited TEM cameras had to be conceived. As shown below, the approach is also different from that of nanosecond-limited TEM, whose resolution cannot offer the ultrafast regimes of dynamics. For this reason "ultrafast electron microscopy" is reserved for the field which is concerned with femtosecond to picosecond resolution capability of structural dynamics. In conventional TEMs, electrons are produced by heating a source or by applying a strong extraction field. Both methods result in the stochastic emission of electrons, with no control over temporal spacing or relative arrival time at the specimen. The timing issue can be overcome by exploiting the photoelectric effect and using pulsed lasers to generate precisely timed electron packets of ultrashort duration. The spatial and temporal resolutions achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells. PMID:22967215

  7. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  8. Single beam Fourier transform digital holographic quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Anand, A.; Faridian, A.; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Dubey, S. K.; Pedrini, G.; Osten, W.; Javidi, B.

    2014-03-01

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  9. Bile flow rates and biliary motility quantitated by intravital microscopy.

    PubMed

    Cox, K L; Cheung, A T

    1989-01-01

    Intravital microscopy was adapted to document and quantitate in vivo biliary motility and bile flow rates in guinea pigs. The movement of 10 microns diameter fluorescent beads in the bile duct was used to measure bile flow rates. Using this method, bile flow rates were comparable to those determined by measuring the volume of bile collected from the papilla, but greater (P less than 0.01) than the volume of bile collected from a bile duct cannula. During intravital microscopy, biliary contractions were only detected at the choledochoduodenal junction. While fasting, the sphincter ductus choledochi contracted at 6.0 +/- 1.0 per min and the ampulla at 1.2 +/- 0.2 per min. Postprandially, sphincter contractions had a decreased frequency and an increased duration while both duration and frequency of ampullary contractions increased. The volume of bile collected from a bile duct cannula postprandially did not change. This data suggested that the choledochoduodenal junction had a propulsive function and postprandial changes in motility were due to neurohumoral factors rather than passive response to changes in bile flow rates. Intravital microscopy proved to be a sensitive in vivo technique in which to quantitate bile flow rates and biliary motility. PMID:2775869

  10. Microfluidic system for transmission electron microscopy

    SciTech Connect

    Ring, Elisabeth A; De Jonge, Niels

    2010-01-01

    We present a microfluidic system that maintains liquid flow in a specimen chamber for (scanning) transmission electron microscope ((S)TEM) imaging. The specimen chamber consists of two ultra-thin silicon nitride windows supported by silicon microchips. They are placed in a specimen holder that seals the sample from the vacuum in the electron microscope, and incorporates tubing to and from the sample connected to a syringe pump outside the microscope. Using results obtained from fluorescence microscopy of microspheres flowing through the system, an equation to characterize the liquid flow through the system was calibrated. Gold nanoparticles of diameters of 30 and 100 nm moving in liquid were imaged with a 200 kV STEM. It was concluded that despite strong influences from Brownian motion, and sensitivity to small changes in the depth of the bypass channel, the electron microscopy flow data matched the calculated flow speed within an order of magnitude. The system allows for rapid (within a minute) liquid exchange, which can potentially be used, for example, to investigate the response of specimens, e.g., eukaryotic-, or bacterial cells, to certain stimuli.

  11. Quantitative Phase Contrast Digital Holographic Microscopy in Biophotonics

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2010-11-01

    Label-free, non-contact, non-destructive, on-line (video repetition rate), high resolution, full field (no scanning), quantitative analysis of morphology and dynamic processes in living cells are required features in life science research and medical diagnostics. Digital Holography combined with microscopic imaging provides these features simultaneously. The modular integration of digital holographic microscopy (DHM) into commercial microscopes yields an axial resolution with interferometric resolution while the lateral resolution is diffraction limited. As amplitude and phase are available by numerical reconstruction from a single digital hologram subsequent automated focus correction is enabled. The evaluation of quantitative digital holographic phase contrast images permits also an effective detection of lateral object movements. Thus, 3D tracking is achieved. The applicability of DHM techniques for dynamic live cell analysis is demonstrated by results from tumor cells and human erythrocytes.

  12. Feature Adaptive Sampling for Scanning Electron Microscopy.

    PubMed

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  13. Feature Adaptive Sampling for Scanning Electron Microscopy

    PubMed Central

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  14. Electron Microscopy of Botrytis cinerea Conidia

    PubMed Central

    Buckley, Patricia M.; Sjaholm, Virginia E.; Sommer, N. F.

    1966-01-01

    Buckley, Patricia M. (University of California, Davis), Virginia E. Sjaholm, and N. F. Sommer. Electron microscopy of Botrytis cinerea conidia. J. Bacteriol. 91:2037–2044. 1966.—Sections of germinating and nongerminating Botrytis cinerea conidia were examined with an electron microscope. Uranyl acetate or lead citrate provided contrast between membranes and cytoplasm. Membrane-bounded, dense inclusions previously unreported in dormant spores were termed “storage bodies.” Whorled structures, spherules, granules, and membrane loops were seen within these inclusions. The various forms assumed by the enclosed materials closely resemble phospholipid inclusions described for other cells. It is suggested that the inclusions provide material for the assembly of membranous organelles during germination. Utilization of the stored material apparently results in extensive vacuolization in advanced germinants. Images PMID:5949251

  15. Scanning electron microscopy studies of bacterial cultures

    NASA Astrophysics Data System (ADS)

    Swinger, Tracy; Blust, Brittni; Calabrese, Joseph; Tzolov, Marian

    2012-02-01

    Scanning electron microscopy is a powerful tool to study the morphology of bacteria. We have used conventional scanning electron microscope to follow the modification of the bacterial morphology over the course of the bacterial growth cycle. The bacteria were fixed in vapors of Glutaraldehyde and ruthenium oxide applied in sequence. A gold film of about 5 nm was deposited on top of the samples to avoid charging and to enhance the contrast. We have selected two types of bacteria Alcaligenes faecalis and Kocuria rhizophila. Their development was carefully monitored and samples were taken for imaging in equal time intervals during their cultivation. These studies are supporting our efforts to develop an optical method for identification of the Gram-type of bacterial cultures.

  16. Quantitative phase microscopy: how to make phase data meaningful

    NASA Astrophysics Data System (ADS)

    Goldstein, Goldie; Creath, Katherine

    2014-03-01

    The continued development of hardware and associated image processing techniques for quantitative phase microscopy has allowed superior phase data to be acquired that readily shows dynamic optical volume changes and enables particle tracking. Recent efforts have focused on tying phase data and associated metrics to cell morphology. One challenge in measuring biological objects using interferometrically obtained phase information is achieving consistent phase unwrapping and background shape removal throughout a sequence of images. Work has been done to improve the phase unwrapping in two-dimensions and correct for temporal discrepanices using a temporal unwrapping procedure. The residual background shape due to mean value fluctuations and residual tilts can be removed automatically using a simple object characterization algorithm. Once the phase data are processed consistently, it is then possible to characterize biological samples such as myocytes and myoblasts in terms of their size, texture and optical volume and track those features dynamically. By observing optical volume dynamically it is possible to determine the presence of objects such as vesicles within myoblasts even when they are co-located with other objects. Quantitative phase microscopy provides a label-free mechanism to characterize living cells and their morphology in dynamic environments, however it is critical to connect the measured phase to important biological function for this measurement modality to prove useful to a broader scientific community. In order to do so, results must be highly consistent and require little to no user manipulation to achieve high quality nynerical results that can be combined with other imaging modalities.

  17. Characterization of hydroxyapatite by electron microscopy.

    PubMed

    Rodríguez-Lugo, V; Hernández, J Sanchez; Arellano-Jimenez, Ma J; Hernández-Tejeda, P H; Recillas-Gispert, S

    2005-12-01

    The obtention of hydroxyapatite (HAp) is reported using brushite (CaHPO4.2H2O) and the skeleton of a starfish (Mellita eduardobarrosoi sp. nov.), primarily composed of magnesian calcite ((Ca,Mg)CO3) as precursors. Stoichiometric amounts of both were reacted under hydrothermal conditions: a pressure of 5.8 MPa and a temperature of 200 degrees C for 2, 4, 6, 8, 10, and 20 h of reaction times. The samples obtained were characterized by means of scanning electron microscopy, X-ray diffraction, infrared spectroscopy, and transmission electron microscopy. Two defined populations of HAp fibers were found: A bundle of fibers 75 mum in length and 1-13 mum in diameter, and a second bundle of fibers 5 mum in length and less than 0.5 mum in diameter. Furthermore, an increase in HAp formation and a Ca/P ratio as a function of reaction time were observed. The growth mechanism of HAp is also discussed. PMID:17481330

  18. Direct imaging of crystal structure and defects in metastable Ge{sub 2}Sb{sub 2}Te{sub 5} by quantitative aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Ross, Ulrich; Lotnyk, Andriy Thelander, Erik; Rauschenbach, Bernd

    2014-03-24

    Knowledge about the atomic structure and vacancy distribution in phase change materials is of foremost importance in order to understand the underlying mechanism of fast reversible phase transformation. In this Letter, by combining state-of-the-art aberration-corrected scanning transmission electron microscopy with image simulations, we are able to map the local atomic structure and composition of a textured metastable Ge{sub 2}Sb{sub 2}Te{sub 5} thin film deposited by pulsed laser deposition with excellent spatial resolution. The atomic-resolution scanning transmission electron microscopy investigations display the heterogeneous defect structure of the Ge{sub 2}Sb{sub 2}Te{sub 5} phase. The obtained results are discussed. Highly oriented Ge{sub 2}Sb{sub 2}Te{sub 5} thin films appear to be a promising approach for further atomic-resolution investigations of the phase change behavior of this material class.

  19. High voltage electron microscopy of lunar samples

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1973-01-01

    Lunar pyroxenes from Apollo 11, 12, 14, and 15 were investigated. The iron-rich and magnesium-rich pyroxene specimens were crushed to a grain size of ca. 50 microns and studied by a combination of X-ray and electron diffraction, electron microscopy, 57 Fe Mossbauer spectroscopy and X-ray crystallography techniques. Highly ordered, uniform electron-dense bands, corresponding to exsolution lamellae, with average widths of ca. 230A to 1000A dependent on the source specimen were observed. These were?qr separated by wider, less-dense interband spacings with average widths of ca. 330A to 3100A. In heating experiments, splitting of the dense bands into finer structures, leading finally to obliteration of the exsolution lamellae was recorded. The extensive exsolution is evidence for significantly slower cooling rates, or possibly annealing, at temperatures in the subsolidus range, adding evidence that annealing of rock from the surface of the moon took place at ca. 600 C. Correlation of the band structure with magnetic ordering at low temperatures and iron clustering within the bands was studied.

  20. Quantitative thermal characterization of microelectronic devices by using CCD-based thermoreflectance microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Dong Uk; Ryu, Seon Young; Kim, Jun Ki; Chang, Ki Soo

    2014-03-01

    A thermoreflectance microscopy (TRM) system has emerged as a non-destructive and non-contact tool for a high resolution thermal imaging technique for micro-scale electronic and optoelectronic devices. Quantitative imaging of the temperature distribution is necessary for elaborate thermal characterization under operating conditions, such as thermal profiling and performance and reliability analysis. We introduce here a straightforward TRM system to perform quantitative thermal characterization of microelectronics devices. The quantitative imaging of the surface temperature distribution of a polysilicon micro-resistor is obtained by a lock-in measurement technique and calibration process in the conventional CCD-based widefield microscope. To confirm the quantitative thermal measurement, the measured thermal information is compared to that obtained with an infrared thermography (IRT) system. In addition to quantitative surface temperature distribution, the sub-micron defects on microelectronic devices can be clearly distinguished from the thermoreflectance images, which are hardly perceptible with a conventional widefield microscopy system. The thermal resolution of the proposed TRM system is experimentally determined by measuring standard deviation values of thermoreflectance data with respect to the iteration number. The spatial and thermal resolutions of our system are measured ~670 nm and ~13 mK, respectively. We believe that quantitative thermal imaging in the TRM system can be used for improvement of microelectronic devices and integrated circuit (IC) designs.

  1. Transmission Electron Microscopy Characterization of Nanocrystalline Copper

    SciTech Connect

    Kung, H.; Sanders, P.G.; Weertman, J.R.

    1999-11-01

    The microstructure and grain boundary structure of nanocrystalline Cu powders and a compact prepared by the inert-gas condensation technique have been characterized by transmission electron microscopy. The as-prepared particles are round in shape and have no distinct surface facets. Annealing twins (coherent {Sigma}3 boundaries) have been observed in the as-prepared Cu particles as well as in the compact. Pores are commonly found at grain boundaries, triple grain junctions and some in the interior of grains in the compact. In addition to twin boundaries, a number of special grain boundaries have been observed. These special grain boundaries have low-index interface planes, and sometimes have misorientation angles close to coincidence site lattice (CSL) orientations.

  2. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  3. Hexamethyldisilazane for scanning electron microscopy of Gastrotricha.

    PubMed

    Hochberg, R; Litvaitis, M K

    2000-01-01

    We evaluated treatment with hexamethyldisilazane (HMDS) as an alternative to critical-point drying (CPD) for preparing microscopic Gastrotricha for scanning electron microscopy (SEM). We prepared large marine (2 mm) and small freshwater (100 microm) gastrotrichs using HMDS as the primary dehydration solvent and compared the results to earlier investigations using CPD. The results of HMDS dehydration are similar to or better than CPD for resolution of two important taxonomic features: cuticular ornamentation and patterns of ciliation. The body wall of both sculpted (Lepidodermella) and smooth (Dolichodasys) gastrotrichs retained excellent morphology as did the delicate sensory and locomotory cilia. The only unfavorable result of HMDS dehydration was an occasional coagulation of gold residue when the solvent had not fully evaporated before sputter-coating. We consider HMDS an effective alternative for preparing of gastrotrichs for SEM because it saves time and expense compared to CPD. PMID:10810982

  4. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  5. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    PubMed Central

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-01-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results. PMID:26830146

  6. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    NASA Astrophysics Data System (ADS)

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-02-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results.

  7. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy.

    PubMed

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C; Somekh, Michael G

    2016-01-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results. PMID:26830146

  8. Fluorescent microscopy approaches of quantitative soil microbial analysis

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin; Polyanskaya, Lubov

    2015-04-01

    Classical fluorescent microscopy method was used during the last decades in various microbiological studies of terrestrial ecosystems. The method provides representative results and simple application which is allow to use it both as routine part of amplitudinous research and in small-scaled laboratories. Furthermore, depending on research targets a lot of modifications of fluorescent microscopy method were established. Combination and comparison of several approaches is an opportunity of quantitative estimation of microbial community in soil. The first analytical part of the study was dedicated to soil bacterial density estimation by fluorescent microscopy in dynamic of several 30-days experiments. The purpose of research was estimation of changes in soil bacterial community on the different soil horizons under aerobic and anaerobic conditions with adding nutrients in two experimental sets: cellulose and chitin. Was modified the nalidixic acid method for inhibition of DNA division of gram-negative bacteria, and the method provides the quantification of this bacterial group by fluorescent microscopy. Established approach allowed to estimate 3-4 times more cells of gram-negative bacteria in soil. The functions of actinomyces in soil polymer destruction are traditionally considered as dominant in comparison to gram-negative bacterial group. However, quantification of gram-negative bacteria in chernozem and peatland provides underestimation of classical notion for this bacterial group. Chitin introduction had no positive effect to gram-negative bacterial population density changes in chernozem but concurrently this nutrient provided the fast growing dynamics at the first 3 days of experiment both under aerobic and anaerobic conditions. This is confirming chitinolytic activity of gram-negative bacteria in soil organic matter decomposition. At the next part of research modified method for soil gram-negative bacteria quantification was compared to fluorescent in situ hybridization method (FISH). This approach was used for evaluation of contribution of each gram-negative bactera group. No significant difference between the main soil gram-negative bacterial groups (phylum Proteobacteria and Bacteroidetes) was found both under anaerobic and anaerobic conditions in chernozem in the topsoil. Thus soil gram-negative bacteria play an important ecological role in natural polymer degradation as common group of microorganisms. Another approach with using cascade filtration technique for bacterial population density estimation in chernozem was compared to classical method of fluorescent microscopy. Quantification of soil bacteria with cascade filtration provided by filters with different diameters and filtering of soil suspension in fixed amount. In comparison to the classical fluorescent microscopy method the modification with filtration of soil suspension provided to quantify more bacterial cells. Thus biomass calculation results of soil bacteria by using classical fluorescent microscopy could be underestimated and combination with cascade filtration technique allow to avoid potential experimental error. Thereby, combination and comparison of several fluorescent microscopy methods modifications established during the research provided miscellaneous approaches in soil bacteria quantification and analysis of ecological roles of soil microorganisms.

  9. Transmission electron microscopy of tissue prepared for scanning electron microscopy by ethanol-cryofracturing.

    PubMed

    Humphreys, W J; Spurlock, B O; Johnson, J S

    1975-03-01

    Tissue processed for scanning electron microscopy by ethanol-cryofracturing combined with critical point drying was embedded and sectioned for transmission electron microscopy. Study of specimens cut in a plane passing through the fracture edge indicated that preservation of cellular fine structure of fractured cells was excellent. Even at the most peripheral edge of the fracture there was no evidence that movement of cytoplasmic components occurred to distort the original structural organization of fractured cells. Lack of cytoplasmic detail in ethanol-cryofractographs has been due more to the nature of the fracturing of the tissue and to the obscuring effects of the metal coating than to structural deformation at the fracture edge or to limitations in resolving power of the scanning electron microscope used. PMID:1145653

  10. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong

    2015-06-16

    Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, polyβ-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ∼1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure. PMID:26006162

  11. Comprehensive quantitative evaluation of FLIM-FRET microscopy

    NASA Astrophysics Data System (ADS)

    Wallrabe, Horst; Sun, Yuangsheng; Svindrych, Zdenek; Periasamy, Ammasi

    2015-03-01

    Average lifetime between the usually bi-exponential double-label specimen and a mono-exponential single donor sample serves as a basis for the calculation of the average energy transfer efficiency (E). This semi-quantitative approach however does not fully explore cellular functions, such as endosomal pH differences, specific morphological features, examining sub-populations and the like. We applied a different, quantitative Region-of-Interest (ROI)-based method in 2 live-cell assays by TCSPC FLIM-FRET microscopy: a 5 amino-acid linked FRET standard and mouse pituitary cells expressing a dimerized C/EBPα-bZip transcription factor in the nucleus, both tagged with Cerulean (C) and Venus (V). ROIs with different selection thresholds were generated and compared. Average lifetimes are similar, but ratios between them and other subtle differences are revealed by comprehensive distribution information. Following published references, we also explored 3 different methods to calculate FLIM-FRET energy transfer efficiencies for the Cerulean- Venus constructs, producing differences and supporting the long-held notion that E is called 'apparent' efficiency. FRET's greatest contribution continues to be exploring changes taking place at the cellular level and quantifying differences in relative terms between control and variables.

  12. Quantitative Fluorescent Speckle Microscopy (QFSM) to Measure Actin Dynamics

    PubMed Central

    Mendoza, Michelle C.; Besson, Sebastien; Danuser, Gaudenz

    2012-01-01

    Quantitative Fluorescent Speckle Microscopy (QFSM) is a live cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meotic/mitotic spindle. Here, we focus on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently-labeled:endogenous unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (2–8 actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  13. Imaging Surface Topography using Lloyd's Mirror in Photoemission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Jesson, D. E.; Pavlov, K. M.; Morgan, M. J.; Usher, B. F.

    2007-07-01

    We use Lloyd’s mirror to modulate electron photoemission in photoemission electron microscopy. This results in the projection of Lloyd’s fringes on to three-dimensional (3D) surface objects. An iterative reconstruction method is used to correct for distortions in the fringe pattern due to the cathode immersion lens, thereby providing a quantitative interpretation of surface shape. It is therefore possible to extract 3D height information directly from a two-dimensional, plan-view image. The technique is of sufficient intensity and contrast to study real-time changes in surface topography and we apply the method to study unusual contact-line dynamics during the reactive wetting of metal droplets.

  14. Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening

    PubMed Central

    Rappaz, Benjamin; Breton, Billy; Shaffer, Etienne; Turcatti, Gerardo

    2014-01-01

    Digital Holographic Microscopy (DHM) is a label-free imaging technique allowing visualization of transparent cells with classical imaging cell culture plates. The quantitative DHM phase contrast image provided is related both to the intracellular refractive index and to cell thickness. DHM is able to distinguish cellular morphological changes on two representative cell lines (HeLa and H9c2) when treated with doxorubicin and chloroquine, two cytotoxic compounds yielding distinct phenotypes. We analyzed parameters linked to cell morphology and to the intracellular content in endpoint measurements and further investigated them with timelapse recording. The results obtained by DHM were compared with other optical label-free microscopy techniques, namely Phase Contrast, Differential Interference Contrast and Transport of Intensity Equation (reconstructed from three bright-field images). For comparative purposes, images were acquired in a common 96-well plate format on the different motorized microscopes. In contrast to the other microscopies assayed, images generated with DHM can be easily quantified using a simple automatized on-the-fly analysis method for discriminating the different phenotypes generated in each cell line. The DHM technology is suitable for the development of robust and unbiased image-based assays.

  15. Bright-field quantitative phase microscopy (BFQPM) for accurate phase imaging using conventional microscopy hardware

    NASA Astrophysics Data System (ADS)

    Jenkins, Micah; Gaylord, Thomas K.

    2015-03-01

    Most quantitative phase microscopy methods require the use of custom-built or modified microscopic configurations which are not typically available to most bio/pathologists. There are, however, phase retrieval algorithms which utilize defocused bright-field images as input data and are therefore implementable in existing laboratory environments. Among these, deterministic methods such as those based on inverting the transport-of-intensity equation (TIE) or a phase contrast transfer function (PCTF) are particularly attractive due to their compatibility with Köhler illuminated systems and numerical simplicity. Recently, a new method has been proposed, called multi-filter phase imaging with partially coherent light (MFPI-PC), which alleviates the inherent noise/resolution trade-off in solving the TIE by utilizing a large number of defocused bright-field images spaced equally about the focal plane. Despite greatly improving the state-ofthe- art, the method has many shortcomings including the impracticality of high-speed acquisition, inefficient sampling, and attenuated response at high frequencies due to aperture effects. In this report, we present a new method, called bright-field quantitative phase microscopy (BFQPM), which efficiently utilizes a small number of defocused bright-field images and recovers frequencies out to the partially coherent diffraction limit. The method is based on a noiseminimized inversion of a PCTF derived for each finite defocus distance. We present simulation results which indicate nanoscale optical path length sensitivity and improved performance over MFPI-PC. We also provide experimental results imaging live bovine mesenchymal stem cells at sub-second temporal resolution. In all, BFQPM enables fast and accurate phase imaging with unprecedented spatial resolution using widely available bright-field microscopy hardware.

  16. Electron Microscopy: Phase Transition Singled Out

    SciTech Connect

    Browning, Nigel D.

    2013-05-01

    One of the fundamental challenges within nanotechnology is to understand and control how nanoscale properties are initiated, evolve, and eventually terminate as a system moves from an individual nanostructure towards the meso- and macro-scale ensembles that are used in most applications. The ability to directly observe individual nanostructures and characterize their structure and composition has long been within the purview of transmission electron microscopy (TEM). The almost ubiquitous application of spherical aberration correction in TEM and in scanning-TEM (STEM) that has occurred over the last 10 years, now means it is possible to routinely characterize such nanostructures with both atomic resolution and sensitivity [1,2]. The development of temporal resolution in the TEM and the ability to study fast dynamics, on the other hand, has only recently come to the forefront of instrumentation development and is currently defined by two different approaches in the use of photoemission sources: the single shot s-ns dynamic TEM (DTEM) [3] and the stroboscopic ps-fs 4-D EM [4]. In the case of the DTEM, the goal is to observe the longer timescale irreversible structural changes that occur during nucleation and growth phenomena (here the single shot approach means there are enough electrons in a single pulsed beam to form a complete image). The 4-D EM focuses on a stroboscopic approach with the goal of studying very rapid reversible effects that occur during phase transitions (here an image is composed of thousands of pump-probe events each occurring with exactly the same time signature, with an individual pulse containing only a few electrons).

  17. Advanced electron microscopy characterization of multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna Raj

    Research in noble metal nanoparticles has led to exciting progress in a versatile array of applications. For the purpose of better tailoring of nanoparticles activities and understanding the correlation between their structures and properties, control over the composition, shape, size and architecture of bimetallic and multimetallic nanomaterials plays an important role on revealing their new or enhanced functions for potentials application. Advance electron microscopy techniques were used to provide atomic scale insights into the structure-properties of different materials: PtPd, Au-Au3Cu, Cu-Pt, AgPd/Pt and AuCu/Pt nanoparticles. The objective of this work is to understand the physical and chemical properties of nanomaterials and describe synthesis, characterization, surface properties and growth mechanism of various bimetallic and multimetallic nanoparticles. The findings have provided us with novel and significant insights into the physical and chemical properties of noble metal nanoparticles. Different synthesis routes allowed us to synthesize bimetallic: Pt-Pd, Au-Au3Cu, Cu-Pt and trimetallic: AgPd/Pt, AuCu/Pt, core-shell and alloyed nanoparticles with monodispersed sizes, controlled shapes and tunable surface properties. For example, we have synthesized the polyhedral PtPd core-shell nanoparticles with octahedral, decahedral, and triangular plates. Decahedral PtPd core-shell structures are novel morphologies for this system. For the first time we fabricated that the Au core and Au3Cu alloyed shell nanoparticles passivated with CuS2 surface layers and characterized by Cs-corrected scanning transmission electron microscopy. The analysis of the high-resolution micrographs reveals that these nanoparticles have decahedral structure with shell periodicity, and that each of the particles is composed by Au core and Au3Cu ordered superlattice alloyed shell surrounded by CuS 2 surface layer. Additionally, we have described both experimental and theoretical methods of synthesis and growth mechanism of highly monodispersed Cu-Pt nanoclusters. The advance electron microscopy of microanalysis allowed us to study the distribution of Cu and Pt with atomistic resolution. The microanalysis revealed that Pt is embedded randomly in the Cu lattice. A novel grand canonical - Langevin dynamics simulation showed the formation of alloy structures in good agreement with the experimental evidence. Finally, we demonstrated the synthesis of AgPd-Pt trimetallic nanoparticles with two different morphologies: multiply twinned core-shell, and hollow particles. We also investigated the growth mechanism of the nanoparticles using grand canonical-Monte Carlo simulations. We found that the Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process and presenting very good agreement between the simulated structures and those observed experimentally. Similarly, we also investigated AuCu/Pt core-shell trimetallic nanoparticles, presenting new way to control the nanoparticles morphologies due to the presence of third metal (Pt). Where, we observed the Pt layers are overgrowth on the as prepared AuCu core by Frank-van der Merwe (FM) and Stranski-Krastanov (SK) growth modes. In addition, these nanostructure presents high index facet surfaces with {211} and (321} families, that are highly open structure surfaces and interesting for the catalytic applications. The results of these studies will be useful for the future applications and the design of advanced functional nanomaterials.

  18. Quantitative pathology in virtual microscopy: history, applications, perspectives.

    PubMed

    Kayser, Gian; Kayser, Klaus

    2013-07-01

    With the emerging success of commercially available personal computers and the rapid progress in the development of information technologies, morphometric analyses of static histological images have been introduced to improve our understanding of the biology of diseases such as cancer. First applications have been quantifications of immunohistochemical expression patterns. In addition to object counting and feature extraction, laws of thermodynamics have been applied in morphometric calculations termed syntactic structure analysis. Here, one has to consider that the information of an image can be calculated for separate hierarchical layers such as single pixels, cluster of pixels, segmented small objects, clusters of small objects, objects of higher order composed of several small objects. Using syntactic structure analysis in histological images, functional states can be extracted and efficiency of labor in tissues can be quantified. Image standardization procedures, such as shading correction and color normalization, can overcome artifacts blurring clear thresholds. Morphometric techniques are not only useful to learn more about biological features of growth patterns, they can also be helpful in routine diagnostic pathology. In such cases, entropy calculations are applied in analogy to theoretical considerations concerning information content. Thus, regions with high information content can automatically be highlighted. Analysis of the "regions of high diagnostic value" can deliver in the context of clinical information, site of involvement and patient data (e.g. age, sex), support in histopathological differential diagnoses. It can be expected that quantitative virtual microscopy will open new possibilities for automated histological support. Automated integrated quantification of histological slides also serves for quality assurance. The development and theoretical background of morphometric analyses in histopathology are reviewed, as well as their application and potential future implementation in virtual microscopy. PMID:23313439

  19. Imaging Cytoskeleton Components by Electron Microscopy

    PubMed Central

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  20. Imaging Cytoskeleton Components by Electron Microscopy

    PubMed Central

    Svitkina, Tatyana

    2010-01-01

    Summary The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments- are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:19768431

  1. Imaging Cytoskeleton Components by Electron Microscopy.

    PubMed

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  2. Quantitative polarized light microscopy of unstained mammalian cochlear sections

    PubMed Central

    Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.

    2013-01-01

    Abstract. Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo. PMID:23407909

  3. Quantitative polarized light microscopy of unstained mammalian cochlear sections

    NASA Astrophysics Data System (ADS)

    Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.; Stankovic, Konstantina M.

    2013-02-01

    Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo.

  4. Quantitative high dynamic range beam profiling for fluorescence microscopy.

    PubMed

    Mitchell, T J; Saunter, C D; O'Nions, W; Girkin, J M; Love, G D

    2014-10-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences. PMID:25362409

  5. Quantitative determination of Plasmodium parasitemia by flow cytometry and microscopy.

    PubMed

    Jun, Gyo; Lee, Jeong-Sam; Jung, Yun-Jae; Park, Jae-Won

    2012-10-01

    The traditional light microscopy has limitations for precise growth assays of malaria parasites in culture or for assessment of new compounds for antimalarial activity; the speed and high reproducibility of flow cytometry can overcome these limitations. A flow cytometric method using PicoGreen, a DNA-binding fluorochrome, was developed with optimal precision suitable for performing growth assays of low-parasitemia field isolates. In addition, intra- and inter-person reproducibility of the flow cytometric and the microscopic method were compared in order to quantitatively demonstrate the improved precision. RNase treatment contributed to the precision of the flow cytometric measurements by enhancing the signal-to-noise ratios. Coefficients of variation of the method were smaller than 10% for 0.1% or higher parasitemia samples. The intra- and inter-person coefficients of variation of the flow cytometric method were three to six times smaller than those of the microscopic method. The flow cytometric method developed in this study yielded substantially more precise results than the microscopic method, allowing determination of parasitemia levels of 0.1% or higher, with coefficients of variation smaller than 10%. Thus, the PicoGreen method could be a reliable high sensitivity assay for analysis of low parasitemia samples and might be applied to a high throughput system testing antimalarial drug activity. PMID:23091308

  6. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung

    2010-07-01

    Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 μg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca2+]i) and histamine with fluorescent methods.

  7. Fluorescence lifetime imaging microscopy for quantitative biological imaging.

    PubMed

    Chen, Leng-Chun; Lloyd, William R; Chang, Ching-Wei; Sud, Dhruv; Mycek, Mary-Ann

    2013-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is a method for measuring fluorophore lifetimes with microscopic spatial resolution, providing a useful tool for cell biologists to detect, visualize, and investigate structure and function of biological systems. In this chapter, we begin by introducing the basic theory of fluorescence lifetime, including the characteristics of fluorophore decay, followed by a discussion of factors affecting fluorescence lifetimes and the potential advantages of fluorescence lifetime as a source of image contrast. Experimental methods for creating lifetime maps, including both time- and frequency-domain experimental approaches, are then introduced. Then, FLIM data analysis methods are discussed, including rapid lifetime determination, multiexponential fitting, Laguerre polynomial fitting, and phasor plot analysis. After, data analysis methods are introduced that improve lifetime precision of FLIM maps based upon optimal virtual gating and total variation denoising. The chapter concludes by highlighting several recent FLIM applications for quantitative biological imaging, including Förster resonance energy transfer-FLIM, fluorescence correlation spectroscopy-FLIM, multispectral-FLIM, and multiphoton-FLIM. PMID:23931519

  8. Quantitative high dynamic range beam profiling for fluorescence microscopy

    SciTech Connect

    Mitchell, T. J. Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  9. Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II.

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2015-10-01

    A scanning electron microscope with a silicon drift detector energy-dispersive X-ray spectrometer (SEM/SDD-EDS) was used to analyze materials containing the low atomic number elements B, C, N, O, and F achieving a high degree of accuracy. Nearly all results fell well within an uncertainty envelope of ±5% relative (where relative uncertainty (%)=[(measured-ideal)/ideal]×100%). Quantification was performed with the standards-based "k-ratio" method with matrix corrections calculated based on the Pouchou and Pichoir expression for the ionization depth distribution function, as implemented in the NIST DTSA-II EDS software platform. The analytical strategy that was followed involved collection of high count (>2.5 million counts from 100 eV to the incident beam energy) spectra measured with a conservative input count rate that restricted the deadtime to ~10% to minimize coincidence effects. Standards employed included pure elements and simple compounds. A 10 keV beam was employed to excite the K- and L-shell X-rays of intermediate and high atomic number elements with excitation energies above 3 keV, e.g., the Fe K-family, while a 5 keV beam was used for analyses of elements with excitation energies below 3 keV, e.g., the Mo L-family. PMID:26365439

  10. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and application of the technique to solving seemingly intractable materials problems in addition to discovery-based research. Our goal with this Perspective is to bring the capabilities of TIEM to the-attention of materials scientists, chemists, physicists, and engineers in hopes that new,avenues of research emerge and to make clear the large parameter space that is opened by extending TEM, and the ability to readily manipulate electron trajectories and energies, into the ultrafast domain.

  11. Analytical electron microscopy in mineralogy; exsolved phases in pyroxenes

    USGS Publications Warehouse

    Nord, G.L., Jr.

    1982-01-01

    Analytical scanning transmission electron microscopy has been successfully used to characterize the structure and composition of lamellar exsolution products in pyroxenes. At operating voltages of 100 and 200 keV, microanalytical techniques of x-ray energy analysis, convergent-beam electron diffraction, and lattice imaging have been used to chemically and structurally characterize exsolution lamellae only a few unit cells wide. Quantitative X-ray energy analysis using ratios of peak intensities has been adopted for the U.S. Geological Survey AEM in order to study the compositions of exsolved phases and changes in compositional profiles as a function of time and temperature. The quantitative analysis procedure involves 1) removal of instrument-induced background, 2) reduction of contamination, and 3) measurement of correction factors obtained from a wide range of standard compositions. The peak-ratio technique requires that the specimen thickness at the point of analysis be thin enough to make absorption corrections unnecessary (i.e., to satisfy the "thin-foil criteria"). In pyroxenes, the calculated "maximum thicknesses" range from 130 to 1400 nm for the ratios Mg/Si, Fe/Si, and Ca/Si; these "maximum thicknesses" have been contoured in pyroxene composition space as a guide during analysis. Analytical spatial resolutions of 50-100 nm have been achieved in AEM at 200 keV from the composition-profile studies, and analytical reproducibility in AEM from homogeneous pyroxene standards is ?? 1.5 mol% endmember. ?? 1982.

  12. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung

    2010-02-01

    The use of AgNP is becoming more and more widespread in biomedical field. But compared with the promising bactericidal function, other physiological effects of AgNP on cells are relatively scant. In this research, we propose quantitative phase microscopy (QPM) as a new method to study the degranulation, and AgNP-induced RBL-2H3 cell degranulation is studied as well. Firstly, HeLa cells as the cell control and PBS as the solvent control, we measured the cell volume and cross section profile (x-z plane) with QPM. The results showed that the volume and cross section profile changed only the RBL-2H3 cells exposed to calcium ionophore A23187, which demonstrates the validity of QPM in degranulation research. Secondly, 50μg/mL of AgNP was used instead of A23187, and the measurement of cell volume and cross section profile was carried out again. RBL-2H3 cell volume increased immediately after AgNP was added, and cross section profile showed that the cell surface became granulated, but HeLa cell was lack of that effect. Phase images obviously indicated the RBL-2H3 cell deformation. Thirdly, stained with Fluo-3/AM, intracellular calcium Ca2+]i of single RBL-2H3 cell treated with AgNP was observed with fluorescent microscopy; incubated with AgNP for 20min, the supernatant of RBL-2H3 cells was collected and reacted with o-phthalaldehyde (OPA), then the fluorescent intensity of histamine-OPA complex was assayed with spectrofluorometer. The results of Ca2+]i and histamine increase showed that degranulation of AgNP-induced RBL-2H3 cell occurred. So, the cell volume was used as a parameter of degranulation in our study and AgNP-induced RBL-2H3 cells degranulation was confirmed by the cell volume increment, cross section profile change, and [Ca2+]i and histamine in supernatant increase.

  13. Contamination mitigation strategies for scanning transmission electron microscopy.

    PubMed

    Mitchell, D R G

    2015-06-01

    Modern scanning transmission electron microscopy (STEM) enables imaging and microanalysis at very high magnification. In the case of aberration-corrected STEM, atomic resolution is readily achieved. However, the electron fluxes used may be up to three orders of magnitude greater than those typically employed in conventional STEM. Since specimen contamination often increases with electron flux, specimen cleanliness is a critical factor in obtaining meaningful data when carrying out high magnification STEM. A range of different specimen cleaning methods have been applied to a variety of specimen types. The contamination rate has been measured quantitatively to assess the effectiveness of cleaning. The methods studied include: baking, cooling, plasma cleaning, beam showering and UV/ozone exposure. Of the methods tested, beam showering is rapid, experimentally convenient and very effective on a wide range of specimens. Oxidative plasma cleaning is also very effective and can be applied to specimens on carbon support films, albeit with some care. For electron beam-sensitive materials, cooling may be the method of choice. In most cases, preliminary removal of the bulk of the contamination by methods such as baking or plasma cleaning, followed by beam showering, where necessary, can result in a contamination-free specimen suitable for extended atomic scale imaging and analysis. PMID:25885075

  14. Transmission Electron Microscopy of Itokawa Regolith Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate of [1]. The dis-ordered rim is nanocrystalline with minor amorphous material between crystalline domains. Quantitative element maps show the outermost 10 nm of the disordered rim is Si-rich. Discussion and Conclusions: Both particles record the ef-fects of space weathering processes on Itokawa. Noguchi et al. [2] proposed that the disordered rims they observed on Itokawa particles largely result from solar wind radiation damage and we arrive at a similar conclusion for the two particles we analyzed. The microstructure of the S-depleted layer on the pyrrhotite grain in RA-QD02-0125 is similar to that observed in troilite irradiated with 1018 4 kV He+ [3, 4]. Prolonged irradiation has also been shown to disorder pyrrhotite such that the superstructure reflec-tions are lost [5].

  15. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    SciTech Connect

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron microscopy techniques in strongly correlated electron systems and nanostructured materials. As a first step, with the support of Materials Science Division, Office of Basic Energy Science, US Department of Energy, and the New York State Office of Science, Technology, and Academic Research, recently we acquired three aberration-corrected electron microscopes from the three major microscope manufacturers, i.e., JEOL, Hitachi, and FEI. The Hitachi HD2700C is equipped with a probe corrector, the FEI Titan 80-300 has an imaging corrector, while the JEOL2200MCO has both. All the correctors are of the dual-hexapole type, designed and manufactured by CEOS GmbH based on the design due to Rose and Haider [3, 18]. All these three are one-of-a-kind in the US, designed for specialized capabilities in characterizing nanoscale structure. In this chapter, we review the performance of these state-of-the art instruments and the new challenges associated with the improved spatial resolution, including the environment requirements of the laboratory that hosts these instruments. Although each instrument we describe here has its own strengths and drawbacks, it is not our intention to rank them in terms of their performance, especially their spatial resolution in imaging.

  16. Electron Microscopy for Rapid Diagnosis of Emerging Infectious Agents1

    PubMed Central

    Gelderblom, Hans R.

    2003-01-01

    Diagnostic electron microscopy has two advantages over enzyme-linked immunosorbent assay and nucleic acid amplification tests. After a simple and fast negative stain preparation, the undirected, “open view” of electron microscopy allows rapid morphologic identification and differential diagnosis of different agents contained in the specimen. Details for efficient sample collection, preparation, and particle enrichment are given. Applications of diagnostic electron microscopy in clinically or epidemiologically critical situations as well as in bioterrorist events are discussed. Electron microscopy can be applied to many body samples and can also hasten routine cell culture diagnosis. To exploit the potential of diagnostic electron microscopy fully, it should be quality controlled, applied as a frontline method, and be coordinated and run in parallel with other diagnostic techniques. PMID:12643823

  17. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells

    PubMed Central

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-01-01

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results. PMID:26066680

  18. Correlative light and volume electron microscopy: using focused ion beam scanning electron microscopy to image transient events in model organisms.

    PubMed

    Bushby, Andrew J; Mariggi, Giovanni; Armer, Hannah E J; Collinson, Lucy M

    2012-01-01

    The study of a biological event within a live model organism has become routine through the use of fluorescent labeling of specific proteins in conjunction with laser confocal imaging. These methods allow 3D visualization of temporal events that can elucidate biological function but cannot resolve the tissue organization, extracellular and subcellular details of the tissues. Here, we present a method for correlating electron microscopy image data with the light microscopy data from the same sample volume to reveal the 3D structural information: "correlative light and volume electron microscopy." The methods for live video confocal microscopy, fixation and embedding of the tissue for electron microscopy, the focused ion beam scanning electron microscopy method for sequentially slicing and imaging the volume of interest, and the treatment of the resulting 3D dataset are presented. The method is illustrated with data collected during the angiogenesis of blood vessels in a transgenic zebrafish embryo. PMID:22857937

  19. Characterization of High Tc Materials and Devices by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Browning, Nigel D.; Pennycook, Stephen J.

    2000-07-01

    List of contributors; Preface; 1. High-resolution transmission electron microscopy S. Horiuchi and L. He; 2. Holography in the transmission electron microscope A. Tonomura; 3. Microanalysis by scanning transmission electron microscopy L. M. Brown and J. Yuan; 4. Specimen preparation for transmission electron microscopy J. G. Wen; 5. Low-temperature scanning electron microscopy R. P. Huebener; 6. Scanning tunneling microscopy M. E. Hawley; 7. Identification of new superconducting compounds by electron microscopy G. Van Tendeloo and T. Krekels; 8. Valence band electron energy loss spectroscopy (EELS) of oxide superconductors Y. Y. Wang and V. P. Dravid; 9. Investigation of charge distribution in Bi2Sr2CaCu2O8 and YBa2Cu3O7 Y. Zhu; 10. Grain boundaries in high Tc materials: transport properties and structure K. L. Merkle, Y. Gao and B. V. Vuchic; 11. The atomic structure and carrier concentration at grain boundaries in YBa2Cu3O7-d N. D. Browning, M. F. Chisholm and S. J. Pennycook; 12. Microstructures in superconducting YBa2Cu3O7 thin films A. F. Marshall; 13. Investigations on the microstructure of YBa2Cu3O7 thin-film edge Josephson junctions by high-resolution electron microscopy C. L. Jia and K. Urban; 14. Controlling the structure and properties of high Tc thin-film devices E. Olsson.

  20. Characterization of High Tc Materials and Devices by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Browning, Nigel D.; Pennycook, Stephen J.

    2006-11-01

    List of contributors; Preface; 1. High-resolution transmission electron microscopy S. Horiuchi and L. He; 2. Holography in the transmission electron microscope A. Tonomura; 3. Microanalysis by scanning transmission electron microscopy L. M. Brown and J. Yuan; 4. Specimen preparation for transmission electron microscopy J. G. Wen; 5. Low-temperature scanning electron microscopy R. P. Huebener; 6. Scanning tunneling microscopy M. E. Hawley; 7. Identification of new superconducting compounds by electron microscopy G. Van Tendeloo and T. Krekels; 8. Valence band electron energy loss spectroscopy (EELS) of oxide superconductors Y. Y. Wang and V. P. Dravid; 9. Investigation of charge distribution in Bi2Sr2CaCu2O8 and YBa2Cu3O7 Y. Zhu; 10. Grain boundaries in high Tc materials: transport properties and structure K. L. Merkle, Y. Gao and B. V. Vuchic; 11. The atomic structure and carrier concentration at grain boundaries in YBa2Cu3O7-d N. D. Browning, M. F. Chisholm and S. J. Pennycook; 12. Microstructures in superconducting YBa2Cu3O7 thin films A. F. Marshall; 13. Investigations on the microstructure of YBa2Cu3O7 thin-film edge Josephson junctions by high-resolution electron microscopy C. L. Jia and K. Urban; 14. Controlling the structure and properties of high Tc thin-film devices E. Olsson.

  1. Silicon Nitride Windows for Electron Microscopy of Whole Cells

    PubMed Central

    Ring, E. A.; Peckys, D. B.; Dukes, M. J.; Baudoin, J. P.; de Jonge, N.

    2012-01-01

    Summary Silicon microchips with thin electron transparent silicon nitride windows provide a sample support that accommodates both light-, and electron microscopy of whole eukaryotic cells in vacuum or liquid, with minimum sample preparation steps. The windows are robust enough that cellular samples can be cultured directly onto them, with no addition of a supporting film, and no need to embed or section the sample, as is typically required in electron microscopy. By combining two microchips, a microfluidic chamber can be constructed for the imaging of samples in liquid in the electron microscope. We provide microchip design specifications, a fabrication outline, instructions on how to prepare them for biological samples, and examples of images obtained using different light-, and electron microscopy modalities. The use of these microchips is particularly advantageous for correlative light-, and electron microscopy. PMID:21770941

  2. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    SciTech Connect

    Kim, Suhyun; Kim, Joong Jung; Jung, Younheum; Lee, Kyungwoo; Byun, Gwangsun; Hwang, KyoungHwan; Lee, Sunyoung; Lee, Kyupil

    2013-09-15

    Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  3. Cryo-scanning electron microscopy and light microscopy for the study of fungi interactions.

    PubMed

    Sempere, F; Santamarina, M P

    2011-03-01

    The application of the cryo-scanning electron microscopy and light microscopy for the study of the interactions at different environmental conditions between Penicillium oxalicum and Fusarium verticillioides is described. A dual microculture was developed for the light microscopy analysis of the interaction. The microscope and macroscopic examinations were compared. Analysis of Petri plates revealed that F. verticillioides was a competitor for space and nutrients while P. oxalicum was a mycoparasite under the microscopic observations. PMID:20572205

  4. Fluctuation Electron Microscopy of Amorphous and Polycrystalline Materials

    NASA Astrophysics Data System (ADS)

    Rezikyan, Aram

    Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet a quantitative technique. The holdup has been the discrepancy between the computed kinematical variance and the experimental variance, which previously was attributed to source incoherence. Although high-brightness, high coherence, electron guns are now routinely available in modern electron microscopes, they have not eliminated this discrepancy between theory and experiment. The main objective of this thesis was to explore, and to reveal, the reasons behind this conundrum. The study was started with an analysis of the speckle statistics of tilted dark-field TEM images obtained from an amorphous carbon sample, which confirmed that the structural ordering is sensitively detected by FEM. This analysis also revealed the inconsistency between predictions of the source incoherence model and the experimentally observed variance. FEM of amorphous carbon, amorphous silicon and ultra nanocrystalline diamond samples was carried out in an attempt to explore the conundrum. Electron probe and sample parameters were varied to observe the scattering intensity variance behavior. Results were compared to models of probe incoherence, diffuse scattering, atom displacement damage, energy loss events and multiple scattering. Models of displacement decoherence matched the experimental results best. Decoherence was also explored by an interferometric diffraction method using bilayer amorphous samples, and results are consistent with strong displacement decoherence in addition to temporal decoherence arising from the electron source energy spread and energy loss events in thick samples. It is clear that decoherence plays an important role in the long-standing discrepancy between experimental FEM and its theoretical predictions.

  5. Ion-induced electron emission microscopy

    DOEpatents

    Doyle, Barney L.; Vizkelethy, Gyorgy; Weller, Robert A.

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  6. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  7. Quantitative nanoparticle structures from electron crystallography data

    NASA Astrophysics Data System (ADS)

    Farrow, Christopher L.; Ruan, Chong-Yu; Billinge, Simon J. L.

    2010-04-01

    We describe the quantitative refinement of nanoparticle structures from gold nanoparticles probed by electron diffraction in the ultrafast electron crystallography (UEC) geometry. We establish the equivalence between the modified radial distribution function employed in UEC and the atomic pair distribution function (PDF) used in x-ray and neutron powder-diffraction analysis. By leveraging PDF refinement techniques, we demonstrate that UEC data are of sufficient quality to differentiate between cuboctahedral, decahedral, and icosahedral nanoparticle models for the ground-state (dark) structures of the gold nanoparticles. Furthermore, we identify the signatures of systematic errors that may occur during data reduction and show that atomic positions refined from UEC are robust to these errors. This work serves as a foundation for reliable quantitative structural analysis of time-resolved laser-excited nanoparticle states.

  8. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  9. Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone

    NASA Astrophysics Data System (ADS)

    Roschger, Andreas; Gamsjaeger, Sonja; Hofstetter, Birgit; Masic, Admir; Blouin, Stéphane; Messmer, Phaedra; Berzlanovich, Andrea; Paschalis, Eleftherios P.; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter

    2014-06-01

    Raman microspectroscopy and quantitative backscattered electron imaging (qBEI) of bone are powerful tools to investigate bone material properties. Both methods provide information on the degree of bone matrix mineralization. However, a head-to-head comparison of these outcomes from identical bone areas has not been performed to date. In femoral midshaft cross sections of three women, 99 regions (20×20 μ) were selected inside osteons and interstitial bone covering a wide range of matrix mineralization. As the focus of this study was only on regions undergoing secondary mineralization, zones exhibiting a distinct gradient in mineral content close to the mineralization front were excluded. The same regions were measured by both methods. We found a linear correlation (R2=0.75) between mineral/matrix as measured by Raman spectroscopy and the wt. %Mineral/(100-wt. %Mineral) as obtained by qBEI, in good agreement with theoretical estimations. The observed deviations of single values from the linear regression line were determined to reflect biological heterogeneities. The data of this study demonstrate the good correspondence between Raman and qBEI outcomes in describing tissue mineralization. The obtained correlation is likely sensitive to changes in bone tissue composition, providing an approach to detect potential deviations from normal bone.

  10. Structure of Wet Specimens in Electron Microscopy

    ERIC Educational Resources Information Center

    Parsons, D. F.

    1974-01-01

    Discussed are past work and recent advances in the use of electron microscopes for viewing structures immersed in gas and liquid. Improved environmental chambers make it possible to examine wet specimens easily. (Author/RH)

  11. Carbon nanomaterial studied by atomic-force and electron microscopies

    SciTech Connect

    Bobrinetski, I. I.; Kukin, V. N.; Nevolin, V. K. Simunin, M. M.

    2008-12-15

    It is suggested to use the atomic-force microscopy (AFM) and transmission electron microscopy (TEM) to study carbon material synthesized by catalytic pyrolysis of ethanol. It is shown how AFM and TEM can be employed to determine the geometric parameters of carbon nanofibers and nanotubes, examine their mechanical and adhesion characteristics, and analyze their structure.

  12. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy.

    PubMed

    Chou, Yi-Chia; Panciera, Federico; Reuter, Mark C; Stach, Eric A; Ross, Frances M

    2016-04-14

    We visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas. PMID:27041654

  13. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum’s magnetosome chains

    SciTech Connect

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M.; Westphal, Carsten

    2014-10-07

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  14. Transmission electron microscopy characterisation of 0-D nanomaterials

    NASA Astrophysics Data System (ADS)

    Turner, Stuart Matthew

    When materials are scaled down to the nanometre level, a change in physical behaviour is frequently observed. In so-called 0-D nanomaterials (nanoparticles), these unique nanoscale properties are most abundant and are usually linked to either a change in (electronic) structure of the material or to the dominating influence of the particle surface at the nanometre scale. In this doctoral work the nanoscale properties of several nanoparticle systems have been studied using advanced transmission electron microscopy (TEM). Every material that was studied required for its solution a unique approach and a host of transmission electron microscopy techniques. The title of this doctoral work can be freely translated as "retrieving quantitatively the maximal and most accurate chemical, structural and morphological information from nanoparticles by advanced transmission electron microscopy, to uncover and explain their unique properties". Chapter 1 gives a brief general introduction to the world of nanomaterials and nanotechnology in general and more specifically to 0-D nanomaterials (nanoparticles). The unique properties and potential applications of these materials are described. The production of 0-D nanomaterials is not covered in this chapter, as this is an extremely broad field to cover in only a few pages. Instead, the production method for each of the materials is left to the detailed chapters that follow. In Chapter 2 the main transmission electron microscopy techniques used to characterise the materials in the further chapters are described together with the microscopes used to perform these techniques and their parameters of operation. Again, the sample-specific setups are listed in the detailed chapters that follow. Chapter 3 covers all work carried out on luminescent detonation nanodiamond powder for drug delivery and bio-medical imaging applications. Specific attention is paid to the morphology, surface chemistry and nitrogen incorporation of detonation nanodiamond particles cleaned by novel routes, and the possibility of production of luminescent N-V centres within the diamond nanoparticles is studied. Chapter 4 deals with self-arranged Co nanoparticle arrays, so-called superlattices. By closely studying the oxidation behaviour of such arrays, a new intrinsic property has been discovered: enhanced stability against oxidation of self-arranged cobalt nanoparticles. This intriguing physical behaviour of arranged cobalt nanoparticles has never been observed before. Chapter 5 describes and discusses all results obtained from TEM investigation of hybrid nanoporous-nanoparticle materials for advanced catalysis applications: first, the possibilities of TEM for the characterisation of the metal MOF material family; and second, the example of Au ZIF. Finally, in Chapter 6, assisted spray-pyrolysis generated ZnO nanoparticles are studied. The ZnO nanomaterial produced by a novel assisted spray pyrolysis method is compared to conventionally spray pyrolysed ZnO nanomaterials. The influence of assisted spray pyrolysis production on the size, morphology and optical properties (UV blocking capabilities) of the ZnO nanoparticles is studied for the case of citric-acid assisted spray pyrolysis.

  15. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. PMID:26206941

  16. Stimulated excitation electron microscopy and spectroscopy.

    PubMed

    Howie, A

    2015-04-01

    Recent advances in instrumentation for electron optics and spectroscopy have prompted exploration of ultra-low excitations such as phonons, bond vibrations and Johnson noise. These can be excited not just with fast electrons but also thermally or by other external sources of radiation. The near-field theory of electron energy loss and gain provides a convenient platform for analysing these processes. Possibilities for selected phonon mapping and imaging are discussed. Effects should certainly be observable in atomic resolution structure imaging but diffraction contrast imaging could perhaps be more informative. Additional exciting prospects to be explored include the transition from phonon excitation to single atom recoil and the boosting of energy loss and gain signals with tuned laser illumination. PMID:25312246

  17. Scanning Transmission Electron Microscopy at High Resolution

    PubMed Central

    Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.

    1974-01-01

    We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050

  18. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  19. Electron microscopy - A glimpse into the future.

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1972-01-01

    A forecast attempt is presented on future advances in electron microscopic studies of membrane systems. A review of recent advances and present trends is followed by a discussion of prerequisites to further progress. Special attention is given to research areas of particular promise.

  20. Entanglement-assisted electron microscopy based on a flux qubit

    SciTech Connect

    Okamoto, Hiroshi; Nagatani, Yukinori

    2014-02-10

    A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

  1. Calibration procedures for quantitative multiple wavelengths reflectance microscopy.

    PubMed

    Fedala, Yasmina; Munteanu, Sorin; Kanoufi, Frdric; Tessier, Gilles; Roger, Jean Paul; Wu, Chang; Amiot, Fabien

    2016-01-01

    In order to characterize surface chemo-mechanical phenomena driving micro-electro-mechanical systems (MEMSs) behavior, it has been previously proposed to use reflected intensity fields obtained from a standard microscope for different illumination wavelengths. Wavelength-dependent and -independent reflectivity fields are obtained from these images, provided the relative reflectance sensitivities ratio can be identified. This contribution focuses on the necessary calibration procedures and mathematical methods allowing for a quantitative conversion from a mechanically induced reflectivity field to a surface rotation field, therefore paving the way for a quantitative mechanical analysis of MEMS under chemical loading. PMID:26827323

  2. Calibration procedures for quantitative multiple wavelengths reflectance microscopy

    NASA Astrophysics Data System (ADS)

    Fedala, Yasmina; Munteanu, Sorin; Kanoufi, Frédéric; Tessier, Gilles; Roger, Jean Paul; Wu, Chang; Amiot, Fabien

    2016-01-01

    In order to characterize surface chemo-mechanical phenomena driving micro-electro-mechanical systems (MEMSs) behavior, it has been previously proposed to use reflected intensity fields obtained from a standard microscope for different illumination wavelengths. Wavelength-dependent and -independent reflectivity fields are obtained from these images, provided the relative reflectance sensitivities ratio can be identified. This contribution focuses on the necessary calibration procedures and mathematical methods allowing for a quantitative conversion from a mechanically induced reflectivity field to a surface rotation field, therefore paving the way for a quantitative mechanical analysis of MEMS under chemical loading.

  3. Electron Microscopy of Biological Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Kourkoutis, Lena Fitting; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2012-08-01

    Electron microscopy of biological matter uses three different imaging modalities: (a) electron crystallography, (b) single-particle analysis, and (c) electron tomography. Ideally, these imaging modalities are applied to frozen-hydrated samples to ensure an optimal preservation of the structures under scrutiny. Cryo-electron microscopy of biological matter has made important advances in the past decades. It has become a research tool that further expands the scope of structural research into unique areas of cell and molecular biology, and it could augment the materials research portfolio in the study of soft and hybrid materials. This review addresses how researchers using transmission electron microscopy can derive structural information at high spatial resolution from fully hydrated specimens, despite their sensitivity to ionizing radiation, despite the adverse conditions of high vacuum for samples that have to be kept in aqueous environments, and despite their low contrast resulting from weakly scattering building blocks.

  4. Advanced Correlative Light/Electron Microscopy: Current Methods and New Developments Using Tokuyasu Cryosections

    PubMed Central

    Cortese, Katia; Diaspro, Alberto; Tacchetti, Carlo

    2009-01-01

    Microscopy is an essential tool for analysis of cellular structures and function. With the advent of new fluorescent probes and super-resolution light microscopy techniques, the study of dynamic processes in living cells has been greatly facilitated. Fluorescence light microscopy provides analytical, quantitative, and three-dimensional (3D) data with emphasis on analysis of live cells using fluorescent markers. Sample preparation is easy and relatively inexpensive, and the use of appropriate tags provides the ability to track specific proteins of interest. Of course, only electron microscopy (EM) achieves the highest definition in terms of ultrastructure and protein labeling. To fill the gap between light microscopy and EM, correlative light and electron microscopy (CLEM) strategies have been developed. In particular, hybrid techniques based upon immuno-EM provide sensitive protein detection combined with high-resolution information on cell structures and protein localization. By adding the third dimension to EM with electron tomography (ET) combined with rapid freezing, CLEM techniques now provide additional tools for quantitative 3D analysis. Here, we overview the major methods applied and highlight the latest advances in the field of CLEM. We then focus on two selected techniques that use cryosections as substrate for combined biomolecular imaging. Finally, we provide a perspective of future developments in the field. (J Histochem Cytochem 57:1103–1112, 2009) PMID:19654103

  5. Exploring the third dimension: volume electron microscopy comes of age.

    PubMed

    Peddie, Christopher J; Collinson, Lucy M

    2014-06-01

    Groundbreaking advances in volume electron microscopy and specimen preparation are enabling the 3-dimensional visualisation of specimens with unprecedented detail, and driving a gratifying resurgence of interest in the ultrastructural examination of cellular systems. Serial section techniques, previously the domain of specialists, are becoming increasingly automated with the development of systems such as the automatic tape-collecting ultramicrotome, and serial blockface and focused ion beam scanning electron microscopes. These changes are rapidly broadening the scope of biomedical studies to which volume electron microscopy techniques can be applied beyond the brain. Further innovations in microscope design are also in the pipeline, which have the potential to enhance the speed and quality of data collection. The recent introduction of integrated light and electron microscopy systems will revolutionise correlative light and volume electron microscopy studies, by enabling the sequential collection of data from light and electron imaging modalities without intermediate specimen manipulation. In doing so, the acquisition of comprehensive functional information and direct correlation with ultrastructural details within a 3-dimensional reference space will become routine. The prospects for volume electron microscopy are therefore bright, and the stage is set for a challenging and exciting future. PMID:24792442

  6. Single-shot dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    LaGrange, T.; Armstrong, M. R.; Boyden, K.; Brown, C. G.; Campbell, G. H.; Colvin, J. D.; DeHope, W. J.; Frank, A. M.; Gibson, D. J.; Hartemann, F. V.; Kim, J. S.; King, W. E.; Pyke, B. J.; Reed, B. W.; Shirk, M. D.; Shuttlesworth, R. M.; Stuart, B. C.; Torralva, B. R.; Browning, N. D.

    2006-07-01

    A dynamic transmission electron microscope (DTEM) has been designed and implemented to study structural dynamics in condensed matter systems. The DTEM is a conventional in situ transmission electron microscope (TEM) modified to drive material processes with a nanosecond laser, "pump" pulse and measure it shortly afterward with a 30-ns-long probe pulse of ˜107 electrons. An image with a resolution of <20nm may be obtained with a single pulse, largely eliminating the need to average multiple measurements and enabling the study of unique, irreversible events with nanosecond- and nanometer-scale resolution. Space charge effects, while unavoidable at such a high current, may be kept to reasonable levels by appropriate choices of operating parameters. Applications include the study of phase transformations and defect dynamics at length and time scales difficult to access with any other technique. This single-shot approach is complementary to stroboscopic TEM, which is capable of much higher temporal resolution but is restricted to the study of processes with a very high degree of repeatability.

  7. Photoacoustic microscopy for quantitative evaluation of angiogenesis inhibitor

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Liang; Burnett, Joseph; Sun, Duxin; Xie, Zhixing; Wang, Xueding

    2014-03-01

    We present the photoacoustic microscopy (PAM) for evaluation of angiogenesis inhibitors on a chick embryo model. Microvasculature in the chorioallantoic membrane (CAM) of the chick embryos was imaged by PAM, and the optical microscopy (OM) images of the same set of CAMs were also acquired for comparisons, serving for validation of the results from PAM. The angiogenesis inhibitors, Sunitinib, with different concentrations applied to the CAM result in the change in microvascular density, which was quantified by both PAM and OM imaging. Similar change in microvascular density from PAM and OM imaging in response to angiogenesis inhibitor at different doses was observed, demonstrating that PAM has potential to provide objective evaluation of anti-angiogenesis medication. Besides, PAM is advantageous in three-dimensional and functional imaging compared with OM so that the emerging PAM technique may offer unique information on the efficacy of angiogenesis inhibitors and could benefit applications related to antiangiogenesis treatments.

  8. Preparation of Xenopus laevis retinal cryosections for electron microscopy.

    PubMed

    Tam, Beatrice M; Yang, Lee Ling; Bog?a, Tami H; Ross, Bradford; Martens, Garnet; Moritz, Orson L

    2015-07-01

    Transmission electron microscopy is the gold standard for examination of photoreceptor outer segment morphology and photoreceptor outer segment abnormalities in transgenic animal models of retinal disease. Small vertebrates such as zebrafish and Xenopus laevis tadpoles have been used to generate retinal disease models and to study outer segment processes such as protein trafficking, and their breeding capabilities facilitate experiments involving large numbers of animals and conditions. However, electron microscopy processing and analysis of these very small eyes can be challenging. Here we present a methodology that facilitates processing of X.laevis tadpole eyes for electron microscopy by introducing an intermediate cryosectioning step. This method reproducibly provides a well-oriented tissue block that can be sectioned with minimal effort by a non-expert, and also allows retroactive analysis of samples collected on slides for light microscopy. PMID:26008144

  9. Multimodal dyes: toward correlative two-photon and electron microscopy

    NASA Astrophysics Data System (ADS)

    Bolze, Frdric; Ftouni, Hussein; Nicoud, Jean-Franois; Leoni, Piero; Schwab, Yannick; Rehspringer, Jean-Luc; Mafouana, Rodrigues R.

    2013-03-01

    Nowadays, many crucial biological questions involve the observation of biological samples at different scales. Thus, optical microscopy can be associated to magnetic nuclear imaging allowing access to data from the cellular to the organ level, or can be associated to electron microscopy to reach the sub cellular level. We will describe here the design, synthesis and characterization of new bimodal probes, which can be used as dye in two-photon excited microscopy (TPEM) and electron dense markers in scanning and transmission electron microscopy (EM). In a first part, we will describe new molecular dyes with small organic systems grafted on metal atoms (Pt, Au). Such systems show good twophoton induced fluorescence and two-photon images of HeLa cells will be presented. In a second part, we will present hybrid organic-inorganic fluorescent systems with diketopyrrolopyrole-based dye grafted on iron oxide-silica core shell nanoparticles by peptide bond. Such systems present high two-photon absorption cross sections and good fluorescence quantum yields. These nanoparticles are rapidly internalized in HeLa cells and high quality two-photon images were performed with low laser power. Then we will present our results on correlative light-electron microscopy were twophoton and electron microscopy (both scanning and transmission) images were obtained on the same biological sample.

  10. In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry

    SciTech Connect

    Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

    2011-10-31

    Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic liquid. To this end, we have developed a novel in situ instrumental system combining analytical electron microscopy with advanced spectroscopy to probe the dynamic phenomena in an all solid-state nano-battery. In situ electron microscopy is a versatile technique that yields insights into challenging questions that could not be obtained using other techniques. However, in order to fully exploit the capabilities, a very carefully thought-out plan of action is essential. It is important to recognize that this is not just a simple characterization tool, but a collection of tools that make up a complete experimental set-up: the choice of FIB operation conditions, specimen holder for biasing, grid materials and design as well as microscope environment must be thoroughly considered before performing an experiment.

  11. Quantitative WDS analysis using electron probe microanalyzer

    SciTech Connect

    Ul-Hamid, Anwar . E-mail: anwar@kfupm.edu.sa; Tawancy, Hani M.; Mohammed, Abdul-Rashid I.; Al-Jaroudi, Said S.; Abbas, Nureddin M.

    2006-04-15

    In this paper, the procedure for conducting quantitative elemental analysis by ZAF correction method using wavelength dispersive X-ray spectroscopy (WDS) in an electron probe microanalyzer (EPMA) is elaborated. Analysis of a thermal barrier coating (TBC) system formed on a Ni-based single crystal superalloy is presented as an example to illustrate the analysis of samples consisting of a large number of major and minor elements. The analysis was performed by known standards and measured peak-to-background intensity ratios. The procedure for using separate set of acquisition conditions for major and minor element analysis is explained and its importance is stressed.

  12. A Correlative Optical Microscopy and Scanning Electron Microscopy Approach to Locating Nanoparticles in Brain Tumors

    PubMed Central

    Kempen, Paul J.; Kircher, Moritz F.; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V.; Mellinghoff, Ingo K.; Gambhir, Sanjiv S; Sinclair, Robert

    2014-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. PMID:25464144

  13. Quantitative thermal microscopy using thermoelectric probe in passive mode

    NASA Astrophysics Data System (ADS)

    Bontempi, A.; Thiery, L.; Teyssieux, D.; Briand, D.; Vairac, P.

    2013-10-01

    A scanning thermal microscope working in passive mode using a micronic thermocouple probe is presented as a quantitative technique. We show that actual surface temperature distributions of microsystems are measurable under conditions for which most of usual techniques cannot operate. The quantitative aspect relies on the necessity of an appropriate calibration procedure which takes into account of the probe-to-sample thermal interaction prior to any measurement. Besides this consideration that should be treated for any thermal contact probing system, the main advantages of our thermal microscope deal with the temperature available range, the insensitivity to the surface optical parameters, the possibility to image DC, and AC temperature components up to 1 kHz typically and a resolution limit related to near-field behavior.

  14. Applications of cryogenics in electron microscopy

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1973-01-01

    Description of research and development efforts which resulted in a high-voltage cryoelectron microscope system capable of consistent operation at 1.8 to 4.2 K. Attention is given to the design and operation of superconducting objective lenses providing enhanced resolution during longer exposure times at lower beam intensities (thus reducing radiation damage of specimens). A specific system described combines a closed-cycle superfluid helium refrigerator integrated with a modified 200 kV electron microscope. Consistent resolutions of 8 to 16 A are attained with significantly reduced radiation damage, contamination, and thermal noise in prolonged vibration-free examination of specimens at temperatures from 1.8 to 4.2 K. Applications in specific disciplines are discussed, including membrane ultrastructure, cryobiology, microelectronics, and general superconductivity research.

  15. Electron microscopy of biomaterials based on hydroxyapatite

    SciTech Connect

    Suvorova, E. I. Klechkovskaya, V. V.; Komarov, V. F.; Severin, A. V.; Melikhov, I. V.; Buffat, P. A.

    2006-10-15

    Three types of biomaterials based on hydroxyapatite are synthesized and investigated. Hydroxyapatite nanocrystals or microcrystals precipitated from low-temperature aqueous solutions serve as the initial material used for preparing spherical porous granules approximately 300-500 {mu}m in diameter. Sintering of hydroxyapatite crystals at a temperature of 870 deg. C for 2 h or at 1000 deg. C (for 3 h) + 1200 deg. C (for 2 h) brings about the formation of solid ceramics with different internal structures. According to the electron microscopic data, the ceramic material prepared at 870 deg. C is formed by agglomerated hydroxyapatite nanocrystals, whereas the ceramics sintered at 1200 deg. C (with a bending strength of the order of 100 MPa) are composed of crystal blocks as large as 2 {mu}m. It is established that all the biomaterials have a single-phase composition and consist of the hydroxyapatite with a structure retained up to a temperature of 1200 deg. C.

  16. Contributed Review: Review of integrated correlative light and electron microscopy

    SciTech Connect

    Timmermans, F. J.; Otto, C.

    2015-01-15

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  17. Contributed Review: Review of integrated correlative light and electron microscopy

    NASA Astrophysics Data System (ADS)

    Timmermans, F. J.; Otto, C.

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  18. Segmentation and learning in the quantitative analysis of microscopy images

    NASA Astrophysics Data System (ADS)

    Ruggiero, Christy; Ross, Amy; Porter, Reid

    2015-02-01

    In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.

  19. Quantitative imaging of intact cardiac tissue using remote focusing microscopy

    NASA Astrophysics Data System (ADS)

    Corbett, A. D.; Burton, R. A. B.; Bub, G.; Wilson, T.

    2015-03-01

    Remote focussing microscopy offers many advantages when acquiring volumetric data from living tissue. The all-optical means of refocussing does not agitate the specimen by moving either the stage or imaging objective. Aberrationcompensated imaging extends over volumes as large as 450 μm x 450 μm x 200 μm (X, Y and Z) allowing data to be collected from hundreds of cells. The speed with which refocussing can be achieved is limited only by the mechanical movement of a small (2 mm diameter) mirror. Using a pair of oblique imaging planes to rapidly acquire (<200ms) depth information temporally freezes residual tissue motion in the arrested heart. This paper discusses the progress of remote focussing microscopy from a novel imaging technique to a reliable tool in the life sciences. Specifically, we describe recent efforts to achieve the accurate calibration of both distance and orientation within the imaging volume. Using a laser machined fluorescent specimen it is possible to identify, with high sensitivity, small (<1%) depth-dependent magnification changes which are a linear function of axial misalignment of the imaging objective. The sensitivity of the calibration procedure limits distortion to <1 μm over the entire imaging volume. This work finds direct application in identifying the microscopic effects of chronic disease in the living heart.

  20. Electron Microscopy of Nephropathia Epidemica. Glomerular changes.

    PubMed

    Collan, Y; Lähdevirta, J; Jokinen, E J

    1978-02-10

    Electron microscopical changes in the glomeruli in 20 kidney biopsies from 18 patients, who were suffering from or had lately suffered from Nephropathia epidemica were studied. Various kinds of deposits were seen. Under the endothelial cells there were collections of light flocculent material. Small dark deposits were seen in the mesangium at the mesangial cell processes, inside the thickened basement membrane, and occasionally on the epithelial side of the membrane. Large deposits were seen around mesangial cells in the mesangium. Deposits were less numerous than in chronic immune complex diseases. The intramembranous or subepithelial deposits were associated with "moon craters", membranous convoluted structures or membrane debris. Granular extracellular mesangial material, round extracellular particles and intraendothelial microtubular inclusions were occasionally seen. In two of our cases occasional capsular epithelial cells showed numerous myelin bodies. Typical viruses were not seen in the glomeruli. The findings are in accord with the short period of scanty immune complex deposition in the glomeruli in the clinically active phase of Nephropathia epidemica. PMID:205038

  1. Studies of epidermal lipids using electron microscopy.

    PubMed

    Swartzendruber, D C

    1992-06-01

    Ruthenium tetroxide fixation has permitted the electron microscopic visualization of intercellular lipid lamellae in thin sections of stratum corneum. This development complements prior freeze-fracture studies of lipid lamellae and has advanced our knowledge about the ultrastructure of epidermal lipids in several ways. We have demonstrated a continuous lipid envelope that surrounds each differentiated stratum corneum cell and the presence of lipid lamellae throughout the entire stratum corneum of three mammalian species, including humans. Wherever lamellae are seen, they are present in multiples of one, two, or more pairs of bilayers, consistent with their formation from fused, flattened lipid vesicles. A unique pattern of lipid monolayers intervening between each pair of bilayers, based on sharing lipid chains between bilayers, has been proposed. In regions where there are no intercellular lamellae between corneocytes, intervening monolayers are in contact with adjacent lipid envelopes that might be involved in stratum corneum cohesion. However, limitations to the ruthenium technique must be overcome before changes in lamellar patterns can be accurately attributed to, or correlated with, changes in permeability brought about by experimental procedures or in diseased states. PMID:1498019

  2. Beam propagation analysis on thickness measurements in quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Bae, Yoon-Sung; Song, Jong-In; Har, Dongsoo; Kim, Dug Young

    2015-08-01

    The two-dimensional thickness profile of a phase object can be measured by phase microscopy by assuming that the light passes straight through the sample such that the measured phase profile is proportional to the thickness of the sample. However, any non-uniform index structure in a sample bends the straight light path by refraction and diffracts the non-uniform transverse phase structure of the wavefront along the propagation path within a sample. We investigated the consequence of these two effects within a phase object using a split-step beam propagation method that considers beam paths through a 3-μm-diameter bead sample. Our simulation results show that the phase profile of light just after passing through a sample differs significantly from an ideal phase profile. We verified these simulation results by comparing them with experimental data obtained with a Mach-Zehnder interferometer.

  3. Insights into primary immune deficiency from quantitative microscopy.

    PubMed

    Mace, Emily M; Orange, Jordan S

    2015-11-01

    Recent advances in genomics-based technology have resulted in an increase in our understanding of the molecular basis of many primary immune deficiencies. Along with this increased knowledge comes an increased responsibility to understand the underlying mechanism of disease, and thus increasingly sophisticated technologies are being used to investigate the cell biology of human immune deficiencies. One such technology, which has itself undergone a recent explosion in innovation, is that of high-resolution microscopy and image analysis. These advances complement innovative studies that have previously shed light on critical cell biological processes that are perturbed by single-gene mutations in primary immune deficiency. Here we highlight advances made specifically in the following cell biological processes: (1) cytoskeletal-related processes; (2) cell signaling; (3) intercellular trafficking; and (4) cellular host defense. PMID:26078103

  4. Photon gating in four-dimensional ultrafast electron microscopy

    PubMed Central

    Hassan, Mohammed T.; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H.

    2015-01-01

    Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “single” light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a “second” optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM. PMID:26438835

  5. Photon gating in four-dimensional ultrafast electron microscopy.

    PubMed

    Hassan, Mohammed T; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H

    2015-10-20

    Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM. PMID:26438835

  6. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy

    PubMed Central

    Liss, Viktoria; Barlag, Britta; Nietschke, Monika; Hensel, Michael

    2015-01-01

    Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches. PMID:26643905

  7. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    NASA Astrophysics Data System (ADS)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  8. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging

    PubMed Central

    Chowdhury, Shwetadwip; Izatt, Joseph

    2013-01-01

    Structured illumination microscopy (SIM) is an established microscopy technique typically used to image samples at resolutions beyond the diffraction limit. Until now, however, achieving sub-diffraction resolution has predominantly been limited to intensity-based imaging modalities. Here, we introduce an analogue to conventional SIM that allows sub-diffraction resolution, quantitative phase-contrast imaging of optically transparent objects. We demonstrate sub-diffraction resolution amplitude and quantitative-phase imaging of phantom targets and enhanced resolution quantitative-phase imaging of cells. We report a phase accuracy to within 5% and phase noise of 0.06 rad. PMID:24156044

  9. First morphological characterization of 'Candidatus Mycoplasma turicensis' using electron microscopy.

    PubMed

    Willi, Barbara; Museux, Kristina; Novacco, Marilisa; Schraner, Elisabeth M; Wild, Peter; Groebel, Katrin; Ziegler, Urs; Wolf-Jäckel, Godelind A; Kessler, Yvonne; Geret, Catrina; Tasker, Séverine; Lutz, Hans; Hofmann-Lehmann, Regina

    2011-05-01

    At least three haemotropic mycoplasmas have been recognized in cats: Mycoplasma haemofelis (Mhf), 'Candidatus Mycoplasma haemominutum' (CMhm) and 'Candidatus M. turicensis' (CMt). The latter was originally identified in a Swiss pet cat with haemolytic anaemia and shown to be prevalent in domestic cats and wild felids worldwide using molecular methods. So far, there has been no confirmatory morphological evidence of the existence of CMt presumably due to low blood loads during infection while CMhm has only been characterized by light microscopy with discrepant results. This study aimed to provide for the first time electron microscopic characteristics of CMt and CMhm and to compare them to Mhf. Blood samples from cats experimentally infected with CMt, CMhm and Mhf were used to determine copy numbers in blood by real-time PCR and for transmission and scanning electron microscopy. High resolution scanning electron microscopy revealed CMt and CMhm to be discoid-shaped organisms of 0.3 μm in diameter attached to red blood cells (RBCs). In transmission electron microscopy of CMt, an oval organism of about 0.25 μm with several intracellular electron dense structures was identified close to the surface of a RBC. CMhm and CMt exhibited similar morphology to Mhf but had a smaller diameter. This is the first study to provide morphological evidence of CMt thereby confirming its status as a distinct haemoplasma species, and to present electron microscopic features of CMhm. PMID:21183295

  10. Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy

    SciTech Connect

    Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

    2011-02-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  11. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    SciTech Connect

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  12. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  13. Microscopy with slow electrons: from LEEM to XPEEM

    ScienceCinema

    Bauer, Ernst [Arizona State University, Phoenix, Arizona, United States

    2010-01-08

    The short penetration and escape depth of electrons with energies below 1 keV make them ideally suited for the study of surfaces and ultrathin films. The combination of the low energy electrons and the high lateral resolution of a microscope produces a powerful method for the characterization of nanostructures on bulk samples, in particular if the microscope is equipped with an imaging energy filter and connected to a synchrotron radiation source. Comprehensive characterization by imaging, diffraction, and spectroscope of the structural, chemical, and magnetic properties is then possible. The Talk will describe the various imaging techniques in using reflected and emitted electrons in low-energy electron microscopy (LEEM) and x-ray photoemission electron microscopy (XPEEM), with an emphasis on magnetic materials with spin-polarized LEEM and x-ray magnetic circular dichroism PEEM. The talk with end with an outlook on future possibilities.

  14. Laboratory design for high-performance electron microscopy

    SciTech Connect

    O'Keefe, Michael A.; Turner, John H.; Hetherington, Crispin J.D.; Cullis, A.G.; Carragher, Bridget; Jenkins, Ron; Milgrim, Julie; Milligan,Ronald A.; Potter, Clinton S.; Allard, Lawrence F.; Blom, Douglas A.; Degenhardt, Lynn; Sides, William H.

    2004-04-23

    Proliferation of electron microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions improve, transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.

  15. Amyloidosis of Alzheimer's Abeta peptides: solid-state nuclear magnetic resonance, electron paramagnetic resonance, transmission electron microscopy, scanning transmission electron microscopy and atomic force microscopy studies.

    PubMed

    Antzutkin, Oleg N

    2004-02-01

    Aggregation cascade for Alzheimer's amyloid-beta peptides, its relevance to neurotoxicity in the course of Alzheimer's disease and experimental methods useful for these studies are discussed. Details of the solid-phase peptide synthesis and sample preparation procedures for Alzheimer's beta-amyloid fibrils are given. Recent progress in obtaining structural constraints on Abeta-fibrils from solid-state NMR and scanning transmission electron microscopy (STEM) data is discussed. Polymorphism of amyloid fibrils and oligomers of the 'Arctic' mutant of Abeta(1-40) was studied by (1)H,(13)C solid-state NMR, transmission electron microscopy (TEM) and atomic force microscopy (AFM), and a real-time aggregation of different polymorphs of the peptide was observed with the aid of in situ AFM. Recent results on binding of Cu(II) ions and Al-citrate and Al-ATP complexes to amyloid fibrils, as studied by electron paramagnetic resonance (EPR) and solid-state (27)Al NMR techniques, are also presented. PMID:14745804

  16. Subsurface atomic force microscopy: towards a quantitative understanding

    NASA Astrophysics Data System (ADS)

    Verbiest, G. J.; Simon, J. N.; Oosterkamp, T. H.; Rost, M. J.

    2012-04-01

    Recent experiments in the field of subsurface atomic force microscopy have demonstrated that it is possible to nondestructively image micro- and even nanoparticles that are embedded significantly deep within the bulk of a sample. In order to get insights into the contrast formation mechanism, we performed a finite element analysis and an analytical study, in which we calculated the amplitude and phase variation on the surface of an ultrasound wave that has traveled through the sample. Our calculations were performed as closely as possible to the situation in the experiments to enable a (future) comparison based on our predictions. We show that Rayleigh scattering of acoustic waves accounts for the measured contrast and we verify the characteristic Rayleigh dependences. The numerical results show that the contrast is independent of the depth at which a particle is buried, whereas the analytical study reveals a 1/depth dependence. In addition, we find a large deviation in the width of the particle in the contrast at the surface when applying the numerical or the analytical calculation respectively. These results indicate the importance of both the reflections of sound waves at the sample interfaces and bulk damping, as both are treated differently in our two models.

  17. Deconvolving Single-Molecule Intensity Distributions for Quantitative Microscopy Measurements

    PubMed Central

    Mutch, Sarah A.; Fujimoto, Bryant S.; Kuyper, Christopher L.; Kuo, Jason S.; Bajjalieh, Sandra M.; Chiu, Daniel T.

    2007-01-01

    In fluorescence microscopy, images often contain puncta in which the fluorescent molecules are spatially clustered. This article describes a method that uses single-molecule intensity distributions to deconvolve the number of fluorophores present in fluorescent puncta as a way to “count” protein number. This method requires a determination of the correct statistical relationship between the single-molecule and single-puncta intensity distributions. Once the correct relationship has been determined, basis histograms can be generated from the single-molecule intensity distribution to fit the puncta distribution. Simulated data were used to demonstrate procedures to determine this relationship, and to test the methodology. This method has the advantages of single-molecule measurements, providing both the mean and variation in molecules per puncta. This methodology has been tested with the avidin-biocytin binding system for which the best-fit distribution of biocytins in the sample puncta was in good agreement with a bulk determination of the avidin-biocytin binding ratio. PMID:17259276

  18. Directed evolution of APEX2 for electron microscopy and proteomics

    PubMed Central

    Lam, Stephanie S.; Martell, Jeffrey D.; Kamer, Kimberli J.; Deerinck, Thomas J.; Ellisman, Mark H.; Mootha, Vamsi K.; Ting, Alice Y.

    2014-01-01

    APEX is an engineered peroxidase that functions both as an electron microscopy tag, and as a promiscuous labeling enzyme for live-cell proteomics. Because the limited sensitivity of APEX precludes applications requiring low APEX expression, we used yeast display evolution to improve its catalytic efficiency. Our evolved APEX2 is far more active in cells, enabling the superior enrichment of endogenous mitochondrial and endoplasmic reticulum membrane proteins and the use of electron microscopy to resolve the sub-mitochondrial localization of calcium uptake regulatory protein MICU1. PMID:25419960

  19. Ultrastructural Analysis of Drosophila Ovaries by Electron Microscopy

    PubMed Central

    Hurd, Thomas R.; Sanchez, Carlos G.; Teixeira, Felipe K.; Petzold, Chris; Dancel-Manning, Kristen; Wang, Ju-Yu S.; Lehmann, Ruth; Liang, Feng-Xia A.

    2016-01-01

    i. Summary The Drosophila melanogaster ovary is a powerful, genetically tractable system through which one can elucidate the principles underlying cellular function and organogenesis in vivo. In order to understand the intricate process of oogenesis at the subcellular level, microscopic analysis with the highest possible resolution is required. In this chapter, we describe the preparation of ovaries for ultrastructural analysis using transmission electron microscopy and focused ion beam scanning electron microscopy. We discuss and provide protocols for chemical fixation of Drosophila ovaries that facilitate optimal imaging with particular attention paid to preserving and resolving mitochondrial membrane morphology and structure. PMID:26324436

  20. Surface morphology of Trichinella spiralis by scanning electron microscopy

    SciTech Connect

    Kim, C.W.; Ledbetter, M.C.

    1980-02-01

    The surface morphology of larval and adult Trichinella spiralis was studied by scanning electron microscopy (SEM) of fixed, dried, and metal-coated specimens. The results are compared with those found earlier by various investigators using light and transmission electron microscopy. Some morphological features reported here are revealed uniquely by SEM. These include the pores of the cephalic sense organs, the character of secondary cuticular folds, variations of the hypodermal gland cell openings or pores, and the presence of particles on the copulatory bell.

  1. Imaging deep trap distributions by low vacuum scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Toth, Milos; Knowles, W. Ralph; Phillips, Matthew R.

    2007-02-01

    The distribution of deep traps in a bulk dielectric (Al2O3) is imaged by low vacuum scanning electron microscopy (LVSEM). The image contrast corresponds to spatial variations in radiation-induced, field-enhanced conductivity. A methodology is presented for identification of such contrast, the behavior of which is explained by a model of charge generation and transport in dielectrics imaged by LVSEM. The technique presented is applicable to studies of charge traps in dielectrics, device failure modes, and contrast mechanisms in electron microscopy.

  2. Quantitative biorelevant profiling of material microstructure within 3D porous scaffolds via multiphoton fluorescence microscopy.

    PubMed

    Liu, Er; Treiser, Matthew D; Johnson, Patrick A; Patel, Parth; Rege, Aarti; Kohn, Joachim; Moghe, Prabhas V

    2007-08-01

    This study presents a novel approach, based on fluorescence multiphoton microscopy (MPM), to image and quantitatively characterize the microstructure and cell-substrate interactions within microporous scaffold substrates fabricated from synthetic biodegradable polymers. Using fluorescently dyed scaffolds fabricated from poly(DTE carbonate)/poly(DTO carbonate) blends of varying porosity and complementary green fluorescent protein-engineered fibroblasts, we reconstructed the three-dimensional distribution of the microporous and macroporous regions in 3D scaffolds, as well as cellular morphological patterns. The porosity, pore size and distribution, strut size, pore interconnectivity, and orientation of both macroscale and microscale pores of 3D scaffolds were effectively quantified and validated using complementary imaging techniques. Compared to other scaffold characterizing techniques such as confocal imaging and scanning electron microscopy (SEM), MPM enables the acquisition of images from scaffold thicknesses greater than a hundred microns with high signal-to-noise ratio, reduced bulk photobleaching, and the elimination of the need for deconvolution. In our study, the morphology and cytoskeletal organization of cells within the scaffold interior could be tracked with high resolution within the limits of penetration of MPM. Thus, MPM affords a promising integrated platform for imaging cell-material interactions within the interior of polymeric biomaterials. PMID:17238159

  3. CI Slide: calibration slide for quantitative microscopy imaging in absorbance

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, Fahime; Ye, Qian; Zulkafly, Nasir; Carraro, Anita; Korbelic, Jagoda; Chen, Zhaoyang; Harrison, Alan; Follen, Michele; MacAulay, Calum; Ward, Rabab K.; Guillaud, Martial

    2014-03-01

    New imaging technologies are changing the field of digital pathology. This field faces numerous challenges and there is a pressing need for standardization, calibration protocols, quality control and quantitative assessment. We have designed a new calibration imaging slide (Cancer Imaging Slide), specifically to measure the characteristics of old or new imaging systems or scanners. The layout of the slide consists of 138 boxes with the side length of 1.6 mm, containing objects of known morphologic and photometric characteristics. Among them, 112 boxes contain different permutations of circles, ovals, and squares. The circles have different radii, radius/pitch ratios and step transmissions. The ovals have different sizes and orientations. The squares are consistent in size and orientation but have different step transmission values. Also, 16 boxes contain three resolution test targets: crosses, USAF target and Siemens star. The last 10 boxes are blank boxes with different transmission values. Four slides were scanned and imaged on one commercial whole-slide scanner and one high resolution imaging system. After segmenting the images, about 200 features (photometric, morphologic and architectural) were measured with our in-house image processing software. The objective of the project is to develop a statistical process control using this new slide. In this paper, we describe the characteristics of the slide and present our preliminary results.

  4. Quantitative orientation-independent differential interference contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; LaFountain, James; Biggs, David; Inoué, Shinya

    2007-02-01

    We describe a new DIC technique, which records phase gradients within microscopic specimens independently of their orientation. The proposed system allows the generation of images representing the distribution of dry mass (optical path difference) in the specimen. Unlike in other forms of interference microscopes, this approach does not require a narrow illuminating cone. The orientation-independent differential interference contrast (OI-DIC) system can also be combined with orientation-independent polarization (OI-Pol) measurements to yield two complementary images: one showing dry mass distribution (which is proportional to refractive index) and the other showing distribution of birefringence (due to structural or internal anisotropy). With a model specimen used for this work -- living spermatocytes from the crane fly, Nephrotoma suturalis --- the OI-DIC image clearly reveals the detailed shape of the chromosomes while the polarization image quantitatively depicts the distribution of the birefringent microtubules in the spindle, both without any need for staining or other modifications of the cell. We present examples of a pseudo-color combined image incorporating both orientation-independent DIC and polarization images of a spermatocyte at diakinesis and metaphase of meiosis I. Those images provide clear evidence that the proposed technique can reveal fine architecture and molecular organization in live cells without perturbation associated with staining or fluorescent labeling. The phase image was obtained using optics having a numerical aperture 1.4, thus achieving a level of resolution never before achieved with any interference microscope.

  5. Determination of mineral distributions in bituminous coals by electron microscopy

    SciTech Connect

    Harris, L.A.

    1982-01-01

    In recent transmission electron microscopical studies of coals, ultrafine minerals were observed (<1 ..mu..m). The observation and identity of these submicron minerals would have been difficult to achieve by use of the scanning electron microscope (SEM). However, the scanning transmission electron microscope (STEM) with energy dispersive x-ray analysis is an ideal analytical tool since it is capable of supplying elemental and diffraction data for particles as small as 30 nm in diameter. In this paper, we present observations and analyses of mineral matter in coals obtained through use of electron microscopes. These data significantly increase our knowledge of the mineral matter in coals as related to their affects on coal combustion: syngenetic and epigenetic minerals can be observed and identified by electron microscopy in conjunction with energy dispersive x-ray analysis; submicron micerals that are not readily identified or observed by scanning electron microscopy are easily viewed by use of transmission electron microscopy; calcite appears to be relatively scarce as a syngenetic mineral whereas calcite is an important epigenetic mineral usually occurring as cleat deposits; important minor syngenetic mineral assemblages appear to be associated with detritus. These minerals probably contain the major portion of minor and trace elements in coal; most of the epigenetic minerals should be readily removed from the coal resulting in a probable reduction in fouling and slagging.

  6. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L.; Chase, George G.; Reneker, Darrell H.

    2015-12-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules.Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01619c

  7. Attosecond electron pulses for 4D diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2007-01-01

    In this contribution, we consider the advancement of ultrafast electron diffraction and microscopy to cover the attosecond time domain. The concept is centered on the compression of femtosecond electron packets to trains of 15-attosecond pulses by the use of the ponderomotive force in synthesized gratings of optical fields. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (≈50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics, especially of atomic structures, clusters of atoms, and some materials. PMID:18000040

  8. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  9. Nano-fEM: Protein Localization Using Photo-activated Localization Microscopy and Electron Microscopy

    PubMed Central

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J.; Davis, Wayne M.; Jorgensen, Erik M.

    2012-01-01

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated 1-3. However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated 4-7. However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot 8-10. We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week. PMID:23242070

  10. Low voltage scanning electron microscopy of uncoated kidney stones.

    PubMed

    Cheng, P T; Reid, A D

    1985-01-01

    Some organic kidney stone components are easily damaged by a 10-30 kV electron beam used in conventional scanning electron microscopy. To avoid beam damage and reduce charging, it is desirable to study kidney stones by low voltage (1-5 kV) scanning electron microscopy (LVSEM) even though image resolution will suffer and X-ray microanalysis will not be available. If one is proficient in crystal morphology one can analyze gold-coated kidney stones by LVSEM without much difficulty. Stone components examined include calcium oxalate monohydrate, calcium oxalate dihydrate, struvite, calcium apatite, brushite, whitlockite, cystine, uric acid, uric acid dihydrate and ammonium acid urate. For all these components with the exception of the very small whitlockite and ammonium acid urate crystals, uncoated kidney stones can be examined with a 1 kV electron beam. PMID:4095500

  11. Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy

    NASA Technical Reports Server (NTRS)

    Kaiser, W. J.; Bell, L. D.

    1988-01-01

    A new technique for spectroscopic investigation of subsurface interface electronic structure has been developed. The method, ballistic-electron-emission microscopy (BEEM), is based on scanning tunneling microscopy. BEEM makes possible, for the first time, direct imaging of subsurface interface properties with nanometer spatial resolution. The first application of BEEM to subsurface Schottky-barrier interfaces is reported.

  12. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.

    PubMed

    Löschberger, Anna; Franke, Christian; Krohne, Georg; van de Linde, Sebastian; Sauer, Markus

    2014-10-15

    Here, we combine super-resolution fluorescence localization microscopy with scanning electron microscopy to map the position of proteins of nuclear pore complexes in isolated Xenopus laevis oocyte nuclear envelopes with molecular resolution in both imaging modes. We use the periodic molecular structure of the nuclear pore complex to superimpose direct stochastic optical reconstruction microscopy images with a precision of <20 nm on electron micrographs. The correlative images demonstrate quantitative molecular labeling and localization of nuclear pore complex proteins by standard immunocytochemistry with primary and secondary antibodies and reveal that the nuclear pore complex is composed of eight gp210 (also known as NUP210) protein homodimers. In addition, we find subpopulations of nuclear pore complexes with ninefold symmetry, which are found occasionally among the more typical eightfold symmetrical structures. PMID:25146397

  13. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  14. Ultrastructure of Proechinophthirus zumpti (Anoplura, Echinophthiriidae) by scanning electron microscopy.

    PubMed

    Castro, Dolores del Carmen; Romero, Mariano Damian; Dreon, Marcos

    2002-09-01

    The ultrastructure of Proechinophthirus zumpti Werneck, 1955, mainly the external chorionic features of the egg, is described through electronic microscopy techniques. This species was first cited in Argentina, infesting Arctocephalus australis (Zimmermann, 1873). The morphological adaptations of adults and nymphs are described in both species of Proechinophthirus parasitic on Otariidae: P. fluctus (Ferris, 1916) and P. zumpti. PMID:12386702

  15. Improved handling of embedding plastics for electron microscopy.

    PubMed

    Shannon, W A

    1982-08-01

    An improved, safer, rapid method for preparing embedding plastics for electron microscopy is described. The method consists of contained storage and dispensing of individual plastic components on an automatic tare balance. The proportions are based on weight measurements and may be calculated from volume or proportion recipes. The usual problems in and resulting from embedding plastic handling have been eliminated. PMID:6750130

  16. Electron microscopy of Mycoplasma pneumoniae microcolonies grown on solid surfaces.

    PubMed Central

    Kim, C K; Pfister, R M; Somerson, N L

    1977-01-01

    Mycoplasma pneumoniae sprain CL-8 was studied by using various surfaces for adherence and growth. Cells grown on Epon 812, Formvar, carbon, and glass were of similar morphology. Thin Epon pieces were good material for culturing the organisms and examining thin-sectioned microcolonies by transmission electron microscopy. Images PMID:931378

  17. A national facility for biological cryo-electron microscopy

    SciTech Connect

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  18. Seeing Inside Materials by Aberration-Corrected Electron Microscopy

    SciTech Connect

    Pennycook, Stephen J; Borisevich, Albina Y; van Benthem, Klaus; Oxley, Mark P; Luo, Weidong; Oh, Sang Ho; Kumar, Dhananjay; Werner, P; Zakharov, N. D.; Molina Rubio, Sergio I; Marinopulos, Apostolos; Pantelides, Sokrates T

    2008-01-01

    The motivation for aberration correction in electron microscopy was primarily to improve lateral resolution, and its successful achievement enabled the direct imaging of sub- ngstrom lattice spacings in a crystal. However, the smaller probe results in greatly enhanced sensitivity for imaging individual atoms, and in addition, the wider useable aperture results in a smaller depth of field.

  19. Detection of parvoviruses in wolf feces by electron microscopy

    USGS Publications Warehouse

    Muneer, M.A.; Farah, I.O.; Pomeroy, K.A.; Goyal, S.M.; Mech, L.D.

    1988-01-01

    One hundred fifteen wolf (Canis lupus) feces were collected between 1980 and 1984 from northeastern Minnesota and were examined for canine parvovirus by negative contrast electron microscopy. Of these, seven (6%) samples revealed the presence of parvovirus. Some of these viruses were able to grow in cell cultures forming intranuclear inclusion bodies and giant cells.

  20. Collaboration at the Nanoscale: Exploring Viral Genetics with Electron Microscopy

    ERIC Educational Resources Information Center

    Duboise, S. Monroe; Moulton, Karen D.; Jamison, Jennifer L.

    2009-01-01

    The Maine Science Corps is a project sponsored by the National Science Foundation's (NSF) Graduate Teaching Fellows in K-12 Education (GK-12 ) program. Through this program, the University of Southern Maine's (USM) virology and transmission electron microscopy (TEM) research group provides high school teachers and students in rural areas with…

  1. Scanning electron microscopy analysis of corrosion degradation on tinplate substrates.

    PubMed

    Zumelzu, E; Cabezas, C; Vera, A

    2003-01-01

    The degradation of electrolytic tinplate used in food containers was analysed and evaluated, using scanning electron microscopy and electrochemical measurements of microcorrosion and ion dissolution by atomic absorption to prevent food contamination caused by metal traces and to increase the durability of such tinplates. PMID:12627896

  2. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function

  3. The Electron Microscopy eXchange (EMX) initiative.

    PubMed

    Marabini, Roberto; Ludtke, Steven J; Murray, Stephen C; Chiu, Wah; de la Rosa-Trevín, Jose M; Patwardhan, Ardan; Heymann, J Bernard; Carazo, Jose M

    2016-05-01

    Three-dimensional electron microscopy (3DEM) of ice-embedded samples allows the structural analysis of large biological macromolecules close to their native state. Different techniques have been developed during the last forty years to process cryo-electron microscopy (cryo-EM) data. Not surprisingly, success in analysis and interpretation is highly correlated with the continuous development of image processing packages. The field has matured to the point where further progress in data and methods sharing depends on an agreement between the packages on how to describe common image processing tasks. Such standardization will facilitate the use of software as well as seamless collaboration, allowing the sharing of rich information between different platforms. Our aim here is to describe the Electron Microscopy eXchange (EMX) initiative, launched at the 2012 Instruct Image Processing Center Developer Workshop, with the intention of developing a first set of standard conventions for the interchange of information for single-particle analysis (EMX version 1.0). These conventions cover the specification of the metadata for micrograph and particle images, including contrast transfer function (CTF) parameters and particle orientations. EMX v1.0 has already been implemented in the Bsoft, EMAN, Xmipp and Scipion image processing packages. It has been and will be used in the CTF and EMDataBank Validation Challenges respectively. It is also being used in EMPIAR, the Electron Microscopy Pilot Image Archive, which stores raw image data related to the 3DEM reconstructions in EMDB. PMID:26873784

  4. Environmental scanning electron microscopy gold immunolabeling in cell biology.

    PubMed

    Rosso, Francesco; Papale, Ferdinando; Barbarisi, Alfonso

    2013-01-01

    Immunogold labeling (IGL) technique has been utilized by many authors in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain the identification/localization of receptors and antigens, both in cells and tissues. Environmental scanning electron microscopy (ESEM) represents an important tool in biomedical research, since it does not require any severe processing of the sample, lowering the risk of generating artifacts and interfere with the IGL procedure. The absence of metal coating could yield further advantages for our purpose as the labeling detection is based on the atomic number difference between nanogold spheres and the biological material. Using the gaseous secondary electron detector, compositional contrast is easily revealed by the backscattered electron component of the signal. In spite of this fact, only few published papers present a combination of ESEM and IGL. Hereby we present our method, optimized to improve the intensity and the specificity of the labeling signal, in order to obtain a semiquantitative evaluation of the labeling signal.In particular, we used a combination of IGL and ESEM to detect the presence of a protein on the cell surface. To achieve this purpose, we chose as an experimental system 3T3 Swiss albino mouse fibroblasts and galectin-3. PMID:23027021

  5. Opportunities and challenges in liquid cell electron microscopy.

    PubMed

    Ross, Frances M

    2015-12-18

    Transmission electron microscopy offers structural and compositional information with atomic resolution, but its use is restricted to thin, solid samples. Liquid samples, particularly those involving water, have been challenging because of the need to form a thin liquid layer that is stable within the microscope vacuum. Liquid cell electron microscopy is a developing technique that allows us to apply the powerful capabilities of the electron microscope to imaging and analysis of liquid specimens. We describe its impact in materials science and biology. We discuss how its applications have expanded via improvements in equipment and experimental techniques, enabling new capabilities and stimuli for samples in liquids, and offering the potential to solve grand challenge problems. PMID:26680204

  6. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM. PMID:19915208

  7. Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry

    PubMed Central

    Shaked, Natan T.; Finan, John D.; Guilak, Farshid; Wax, Adam

    2010-01-01

    We experimentally implement label-free phase microscopy using wide-field digital interferometry (WFDI) techniques to retrieve quantitative volumetric data of articular chondrocyte dynamics. Using the scanless interferometric system, we visualize chondrocyte swelling and bursting induced by hypo-osmotic pressure. Reconstructed images are obtained by an efficient digital process. We use the resulting images to calculate quantitative temporal-spatial morphological parameters of the cell, with the observed dynamics limited only by the true frame rate of the camera. To show the utility of WFDI in recording articular chondrocyte dynamics, we also provide an experimental comparison of WFDI and differential interference contrast microscopy. PMID:20210420

  8. Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy.

    PubMed

    Ash, William M; Krzewina, Leo; Kim, Myung K

    2009-12-01

    Total internal reflection (TIR) holographic microscopy uses a prism in TIR as a near-field imager to perform quantitative phase microscopy of cell-substrate interfaces. The presence of microscopic organisms, cell-substrate interfaces, adhesions, and tissue structures on the prism's TIR face causes relative index of refraction and frustrated TIR to modulate the object beam's evanescent wave phase front. We present quantitative phase images of test specimens such as Amoeba proteus and cells such as SKOV-3 and 3T3 fibroblasts. PMID:19956284

  9. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    NASA Astrophysics Data System (ADS)

    Wang, R.; Williams, C. C.

    2015-09-01

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  10. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    SciTech Connect

    Wang, R.; Williams, C. C.

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  11. Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ

    PubMed Central

    Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.

    2009-01-01

    Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881

  12. Studying Atomic Structures by Aberration-Corrected Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Urban, Knut W.

    2008-07-01

    Seventy-five years after its invention, transmission electron microscopy has taken a great step forward with the introduction of aberration-corrected electron optics. An entirely new generation of instruments enables studies in condensed-matter physics and materials science to be performed at atomic-scale resolution. These new possibilities are meeting the growing demand of nanosciences and nanotechnology for the atomic-scale characterization of materials, nanosynthesized products and devices, and the validation of expected functions. Equipped with electron-energy filters and electron-energy loss spectrometers, the new instruments allow studies not only of structure but also of elemental composition and chemical bonding. The energy resolution is about 100 milli electron volts, and the accuracy of spatial measurements has reached a few picometers. However, understanding the results is generally not straightforward and only possible with extensive quantum-mechanical computer calculations.

  13. Analytical quantitative theory of RF-SPM for nanocarbon electronics

    NASA Astrophysics Data System (ADS)

    Rotkin, Slava V.

    2015-03-01

    Among a variety of Scanning Probe Microscopy (SPM) tools RF- or microwave-SPM has recommended itself as a versatile characterization tool, recently demonstrated capability to map electronic properties of nanocarbon materials non-destructively and with nanometer resolution. The transparent theory of RF-SPM sensing mechanism is however lacking, mostly limited to numerical or empirical solutions, especially when studying low-dimensional quantum objects, such as nanotubes/nanowires (NT/NW), where the classical description is often invalid. One-dimensional electronic structure of the NT/NW, weak screening of Coulomb interaction and finite e-e compressibility were successfully taken into account to provide an analytic form of its quasi-stationary (due to low RF frequency of the excitation) selfconsistent response. SPM tip response function was, in turn, efficiently analyzed in multipole series, and non-perturbatively diagrammatically summed in the sense of the Random Phase Approximation. Resulting theory shows transparently the physics of RF-SPM sensing mechanism, simultaneously allowing a quantitative analysis of recent RF-SPM data on nanotube electronic devices [E. Seabron, S. MacLaren, X. Xie, SV. Rotkin, JA. Rogers, WL. Wilson, unpublished]. Support by AFOSR (# FA9550-11-1-0185) is acknowledged.

  14. Reactive gas plasma specimen processing for use in microanalysis and imaging in analytical electron microscopy

    SciTech Connect

    Zaluzec, N.J.; Kestel, B.J.; Henriks, D.

    1997-01-01

    It has long been the bane of analytical electron microscopy (AEM) that the use of focused probes during microanalysis of specimens increases the local rate of hydrocarbon contamination. This is most succinctly observed by the formation of contamination deposits during focused probe work typical of AEM studies. While serving to indicate the location of the electron probe, the contamination obliterates the area of the specimen being analyzed and adversely affects all quantitative microanalysis methodologies. A variety of methods including: UV, electron beam flooding, heating and/or cooling can decrease the rate of contamination, however, none of these methods directly attack the source of specimen borne contamination. Research has shown that reactive gas plasmas may be used to clean both the specimen and stage for AEM, in this study the authors report on quantitative measurements of the reduction in contamination rates in an AEM as a function of operating conditions and plasma gases.

  15. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy.

    PubMed

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L; Chase, George G; Reneker, Darrell H

    2016-01-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. PMID:26369731

  16. Macromolecular assembly structures by comparative modeling and electron microscopy.

    PubMed

    Lasker, Keren; Velázquez-Muriel, Javier A; Webb, Benjamin M; Yang, Zheng; Ferrin, Thomas E; Sali, Andrej

    2012-01-01

    Advances in electron microscopy allow for structure determination of large biological machines at increasingly higher resolutions. A key step in this process is fitting component structures into the electron microscopy-derived density map of their assembly. Comparative modeling can contribute by providing atomic models of the components, via fold assignment, sequence-structure alignment, model building, and model assessment. All four stages of comparative modeling can also benefit from consideration of the density map. In this chapter, we describe numerous types of modeling problems restrained by a density map and available protocols for finding solutions. In particular, we provide detailed instructions for density map-guided modeling using the Integrative Modeling Platform (IMP), MODELLER, and UCSF Chimera. PMID:22323229

  17. Microfabricated high-bandpass foucault aperture for electron microscopy

    DOEpatents

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  18. Ultrafast electron microscopy in materials science, biology, and chemistry

    SciTech Connect

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.

  19. Cross-sectional transmission electron microscopy of semiconductors

    SciTech Connect

    Sadana, D.K.

    1982-10-01

    A method to prepare cross-sectional (X) semiconductor specimens for transmission electron microscopy (TEM) has been described. The power and utility of XTEM has been demonstrated. It has been shown that accuracy and interpretation of indirect structural-defects profiling techniques, namely, MeV He/sup +/ channeling and secondary ion mass spectrometry (SIMS) can be greatly enhanced by comparing their results with those obtained by XTEM from the same set of samples.

  20. Studying localized corrosion using liquid cell transmission electron microscopy

    SciTech Connect

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; Duquette, David; Ross, Frances M.; Hull, Robert

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au+ ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.

  1. Studying localized corrosion using liquid cell transmission electron microscopy

    DOE PAGESBeta

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; Duquette, David; Ross, Frances M.; Hull, Robert

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au+ ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.

  2. Three-dimensional volume imaging with electron microscopy toward connectome.

    PubMed

    Ohno, Nobuhiko; Katoh, Mitsuhiko; Saitoh, Yurika; Saitoh, Sei; Ohno, Shinichi

    2015-02-01

    Ultrastructural analyses with electron microscopy have provided indispensable information to understand physiology and pathology of the nervous system. Recent advancement in imaging methodology paved the way for complete reconstruction of the neuronal connection map in the central nervous system, which is termed 'connectome' and would provide key insights to understand the functions of the brain. The critical advancement includes serial ultrastructural observation with scanning electron microscopy (SEM) instead of conventional serial sectioning transmission electron microscopy along with specific tissue preparation methods to increase heavy metal deposition for efficient SEM imaging. The advanced imaging methods using SEM have distinct advantages and disadvantages in multiple aspects, such as resolution and imaging speed, and should be selected depending on the observation conditions, such as target tissue sizes, required spatial resolution and necessity for re-observation. Dealing with the huge dataset remained to be a major obstacle, and automation in segmentation and 3D reconstruction would be critical to understand neuronal circuits in a larger volume of the brain. Future improvement in acquisition and analyses of the morphological data obtained with the advanced SEM imaging is awaited to elucidate the significance of whole connectome as the structural basis of the consciousness, intelligence and memory of a subject. PMID:25550364

  3. Experiments in electron microscopy: from metals to nerves

    NASA Astrophysics Data System (ADS)

    Unwin, Nigel

    2015-04-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse.

  4. Fixation methods for electron microscopy of human and other liver

    PubMed Central

    Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter

    2010-01-01

    For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830

  5. Immuno and lectin histochemistry for renal electron microscopy.

    PubMed

    Nakajima, Mitsuru

    2009-01-01

    The combination of histochemical techniques and electron microscopy is a powerful tool to study the mechanisms and pathology of renal disease. Through the use of electron-dense markers such as colloidal gold, biologists are able to localize immune deposits, cellular receptors, and extracellular proteins, amongst others. In this chapter, the protocols for making colloidal gold, conjugating colloidal gold to protein A, and post-embedding labeling with a protein A-gold complex are described. Finally, a parallel technique for histochemical labeling with lectin-gold complexes is provided. PMID:19148612

  6. Transmission Electron Microscopy Study of InN Nanorods

    SciTech Connect

    Liliental-Weber, Z.; Li, X.; Kryliouk, Olga; Park, H.J.; Mangum,J.; Anderson, T.

    2006-07-13

    InN nanorods were grown on a, c-, and r-plane of sapphire and also on Si (111) and GaN (0001) by non-catalytic, template-free hydride metal-organic vapor phase epitaxy and studied by transmission electron microscopy, electron energy loss (EELS) and photoluminescence (PL) at room temperature. These nanocrystals have different shapes and different faceting depending on the substrate used and their crystallographic orientation. EELS measurements have confirmed the high purity of these crystals. The observed PL peak was in the range of 0.9-0.95 eV. The strongest PL intensity was observed for the nanocrystals with the larger diameters.

  7. Imaging and microanalysis of thin ionomer layers by scanning transmission electron microscopy

    SciTech Connect

    Cullen, David A; Koestner, Roland; Kukreja, Ratan; Minko, Sergiy; Trotsenko, Oleksandr; Tokarev, Alexander V; Guetaz, Laure; Meyer III, Harry M; Parish, Chad M; More, Karren Leslie

    2014-01-01

    Improved conditions for imaging and spectroscopic mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. These conditions are first identified on model systems of Nafion ionomer-coated nanostructured thin films and nanoporous Si. The optimized conditions are then applied in a quantitative study of the ionomer through-layer loading for two typical electrode catalyst coatings using electron energy loss and energy dispersive X-ray spectroscopy in the transmission electron microscope. The e-beam induced damage to the perfluorosulfonic acid (PFSA) ionomer is quantified by following the fluorine mass loss with electron exposure and is then mitigated by a few orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis is also applied to the analysis of spectrum images for data denoising and unbiased separation of independent components related to the catalyst, ionomer, and support.

  8. Reflection Electron Microscopy and Spectroscopy for Surface Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    2005-08-01

    This book is a comprehensive review of the theories, techniques and applications of reflection electron microscopy (REM), reflection high-energy electron diffraction (RHEED) and reflection electron energy-loss spectroscopy (REELS). The book is divided into three parts: diffraction, imaging and spectroscopy. The text is written to combine basic techniques with special applications, theories with experiments, and the basic physics with materials science, so that a full picture of RHEED and REM emerges. An entirely self-contained study, the book contains much invaluable reference material, including FORTRAN source codes for calculating crystal structures data and electron energy-loss spectra in different scattering geometries. This and many other features makes the book an important and timely addition to the materials science literature for researchers and graduate students in physics and materials science.

  9. Reflection Electron Microscopy and Spectroscopy for Surface Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    1996-05-01

    This book is a comprehensive review of the theories, techniques and applications of reflection electron microscopy (REM), reflection high-energy electron diffraction (RHEED) and reflection electron energy-loss spectroscopy (REELS). The book is divided into three parts: diffraction, imaging and spectroscopy. The text is written to combine basic techniques with special applications, theories with experiments, and the basic physics with materials science, so that a full picture of RHEED and REM emerges. An entirely self-contained study, the book contains much invaluable reference material, including FORTRAN source codes for calculating crystal structures data and electron energy-loss spectra in different scattering geometries. This and many other features makes the book an important and timely addition to the materials science literature for researchers and graduate students in physics and materials science.

  10. System and method for compressive scanning electron microscopy

    DOEpatents

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  11. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    NASA Astrophysics Data System (ADS)

    Esposito, Alessandro

    2006-05-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.

  12. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tong, Yongpeng; Li, Changming; Liang, Feng; Chen, Jianmin; Zhang, Hong; Liu, Guoqing; Sun, Huibin; Luong, John H. T.

    2008-12-01

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al 2O 3 and TiO 2) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl 2) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al 2O 3 and TiO 2 nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe 2O 3 nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  13. Electron microscopy study of antioxidant interaction with bacterial cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  14. Investigation of Nematode Diversity using Scanning Electron Microscopy and Fluorescent Microscopy

    NASA Astrophysics Data System (ADS)

    Seacor, Taylor; Howell, Carina

    2013-03-01

    Nematode worms account for the vast majority of the animals in the biosphere. They are colossally important to global public health as parasites, and to agriculture both as pests and as beneficial inhabitants of healthy soil. Amphid neurons are the anterior chemosensory neurons in nematodes, mediating critical behaviors including chemotaxis and mating. We are examining the cellular morphology and external anatomy of amphid neurons, using fluorescence microscopy and scanning electron microscopy, respectively, of a wide range of soil nematodes isolated in the wild. We use both classical systematics (e.g. diagnostic keys) and molecular markers (e.g. ribosomal RNA) to classify these wild isolates. Our ultimate aim is to build a detailed anatomical database in order to dissect genetic pathways of neuronal development and function across phylogeny and ecology. Research supported by NSF grants 092304, 0806660, 1058829 and Lock Haven University FPDC grants

  15. The use of transmission electron microscopy in the quantification of nanoparticle dose

    NASA Astrophysics Data System (ADS)

    Hondow, N.; Brydson, R.; Brown, A.

    2014-06-01

    There are an increasing number of potential applications for nanoparticles in clinical medicine, including targeted drug delivery and contrast agents for biomedical imaging. Current in vitro studies are concerned with the biological impact of nanoparticles, with electron microscopy commonly employed to image their intracellular location. It is critical to quantify the absolute nanoparticle dose internalized by cells in a given exposure, and to understand the factors which affect this. In this work we are aiming to develop a full quantitative description of quantum dot uptake by an in vitro cell line. Transmission electron microscopy of thin cell sections provides the location and number of cellular vesicles per 2-D cell slice plus the number of quantum dots per vesicle. These results can then be correlated to other techniques to quantify the internalized nanoparticle dose distribution for whole cells.

  16. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGESBeta

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  17. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  18. Probing structures of nanomaterials using advanced electron microscopy methods, including aberration-corrected electron microscopy at the Angstrom scale.

    PubMed

    Gai, Pratibha L; Yoshida, Kenta; Shute, Carla; Jia, Xiaoting; Walsh, Michael; Ward, Michael; Dresselhaus, Mildred S; Weertman, Julia R; Boyes, Edward D

    2011-07-01

    Structural and compositional studies of nanomaterials of technological importance have been carried out using advanced electron microscopy methods, including aberration-corrected transmission electron microscopy (AC-TEM), AC-high angle annular dark field scanning TEM (AC-HAADF-STEM), AC-energy filtered TEM, electron-stimulated energy dispersive spectroscopy in the AC-(S)TEM and high-resolution TEM (HRTEM) with scanning tunneling microscopy (STM) holder. The AC-EM data reveal improvements in resolution and minimization in image delocalization. A JEOL 2200FS double-AC field emission gun TEM/STEM operating at 200 kV in the Nanocentre at the University of York has been used to image single metal atoms on crystalline supports in catalysts, grain boundaries in nanotwinned metals, and nanostructures of tetrapods. Joule heating studies using HRTEM integrated with an STM holder reveal in situ crystallization and edge reconstruction in graphene. Real-time in situ AC-HAADF-STEM studies at elevated temperatures are described. Dynamic in-column energy filtering in an AC environment provides an integral new approach to perform dynamic in situ studies with aberration correction. The new results presented here open up striking new opportunities for atomic scale studies of nanomaterials and indicate future development directions. PMID:20954265

  19. Correlative cryo-electron tomography and optical microscopy of cells.

    PubMed

    Zhang, Peijun

    2013-10-01

    The biological processes occurring in a cell are complex and dynamic, and to achieve a comprehensive understanding of the molecular mechanisms underlying these processes, both temporal and spatial information is required. While cryo-electron tomography (cryoET) provides three-dimensional (3D) still pictures of near-native state cells and organelles at molecular resolution, fluorescence light microscopy (fLM) offers movies of dynamic cellular processes in living cells. Combining and integrating these two commonly used imaging modalities (termed correlative microscopy) provides a powerful means to not only expand the imaging scale and resolution but also to complement the dynamic information available from optical microscopy with the molecular-level, 3D ultrastructure detail provided by cryoET. As such, a correlative approach performed on a given specimen can provide high resolution snapshots of dynamic cellular events. In this article, I review recent advances in correlative light microscopy and cryoET and discuss major findings made available by applying this method. PMID:23962486

  20. Color metallography and electron microscopy techniques applied to the characterization of 413.0 aluminum alloys.

    PubMed

    Vander Voort, George; Asensio-Lozano, Juan; Suárez-Peña, Beatriz

    2013-08-01

    The influence on alloy 413.0 of the refinement and modification of its microstructure was analyzed by means of several microscopy techniques, as well as the effect of the application of high pressure during solidification. For each treatment and solidification pressure condition employed, the most suitable microscopy techniques for identifying and characterizing the phases present were investigated. Color metallography and electron microscopy techniques were applied to the qualitative microstructural analysis. Volume fraction and grain size of the primary α-Al were characterized by quantitative metallographic techniques. The results show that the effect caused by applying high pressure during solidification of the alloy is more pronounced than that caused by modification and refinement of the microstructure when it solidifies at atmospheric pressure. Furthermore, it has been shown that, for Al-Si alloy characterization, when aiming to characterize the primary α-Al phase, optical color metallography observed under crossed polarized light plus a sensitive tint filter is the most suitable technique. When the goal is to characterize the eutectic Si, the use of optical color metallography or electron microscopy is equally valid. The characterization of iron-rich intermetallic compounds should preferably be performed by means of backscattered electron imaging. PMID:23701972

  1. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    SciTech Connect

    Sutter, P. Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  2. Total internal reflection holographic microscopy (TIRHM) for quantitative phase characterization of cell-substrate adhesion

    NASA Astrophysics Data System (ADS)

    Ash, William Mason, III

    Total Internal Reflection Holographic Microscopy (TIRHM) combines near-field microscopy with digital holography to produce a new form of near-field phase microscopy. Using a prism in TIR as a near-field imager, the presence of microscopic organisms, cell-substrate interfaces, and adhesions, causes relative refractive index (RRI) and frustrated TIR (f-TIR) to modulate the object beam's evanescent wave phase front. Quantitative phase images of test specimens such as Amoeba proteus, Dictyostelium Discoideum and cells such as SKOV-3 ovarian cancer and 3T3 fibroblasts are produced without the need to introduce stains or fluorophores. The angular spectrum method of digital holography to compensate for tilt anamorphism due to the inclined TIR plane is also discussed. The results of this work conclusively demonstrate, for the first time, the integration of near-field microscopy with digital holography. The cellular images presented show a correlation between the physical extent of the Amoeba proteus plasma membrane and the adhesions that are quantitatively profiled by phase cross-sectioning of the holographic images obtained by digital holography. With its ability to quantitatively characterise cellular adhesion and motility, it is anticipated that TIRHM can be a tool for characterizing and combating cancer metastasis, as well as improving our understanding of morphogenesis and embryogenesis itself.

  3. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography.

    PubMed

    Jesse, S; Chi, M; Belianinov, A; Beekman, C; Kalinin, S V; Borisevich, A Y; Lupini, A R

    2016-01-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called "big-data" methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy. PMID:27211523

  4. Direct Visualization of Dendrite Nucleation and Growth Kinetics during Lithium Deposition with in situ Electrochemical Transmission Electron Microscopy

    SciTech Connect

    Sacci, Robert L; Dudney, Nancy J; More, Karren Leslie; Browning, Nigel; Unocic, Raymond R

    2014-01-01

    Formation of Li dendrites is a major safety concern existing in Li-ion secondary batteries. A quantitative electrochemistry method to investigate the dendrite nucleation and growth mechanisms at high spatial is presented. Cyclic voltammetry, in combination with in situ electrochemical transmission electron microscopy (in situ ec-TEM), was used to quantitatively characterize dendrite nucleation and growth mechanisms from a Au working electrode and within a 1.2M LiPF6 EC:DMC electrolyte.

  5. Time resolved electron microscopy for in situ experiments

    SciTech Connect

    Campbell, Geoffrey H. McKeown, Joseph T.; Santala, Melissa K.

    2014-12-15

    Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science.

  6. Ultrahigh Voltage Electron Microscopy Links Neuroanatomy and Neuroscience/Neuroendocrinology

    PubMed Central

    Sakamoto, Hirotaka; Kawata, Mitsuhiro

    2012-01-01

    The three-dimensional (3D) analysis of anatomical ultrastructures is extremely important in most fields of biological research. Although it is very difficult to perform 3D image analysis on exact serial sets of ultrathin sections, 3D reconstruction from serial ultrathin sections can generally be used to obtain 3D information. However, this technique can only be applied to small areas of a specimen because of technical and physical difficulties. We used ultrahigh voltage electron microscopy (UHVEM) to overcome these difficulties and to study the chemical neuroanatomy of 3D ultrastructures. This methodology, which links UHVEM and light microscopy, is a useful and powerful tool for studying molecular and/or chemical neuroanatomy at the ultrastructural level. PMID:22567316

  7. Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Hjort, Martin; Bauer, Mikael; Gunnarsson, Stefan; Mårsell, Erik; Zakharov, Alexei A.; Karlsson, Gunnel; Sanfins, Elodie; Prinz, Christelle N.; Wallenberg, Reine; Cedervall, Tommy; Mikkelsen, Anders

    2016-02-01

    We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. This extensive imaging methodology simultaneously reveals structural, chemical and morphological details of individual nanowires and the adsorbed proteins. We found that the proteins bind to NWs, forming coronas with thicknesses close to the proteins' hydrodynamic diameters. We could directly image how laminin is extending from the NWs, maximizing the number of proteins bound to the NWs. NWs incubated with both laminin and HSA show protein coronas with a similar appearance to NWs incubated with laminin alone, indicating that the presence of HSA does not affect the laminin conformation on the NWs. In blood plasma, an intermediate sized corona around the NWs indicates a corona with a mixture of plasma proteins. The ability to directly visualize proteins on nanostructures in situ holds great promise for assessing the conformation and thickness of the protein corona, which is key to understanding and predicting the properties of engineered nanomaterials in a biological environment.We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. This extensive imaging methodology simultaneously reveals structural, chemical and morphological details of individual nanowires and the adsorbed proteins. We found that the proteins bind to NWs, forming coronas with thicknesses close to the proteins' hydrodynamic diameters. We could directly image how laminin is extending from the NWs, maximizing the number of proteins bound to the NWs. NWs incubated with both laminin and HSA show protein coronas with a similar appearance to NWs incubated with laminin alone, indicating that the presence of HSA does not affect the laminin conformation on the NWs. In blood plasma, an intermediate sized corona around the NWs indicates a corona with a mixture of plasma proteins. The ability to directly visualize proteins on nanostructures in situ holds great promise for assessing the conformation and thickness of the protein corona, which is key to understanding and predicting the properties of engineered nanomaterials in a biological environment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08888g

  8. An adjustable electron achromat for cathode lens microscopy.

    PubMed

    Tromp, R M

    2015-12-01

    Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission Microscopy - PEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment. PMID:25825026

  9. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  10. Nanocrystal size distribution analysis from transmission electron microscopy images

    NASA Astrophysics Data System (ADS)

    van Sebille, Martijn; van der Maaten, Laurens J. P.; Xie, Ling; Jarolimek, Karol; Santbergen, Rudi; van Swaaij, René A. C. M. M.; Leifer, Klaus; Zeman, Miro

    2015-12-01

    We propose a method, with minimal bias caused by user input, to quickly detect and measure the nanocrystal size distribution from transmission electron microscopy (TEM) images using a combination of Laplacian of Gaussian filters and non-maximum suppression. We demonstrate the proposed method on bright-field TEM images of an a-SiC:H sample containing embedded silicon nanocrystals with varying magnifications and we compare the accuracy and speed with size distributions obtained by manual measurements, a thresholding method and PEBBLES. Finally, we analytically consider the error induced by slicing nanocrystals during TEM sample preparation on the measured nanocrystal size distribution and formulate an equation to correct this effect.We propose a method, with minimal bias caused by user input, to quickly detect and measure the nanocrystal size distribution from transmission electron microscopy (TEM) images using a combination of Laplacian of Gaussian filters and non-maximum suppression. We demonstrate the proposed method on bright-field TEM images of an a-SiC:H sample containing embedded silicon nanocrystals with varying magnifications and we compare the accuracy and speed with size distributions obtained by manual measurements, a thresholding method and PEBBLES. Finally, we analytically consider the error induced by slicing nanocrystals during TEM sample preparation on the measured nanocrystal size distribution and formulate an equation to correct this effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06292f

  11. Resinless section electron microscopy reveals the yeast cytoskeleton.

    PubMed

    Penman, J; Penman, S

    1997-04-15

    The cytoskeleton of Saccharomyces cerevisiae is essentially invisible using conventional microscopy techniques. A similar problem was solved for the mammalian cell cytoskeleton using resinless section electron microscopy, a technique applied here to yeast. In the resinless image, soluble proteins are no longer cloaked by embedding medium and must be removed by selective detergent extraction. In yeast, this requires breaching the cell wall by digesting with Zymolyase sufficiently to allow detergent extraction of the plasma membrane lipids. Gel electropherograms show that the extracted or "soluble" proteins are distinct from the retained or "structural" proteins that presumably comprise the cytoskeleton. These putative cytoskeleton proteins include the major portions of a 43-kDa protein, which is presumably actin, and of proteins in a band appearing at 55 kDa, as well as numerous less abundant, nonactin proteins. Resinless section electron micrographs show a dense, three-dimensional web of anastomosing, polymorphic filaments bounded by the remnant cell wall. Although the filament network is very heterogenous, there appear to be two principal classes of filament diameters-5 nm and 15-20 nm-which may correspond to actin and intermediate filaments, respectively. A large oval region of lower filament density probably corresponds to the vacuole, and an electron dense spheroidal body, 300-500 nm in diameter, is likely the nucleus. The techniques detailed in this report afford new approaches to the study of yeast cytoarchitecture. PMID:9108046

  12. Electron microscopy study of direct laser deposited IN718

    SciTech Connect

    Ding, R.G.; Huang, Z.W.; Li, H.Y.; Mitchell, I.; Baxter, G.; Bowen, P.

    2015-08-15

    The microstructure of direct laser deposited (DLD) IN718 has been investigated in detail using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results confirm that the dendrite core microstructure can be linked to the cooling rate experienced during the deposition. A ~ 100 μm wide δ partially dissolved region in the IN718 substrate was observed close to the substrate/deposit boundary. In the deposited IN718, γ/Laves eutectic constituent is the predominant minor microconstituent. Irregular and regular (small) (Nb,Ti)C carbides and a mixture of the carbides and Laves were observed. Most M{sub 3}B{sub 2} borides were nucleated around a (Nb,Ti)C carbide. Needles of δ phase precipitated from the Laves phase were also observed. A complex constituent (of Laves, δ, α-Cr, γ″, and γ matrix) is reported in IN718 for the first time. The formation of α-Cr particles could be related to Cr rejection during the formation and growth of Cr-depleted δ phase. - Highlights: • Secondary phases in IN718 deposits were identified using electron diffraction and EDS. • MC, M{sub 3}B{sub 2}, γ/Laves eutectic and γ/NbC/Laves eutectic were observed. • Needle-like δ phases were precipitated from the Laves phase. • A complex constituent (Laves, δ, α-Cr, γ″ and γ) was reported for the first time.

  13. Scanning electron and tunneling microscopy of palladium barium emitters

    NASA Astrophysics Data System (ADS)

    Baiburin, V. B.; Volkov, U. P.; Semenov, S. V.; Semenov, A. S.

    2003-06-01

    The results of study of metal-alloyed palladium-barium emitters' of modern very high frequency high-powered electronic vacuum tubes by scanning electron microscopy (SEM) and scanning tunneling microscopy/spectroscopy (STM/STS) are presented. Since the Pd/Ba foil surface is fairly smooth and is not oxidized in air STM/STS investigations are carried out in air in normal laboratory environment. SEM and STM images show that the emitter surface has a complex porous structure. The cathode surface study by STS in tunneling gap modulation mode allowed to take a map of phase distribution with various work function values and high lateral resolution. Obtained images demonstrate the presence of three phases on the Pd/Ba emitter surface, viz. barium-oxygen compounds, intermetallic, and palladium. As it is seen from presented STS image the phase with a low work function value (barium oxides) is concentrated along boundaries of the substance inclusions with work function corresponding to the intemetallic compound Pd 5Ba. This supports the model of low work function areas obtained via Ba segregation from the intermetallic compound and oxidation. The presented methods may be used in the Pd/Ba cathode manufacturing process for increasing the yield of electronic devices in microwave tube production and optimize the emitters' characteristics.

  14. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. PMID:25564566

  15. Phase measurements of erythrocytes affected by metal ions with quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shouyu; Yan, Keding; Shan, Yanke; Xu, Mingfei; Liu, Fei; Xue, Liang

    2015-12-01

    Erythrocyte morphology is an important factor in disease diagnosis, however, traditional setups as microscopes and cytometers cannot provide enough quantitative information of cellular morphology for in-depth statistics and analysis. In order to capture variations of erythrocytes affected by metal ions, quantitative interferometric microscopy (QIM) is applied to monitor their morphology changes. Combined with phase retrieval and cell recognition, erythrocyte phase images, as well as phase area and volume, can be accurately and automatically obtained. The research proves that QIM is an effective tool in cellular observation and measurement.

  16. Investigation of the mechanism of transdermal penetration enhancer: a comparison of multiphoton microscopy and electron microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Sung-Jan; Lee, Jin-Ning; Lin, Chiao-Ying; Chan, Chih-Chieh; Lin, Ming-Gu; Wang, Chun-Chin; Tan, Hsin-Yuan; Tsai, Tsung-Hua; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2008-02-01

    The aim of this study is to characterize the ability of multiphoton microscopy in monitoring the transdermal penetration enhancing effect of a depilatory agent and the associated structural alterations of stratum corneum. The result is compared with the electron microscopic findings. Our results show that the penetration of both hydrophilic and hydrophobic agents can be enhanced. The morphology of corneocytes becomes a homogenized pattern with focal detachment of surface corneocytes. In combination with Nile red staining, multiphoton imaging also shows that the regular motar-like distribution of lipid matrix was disrupted into a homogenized pattern of lipid distribution. These results are well correlated with the findings of ultrastructural analysis by electron micrographs showing disintegration of the protein envelope of coenocytes, disruption of intracellular keratin and loss of the regular lamellar packing of intercellular lipids. We conclude that, in addition to quantifying the permeation profiles of model drugs, multiphoton microscopy is able to detect the penetration enhancer-induced structural alterations of stratum corneum.

  17. The origins and evolution of freeze-etch electron microscopy

    PubMed Central

    Heuser, John E.

    2011-01-01

    The introduction of the Balzers freeze-fracture machine by Moor in 1961 had a much greater impact on the advancement of electron microscopy than he could have imagined. Devised originally to circumvent the dangers of classical thin-section techniques, as well as to provide unique en face views of cell membranes, freeze-fracturing proved to be crucial for developing modern concepts of how biological membranes are organized and proved that membranes are bilayers of lipids within which proteins float and self-assemble. Later, when freeze-fracturing was combined with methods for freezing cells that avoided the fixation and cryoprotection steps that Moor still had to use to prepare the samples for his original invention, it became a means for capturing membrane dynamics on the millisecond time-scale, thus allowing a deeper understanding of the functions of biological membranes in living cells as well as their static ultrastructure. Finally, the realization that unfixed, non-cryoprotected samples could be deeply vacuum-etched or even freeze-dried after freeze-fracturing opened up a whole new way to image all the other molecular components of cells besides their membranes and also provided a powerful means to image the interactions of all the cytoplasmic components with the various membranes of the cell. The purpose of this review is to outline the history of these technical developments, to describe how they are being used in electron microscopy today and to suggest how they can be improved in order to further their utility for biological electron microscopy in the future. PMID:21844598

  18. Analysis of Electron Beam Damage of Crystalline Pharmaceutical Materials by Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    S'ari, M.; Cattle, J.; Hondow, N.; Blade, H.; Cosgrove, S.; Brydson, R. M.; Brown, A. P.

    2015-10-01

    We have studied the impact of transmission electron microscopy (TEM) and low dose electron diffraction on ten different crystalline pharmaceutical compounds, covering a diverse chemical space and with differing physical properties. The aim was to establish if particular chemical moieties were more susceptible to damage within the electron beam. We have measured crystalline diffraction patterns for each and indexed nine out of ten of them. Characteristic electron dosages are reported for each material, with no apparent correlation between chemical structure and stability within the electron beam. Such low dose electron diffraction protocols are suitable for the study of pharmaceutical compounds.

  19. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography.

    PubMed

    Chang, Yi-Wei; Chen, Songye; Tocheva, Elitza I; Treuner-Lange, Anke; Lbach, Stephanie; Sgaard-Andersen, Lotte; Jensen, Grant J

    2014-07-01

    Cryo-electron tomography (CET) produces three-dimensional images of cells in a near-native state at macromolecular resolution, but identifying structures of interest can be challenging. Here we describe a correlated cryo-PALM (photoactivated localization microscopy)-CET method for localizing objects within cryo-tomograms to beyond the diffraction limit of the light microscope. Using cryo-PALM-CET, we identified multiple and new conformations of the dynamic type VI secretion system in the crowded interior of Myxococcus xanthus. PMID:24813625

  20. Visualization of Ceramide Channels by Transmission Electron Microscopy

    PubMed Central

    Samanta, Soumya; Stiban, Johnny; Maugel, Timothy K.; Colombini, Marco

    2011-01-01

    Functional studies have shown that the sphingolipid, ceramide self-assembles in phospholipid membranes to form large channels capable of allowing proteins to cross the membrane. Here these channels are visualized by negative stain transmission electron microscopy. The images contain features consistent with stain-filled pores having a roughly circular profile. There is no indication of tilt and the results are consistent with the formation of right cylinders. The sizes of the pores range from 5 to 40 nm in diameter with an asymmetric distribution indicating no apparent upper size limit. The size distribution matches well with the distribution of sizes calculated from electrophysiological measurements. PMID:21255554

  1. Electron microscopy of a Gd-Ba-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Ramesh, R.; Thomas, G.; Meng, R. L.; Hor, P. H.; Chu, C. W.

    1989-01-01

    An electron microscopy study has been carried out to characterize the microstructure of a sintered Gd-Ba-Cu-O superconductor alloy. The GdBa2Cu3O(7-x) phase in the oxygen annealed sample is orthorhombic, while in the vacuum annealed sample it is tetragonal. It is shown that the details of the fine structure in the 001-line zone axis convergent beam patterns can be used to distinguish between the orthorhombic form and the tetragonal form. In addition to this matrix phase, an amorphous phase is frequently observed at the triple grain junctions. Gd-rich inclusions have been observed inside the matrix phase.

  2. Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle Trimer

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.; Wang, Jinyong; Wang, Yi-Chung; Wei, Wei

    2013-07-01

    We present a combined experimental and theoretical study to investigate the spatial distribution of photoelectrons emitted from core-shell silver (Ag) nanoparticles. We use two-photon photoemission microscopy (2P-PEEM) to spatially resolve electron emission from a trimeric core-shell aggregate of triangular symmetry. Finite difference time domain (FDTD) simulations are performed to model the intensity distributions of the electromagnetic near-fields resulting from femtosecond (fs) laser excitation of localized surface plasmon oscillations in the triangular core-shell structure. We demonstrate that the predicted FDTD near-field intensity distribution reproduces the 2P-PEEM photoemission pattern.

  3. Microstructural studies of dental amalgams using analytical transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Hooghan, Tejpal Kaur

    Dental amalgams have been used for centuries as major restorative materials for decaying teeth. Amalgams are prepared by mixing alloy particles which contain Ag, Sn, and Cu as the major constituent elements with liquid Hg. The study of microstructure is essential in understanding the setting reactions and improving the properties of amalgams. Until the work reported in this dissertation, optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used commonly to analyze amalgam microstructures. No previous systematic transmission electron microscopy (TEM) study has been performed due to sample preparation difficulties and composite structure of dental amalgams. The goal of this research was to carry out detailed microstructural and compositional studies of dental amalgams. This was accomplished using the enhanced spatial resolution of the TEM and its associated microanalytical techniques, namely, scanning transmission electron microscopy (STEM), x-ray energy dispersive spectroscopy (XEDS) and micro-microdiffraction (mumuD). A new method was developed for thinning amalgam samples to electron transparency using the "wedge technique." Velvalloy, a low-Cu amalgam, and Tytin, a high-Cu amalgam, were the two amalgams characterized. Velvalloy is composed of a Agsb2Hgsb3\\ (gammasb1)/HgSnsb{7-9}\\ (gammasb2) matrix surrounding unreacted Agsb3Sn (gamma) particles. In addition, hitherto uncharacterized reaction layers between Agsb3Sn(gamma)/Agsb2Hgsb3\\ (gammasb2)\\ and\\ Agsb2Hgsb3\\ (gammasb1)/HgSnsb{7-9}\\ (gammasb2) were observed and analyzed. An Ag-Hg-Sn (betasb1) phase was clearly identified for the first time. In Tytin, the matrix consists of Agsb2Hgsb3\\ (gammasb1) grains. Fine precipitates of Cusb6Snsb5\\ (etasp') are embedded inside the gammasb1 and at the grain boundaries. These precipitates are responsible for the improved creep resistance of Tytin compared to Velvalloy. The additional Cu has completely eliminated the gammasb2 phase which is the weakest component of amalgams. Ag-Hg-Sn (betasb1) and large grains of Cusb6Snsb5\\ (etasp') are found adjacent to the unreacted alloy particles. Tytin alloy particles contain Cusb3Sn\\ (epsilon) precipitates in a matrix of Agsb3Sn (gamma) and Agsb4Sn\\ (beta). SEM was used to correlate the TEM findings in the context of the general microstructure. The results are in good agreement with those published in the literature. The microstructural details reported here, many of which were not previously available, will help provide insight into the deformation mechanisms of dental amalgams.

  4. Confocal Microscopy for Modeling Electron Microbeam Irradiation of Skin

    SciTech Connect

    Miller, John H.; Chrisler, William B.; Wang, Xihai; Sowa, Marianne B.

    2011-08-01

    For radiation exposures employing targeted sources such as particle microbeams, the deposition of energy and dose will depend on the spatial heterogeneity of the spample. Although cell structural variations are relatively minor for two-dimensional cell cultures, they can vary significantly for fully differential tissues. Employing high-resolution confocal microscopy, we have determined the spatial distribution, size, and shape of epidermal kerantinocyte nuclei for the full-thickness EpiDerm skin model (MatTek, Ashland, VA). Application of these data to claculate the microdosimetry and microdistribution of energy deposition by an electron microbeam is discussed.

  5. Analytical electron microscopy study of radioactive ceramic waste form

    SciTech Connect

    O'Holleran, T. P.; Sinkler, W.; Moschetti, T. L.; Johnson, S. G.; Goff, K. M.

    1999-11-11

    A ceramic waste form has been developed to immobilize the halide high-level waste stream from electrometallurgical treatment of spent nuclear fuel. Analytical electron microscopy studies, using both scanning and transmission instruments, have been performed to characterize the microstructure of this material. The microstructure consists primarily of sodalite granules (containing the bulk of the halides) bonded together with glass. The results of these studies are discussed in detail. Insight into the waste form fabrication process developed as a result of these studies is also discussed.

  6. Simultaneous orientation and thickness mapping in transmission electron microscopy

    SciTech Connect

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  7. Photonic near-field imaging in multiphoton photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. P. S.; Word, R. C.; Saliba, S. D.; Könenkamp, R.

    2013-05-01

    We report the observation of optical near fields in a photonic waveguide of conductive indium tin oxide (ITO) using multiphoton photoemission electron microscopy (PEEM). Nonlinear two-photon photoelectron emission is enhanced at field maxima created by interference between incident 410-nm and coherently excited guided photonic waves, providing strong phase contrast. Guided modes are observed under both transverse magnetic field (TM) and transverse electric field (TE) polarized illuminations and are consistent with classical electromagnetic theory. Implications on the role of multiphoton PEEM in optical near-field imaging are discussed.

  8. Investigation of human chromosome polymorphisms by scanning electron microscopy.

    PubMed

    Harrison, C J; Jack, E M; Allen, T D; Harris, R

    1985-02-01

    Human chromosome polymorphisms were investigated by scanning electron microscopy (SEM). Centromeric heterochromatin was of a constricted morphology. The extent of the C banded region was demarcated by a prominent circumferential groove in G banded chromosomes. Circumferential grooves were observed within the heterochromatin of chromosome 9, and the number of grooves present reflected the size of the region. Three dimensional viewing of satellites and short arms of acrocentric chromosomes, from different angles in the SEM, provided the opportunity for accurate assessment of the size of satellites to be made. Also, small morphological variations were defined in the SEM when definition was uncertain in the light microscope (LM). PMID:4039005

  9. Electron Microscopy Studies of Solid Surfaces and Interfaces.

    NASA Astrophysics Data System (ADS)

    Gajdardziska-Josifovska, Marija

    1991-02-01

    Electron microscopy techniques for study of surfaces and interfaces have been investigated and applied to (100) and (111) surfaces of MgO and to interfaces of Mo/Si multilayers and CoSi_2/Si epitaxial films. MgO surfaces subjected to different annealing and chemical treatments have been characterized by reflection electron microscopy imaging, reflection high-energy electron diffraction (RHEED), and reflection electron energy-loss spectroscopy (REELS). An oxygen rich (sqrt {3} times sqrt{3})R 30^circ reconstruction was found on the polar (111) surface upon annealing in oxygen at temperatures higher than 1500 ^circC. Transformation of the surface topography and segregation of calcium were observed on the cleaved (100) surface due to annealing. RHEED resonance conditions have been employed and studied with geometrical constructions, rocking curves and REELS. These conditions are associated with parabolas in the Kikuchi (K) patterns whose nature had been subject of much controversy. The parabolas have been explained as K lines of two-dimensional (2D) lattices in a general scheme which describes the K pattern geometry in terms of intersections of Brillouin zone boundaries with a sphere of reflections. Full treatment of the cases of 2D and 1D real lattices has revealed previously unknown boundaries in the form of parabolic surfaces (2D) and paraboloids of revolution (1D). These boundaries have been applied to lines which arise from electron channeling in 3D crystals and to RHEED parabolas from 2D surface reconstructions. Nanodiffraction, low angle dark-field imaging, electron holography, high spatial resolution EELS, and shadow imaging have been evaluated as means for measuring interface abruptness and change in mean-inner potential and compared to other microscopy techniques. Refraction effects at interfaces were observed as streaking of the nanodiffraction disks which was found to depend on the crystalline nature of the interface. For polycrystalline/amorphous interfaces asymmetric streaking towards the phase with larger mean-inner potentials was observed to depend on the interface abruptness and the thickness of the specimen. On crystal/crystal interfaces the streaking was found to be sensitive to interface reconstructions.

  10. High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale.

    PubMed

    Chen, Qian Nataly; Ma, Feiyue; Xie, Shuhong; Liu, Yuanming; Proksch, Roger; Li, Jiangyu

    2013-07-01

    Accurate scanning probing of magnetic materials at the nanoscale is essential for developing and characterizing magnetic nanostructures, yet quantitative analysis is difficult using the state of the art magnetic force microscopy, and has limited spatial resolution and sensitivity. In this communication, we develop a novel piezomagnetic force microscopy (PmFM) technique, with the imaging principle based on the detection of magnetostrictive response excited by an external magnetic field. In combination with the dual AC resonance tracking (DART) technique, the contact stiffness and energy dissipation of the samples can be simultaneously mapped along with the PmFM phase and amplitude, enabling quantitative probing of magnetic materials and structures at the nanoscale with high sensitivity and spatial resolution. PmFM has been applied to probe magnetic soft discs and cobalt ferrite thin films, demonstrating it as a powerful tool for a wide range of magnetic materials. PMID:23720016

  11. New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis.

    PubMed

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-02-15

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. PMID:25448819

  12. Quantitative measurement of in-plane cantilever torsion for calibrating lateral piezoresponse force microscopy.

    SciTech Connect

    Choi, H.; Hong, S.; No, K.

    2011-01-01

    A simple quantitative measurement procedure of in-plane cantilever torsion for calibrating lateral piezoresponse force microscopy is presented. This technique enables one to determine the corresponding lateral inverse optical lever sensitivity (LIOLS) of the cantilever on the given sample. Piezoelectric coefficient, d{sub 31} of BaTiO{sub 3} single crystal (-81.62 {+-} 40.22 pm/V) which was calculated using the estimated LIOLS was in good agreement with the reported value in literature.

  13. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.

    PubMed

    Baalousha, M; Prasad, A; Lead, J R

    2014-05-01

    Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. <20 nm). However, the high capabilities of microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. <10%), formation of aggregates during the drying process, and thus, the complete misrepresentation of the NP suspensions under consideration. This paper presents a validated quantitative sampling technique for atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of NPs; both are key requirements for the implementation of the European Commission recommendation for definition of nanomaterials. PMID:24668140

  14. Analysis of mixed cell cultures with quantitative digital holographic phase microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Wibbeling, Jana; Ketelhut, Steffi

    2014-05-01

    In order to study, for example, the influence of pharmaceuticals or pathogens on different cell types under identical measurement conditions and to analyze interactions between different cellular specimens a minimally-invasive quantitative observation of mixed cell cultures is of particular interest. Quantitative phase microscopy (QPM) provides high resolution detection of optical path length changes that is suitable for stain-free minimally-invasive live cell analysis. Due to low light intensities for object illumination, QPM minimizes the interaction with the sample and is in particular suitable for long term time-lapse investigations, e.g., for the detection of cell morphology alterations due to drugs and toxins. Furthermore, QPM has been demonstrated to be a versatile tool for the quantification of cellular growth, the extraction morphological parameters and cell motility. We studied the feasibility of QPM for the analysis of mixed cell cultures. It was explored if quantitative phase images provide sufficient information to distinguish between different cell types and to extract cell specific parameters. For the experiments quantitative phase imaging with digital holographic microscopy (DHM) was utilized. Mixed cell cultures with different types of human pancreatic tumor cells were observed with quantitative DHM phase contrast up to 35 h. The obtained series of quantitative phase images were evaluated by adapted algorithms for image segmentation. From the segmented images the cellular dry mass and the mean cell thickness were calculated and used in the further analysis as parameters to quantify the reliability the measurement principle. The obtained results demonstrate that it is possible to characterize the growth of cell types with different morphologies in a mixed cell culture separately by consideration of specimen size and cell thickness in the evaluation of quantitative DHM phase images.

  15. Electron microscopy of gold nanoparticles at atomic resolution

    PubMed Central

    Azubel, Maia; Koivisto, Jaakko; Malola, Sami; Bushnell, David; Hura, Greg L.; Koh, Ai Leen; Tsunoyama, Hironori; Tsukuda, Tatsuya; Pettersson, Mika; Hkkinen, Hannu; Kornberg, Roger D.

    2014-01-01

    Structure determination of gold nanoparticles (AuNPs) is necessary for understanding their physical and chemical properties, and only one AuNP larger than 1 nm in diameter, an Au102NP, has been solved to atomic resolution. Whereas the Au102NP structure was determined by X-ray crystallography, other large AuNPs have proved refractory to this approach. Here we report the structure determination of an Au68NP at atomic resolution by aberration-corrected transmission electron microscopy (AC-TEM), performed with the use of a minimal electron dose, an approach that should prove applicable to metal NPs in general. The structure of the Au68NP was supported by small angle X-ray scattering (SAXS) and by comparison of observed infrared (IR) absorption spectra with calculations by density functional theory (DFT). PMID:25146285

  16. Nanoparticle imaging. Electron microscopy of gold nanoparticles at atomic resolution.

    PubMed

    Azubel, Maia; Koivisto, Jaakko; Malola, Sami; Bushnell, David; Hura, Greg L; Koh, Ai Leen; Tsunoyama, Hironori; Tsukuda, Tatsuya; Pettersson, Mika; Hkkinen, Hannu; Kornberg, Roger D

    2014-08-22

    Structure determination of gold nanoparticles (AuNPs) is necessary for understanding their physical and chemical properties, but only one AuNP larger than 1 nanometer in diameter [a 102-gold atom NP (Au102NP)] has been solved to atomic resolution. Whereas the Au102NP structure was determined by x-ray crystallography, other large AuNPs have proved refractory to this approach. Here, we report the structure determination of a Au68NP at atomic resolution by aberration-corrected transmission electron microscopy, performed with the use of a minimal electron dose, an approach that should prove applicable to metal NPs in general. The structure of the Au68NP was supported by small-angle x-ray scattering and by comparison of observed infrared absorption spectra with calculations by density functional theory. PMID:25146285

  17. Immunogold electron microscopy of surface antigens of oral bacteria.

    PubMed

    Mouton, C; Lamonde, L

    1984-08-01

    Colloidal gold particles 3-6 nm in diameter were prepared and stabilized with the IgG fraction of polyspecific rabbit antisera produced against four different oral bacteria. The immunogold markers were used in homologous reactions to label the bacteria in a preembedding procedure for electron microscopy. An indirect immunofluorescence procedure was concurrently used to optimize the labelling conditions before observation with the electron microscope. The immunogold markers labelled fibrillar structures extending outward 50-275 nm from the Gram-positive cell envelopes and a fuzzy 5-10 nm thick capsulelike layer on the outer aspect of Bacteroides gingivalis. The immunogold method appears to be a simple, rapid, and inexpensive procedure suitable for the study of bacterial surface antigens and can be upgraded with the use of monospecific antibodies. PMID:6093974

  18. Four-dimensional ultrafast electron microscopy of phase transitions

    PubMed Central

    Grinolds, Michael S.; Lobastov, Vladimir A.; Weissenrieder, Jonas; Zewail, Ahmed H.

    2006-01-01

    Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space–charge effects. Here, we demonstrate the ability to obtain sequences of snapshots (“movies”) with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal–insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves. PMID:17130445

  19. Biomechanics of DNA structures visualized by 4D electron microscopy.

    PubMed

    Lorenz, Ulrich J; Zewail, Ahmed H

    2013-02-19

    We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time. From the frequency and amplitude of the observed oscillations, we determine the normal modes and eigenfrequencies of the structures involved. Moreover, by selective "nano-cutting" at a given point in the network, it was possible to obtain Young's modulus, and hence the stiffness, of the DNA filament at that position. This experimental approach enables nanoscale mechanics studies of macromolecules and should find applications in other domains of biological networks such as origamis. PMID:23382239

  20. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  1. Direct single electron detection with a CMOS detector for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Henderson, R.; Pryddetch, M.; Allport, P.; Evans, A.

    2005-07-01

    We report the results of an investigation into the use of a monolithic active pixel sensor (MAPS) for electron microscopy. MAPS, designed originally for astronomers at the Rutherford Appleton Laboratories, was installed in a 120 kV electron microscope (Philips CM12) at the MRC Laboratory in Cambridge for tests which included recording single electrons at 40 and 120 keV, and measuring signal-to-noise ratio (SNR), spatial resolution and radiation sensitivity. Our results show that, due to the excellent SNR and resolution, it is possible to register single electrons. The radiation damage to the detector is apparent with low doses and gets progressively greater so that its lifetime is limited to 600,000-900,000 electrons/pixel (very approximately 10-15 krad). Provided this detector can be radiation hardened to reduce its radiation sensitivity several hundred fold and increased in size, it will provide excellent performance for all types of electron microscopy.

  2. Performance analysis of quantitative phase retrieval method in Zernike phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Heng, Chen; Kun, Gao; Da-Jiang, Wang; Li, Song; Zhi-Li, Wang

    2016-02-01

    Since the invention of Zernike phase contrast method in 1930, it has been widely used in optical microscopy and more recently in X-ray microscopy. Considering the image contrast is a mixture of absorption and phase information, we recently have proposed and demonstrated a method for quantitative phase retrieval in Zernike phase contrast X-ray microscopy. In this contribution, we analyze the performance of this method at different photon energies. Intensity images of PMMA samples are simulated at 2.5 keV and 6.2 keV, respectively, and phase retrieval is performed using the proposed method. The results demonstrate that the proposed phase retrieval method is applicable over a wide energy range. For weakly absorbing features, the optimal photon energy is 2.5 keV, from the point of view of image contrast and accuracy of phase retrieval. On the other hand, in the case of strong absorption objects, a higher photon energy is preferred to reduce the error of phase retrieval. These results can be used as guidelines to perform quantitative phase retrieval in Zernike phase contrast X-ray microscopy with the proposed method. Supported by the State Key Project for Fundamental Research (2012CB825801), National Natural Science Foundation of China (11475170, 11205157 and 11179004) and Anhui Provincial Natural Science Foundation (1508085MA20).

  3. On Low Voltage Scanning Electron Microscopy and Chemical Microanalysis.

    PubMed

    Boyes

    2000-07-01

    The current status and general applicability of scanning electron microscopy (SEM) at low voltages is reviewed for both imaging (low voltage scanning electron microscopy, LVSEM) and chemical microanalysis (low voltage energy-dispersive X-ray spectrometry, LVEDX). With improved instrument performance low beam energies continue to have the expected advantages for the secondary electron imaging of low atomic number (Z) and electrically non-conducting samples. They also provide general improvements in the veracity of surface topographic analysis with conducting samples of all Z and at both low and high magnifications. In new experiments the backscattered electron (BSE) signal retains monotonic Z dependence to low voltages (<1 kV). This is contrary to long standing results in the prior literature and opens up fast chemical mapping with low dose and very high (nm-scale) spatial resolution. Similarly, energy-dispersive X-ray chemical microanalysis of bulk samples is extended to submicron, and in some cases to <0.1 µm, spatial resolution in three dimensions at voltages <5 kV. In favorable cases, such as the analysis of carbon overlayers at 1.5 kV, the thickness sensitivity for surface layers is extended to <2 nm, but the integrity of the sample surface is then of concern. At low beam energies (E(0)) the penetration range into the sample, and hence the X-ray escape path length out of it, is systematically restricted (R = F(E(0)(5/3))), with advantages for the accuracy or elimination of complex analysis-by-analysis matrix corrections for absorption (A) and fluorescence (F). The Z terms become more sensitive to E(0) but they require only one-time calibrations for each element. The new approach is to make the physics of the beam-specimen interactions the primary factor and to design enabling instrumentation accordingly. PMID:10898813

  4. Investigation of porous asphalt microstructure using optical and electron microscopy.

    PubMed

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. PMID:20946381

  5. Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires.

    PubMed

    Hjort, Martin; Bauer, Mikael; Gunnarsson, Stefan; Mårsell, Erik; Zakharov, Alexei A; Karlsson, Gunnel; Sanfins, Elodie; Prinz, Christelle N; Wallenberg, Reine; Cedervall, Tommy; Mikkelsen, Anders

    2016-02-11

    We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. This extensive imaging methodology simultaneously reveals structural, chemical and morphological details of individual nanowires and the adsorbed proteins. We found that the proteins bind to NWs, forming coronas with thicknesses close to the proteins' hydrodynamic diameters. We could directly image how laminin is extending from the NWs, maximizing the number of proteins bound to the NWs. NWs incubated with both laminin and HSA show protein coronas with a similar appearance to NWs incubated with laminin alone, indicating that the presence of HSA does not affect the laminin conformation on the NWs. In blood plasma, an intermediate sized corona around the NWs indicates a corona with a mixture of plasma proteins. The ability to directly visualize proteins on nanostructures in situ holds great promise for assessing the conformation and thickness of the protein corona, which is key to understanding and predicting the properties of engineered nanomaterials in a biological environment. PMID:26838122

  6. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  7. Frontiers of in situ electron microscopy

    SciTech Connect

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by in this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.

  8. Low temperature and conventional scanning electron microscopy of human urothelium.

    PubMed

    Staff, W G; Middleton, J F; Morris, J A; Oates, K

    1985-02-01

    The appearance of fixed dehydrated non-neoplastic human urothelium viewed by conventional scanning electron microscopy (CSEM) is different from that of frozen hydrated human urothelium viewed by low temperature scanning electron microscopy (LTSEM). In the fixed dehydrated material the surface is formed by well defined, polygonal, domed superficial urothelial cells which have prominent surface microridges. In places intermediate urothelial cells are visible and they have surface microvilli. In the frozen hydrated material viewed by LTSEM most of the surface is smooth. This is formed in part by a glutaraldehyde soluble extracellular secretion which may be a mucin barrier to bacteria. We believe that the rest of the smooth surface is formed by superficial urothelial cells which are not well defined and which lack microridges. There are islands of rounded cells lacking microvilli which are probably intermediate urothelial cells as they correspond in appearance with the intermediate urothelial cells seen in freeze fractured material. It seems likely that fixation and dehydration will cause some change in surface configuration and in theory the frozen hydrated material should more closely resemble the natural state. We believe that LTSEM will be of value in investigating normal and diseased urothelium. PMID:3882179

  9. Collaborative Computational Project for Electron cryo-Microscopy

    SciTech Connect

    Wood, Chris; Burnley, Tom; Patwardhan, Ardan; Scheres, Sjors; Topf, Maya; Roseman, Alan; Winn, Martyn

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  10. Mixing state of soot particles analyzed using transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Zaizen, Y.; Igarashi, Y.

    2012-12-01

    Mixing state, shapes, and compositions of atmospheric aerosol particles influence their climate and health effects. Transmission electron microscopy (TEM) can reveal them at a single particle scale. This study shows these changes of aerosol particles collected from urban air (e.g., Los Angeles and Tokyo) and from a mountain site in Japan. We focused on soot particles since they absorb light and have great influence on the climate. To understand their optical properties accurately, their mixing states and shapes are important. Scanning transmission electron microscopy (STEM) with energy dispersive X-ray spectroscopy (EDS) analysis determines the compositions and mixing states of soot particles as well as elemental distribution within individual particles. Our STEM-EDS system revealed sizes, shape factors, and compositions of all aerosol particles within a field of view automatically (~300 particles). Using the STEM-EDS system, we investigate the soot mixing states, its sizes, and compositions of its coating. The preliminary results suggest that ~75% of soot particles were coated (internal mixture) at the mountain site (remote area) and the larger aerosol particles include the more soot particles. The soot particles are mostly coated by ammonium sulfate. In an urban area (Pasadena, CA) during the CalNex campaign, mixing states of soot particles varied largely within a day. Generally, during daytime, many soot particles were coated by mixtures of sulfate and organic matter. These data are useful to understand the optical properties, atmospheric lifetime, and climate effects of soot particles and to improve climate modeling.

  11. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    SciTech Connect

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  12. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  13. Low-Cost Cryo-Light Microscopy Stage Fabrication for Correlated Light/Electron Microscopy

    PubMed Central

    Carlson, David B.; Evans, James E.

    2011-01-01

    The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples. PMID:21673645

  14. Perspective: 4D ultrafast electron microscopy-Evolutions and revolutions.

    PubMed

    Shorokhov, Dmitry; Zewail, Ahmed H

    2016-02-28

    In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the "single-electron concept" for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. 78, 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to four-dimensional ultrafast electron microscopy (4D UEM), the developments over eight decades have transformed humans' scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook. PMID:26931672

  15. Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns.

    PubMed

    Boullay, P; Lutterotti, L; Chateigner, D; Sicard, L

    2014-09-01

    The full quantitative characterization of nanopowders using transmission electron microscopy scattering patterns is shown. This study demonstrates the feasibility of the application of so-called combined analysis, a global approach for phase identification, structure refinement, characterization of anisotropic crystallite sizes and shapes, texture analysis and texture variations with the probed scale, using electron diffraction patterns of TiO2 and Mn3O4 nanocrystal aggregates and platinum films. Electron diffraction pattern misalignments, positioning, and slight changes from pattern to pattern are directly integrated and refined within this approach. The use of a newly developed full-pattern search-match methodology for phase identification of nanopowders and the incorporation of the two-wave dynamical correction for diffraction patterns are also reported and proved to be efficient. PMID:25176993

  16. Engineering and Characterization of Collagen Networks Using Wet Atomic Force Microscopy and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Osborn, Jenna; Coffey, Tonya; Conrad, Brad; Burris, Jennifer; Hester, Brooke

    2014-03-01

    Collagen is an abundant protein and its monomers covalently crosslink to form fibrils which form fibers which contribute to forming macrostructures like tendon or bone. While the contribution is well understood at the macroscopic level, it is not well known at the fibril level. We wish to study the mechanical properties of collagen for networks of collagen fibers that vary in size and density. We present here a method to synthesize collagen networks from monomers and that allows us to vary the density of the networks. By using biotynilated collagen and a surface that is functionalized with avidin, we generate two-dimensional collagen networks across the surface of a silicon wafer. During network synthesis, the incubation time is varied from 30 minutes to 3 hours or temperature is varied from 25°C to 45°C. The two-dimensional collagen network created in the process is characterized using environmental atomic force microscopy (AFM) and scanning electron microscopy (SEM). The network density is measured by the number of strands in one frame using SPIP software. We expect that at body temperature (37°C) and with longer incubation times, the network density should increase.

  17. High resolution electron microscopy and spectroscopy of ferritin in thin window liquid cells

    NASA Astrophysics Data System (ADS)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert

    2014-03-01

    In-situ transmission electron microscopy (TEM) has seen a dramatic increase in interest in recent years with the commercial development of liquid and gas stages. High-resolution TEM characterization of samples in a liquid environment remains limited by radiation damage and loss of resolution due to the thick window-layers required by the in-situ stages. We introduce thin-window static-liquid cells that enable sample imaging with atomic resolution and electron energy-loss (EEL) spectroscopy with 1.3 nm resolution. Using this approach, atomic and electronic structures of biological samples such as ferritin is studied via in-situ transmission electron microscopy experiments. Ferritin in solution is encapsulated using the static liquid cells with reduced window thickness. The integrity of the thin window liquid cell is maintained by controlling the electron dose rate. Radiation damage of samples, such as liquid water and protein, is quantitatively studied to allow precision control of radiation damage level within the liquid cells. Biochemical reactions, such as valence change of the iron in a functioning ferritin, is observed and will be quantified. Relevant biochemical activity: the release and uptake of Fe atoms through the channels of ferritin protein shell is also imaged at atomic resolution. This work is funded by Michigan Technological University. The UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470).

  18. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.

    PubMed

    Daban, Joan-Ramon

    2011-12-01

    The folding of the chromatin filament and, in particular, the organization of genomic DNA within metaphase chromosomes has attracted the interest of many laboratories during the last five decades. This review discusses our current understanding of chromatin higher-order structure based on results obtained with transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and different atomic force microscopy (AFM) techniques. Chromatin isolated from different cell types in buffers without cations form extended filaments with nucleosomes visible as separated units. In presence of low concentrations of Mg(2+), chromatin filaments are folded into fibers having a diameter of ∼ 30 nm. Highly compact fibers were obtained with isolated chromatin fragments in solutions containing 1-2mM Mg(2+). The high density of these fibers suggested that the successive turns of the chromatin filament are interdigitated. Similar results were obtained with reconstituted nucleosome arrays under the same ionic conditions. This led to the proposal of compact interdigitated solenoid models having a helical pitch of 4-5 nm. These findings, together with the observation of columns of stacked nucleosomes in different liquid crystal phases formed by aggregation of nucleosome core particles at high concentration, and different experimental evidences obtained using other approaches, indicate that face-to-face interactions between nucleosomes are very important for the formation of dense chromatin structures. Chromatin fibers were observed in metaphase chromosome preparations in deionized water and in buffers containing EDTA, but chromosomes in presence of the Mg(2+) concentrations found in metaphase (5-22 mM) are very compact, without visible fibers. Moreover, a recent cryo-electron microscopy analysis of vitreous sections of mitotic cells indicated that chromatin has a disordered organization, which does not support the existence of 30-nm fibers in condensed chromosomes. TEM images of partially denatured chromosomes obtained using different procedures that maintain the ionic conditions of metaphase showed that bulk chromatin in chromosomes is organized forming multilayered plate-like structures. The structure and mechanical properties of these plates were studied using cryo-EM, electron tomography, AFM imaging in aqueous media, and AFM-based nanotribology and force spectroscopy. The results obtained indicated that the chromatin filament forms a flexible two-dimensional network, in which DNA is the main component responsible for the mechanical strength observed in friction force measurements. The discovery of this unexpected structure based on a planar geometry has opened completely new possibilities for the understanding of chromatin folding in metaphase chromosomes. It was proposed that chromatids are formed by many stacked thin chromatin plates oriented perpendicular to the chromatid axis. Different experimental evidences indicated that nucleosomes in the plates are irregularly oriented, and that the successive layers are interdigitated (the apparent layer thickness is 5-6 nm), allowing face-to-face interactions between nucleosomes of adjacent layers. The high density of this structure is in agreement with the high concentration of DNA observed in metaphase chromosomes of different species, and the irregular orientation of nucleosomes within the plates make these results compatible with those obtained with mitotic cell cryo-sections. The multilaminar chromatin structure proposed for chromosomes allows an easy explanation of chromosome banding and of the band splitting observed in stretched chromosomes. PMID:21703860

  19. Localization of DNA topoisomerase II in Chinese hamster fibroblasts by confocal and electron microscopy.

    PubMed

    Petrov, P; Drake, F H; Loranger, A; Huang, W; Hancock, R

    1993-01-01

    The localization of the 170- and the 180-kDa isoforms of the enzyme DNA topoisomerase II in growing Chinese hamster fibroblasts has been studied by confocal immunofluorescence microscopy and immunogold electron microscopy after labeling with affinity-purified isoform-specific polyclonal antibodies. Immunofluorescence and immunogold studies, together with quantitative image analysis, show that the two isoforms are present in the nucleoplasm and in the nucleolus. In the nucleoplasm both isoforms are frequently localized at the periphery of heterochromatin regions. In the nucleolus the immunofluorescence and immunogold signals relative to surface area are higher than in the nucleoplasm; both isoforms are localized predominantly in the fibrillar zones. During mitosis both isoforms remain detectable in the cytoplasm. The differential expression of the two isoforms during the cell cycle, observed in other studies, suggests that they have different functions, and their presence in both the nucleoplasm and the nucleolus suggests that these functions are required in both of these nuclear compartments. PMID:8380143

  20. Observations of the intestinal mucosa using environmental scanning electron microscopy (ESEM); comparison with conventional scanning electron microscopy (CSEM).

    PubMed

    Habold, Caroline; Dunel-Erb, Suzanne; Chevalier, Claudine; Laurent, Pierre; Le Maho, Yvon; Lignot, Jean-Hervé

    2003-01-01

    In order to evaluate the potential use of environmental scanning electron microscopy (ESEM) in biology, structural changes of the jejunal villi of rats were studied after periods of fasting and refeeding, using a conventional scanning electron microscope (CSEM) and ESEM. While observation using the CSEM, involves chemical fixation, drying and coating, observation of fresh, unprepared materials can be directly realized with the ESEM. Environmental microscopy provides a relatively new technology for imaging hydrated materials without specimen preparation and conductive coating. Direct observation of biological samples in their native state is therefore possible with an ESEM. After fasting, the jejunal mucosa is dramatically reduced in size, splits and holes appearing at the tip of the villi. These changes were observed whatever the type of technique used. Artifacts due to the sample preparation for CSEM observation (drying, coating) can therefore be excluded. However, CSEM and ESEM must be used jointly. While, CSEM must be preferred for surface analysis involving high magnifications, ESEM observation, on the other hand, can prove valuable for determining the living aspect of the samples. PMID:14680923

  1. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect

    Tittmann, B. R.; Xi, X.

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

  2. High-Resolution Transmission Electron Microscopy Using Negative Spherical Aberration

    NASA Astrophysics Data System (ADS)

    Jia, Chun-Lin; Lentzen, Markus

    2004-04-01

    A novel imaging mode for high-resolution transmission electron microscopy is described. It is based on the adjustment of a negative value of the spherical aberration CS of the objective lens of a transmission electron microscope equipped with a multipole aberration corrector system. Negative spherical aberration applied together with an overfocus yields high-resolution images with bright-atom contrast. Compared to all kinds of images taken in conventional transmission electron microscopes, where the then unavoidable positive spherical aberration is combined with an underfocus, the contrast is dramatically increased. This effect can only be understood on the basis of a full nonlinear imaging theory. Calculations show that the nonlinear contrast contributions diminish the image contrast relative to the linear image for a positive-CS setting whereas they reinforce the image contrast relative to the linear image for a negative-CS setting. The application of the new mode to the imaging of oxygen in SrTiO3 and YBa2Cu3O7 demonstrates the benefit to materials science investigations. It allows us to image directly, without further image processing, strongly scattering heavy-atom columns together with weakly scattering light-atom columns.

  3. Immuno-Electron Microscopy of the Morphogenesis of Mumps Virus

    PubMed Central

    Duc-Nguyen, Huu; Rosenblum, Edith N.

    1967-01-01

    The fine structure of mumps virus-infected chick embryo fibroblastic cells was examined sequentially after viral inoculation. Intracytoplasmic nucleoprotein strands, similar to those described for parainfluenza viruses, were detectable in small aggregates between 36 and 48 hr. The peripheral strands of this viral component lie beneath and along an antigenically altered bulging portion of the cell membrane. The outermost strands are consistently parallel to the differentiated segment of the plasma membrane, which is invariably associated with surface projections. As has been found with other myxoviruses, mumps virus replicates by budding from the cell surface. The virus particle, roughly spherical in shape, has a size ranging from 1,000 to 8,000 A. Filamentous forms are rarely observed in the present culture system. Ferritin-conjugated antibody specifically labels the cytoplasmic nucleoprotein, the modified cell membrane, and the virus particle. Intranuclear inclusions of low electron density and morphologically different from those described in measles virus-infected HeLa and amnion cells were observed in the nucleus of several infected cells. Immuno-electron microscopic observations suggest that the nucleoprotein synthesis rate exceeds that of cell membrane differentiation into viral envelope. This difference results in the accumulation of viral nucleoprotein in large intracytoplasmic masses which can be demonstrated by electron microscopy. Images PMID:5630382

  4. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. PMID:25475529

  5. Quantitative Lifetime Unmixing of Multiexponentially Decaying Fluorophores Using Single-Frequency Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Kremers, Gert-Jan; van Munster, Erik B.; Goedhart, Joachim; Gadella, Theodorus W. J.

    2008-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is a quantitative microscopy technique for imaging nanosecond decay times of fluorophores. In the case of frequency-domain FLIM, several methods have been described to resolve the relative abundance of two fluorescent species with different fluorescence decay times. Thus far, single-frequency FLIM methods generally have been limited to quantifying two species with monoexponential decay. However, multiexponential decays are the norm rather than the exception, especially for fluorescent proteins and biological samples. Here, we describe a novel method for determining the fractional contribution in each pixel of an image of a sample containing two (multiexponentially) decaying species using single-frequency FLIM. We demonstrate that this technique allows the unmixing of binary mixtures of two spectrally identical cyan or green fluorescent proteins, each with multiexponential decay. Furthermore, because of their spectral identity, quantitative images of the relative molecular abundance of these fluorescent proteins can be generated that are independent of the microscope light path. The method is rigorously tested using samples of known composition and applied to live cell microscopy using cells expressing multiple (multiexponentially decaying) fluorescent proteins. PMID:18359789

  6. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  7. Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging

    PubMed Central

    Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.

    2014-01-01

    Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321

  8. Procoagulant platelet balloons: evidence from cryopreparation and electron microscopy.

    PubMed

    Hess, M W; Siljander, P

    2001-05-01

    Visualisation of the procoagulant transformation of human platelets has recently become possible through use of an in vitro approach combined with fluorescence and phase contrast microscopy. Here, we extended these studies to the ultrastructural level by employing both rapid freezing/freeze-substitution and conventional ambient-temperature chemical fixation for transmission and scanning electron microscopy. Procoagulant transformation was only inducible by adhering platelets to collagen fibrils or to the collagen-related peptide and exposing them to physiological extracellular Ca2+ levels. Under these conditions prominent, 2- to 4-micron-wide balloon-like structures were regularly observed, regardless of the specimen fixation protocol. In strong contrast to normal platelets in their vicinity, the balloons' subcellular architecture proved remarkably poor: dilute cytoplasm, no cytoskeleton, only a few, randomly distributed organelles and/or their remnants. Cryofixed balloons displayed intact and smooth surfaces whereas conventional specimen processing caused plasma membrane perforations and shrinkage of the balloons. Our results clearly show that neither the balloons themselves, nor their simple ultrastructure reflect fixation artefacts caused by inadequate membrane stabilisation. The balloons are interpreted as to be transformed and/or fragmented procoagulant platelets. Thus, the generation of balloons represents a genuine, final stage of platelet ontogenesis, presumably occurring alternatively to aggregate formation. PMID:11449892

  9. Utility of Transmission Electron Microscopy in Small Round Cell Tumors

    PubMed Central

    Kim, Na Rae; Ha, Seung Yeon; Cho, Hyun Yee

    2015-01-01

    Small round cell tumors (SRCTs) are a heterogeneous group of neoplasms composed of small, primitive, and undifferentiated cells sharing similar histology under light microscopy. SRCTs include Ewing sarcoma/peripheral neuroectodermal tumor family tumors, neuroblastoma, desmoplastic SRCT, rhabdomyosarcoma, poorly differentiated round cell synovial sarcoma, mesenchymal chondrosarcoma, small cell osteosarcoma, small cell malignant peripheral nerve sheath tumor, and small cell schwannoma. Non-Hodgkin’s malignant lymphoma, myeloid sarcoma, malignant melanoma, and gastrointestinal stromal tumor may also present as SRCT. The current shift towards immunohistochemistry and cytogenetic molecular techniques for SRCT may be inappropriate because of antigenic overlapping or inconclusive molecular results due to the lack of differentiation of primitive cells and unavailable genetic service or limited moleculocytogenetic experience. Although usage has declined, electron microscopy (EM) remains very useful and shows salient features for the diagnosis of SRCTs. Although EM is not always required, it provides reliability and validity in the diagnosis of SRCT. Here, the ultrastructural characteristics of SRCTs are reviewed and we suggest that EM would be utilized as one of the reliable modalities for the diagnosis of undifferentiated and poorly differentiated SRCTs. PMID:25812730

  10. An electron microscopy study of wear in polysilicon microelectromechanical systems.

    SciTech Connect

    Dugger, Michael Thomas; Enachescu, M.; Stach, Eric A.; Alsem, Daan Hein; Ritchie, Robert O.

    2005-02-01

    Wear is a critical factor in determining the durability of microelectromechanical systems (MEMS). While the reliability of polysilicon MEMS has received extensive attention, the mechanisms responsible for this failure mode at the microscale have yet to be conclusively determined. We have used on-chip polycrystalline silicon side-wall friction MEMS specimens to study active mechanisms during sliding wear in ambient air. Worn parts were examined by analytical scanning and transmission electron microscopy, while local temperature changes were monitored using advanced infrared microscopy. Observations show that small amorphous debris particles ({approx}50-100 nm) are removed by fracture through the silicon grains ({approx}500 nm) and are oxidized during this process. Agglomeration of such debris particles into larger clusters also occurs. Some of these debris particles/clusters create plowing tracks on the beam surface. A nano-crystalline surface layer ({approx}20-200 nm), with higher oxygen content, forms during wear at and below regions of the worn surface; its formation is likely aided by high local stresses. No evidence of dislocation plasticity or of extreme local temperature increases was found, ruling out the possibility of high temperature-assisted wear mechanisms.

  11. Advanced analytical electron microscopy for alkali-ion batteries

    SciTech Connect

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed review of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.

  12. Advanced analytical electron microscopy for alkali-ion batteries

    DOE PAGESBeta

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less

  13. Temperature Calibration for In Situ Environmental Transmission Electron Microscopy Experiments

    PubMed Central

    Winterstein, JP; Lin, PA; Sharma, R

    2016-01-01

    In situ environmental transmission electron microscopy (ETEM) experiments require specimen heating holders to study material behavior in gaseous environments at elevated temperatures. In order to extract meaningful kinetic parameters, such as activation energies, it is essential to have a direct and accurate measurement of local sample temperature. This is particularly important if the sample temperature might fluctuate, for example when room temperature gases are introduced to the sample area. Using selected-area diffraction (SAD) in an ETEM, the lattice parameter of Ag nanoparticles was measured as a function of the temperature and pressure of hydrogen gas to provide a calibration of the local sample temperature. SAD permits measurement of temperature to an accuracy of ± 30 °C using Ag lattice expansion. Gas introduction can cause sample cooling of several hundred degrees celsius for gas pressures achievable in the ETEM. PMID:26441334

  14. A Primer to Single-Particle Cryo-Electron Microscopy

    PubMed Central

    Cheng, Yifan; Grigorieff, Nikolaus; Penczek, Pawel A.; Walz, Thomas

    2015-01-01

    Summary Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners. PMID:25910204

  15. Neuron Segmentation in Electron Microscopy Images Using Partial Differential Equations.

    PubMed

    Jones, Cory; Sayedhosseini, Mojtaba; Ellisman, Mark; Tasdizen, Tolga

    2013-01-01

    In connectomics, neuroscientists seek to identify the synaptic connections between neurons. Segmentation of cell membranes using supervised learning algorithms on electron microscopy images of brain tissue is often done to assist in this effort. Here we present a partial differential equation with a novel growth term to improve the results of a supervised learning algorithm. We also introduce a new method for representing the resulting image that allows for a more dynamic thresholding to further improve the result. Using these two processes we are able to close small to medium sized gaps in the cell membrane detection and improve the Rand error by as much as 9% over the initial supervised segmentation. PMID:25143802

  16. Electron microscopy of Co/Fe/B/Si amorphous alloys

    SciTech Connect

    Rabenberg, L.; Mishra, R.K.; Thomas, G.; Kohmoto, O.; Ojima, T.

    1980-09-01

    Changes in magnetic structures with annealing are studied using Lorentz electron microscopy and are correlated with changes in magnetic properties for the Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ amorphous alloy. Domain wall stablization is shown to be the dominant factor resulting in decreasing ..mu.. and increasing H/sub c/ and K during low temperature annealing. Annealing near T/sub c/ results in an isotropic magnetic structure due to domain wall relaxation, and annealing above T/sub cry/ results in magnetically hard crystalline particles. It is concluded that treatments capable of producing a magnetically isotropic structure can produce the best soft magnetic materials.

  17. Electron microscopy of Co/Fe/B/Si amorphous alloys

    SciTech Connect

    Rabenberg, L.; Mishra, R.K.; Thomas, G.; Kohmoto, O.; Ojima, T.

    1980-09-01

    Changes in magnetic structures with annealing are studied using Lorentz electron microscopy and are correlated with changes in magnetic properties for the Co/sub 71/./sub 4/Fe/sub 4/./sub 6/Si/sub 9/./sub 6/B/sub 14/./sub 4/ amorphous alloy. Domain wall stabilization is shown to be the dominant factor resulting in decreasing ..mu.. and increasing H/sub c/ and K during low temperature annealing. Annealing near T/sub c/ results in an isotropic magnetic structure due to domain wall relaxation, and annealing above T/sub cry/ results in magnetically hard crystalline particles. It is concluded that treatments capable of producing a magnetically isotropic structure can produce the best soft magnetic materials.

  18. Watershed Merge Tree Classification for Electron Microscopy Image Segmentation

    SciTech Connect

    Liu, TIng; Jurrus, Elizabeth R.; Seyedhosseini, Mojtaba; Ellisman, Mark; Tasdizen, Tolga

    2012-11-11

    Automated segmentation of electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that utilizes a hierarchical structure and boundary classification for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree is built for the representation of hierarchical region merging from the watershed algorithm. A boundary classifier is learned with non-local image features to predict each potential merge in the tree, upon which merge decisions are made with consistency constraints in the sense of optimization to acquire the final segmentation. Independent of classifiers and decision strategies, our approach proposes a general framework for efficient hierarchical segmentation with statistical learning. We demonstrate that our method leads to a substantial improvement in segmentation accuracy.

  19. Nanocrystal size distribution analysis from transmission electron microscopy images.

    PubMed

    van Sebille, Martijn; van der Maaten, Laurens J P; Xie, Ling; Jarolimek, Karol; Santbergen, Rudi; van Swaaij, René A C M M; Leifer, Klaus; Zeman, Miro

    2015-12-28

    We propose a method, with minimal bias caused by user input, to quickly detect and measure the nanocrystal size distribution from transmission electron microscopy (TEM) images using a combination of Laplacian of Gaussian filters and non-maximum suppression. We demonstrate the proposed method on bright-field TEM images of an a-SiC:H sample containing embedded silicon nanocrystals with varying magnifications and we compare the accuracy and speed with size distributions obtained by manual measurements, a thresholding method and PEBBLES. Finally, we analytically consider the error induced by slicing nanocrystals during TEM sample preparation on the measured nanocrystal size distribution and formulate an equation to correct this effect. PMID:26593390

  20. Electron Microscopy Analysis of the Nucleolus of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    López-Velázquez, Gabriel; Hernández, Roberto; López-Villaseñor, Imelda; Reyes-Vivas, Horacio; Segura-Valdez, María De L.; Jiménez-García, Luis F.

    2005-08-01

    The nucleolus is the main site for synthesis and processing of ribosomal RNA in eukaryotes. In mammals, plants, and yeast the nucleolus has been extensively characterized by electron microscopy, but in the majority of the unicellular eukaryotes no such studies have been performed. Here we used ultrastructural cytochemical and immunocytochemical techniques as well as three-dimensional reconstruction to analyze the nucleolus of Trypanosoma cruzi, which is an early divergent eukaryote of medical importance. In T. cruzi epimastigotes the nucleolus is a spherical intranuclear ribonucleoprotein organelle localized in a relatively central position within the nucleus. Dense fibrillar and granular components but not fibrillar centers were observed. In addition, nuclear bodies resembling Cajal bodies were observed associated to the nucleolus in the surrounding nucleoplasm. Our results provide additional morphological data to better understand the synthesis and processing of the ribosomal RNA in kinetoplastids.

  1. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  2. Electron microscopy of gallium nitride growth on polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Cherns, D.; Kuball, M.; Jiang, Q.; Allsopp, D.

    2015-11-01

    Transmission and scanning electron microscopy were used to examine the growth of gallium nitride (GaN) on polycrystalline diamond substrates grown by metalorganic vapour phase epitaxy with a low-temperature aluminium nitride (AlN) nucleation layer. Growth on unmasked substrates was in the (0001) orientation with threading dislocation densities ≈7 × 109 cm-2. An epitaxial layer overgrowth technique was used to reduce the dislocation densities further, by depositing silicon nitride stripes on the surface and etching the unmasked regions down to the diamond substrate. A re-growth was then performed on the exposed side walls of the original GaN growth, reducing the threading dislocation density in the overgrown regions by two orders of magnitude. The resulting microstructures and the mechanisms of dislocation reduction are discussed.

  3. Collaborative Computational Project for Electron cryo-Microscopy

    PubMed Central

    Wood, Chris; Burnley, Tom; Patwardhan, Ardan; Scheres, Sjors; Topf, Maya; Roseman, Alan; Winn, Martyn

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallo­graphy, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed. PMID:25615866

  4. Transmission Electron Microscopy (TEM) investigations of ancient Egyptian cosmetic powders

    NASA Astrophysics Data System (ADS)

    Deeb, C.; Walter, P.; Castaing, J.; Penhoud, P.; Veyssière, P.

    The processing technologies available during the time of ancient Egypt are of present concern to the field of Archaeology and Egyptology. Materials characterization is the best tool for establishing the processing history of archaeological objects. In this study, transmission electron microscopy (TEM) is used, in addition to other techniques, for phase identification and study of the microstructure and characteristic defect structures in ancient Egyptian cosmetic powders. These powders generally consist of a mix of Pb-containing mineral phases: galena (PbS), cerussite (PbCO3), and phosgenite (Pb2Cl2CO3), among others. Modern materials are fabricated according to recipes found in ancient texts to mimic the processing of ancient times and to compare with the archaeological specimens. In particular, a comparison between the dislocation structures of PbS crystals deformed in the laboratory and PbS from archaeological specimens from the collections of the Louvre Museum is presented .

  5. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE PAGESBeta

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore » to those of other techniques available.« less

  6. Waveguide characterization with multi-photon photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. P. S.; Word, Robert C.; Saliba, Sebastian; Koenenkamp, Rolf

    2012-10-01

    Multi-photon photoemission electron microscopy (PEEM) images surface interactions of visible light with matter, showing electromagnetic (EM) waves that propagate at or near the surface. Images are interferometric, showing where incident and surface waves are in-phase (bright) and out-of-phase (dark), with strong contrast between regions of high and low rates of photoelectron emission. Interferogram analysis can determine the amplitude, wavelength, phase evolution, and propagation decay length of the surface waves. Most multi-photon PEEM studies focus on surface plasmon polaritons. We show that this technique can also be applied to conducting thin-film waveguides, measuring the properties of confined EM waves in a two-mode slab waveguide made of indium tin oxide on glass, which are consistent with waveguide theory. This research was funded by the US Department of Energy Basic Science Office under contract DE-FG02-10ER46406.

  7. 3D reconstruction of neurons in electron microscopy images.

    PubMed

    Ensafi, Shahab; Shijian Lu; Kassim, Ashraf A; Tan, Chew Lim

    2014-01-01

    With the prevalence of brain-related diseases like Alzheimer in an increasing ageing population, Connectomics, the study of connections between neurons of the human brain, has emerged as a novel and challenging research topic. Accurate and fully automatic algorithms are needed to deal with the increasing amount of data from the brain images. This paper presents an automatic 3D neuron reconstruction technique where neurons within each slice image are first segmented and then linked across multiple slices within the publicly available Electron Microscopy dataset (SNEMI3D). First, random Forest classifier is adapted on top of superpixels for the neuron segmentation within each slice image. The maximum overlap between two consecutive images is then calculated for neuron linking, where the adjacency matrix of two different labeling of the segments is used to distinguish neuron merging and splitting. Experiments over the SNEMI3D dataset show that the proposed technique is efficient and accurate. PMID:25571541

  8. Scanning electron microscopy fractography analysis of fractured hollow implants.

    PubMed

    Sbordone, Ludovico; Traini, Tonino; Caputi, Sergio; Scarano, Antonio; Bortolaia, Claudia; Piattelli, Adriano

    2010-01-01

    Fracture of the implant is one of the possible complications affecting dental implants; it is a rare event but of great clinical relevance. The aim of the present study was to perform a scanning electron microscopy (SEM) fractography evaluation of 7 International Team for oral Implantology (ITI) hollow implants removed because of fracture. The most common clinical risk factors, such as malocclusion, bruxism, and cantilevers on the prosthesis, were absent. Seven fractured ITI hollow implants were retrieved from 5 patients and were analyzed with the use of SEM. SEM analysis showed typical signs of a cleavage-type fracture. Fractures could be due to an association of multiple factors such as fatigue, inner defects, material electrochemical problems, and tensocorrosion. PMID:20426587

  9. Scanning SQUID microscopy with single electron spin sensitivity

    NASA Astrophysics Data System (ADS)

    Vasyukov, Denis

    2014-03-01

    Superconducting interference devices (SQUIDs) have been traditionally used for studying fundamental properties of magnetic materials and superconductors. Although widely used in scanning magnetic microscopy, their progress towards detection of small magnetic moments was stagnating of late due to limitations imposed by conventional designs of planar SQUIDs and contemporary lithography techniques, restricting sample-to-sensor distance smaller than ~ 0.5 micron and SQUIDs diameters smaller than ~ 200 nm. These limitations were overcome by the invention of a SQUID-on-tip device, subsequent realization of a SQUID-on-tip microscope, and by creation of an ultra-small sensor with spatial resolution of 20 nm and sensitivity to a single electron spin per 1 Hz bandwidth. In this talk I will describe the principles of scanning SQUID magnetometry, its applications to study superconductors and its potential for magnetic nano-scale imaging of novel materials.

  10. Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan; Bhargava, Rohit; Brand, Randall E.; Liu, Yang

    2011-03-01

    A novel microscopy technique, spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is proposed to obtain quantitative phase imaging of sub-cellular structures with sub-nanometer sensitivity. This technique utilizes a low spatial-coherence from a thermal light source and produces a speckle-free, nanoscale-sensitive quantitative phase map of scattering objects. With this technique, for the first time to our knowledge, we quantified the refractive index of the cell nuclei on the original unmodified histology specimens. The results show that the average refractive index of the cell nucleus is significantly increased in cells from cancer patients compared to that of the histologically normal cells from healthy patients. More importantly, we demonstrate the superior sensitivity of refractive index of cell nucleus in detecting cancer from histologically normal cells from cancer patients. Because this technique is simple, sensitive, does not require special tissue processing, and can be applied to archived specimens, it can be disseminated to all clinical settings.

  11. Revealing the Formation of Copper Nanoparticles from a Homogeneous Solid Precursor by Electron Microscopy.

    PubMed

    van den Berg, Roy; Elkjaer, Christian F; Gommes, Cedric J; Chorkendorff, Ib; Sehested, Jens; de Jongh, Petra E; de Jong, Krijn P; Helveg, Stig

    2016-03-16

    The understanding of processes leading to the formation of nanometer-sized particles is important for tailoring of their size, shape and location. The growth mechanisms and kinetics of nanoparticles from solid precursors are, however, often poorly described. Here we employ transmission electron microscopy (TEM) to examine the formation of copper nanoparticles on a silica support during the reduction by H2 of homogeneous copper phyllosilicate platelets, as a prototype precursor for a coprecipitated catalyst. Specifically, time-lapsed TEM image series acquired of the material during the reduction process provide a direct visualization of the growth dynamics of an ensemble of individual nanoparticles and enable a quantitative evaluation of the nucleation and growth of the nanoparticles. This quantitative information is compared with kinetic models and found to be best described by a nucleation-and-growth scenario involving autocatalytic reduction of the copper phyllosilicate followed by diffusion-limited or reaction-limited growth of the copper nanoparticles. The plate-like structure of the precursor restricted the diffusion of copper and the autocatalytic reduction limited the probability for secondary nucleation. The combination of a uniform size of precursor particles and the autocatalytic reduction thus offers means to synthesize nanoparticles with well-defined sizes in large amounts. In this way, in situ observations made by electron microscopy provide mechanistic and kinetic insights into the formation of supported nanoparticles, essential for the rational design of nanomaterials. PMID:26891132

  12. Scanning electron microscopy of Strongylus spp. in zebra.

    PubMed

    Els, H J; Malan, F S; Scialdo-Krecek, R C

    1983-12-01

    The external ultrastructure of the anterior and posterior extremities of the nematodes, Strongylus asini , Strongylus vulgaris, Strongylus equinus and Strongylus edentatus, was studied with scanning electron microscopy (SEM). Fresh specimens of S. asini were collected from the caecum, ventral colon and vena portae of Equus burchelli and Equus zebra hartmannae ; S. vulgaris from the caecum, colon and arteria ileocolica of E. burchelli ; S. equinus from the ventral colon of E. z. hartmannae and S. edentatus from the caecum and ventral colon of both zebras , during surveys of parasites in zebras in the Etosha Game Reserve, South West Africa/Namibia, and the Kruger National Park, Republic of South Africa. The worms were cleaned, fixed and mounted by standard methods and photographed in a JEOL JSM - 35C scanning electron microscope (SEM) operating at 12kV . The SEM showed the following differences: the tips of the external leaf-crowns varied and were fine and delicate in S. asini , coarse and broad in S. vulgaris and, in S. equinus and S. edentatus, closely adherent, separating into single elements for half their length. The excretory pores showed only slight variation, and the morphology of the copulatory bursae did not differ from those seen with light microscopy. The genital cones differed markedly: S. asini had a ventral triangular projection and laterally 2 finger-like projections: in S. vulgaris there were numerous bosses on the lateral and ventral aspects of the cone; in S. equinus 2 finger-like processes projected laterocaudally ; and in S. edentatus 2 pairs of papilla-like processes projected laterally on the ventral aspects, and a pair of rounded projections and a pair of hair-like structures adorned the dorsal aspects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6676687

  13. Electron tomography and immunonanogold electron microscopy for investigating intracellular trafficking and secretion in human eosinophils.

    PubMed

    Melo, Rossana C N; Dvorak, Ann M; Weller, Peter F

    2008-08-01

    Electron tomography (ET) has increasingly been used to understand the complexity of membrane systems and protein-trafficking events. By ET and immunonanogold electron microscopy, we recently defined a route for vesicular transport and release of granule-stored products from within activated human eosinophils, cells specialized in the secretion of numerous cytokines and other proteins during inflammatory responses. Here, we highlight these techniques as important tools to unveil a distinct eosinophil vesicular system and secretory pathway. PMID:18410520

  14. Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM).

    PubMed

    Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara

    2012-11-01

    In the atmospheric scanning electron microscope (ASEM), an inverted SEM observes the wet sample from beneath an open dish while an optical microscope (OM) observes it from above. The disposable dish with a silicon nitride (SiN) film window can hold a few milliliters of culture medium, and allows various types of cells to be cultured in a stable environment. The use of this system for in situ correlative OM/SEM immuno-microscopy is explored, the efficiency of the required dual-tagged labeling assessed and the imaging capabilities of the ASEM documented. We have visualized the cytoskeletons formed by actin and tubulin, the chaperone PDI that catalyses native disulfide bond formation of proteins in the endoplasmic reticulum (ER) and the calcium sensor STIM1 that is integrated in ER membranes, using established cell lines. In particular, a dynamic string-like gathering of STIM1 was observed on the ER in Jurkat T cells in response to Ca(2+) store depletion. We have also visualized filamentous actin (F-actin) and tubulin in the growth cones of primary-culture neurons as well as in synapses. Further, radially running actin fibers were shown to partly colocalize with concentric bands of the Ca(2+) signaling component Homer1c in the lamellipodia of neuron primary culture growth cones. After synapse formation, neurite configurations were drastically rearranged; a button structure with a fine F-actin frame faces a spine with a different F-actin framework. Based on this work, ASEM correlative microscopy promises to allow the dynamics of various protein complexes to be investigated in the near future. PMID:22959994

  15. Progress towards critical dimension low vacuum scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Tileli, Vasiliki

    Low vacuum scanning electron microscopy (LVSEM) is proposed and evaluated for next generation Critical Dimension (CD) metrology. Its ability to control charging artifacts and hydrocarbon contamination in order to obtain high signal-to-noise ratio, high resolution image data from insulating materials make the technology an excellent match for the increased use of high-k dielectrics and shrinking feature size in the semiconductor industry. The presence of a gas in the LVSEM chamber means that the probe characteristics and secondary electron amplification, detection, and signal-to-noise ratio differ significantly from conventional high vacuum tools. In order for low vacuum CD approaches to be viable, all of the processes must be understood and described to the degree of accuracy currently available on high vacuum systems. Consequently, the focus of this thesis is to determine an analytic form of the signal-to-noise ratio for two detector configurations: the simplified steady-state cascade system operating in the well defined Townsend's discharge region, and the high resolution, low vacuum immersion lens secondary electron detector, for which the physical amplification process has not been studied in the past. A physically realistic and ultimately predictive model, which could potentially be incorporated in CD simulation codes such as NIST's MONSEL, is developed. Its effectiveness is verified with experimental data acquired as a function of gas pressure for all important operating parameters, such as electron beam energy and current, detector bias, cascade distance, and gas type, and its capability for optimization of the imaging conditions is discussed. Noise characteristics are also analyzed using Monte Carlo gain histograms and pure statistical methods.

  16. Quantitative phase imaging with molecular sensitivity using photoacoustic microscopy with a miniature ring transducer.

    PubMed

    Sheinfeld, Adi; Eldridge, Will J; Wax, Adam

    2015-08-01

    We present a dual-modality system for both structural and molecular cell imaging based on coregistered quantitative phase imaging (QPI) and photoacoustic microscopy (PAM). The QPI system was based on off-axis holography, whereas the PAM system comprised a sinusoidally modulated optical source for excitation and a narrow-band low profile and low-cost ring ultrasonic transducer for detection. This approach facilitated a simple confocal alignment of the excitation beams of both modalities and the ultrasonic detector. This system was demonstrated by imaging endogenous molecules in red blood cells (RBCs) as well as by imaging exogenous molecular labels on cancer cells using gold nanoparticles (GNPs) functionalized to target epidermal growth factor receptor. QPI provided high resolution imaging of the cellular structures while PAM provided molecular contrast. This dual-modality microscopy method can potentially be implemented as a compact and low cost cellular diagnostic assay. PMID:26263416

  17. Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis

    PubMed Central

    Supatto, Willy; McMahon, Amy; Fraser, Scott E.; Stathopoulos, Angelike

    2010-01-01

    This protocol describes imaging and computational tools to collect and analyze live imaging data of embryonic cell migration. Our five step protocol requires a few weeks to move through embryo preparation and four-dimensional (4D) live imaging using multiphoton microscopy, to 3D cell-tracking using image processing, registration of tracking data, and their quantitative analysis using computational tools. It uses commercially available equipment, and requires expertise in microscopy and programming that is appropriate for a biology laboratory. Custom-made scripts are provided, as well as sample datasets to permit readers without experimental data to perform the analysis. The protocol has offered new insights into the genetic control of cell migration during Drosophila gastrulation. With simple changes, this systematic analysis could be applied to any developing system to define cell positions in accordance with the body plan, to decompose complex 3D movements, and to quantify the collective nature of cell migration. PMID:19745822

  18. Note: Quantitative (artifact-free) surface potential measurements using Kelvin force microscopy.

    PubMed

    Mélin, T; Barbet, S; Diesinger, H; Théron, D; Deresmes, D

    2011-03-01

    The measurement of local surface potentials by Kelvin force microscopy (KFM) can be sensitive to external perturbations which lead to artifacts such as strong dependences of experimental results (typically in a ∼1 V range) with KFM internal parameters (cantilever excitation frequency and/or the projection phase of the KFM feedback-loop). We analyze and demonstrate a correction of such effects on a KFM implementation in ambient air. Artifact-free KFM measurements, i.e., truly quantitative surface potential measurements, are obtained with a ∼30 mV accuracy. PMID:21456803

  19. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  20. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Yang, Hongqin; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2011-04-01

    Multiphoton microscopy was employed for monitoring the structure changes of mouse dermis collagen in the intrinsic- or the extrinsic-age-related processes in vivo. The characteristics of textures in different aging skins were uncovered by fast Fourier transform in which the orientation index and bundle packing of collagen were quantitatively analyzed. Some significant differences in collagen-related changes are found in different aging skins, which can be good indicators for the statuses of aging skins. The results are valuable to the study of aging skin and also of interest to biomedical photonics.

  1. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy

    PubMed Central

    Boudejltia, Karim Zouaoui; Ribeiro de Sousa, Daniel; Uzureau, Pierrick; Yourassowsky, Catherine; Perez-Morga, David; Courbebaisse, Guy; Chopard, Bastien; Dubois, Frank

    2015-01-01

    Platelet spreading and retraction play a pivotal role in the platelet plugging and the thrombus formation. In routine laboratory, platelet function tests include exhaustive information about the role of the different receptors present at the platelet surface without information on the 3D structure of platelet aggregates. In this work, we develop, a method in Digital Holographic Microscopy (DHM) to characterize the platelet and aggregate 3D shapes using the quantitative phase contrast imaging. This novel method is suited to the study of platelets physiology in clinical practice as well as the development of new drugs. PMID:26417523

  2. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  3. Structured illumination diffraction phase microscopy for broadband, sub-diffraction resolution, quantitative phase imaging

    PubMed Central

    Chowdhury, Shwetadwip; Izatt, Joseph A.

    2015-01-01

    Structured illumination microscopy (SIM) is an established technique that allows sub-diffraction resolution imaging by heterodyning high sample frequencies into the system’s passband via structured illumination. However, until now, SIM has been typically used to achieve sub-diffraction resolution for intensity-based imaging. Here, we present a novel optical setup that uses structured illumination with a broadband-light source to obtain noise-reduced, sub-diffraction resolution, quantitative-phase (QPM) imaging of cells. We compare this with a previous work for sub-diffraction QPM imaging via SIM that used a laser source, and was thus still corrupted by coherent noise. PMID:24562266

  4. Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy

    PubMed Central

    Zimmerley, Maxwell; Lin, Chia-Yu; Oertel, David C.; Marsh, Jennifer M.; Ward, Jimmie L.; Potma, Eric Olaf

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is used to determine the distribution and concentration of selected compounds in intact human hair. By generating images based on ratiometric CARS contrast, quantitative concentration maps of both water and externally applied d-glycine are produced in the cortex of human hair fibers. Both water and d-glycine are found to homogeneously distribute throughout the cortical regions of the hair. The ability to selectively detect molecular agents in hair fibers is of direct relevance to understanding the chemical and physical mechanisms that underlie the performance of hair-care products. PMID:19725730

  5. Interfacial ultramorphology evaluation of resin luting cements to dentin: a correlative scanning electron microscopy and transmission electron microscopy analysis.

    PubMed

    Aguiar, Thaiane Rodrigues; Vermelho, Paulo Moreira; Andr, Carolina Bosso; Giannini, Marcelo

    2013-12-01

    The objective of this study was to analyze the dentin-resin cements interfacial ultramorphologies using two different methods: scanning (SEM) and transmission electron microscopy (TEM). Four commercial products were evaluated: two conventional cementing system (RelyX ARC/Adper Scotchbond Multi-Purpose Plus, 3M ESPE and Clearfil Esthetic Cement/DC Bond, Kuraray) and two self-adhesive resin cements (RelyX Unicem, 3M ESPE and Clearfil SA Cement, Kuraray). Prepolymerized resin disks (Sinfony, 3M ESPE) were cemented on oclusal dentin surfaces of 24 third human molars, simulating the indirect restorations. After 24 h, teeth were sectioned into 0.9-mm thick slabs and processed for microscopy analyses (SEM or TEM/ n = 3). Qualitative characterization of dentin-resin cement interface was performed. Hybrid layer formation with long and dense resin tags was observed only for RelyX ARC cementing system. Clearfil Esthetic Cement/DC Bond system revealed few and short resin tags formation, whereas no hybridization and resin tags were detected for self-adhesive resin cements. Some interfacial regions exhibited that the self-adhesive resin cements were not bonded to dentin, presenting bubbles or voids at the interfaces. In conclusion, TEM and SEM bonding interface analyses showed ultramorphological variations among resin cements, which are directly related to dental bonding strategies used for each resin cement tested. PMID:24030836

  6. Thin dielectric film thickness determination by advanced transmission electron microscopy

    SciTech Connect

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  7. Electron microscopy analysis of mineral fibers in human lung tissue

    SciTech Connect

    Friedrichs, K.H.; Brockmann, M.; Fischer, M.; Wick, G. )

    1992-01-01

    In the present study, lung samples from 126 autopsied cases were examined to determine the content of mineral fibers using analytical transmission electron microscopy (ATEM). The cases were divided into four groups (22 lungs of persons exposed to ambient environmental pollution, 32 cases of mesothelioma, 38 cases of primary lung cancer, and 34 asbestosis cases, 13 of these with additional pleural plaques). Fibers were counted, measured, and mineralogically identified using a combination of X-ray microanalysis and electron diffraction of the non-oriented fiber. Concentration of fibrous particles (defined as particles above 1 micron in length with roughly parallel long sides and an aspect ratio of 5:1 and greater) was calculated as fibers 10(6)/g dry lung weight. The concentration of chrysotile was found to be similar throughout the groups except for two cases in the asbestosis group with comparably high numbers of chrysotile. However, a remarkable difference for amphiboles could be observed between the groups. Asbestos bodies were mostly found in the asbestosis group. There was a rather good correlation between numbers of amphibole fibers and asbestos bodies, with an average ratio of 10:1. For comparison purposes between occupationally exposed/non-exposed individuals, a transition was found in the concentration range of 3-10(7) asbestos fibers/g dried lung weight.

  8. Seeing Inside Materials by Aberration-Corrected Electron Microscopy

    SciTech Connect

    Pennycook, Stephen J

    2011-01-01

    The recent successful correction of lens aberrations in the electron microscope has improved resolution by more than a factor of two in just a few years, bringing many benefits for the study of materials. These benefits extend significantly beyond enhanced resolution alone. Aberration correction gives higher resolution by allowing the objective lens to have a wider aperture, which also results in a reduced depth of field. This effect can be used to only focus specific sections inside materials for the first time. In this contribution we describe recent results exploiting this capability. Additionally, we show how combining the microscopy data with first-principles theory gives new insights into materials properties. We cover two applications, both involving heavy atoms in a lighter host. The first shows how single Hf atoms can be mapped in three dimensions inside the 1 nm-wide SiO2 region of a high dielectric constant device structure, and how a link to macroscopic device properties results through theoretical calculations. The second example is from the field of nanoscience, where individual Au atoms are imaged inside Si nanowires grown by a vapor-liquid-solid mechanism. The majority of Au atoms are probably injected by the highly energetic electron beam. However, their observed sites and atomic configurations represent at least meta-stable configurations and match well to results from density functional calculations.

  9. Atomic resolution cryo electron microscopy of macromolecular complexes.

    PubMed

    Zhou, Z Hong

    2011-01-01

    Single-particle cryo electron microscopy (cryoEM) is a technique for determining three-dimensional (3D) structures from projection images of molecular complexes preserved in their "native," noncrystalline state. Recently, atomic or near-atomic resolution structures of several viruses and protein assemblies have been determined by single-particle cryoEM, allowing ab initio atomic model building by following the amino acid side chains or nucleic acid bases identifiable in their cryoEM density maps. In particular, these cryoEM structures have revealed extended arms contributing to molecular interactions that are otherwise not resolved by the conventional structural method of X-ray crystallography at similar resolutions. High-resolution cryoEM requires careful consideration of a number of factors, including proper sample preparation to ensure structural homogeneity, optimal configuration of electron imaging conditions to record high-resolution cryoEM images, accurate determination of image parameters to correct image distortions, efficient refinement and computation to reconstruct a 3D density map, and finally appropriate choice of modeling tools to construct atomic models for functional interpretation. This progress illustrates the power of cryoEM and ushers it into the arsenal of structural biology, alongside conventional techniques of X-ray crystallography and NMR, as a major tool (and sometimes the preferred one) for the studies of molecular interactions in supramolecular assemblies or machines. PMID:21501817

  10. Aberration Corrected Photoemission Electron Microscopy with Photonics Applications

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Joseph P. S.

    Photoemission electron microscopy (PEEM) uses photoelectrons excited from material surfaces by incident photons to probe the interaction of light with surfaces with nanometer-scale resolution. The point resolution of PEEM images is strongly limited by spherical and chromatic aberration. Image aberrations primarily originate from the acceleration of photoelectrons and imaging with the objective lens and vary strongly in magnitude with specimen emission characteristics. Spherical and chromatic aberration can be corrected with an electrostatic mirror, and here I develop a triode mirror with hyperbolic geometry that has two adjacent, field-adjustable regions. I present analytic and numerical models of the mirror and show that the optical properties agree to within a few percent. When this mirror is coupled with an electron lens, it can provide a large dynamic range of correction and the coefficients of spherical and chromatic aberration can be varied independently. I report on efforts to realize a triode mirror corrector, including design, characterization, and alignment in our microscope at Portland State University (PSU). PEEM may be used to investigate optically active nanostructures, and we show that photoelectron emission yields can be identified with diffraction, surface plasmons, and dielectric waveguiding. Furthermore, we find that photoelectron micrographs of nanostructured metal and dielectric structures correlate with electromagnetic field calculations. We conclude that photoemission is highly spatially sensitive to the electromagnetic field intensity, allowing the direct visualization of the interaction of light with material surfaces at nanometer scales and over a wide range of incident light frequencies.

  11. Scanning tunneling and scanning transmission electron microscopy of biological membranes

    NASA Astrophysics Data System (ADS)

    Stemmer, A.; Reichelt, R.; Engel, A.; Rosenbusch, J. P.; Ringger, M.; Hidber, H. R.; Güntherodt, H. J.

    1987-03-01

    The feasibility of imaging porin membrane, which is a reconstituted biological membrane consisting of phospholipid and protein, was studied by scanning tunneling microscopy (STM). Due to detailed knowledge of its composition from biochemical and its three-dimensional (3D) structure from electron microscopical analysis, porin vesicles seem to be a suitable model specimen for exploring the application of STM in biology. Unstained vesicles adsorbed onto a thin amorphous carbon film supported by a finder grid were localized using a scanning transmission electron microscope (STEM) at low irradiation doses ( < 100 {e -}/{nm 2}). Suitable areas of the sample were then positioned in the STM by a light optical telescope. STM images taken under ambient pressure from empty amorphous carbon films exhibited corrugations in the range of ⩽ 1 nm, whereas steps having a height of 5 nm were reproducibly observed on grids with porin vesicles. Since this value is in good agreement with that obtained from air-dried metal shadowed vesicles, we interpret these steps as the edges of porin membranes.

  12. Bsoft: image and molecular processing in electron microscopy.

    PubMed

    Heymann, J B

    2001-01-01

    Software for the processing of electron micrographs in structural biology suffers from incompatibility between different packages, poor definition and choice of conventions, and a lack of coherence in software development. The solution lies in adopting a common philosophy of interaction and conventions between the packages. To understand the choices required to have such common interfaces, I am developing a package called "Bsoft." Its foundations lie in the variety of different image file formats used in electron microscopy-a continually frustrating experience to the user and programmer alike. In Bsoft, this problem is greatly diminished by support for many different formats (including MRC, SPIDER, IMAGIC, SUPRIM, and PIF) and by separating algorithmic issues from image format-specific issues. In addition, I implemented a generalized functionality for reading the tag-base STAR (self-defining text archiving and retrieval) parameter file format as a mechanism to exchanging parameters between different packages. Bsoft is written in highly portable code (tested on several Unix systems and under VMS) and offers a continually growing range of image processing functionality, such as Fourier transformation, cross-correlation, and interpolation. Finally, prerequisites for software collaboration are explored, which include agreements on information exchange and conventions, and tests to evaluate compatibility between packages. PMID:11472087

  13. Morphological classification of bioaerosols from composting using scanning electron microscopy

    SciTech Connect

    Tamer Vestlund, A.; Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H.

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.

  14. Nanomusical systems visualized and controlled in 4D electron microscopy.

    PubMed

    Baskin, J Spencer; Park, Hyun Soon; Zewail, Ahmed H

    2011-05-11

    Nanomusical systems, nanoharp and nanopiano, fabricated as arrays of cantilevers by focused ion beam milling of a layered Ni/Ti/Si(3)N(4) thin film, have been investigated in 4D electron microscopy. With the imaging and selective femtosecond and nanosecond control combinations, full characterization of the amplitude and phase of the resonant response of a particular cantilever relative to the optical pulse train was possible. Using a high repetition rate, low energy optical pulse train for selective, resonant excitation, coupled with pulsed and steady-state electron imaging for visualization in space and time, both the amplitude on the nanoscale and resonance of motion on the megahertz scale were resolved for these systems. Tilting of the specimen allowed in-plane and out-of-plane cantilever bending and cantilever torsional motions to be identified in stroboscopic measurements of impulsively induced free vibration. Finally, the transient, as opposed to steady state, thermostat effect was observed for the layered nanocantilevers, with a sufficiently sensitive response to demonstrate suitability for in situ use in thin-film temperature measurements requiring resolutions of <10 K and 10 μm on time scales here mechanically limited to microseconds and potentially at shorter times. PMID:21513332

  15. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  16. Noise characteristics of the gas ionization cascade used in low vacuum scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Tileli, Vasiliki; Knowles, W. Ralph; Toth, Milos; Thiel, Bradley L.

    2009-07-01

    The noise characteristics of gas cascade amplified electron signals in low vacuum scanning electron microscopy (LVSEM) are described and analyzed. We derive expressions for each component contributing to the total noise culminating in a predictive, quantitative model that can be used for optimization of LVSEM operating parameters. Signal and noise behavior is characterized experimentally and used to validate the model. Under most operating conditions, the noise is dominated by the excess noise generated in the gas amplification cascade. At high gains, the excess noise increases proportionally with gain such that the signal-to-noise ratio is constant. The effects of several instrument operating parameters, including working distance, gas pressure, beam current, and detector bias, are condensed and presented in the form of a master curve.

  17. Dynamic analysis of pathogen-infected host cells using quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seungrag; Kim, Young Ran; Lee, Ji Yong; Rhee, Joon Haeng; Park, Chang-Soo; Kim, Dug Young

    2011-03-01

    We present the real-time quantitative analysis of Vibrio vulnificus-infected host cells using quantitative phase microscopy (QPM) based on interferometric techniques. This provides the ability to retrieve the phase or optical path-length distribution over the cell with nanometer path-length sensitivity from a single interferogram image. We have used QPM to study dynamic cell morphologic changes and to noninvasively quantify the cell volumes of rat basophilic leukemia RBL-2H3 cells infected with V. vulnificus strains: wild type (MO6-24/O) and RtxA1 toxin mutant (CMM770). During the process of V. vulnificus infection in RBL-2H3 cells, the dynamic changes of quantitative phase images, cell volumes, and areas were observed in real time using QPM. In contrast, dramatic changes were not detected in RBL-2H3 cells infected with the noncytotoxic RtxA1 toxin mutant. The results showed good correlation between QPM analysis and biochemical assays, such as lactate dehydrogenase assay or β-hexosaminidase release assay. We suggest that QPM is a powerful quantitative method to study the dynamic process of host cells infected with pathogens in a noninvasive manner.

  18. Dynamic phase imaging of host cells attacked by Vibrio vulnificus using quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seungrag; Yang, Wenzhong; Lee, Ji Yong; Cha, Mi Hye; Kim, Young Ran; Kim, Dug Young

    2010-02-01

    We present the real time quantitative analysis of Vibrio vulnificus-infected host cells using high stability quantitative phase microscopy (HSQPM). It provides the ability to retrieve the phase or optical path length distribution over the cell from a single interferogram image, which has been measured with nanometer path length sensitivity for long periods of time. We have applied HSQPM to study dynamic cell morphologic changes and to quantify noninvasively cell volumes of rat basophilic leukemia RBL-2H3 cells infected with pathogenic bacteria V. vulnificus strains, wild type (MO6-24/O) and RTX toxin mutant (CMM770). During the process of V. vulnificus wild type infection to RBL-2H3 cells, the dynamic changes of quantitative phase images, cell volumes and areas were observed in real time using HSQPM. In contrast, the dramatic changes were not detected in RBL-2H3 cells infected with RTX toxin mutant. The results showed the good correlation between HSQPM analysis and biochemical assays such as lactate dehydrogenase (LDH) assay and β-hexosaminidase release assay. We suggest that HSQPM is useful real time quantitative method to study the dynamic process of host cells infected with pathogen in a noninvasive manner.

  19. Effects of ultramorphological changes on adhesion to lased dentin-Scanning electron microscopy and transmission electron microscopy analysis.

    PubMed

    Moretto, Simone G; Azambuja, Nilton; Arana-Chavez, Victor E; Reis, Andre F; Giannini, Marcelo; Eduardo, Carlos de P; De Freitas, Patricia M

    2011-08-01

    Dentin irradiation with erbium lasers has been reported to alter the composite resin bond to this treated surface. There is still a lack of studies reporting the effect of erbium lasers on dentin organic content and elucidating how laser treatment could interfere in the quality of the resin-dentin interface. This study aimed to evaluate the effect of erbium laser irradiation on dentin morphology and microtensile bond strength (μTBS) of an adhesive to dentin. Seventy-two dentin disks were divided into nine groups (n = 8): G1-Control (600-grit SiC paper); Er:YAG groups: G2- 250 mJ/4 Hz; G3- 200 mJ/4 Hz; G4- 180 mJ/10 Hz; G5- 160 mJ/10 Hz; Er,Cr:YSGG groups: G6- 2 W/20 Hz; G7- 2.5 W/20 Hz; G8- 3 W/20 Hz; G9- 4 W/20 Hz. Specimens were processed for cross-sectional analysis by scanning electron microscopy (SEM) (n = 3), transmission electron microscopy (TEM) (n = 2), and adhesive interface (n = 3). Forty-five dentin samples (n = 5) were restored and submitted to μTBS testing. ANOVA (α = 5%) revealed that G1 presented the highest μTBS values and irradiated groups did not differ from each other. TEM micrographs showed a superficial layer of denatured collagen fibrils. For SEM micrographs, it was possible to verify the laser effects extending to dentin subsurface presenting a rough aspect. Cross-sectional dentin micrographs of this hybridized surface revealed a pattern of modified tags with ringlike structures around it. This in vitro study showed that erbium laser irradiation interacts with the dental hard tissue resulting in a specific morphological pattern of dentin and collagen fibrils that negatively affected the bond strength to composite resin. PMID:20945461

  20. Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy

    PubMed Central

    Udan, Ryan S.; Piazza, Victor G.; Hsu, Chih-wei; Hadjantonakis, Anna-Katerina; Dickinson, Mary E.

    2014-01-01

    Single/selective-plane illumination, or light-sheet, systems offer several advantages over other fluorescence microscopy methods for live, 3D microscopy. These systems are valuable for studying embryonic development in several animal systems, such as Drosophila, C. elegans and zebrafish. The geometry of the light path in this form of microscopy requires the sample to be accessible from multiple sides and fixed in place so that it can be rotated around a single axis. Popular methods for mounting include hanging the specimen from a pin or embedding it in 1-2% agarose. These methods can be particularly problematic for certain samples, such as post-implantation mouse embryos, that expand significantly in size and are very delicate and sensitive to mounting. To overcome the current limitations and to establish a robust strategy for long-term (24 h) time-lapse imaging of E6.5-8.5 mouse embryos with light-sheet microscopy, we developed and tested a method using hollow agarose cylinders designed to accommodate for embryonic growth, yet provide boundaries to minimize tissue drift and enable imaging in multiple orientations. Here, we report the first 24-h time-lapse sequences of post-implantation mouse embryo development with light-sheet microscopy. We demonstrate that light-sheet imaging can provide both quantitative data for tracking changes in morphogenesis and reveal new insights into mouse embryogenesis. Although we have used this approach for imaging mouse embryos, it can be extended to imaging other types of embryos as well as tissue explants. PMID:25344073

  1. Label-free characterization of living human induced pluripotent stem cells by subcellular topographic imaging technique using full-field quantitative phase microscopy coupled with interference reflection microscopy.

    PubMed

    Sugiyama, Norikazu; Asai, Yasuyuki; Yamauchi, Toyohiko; Kataoka, Takuji; Ikeda, Takahiro; Iwai, Hidenao; Sakurai, Takashi; Mizuguchi, Yoshinori

    2012-09-01

    There is a need for a noninvasive technique to monitor living pluripotent stem cell condition without any labeling. We present an optical imaging technique that is able to capture information about optical path difference through the cell and cell adhesion properties simultaneously using a combination of quantitative phase microscopy (QPM) and interference reflection microscopy (IRM) techniques. As a novel application of QPM and IRM, this multimodal imaging technique demonstrated its ability to distinguish the undifferentiated status of human induced pluripotent stem (hiPS) cells quantitatively based on the variation of optical path difference between the nucleus and cytoplasm as well as hiPS cell-specific cell adhesion properties. PMID:23024911

  2. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Reneker, Darrell; Gorse, Joseph; Lolla, Dinesh; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip; Chase, George

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed. Electron micrographs of thin, self-supporting PVDF nanofibers showed conformations and relative locations of atoms in segments of polymer molecules. Rows of CF2 atomic groups, at 0.25 nm intervals, marked the paths of segments of the PVDF molecules. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, provide quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Synergism between high resolution electron micrographs and images created by molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. Support from Coalescence Filtration Nanofiber Consortium and from the Office of Basic Energy Sciences Contract No. DE-AC02-05CH11231.

  3. Transmission electron microscopy of polymer blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique Daniel

    Transmission electron microscopy (TEM) of soft matter is a field that warrants further investigation. Developments in sample preparation, imaging and spectroscopic techniques could lead to novel experiments that may further our understanding of the structure and the role structure plays in the functionality of various organic materials. Unlike most hard materials, TEM of organic molecules is limited by the amount of radiation damage the material can withstand without changing its structure. Despite this limitation, TEM has been and will be a powerful tool to study polymeric materials and other soft matter. In this dissertation, an introduction of TEM for polymer scientists is presented. The fundamentals of interactions of electrons with matter are described using the Schrodinger wave equation and scattering cross-sections to fully encompass coherent and incoherent scattering. The intensity, which is the product of the wave function and its complex conjugate, shows no perceptible change due to the sample. Instead, contrast is generated through the optical system of the microscope by removing scattered electrons or by generating interference due to material-induced phase changes. Perhaps the most challenging aspect of taking TEM images, however, is sample preparation, because TEM experiments require materials with approximately 50 nm thickness. Although ultramicrotomy is a well-established powerful tool for preparing biological and polymeric sections for TEM, the development of cryogenic Focused Ion Beam may enable unprecedented cross-sectional TEM studies of polymer thin films on arbitrary substrates with nanometer precision. Two examples of TEM experiments of polymeric materials are presented. The first involves quantifying the composition profile across a lamellar phase obtained in a multicomponent blend of saturated poly(butadiene) and poly(isobutylene), stabilized by a saturated poly(butadiene) copolymer serving as a surfactant, using TEM and self-consistent field theory (SCFT). The liquid-like nature of this system at room temperature makes traditional staining methods for the enhancement of contrast ineffective. As an alternative, we take advantage of the large inelastic scattering cross-section of soft materials to generate contrast in zero-loss TEM images. Independent spatially resolved thickness measurements enable quantification of electron scattering. This enabled a comparison between the TEM data and predictions based on SCFT without any adjustable parameters. The second example involves the utilization of energy-filtered transmission electron microscopy (EFTEM) to compute elemental maps by taking advantage of ionization events. Elemental mapping of lithium is used to determine the distribution of salt in nanostructured poly(styrene-block-ethylene oxide) (SEO) copolymer/lithium salt electrolytes. Surprisingly, the concentration of lithium within a poly(ethylene oxide) (PEO) domain is found to be inhomogeneous; the salt is localized to the middle of the channels. Self-consistent field theory simulations suggest that localization of lithium is due to chain stretching at the interface, which increases with molecular weight. EFTEM and SCFT results show that the segregation of lithium salt to the middle of the PEO lamellae is greater for higher molecular weight polymers. This is correlated with the ionic conductivity of the copolymer electrolyte, which is found to show a higher conductivity for thinner lithium lamellae.

  4. Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy.

    PubMed

    Priester, John H; Horst, Allison M; Van de Werfhorst, Laurie C; Saleta, José L; Mertes, Leal A K; Holden, Patricia A

    2007-03-01

    Bacterial biofilms, i.e. surface-associated cells covered in hydrated extracellular polymeric substances (EPS), are often studied with high-resolution electron microscopy (EM). However, conventional desiccation and high vacuum EM protocols collapse EPS matrices which, in turn, deform biofilm appearances. Alternatively, wet-mode environmental scanning electron microscopy (ESEM) is performed under a moderate vacuum and without biofilm drying. If completely untreated, however, EPS is not electron dense and thus is not resolved well in ESEM. Therefore, this study was towards adapting several conventional SEM staining protocols for improved resolution of biofilms and EPS using ESEM. Three different biofilm types were used: 1) Pseudomonas aeruginosa unsaturated biofilms cultured on membranes, 2) P. aeruginosa cultured in moist sand, and 3) mixed community biofilms cultured on substrates in an estuary. Working with the first specimen type, a staining protocol using ruthenium red, glutaraldehyde, osmium tetroxide and lysine was optimized for best topographic resolution. A quantitative image analysis tool that maps relief, newly adopted here for studying biofilms, was used to compare micrographs. When the optimized staining and ESEM protocols were applied to moist sand cultures and aquatic biofilms, the smoothening effect that bacterial biofilms have on rough sand, and the roughening that aquatic biofilms impart on initially smooth coupons, were each quantifiable. This study thus provides transferable staining and ESEM imaging protocols suitable for a wide range of biofilms, plus a novel tool for quantifying biofilm image data. PMID:17196692

  5. Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis.

    PubMed

    Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine

    2016-02-01

    With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today's single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279

  6. Using advanced electron microscopy for the characterization of catalytic materials

    NASA Astrophysics Data System (ADS)

    Pyrz, William D.

    Catalysis will continue to be vitally important to the advancement and sustainability of industrialized societies. Unfortunately, the petroleum-based resources that currently fuel the energy and consumer product needs of an advancing society are becoming increasingly difficult and expensive to extract as supplies diminish and the quality of sources degrade. Therefore, the development of sustainable energy sources and the improvement of the carbon efficiency of existing chemical processes are critical. Further challenges require that these initiatives are accomplished in an environmentally friendly fashion since the effects of carbon-based emissions are proving to be a serious threat to global climate stability. In this dissertation, materials being developed for sustainable energy and process improvement initiatives are studied. Our approach is to use materials characterization, namely advanced electron microscopy, to analyze the targeted systems at the nano- or Angstrom-scale with the goal of developing useful relationships between structure, composition, crystalline order, morphology, and catalytic performance. One area of interest is the complex Mo-V-M-O (M=Te, Sb, Ta, Nb) oxide system currently being developed for the selective oxidation/ammoxidation of propane to acrylic acid or acrylonitrile, respectively. Currently, the production of acrylic acid and acrylonitrile rely on propylene-based processes, yet significant cost savings could be realized if the olefin-based feeds could be replaced by paraffin-based ones. The major challenge preventing this feedstock replacement is the development of a suitable paraffin-activating catalyst. Currently, the best candidate is the Mo-V-Nb-Te-O complex oxide catalyst that is composed of two majority phases that are commonly referred to as M1 and M2. However, there is a limited understanding of the roles of each component with respect to how they contribute to catalyst stability and the reaction mechanism. Aberration-corrected electron microscopy was used to systematically examine, atomic column by atomic column, the effect of elemental substitution on the long-range crystalline order, atomic coordinates, and site occupancies of the various formulations such that trends could be developed linking these properties to catalytic yields. To accomplish this task, an algorithm was developed that enabled the direct extraction of atomic coordinates and site occupancies from high-angle annular dark-field (HAADF) images to within 1% and 15% uncertainty, respectively. Furthermore, this general method could be applied to various crystalline systems and may dramatically improve the quality of initial structural models used in Rietveld refinements. Improvement in the quality of starting models may increase the structural and chemical complexity of inorganic structures that can be solved by using "powder methods" alone. In addition to the development of these trends, HAADF analyses also revealed the presence of coherent compositional miscibility gaps, rotational twin domains, and structural intergrowths in the complex Mo-V-M-O oxide system. Other catalytic systems that are addressed in this dissertation include Pd, Ag, and bimetallic Pd-Ag catalysts for the selective hydrogenation of acetylene in excess ethylene, alkali and alkaline earth promoted Ru catalysts for the production of clean hydrogen through the decomposition of ammonia, the production of Pt nanoparticles using dendrimer templates, and Pt-Re bimetallic catalysts for the conversion of glycerol to hydrocarbons and syn gas. In each of these studies, electron microscopy was used as a complimentary tool to synthetic and reaction studies to better understand interactions between the nanoparticles and the support/template, to determine the effect of adding various promoters, or to understand the nanoscale structural and chemical changes associated with the formation of bimetallic nanoparticles. A final area addressed in this dissertation is the interaction between the electron beam and the specimen. In one particular study directed toward the characterization of Ni-Bi nanomaterials, it was discovered that exposure to an intense electron beam initiated particle fragmentation that led to the formation of a field of nanoparticles. Subsequent microscopy studies of the resulting nanoparticle field revealed bimetallic nanoparticles, core-shell structures, Angstrom-scale atomic clusters, and individual atoms that decorated the surrounding carbon substrate. The identification of these structures along with the analysis of the parent material enabled the development of a fragmentation mechanism.

  7. Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Klein, Sabine; Petersen, Svea; Taylor, Ulrike; Rath, Detlef; Barcikowski, Stephan

    2010-05-01

    Gold nanoparticles (AuNPs) have the potential to become a versatile biomarker. For further use of AuNPs labeled with functionalized molecules, their visualization in biological systems by routine laboratory tools such as light microscopy is crucial. However, the size far below the diffraction limit affords specialized parameters for microscopical detection, which stimulated the current study, aimed to determine from which size onward AuNPs, either in dispersion or cell-associated, can be reliably detected by standard confocal microscopy. First, gold colloids of size-restricted fractions are examined in dispersion. At a minimum particle size of 60 nm, detection appears to be reliable. Particle counts in dilution series confirm these results by revealing single particle detection of 60-nm colloids. Second, AuNPs are visualized and quantified in cells, which interestingly cause a phase shift in the reflection of AuNPs. Gold mass spectroscopy confirms the number of AuNPs counted microscopically inside cells. Furthermore, it demonstrates for the first time a very high diffusion rate of 15-nm particles into the cells. In conclusion, the results back the suitability of confocal microscopy for the quantitative tracking of colloidal and intracellular gold nanoparticles sized 60 nm.

  8. Zebrafish Caudal Fin Angiogenesis Assay—Advanced Quantitative Assessment Including 3-Way Correlative Microscopy

    PubMed Central

    Correa Shokiche, Carlos; Schaad, Laura; Triet, Ramona; Jazwinska, Anna; Tschanz, Stefan A.; Djonov, Valentin

    2016-01-01

    Background Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. Objective To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. Approach & Results Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including “graph energy” and “distance to farthest node”. The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. Conclusions The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations. PMID:26950851

  9. Identification and quantitive analysis of calcium phosphate microparticles in intestinal tissue by nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Gomez-Morilla, Inmaculada; Thoree, Vinay; Powell, Jonathan J.; Kirkby, Karen J.; Grime, Geoffrey W.

    2006-08-01

    Microscopic particles (0.5-2 μm diameter), rich in calcium and phosphorus, are found in the lumen of the mid-distal gut of all mammals investigated, including humans, and these may play a role in immuno-surveillance and immune regulation of antigens from food and symbiotic bacteria that are contained in the gut. Whether these particles can cross in to tissue of the intestinal mucosa is unclear. If so, characterising their morphology and chemical composition is an important task in elucidating their function. The analysis of calcium phosphate in biological tissues has been approached in several ways including optical microscopy, scanning electron microscopy and, most recently in this work, with nuclear microscopy. In this paper, we describe the use of microPIXE and microRBS to locate these particles and to determine, accurately, the ratio of phosphorus to calcium using the information on sample thickness obtained from RBS to allow the PIXE ratios to be corrected. A commercial sample of hydroxy apatite was used to demonstrate accuracy and precision of the technique. Then, in a pilot study on intestinal tissue of mice, we demonstrated the presence of calcium phosphate microparticles, consistent with confocal microscopy observations, and we identified the average molar P:Ca molar ratio as 1.0. Further work will confirm the exact chemical speciation of these particles and will examine the influence of differing calcium containing diets on the formation of these microparticles.

  10. Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device

    SciTech Connect

    Mueller, Knut; Rosenauer, Andreas; Ryll, Henning; Ordavo, Ivan; Ihle, Sebastian; Soltau, Heike; Strueder, Lothar; Volz, Kerstin; Zweck, Josef

    2012-11-19

    A high-speed direct electron detection system is introduced to the field of transmission electron microscopy and applied to strain measurements in semiconductor nanostructures. In particular, a focused electron probe with a diameter of 0.5 nm was scanned over a fourfold quantum layer stack with alternating compressive and tensile strain and diffracted discs have been recorded on a scintillator-free direct electron detector with a frame time of 1 ms. We show that the applied algorithms can accurately detect Bragg beam positions despite a significant point spread each 300 kV electron causes during detection on the scintillator-free camera. For millisecond exposures, we find that strain can be measured with a precision of 1.3 Multiplication-Sign 10{sup -3}, enabling, e.g., strain mapping in a 100 Multiplication-Sign 100 nm{sup 2} region with 0.5 nm resolution in 40 s.

  11. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis.

    PubMed

    Silvestri, Ludovico; Paciscopi, Marco; Soda, Paolo; Biamonte, Filippo; Iannello, Giulio; Frasconi, Paolo; Pavone, Francesco S

    2015-01-01

    Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent PCs. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of PCs, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of PCs with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments. PMID:26074783

  12. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    PubMed Central

    Silvestri, Ludovico; Paciscopi, Marco; Soda, Paolo; Biamonte, Filippo; Iannello, Giulio; Frasconi, Paolo; Pavone, Francesco S.

    2015-01-01

    Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent PCs. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of PCs, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of PCs with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments. PMID:26074783

  13. Deformation of nanotubes in peeling contact with flat substrate: An in situ electron microscopy nanomechanical study

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoming; Zheng, Meng; Wei, Qing; Signetti, Stefano; Pugno, Nicola M.; Ke, Changhong

    2016-04-01

    Peeling of one-dimensional (1D) nanostructures from flat substrates is an essential technique in studying their adhesion properties. The mechanical deformation of the nanostructure in the peeling experiment is critical to the understanding of the peeling process and the interpretation of the peeling measurements, but it is challenging to measure directly and quantitatively at the nanoscale. Here, we investigate the peeling deformation of a bundled carbon nanotube (CNT) fiber by using an in situ scanning electron microscopy nanomechanical peeling technique. A pre-calibrated atomic force microscopy cantilever is utilized as the peeling force sensor, and its back surface acts as the peeling contact substrate. The nanomechanical peeling scheme enables a quantitative characterization of the deformational behaviors of the CNT fiber in both positive and negative peeling configurations with sub-10 nm spatial and sub-nN force resolutions. Nonlinear continuum mechanics models and finite element simulations are employed to interpret the peeling measurements. The measurements and analysis reveal that the structural imperfections in the CNT fiber may have a substantial influence on its peeling deformations and the corresponding peeling forces. The research findings reported in this work are useful to the study of mechanical and adhesion properties of 1D nanostructures by using nanomechanical peeling techniques.

  14. Environmental Scanning Electron Microscopy of Ice Crystal Nucleation and Growth

    NASA Astrophysics Data System (ADS)

    Amaral, M.; Miller, A. L.; Magee, N. B.

    2012-12-01

    Ice crystal nucleation and growth are dual processes that can be studied uniquely through Environmental Scanning Electron Microscopy (ESEM). By utilizing differential pumping systems and a Peltier element to vary the vapor pressure and to achieve temperatures below the freezing point, respectively, it is possible to obtain supersaturated conditions relative to ice in the sample chamber of an Environmental Scanning Electron Microscope. Ice crystals were nucleated on a variety of atmospherically relevant substrates and grown in a pure water vapor environment in the chamber of a FEI-Quanta 200 ESEM. To initiate ice crystal nucleation, the Peltier element was set at a temperature between -10°C and -25°C, while the chamber water vapor pressure was adjusted to just below the frost point. Ice crystal nucleation and growth was then controlled by careful adjustments of chamber pressure and temperature, where high-magnification images of hexagonal ice crystals were acquired at nanoscale resolution. These images display prominent mesoscopic surface topography including linear strands, crevasses, islands, and steps. The surface features are seen to be ubiquitously present at all observed temperatures, at many supersaturated and subsaturated conditions, and on all crystal facets. Additionally, a pre-growth "shadow" resembling a dark spot sometimes appeared on areas of the sample stage immediately preceding ice crystal nucleation and growth. The observations represent the most highly magnified images of ice surfaces yet reported and significantly expand the range of ambient conditions where the features are conspicuous. New knowledge of the presence and characteristics of these features could transform the fundamental understanding of ice crystal growth kinetics and its physical parameterization in the context of atmospheric and cryospheric science. To the extent these observations are applicable to atmospheric ice, the results suggest that the radiative representation of ice and mixed-phase cloud properties in climate models could be markedly affected.

  15. Transmission electron microscopy analysis of corroded metal waste forms.

    SciTech Connect

    Dietz, N. L.

    2005-04-15

    This report documents the results of analyses with transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (ED) of samples of metallic waste form (MWF) materials that had been subjected to various corrosion tests. The objective of the TEM analyses was to characterize the composition and microstructure of surface alteration products which, when combined with other test results, can be used to determine the matrix corrosion mechanism. The examination of test samples generated over several years has resulted in refinements to the TEM sample preparation methods developed to preserve the orientation of surface alteration layers and the underlying base metal. The preservation of microstructural spatial relationships provides valuable insight for determining the matrix corrosion mechanism and for developing models to calculate radionuclide release in repository performance models. The TEM results presented in this report show that oxide layers are formed over the exposed steel and intermetallic phases of the MWF during corrosion in aqueous solutions and humid air at elevated temperatures. An amorphous non-stoichiometric ZrO{sub 2} layer forms at the exposed surfaces of the intermetallic phases, and several nonstoichiometric Fe-O layers form over the steel phases in the MWF. These oxide layers adhere strongly to the underlying metal, and may be overlain by one or more crystalline Fe-O phases that probably precipitated from solution. The layer compositions are consistent with a corrosion mechanism of oxidative dissolution of the steel and intermetallic phases. The layers formed on the steel and intermetallic phases form a continuous layer over the exposed waste form, although vertical splits in the layer and corrosion in pits and crevices were seen in some samples. Additional tests and analyses are needed to verify that these layers passivate the underlying metals and if passivation can break down as the MWF corrodes. The importance of localized corrosion should also be determined.

  16. Atomic-Resolution 3D Electron Microscopy with Dynamic Diffraction

    SciTech Connect

    O'Keefe, Michael A.; Downing, Kenneth H.; Wenk, Hans-Rudolf; Meisheng, Hu

    2005-02-15

    Achievement of atomic-resolution electron-beam tomography will allow determination of the three-dimensional structure of nanoparticles (and other suitable specimens) at atomic resolution. Three-dimensional reconstructions will yield ''section'' images that resolve atoms overlapped in normal electron microscope images (projections), resolving lighter atoms such as oxygen in the presence of heavier atoms, and atoms that lie on non-lattice sites such as those in non-periodic defect structures. Lower-resolution electron microscope tomography has been used to produce reconstructed 3D images of nanoparticles [1] but extension to atomic resolution is considered not to be straightforward. Accurate three-dimensional reconstruction from two-dimensional projections generally requires that intensity in the series of 2-D images be a monotonic function of the specimen structure (often specimen density, but in our case atomic potential). This condition is not satisfied in electron microscopy when specimens with strong periodicity are tilted close to zone-axis orientation and produce ''anomalous'' image contrast because of strong dynamic diffraction components. Atomic-resolution reconstructions from tilt series containing zone-axis images (with their contrast enhanced by strong dynamical scattering) can be distorted when the stronger zone-axis images overwhelm images obtained in other ''random'' orientations in which atoms do not line up in neat columns. The first demonstrations of 3-D reconstruction to atomic resolution used five zone-axis images from test specimens of staurolite consisting of a mix of light and heavy atoms [2,3]. Initial resolution was to the 1.6{angstrom} Scherzer limit of a JEOL-ARM1000. Later experiments used focal-series reconstruction from 5 to 10 images to produce staurolite images from the ARM1000 with resolution extended beyond the Scherzer limit to 1.38{angstrom} [4,5]. To obtain a representation of the three-dimensional structure, images were obtained in zone-axis projections <100>, <010>, <001>, <101>, <310>, and combined to produce a three-dimensional map of Coulomb potential. Images of specimen sections are much more easily interpreted than projection images such as electron micrographs, reducing the need for techniques such as imaging at sub-Rayleigh resolution [6]. Sections through the 3D staurolite potential show atom positions as density peaks that display streaking from insufficient sampling in direction [1]. Three different specimens of perfect crystal were required to achieve the five projection directions; this makes the technique atomic-resolution electron crystallography rather than atomic-resolution tomography. Nevertheless, our results illustrate that dynamic diffraction need not be a limiting factor in atomic-resolution tomographic reconstruction. We have proposed combining ultra-high (sub-Angstrom) resolution zone-axis images with off-zone images by first using linear reconstruction of the off-zone images while excluding images obtained within a small range of tilts (of the order of 60 milliradian) of any zone-axis orientation [7], since it has been shown that dynamical effects can be mitigated by slight off-axis tilt of the specimen [8]. The (partial) reconstruction would then be used as a model for forward calculation by image simulation [9] in zone-axis directions and the structure refined iteratively to achieve satisfactory fits with the experimental zone-axis data. Another path to atomic-resolution tomography would combine ''zone-axis tomography'' with high-resolution dark-field hollow-cone (DFHC) imaging. Electron diffraction theory indicates that dynamic (multiple) scattering is much reduced under highly-convergent illumination. DFHC TEM is the analog of HAADF STEM, and imaging theory shows that image resolution can be enhanced under these conditions [10]. Images obtained in this mode could provide the initial reconstruction, with zone-axis images used for refinement [11].

  17. Capturing enveloped viruses on affinity grids for downstream cryo-electron microscopy applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electron microscopy cryo-electron microscopy and cryo-electron tomography are essential techniques used for characterizing basic virus morphology and determining the three-dimensional structure of viruses. Enveloped viruses, which contain an outer lipoprotein coat, constitute the largest group of pa...

  18. Glycine receptor mechanism elucidated by electron cryo-microscopy.

    PubMed

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-10-01

    The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  19. Intermediate voltage electron microscopy of transverse tubules at myotendinous junctions.

    PubMed

    Sonoda, M; Moriya, H; Shimada, Y

    1993-04-01

    The 3-dimensional distribution of transverse (T) tubules at myotendinous junctions (MTJs) was studied by intermediate voltage (400 kV) electron microscopy of thick sections of rat vastus intermedius and chicken pectoralis muscles stained with lanthanum nitrate. Transversely oriented T tubules were seen to run at the level of A-I junctions (the rat vastus intermedius) and Z bands (the chicken pectoralis), but were absent from such levels adjacent to the end of MTJ processes. These tubules opened to the lateral wall of sarcolemmal infoldings of MTJs and to the lateral cell surface. Longitudinally running T tubules were seen to connect with the transverse T tubules and to open at the bottom of junctional folds. The lack of T tubules at the final sarcomeric regions seems to indicate that the terminal sarcomeric half in close proximity to MTJs may be activated from the sarcoplasmic reticulum which forms couplings with the MTJ sarcolemma and/or longitudinal tubules in the MTJ processes. PMID:7686412

  20. Lanthanum as an intracellular stain for electron microscopy.

    PubMed

    Leeson, T S; Higgs, G W

    1982-07-01

    Results obtained after the normal aldehyde fixation of duodenal enterocytes for electron microscopy have been compared with results obtained when 0.1% Malachite Green or 10 mM lanthanum chloride had been added during aldehyde fixation. Sections were examined without further staining, and after counterstaining with lead citrate and uranyl acetate. In unstained sections, lanthanum-treated material showed improved contrast when compared to results from the other two methods. Also, after counterstaining, areas showing excellent contrast were much more frequent and more readily detected in the lanthanum-treated material. In the microvilli of enterocytes fixed in the presence of lanthanum, the plasmalemma-glycocalyx was defined more clearly and the results were more pleasing subjectively. When Malachite Green was present in the fixative, good contrast was observed more frequently than in routinely fixed tissues, but less often than in those treated with lanthanum. It is suggested that the addition of lanthanum chloride or Malachite Green to the fixative may prove useful in many ultrastructural studies. PMID:6181017

  1. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  2. Transmission electron microscopy (TEM) study of minerals in coal

    SciTech Connect

    Hsieh, Kuang-Chien

    1982-01-01

    Minerals in eight coals from different mines were characterized in the micron-size range by using analytical transmission electron microscopy. Specimens were thinned by ion-milling wafers cut from these coals; a cold stage cooled by liquid nitrogen was used to reduce thermal degradation of the minerals by the ion-beam. Different mineral compounds were observed in different coals. The major minerals are clays, sulfides, oxides, carbonates and some minor-element-bearing phosphates. Clays (kaolinite, illite and others) have been most commonly found as either flat sheets or round globules. Iron sulfide was mostly found in the No. 5 and No. 6 coals from Illinois, distributed as massive polycrystals, as clusters of single crystals (framboids) or as isolated single crystals with size range down to some 0.25 microns. Other sulfides and some oxides were found in other coals with particle size as small as some 200 angstroms. Quartz, titanium oxides and many other carbonates and phosphate compounds were also characterized. Brief TEM work in the organic mass of coal was also introduced to study the nature of the coal macerals.

  3. Analytical electron microscopy of biogenic and inorganic carbonates

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    1989-01-01

    In the terrestrial sedimentary environment, the mineralogically predominant carbonates are calcite-type minerals (rhombohedral carbonates) and aragonite-type minerals (orthorhombic carbonates). Most common minerals precipitating either inorganically or biogenically are high magnesium calcite and aragonite. High magnesium calcite (with magnesium carbonate substituting for more than 7 mole percent of the calcium carbonate) is stable only at temperatures greater than 700 C or thereabouts, and aragonite is stable only at pressures exceeding several kilobars of confining pressure. Therefore, these carbonates are expected to undergo chemical stabilization in the diagenetic environment to ultimately form stable calcite and dolomite. Because of the strong organic control of carbonate deposition in organisms during biomineralization, the microchemistry and microstructure of invertebrate skeletal material is much different than that present in inorganic carbonate cements. The style of preservation of microstructural features in skeletal material is therefore often quite distinctive when compared to that of inorganic carbonate even though wholesale recrystallization of the sediment has taken place. Microstructural and microchemical comparisons are made between high magnesium calcite echinoderm skeletal material and modern inorganic high magnesium calcite inorganic cements, using analytical electron microscopy and related techniques. Similar comparisons are made between analogous materials which have undergone stabilization in the diagenetic environment. Similar analysis schemes may prove useful in distinguishing between biogenic and inorganic carbonates in returned Martian carbonate samples.

  4. Electron microscopy of transformation dislocations at interphase boundaries

    NASA Astrophysics Data System (ADS)

    Bonnet, R.; Loubradou, M.; Catana, A.; Stadelmann, P.

    1991-06-01

    The concept of structural units (SU’s) developed in order to describe the atomic structures of twin boundary facets is also used for interphase boundary (IB) facets quasi-parallel to small near-coincident planar cells of the two adjacent lattices. These facets, which have their own SU’s, are separated by transformation dislocations (TD’s), the cores of which are often related to ledges having heights equal to several interplanar spacings. It is shown that the Somigliana dislocation (SD) concept is a good tool for the computation of elastic displacement fields of these TD’s in anisotropic elasticity. Applications are presented concerning the following IB’s observed in high-resolution transmission electron microscopy (HRTEM): Si/TiSi2, Si/CoSi2, and Ni3Al/Ni3Nb. The identification of the atomic rows around some TD’s at Si/CoSi2 and Ni3Al/Ni3Nb has been obtained by careful comparisons of experimental and calculated images.

  5. Cryogenic Transmission Electron Microscopy Nanostructural Study of Shed Microparticles

    PubMed Central

    Issman, Liron; Brenner, Benjamin; Talmon, Yeshayahu; Aharon, Anat

    2013-01-01

    Microparticles (MPs) are sub-micron membrane vesicles (100–1000 nm) shed from normal and pathologic cells due to stimulation or apoptosis. MPs can be found in the peripheral blood circulation of healthy individuals, whereas elevated concentrations are found in pregnancy and in a variety of diseases. Also, MPs participate in physiological processes, e.g., coagulation, inflammation, and angiogenesis. Since their clinical properties are important, we have developed a new methodology based on nano-imaging that provides significant new data on MPs nanostructure, their composition and function. We are among the first to characterize by direct-imaging cryogenic transmitting electron microscopy (cryo-TEM) the near-to-native nanostructure of MP systems isolated from different cell types and stimulation procedures. We found that there are no major differences between the MP systems we have studied, as most particles were spherical, with diameters from 200 to 400 nm. However, each MP population is very heterogeneous, showing diverse morphologies. We investigated by cryo-TEM the effects of standard techniques used to isolate and store MPs, and found that either high-g centrifugation of MPs for isolation purposes, or slow freezing to –80°C for storage introduce morphological artifacts, which can influence MP nanostructure, and thus affect the efficiency of these particles as future diagnostic tools. PMID:24386253

  6. TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS

    SciTech Connect

    Tosten, M; Michael Morgan, M

    2008-12-12

    A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similar in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.

  7. Electron microscopy of iron chalcogenide FeTe(Se) films

    NASA Astrophysics Data System (ADS)

    Shchichko, I. O.; Presnyakov, M. Yu.; Stepantsov, E. A.; Kazakov, S. M.; Antipov, E. V.; Makarova, I. P.; Vasil'ev, A. L.

    2015-05-01

    The structure of Fe1 + δTe1 - x Se x films ( x = 0; 0.05) grown on single-crystal MgO and LaAlO3 substrates has been investigated by transmission and scanning transmission electron microscopy. The study of Fe1.11Te/MgO structures has revealed two crystallographic orientation relationships between the film and substrate. It is shown that the lattice mismatch between the film and substrate is compensated for by the formation of misfit dislocations. The Burgers vector projection is determined. The stresses in the film can partially be compensated for due to the formation of an intermediate disordered layer. It is shown that a FeTe0.5Se0.5 film grown on a LaAlO3 substrate is single-crystal and that the FeTe0.5Se0.5/LaAlO3 interface in a selected region is coherent. The orientation relationships between the film and substrate are also determined for this case.

  8. High-performance probes for light and electron microscopy

    PubMed Central

    Viswanathan, Sarada; Williams, Megan E.; Bloss, Erik B.; Stasevich, Timothy J.; Speer, Colenso M.; Nern, Aljoscha; Pfeiffer, Barret D.; Hooks, Bryan M.; Li, Wei-Ping; English, Brian P.; Tian, Teresa; Henry, Gilbert L.; Macklin, John J.; Patel, Ronak; Gerfen, Charles R.; Zhuang, Xiaowei; Wang, Yalin; Rubin, Gerald M.

    2015-01-01

    We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These “spaghetti monster” fluorescent proteins (smFPs) distribute well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localizes weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allow robust, orthogonal multi-color visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers, greatly increase the number of simultaneous imaging channels, and perform well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improve single-molecule image tracking and increase yield for RNA-Seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization. PMID:25915120

  9. Electron microscopy of iron chalcogenide FeTe(Se) films

    SciTech Connect

    Shchichko, I. O.; Presnyakov, M. Yu.; Stepantsov, E. A.; Kazakov, S. M.; Antipov, E. V.; Makarova, I. P.; Vasil’ev, A. L.

    2015-05-15

    The structure of Fe{sub 1+δ}Te{sub 1−x}Se{sub x} films (x = 0; 0.05) grown on single-crystal MgO and LaAlO{sub 3} substrates has been investigated by transmission and scanning transmission electron microscopy. The study of Fe{sub 1.11}Te/MgO structures has revealed two crystallographic orientation relationships between the film and substrate. It is shown that the lattice mismatch between the film and substrate is compensated for by the formation of misfit dislocations. The Burgers vector projection is determined. The stresses in the film can partially be compensated for due to the formation of an intermediate disordered layer. It is shown that a FeTe{sub 0.5}Se{sub 0.5} film grown on a LaAlO{sub 3} substrate is single-crystal and that the FeTe{sub 0.5}Se{sub 0.5}/LaAlO{sub 3} interface in a selected region is coherent. The orientation relationships between the film and substrate are also determined for this case.

  10. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    SciTech Connect

    Lunov, O. Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  11. Investigating surface magnetism by means of photoexcitation electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Schneider, Claus M.; Schnhense, Gerd

    2002-12-01

    The imaging of surfaces by means of photoexcitation electron emission microscopy (PEEM) has recently received considerable interest. This is mainly due to the extended use and availability of brilliant synchrotron radiation in the soft x-ray regime which generally facilitates studies with surface specificity and chemical selectivity. The most popular application of the x-ray PEEM (XPEEM) technique concerns studies of magnetic systems and phenomena. By exploiting the high degree of circular or linear polarization of the synchrotron light, the magnetic microstructure in both ferromagnets and antiferromagnets can be visualized. In this contribution we demonstrate the unique potential and the versatility of the PEEM approach, and review the current status with a certain emphasis on experiments with soft x-ray excitation. In some cases, the high-energy excitation studies can be complemented by laboratory experiments employing threshold photoemission with ultraviolet light (UV-PEEM). Current limitations and future developments and perspectives of the PEEM technique applied to magnetic systems are discussed.

  12. Scanning electron microscopy applied to seed-borne fungi examination.

    PubMed

    Alves, Marcelo de Carvalho; Pozza, Edson Ampélio

    2009-07-01

    The aim of this study was to test the standard scanning electron microscopy (SEM) as a potential alternative to study seed-borne fungi in seeds, by two different conditions of blotter test and water restriction treatment. In the blotter test, seeds were subjected to conditions that enabled pathogen growth and expression, whereas the water restriction method consisted in preventing seed germination during the incubation period, resulting in the artificial inoculation of fungi. In the first condition, seeds of common bean (Phaseolus vulgaris L.), maize (Zea mays L.), and cotton (Gossypium hirsutum L.) were submitted to the standard blotter test and then prepared and observed with SEM. In the second condition, seeds of cotton (G. hirsutum), soybean (Glycine max L.), and common bean (P. vulgaris L.) were, respectively, inoculated with Colletotrichum gossypii var. cephalosporioides, Colletotrichum truncatum, and Colletotrichum lindemuthianum by the water restriction technique, followed by preparation and observation with SEM. The standard SEM methodology was adopted to prepare the specimens. Considering the seeds submitted to the blotter test, it was possible to identify Fusarium sp. on maize, C. gossypii var. cephalosporioides, and Fusarium oxysporum on cotton, Aspergillus flavus, Penicillium sp., Rhizopus sp., and Mucor sp. on common bean. Structures of C. gossypii var. cephalosporioides, C. truncatum, and C. lindemuthianum were observed in the surface of inoculated seeds. PMID:19204924

  13. Histological preparation of developing vestibular otoconia for scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Huss, D.; Dickman, J. D.

    2003-01-01

    The unique nature of vestibular otoconia as calcium carbonate biominerals makes them particularly susceptible to chemical deformation during histological processing. We fixed and stored otoconia from all three otolith endorgans of embryonic, hatchling and adult Japanese quail in glutaraldehyde containing either phosphate or non-phosphate buffers for varying lengths of time and processed them for scanning electron microscopy. Otoconia from all age groups and otolith endorgans processed in 0.1 M phosphate buffer (pH 7.4) showed abnormal surface morphology when compared to acetone fixed controls. Otoconia processed in 0.1 M sodium cacodylate or HEPES buffered artificial endolymph (pH 7.4) showed normal morphology that was similar to controls. The degree of otoconial deformation was directly related to the time exposed to phosphate buffer. Short duration exposure produced particulate deformations while longer exposures resulted in fused otoconia that formed solid sheets. Otoconial surface deformation and fusing was independent of the glutaraldehyde component of the histological processing. These findings should help vestibular researchers to develop appropriate histological processing protocols in future studies of otoconia.

  14. Surface treatment of feldspathic porcelain: scanning electron microscopy analysis

    PubMed Central

    Valian, Azam

    2014-01-01

    PURPOSE Topographic analysis of treated ceramics provides qualitative information regarding the surface texture affecting the micromechanical retention and locking of resin-ceramics. This study aims to compare the surface microstructure following different surface treatments of feldspathic porcelain. MATERIALS AND METHODS This in-vitro study was conducted on 72 porcelain discs randomly divided into 12 groups (n=6). In 9 groups, feldspathic surfaces were subjected to sandblasting at 2, 3 or 4 bar pressure for 5, 10 or 15 seconds with 50 µm alumina particles at a 5 mm distance. In group 10, 9.5% hydrofluoric acid (HF) gel was applied for 120 seconds. In group 11, specimens were sandblasted at 3 bar pressure for 10 seconds and then conditioned with HF. In group 12, specimens were first treated with HF and then sandblasted at 3 bar pressure for 10 seconds. All specimens were then evaluated under scanning electron microscopy (SEM) at different magnifications. RESULTS SEM images of HF treated specimens revealed deep porosities of variable sizes; whereas, the sandblasted surfaces were more homogenous and had sharper peaks. Increasing the pressure and duration of sandblasting increased the surface roughness. SEM images of the two combined techniques showed that in group 11 (sandblasted first), HF caused deeper porosities; whereas in group 12 (treated with HF first) sandblasting caused irregularities with less homogeneity. CONCLUSION All surface treatments increased the surface area and caused porous surfaces. In groups subjected to HF, the porosities were deeper than those in sandblasted only groups. PMID:25352961

  15. Low Voltage Transmission Electron Microscopy in Cell Biology.

    PubMed

    Bendayan, Moise; Paransky, Eugene

    2015-07-01

    Low voltage transmission electron microscopy (LVTEM) was employed to examine biological tissues with accelerating voltages as low as 5kV. Tissue preparation was modified to take advantage of the low-voltage techniques. Treatments with heavy metals, such as post-fixation with osmium tetroxide, on block and counterstaining were omitted. Sections (40nm) were thinner than usual and generated highly contrasted images. General appearance of the cells remains similar to that of conventional TEM. New features were however revealed. The matrix of the pancreatic granules displays heterogeneity with partitions that may correspond to the inner-segregation of their secretory proteins. Mitochondria revealed the presence of the ATP synthase granules along their cristea. The nuclear dense chromatin displayed a honeycomb organization while distinct beads, nucleosomes, aligned along thin threads were seen in the dispersed chromatin. Nuclear pore protein complexes revealed their globular nature. The intercalated disks in cardiac muscle displayed their fine structural organization. These features correlate well with data described or predicted by cell and molecular biology. These new aspects are not revealed when thicker and conventionally osmicated tissue sections were examined by LVTEM, indicating that major masking effects are associated with standard TEM techniques. Immunogold was adapted to LVTEM further enhancing its potential in cell biology. PMID:26026732

  16. Scanning electron microscopy of lung following alpha irradiation

    SciTech Connect

    Sanders, C.L.; Lauhala, K.E.; McDonald, K.E. )

    1989-09-01

    Pulmonary aggregation of inhaled {sup 239}PuO{sub 2} particles leads to a cellular evolution of focal inflammation, fibrosis, epithelial dysplasia and lung tumor formation. Female Wistar rats were exposed to an aerosol of high-fired {sup 239}PuO{sub 2} (initial lung burden, 3.9 kBq) and the lungs examined at intervals from 1 day to 700 days after exposure by light and scanning electron microscopy and autoradiography. Peribronchiolar Pu particle aggregation increased with time, resulting in well-defined focal inflammatory lesions after 120 days and fibrotic lesions after 180 days. A generalized hypertrophy and hyperplasia of nonciliated bronchiolar cells was seen at 15 days and type II cell hyperplasia by 30 days after exposure. Focal dysplastic changes in type II alveolar epithelium and terminal nonciliated bronchiolar epithelium preceded carcinoma formation. Alveolar bronchiolarization was first noted at 120 days, squamous metaplasia at 210 days, squamous carcinoma at 270 days and adenocarcinoma at 600 days after exposure.

  17. Scanning electron microscopy of the endometrium during the secretory phase.

    PubMed Central

    Motta, P M; Andrews, P M

    1976-01-01

    Scanning electron microscopy was used to study the surface morphology of the rabbit endometrium during the secretory phase of the oestrous cycle. The free surfaces of ciliated and of inactive active secretory cells are described. Changes in secretory cell surface morphology resulting from accumulation and secretion of material involve the apparent retraction of microvilli and the formation of one or more bulbous protrusions of the cell's apical surface. These protrusions may be relatively smooth surfaced or exhibit long slender micro-extensions. The protrusions grow in size and are eventually pinched off. Loss of the bulbous protrusions often leaves behind crater-like invaginations of the cell's surface. Secretory cells adjacent to the endometrial glands are the first to exhibit signs of mucin accumulation and secretion. The single cilium of a secretory cell is not apparently affected by the secretory process. Signs of ciliated and secretory cell degeneration, and possible sloughing, are also described. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:1033932

  18. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Deyneka, I. G.; Meshkovskii, I. K.; Jäger, A.; Syková, E.; Kubinová, Š.; Dejneka, A.

    2015-02-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin-stained rat skin sections from plasma-treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  19. Study of titanate nanotubes by X-ray and electron diffraction and electron microscopy

    SciTech Connect

    Brunatova, Tereza; Popelkova, Daniela; Wan, Wei; Oleynikov, Peter; Danis, Stanislav; Zou, Xiaodong; Kuzel, Radomir

    2014-01-15

    The structure of titanate nanotubes (Ti-NTs) was studied by a combination of powder X-ray diffraction (PXRD), electron diffraction and high resolution transmission electron microscopy (HRTEM). Ti-NTs are prepared by hydrothermal treatment of TiO{sub 2} powder. The structure is identified by powder X-ray diffraction as the one based on the structure of H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O phase. The same structure is obtained by projected potential from HRTEM through-focus image series. The structure is verified by simulated PXRD pattern with the aid of the Debye formula. The validity of the model is tested by computing Fourier transformation of a single nanotube which is proportional to measured electron diffraction intensities. A good agreement of this calculation with measured precession electron diffraction data is achieved. - Highlights: • Titanate nanotubes were prepared by hydrothermal method. • X-ray powder diffraction indicated their structure based on that of H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O. • Structural model was created with the aid of high-resolution electron microscopy. • The model was verified with electron diffraction data. • X-ray powder diffraction pattern was calculated with the aid of the Debye formula.

  20. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana

    2015-07-01

    Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.

  1. Quantitative morphological evaluation of laser ablation on calculus using full-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Lü, T.; Li, Z.; Fu, L.

    2011-10-01

    The quantitative morphological evaluation at high resolution is of significance for the study of laser-tissue interaction. In this paper, a full-field optical coherence microscopy (OCM) system with high resolution of ˜2 μm was developed to investigate the ablation on urinary calculus by a free-running Er:YAG laser. We studied the morphological variation quantitatively corresponding to change of energy setting of the Er:YAG laser. The experimental results show that the full-field OCM enables quantitative evaluation of the morphological shape of craters and material removal, and particularly the fine structure. We also built a heat conduction model to simulate the process of laser-calculus interaction by using finite element method. Through the simulation, the removal region of the calculus was calculated according to the temperature distribution. As a result, the depth, width, volume, and the cross-sectional profile of the crater in calculus measured by full-field OCM matched well with the theoretical results based on the heat conduction model. Both experimental and theoretical results confirm that the thermal interaction is the dominant effect in the ablation of calculus by Er:YAG laser, demonstrating the effectiveness of full-field OCM in studying laser-tissue interactions.

  2. Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy.

    PubMed

    Jenkins, Micah H; Gaylord, Thomas K

    2015-11-01

    The field of three-dimensional quantitative phase imaging (3D QPI) is expanding rapidly with applications in biological, medical, and industrial research, development, diagnostics, and metrology. Much of this research has centered on developing optical diffraction tomography (ODT) for biomedical applications. In addition to technical difficulties associated with coherent noise, ODT is not congruous with optical microscopy utilizing partially coherent light, which is used in most biomedical laboratories. Thus, ODT solutions have, for the most part, been limited to customized optomechanical systems which would be relatively expensive to implement on a wide scale. In the present work, a new phase reconstruction method, called tomographic deconvolution phase microscopy (TDPM), is described which makes use of commercial microscopy hardware in realizing 3D QPI. TDPM is analogous to methods used in deconvolution microscopy which improve spatial resolution and 3D-localization accuracy of fluorescence micrographs by combining multiple through-focal scans which are deconvolved by the system point spread function. TDPM is based on the 3D weak object transfer function theory which is shown here to be capable of imaging "nonweak" phase objects with large phase excursions. TDPM requires no phase unwrapping and recovers the entire object spectrum via object rotation, mitigating the need to fill in the "missing cone" of spatial frequencies algorithmically as in limited-angle ODT. In the present work, TDPM is demonstrated using optical fibers, including single-mode, polarization-maintaining, and photonic-crystal fibers as well as an azimuthally varying CO2-laser-induced long-period fiber grating period as test phase objects. PMID:26560576

  3. Visualization and Quantitative Analysis of Reconstituted Tight Junctions Using Localization Microscopy

    PubMed Central

    Kaufmann, Rainer; Piontek, Jörg; Grüll, Frederik; Kirchgessner, Manfred; Rossa, Jan; Wolburg, Hartwig; Blasig, Ingolf E.; Cremer, Christoph

    2012-01-01

    Tight Junctions (TJ) regulate paracellular permeability of tissue barriers. Claudins (Cld) form the backbone of TJ-strands. Pore-forming claudins determine the permeability for ions, whereas that for solutes and macromolecules is assumed to be crucially restricted by the strand morphology (i.e., density, branching and continuity). To investigate determinants of the morphology of TJ-strands we established a novel approach using localization microscopy. TJ-strands were reconstituted by stable transfection of HEK293 cells with the barrier-forming Cld3 or Cld5. Strands were investigated at cell-cell contacts by Spectral Position Determination Microscopy (SPDM), a method of localization microscopy using standard fluorophores. Extended TJ-networks of Cld3-YFP and Cld5-YFP were observed. For each network, 200,000 to 1,100,000 individual molecules were detected with a mean localization accuracy of ∼20 nm, yielding a mean structural resolution of ∼50 nm. Compared to conventional fluorescence microscopy, this strongly improved the visualization of strand networks and enabled quantitative morphometric analysis. Two populations of elliptic meshes (mean diameter <100 nm and 300–600 nm, respectively) were revealed. For Cld5 the two populations were more separated than for Cld3. Discrimination of non-polymeric molecules and molecules within polymeric strands was achieved. For both subtypes of claudins the mean density of detected molecules was similar and estimated to be ∼24 times higher within the strands than outside the strands. The morphometry and single molecule information provided advances the mechanistic analysis of paracellular barriers. Applying this novel method to different TJ-proteins is expected to significantly improve the understanding of TJ on the molecular level. PMID:22319608

  4. Customized patterned substrates for highly versatile correlative light-scanning electron microscopy

    PubMed Central

    Benedetti, Lorena; Sogne, Elisa; Rodighiero, Simona; Marchesi, Davide; Milani, Paolo; Francolini, Maura

    2014-01-01

    Correlative light electron microscopy (CLEM) combines the advantages of light and electron microscopy, thus making it possible to follow dynamic events in living cells at nanometre resolution. Various CLEM approaches and devices have been developed, each of which has its own advantages and technical challenges. We here describe our customized patterned glass substrates, which improve the feasibility of correlative fluorescence/confocal and scanning electron microscopy. PMID:25391455

  5. A TRANSMISSION ELECTRON MICROSCOPY STUDY OF PRESOLAR HIBONITE

    SciTech Connect

    Zega, Thomas J.; Stroud, Rhonda M.; Alexander, Conel M. O'D.; Nittler, Larry R.

    2011-04-01

    We report isotopic and microstructural data on five presolar hibonite grains (KH1, KH2, KH6, KH15, and KH21) identified in an acid residue of the Krymka LL3.1 ordinary chondrite. Isotopic measurements by secondary ion mass spectrometry (SIMS) verified a presolar circumstellar origin for the grains. Transmission electron microscopy (TEM) examination of the crystal structure and chemistry of the grains was enabled by in situ sectioning and lift-out with a focused-ion-beam scanning-electron microscope (FIB-SEM). Comparisons of isotopic compositions with models indicate that four of the five grains formed in low-mass stars that evolved through the red giant/asymptotic giant branches (RGBs/AGBs), whereas one grain formed in the ejecta of a Type II supernova. Selected-area electron-diffraction patterns show that all grains are single crystals of hibonite. Some grains contain minor structural perturbations (stacking faults) and small spreads in orientation that can be attributed to a combination of growth defects and mechanical processing by grain-grain collisions. The similar structure of the supernova grain to those from RGB/AGB stars indicates a similarity in the formation conditions. Radiation damage (e.g., point defects), if present, occurs below our detection limit. Of the five grains we studied, only one has the pure hibonite composition of CaAl{sub 12}O{sub 19}. All others contain minor amounts of Mg, Si, Ti, and Fe. The microstructural data are generally consistent with theoretical predictions, which constrain the circumstellar condensation temperature to a range of 1480-1743 K, assuming a corresponding total gas pressure between 1 x 10{sup -6} and 1 x 10{sup -3} atm. The TEM data were also used to develop a calibration for SIMS determination of Ti contents in oxide grains. Grains with extreme {sup 18}O depletions, indicating deep mixing has occurred in their parent AGB stars, are slightly Ti enriched compared with grains from stars without deep mixing, most likely reflecting differences in grain condensation conditions.

  6. EDITORIAL: Electron Microscopy and Analysis Group Conference 2011 (EMAG 2011)

    NASA Astrophysics Data System (ADS)

    Moebus, Guenter; Walther, Thomas; Brydson, Rik; Ozkaya, Dogan; MacLaren, Ian; Donnelly, Steve; Nellist, Pete; Li, Ziyou; Baker, Richard; Chiu, YuLung

    2012-07-01

    The biennial EMAG conference has established a strong reputation as a key event for the national and international electron microscopy community. In 2011 the meeting was held at The University of Birmingham, and I must first take this opportunity of thanking Birmingham for hosting the conference and for the excellent support we received from the local organisers. As a committee, we are delighted to see that enthusiasm for the EMAG conference series continues to be strong. We received more than 160 submitted abstracts, and 157 delegates attended the meeting. The scientific programme organiser, Ian MacLaren, put together an exciting programme. Plenary lectures were presented by Professor Knut Urban, Dr Frances Ross and Dr Richard Henderson. There were a further 10 invited speakers, from the UK, Continental Europe, Australia, the USA and Japan. The quality of the contributed oral and poster presentations was also very high. EMAG is keen to encourage student participation, and a winner and two runners-up were presented with prizes for the best oral and poster presentations from a student. I am always struck by the scientific quality of the oral and poster contributions and the vibrant discussions that occur both in the formal sessions and in the exhibition space at EMAG. I am convinced that a crucial part of maintaining that scientific quality is the opportunity that is offered of having a paper fully reviewed by two internationally selected referees and published in the Journal of Physics: Conference Series. For many students, this is the first fully reviewed paper they publish. I hope that you, like me, will be struck by the scientific quality of the 87 papers that follow, and that you will find them interesting and informative. Finally I must thank the platinum sponsors for their support of the meeting. These were Gatan, Zeiss, FEI, JEOL and Hitachi. I must also thank the European Microscopy Society for their generous sponsorship and support for the travel costs of two invited speakers from Continental Europe. Finally, keep an eye on www.emag-iop.org for details on EMAG 2013, which is to be held at the University of York. P D Nellist University of Oxford

  7. In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite

    SciTech Connect

    C. Karthik; J. Kane; D. P. Butt; W. E. Windes; R. Ubic

    2011-05-01

    Atomic level processes involved in the swelling and crack-closing in nuclear grade graphite under electron irradiation have been observed in real-time using transmission electron microscopy. Noise-filtered lattice images show the formation of vacancy loops, interstitial loops and resulting dislocations with unprecedented clarity. The dislocation dipoles formed via vacancy loops were found to undergo climb resulting in extra basal planes. Concurrent EELS studies showed a reduction in the atomic density because of the breakage of hexagonal carbon rings. The formation of new basal planes via dislocation climb in addition to the bending/breaking of basal planes leads to swelling and closing of micro-cracks.

  8. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    SciTech Connect

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-28

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below {approx}10 {mu}m account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  9. Large-scale automatic reconstruction of neuronal processes from electron microscopy images.

    PubMed

    Kaynig, Verena; Vazquez-Reina, Amelio; Knowles-Barley, Seymour; Roberts, Mike; Jones, Thouis R; Kasthuri, Narayanan; Miller, Eric; Lichtman, Jeff; Pfister, Hanspeter

    2015-05-01

    Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion. We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions of neuronal processes from a 27,000 μm(3) volume of brain tissue over a cube of 30 μm in each dimension corresponding to 1000 consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user scribbles. PMID:25791436

  10. Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy Images

    PubMed Central

    Kaynig, Verena; Vazquez-Reina, Amelio; Knowles-Barley, Seymour; Roberts, Mike; Jones, Thouis R.; Kasthuri, Narayanan; Miller, Eric; Lichtman, Jeff; Pfister, Hanspeter

    2015-01-01

    Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion. We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions of neuronal processes from a 27,000 μm3 volume of brain tissue over a cube of 30 μm in each dimension corresponding to 1,000 consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user scribbles. PMID:25791436

  11. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  12. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide.

    PubMed

    Jacobs, Tevis D B; Wabiszewski, Graham E; Goodman, Alexander J; Carpick, Robert W

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition. PMID:26827324

  13. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.

    PubMed

    Kim, Kyeongtae; Jeong, Wonho; Lee, Woochul; Reddy, Pramod

    2012-05-22

    Understanding energy dissipation at the nanoscale requires the ability to probe temperature fields with nanometer resolution. Here, we describe an ultra-high vacuum (UHV)-based scanning thermal microscope (SThM) technique that is capable of quantitatively mapping temperature fields with ∼15 mK temperature resolution and ∼10 nm spatial resolution. In this technique, a custom fabricated atomic force microscope (AFM) cantilever, with a nanoscale Au-Cr thermocouple integrated into the tip of the probe, is used to measure temperature fields of surfaces. Operation in an UHV environment eliminates parasitic heat transport between the tip and the sample enabling quantitative measurement of temperature fields on metal and dielectric surfaces with nanoscale resolution. We demonstrate the capabilities of this technique by directly imaging thermal fields in the vicinity of a 200 nm wide, self-heated, Pt line. Our measurements are in excellent agreement with computational results-unambiguously demonstrating the quantitative capabilities of the technique. UHV-SThM techniques will play an important role in the study of energy dissipation in nanometer-sized electronic and photonic devices and the study of phonon and electron transport at the nanoscale. PMID:22530657

  14. Towards quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects

    SciTech Connect

    Arruda, Thomas M; Kumar, Amit; Veith, Gabriel M; Jesse, Stephen; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V

    2013-01-01

    The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.

  15. Quantitative Characterization of Biological Liquids for Third-Harmonic Generation Microscopy

    PubMed Central

    Débarre, Delphine; Beaurepaire, Emmanuel

    2007-01-01

    Third-harmonic generation (THG) microscopy provides images of unstained biological samples based on spatial variations in third-order nonlinear susceptibility, refractive index, and dispersion. In this study, we establish quantitative values for the third-order nonlinear susceptibilities of several solvents (water, ethanol, glycerol), physiological aqueous (ions, amino acids, polypeptides, bovine serum albumin, glucose) and lipid (triglycerides, cholesterol) solutions as a function of solute concentration in the 1.05–1.25 μm excitation range. We use these data in conjunction with imaging experiments to show that THG imaging with ∼1.2 μm excitation lacks specificity and sensitivity to detect physiological ion concentration changes, and that nonaqueous structures such as lipid bodies provide a more robust source of signal. Finally, we illustrate the impact of index-matching liquids in THG images. These data provide a basis for interpreting biological THG images and for developing additional applications. PMID:17085492

  16. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.

    PubMed

    Dagdeviren, Omur E; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I; Schwarz, Udo D

    2016-02-12

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement. PMID:26754332

  17. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2011-03-01

    We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.

  18. Structure and assembly of haptoglobin polymers by electron microscopy.

    PubMed

    Wejman, J C; Hovsepian, D; Wall, J S; Hainfeld, J F; Greer, J

    1984-04-01

    Haptoglobin (Hp) consists of light (L) and heavy (H) chains, the latter of which combine with hemoglobin alpha beta dimers to form a highly stable complex. Human haptoglobin assembles as HL units that occur in two allelic forms; HL1 , which is monovalent, and HL2 , which is divalent. As a result, three phenotypic forms exist in the human population: Hp1-1, the homozygous form in which the monovalent HL1 unit occurs as a dimer; Hp2-2, the homozygous form of the divalent HL2 unit, which gives a series of polymers; and the heterozygous Hp2-1 form, which gives a different series of polymers. We have investigated the structures and assembly properties of these two haptoglobin polymeric series in their complexes with hemoglobin using high-resolution scanning transmission electron microscopy. Polymers of complex are composed of ellipsoidal or bilobal head groups, which are the H alpha beta subunits connected by thin filament-like structures, which are the L chains. Polymers of size up to pentamers can be identified easily by counting the number of head groups in the molecule. Complex 2-1 and complex 2-2 trimers were studied extensively. The differences in detailed morphology show that while the 2-1 trimer is a linear polymer, the 2-2 trimer is a closed circular molecule. The micrograph images suggest that complex 2-2 tetramers and pentamers, and perhaps higher forms may also be cyclic. The structure of the L2 subunit of haptoglobin is shown to be composed of two domains, which may be similar in structure to the single domain of the monovalent L1 chain. The two L2 domains are connected by a hinge that has quite limited flexibility. Using these structural models, assembly characteristics and structural properties of the trimers and tetramers of complex 2-1 and complex 2-2 are described. PMID:6716482

  19. Transmission electron microscopy in the diagnosis of primary ciliary dyskinesia.

    PubMed

    Roomans, Godfried M; Ivanovs, Andrejs; Shebani, Eyman B; Johannesson, Marie

    2006-01-01

    Primary ciliary dyskinesia (PCD) is an autosomal recessive disease with extensive genetic heterogeneity. Dyskinetic or completely absent motility of cilia predisposes to recurrent pulmonary and upper respiratory tract infections resulting in bronchiectasis. Also infections of the middle ear are common due to lack of ciliary movement in the Eustachian tube. Men have reduced fertility due to spermatozoa with absent motility or abnormalities in the ductuli efferentes. Female subfertility and tendency to ectopic pregnancy has also been suggested. Headache, a common complaint in PCD patients, has been associated with absence of cilia in the brain ventricles, leading to decreased circulation of the cerebrospinal fluid. Finally, half of the patients with PCD has situs inversus, probably due to the absence of ciliary motility in Hensen's node in the embryo, which is responsible for the unidirectional flow of fluid on the back of the embryo, which determines sidedness. PCD, which is an inborn disease, should be distinguished from secondary ciliary dyskinesia (SCD) which is an acquired disease. Transmission electron microscopy is the most commonly used method for diagnosis of PCD, even though alternative methods, such as determination of ciliary motility and measurement of exhaled nitric oxide (NO) may be considered. The best method to distinguish PCD from SCD is the determination of the number of inner and outer dynein arms, which can be carried out reliably on a limited number of ciliary cross-sections. There is also a significant difference in the ciliary orientation (determined by the direction of a line drawn through the central microtubule pair) between PCD and SCD, but there is some overlap in the values, making this parameter less suitable to distinguish PCD from SCD. PMID:16553254

  20. Transmission electron microscopy of subsolidus oxidation and weathering of olivine

    USGS Publications Warehouse

    Banfield, J.F.; Veblen, D.R.; Jones, B.F.

    1990-01-01

    Olivine crystals in basaltic andesites which crop out in the Abert Rim, south-central Oregon have been studied by high-resolution and analytical transmission electron microscopy. The observations reveal three distinct assemblages of alteration products that seem to correspond to three episodes of olivine oxidation. The olivine crystals contain rare, dense arrays of coherently intergrown Ti-free magnetite and inclusions of a phase inferred to be amorphous silica. We interpret this first assemblage to be the product of an early subsolidus oxidation event in the lava. The second olivine alteration assemblage contains complex ordered intergrowths on (001) of forsterite-rich olivine and laihunite (distorted olivine structure with Fe3+ charge balanced by vacancies). Based on experimental results for laihunite synthesis (Kondoh et al. 1985), these intergrowths probably formed by olivine oxidation between 400 and 800??C. The third episode of alteration involves the destruction of olivine by low-temperature hydrothermal alteration and weathering. Elongate etch-pits and channels in the margins of fresh olivine crystals contain semi-oriented bands of smectite. Olivine weathers to smectite and hematite, and subsequently to arrays of oriented hematite crystals. The textures resemble those reported by Eggleton (1984) and Smith et al. (1987). We find no evidence for a metastable phase intermediate between olivine and smectite ("M" - Eggleton 1984). The presence of laihunite exerts a strong control on the geometry of olivine weathering. Single laihunite layers and laihunite-forsteritic olivine intergrowths increase the resistance of crystals to weathering. Preferential development of channels between laihunite layers occurs where growth of laihunite produced compositional variations in olivine, rather than where coherency-strain is associated with laihunite-olivine interfaces. ?? 1990 Springer-Verlag.

  1. Transmission Electron Microscopy of Iron Metal in Almahata Sitta Ureilite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Yubuta, K.; Sugiyama, K.; Aoyagi, Y.; Yasuhara, A.; Mihira, T.; Zolensky, M. E.; Goodrich, C. A.

    2013-01-01

    Almahata Sitta (AS) is a polymict breccia mainly composed of variable ureilite lithologies with small amounts of chondritic lithologies [1]. Fe metal is a common accessory phase in ureilites, but our earlier study on Fe metals in one of AS fragments (#44) revealed a unique mineralogy never seen in other ureilites [2,3]. In this abstract we report detailed transmission electron microscopy (TEM) on these metal grains to better understand the thermal history of ureilites. We prepared FIB sections of AS#44 by JEOL JIB-4000 from the PTS that was well characterized by SEM-EBSD in our earlier study [2]. The sections were then observed by STEM (JEOL JEM- 2100F). One of the FIB sections shows a submicron-sized symplectic intergrown texture composed of Fe metal (kamacite), Fe carbide (cohenite), Fe phosphide (schreibersite), and Fe sulfide (troilite). Each phase has an identical SAED pattern in spite of its complex texture, suggesting co-crystallization of all phases. This is probably caused by shock re-melting of pre-existing metal + graphite to form a eutectic-looking texture. The other FIB section is mostly composed of homogeneous Fe metal (93 wt% Fe, 5 wt% Ni, and 2 wt% Si), but BF-STEM images exhibited the presence of elongated lathy grains (approx. 2 microns long) embedded in the interstitial matrix. The SAED patterns from these lath grains could be indexed by alpha-Fe (bcc) while interstitial areas are gamma-Fe (fcc). The elongated alpha-Fe grains show tweed-like structures suggesting martensite transformation. Such a texture can be formed by rapid cooling from high temperature where gamma-Fe was stable. Subsequently alpha-Fe crystallized, but gamma-Fe remained in the interstitial matrix due to quenching from high temperature. This scenario is consistent with very rapid cooling history of ureilites suggested by silicate mineralogy.

  2. EDITORIAL: Electron Microscopy and Analysis Group Conference 2013 (EMAG2013)

    NASA Astrophysics Data System (ADS)

    Nellist, Pete

    2014-06-01

    It has once again been my pleasure to act as editor for these proceedings, and I must thank all those who have acted as reviewers. I am always struck by the scientific quality of the oral and poster contributions and the vibrant discussions that occur both in the formal sessions and in the exhibition space at EMAG. I am convinced that a crucial part of maintaining that scientific quality is the opportunity that is offered of having a paper fully reviewed by two internationally selected referees and published in the Journal of Physics: Conference Series. For many students, this is the first fully reviewed paper they publish. I hope that, like me, you will be struck by the scientific quality of the 80 papers that follow, and that you will find them interesting and informative. I must also personally thank all the organisers of EMAG2013 for arranging such an excellent meeting. Ian MacLaren, as Chair of the EMAG Group and of the meeting itself, has contributed a foreword to these proceedings describing the meeting in more detail. A particular highlight of the conference was the special symposium in honour of Professor Archie Howie. We all enjoyed a wonderful speech from Archie at the conference dinner, along with some of his electron microscopy-related poetry. I have great pleasure in publishing the conference dinner poems in this proceedings. I hope you will find these proceedings to be an interesting read and an invaluable resource. Pete Nellist Conference committee Conference chair: Dr I MacLaren Programme organiser: Dr C Ducati Proceedings editor: Prof P D Nellist Trade exhibition organiser: C Hockey (CEM Group) Local organisers: Professor E Boyes, Professor P Gai, Dr R Kröger, Dr V Lazarov, Dr P O'Toole, Dr S Tear and Professor J Yuan Advanced school organisers: Dr S Haigh, Dr A Brown Other committee members: Mr K Meade, Mr O Heyning, Dr M Crawford, Mr M Dixon and Dr Z Li

  3. Mean atomic number quantitative assessment in backscattered electron imaging.

    PubMed

    Sánchez, E; Torres Deluigi, M; Castellano, G

    2012-12-01

    A method for obtaining quantitative mean atomic number images in a scanning electron microscope for different kinds of samples has been developed. The backscattered electron signal is monotonically increasing with the mean atomic number Z, and accordingly Z can be given as a function of the image gray levels. From results obtained from Monte Carlo simulations, an exponential function is fitted to convert the backscattered registered gray levels into a Z image map. Once this fitting was performed, the reproducibility of the Z determination was checked through the acquisition of backscattered electron images from metal and mineral standards. The developed method can be applied to any unknown sample, always controlling the experimental conditions, as shown here for a thin section of a rock in which several unknown mineral phases are present; the results obtained herein are compared to quantitative assessments performed with X-ray spectra from each mineral phase. PMID:23164359

  4. Transmission electron microscopy investigation of auto catalyst and cobalt germanide

    NASA Astrophysics Data System (ADS)

    Sun, Haiping

    The modern ceria-zirconia based catalysts are used in automobiles to reduce exhaust pollutants. Cobalt germanides have potential applications as electrical contacts in the future Ge-based semiconductor devices. In this thesis, transmission electron microscopy (TEM) techniques were used to study the atomic scale interactions between metallic nanostructures and crystalline substrates in the two material systems mentioned above. The model catalyst samples consisted of precious metal nano-particles (Pd, Rh) supported on the surface of (Ce,Zr)O2 thin films. The response of the microstructure of the metal-oxide interface to the reduction and oxidation treatments was investigated by cross-sectional high resolution TEM. Atomic detail of the metal-oxide interface was obtained. It was found that Pd and Rh showed different sintering and interaction behaviors on the oxide surface. The preferred orientation of Pd particles in this study was Pd(111)//CZO(111). Partial encapsulation of Pd particles by reduced (Ce,Zr)O 2 surface was observed and possible mechanisms of the encapsulation were discussed. The characteristics of the metal-oxide interaction depend on the properties of the oxide, as well as their relative orientation. The results provide experimental evidence for understanding the thermodynamics of the equilibrium morphology of a solid particle supported on a solid surface that is not considered as inert. The reaction of Co with Ge to form epitaxial Co5Ge7 was studied by in situ ultra-high vacuum (UHV) TEM using two methods. One was reactive deposition of Co on Ge, in which the Ge substrate was maintained at 350°C during deposition. The other method was solid state reaction, in which the deposition of Co on Ge was carried out at room temperature followed by annealing to higher temperatures. During reactive deposition, the deposited Co reacted with Ge to form nanosized 3D Co 5Ge7 islands. During solid state reaction, a continuous epitaxial Co5Ge7 film on the (001) Ge substrate was formed at ˜300°C. With further annealing at a higher temperature, the continuous Co5Ge 7 layer broke into 3D islands in order to relieve the strain energy in the epitaxial Co5Ge7 layer. Electron diffraction and X-ray diffraction were used to identify the cobalt germanide phase and epitaxial orientation relationships with respect to the substrate.

  5. Quantitative Optical Microscopy: Measurement of Cellular Biophysical Features with a Standard Optical Microscope

    PubMed Central

    Phillips, Kevin G.; Baker-Groberg, Sandra M.; McCarty, Owen J.T.

    2014-01-01

    We describe the use of a standard optical microscope to perform quantitative measurements of mass, volume, and density on cellular specimens through a combination of bright field and differential interference contrast imagery. Two primary approaches are presented: noninterferometric quantitative phase microscopy (NIQPM), to perform measurements of total cell mass and subcellular density distribution, and Hilbert transform differential interference contrast microscopy (HTDIC) to determine volume. NIQPM is based on a simplified model of wave propagation, termed the paraxial approximation, with three underlying assumptions: low numerical aperture (NA) illumination, weak scattering, and weak absorption of light by the specimen. Fortunately, unstained cellular specimens satisfy these assumptions and low NA illumination is easily achieved on commercial microscopes. HTDIC is used to obtain volumetric information from through-focus DIC imagery under high NA illumination conditions. High NA illumination enables enhanced sectioning of the specimen along the optical axis. Hilbert transform processing on the DIC image stacks greatly enhances edge detection algorithms for localization of the specimen borders in three dimensions by separating the gray values of the specimen intensity from those of the background. The primary advantages of NIQPM and HTDIC lay in their technological accessibility using “off-the-shelf” microscopes. There are two basic limitations of these methods: slow z-stack acquisition time on commercial scopes currently abrogates the investigation of phenomena faster than 1 frame/minute, and secondly, diffraction effects restrict the utility of NIQPM and HTDIC to objects from 0.2 up to 10 (NIQPM) and 20 (HTDIC) μm in diameter, respectively. Hence, the specimen and its associated time dynamics of interest must meet certain size and temporal constraints to enable the use of these methods. Excitingly, most fixed cellular specimens are readily investigated with these methods. PMID:24747818

  6. Determination of the coalescence temperature of latexes by environmental scanning electron microscopy.

    PubMed

    Gonzalez, Edurne; Tollan, Christopher; Chuvilin, Andrey; Barandiaran, Maria J; Paulis, Maria

    2012-08-01

    A new methodology for quantitative characterization of the coalescence process of waterborne polymer dispersion (latex) particles by environmental scanning electron microscopy (ESEM) is proposed. The experimental setup has been developed to provide reproducible latex monolayer depositions, optimized contrast of the latex particles, and a reliable readout of the sample temperature. Quantification of the coalescence process under dry conditions has been performed by image processing based on evaluation of the image autocorrelation function. As a proof of concept the coalescence of two latexes with known and differing glass transition temperatures has been measured. It has been shown that a reproducibility of better than 1.5 °C can be obtained for the measurement of the coalescence temperature. PMID:22812417

  7. Big Data and Deep data in scanning and electron microscopies: functionality from multidimensional data sets

    SciTech Connect

    Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni; Steed, Chad A; Yang, Sang Mo; Tselev, Alexander; Jesse, Stephen; Biegalski, Michael D; Shipman, Galen M; Symons, Christopher T; Borisevich, Albina Y; Archibald, Richard K; Kalinin, Sergei

    2015-01-01

    The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leads to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.

  8. Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

    SciTech Connect

    Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; Hattar, K.

    2015-11-09

    Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

  9. Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles

    PubMed Central

    Michen, Benjamin; Geers, Christoph; Vanhecke, Dimitri; Endes, Carola; Rothen-Rutishauser, Barbara; Balog, Sandor; Petri-Fink, Alke

    2015-01-01

    Standard transmission electron microscopy nanoparticle sample preparation generally requires the complete removal of the suspending liquid. Drying often introduces artifacts, which can obscure the state of the dispersion prior to drying and preclude automated image analysis typically used to obtain number-weighted particle size distribution. Here we present a straightforward protocol for prevention of the onset of drying artifacts, thereby allowing the preservation of in-situ colloidal features of nanoparticles during TEM sample preparation. This is achieved by adding a suitable macromolecular agent to the suspension. Both research- and economically-relevant particles with high polydispersity and/or shape anisotropy are easily characterized following our approach (http://bsa.bionanomaterials.ch), which allows for rapid and quantitative classification in terms of dimensionality and size: features that are major targets of European Union recommendations and legislation. PMID:25965905

  10. Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

    NASA Astrophysics Data System (ADS)

    Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; Hattar, K.

    2015-11-01

    Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

  11. Visualization of Microbial Biomarkers by Scanning Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wainwright, Norman R.; Allen, Carlton C.; Child, Alice

    2001-01-01

    We are developing tools to link the biochemical structure of selected biomarkers with putative biogenic structures observed in mineralized samples. The detection of evidence of life on Mars and other planets will rely on methods that can discriminate compounds formed exclusively by living organisms. While biogenic compounds, such as amino acids and nucleotides have been discovered in extraterrestrial sources, such as meteorites and comets, their formation can be explained by abiotic means. The formation of cellular structures, or more elaborate organic molecules, such as complex lipids, proteins or nucleic acids, however, is strongly correlated to the presence of even the most primitive life processes. Recent evidence lends support to the hypothesis that life may have once existed on Mars. Carbonate globules and ppm concentrations of polycyclic aromatic hydrocarbons (PAHs) have been described in ALH84001, a meteorite originating from Mars ejecta captured by Earth over 13,000 years ago. The localized high concentration of PAHs that follow an increasing gradient from the intact fusion crust towards the interior corresponds to microgram quantities of hydrocarbon. Even though ALH84001 and other similar meteorites have withstood the forces capable of ejecting rock through Mars' escape velocity, upon entering Earth's atmosphere, their core temperatures are likely not to have been raised significantly, as evidenced by the survival of remanent magnetic signatures. Ideal biomarkers of ancient or modern biological life would include molecules that are (or were) pervasive and highly resistant to degradation. Also, requisite methods of detection should be simple, extremely sensitive and broadly inclusive (NASA SP-530). Lipopolysaccharide (LPS), peptidoglycan or pseudopeptidoglycan and beta-glucan are microbial cell wall components which together cover the entire microbial spectrum of eubacteria, archea and fungi. They are all remarkably resistant to thermal degradation. Fortunately, many antimicrobial defense systems of higher organisms require sensitive detection to combat microbial pathogens. We employ here the primitive immune system of the evolutionarily ancient horseshoe crab, Limulus polyphemus. This species relies on multi-enzyme signal amplification detection of cell wall molecules and they can be applied to the development of useful detectors of life. An extension of this work includes the visualization of microbial signatures by labeling LAL components with chromogenic or electron dense markers. The protein Limulus Anti-LPS Factor (LALF) has an extremely high affinity for LPS. By coupling LALF binding with colloidal gold labels we demonstrate a correlation of the structures visible by electron microscopy with biochemical evidence of microbial cell wall materials. Pure silica particles were mixed with cultures of E. coli (10(exp 6) cfu/mL). Samples were washed sequentially with buffered saline, LALF, antibody to LALF and finally colloidal gold-labeled Protein A. Negative controls were not exposed to E. coli but received identical treatment otherwise. Samples were coated with carbon and imaged on a JEOL JSM-840 scanning electron microscope with LaB6 source in the back scatter mode with the JEOL annular back scatter detector. 20 nm-scale black spots in this contrast-reversed image originate from electrons back-scattered by gold atoms. Negative controls did not give any signal. Future work will expand application of this technique to soil simulants and mineralized rock samples.

  12. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses

    PubMed Central

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-01-01

    Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID:24689948

  13. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons.

    PubMed

    Close, R; Chen, Z; Shibata, N; Findlay, S D

    2015-12-01

    Differential phase contrast images in scanning transmission electron microscopy can be directly and quantitatively related to the gradient of the projected specimen potential provided that (a) the specimen can be treated as a phase object and (b) full 2D diffraction patterns as a function of probe position can be obtained. Both are challenging to achieve in atomic resolution imaging. The former is fundamentally limited by probe spreading and dynamical electron scattering, and we explore its validity domain in the context of atomic resolution differential phase contrast imaging. The latter, for which proof-of-principle experimental data sets exist, is not yet routine. We explore the extent to which more established segmented detector geometries can instead be used to reconstruct a quantitatively good approximation to the projected specimen potential. PMID:26381331

  14. Quantitative evaluation of software packages for single-molecule localization microscopy.

    PubMed

    Sage, Daniel; Kirshner, Hagai; Pengo, Thomas; Stuurman, Nico; Min, Junhong; Manley, Suliana; Unser, Michael

    2015-08-01

    The quality of super-resolution images obtained by single-molecule localization microscopy (SMLM) depends largely on the software used to detect and accurately localize point sources. In this work, we focus on the computational aspects of super-resolution microscopy and present a comprehensive evaluation of localization software packages. Our philosophy is to evaluate each package as a whole, thus maintaining the integrity of the software. We prepared synthetic data that represent three-dimensional structures modeled after biological components, taking excitation parameters, noise sources, point-spread functions and pixelation into account. We then asked developers to run their software on our data; most responded favorably, allowing us to present a broad picture of the methods available. We evaluated their results using quantitative and user-interpretable criteria: detection rate, accuracy, quality of image reconstruction, resolution, software usability and computational resources. These metrics reflect the various tradeoffs of SMLM software packages and help users to choose the software that fits their needs. PMID:26076424

  15. Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy

    PubMed Central

    Blanco-Roldán, C.; Quirós, C.; Sorrentino, A.; Hierro-Rodríguez, A.; Álvarez-Prado, L. M.; Valcárcel, R.; Duch, M.; Torras, N.; Esteve, J.; Martín, J. I.; Vélez, M.; Alameda, J. M.; Pereiro, E.; Ferrer, S.

    2015-01-01

    Advances in nanoscale magnetism increasingly require characterization tools providing detailed descriptions of magnetic configurations. Magnetic transmission X-ray microscopy produces element specific magnetic domain images with nanometric lateral resolution in films up to ∼100 nm thick. Here we present an imaging method using the angular dependence of magnetic contrast in a series of high resolution transmission X-ray microscopy images to obtain quantitative descriptions of the magnetization (canting angles relative to surface normal and sense). This method is applied to 55–120 nm thick ferromagnetic NdCo5 layers (canting angles between 65° and 22°), and to a NdCo5 film covered with permalloy. Interestingly, permalloy induces a 43° rotation of Co magnetization towards surface normal. Our method allows identifying complex topological defects (merons or ½ skyrmions) in a NdCo5 film that are only partially replicated by the permalloy overlayer. These results open possibilities for the characterization of deeply buried magnetic topological defects, nanostructures and devices. PMID:26337838

  16. Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy.

    PubMed

    Blanco-Roldán, C; Quirós, C; Sorrentino, A; Hierro-Rodríguez, A; Álvarez-Prado, L M; Valcárcel, R; Duch, M; Torras, N; Esteve, J; Martín, J I; Vélez, M; Alameda, J M; Pereiro, E; Ferrer, S

    2015-01-01

    Advances in nanoscale magnetism increasingly require characterization tools providing detailed descriptions of magnetic configurations. Magnetic transmission X-ray microscopy produces element specific magnetic domain images with nanometric lateral resolution in films up to ∼100 nm thick. Here we present an imaging method using the angular dependence of magnetic contrast in a series of high resolution transmission X-ray microscopy images to obtain quantitative descriptions of the magnetization (canting angles relative to surface normal and sense). This method is applied to 55-120 nm thick ferromagnetic NdCo5 layers (canting angles between 65° and 22°), and to a NdCo5 film covered with permalloy. Interestingly, permalloy induces a 43° rotation of Co magnetization towards surface normal. Our method allows identifying complex topological defects (merons or ½ skyrmions) in a NdCo5 film that are only partially replicated by the permalloy overlayer. These results open possibilities for the characterization of deeply buried magnetic topological defects, nanostructures and devices. PMID:26337838

  17. Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing

    NASA Astrophysics Data System (ADS)

    Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T.

    2015-11-01

    We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells.

  18. A general way for quantitative magnetic measurement by transmitted electrons

    NASA Astrophysics Data System (ADS)

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons.

  19. A general way for quantitative magnetic measurement by transmitted electrons

    PubMed Central

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons. PMID:26726959

  20. A general way for quantitative magnetic measurement by transmitted electrons.

    PubMed

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons. PMID:26726959

  1. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  2. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    PubMed

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors. PMID:23703020

  3. Comparison of Scheimpflug-photography, specular microscopy and scanning electron microscopy to detect corneal changes in toxicity studies in rats

    SciTech Connect

    Boeker, T.W.; Wegener, A.; Koch, F.; Hockwin, O. )

    1990-01-01

    With an increasing number of in-vivo methods to examine the eyes of laboratory animals, the rat has become an important animal model in experimental eye research. Specular microscopy is a clinical tool to examine the corneal endothelium in-vivo. To evaluate the versatility of this method for small animal eyes, we studied both corneal endothelial cell-count and corneal thickness in normal rats as well as those with diabetic, naphthalene and UV-B cataract. As a reference scanning electron microscopy (SEM) of the corneal endothelium was performed. For cell-counts the correlation coefficient between both methods was found to be sufficient. The comparison of corneal thickness measurement (SEM-values) with specular microscopy and with Scheimpflugbiometry failed to show a satisfactory correlation. The study proves that specular microscopy is a useful tool to document changes also in the endothelium of the rat-cornea.

  4. Probing the Plasma Membrane Structure of Immune Cells Through the Analysis of Membrane Sheets by Electron Microscopy

    PubMed Central

    Lillemeier, Björn F.; Davis, Mark M.

    2013-01-01

    This chapter describes a method to generate plasma membrane sheets that are large enough to visualize the membrane architecture and perform quantitative analyses of protein distributions. This procedure places the sheets on electron microscopy grids, parallel to the imaging plane of the microscope, where they can be characterized by transmission electron microscopy. The basic principle of the technique is that cells are broken open (“ripped”) through mechanical forces applied by the separation of two opposing surfaces sandwiching the cell, with one of the surfaces coated onto an EM grid. The exposed inner membrane surfaces can then be visualized with electron dense stains and specific proteins can be detected with gold conjugated probes. PMID:21701974

  5. Quantitative electron phase imaging with high sensitivity and an unlimited field of view

    PubMed Central

    Maiden, A. M.; Sarahan, M. C.; Stagg, M. D.; Schramm, S. M.; Humphry, M. J.

    2015-01-01

    As it passes through a sample, an electron beam scatters, producing an exit wavefront rich in information. A range of material properties, from electric and magnetic field strengths to specimen thickness, strain maps and mean inner potentials, can be extrapolated from its phase and mapped at the nanoscale. Unfortunately, the phase signal is not straightforward to obtain. It is most commonly measured using off-axis electron holography, but this is experimentally challenging, places constraints on the sample and has a limited field of view. Here we report an alternative method that avoids these limitations and is easily implemented on an unmodified transmission electron microscope (TEM) operating in the familiar selected area diffraction mode. We use ptychography, an imaging technique popular amongst the X-ray microscopy community; recent advances in reconstruction algorithms now reveal its potential as a tool for highly sensitive, quantitative electron phase imaging. PMID:26423558

  6. Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy

    PubMed Central

    Liao, Yi-Hua; Kuo, Wei-Cheng; Chou, Sin-Yo; Tsai, Cheng-Shiun; Lin, Guan-Liang; Tsai, Ming-Rung; Shih, Yuan-Ta; Lee, Gwo-Giun; Sun, Chi-Kuang

    2014-01-01

    Chronological skin aging is associated with flattening of the dermal-epidermal junction (DEJ), but to date no quantitative analysis focusing on the aging changes in the dermal papillae (DP) has been performed. The aim of the study is to determine the architectural changes and the collagen density related to chronological aging in the dermal papilla zone (DPZ) by in vivo harmonic generation microscopy (HGM) with a sub-femtoliter spatial resolution. We recruited 48 Asian subjects and obtained in vivo images on the sun-protected volar forearm. Six parameters were defined to quantify 3D morphological changes of the DPZ, which we analyzed both manually and computationally to study their correlation with age. The depth of DPZ, the average height of isolated DP, and the 3D interdigitation index decreased with age, while DP number density, DP volume, and the collagen density in DP remained constant over time. In vivo high-resolution HGM technology has uncovered chronological aging-related variations in DP, and sheds light on real-time quantitative skin fragility assessment and disease diagnostics based on collagen density and morphology. PMID:25401037

  7. Lab on chip optical imaging of biological sample by quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Memmolo, P.; Miccio, L.; Merola, F.; Gennari, O.; Mugnano, M.; Netti, P. A.; Ferraro, P.

    2015-03-01

    Quantitative imaging and three dimensional (3D) morphometric analysis of flowing and not-adherent cells is an important aspect for diagnostic purposes at Lab on Chip scale. Diagnostics tools need to be quantitative, label-free and, as much as possible, accurate. In recent years digital holography (DH) has been improved to be considered as suitable diagnostic method in several research field. In this paper we demonstrate that DH can be used for retrieving 3D morphometric data for sorting and diagnosis aims. Several techniques exist for 3D morphological study as optical coherent tomography and confocal microscopy, but they are not the best choice in case of dynamic events as flowing samples. Recently, a DH approach, based on shape from silhouette algorithm (SFS), has been developed for 3D shape display and calculation of cells biovolume. Such approach, adopted in combination with holographic optical tweezers (HOT) was successfully applied to cells with convex shape. Unfortunately, it's limited to cells with convex surface as sperm cells or diatoms. Here, we demonstrate an improvement of such procedure. By decoupling thickness information from refractive index ones and combining this with SFS analysis, 3D shape of concave cells is obtained. Specifically, the topography contour map is computed and used to adjust the 3D shape retrieved by the SFS algorithm. We prove the new procedure for healthy red blood cells having a concave surface in their central region. Experimental results are compared with theoretical model.

  8. Amplitude modulation atomic force microscopy, is acoustic driving in liquid quantitatively reliable?

    PubMed

    Liu, Fei; Zhao, Cunlu; Mugele, Frieder; van den Ende, Dirk

    2015-09-25

    Measuring quantitative tip-sample interaction forces in dynamic atomic force microscopy in fluids is challenging because of the strong damping of the ambient viscous medium and the fluid-mediated driving forces. This holds in particular for the commonly used acoustic excitation of the cantilever oscillation. Here we present measurements of tip-sample interactions due to conservative DLVO and hydration forces and viscous dissipation forces in aqueous electrolytes using tips with radii varying from typical 20 nm for the DLVO and hydration forces, to 1 ?m for the viscous dissipation. The measurements are analyzed using a simple harmonic oscillator model, continuous beam theory with fluid-mediated excitation and thermal noise spectroscopy (TNS). In all cases consistent conservative forces, deviating less than 40% from each other, are obtained for all three approaches. The DLVO forces are even within 5% of the theoretical expectations for all approaches. Accurate measurements of dissipative forces within 15% of the predictions of macroscopic fluid dynamics require the use of TNS or continuous beam theory including fluid-mediated driving. Taking this into account, acoustic driving in liquid is quantitatively reliable. PMID:26335613

  9. In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy

    PubMed Central

    Gao, Jian; Lyon, Joseph A.; Szeto, Daniel P.; Chen, Jun

    2012-01-01

    Digital holographic microscopy (DHM) has been applied extensively to in vitro studies of different living cells. In this paper, we present a novel application of an off-axis DHM system to in vivo study of the development of zebrafish embryos. Even with low magnification microscope objectives, the morphological structures and individual cell types inside developing zebrafish embryos can be clearly observed from reconstructed amplitude images. We further study the dynamic process of blood flow in zebrafish embryos. A calibration routine and post-processing procedures are developed to quantify physiological parameters at different developmental stages. We measure quantitatively the blood flow as well as the heart rate to study the effects of elevated D-glucose (abnormal condition) on circulatory and cardiovascular systems of zebrafish embryos. To enhance our ability to use DHM as a quantitative tool for potential high throughput screening application, the calibration and post-processing algorithms are incorporated into an automated processing software. Our results show that DHM is an excellent non-invasive imaging technique for visualizing the cellular dynamics of organogenesis of zebrafish embryos in vivo. PMID:23082301

  10. Quantitative analysis of biologic specimens by X-ray scanning analytic microscopy.

    TOXLINE Toxicology Bibliographic Information

    Uo M; Tanaka M; Watari F

    2004-07-15

    X-ray scanning analytic microscopy (XSAM) can be used to visualize the elemental distribution in biologic specimens. In this article, the authors prepared standard specimens for XSAM and performed quantitative analysis of various elements dissolved in soft tissues. Two different types of standard specimens were prepared. Methylmethacrylate (MMA) resin-based standard specimens were prepared with organic compounds of elements for low-concentration standards and lithium borate glass-based standard specimens were prepared with oxides of elements for higher concentration standards. Using these standard specimens, the P and Ca concentrations in normal rat tissue and dissolved Ni, Fe, and Ni concentrations around metal-implanted tissues were quantitatively analyzed. The estimated concentrations of dissolved Fe, Cu, and Ni from the implants were 1000, 40, and 20 mM, respectively. From the concentration levels causing inflammation around these implants, the high toxicity for soft tissue of Ni and Cu at low concentrations, for example, 10 mM, was confirmed. The toxicity of Cu was estimated as next to that of Ni. In contrast, Fe had low toxicity despite high concentrations of dissolved Fe of as much as 1000 mM. In this article, it was possible to estimate the nonmetallic elements and low-concentration metallic elements dispersed in soft tissue by XSAM.

  11. Amplitude modulation atomic force microscopy, is acoustic driving in liquid quantitatively reliable?

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Zhao, Cunlu; Mugele, Frieder; van den Ende, Dirk

    2015-09-01

    Measuring quantitative tip-sample interaction forces in dynamic atomic force microscopy in fluids is challenging because of the strong damping of the ambient viscous medium and the fluid-mediated driving forces. This holds in particular for the commonly used acoustic excitation of the cantilever oscillation. Here we present measurements of tip-sample interactions due to conservative DLVO and hydration forces and viscous dissipation forces in aqueous electrolytes using tips with radii varying from typical 20 nm for the DLVO and hydration forces, to 1 μm for the viscous dissipation. The measurements are analyzed using a simple harmonic oscillator model, continuous beam theory with fluid-mediated excitation and thermal noise spectroscopy (TNS). In all cases consistent conservative forces, deviating less than 40% from each other, are obtained for all three approaches. The DLVO forces are even within 5% of the theoretical expectations for all approaches. Accurate measurements of dissipative forces within 15% of the predictions of macroscopic fluid dynamics require the use of TNS or continuous beam theory including fluid-mediated driving. Taking this into account, acoustic driving in liquid is quantitatively reliable.

  12. Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy.

    PubMed

    Liao, Yi-Hua; Kuo, Wei-Cheng; Chou, Sin-Yo; Tsai, Cheng-Shiun; Lin, Guan-Liang; Tsai, Ming-Rung; Shih, Yuan-Ta; Lee, Gwo-Giun; Sun, Chi-Kuang

    2014-09-01

    Chronological skin aging is associated with flattening of the dermal-epidermal junction (DEJ), but to date no quantitative analysis focusing on the aging changes in the dermal papillae (DP) has been performed. The aim of the study is to determine the architectural changes and the collagen density related to chronological aging in the dermal papilla zone (DPZ) by in vivo harmonic generation microscopy (HGM) with a sub-femtoliter spatial resolution. We recruited 48 Asian subjects and obtained in vivo images on the sun-protected volar forearm. Six parameters were defined to quantify 3D morphological changes of the DPZ, which we analyzed both manually and computationally to study their correlation with age. The depth of DPZ, the average height of isolated DP, and the 3D interdigitation index decreased with age, while DP number density, DP volume, and the collagen density in DP remained constant over time. In vivo high-resolution HGM technology has uncovered chronological aging-related variations in DP, and sheds light on real-time quantitative skin fragility assessment and disease diagnostics based on collagen density and morphology. PMID:25401037

  13. Microscopy environment for quantitative spatial and temporal analysis of multicellular interactions

    NASA Astrophysics Data System (ADS)

    Sudar, Damir; Parvin, Bahram; Callahan, Daniel E.; Schwarz, Richard I.; Knowles, David W.; Ortiz de Solorzano, Carlos; Barcellos-Hoff, Mary H.

    2002-05-01

    Quantitative analysis of spatial and temporal concurrent responses of multiple markers in 3-dimensional cell cultures is hampered by the routine mode of sequential image acquisition, measurement and analysis of specific targets. A system was developed for detailed analysis of multi-dimensional, time-sequence responses and in order to relate features in novel and meaningful ways that will further our understanding of basic biology. Optical sectioning of the 3-dimensional structures is achieved with structured light illumination using the Wilson grating as described by Lanni. The automated microscopy system can image multicellular structures and track dynamic events, and is equipped for simultaneous/ sequential imaging of multiple fluorescent markers. Computer-controlled perfusion of external stimuli into the culture system allows (i) real-time observations of multiple cellular responses and (ii) automatic and intelligent adjustment of experimental parameters. This creates a feedback loop in real-time that directs desired responses in a given experiment. On-line image analysis routines provide cell-by-cell measurement results through segmentation and feature extraction (i.e. intensity, localization, etc.), and quantitation of meta-features such as dynamic responses of cells or correlations between different cells. Off-line image and data analysis is used to derive models of the processes involved, which will deepen the understanding of the basic biology.

  14. Dual-modality wide-field photothermal quantitative phase microscopy and depletion of cell populations

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.

    2015-03-01

    We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.

  15. Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions.

    PubMed

    Pinali, Christian; Kitmitto, Ashraf

    2014-11-01

    Electron microscopy techniques have made a significant contribution towards understanding muscle physiology since the 1950s. Subsequent advances in hardware and software have led to major breakthroughs in terms of image resolution as well as the ability to generate three-dimensional (3D) data essential for linking structure to function and dysfunction. In this methodological review we consider the application of a relatively new technique, serial block face scanning electron microscopy (SBF-SEM), for the study of cardiac muscle morphology. Employing SBF-SEM we have generated 3D data for cardiac myocytes within the myocardium with a voxel size of ~15 nm in the X-Y plane and 50 nm in the Z-direction. We describe how SBF-SEM can be used in conjunction with selective staining techniques to reveal the 3D cellular organisation and the relationship between the t-tubule (t-t) and sarcoplasmic reticulum (SR) networks. These methods describe how SBF-SEM can be used to provide qualitative data to investigate the organisation of the dyad, a specialised calcium microdomain formed between the t-ts and the junctional portion of the SR (jSR). We further describe how image analysis methods may be applied to interrogate the 3D volumes to provide quantitative data such as the volume of the cell occupied by the t-t and SR membranes and the volumes and surface area of jSR patches. We consider the strengths and weaknesses of the SBF-SEM technique, pitfalls in sample preparation together with tips and methods for image analysis. By providing a 'big picture' view at high resolutions, in comparison to conventional confocal microscopy, SBF-SEM represents a paradigm shift for imaging cellular networks in their native environment. PMID:25149127

  16. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  17. The New Electron Microscopy: Cells and Molecules in Three Dimensions | Poster

    Cancer.gov

    NCI recently announced the launch of the new National Cryo-Electron Microscopy Facility (NCEF) at the Frederick National Laboratory for Cancer Research (FNLCR). The launch comes while cryo-electron microscopy (cryo-EM) is enjoying the spotlight as a newly emerging, rapidly evolving technology with the potential to revolutionize the field of structural biology. Read more...

  18. A CCD Camera with Electron Decelerator for Intermediate Voltage Electron Microscopy

    SciTech Connect

    Downing, Kenneth H; Downing, Kenneth H.; Mooney, Paul E.

    2008-03-17

    Electron microscopists are increasingly turning to Intermediate Voltage Electron Microscopes (IVEMs) operating at 300 - 400 kV for a wide range of studies. They are also increasingly taking advantage of slow-scan charge coupled device (CCD) cameras, which have become widely used on electron microscopes. Under some conditions CCDs provide an improvement in data quality over photographic film, as well as the many advantages of direct digital readout. However, CCD performance is seriously degraded on IVEMs compared to the more conventional 100 kV microscopes. In order to increase the efficiency and quality of data recording on IVEMs, we have developed a CCD camera system in which the electrons are decelerated to below 100 kV before impacting the camera, resulting in greatly improved performance in both signal quality and resolution compared to other CCDs used in electron microscopy. These improvements will allow high-quality image and diffraction data to be collected directly with the CCD, enabling improvements in data collection for applications including high-resolution electron crystallography, single-particle reconstruction of protein structures, tomographic studies of cell ultrastructure and remote microscope operation. This approach will enable us to use even larger format CCD chips that are being developed with smaller pixels.

  19. A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy

    PubMed Central

    Downing, Kenneth H.; Mooney, Paul E.

    2008-01-01

    Electron microscopists are increasingly turning to intermediate voltage electron microscopes (IVEMs) operating at 300–400 kV for a wide range of studies. They are also increasingly taking advantage of slow-scan charge coupled device (CCD) cameras, which have become widely used on electron microscopes. Under some conditions, CCDs provide an improvement in data quality over photographic film, as well as the many advantages of direct digital readout. However, CCD performance is seriously degraded on IVEMs compared to the more conventional 100 kV microscopes. In order to increase the efficiency and quality of data recording on IVEMs, we have developed a CCD camera system in which the electrons are decelerated to below 100 kV before impacting the camera, resulting in greatly improved performance in both signal quality and resolution compared to other CCDs used in electron microscopy. These improvements will allow high-quality image and diffraction data to be collected directly with the CCD, enabling improvements in data collection for applications including high-resolution electron crystallography, single particle reconstruction of protein structures, tomographic studies of cell ultrastructure, and remote microscope operation. This approach will enable us to use even larger format CCD chips that are being developed with smaller pixels. PMID:18447528

  20. High-resolution electron microscopy and electron energy-loss spectroscopy of giant palladium clusters

    NASA Astrophysics Data System (ADS)

    Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.

    1995-12-01

    Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.