Bothe, Thorsten; Li Wansong; Schulte, Michael; von Kopylow, Christoph; Bergmann, Ralf B.; Jueptner, Werner P. O.
2010-10-20
Exact geometric calibration of optical devices like projectors or cameras is the basis for utilizing them in quantitative metrological applications. The common state-of-the-art photogrammetric pinhole-imaging-based models with supplemental polynomial corrections fail in the presence of nonsymmetric or high-spatial-frequency distortions and in describing caustics efficiently. These problems are solved by our vision ray calibration (VRC), which is proposed in this paper. The VRC takes an optical mapping system modeled as a black box and directly delivers corresponding vision rays for each mapped pixel. The underlying model, the calibration process, and examples are visualized and reviewed, demonstrating the potential of the VRC.
Descriptive Geometry and Geometric Modeling.
ERIC Educational Resources Information Center
Adams, J. Alan
1988-01-01
Describes experiences for engineering students to develop spatial awareness and reasoning capability. Describes geometric modeling, basic geometric concepts, operations, surface modeling, and conclusions. (YP)
A geometric description of human intestine.
Coşkun, Ihsaniye; Yildiz, Hüseyin; Arslan, Kadri; Yildiz, Bahri
2007-01-01
Mathematical models of natural phenomena play a central role in the physical sciences. Moreover, modeling of the organs draws from some beautiful areas of mathematics, such as nonlinear dynamics, multiscale transforms and stability analysis. In this study, a geometric recognition of the separate intestine sections (duodenum, jejunum, ileum, cecum and colon) of the human is presented. The human intestine was considered a tubular shape along a special curve and two male Turkish men were used for the modeling study. The length (cm) and diameter (mm) of the intestines were measured with a digital compass and formulated. These models were compared with their original photographs. It has been concluded that the geometric modeling and experimental work were consistent. These kinds of organ modeling techniques will also profit to medical lecturers to show 3-D figures to their students. PMID:17580658
Geometric descriptions of entangled states by auxiliary varieties
Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves
2012-10-15
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
A Geometric Description of Raman Fingerprints on Spinor BECs
NASA Astrophysics Data System (ADS)
Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.
2016-05-01
We employ a geometric description of a coherent, diabatic two-photon Raman interaction as a rotation on the Bloch sphere of a spin-1/2 system. The spin state of the system is described by a point on the sphere and the time evolution is described by a trajectory of the sphere's surface. The axis of rotation is determined by properties of the optical Raman beams: the pulse area, the relative intensities, relative phase, and relative frequencies. The two-photon detuning gives fine control over the sizes and phases of the imprinted features. This interpretation allows us not only to precisely engineer complex, spatially varying spin textures, but also to characterize these textures with a form of atomic polarimetry as we demonstrate on a coreless vortex in a spinor BEC.
Qualitative and quantitative descriptions of glenohumeral motion.
Hill, A M; Bull, A M J; Wallace, A L; Johnson, G R
2008-02-01
Joint modelling plays an important role in qualitative and quantitative descriptions of both normal and abnormal joints, as well as predicting outcomes of alterations to joints in orthopaedic practice and research. Contemporary efforts in modelling have focussed upon the major articulations of the lower limb. Well-constrained arthrokinematics can form the basis of manageable kinetic and dynamic mathematical predictions. In order to contain computation of shoulder complex modelling, glenohumeral joint representations in both limited and complete shoulder girdle models have undergone a generic simplification. As such, glenohumeral joint models are often based upon kinematic descriptions of inadequate degrees of freedom (DOF) for clinical purposes and applications. Qualitative descriptions of glenohumeral motion range from the parody of a hinge joint to the complex realism of a spatial joint. In developing a model, a clear idea of intention is required in order to achieve a required application. Clinical applicability of a model requires both descriptive and predictive output potentials, and as such, a high level of validation is required. Without sufficient appreciation of the clinical intention of the arthrokinematic foundation to a model, error is all too easily introduced. Mathematical description of joint motion serves to quantify all relevant clinical parameters. Commonly, both the Euler angle and helical (screw) axis methods have been applied to the glenohumeral joint, although concordance between these methods and classical anatomical appreciation of joint motion is limited, resulting in miscommunication between clinician and engineer. Compounding these inconsistencies in motion quantification is gimbal lock and sequence dependency. PMID:17509885
Cooper, W. James; Albertson, R Craig; Jacob, Rick E.; Westneat, Mark W.
2014-12-01
Here we present a re-description of Abudefduf luridus and reassign it to the genus Similiparma. We supplement traditional diagnoses and descriptions of this species with quantitative anatomical data collected from a family-wide geometric morphometric analysis of head morphology (44 species representing all 30 damselfish genera) and data from cranial micro-CT scans of fishes in the genus Similiparma. The use of geometric morphometric analyses (and other methods of shape analysis) permits detailed comparisons between the morphology of specific taxa and the anatomical diversity that has arisen in an entire lineage. This provides a particularly useful supplement to traditional description methods and we recommend the use of such techniques by systematists. Similiparma and its close relatives constitute a branch of the damselfish phylogenetic tree that predominantly inhabits rocky reefs in the Atlantic and Eastern Pacific, as opposed to the more commonly studied damselfishes that constitute a large portion of the ichthyofauna on all coral-reef communities.
ERIC Educational Resources Information Center
Richards, Lynn V.; Coventry, Kenny R.; Clibbens, John
2004-01-01
The effect of both geometric and extra-geometric factors on children's production of "in" is reported (free-response paradigm). Eighty children across four age groups (means 4;1, 5;5, 6;1, and 7;1) were shown video scenes of puppets placing real objects in various positions with reference to a bowl and a plate. Located objects were placed at three…
A geometric description of Maxwell field in a Kerr spacetime
NASA Astrophysics Data System (ADS)
Jezierski, Jacek; Smołka, Tomasz
2016-06-01
We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein–Gordon equation called Fackerell–Ipser equation. Our model is based on conformal Yano–Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.
Wu, Wei; Luo, Da-Wei; Xu, Jing-Bo
2014-06-28
We investigate the phenomenon of double sudden transitions in geometric quantum correlations for a system consisting of a bare qubit and a qubit locally coupled to its finite-temperature heat environment with an Ohmic spectrum in the framework of stochastic description. Moreover, we explore the possibility of protecting the geometric discord between the two qubits and prolonging the time during which the geometric discord remains constant by applying Bang-Bang pulses.
Geometrical description of nonreciprocity in coupled two-mode systems
NASA Astrophysics Data System (ADS)
Aumentado, Jose; Ranzani, Leonardo
2014-03-01
Traditional microwave and optical devices that break reciprocal symmetry are based on the Faraday effect in anisotropic materials such as ferrites. These devices contain permanent magnets and are therefore not compatible with superconducting quantum circuits. Various nonreciprocal devices that do not employ dc magnetic fields to break reciprocal systems have been discussed in the literature, but it is not obvious if and how these different systems might be connected conceptually. In this talk we explore the concept of nonreciprocity in coupled two-mode systems using a geometric mapping to the Poincaré sphere. In this picture the evolution of the system is described by a rotation sequence of the state vector, where the axis of rotation is determined by the matrix of the coupled-mode system and a different order for the rotations corresponds to a different direction of propagation of the signal. The requirements for reciprocity are then expressed in terms of geometric properties of the rotation axis of the system. We provide a few examples (the microwave circulator, parametric up/down converter, and traveling wave frequency converter) to demonstrate how this general geometric picture can provide insight into specific physical systems.
Type II superstring field theory: geometric approach and operadic description
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Münster, Korbinian
2013-04-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a {N} = 1 generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
Random geometric graph description of connectedness percolation in rod systems
NASA Astrophysics Data System (ADS)
Chatterjee, Avik P.; Grimaldi, Claudio
2015-09-01
The problem of continuum percolation in dispersions of rods is reformulated in terms of weighted random geometric graphs. Nodes (or sites or vertices) in the graph represent spatial locations occupied by the centers of the rods. The probability that an edge (or link) connects any randomly selected pair of nodes depends upon the rod volume fraction as well as the distribution over their sizes and shapes, and also upon quantities that characterize their state of dispersion (such as the orientational distribution function). We employ the observation that contributions from closed loops of connected rods are negligible in the limit of large aspect ratios to obtain percolation thresholds that are fully equivalent to those calculated within the second-virial approximation of the connectedness Ornstein-Zernike equation. Our formulation can account for effects due to interactions between the rods, and many-body features can be partially addressed by suitable choices for the edge probabilities.
Application of geometric algebra for the description of polymer conformations.
Chys, Pieter
2008-03-14
In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built. PMID:18345877
A Quantitative Description of FBI Public Relations.
ERIC Educational Resources Information Center
Gibson, Dirk C.
1997-01-01
States that the Federal Bureau of Investigation (FBI) had the most successful media relations program of all government agencies from the 1930s to the 1980s. Uses quantitative analysis to show why those media efforts were successful. Identifies themes that typified the verbal component of FBI publicity and the broad spectrum of mass communication…
A quantitative description for efficient financial markets
NASA Astrophysics Data System (ADS)
Immonen, Eero
2015-09-01
In this article we develop a control system model for describing efficient financial markets. We define the efficiency of a financial market in quantitative terms by robust asymptotic price-value equality in this model. By invoking the Internal Model Principle of robust output regulation theory we then show that under No Bubble Conditions, in the proposed model, the market is efficient if and only if the following conditions hold true: (1) the traders, as a group, can identify any mispricing in asset value (even if no one single trader can do it accurately), and (2) the traders, as a group, incorporate an internal model of the value process (again, even if no one single trader knows it). This main result of the article, which deliberately avoids the requirement for investor rationality, demonstrates, in quantitative terms, that the more transparent the markets are, the more efficient they are. An extensive example is provided to illustrate the theoretical development.
[Quantitative interpretation of graphs from Stuart pantography. II. Geometrical bases].
Ott, K
1977-05-01
In an experimental investigation, Stuart pantographic records are geometrically analyzed. The influence of the parameters' inclination and curving of condylar guidance, intercondylar distance, Bennett angle, distance of the plate, and position of the recording pencil are studied. Further quanitative analysis was not performed, as Stuart pantography is only meant for transmission to the respective articulator and is nto suitable for metric recording. PMID:266456
Geometrical description in binary composites and spectral density representation
Tuncer, Enis
2010-01-01
In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities {var_epsilon}, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, {zeta} = ({var_epsilon}{sub e} - {var_epsilon}{sub m})({var_epsilon}{sub i} - {var_epsilon}{sub m}){sup -1}, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL) [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration
The q-Painlevé V equation and its geometrical description
NASA Astrophysics Data System (ADS)
Ramani, A.; Grammaticos, B.; Ohta, Y.
2001-03-01
We study the q-Painlevé V equation which can be obtained from the degeneration of the q-PVI (in the form of the asymmetric q-PIII) equation and present its geometrical description. Based on the bilinear formulation we obtain the equations for the multi-dimensional τ-functions of q-PV (in the form of nonautonomous Hirota-Miwa systems) which lives in the weight lattice of the A4 affine Weyl group. This geometrical approach furnishes in a straightforward way the Miuras and the Schlesingers of q-PV.
NASA Astrophysics Data System (ADS)
Lüdde, Hans Jürgen; Achenbach, Alexander; Kalkbrenner, Thilo; Jankowiak, Hans-Christian; Kirchner, Tom
2016-04-01
A new model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is introduced. The ion-molecule cross sections for net capture and net ionization are represented as weighted sums of atomic cross sections with weight factors that are determined from a geometric model of overlapping cross section areas. Results are presented for proton collisions with targets ranging from diatomic to complex polyatomic molecules. Significant improvement compared to simple additivity rule results and in general good agreement with experimental data are found. The flexibility of the approach opens up the possibility to study more detailed observables such as orientation-dependent and charge-state-correlated cross sections for a large class of complex targets ranging from biomolecules to atomic clusters.
A geometric Hamiltonian description of composite quantum systems and quantum entanglement
NASA Astrophysics Data System (ADS)
Pastorello, Davide
2015-05-01
Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ⊗ H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.
From information theory to quantitative description of steric effects.
Alipour, Mojtaba; Safari, Zahra
2016-07-21
Immense efforts have been made in the literature to apply the information theory descriptors for investigating the electronic structure theory of various systems. In the present study, the information theoretic quantities, such as Fisher information, Shannon entropy, Onicescu information energy, and Ghosh-Berkowitz-Parr entropy, have been used to present a quantitative description for one of the most widely used concepts in chemistry, namely the steric effects. Taking the experimental steric scales for the different compounds as benchmark sets, there are reasonable linear relationships between the experimental scales of the steric effects and theoretical values of steric energies calculated from information theory functionals. Perusing the results obtained from the information theoretic quantities with the two representations of electron density and shape function, the Shannon entropy has the best performance for the purpose. On the one hand, the usefulness of considering the contributions of functional groups steric energies and geometries, and on the other hand, dissecting the effects of both global and local information measures simultaneously have also been explored. Furthermore, the utility of the information functionals for the description of steric effects in several chemical transformations, such as electrophilic and nucleophilic reactions and host-guest chemistry, has been analyzed. The functionals of information theory correlate remarkably with the stability of systems and experimental scales. Overall, these findings show that the information theoretic quantities can be introduced as quantitative measures of steric effects and provide further evidences of the quality of information theory toward helping theoreticians and experimentalists to interpret different problems in real systems. PMID:27321125
Houssaye, Alexandra; Herrel, Anthony; Fabre, Anne-Claire; Cornette, Raphael
2015-01-01
The challenging complexity of biological structures has led to the development of several methods for quantitative analyses of form. Bones are shaped by the interaction of historical (phylogenetic), structural, and functional constrains. Consequently, bone shape has been investigated intensively in an evolutionary context. Geometric morphometric approaches allow the description of the shape of an object in all of its biological complexity. However, when biological objects present only few anatomical landmarks, sliding semi-landmarks may provide good descriptors of shape. The sliding procedure, mandatory for sliding semi-landmarks, requires several steps that may be time-consuming. We here compare the time required by two different software packages (‘Edgewarp’ and ‘Morpho’) for the same sliding task, and investigate potential differences in the results and biological interpretation. ‘Morpho’ is much faster than ‘Edgewarp,’ notably as a result of the greater computational power of the ‘Morpho’ software routines and the complexity of the ‘Edgewarp’ workflow. Morphospaces obtained using both software packages are similar and provide a consistent description of the biological variability. The principal differences between the two software packages are observed in areas characterized by abrupt changes in the bone topography. In summary, both software packages perform equally well in terms of the description of biological structures, yet differ in the simplicity of the workflow and time needed to perform the analyses. PMID:26618086
Botton-Divet, Léo; Houssaye, Alexandra; Herrel, Anthony; Fabre, Anne-Claire; Cornette, Raphael
2015-01-01
The challenging complexity of biological structures has led to the development of several methods for quantitative analyses of form. Bones are shaped by the interaction of historical (phylogenetic), structural, and functional constrains. Consequently, bone shape has been investigated intensively in an evolutionary context. Geometric morphometric approaches allow the description of the shape of an object in all of its biological complexity. However, when biological objects present only few anatomical landmarks, sliding semi-landmarks may provide good descriptors of shape. The sliding procedure, mandatory for sliding semi-landmarks, requires several steps that may be time-consuming. We here compare the time required by two different software packages ('Edgewarp' and 'Morpho') for the same sliding task, and investigate potential differences in the results and biological interpretation. 'Morpho' is much faster than 'Edgewarp,' notably as a result of the greater computational power of the 'Morpho' software routines and the complexity of the 'Edgewarp' workflow. Morphospaces obtained using both software packages are similar and provide a consistent description of the biological variability. The principal differences between the two software packages are observed in areas characterized by abrupt changes in the bone topography. In summary, both software packages perform equally well in terms of the description of biological structures, yet differ in the simplicity of the workflow and time needed to perform the analyses. PMID:26618086
Descriptive Quantitative Analysis of Rearfoot Alignment Radiographic Parameters.
Meyr, Andrew J; Wagoner, Matthew R
2015-01-01
Although the radiographic parameters of the transverse talocalcaneal angle (tTCA), calcaneocuboid angle (CCA), talar head uncovering (THU), calcaneal inclination angle (CIA), talar declination angle (TDA), lateral talar-first metatarsal angle (lTFA), and lateral talocalcaneal angle (lTCA) form the basis of the preoperative evaluation and procedure selection for pes planovalgus deformity, the so-called normal values of these measurements are not well-established. The objectives of the present study were to retrospectively evaluate the descriptive statistics of these radiographic parameters (tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA) in a large population, and, second, to determine an objective basis for defining "normal" versus "abnormal" measurements. As a secondary outcome, the relationship of these variables to the body mass index was assessed. Anteroposterior and lateral foot radiographs from 250 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated. The results revealed a mean measurement of 24.12°, 13.20°, 74.32%, 16.41°, 26.64°, 8.37°, and 43.41° for the tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA, respectively. These were generally in line with the reported historical normal values. Descriptive statistical analysis demonstrated that the tTCA, THU, and TDA met the standards to be considered normally distributed but that the CCA, CIA, lTFA, and lTCA demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, only the CIA (R = -0.2428) and lTCA (R = -0.2449) demonstrated substantial correlation with the body mass index. No differentiations in deformity progression were observed when the radiographic parameters were plotted against each other to lead to a quantitative basis for defining "normal" versus "abnormal" measurements. PMID:26002682
A simple geometrical description of the TrueFISP ideal transient and steady-state signal.
Schmitt, P; Griswold, M A; Gulani, V; Haase, A; Flentje, M; Jakob, P M
2006-01-01
An intuitive approach is presented for assessment of the TrueFISP signal behavior in the transient phase and the steady state, based on geometrical considerations in combination with the Bloch equations. Short formulations are derived for the zenith and phase angle determining the direction of the magnetization vector for which a smooth monoexponential decay is obtained even at considerable off-resonance frequencies, thus compactly defining the target of various preparation schemes proposed in literature. A pictorial explanation is provided to illustrate how the interplay between RF excitation and relaxation governs the TrueFISP transient phase and steady state. Closed form expressions are developed that describe the signal evolution, accounting for the influence of T(1), T(2), flip angle, and resonance frequency offset in agreement with recently published studies. These results are obtained directly from basic assumptions, without the need for abstract mathematical treatment or further approximations. The validity of the conceptual framework and the analytical description is verified by simulations based on the Bloch equations as well as with MR phantom experiments. The theory may be used for contrast calculations and has the potential to facilitate improved parameter quantification with magnetization prepared TrueFISP experiments accounting for off-resonance effects. PMID:16323155
NASA Astrophysics Data System (ADS)
Robinson, Glynn P.; Chakraborty, Amit; Johnston, Michael; Reuss, M. Lynne; Duncan, James S.
1996-04-01
The size and number of follicles present within an ovary may be used as an indicator of fertility in women. Ultrasound is the imaging modality of choice for obtaining information on the follicles as it is inexpensive and readily available. A method of segmenting the follicles and ovary and producing accurate 2D and 3D representation would be of great benefit to a large segment of the population. However, the nature of ultrasound images means that standard approaches to segmentation based on image gradients or detecting regions of homogeneous gray-level alone are inadequate. A semi-automatic method of segmentation which combined a texture based classification for initial segmentation with deformable models to provide descriptions of individual objects is extended by imposing geometric constraints on the relationships between the individual objects present within an image. Since we are interested in segmenting the individual objects over a 3D spatial stack we use the results from one image in the sequence as the initial estimates for the next image. This reduces the need for operator intervention and provides representations of individual objects through the whole sequence. These representations can then be used for accurate measurement of area/volume and for three-dimensional visualization of the relationships between the individual follicles and the enclosing ovary.
Klingenberg, C P; Leamy, L J; Routman, E J; Cheverud, J M
2001-01-01
This study introduces a new multivariate approach for analyzing the effects of quantitative trait loci (QTL) on shape and demonstrates this method for the mouse mandible. We quantified size and shape with the methods of geometric morphometrics, based on Procrustes superimposition of five morphological landmarks recorded on each mandible. Interval mapping for F(2) mice originating from an intercross of the LG/J and SM/J inbred strains revealed 12 QTL for size, 25 QTL for shape, and 5 QTL for left-right asymmetry. Multivariate ordination of QTL effects by principal component analysis identified two recurrent features of shape variation, which involved the positions of the coronoid and angular processes relative to each other and to the rest of the mandible. These patterns are reminiscent of the knockout phenotypes of a number of genes involved in mandible development, although only a few of these are possible candidates for QTL in our study. The variation of shape effects among the QTL showed no evidence of clustering into distinct groups, as would be expected from theories of morphological integration. Further, for most QTL, additive and dominance effects on shape were markedly different, implying overdominance for specific features of shape. We conclude that geometric morphometrics offers a promising new approach to address problems at the interface of evolutionary and developmental genetics. PMID:11156997
NASA Astrophysics Data System (ADS)
Wang, Quanzeng; Cheng, Wei-Chung; Suresh, Nitin; Hua, Hong
2016-05-01
With improved diagnostic capabilities and complex optical designs, endoscopic technologies are advancing. As one of the several important optical performance characteristics, geometric distortion can negatively affect size estimation and feature identification related diagnosis. Therefore, a quantitative and simple distortion evaluation method is imperative for both the endoscopic industry and the medical device regulatory agent. However, no such method is available yet. While the image correction techniques are rather mature, they heavily depend on computational power to process multidimensional image data based on complex mathematical model, i.e., difficult to understand. Some commonly used distortion evaluation methods, such as the picture height distortion (DPH) or radial distortion (DRAD), are either too simple to accurately describe the distortion or subject to the error of deriving a reference image. We developed the basic local magnification (ML) method to evaluate endoscope distortion. Based on the method, we also developed ways to calculate DPH and DRAD. The method overcomes the aforementioned limitations, has clear physical meaning in the whole field of view, and can facilitate lesion size estimation during diagnosis. Most importantly, the method can facilitate endoscopic technology to market and potentially be adopted in an international endoscope standard.
Toward a quantitative description of the neurodynamic organizations of teams.
Stevens, Ronald H; Galloway, Trysha L
2014-01-01
The goal was to develop quantitative models of the neurodynamic organizations of teams that could be used for comparing performance within and across teams and sessions. A symbolic modeling system was developed, where raw electroencephalography (EEG) signals from dyads were first transformed into second-by-second estimates of the cognitive Workload or Engagement of each person and transformed again into symbols representing the aggregated levels of the team. The resulting neurodynamic symbol streams had a persistent structure and contained segments of differential symbol expression. The quantitative Shannon entropy changes during these periods were related to speech, performance, and team responses to task changes. The dyads in an unscripted map navigation task (Human Communication Research Centre (HCRC) Map Task (MT)) developed fluctuating dynamics for Workload and Engagement, as they established their teamwork rhythms, and these were disrupted by external changes to the task. The entropy fluctuations during these disruptions differed in frequency, magnitude, and duration, and were associated with qualitative and quantitative changes in team organization and performance. These results indicate that neurodynamic models may be reliable, sensitive, and valid indicators of the changing neurodynamics of teams around which standardized quantitative models can begin to be developed. PMID:24502273
Quantitative prediction and molar description of the environment
Baum, William M.
1989-01-01
Molecular explanations of behavior, based on momentary events and variables that can be measured each time an event occurs, can be contrasted with molar explanations, based on aggregates of events and variables that can be measured only over substantial periods of time. Molecular analyses cannot suffice for quantitative accounts of behavior, because the historical variables that determine behavior are inevitably molar. When molecular explanations are attempted, they always depend on hypothetical constructs that stand as surrogates for molar environmental variables. These constructs allow no quantitative predictions when they are vague, and when they are made precise, they become superfluous, because they can be replaced with molar measures. In contrast to molecular accounts of phenomena like higher responding on ratio schedules than interval schedules and free-operant avoidance, molar accounts tend to be simple and straightforward. Molar theory incorporates the notion that behavior produces consequences that in turn affect the behavior, the notion that behavior and environment together constitute a feedback system. A feedback function specifies the dependence of consequences on behavior, thereby describing properties of the environment. Feedback functions can be derived for simple schedules, complex schedules, and natural resources. A complete theory of behavior requires describing the environment's feedback functions and the organism's functional relations. Molar thinking, both in the laboratory and in the field, can allow quantitative prediction, the mark of a mature science. PMID:22478030
Soliman, George; Yevick, David; Jessop, Paul
2014-09-01
This paper demonstrates that numerous calculations involving polarization transformations can be condensed by employing suitable geometric algebra formalism. For example, to describe polarization mode dispersion and polarization-dependent loss, both the material birefringence and differential loss enter as bivectors and can be combined into a single symmetric quantity. Their frequency and distance evolution, as well as that of the Stokes vector through an optical system, can then each be expressed as a single compact expression, in contrast to the corresponding Mueller matrix formulations. The intrinsic advantage of the geometric algebra framework is further demonstrated by presenting a simplified derivation of generalized Stokes parameters that include the electric field phase. This procedure simultaneously establishes the tensor transformation properties of these parameters. PMID:25401434
Quantitative description of denudation forms in the Western African Sahel
NASA Astrophysics Data System (ADS)
Méring, C.; Poncet, Y.; Jacqueminet, C.; Rakoto-Ravalontsalama, M.
In Western African Sahel, the everlasting denudation of the soils is a danger for their productivity, more especially as bare light soils have often been over exploited by farming and pastoralism. Hence, these areas are threatened with degradation increased by the climatic variations. From remote sensing data, we study a set of desertification indicators. We experiment recurrent procedures that may allow the identification and measurement of parameters connected to these indicators, whatever origin the data may have. We shall apply these procedures to Landsat MSS data with two examples to explain the whole process: . a description of bare areas around villages (degradation of cultivated areas due to permanent cropping) by estimation of their surface and by calculation of a set of shape parameters; . the description of sand seas, by estimating the orientation of the bars and their repetitivity. The employed algorithms run morphological transformations and measurements of predefined objects on the image. Their degree of generalization let us use them on images coming from different scenes and even different sensors.
A comparison of descriptive models of a single spike train by information-geometric measure.
Nakahara, Hiroyuki; Amari, Shun-ichi; Richmond, Barry J
2006-03-01
In examining spike trains, different models are used to describe their structure. The different models often seem quite similar, but because they are cast in different formalisms, it is often difficult to compare their predictions. Here we use the information-geometric measure, an orthogonal coordinate representation of point processes, to express different models of stochastic point processes in a common coordinate system. Within such a framework, it becomes straightforward to visualize higher-order correlations of different models and thereby assess the differences between models. We apply the information-geometric measure to compare two similar but not identical models of neuronal spike trains: the inhomogeneous Markov and the mixture of Poisson models. It is shown that they differ in the second- and higher-order interaction terms. In the mixture of Poisson model, the second- and higher-order interactions are of comparable magnitude within each order, whereas in the inhomogeneous Markov model, they have alternating signs over different orders. This provides guidance about what measurements would effectively separate the two models. As newer models are proposed, they also can be compared to these models using information geometry. PMID:16483407
Fast sodium current in cardiac muscle. A quantitative description.
Ebihara, L; Johnson, E A
1980-01-01
The voltage and time-dependence of the tetrodotoxin sensitive, fast sodium current in cardiac muscle is described with the Hodgkin-Huxley formalism using two microelectrode, voltage-clamp data obtained by Ebihara et al. (1980, J. Gen. Physiol., 75:437) from small spherical clusters of tissue-cultured 11-d-old embryonic heart cells. The data chosen from that study for quantitative analysis was obtained at 37 degrees C and in standard tissue-culture medium; it was not smoothed, and the capacitive transient was sufficiently brief to make its removal unnecessary. The sodium current, INa, is considered to be given by the following equation: INa = gNa m3h(V - VNa), where gNa is a constant (23 mS), VNa is the sodium equilibrium potential (29 mV), and m and h are independent, first order, dimensionless variables, which can vary between 0 and 1, as defined by the following differential equations, dm/dt = alpha m(1 - m) - beta mm and dh/dt = alpha h(1 - h) - beta hh, where the rate coefficients, alpha m = [0.32 x (V + 47.13)]/[1 - exp(V + 47.13)] and beta m = 0.08 x exp (-V/11). For potentials more positive than -40 mV, alpha h = 0 and beta h = 1/0.13 (exp [(V + 10.66)/ - 11.1] + 1), and for potentials more negative than -40 mV, alpha h = 0.135 x exp [(-80 - V)/6.8] and beta h = 3.56 x exp (0.079V) + 3.1 x 10(5) exp (0.35V). These functions of potential are similar to those of the squid at 15 degrees C, except that their magnitudes are larger (faster). Using these model equations the membrane current in a membrane patch with and without a series resistance was simulated. For the value of series resistance estimated for the preparation from which the analyzed data were obtained, the effects of series resistance on the shape and magnitude of the inward transient current were found to be minimal. It was concluded that their should be no large errors in the data, even in the absence of complete series resistance compensation. PMID:7260301
Dynamics of pothole growth as defined by field data and geometrical description
NASA Astrophysics Data System (ADS)
Springer, Gregory S.; Tooth, Stephen; Wohl, Ellen E.
2005-12-01
This paper examines cylindrical pothole growth on streambeds using empirical analyses of field data and geometric constraints. Pothole depths (d) and average radii (?) at three localities have the relationship ? = kd?, where k and ɛ are regression coefficients (R2 ≥ 0.72). Observed ɛ (0.57, 0.67, 0.85) translate to d increasing faster than r at all localities. The strong correlations and absence of potholes with very low or high ratios of depth/diameter suggest that small concavities act as pothole seeds and enlargement is quasi-systematic. Exploiting the power relationship, growing potholes can be represented as deepening and radially expanding cylinders. Absolute and relative distributions of erosion can be calculated for floors and walls using this geometrical approach. Volumetrically, more substrate is eroded from pothole walls than floors during growth for ɛ > 0.5. Among sample populations, as much as 70% more material is eroded from walls than floors (ɛ = 0.85). Wall and floor surface areas differ by 1 or more orders of magnitude for observed ɛ, and as a result, erosion rates are fastest atop floors. Differences in erosion rates may reflect the efficacy of erosion phenomena. Low-angle impacts of tools on walls presumably have low erosion efficiencies. Efficacies are presumably influenced by substrate properties, and floor and wall erosion rates are most comparable in the weakest observed strata, although substantially more material is removed from walls at this locality (ɛ = 0.85). Additional data is needed, but quantifiable relationships may exist between geometries, substrates, and erosion phenomena.
NASA Astrophysics Data System (ADS)
Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel
2014-03-01
Current assessment of cartilage is primarily based on identification of indirect markers such as joint space narrowing and increased subchondral bone density on x-ray images. In this context, phase contrast CT imaging (PCI-CT) has recently emerged as a novel imaging technique that allows a direct examination of chondrocyte patterns and their correlation to osteoarthritis through visualization of cartilage soft tissue. This study investigates the use of topological and geometrical approaches for characterizing chondrocyte patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage. For this purpose, topological features derived from Minkowski Functionals and geometric features derived from the Scaling Index Method (SIM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of healthy and osteoarthritic specimens of human patellar cartilage. The extracted features were then used in a machine learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with high-dimensional geometrical feature vectors derived from SIM (0.95 ± 0.06) which outperformed all Minkowski Functionals (p < 0.001). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving SIM-derived geometrical features can distinguish between healthy and osteoarthritic tissue with high accuracy.
ERIC Educational Resources Information Center
Berksteiner, Earl J.
2013-01-01
The purpose of this quantitative descriptive correlational study was to determine if associations existed between middle- and early-college (MEC) principals' leadership styles, teacher motivation, and teacher satisfaction. MEC programs were programs designed to assist high school students who were not served well in a traditional setting (Middle…
ERIC Educational Resources Information Center
Rodriguez-Falces, Javier
2013-01-01
In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are…
Jaferzadeh, Keyvan; Moon, Inkyu
2015-11-01
Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs. PMID:26502322
Quantitative methods for three-dimensional comparison and petrographic description of chondrites
Friedrich, J.M.
2008-10-20
X-ray computed tomography can be used to generate three-dimensional (3D) volumetric representations of chondritic meteorites. One of the challenges of using collected X-ray tomographic data is the extraction of useful data for 3D petrographic analysis or description. Here, I examine computer-aided quantitative 3D texture metrics that can be used for the classification of chondritic meteorites. These quantitative techniques are extremely useful for discriminating between chondritic materials, but yield little information on the 3D morphology of chondrite components. To investigate the morphology of chondrite minerals such as Fe(Ni) metal and related sulfides, the homology descriptors known as Betti numbers, are examined. Both methodologies are illustrated with theoretical discussion and examples. Betti numbers may be valuable for examining the nature of metal-silicate structural changes within chondrites with increasing degrees of metamorphism.
NASA Astrophysics Data System (ADS)
Klump, J. F.; Huber, R.; Robertson, J.; Cox, S. J. D.; Woodcock, R.
2014-12-01
Despite the recent explosion of quantitative geological data, geology remains a fundamentally qualitative science. Numerical data only constitute a certain part of data collection in the geosciences. In many cases, geological observations are compiled as text into reports and annotations on drill cores, thin sections or drawings of outcrops. The observations are classified into concepts such as lithology, stratigraphy, geological structure, etc. These descriptions are semantically rich and are generally supported by more quantitative observations using geochemical analyses, XRD, hyperspectral scanning, etc, but the goal is geological semantics. In practice it has been difficult to bring the different observations together due to differing perception or granularity of classification in human observation, or the partial observation of only some characteristics using quantitative sensors. In the past years many geological classification schemas have been transferred into ontologies and vocabularies, formalized using RDF and OWL, and published through SPARQL endpoints. Several lithological ontologies were compiled by stratigraphy.net and published through a SPARQL endpoint. This work is complemented by the development of a Python API to integrate this vocabulary into Python-based text mining applications. The applications for the lithological vocabulary and Python API are automated semantic tagging of geochemical data and descriptions of drill cores, machine learning of geochemical compositions that are diagnostic for lithological classifications, and text mining for lithological concepts in reports and geological literature. This combination of applications can be used to identify anomalies in databases, where composition and lithological classification do not match. It can also be used to identify lithological concepts in the literature and infer quantitative values. The resulting semantic tagging opens new possibilities for linking these diverse sources of data.
Lee, Won-Joon; Wilkinson, Caroline M; Hwang, Hyeon-Shik; Lee, Sang-Mi
2015-05-01
Accuracy is the most important factor supporting the reliability of forensic facial reconstruction (FFR) comparing to the corresponding actual face. A number of methods have been employed to evaluate objective accuracy of FFR. Recently, it has been attempted that the degree of resemblance between computer-generated FFR and actual face is measured by geometric surface comparison method. In this study, three FFRs were produced employing live adult Korean subjects and three-dimensional computerized modeling software. The deviations of the facial surfaces between the FFR and the head scan CT of the corresponding subject were analyzed in reverse modeling software. The results were compared with those from a previous study which applied the same methodology as this study except average facial soft tissue depth dataset. Three FFRs of this study that applied updated dataset demonstrated lesser deviation errors between the facial surfaces of the FFR and corresponding subject than those from the previous study. The results proposed that appropriate average tissue depth data are important to increase quantitative accuracy of FFR. PMID:25739646
A Quantitative Description of Equilibrium and Homeostatic Thickness Regulation in the In Vivo Cornea
Friedman, M. H.
1972-01-01
By combining a description of the coupled solute and water flows through the in vivo cornea with a set of appropriate mechanical equilibrium conditions, it is possible to calculate directly the corneal thickness, given the corneal temperature, the state of the aqueous and tears, the swelling pressure-hydration relation of the corneal stroma, and the transport properties of the corneal membranes. Active transport of ions or water by the corneal epithelium or endothelium, or both, are explicitly included. When published parameters are inserted into the formulation, the normal corneal thickness is recovered, and the corneal potential, anteriorly directed water flux, and stromal salt content are in reasonable to quantitative agreement with experiment. The analysis yields a simple physical explanation of the stromal imbibition pressure and the opposing forces which cause the cornea to assume its normal thickness. PMID:5063840
Harden, J.W.
1982-01-01
A soil development index has been developed in order to quantitatively measure the degree of soil profile development. This index, which combines eight soil field properties with soil thickness, is designed from field descriptions of the Merced River chronosequence in central California. These eight properties are: clay films, texture plus wet consistence, rubification (color hue and chroma), structure, dry consistence, moist consistence, color value, and pH. Other properties described in the field can be added when more soils are studied. Most of the properties change systematically within the 3 m.y. age span of the Merced River chronosequence. The absence of properties on occasion does not significantly affect the index. Individual quantified field properties, as well as the integrated index, are examined and compared as functions of soil depth and age. ?? 1982.
Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia
2015-08-01
The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component. PMID:26737722
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Barnes, D. C.; Bezzerides, B.; Dubois, D. F.; Vu, H. X.
2003-10-01
RPIC is a reduced-description PIC code designed to investigate laser-plasma instabilities (LPI) in physical systems with vastly-different time scales prevalent under ICF conditions(H.X. Vu, B. Bezzerides, D.F. DuBois, J. Comp. Phys. 156), 12 (1999)., typically studied with the extended Zakharov model. Comparisons between the extended Zakharov model and RPIC were presented in a series of papers(K.Y. Sanbonmatsu, H.X. Vu, D.F. DuBois, and B. Bezzerides, Phys. Rev. Lett. 82), 932 (1999); K.Y. Sanbonmatsu, H.X. Vu, B. Bezzerides, and D.F. DuBois, Phys. Plasmas. 7, 1723,2824 (2000)., where quantitative agreements are obtained in the fluid and quasi-linear regime. In the kinetic regime where particle trapping is important, differences were found. The RPIC model itself is limited, e.g., Langmuir wave frequency harmonics are neglected. Our goal is two fold in comparing RPIC with full PIC in 1-d. First, advantages of RPIC over full PIC will be quantitatively assessed. Second, for strong laser drives, harmonics may be important to LPI physics. We would like to establish the regime of validity for RPIC, and to assess if the regimes where RPIC fails is of interest to ICF indirect drive.
Quantitative Description of a Protein Fitness Landscape Based on Molecular Features.
Meini, María-Rocío; Tomatis, Pablo E; Weinreich, Daniel M; Vila, Alejandro J
2015-07-01
Understanding the driving forces behind protein evolution requires the ability to correlate the molecular impact of mutations with organismal fitness. To address this issue, we employ here metallo-β-lactamases as a model system, which are Zn(II) dependent enzymes that mediate antibiotic resistance. We present a study of all the possible evolutionary pathways leading to a metallo-β-lactamase variant optimized by directed evolution. By studying the activity, stability and Zn(II) binding capabilities of all mutants in the preferred evolutionary pathways, we show that this local fitness landscape is strongly conditioned by epistatic interactions arising from the pleiotropic effect of mutations in the different molecular features of the enzyme. Activity and stability assays in purified enzymes do not provide explanatory power. Instead, measurement of these molecular features in an environment resembling the native one provides an accurate description of the observed antibiotic resistance profile. We report that optimization of Zn(II) binding abilities of metallo-β-lactamases during evolution is more critical than stabilization of the protein to enhance fitness. A global analysis of these parameters allows us to connect genotype with fitness based on quantitative biochemical and biophysical parameters. PMID:25767204
Heinze, Berthold
2011-06-01
In chemistry, the law of mass action describes how variations in the concentrations of chemical compounds lead to different chemical reaction outcomes. Does the extent of hybridization, or more particularly, the formation of hybrid offspring, likewise depend on the local abundance of pollen from compatible species in systems as complex as tall trees which depend on (insect) pollinators? In this issue of Molecular Ecology, Field et al. (2011a) present a study involving two ecologically divergent eucalypt species. By comparing several contrasting settings with different local densities and geographical arrangements of adult trees and by studying parentage in progeny arrays, they show that on top of pre-mating barriers like flowering time differences, local demography and varying scales of pollen dispersal, which in themselves depend on pollinator behaviour in reaction to flowering abundance, all interact in a somewhat predictable way. In other words, these factors can explain some of the variation in hybrid formation observed. In this way, the study introduces important progress towards a quantitative description of hybridization potential. Therefore, let me tell you about the birds and the bees and the flowers and the trees (Newman 1964). PMID:21739624
Yan, Yuan; Shan, Hangyong; Li, Min; Chen, Shu; Liu, Jianyu; Cheng, Yanfang; Ye, Cui; Yang, Zhilin; Lai, Xuandi; Hu, Jianqiang
2015-01-01
In this work, a hierarchical DNA-directed self-assembly strategy to construct structure-controlled Au nanoassemblies (NAs) has been demonstrated by conjugating Au nanoparticles (NPs) with internal-modified dithiol single-strand DNA (ssDNA) (Au-B-A or A-B-Au-B-A). It is found that the dithiol-ssDNA-modified Au NPs and molecule quantity of thiol-modified ssDNA grafted to Au NPs play critical roles in the assembly of geometrically controlled Au NAs. Through matching Au-DNA self-assembly units, geometrical structures of the Au NAs can be tailored from one-dimensional (1D) to quasi-2D and 2D. Au-B-A conjugates readily give 1D and quasi-2D Au NAs while 2D Au NAs can be formed by A-B-Au-B-A building blocks. Surface-enhanced Raman scattering (SERS) measurements and 3D finite-difference time domain (3D-FDTD) calculation results indicate that the geometrically controllable Au NAs have regular and linearly "hot spots"-number-depended SERS properties. For a certain number of NPs, the number of "hot spots" and accordingly enhancement factor of Au NAs can be quantitatively evaluated, which open a new avenue for quantitative analysis based on SERS technique. PMID:26581251
Yan, Yuan; Shan, Hangyong; Li, Min; Chen, Shu; Liu, Jianyu; Cheng, Yanfang; Ye, Cui; Yang, Zhilin; Lai, Xuandi; Hu, Jianqiang
2015-01-01
In this work, a hierarchical DNA–directed self–assembly strategy to construct structure–controlled Au nanoassemblies (NAs) has been demonstrated by conjugating Au nanoparticles (NPs) with internal–modified dithiol single-strand DNA (ssDNA) (Au–B–A or A–B–Au–B–A). It is found that the dithiol–ssDNA–modified Au NPs and molecule quantity of thiol–modified ssDNA grafted to Au NPs play critical roles in the assembly of geometrically controlled Au NAs. Through matching Au–DNA self–assembly units, geometrical structures of the Au NAs can be tailored from one–dimensional (1D) to quasi–2D and 2D. Au–B–A conjugates readily give 1D and quasi–2D Au NAs while 2D Au NAs can be formed by A–B–Au–B–A building blocks. Surface-enhanced Raman scattering (SERS) measurements and 3D finite–difference time domain (3D-FDTD) calculation results indicate that the geometrically controllable Au NAs have regular and linearly “hot spots”–number–depended SERS properties. For a certain number of NPs, the number of “hot spots” and accordingly enhancement factor of Au NAs can be quantitatively evaluated, which open a new avenue for quantitative analysis based on SERS technique. PMID:26581251
A geometric description of the non-Gaussianity generated at the end of multi-field inflation
NASA Astrophysics Data System (ADS)
Huang, Qing-Guo
2009-06-01
In this paper we mainly focus on the curvature perturbation generated at the end of multi-field inflation, such as the multi-brid inflation. Since the curvature perturbation is produced on the super-horizon scale, the bispectrum and trispectrum have a local shape. The size of bispectrum is measured by fNL and the trispectrum is characterized by two parameters τNL and gNL. For simplicity, the trajectory of inflaton is assumed to be a straight line in the field space and then the entropic perturbations do not contribute to the curvature perturbation during inflation. As long as the background inflaton path is not orthogonal to the hyper-surface for inflation to end, the entropic perturbation can make a contribution to the curvature perturbation at the end of inflation and a large local-type non-Gaussiantiy is expected. An interesting thing is that the non-Gaussianity parameters are completely determined by the geometric properties of the hyper-surface of the end of inflation. For example, fNL is proportional to the curvature of the curve on this hyper-surface along the adiabatic direction and gNL is related to the change of the curvature radius per unit arc-length of this curve. Both fNL and gNL can be positive or negative respectively, but τNL must be positive and not less than ((6/5)fNL)2.
A geometric description of the non-Gaussianity generated at the end of multi-field inflation
Huang, Qing-Guo
2009-06-01
In this paper we mainly focus on the curvature perturbation generated at the end of multi-field inflation, such as the multi-brid inflation. Since the curvature perturbation is produced on the super-horizon scale, the bispectrum and trispectrum have a local shape. The size of bispectrum is measured by f{sub NL} and the trispectrum is characterized by two parameters τ{sub NL} and g{sub NL}. For simplicity, the trajectory of inflaton is assumed to be a straight line in the field space and then the entropic perturbations do not contribute to the curvature perturbation during inflation. As long as the background inflaton path is not orthogonal to the hyper-surface for inflation to end, the entropic perturbation can make a contribution to the curvature perturbation at the end of inflation and a large local-type non-Gaussiantiy is expected. An interesting thing is that the non-Gaussianity parameters are completely determined by the geometric properties of the hyper-surface of the end of inflation. For example, f{sub NL} is proportional to the curvature of the curve on this hyper-surface along the adiabatic direction and g{sub NL} is related to the change of the curvature radius per unit arc-length of this curve. Both f{sub NL} and g{sub NL} can be positive or negative respectively, but τ{sub NL} must be positive and not less than ((6/5)f{sub NL}){sup 2}.
Belka, Mariusz; Hewelt-Belka, Weronika; Sławiński, Jarosław; Bączek, Tomasz
2014-01-01
A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers’ geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the
Belka, Mariusz; Hewelt-Belka, Weronika; Sławiński, Jarosław; Bączek, Tomasz
2014-01-01
A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers' geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the
ERIC Educational Resources Information Center
Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve E.; Constantino, John N.; Povinelli, Daniel J.; Pruett, John R., Jr.
2011-01-01
Objective: Comparative studies of social responsiveness, an ability that is impaired in autism spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species…
Karanovic, Tomislav; Djurakic, Marko; Eberhard, Stefan M
2016-03-01
Discovery of cryptic species using molecular tools has become common in many animal groups but it is rarely accompanied by morphological revision, creating ongoing problems in taxonomy and conservation. In copepods, cryptic species have been discovered in most groups where fast-evolving molecular markers were employed. In this study at Yeelirrie in Western Australia we investigate a subterranean species complex belonging to the harpacticoid genus Schizopera Sars, 1905, using both the barcoding mitochondrial COI gene and landmark-based two-dimensional geometric morphometrics. Integumental organs (sensilla and pores) are used as landmarks for the first time in any crustacean group. Complete congruence between DNA-based species delimitation and relative position of integumental organs in two independent morphological structures suggests the existence of three distinct evolutionary units. We describe two of them as new species, employing a condensed taxonomic format appropriate for cryptic species. We argue that many supposedly cryptic species might not be cryptic if researchers focus on analyzing morphological structures with multivariate tools that explicitly take into account geometry of the phenotype. A perceived supremacy of molecular methods in detecting cryptic species is in our view a consequence of disparity of investment and unexploited recent advancements in morphometrics among taxonomists. Our study shows that morphometric data alone could be used to find diagnostic morphological traits and gives hope to anyone studying small animals with a hard integument or shell, especially opening the door to assessing fossil diversity and rich museum collections. We expect that simultaneous use of molecular tools with geometry-oriented morphometrics may yield faster formal description of species. Decrypted species in this study are a good example for urgency of formal descriptions, as they display short-range endemism in small groundwater calcrete aquifers in a
A Quantitative Approach to the Description and Classification of Primary Social Relationships.
ERIC Educational Resources Information Center
Strayer, F. Francis; And Others
1995-01-01
Examined utility of the Attachment Q-set (AQS) instrument for cross-cultural comparisons of mother-child interactions. Found that interpretations concerning the structure of attachment and other social domains made on the basis of Q-sort descriptions of middle-class English-speaking U.S. children need not be substantially modified when…
Microscope-Quantitative Luminescence Imaging System (M-Qlis) Description and User's Manual
Stahl, K. A.
1991-10-01
A Microscope Quantitative Luminescence Imaging System (M-QLIS} has been designed and constructed. The M-QLIS is designed for use in studies of chemiluminescent phenomena associated with absorption of radio-frequency radiation. The system consists of a radio-frequency waveguide/sample holder, microscope, intensified video camera, radiometric calibration source and optics, and computer-based image processor with radiometric analysis software. The system operation, hardware, software, and radiometric procedures are described.
Puri, Ritika; Khamrui, Kaushik; Khetra, Yogesh; Malhotra, Ravinder; Devraja, H C
2016-02-01
Promising development and expansion in the market of cham-cham, a traditional Indian dairy product is expected in the coming future with the organized production of this milk product by some large dairies. The objective of this study was to document the extent of variation in sensory properties of market samples of cham-cham collected from four different locations known for their excellence in cham-cham production and to find out the attributes that govern much of variation in sensory scores of this product using quantitative descriptive analysis (QDA) and principal component analysis (PCA). QDA revealed significant (p < 0.05) difference in sensory attributes of cham-cham among the market samples. PCA identified four significant principal components that accounted for 72.4 % of the variation in the sensory data. Factor scores of each of the four principal components which primarily correspond to sweetness/shape/dryness of interior, surface appearance/surface dryness, rancid and firmness attributes specify the location of each market sample along each of the axes in 3-D graphs. These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring attributes of cham-cham that contribute most to its sensory acceptability. PMID:27162404
MAYHEW, TERRY M.
1999-01-01
Previous quantitative descriptions of cellular ultrastructure have focused on spatial content (volume, surface area and number of organelles and membrane domains). It is possible to complement such descriptions by also quantifying spatial arrangements. Hitherto, applications of stereological methods for achieving this (notably, estimation of covariance and pair correlation functions) have been confined to organ and tissue levels. This study explores 3-dimensional subcellular arrangements of key organelles within acinar cells of rabbit parotid salivary glands, highly polarised epithelial cells specialised for exocrine secretion of α-amylase. It focuses on spatial arrangements of secretion product stores (zymogen granules), rough endoplasmic reticulum (RER) and mitochondria. Systematic random samples of electron microscopical fields of view from 3 rabbits were analysed using test grids bearing linear dipole probes of different sizes. Unbiased estimates of organelle volume densities were obtained by point counting and estimates of covariance and pair correlation functions by dipole counting. Plots of pair correlation functions against dipole length identified spatial arrangement differences between organelle types. Volumes within RER and mitochondrial compartments were positively correlated with themselves at distances below 4 μm and 2 μm respectively but were essentially randomly arranged at longer distances. In sharp contrast, zymogen granules were not randomly arranged. They were clustered at distances below 6–7 μm and more widely scattered at greater distances. These findings provide quantitative confirmation of the polarised arrangement of zymogen granules within acinar cells and further support for the relative invariance of biological organisation between subjects. PMID:10337960
Bruner, Emiliano; Ripani, Maurizio
2008-09-01
The cranial base is one of the major foci of interest in functional craniology. The evolution and morphogenesis of this structure are still poorly known and rather controversial because of multifactorial influences and polyphasic stages. Endocranial dynamics are associated anteriorly with the upper facial structures, laterally with the mandibular system and midsagittally with brain development. In the present study, we investigated the endocranial morphology of modern humans using 3D landmark-based approaches, i.e. geometric morphometrics and Euclidean distance matrix analysis. The structure of endocranial variation is poorly integrated, with only weak reciprocal influences among the three fossae. Some major variations are associated with changes in the posterior fossa, with possible consequences on the anterior areas. These main patterns of integration are hypothesized to be influenced by the connective tensors of the dura layers. Static allometry and sex differences are largely related to the ontogenetic sequences, characterized by early maturation of the anterior fossa with respect to the middle and posterior regions (i.e., relatively shorter posterior part of the planum sphenoideum and vertical lengthening of the clivus in males). The relative independence between the endocranial fossae, as well as their structural connection through the meningeal tensors, must be carefully considered in studies on the evolutionary dynamics, since they lead to mosaic changes through phylogeny. PMID:18398846
Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve; Constantino, John; Povinelli, Daniel; Pruett, John R.
2011-01-01
Objective Comparative studies of social responsiveness, an ability that is impaired in autistic spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species (human-chimpanzee) social responsiveness measure. Method We translated the Social Responsiveness Scale (SRS), an instrument that quantifies human social responsiveness, into an analogous instrument for chimpanzees. We then retranslated this "Chimp SRS" into a human "Cross-Species SRS" (XSRS). We evaluated three groups of chimpanzees (n=29) with the Chimp SRS and typical and autistic spectrum disorder (ASD) human children (n=20) with the XSRS. Results The Chimp SRS demonstrated strong inter-rater reliability at the three sites (ranges for individual ICCs: .534–.866 and mean ICCs: .851–.970). As has been observed in humans, exploratory principal components analysis of Chimp SRS scores supports a single factor underlying chimpanzee social responsiveness. Human subjects' XSRS scores were fully concordant with their SRS scores (r=.976, p=.001) and distinguished appropriately between typical and ASD subjects. One chimpanzee known for inappropriate social behavior displayed a significantly higher score than all other chimpanzees at its site, demonstrating the scale's ability to detect impaired social responsiveness in chimpanzees. Conclusion Our initial cross-species social responsiveness scale proved reliable and discriminated differences in social responsiveness across (in a relative sense) and within (in a more objectively quantifiable manner) humans and chimpanzees. PMID:21515200
Quantitative description of Josephson-like tunneling in {nu}{sub T}=1 quantum Hall bilayers
Hyart, Timo; Rosenow, Bernd
2011-04-15
At total filling factor {nu}{sub T}=1, interlayer phase coherence in quantum Hall bilayers can result in a tunneling anomaly resembling the Josephson effect in the presence of strong fluctuations. The most robust experimental signature of this effect is a strong enhancement of the tunneling conductance at small voltages. The height and width of the conductance peak depend strongly on the area and tunneling amplitude of the samples, applied parallel magnetic field, and temperature. We find that the tunneling experiments are in quantitative agreement with a theory that treats fluctuations due to meron excitations phenomenologically and takes tunneling into account perturbatively. We also discuss the qualitative changes caused by larger tunneling amplitudes, and provide a possible explanation for recently observed critical currents in counterflow geometry.
Quantitative description of ion transport via plasma membrane of yeast and small cells
Volkov, Vadim
2015-01-01
Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions. PMID:26113853
A quantitative description of Ndc80 complex linkage to human kinetochores
Suzuki, Aussie; Badger, Benjamin L.; Salmon, Edward D.
2015-01-01
The Ndc80 complex, which mediates end-on attachment of spindle microtubules, is linked to centromeric chromatin in human cells by two inner kinetochore proteins, CENP-T and CENP-C. Here to quantify their relative contributions to Ndc80 recruitment, we combine measurements of kinetochore protein copy number with selective protein depletion assays. This approach reveals about 244 Ndc80 complexes per human kinetochore (∼14 per kinetochore microtubule), 215 CENP-C, 72 CENP-T and only 151 Ndc80s as part of the KMN protein network (1:1:1 Knl1, Mis12 and Ndc80 complexes). Each CENP-T molecule recruits ∼2 Ndc80 complexes; one as part of a KMN network. In contrast, ∼40% of CENP-C recruits only a KMN network. Replacing the CENP-C domain that binds KMN with the CENP-T domain that recruits both an Ndc80 complex and KMN network yielded functional kinetochores. These results provide a quantitative picture of the linkages between centromeric chromatin and the microtubule-binding Ndc80 complex at the human kinetochore. PMID:26345214
Quantitative description of fluid flows produced by left-right cilia in zebrafish.
Fox, Craig; Manning, M Lisa; Amack, Jeffrey D
2015-01-01
Motile cilia generate directional flows that move mucus through airways, cerebrospinal fluid through brain ventricles, and oocytes through fallopian tubes. In addition, specialized monocilia beat in a rotational pattern to create asymmetric flows that are involved in establishing the left-right (LR) body axis during embryogenesis. These monocilia, which we refer to as "left-right cilia," produce a leftward flow of extraembryonic fluid in a transient "organ of asymmetry" that directs asymmetric signaling and development of LR asymmetries in the cardiovascular system and gastrointestinal tract. The asymmetric flows are thought to establish a chemical gradient and/or activate mechanosensitive cilia to initiate calcium ion signals and a conserved Nodal (TGFβ) pathway on the left side of the embryo, but the mechanisms underlying this process remain unclear. The zebrafish organ of asymmetry, called Kupffer's vesicle, provides a useful model system for investigating LR cilia and cilia-powered fluid flows. Here, we describe methods to visualize flows in Kupffer's vesicle using fluorescent microspheres and introduce a new and freely available MATLAB particle tracking code to quantitatively describe these flows. Analysis of normal and aberrant flows indicates this approach is useful for characterizing flow properties that impact LR asymmetry and may be more broadly applicable for quantifying other cilia flows. PMID:25837391
Genome evolution and speciation: toward quantitative descriptions of pattern and process.
Nosil, Patrik; Feder, Jeffrey L
2013-09-01
Studies of patterns of differentiation across genomes are accumulating, yet integrative work that combines approaches and fully capitalizes on new technologies to test explicit hypotheses is still rare. Thus, debates persist about the rate, magnitude, and causes of genomic change. This special section is devoted to helping resolve these debates. The eight studies contained within demonstrate how we can begin to move away from vague metaphors toward quantitative and more precise descriptors of patterns of genetic architecture and divergence. However, a particular genomic pattern can often arise via different combinations of various processes such as selection, gene flow, recombination, mutation, genetic drift, and demographic variability. Thus, substantial challenges remain in elucidating which evolutionary processes generated observed genomic patterns. Nonetheless, the studies in this section demonstrate ways forward toward bridging pattern and process, including experimental work, genetic mapping, increased knowledge of natural history and demography, and comparative studies spanning taxa at different points in the speciation continuum. Such collective work will lead to more powerful hypothesis testing. Future work can also help better integrate the contributions of ecology, genome structure (e.g., inversions and translocations), and genetic conflict to genome evolution. PMID:24033160
NASA Astrophysics Data System (ADS)
Wendler, F.; Blum, P.; Thaler, H.; Nestler, B.; Okamoto, A.
2013-12-01
conducted in the limit of low Damköhler numbers explain the observed transition regime in competitive crystal growth for blocky-elongate veins. A mechanism for the initial formation of quartz needles is proposed. For virtual fractured rock samples we study the influence of fracture shape and opening aperture in the evolution of syntaxial (blocky-elongated vs. stretched) veins. In the case of calcite, the chemical variability of the growth process in real systems strongly influences the crystal growth kinetics and limits the significance of quantitative predictions. On the basis of the numerical studies and known parameter uncertainties, we give an assessment of the variabilities of sealing times and vein microstructures. References: F. Wendler, C. Mennerich and B. Nestler, J. Cryst. Growth 327 (2011), 189-201. A. Okamoto and K. Sekine, J. Struct. Geol. 33 (2011) 1764-1775. Three time steps in the sealing of a flat fracture with calcite, only liquid phase evolution is shown.
Levels of Geometric Understanding.
ERIC Educational Resources Information Center
Pegg, John; Davey, Geoff
1991-01-01
Three activities are presented to assess the level of students' geometric understanding according to van Hiele learning model. The activities--Descriptions, Minimum Properties, and Class Inclusion--are applied to the example of classifying quadrilaterals as squares, rectangles, rhombi, or parallelograms. Implications of this assessment are…
da Silva, Paula Porrelli Moreira; Casemiro, Renata Cristina; Zillo, Rafaela Rebessi; de Camargo, Adriano Costa; Prospero, Evanilda Teresinha Perissinotto; Spoto, Marta Helena Fillet
2014-01-01
This study evaluated the effect of pasteurization followed by storage under different conditions on the sensory attributes of frozen juçara pulp using quantitative descriptive analysis (QDA). Pasteurization of packed frozen pulp was performed by its immersion in stainless steel tank containing water (80°C) for 5 min, followed by storage under refrigerated and frozen conditions. A trained sensory panel evaluated the samples (6°C) on day 1, 15, 30, 45, 60, 75, and 90. Sensory attributes were separated as follows: appearance (foamy, heterogeneous, purple, brown, oily, and creamy), aroma (sweet and fermented), taste (astringent, bitter, and sweet), and texture (oily and consistent), and compared to a reference material. In general, unpasteurized frozen pulp showed the highest score for foamy appearance, and pasteurized samples showed highest scores to creamy appearance. Pasteurized samples remained stable regarding brown color development while unpasteurized counterparts presented increase. Color is an important attribute related to the product identity. All attributes related to taste and texture remained constant during storage for all samples. Pasteurization followed by storage under frozen conditions has shown to be the best conservation method as samples submitted to such process received the best sensory evaluation, described as foamy, slightly heterogeneous, slightly bitter, and slightly astringent. PMID:25473489
Geometrical deployment for braided stent.
Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Yilmaz, Hasan; Farhat, Mohamed; Erceg, Gorislav; Lovblad, Karl-Olof; Vargas, Maria Isabel; Kulcsar, Zsolt; Pereira, Vitor Mendes
2016-05-01
The prediction of flow diverter stent (FDS) implantation for the treatment of intracranial aneurysms (IAs) is being increasingly required for hemodynamic simulations and procedural planning. In this paper, a deployment model was developed based on geometrical properties of braided stents. The proposed mathematical description is first applied on idealized toroidal vessels demonstrating the stent shortening in curved vessels. It is subsequently generalized to patient specific vasculature predicting the position of the filaments along with the length and local porosity of the stent. In parallel, in-vitro and in-vivo FDS deployments were measured by contrast-enhanced cone beam CT (CBCT) in idealized and patient-specific geometries. These measurements showed a very good qualitative and quantitative agreement with the virtual deployments and provided experimental validations of the underlying geometrical assumptions. In particular, they highlighted the importance of the stent radius assessment in the accuracy of the deployment prediction. Thanks to its low computational cost, the proposed model is potentially implementable in clinical practice providing critical information for patient safety and treatment outcome assessment. PMID:26891065
NASA Astrophysics Data System (ADS)
Lindlein, Norbert; Leuchs, Gerd
This chapter shall discuss the basics and the applications of geometrical optical methods in modern optics. Geometrical optics has a long tradition and some ideas are many centuries old. Nevertheless, the invention of modern personal computers which can perform several million floating-point operations in a second also revolutionized the methods of geometrical optics and so several analytical methods lost importance whereas numerical methods such as ray tracing became very important. Therefore, the emphasis in this chapter is also on modern numerical methods such as ray tracing and some other systematic methods such as the paraxial matrix theory.
Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismüller, Axel
2014-02-01
Phase-contrast computed tomography (PCI-CT) has shown tremendous potential as an imaging modality for visualizing human cartilage with high spatial resolution. Previous studies have demonstrated the ability of PCI-CT to visualize (1) structural details of the human patellar cartilage matrix and (2) changes to chondrocyte organization induced by osteoarthritis. This study investigates the use of high-dimensional geometric features in characterizing such chondrocyte patterns in the presence or absence of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and statistical features derived from gray-level co-occurrence matrices were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic curve (AUC). SIM-derived geometrical features exhibited the best classification performance (AUC, 0.95 ± 0.06) and were most robust to changes in ROI size. These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated and non-subjective manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies. PMID:24043594
Algorithms of NCG geometrical module
NASA Astrophysics Data System (ADS)
Gurevich, M. I.; Pryanichnikov, A. V.
2012-12-01
The methods and algorithms of the versatile NCG geometrical module used in the MCU code system are described. The NCG geometrical module is based on the Monte Carlo method and intended for solving equations of particle transport. The versatile combinatorial body method, the grid method, and methods of equalized cross sections and grain structures are used for description of the system geometry and calculation of trajectories.
Algorithms of NCG geometrical module
Gurevich, M. I.; Pryanichnikov, A. V.
2012-12-15
The methods and algorithms of the versatile NCG geometrical module used in the MCU code system are described. The NCG geometrical module is based on the Monte Carlo method and intended for solving equations of particle transport. The versatile combinatorial body method, the grid method, and methods of equalized cross sections and grain structures are used for description of the system geometry and calculation of trajectories.
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2012-03-01
The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft to derive the morphometric characteristics of impact basins on the Moon, assess the trends, and interpret the processes involved in the observed morphologic transitions. We first developed a new technique for measuring and calculating the geometric/morphometric properties of impact basins on the Moon. This new method meets a number of criteria that are important for consideration in any topographic analysis of crater landforms (e.g., multiple data points, complete range of azimuths, systematic, reproducible analysis techniques, avoiding effects of post-event processes, robustness with respect to the statistical techniques). The resulting data more completely capture the azimuthal variation in topography that is characteristic of large impact structures. These new calculations extend the well-defined geometric trends for simple and complex craters out to basin-sized structures. Several new geometric trends for peak-ring basins are observed. Basin depth: A factor of two reduction in the depth to diameter (d/Dr) ratio in the transition from complex craters to peak-ring basins may be characterized by a steeper trend than known previously. The d/Dr ratio for peak-ring basins decreases with rim-crest diameter, which may be due to a non-proportional change in excavation cavity growth or scaling, as may occur in the simple to complex transition, or increased magnitude of floor uplift associated with peak-ring formation. Wall height, width, and slope: Wall height and width increase with increasing rim-crest diameter, while wall slope decreases; decreasing ratios
NASA Technical Reports Server (NTRS)
Grebowsky, G. J.
1982-01-01
Present LANDSAT data formats are reviewed to clarify how the geodetic location and registration capabilities were defined for P-tape products and RBV data. Since there is only one geometric model used in the master data processor, geometric location accuracy of P-tape products depends on the absolute accuracy of the model and registration accuracy is determined by the stability of the model. Due primarily to inaccuracies in data provided by the LANDSAT attitude management system, desired accuracies are obtained only by using ground control points and a correlation process. The verification of system performance with regards to geodetic location requires the capability to determine pixel positions of map points in a P-tape array. Verification of registration performance requires the capability to determine pixel positions of common points (not necessarily map points) in 2 or more P-tape arrays for a given world reference system scene. Techniques for registration verification can be more varied and automated since map data are not required. The verification of LACIE extractions is used as an example.
Geometric classification of open-cell metal foams using X-ray micro-computed tomography
Bock, Jessica Jacobi, Anthony M.
2013-01-15
The geometry of foams has long been an area of interest, and a number of idealized geometric descriptions have been proposed. In order to acquire detailed, quantitative, geometric data for aluminum open-cell metal foams, X-ray {mu}CT is employed. The X-ray {mu}CT images are analyzed using specialized software, FoamView Registered-Sign , from which geometric information including strut length and pore shapes are extracted. The X-ray {mu}CT analysis allows comparison of the ideal geometric models to the actual geometric characteristics of the metal foam samples. The results reveal a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire-Phelan unit cell. The geometric findings provide information useful for improving current models of open-cell metal foam. Applications can range from predicting heat transfer or load failure to predicting liquid retention. Highlights: Black-Right-Pointing-Pointer Aluminum open-cell metal foams are geometrically classified Black-Right-Pointing-Pointer X-ray micro-computed tomography and specialized software are used to gather geometric data Black-Right-Pointing-Pointer The foams are shown to have a high variability in strut length Black-Right-Pointing-Pointer The Weaire-Phelan unit cell is shown to be a better representative of these foams.
Hinker, P.; Hansen, C.
1993-09-01
An algorithm is presented which describes an application independent method for reducing the number of polygonal primitives required to faithfully represent an object. Reducing polygon count without a corresponding reduction in object detail is important for: achieving interactive frame rates in scientific visualization, reducing mass storage requirements, and facilitating the transmission of large, multi-timestep geometric data sets. This paper shows how coplanar and nearly coplanar polygons can be merged into larger complex polygons and re-triangulated into fewer simple polygons than originally required. The notable contributions of this paper are: (1) a method for quickly grouping polygons into nearly coplanar sets, (2) a fast approach for merging coplanar polygon sets and, (3) a simple, robust triangulation method for polygons created by 1 and 2. The central idea of the algorithm is the notion of treating polygonal data as a collection of segments and removing redundant segments to quickly form polygon hulls which represent the merged coplanar sets.
Shabelnikova, Ya. L. Yakimov, E. B.; Nikolaev, D. P.; Chukalina, M. V.
2015-06-15
A solar cell on a wafer of multicrystalline silicon containing grain boundaries was studied by the induced-current method. The sample was scanned by an electron beam and by a laser beam at two wavelengths (980 and 635 nm). The recorded induced-current maps were aligned by means of a specially developed code, that enabled to analyze the same part of the grain boundary for three types of measurements. Optimization of the residual between simulated induced-current profiles and those obtained experimentally yielded quantitative estimates of the characteristics of a sample and its defects: the diffusion length of minority carriers and recombination velocity at the grain boundary.
Pragmatic geometric model evaluation
NASA Astrophysics Data System (ADS)
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
He, Hong-Gu; Vehviläinen-Julkunen, Katri; Qian, Xiao-Fang; Sapountzi-Krepia, Despina; Gong, Yuhua; Wang, Wenru
2015-05-01
This study examined Chinese fathers' feelings about their partners' delivery and views on their presence during labour and birth. A questionnaire survey was conducted with 403 fathers whose partners gave birth in one provincial hospital in China. Data were analysed by descriptive statistics, χ(2)-test and content analysis. The results indicated that more than 80% of fathers experienced feelings of pride related to fatherhood and of love towards their partners and newborns. Significant differences in fathers' feelings were found between subgroups with regard to age, education, employment, presence in the delivery room, method of birth and whether preparatory visits had been made to the hospital. The majority who answered an open-ended question on the meaning of fathers' presence in the delivery room held a positive attitude towards fathers' presence at labour and birth, as their presence could empower their partners and provide psychological support. This study indicates fathers' presence at delivery and birth is important and that younger fathers need more support. It also provides evidence for clinical practice and future interventions to improve fathers' psychological health and experiences. PMID:26125575
Wu, Renhua; Longo, Dario Livio; Aime, Silvio; Sun, Phillip Zhe
2015-01-01
Chemical exchange saturation transfer (CEST) MRI holds great promise for imaging pH. However, routine CEST measurement varies not only with pH-dependent chemical exchange rate but also with CEST agent concentration, providing pH-weighted information. Conventional ratiometric CEST imaging normalizes the confounding concentration factor by analyzing the relative CEST effect from different exchangeable groups, requiring CEST agents with multiple chemically distinguishable labile proton sites. Recently, an RF power-based ratiometric CEST MRI approach has been developed for concentration-independent pH MRI using CEST agents with a single exchangeable group. To facilitate quantification and optimization of the new ratiometric analysis, we quantitated RF power-based ratiometric CEST ratio (rCESTR) and derived its signal-to-noise and contrast-to-noise ratio. Using creatine as a representative CEST agent containing a single exchangeable site, our study demonstrated that optimized RF power-based ratiometric analysis provides good pH sensitivity. We showed that rCESTR follows a base-catalyzed exchange relationship with pH independent of creatine concentration. The pH accuracy of RF power-based ratiometric MRI was within 0.15–0.20 pH unit. Furthermore, absolute exchange rate can be obtained from the proposed ratiometric analysis. To summarize, RF power-based ratiometric CEST analysis provides concentration-independent pH-sensitive imaging and complements conventional multiple labile proton groups-based ratiometric CEST analysis. PMID:25807919
Braghieri, Ada; Piazzolla, Nicoletta; Galgano, Fernanda; Condelli, Nicola; De Rosa, Giuseppe; Napolitano, Fabio
2016-12-01
The quantitative descriptive analysis (QDA) was combined with temporal dominance of sensations (TDS) to assess the sensory properties of Lucanian dry-sausages either added with nitrate, nitrite and l-ascorbic acid (NS), or not (NNS). Both QDA and TDS differentiated the two groups of sausages. NNS products were perceived with higher intensity of hardness (P<0.05) and tended to be perceived with higher intensities of flavor (P<0.10), pepper (P<0.20), and oiliness (P<0.20), while resulting lower in chewiness (P<0.20). TDS showed that in all the sausages hardness was the first dominant attribute; then, in NNS products flavor remained dominant until the end of tasting, whereas in NS products oiliness prevailed. In conclusion, TDS showed that the perception of some textural parameters, such as oiliness, during mastication was more dominant in NS products, whereas using conventional QDA this attribute appeared higher in sausages manufactured without preservatives. Therefore, TDS provided additional information for the description and differentiation of Lucanian sausages. PMID:27486959
NASA Astrophysics Data System (ADS)
Brunskill, Jeffrey C.
2010-03-01
This paper presents a study of the relationship between quantitative and qualitative descriptions of temperature. Online weather forecast narratives produced by local television forecasters were collected from affiliates in 23 cities throughout the northeastern, central and southern portions of the United States from August 2007 to July 2008. The narratives were collected to study the terminology and reference frames that local forecasters use to describe predicted temperatures for the following day. The main objectives were to explore the adjectives used to describe thermal conditions and the impact that geographical and seasonal variations in thermal conditions have on these descriptions. The results of this empirical study offer some insights into the structure of weather narratives and suggest that spatiotemporal variations in the weather impact how forecasters describe the temperature to their local audiences. In a broader sense, this investigation builds upon research in biometeorology, urban planning and linguistics that has explored the physiological and psychological factors that influence subjective assessments of thermal sensation and comfort. The results of this study provide a basis to reason about how thermal comfort is conveyed in meteorological communications and how experiential knowledge derived from daily observations of the weather influence how we think about and discuss the weather.
Brunskill, Jeffrey C
2010-03-01
This paper presents a study of the relationship between quantitative and qualitative descriptions of temperature. Online weather forecast narratives produced by local television forecasters were collected from affiliates in 23 cities throughout the northeastern, central and southern portions of the United States from August 2007 to July 2008. The narratives were collected to study the terminology and reference frames that local forecasters use to describe predicted temperatures for the following day. The main objectives were to explore the adjectives used to describe thermal conditions and the impact that geographical and seasonal variations in thermal conditions have on these descriptions. The results of this empirical study offer some insights into the structure of weather narratives and suggest that spatiotemporal variations in the weather impact how forecasters describe the temperature to their local audiences. In a broader sense, this investigation builds upon research in biometeorology, urban planning and linguistics that has explored the physiological and psychological factors that influence subjective assessments of thermal sensation and comfort. The results of this study provide a basis to reason about how thermal comfort is conveyed in meteorological communications and how experiential knowledge derived from daily observations of the weather influence how we think about and discuss the weather. PMID:19876657
Taube, J S; Muller, R U; Ranck, J B
1990-02-01
This paper is a study of the behavioral and spatial firing correlates of neurons in the rat postsubiculum. Recordings were made from postsubicular neurons as rats moved freely throughout a cylindrical chamber, where the major cue for orientation was a white card taped to the inside wall. An automatic video/computer system monitored cell discharge while simultaneously tracking the position of 2 colored light emitting diodes (LEDs) secured to the animal's head. The animal's location was calculated from the position of one of the LEDs and head direction in the horizontal plane calculated from the relative positions of the 2 LEDs. Approximately 26% of the cells were classified as head-direction cells because they discharged as a function of the animal's head direction in the horizontal plane, independent of the animal's behavior, location, or trunk position. For each head-direction cell, vectors drawn in the direction of maximal firing were parallel throughout the recording chamber and did not converge toward a single point. Plots of firing rate versus head direction showed that each firing-rate/head-direction function was adequately described by a triangular function. Each cell's maximum firing rate occurred at only one (the preferred) head direction; firing rates at head directions on either side of the preferred direction decreased linearly with angular deviation from the preferred direction. Results from 24 head-direction cells in 7 animals showed an equal distribution of preferred firing directions over a 360 degrees angle. The peak firing rate of head-direction cells varied from 5 to 115 spikes/sec (mean: 35). The range of head-direction angles over which discharge was elevated (directional firing range) was usually about 90 degrees, with little, if any, discharge at head directions outside this range. Quantitative analysis showed the location of the animal within the cylinder had minimal effect on directional cell firing. For each head-direction cell, the
A geometric approach to complexity.
Ay, Nihat; Olbrich, Eckehard; Bertschinger, Nils; Jost, Jürgen
2011-09-01
We develop a geometric approach to complexity based on the principle that complexity requires interactions at different scales of description. Complex systems are more than the sum of their parts of any size and not just more than the sum of their elements. Using information geometry, we therefore analyze the decomposition of a system in terms of an interaction hierarchy. In mathematical terms, we present a theory of complexity measures for finite random fields using the geometric framework of hierarchies of exponential families. Within our framework, previously proposed complexity measures find their natural place and gain a new interpretation. PMID:21974666
Identifying and Fostering Higher Levels of Geometric Thinking
ERIC Educational Resources Information Center
Škrbec, Maja; Cadež, Tatjana Hodnik
2015-01-01
Pierre M. Van Hiele created five levels of geometric thinking. We decided to identify the level of geometric thinking in the students in Slovenia, aged 9 to 11 years. The majority of students (60.7%) are at the transition between the zero (visual) level and the first (descriptive) level of geometric thinking. Nearly a third (31.7%) of students is…
NASA Astrophysics Data System (ADS)
Bueno, M.; Schulte, R.; Meylan, S.; Villagrasa, C.
2015-11-01
The aim of this study was to evaluate the influence of the geometrical detail of the DNA on nanodosimetric parameters of track structure induced by protons and alpha particles of different energies (LET values ranging from 1 to 162.5~\\text{keV}~μ {{\\text{m}}-1} ) as calculated by Geant4-DNA Monte Carlo simulations. The first geometry considered consisted of a well-structured placement of a realistic description of the DNA double helix wrapped around cylindrical histones (GeomHist) forming a 18 kbp-long chromatin fiber. In the second geometry considered, the DNA was modeled as a total of 1800 ten bp-long homogeneous cylinders (2.3 nm diameter and 3.4 nm height) placed in random positions and orientations (GeomCyl). As for GeomHist, GeomCyl contained a DNA material equivalent to 18 kbp. Geant4-DNA track structure simulations were performed and ionizations were counted in the scoring volumes. For GeomCyl, clusters were defined as the number of ionizations (ν) scored in each 10 bp-long cylinder. For GeomHist, clusters of ionizations scored in the sugar-phosphate groups of the double-helix were revealed by the DBSCAN clustering algorithm according to a proximity criteria among ionizations separated by less than 10 bp. The topology of the ionization clusters formed using GeomHist and GeomCyl geometries were compared in terms of biologically relevant nanodosimetric quantities. The discontinuous modeling of the DNA for GeomCyl led to smaller cluster sizes than for GeomHist. The continuous modeling of the DNA molecule for GeomHist allowed the merging of ionization points by the DBSCAN algorithm giving rise to larger clusters, which were not detectable within the GeomCyl geometry. Mean cluster size (m1) was found to be of the order of 10% higher for GeomHist compared to GeomCyl for LET <15~\\text{keV}~μ {{\\text{m}}-1} . For higher LETs, the difference increased with LET similarly for protons and alpha particles. Both geometries showed the same relationship
Bueno, M; Schulte, R; Meylan, S; Villagrasa, C
2015-11-01
The aim of this study was to evaluate the influence of the geometrical detail of the DNA on nanodosimetric parameters of track structure induced by protons and alpha particles of different energies (LET values ranging from 1 to 162.5 keV µm-1) as calculated by Geant4-DNA Monte Carlo simulations.The first geometry considered consisted of a well-structured placement of a realistic description of the DNA double helix wrapped around cylindrical histones (GeomHist) forming a 18 kbp-long chromatin fiber. In the second geometry considered, the DNA was modeled as a total of 1800 ten bp-long homogeneous cylinders (2.3 nm diameter and 3.4 nm height) placed in random positions and orientations (GeomCyl). As for GeomHist, GeomCyl contained a DNA material equivalent to 18 kbp. Geant4-DNA track structure simulations were performed and ionizations were counted in the scoring volumes. For GeomCyl, clusters were defined as the number of ionizations (ν) scored in each 10 bp-long cylinder. For GeomHist, clusters of ionizations scored in the sugar-phosphate groups of the double-helix were revealed by the DBSCAN clustering algorithm according to a proximity criteria among ionizations separated by less than 10 bp. The topology of the ionization clusters formed using GeomHist and GeomCyl geometries were compared in terms of biologically relevant nanodosimetric quantities.The discontinuous modeling of the DNA for GeomCyl led to smaller cluster sizes than for GeomHist. The continuous modeling of the DNA molecule for GeomHist allowed the merging of ionization points by the DBSCAN algorithm giving rise to larger clusters, which were not detectable within the GeomCyl geometry. Mean cluster size (m1) was found to be of the order of 10% higher for GeomHist compared to GeomCyl for LET < 15 keV µm-1. For higher LETs, the difference increased with LET similarly for protons and alpha particles. Both geometries showed the same relationship between m1 and the cumulative relative frequency of
Yamamoto, Shinya; Bamba, Takeshi; Sano, Atsushi; Kodama, Yukako; Imamura, Miho; Obata, Akio; Fukusaki, Eiichiro
2012-08-01
Soy sauces, produced from different ingredients and brewing processes, have variations in components and quality. Therefore, it is extremely important to comprehend the relationship between components and the sensory attributes of soy sauces. The current study sought to perform metabolite profiling in order to devise a method of assessing the attributes of soy sauces. Quantitative descriptive analysis (QDA) data for 24 soy sauce samples were obtained from well selected sensory panelists. Metabolite profiles primarily concerning low-molecular-weight hydrophilic components were based on gas chromatography with time-of-flightmass spectrometry (GC/TOFMS). QDA data for soy sauces were accurately predicted by projection to latent structure (PLS), with metabolite profiles serving as explanatory variables and QDA data set serving as a response variable. Moreover, analysis of correlation between matrices of metabolite profiles and QDA data indicated contributing compounds that were highly correlated with QDA data. Especially, it was indicated that sugars are important components of the tastes of soy sauces. This new approach which combines metabolite profiling with QDA is applicable to analysis of sensory attributes of food as a result of the complex interaction between its components. This approach is effective to search important compounds that contribute to the attributes. PMID:22608993
NASA Astrophysics Data System (ADS)
Hensleigh, J.; Buscombe, D.; Wheaton, J. M.; Brasington, J.; Welcker, C. W.; Anderson, K.
2015-12-01
The increasing use of high-resolution topography (HRT) constructed from point clouds obtained from technology such as LiDAR, SoNAR, SAR, SfM and a variety of range-imaging techniques, has created a demand for custom analytical tools and software for point cloud decimation (data thinning and gridding) and spatially explicit statistical analysis of terrestrial surfaces. We will present on a number of analytical and computational tools designed to quantify surface roughness and texture, directly from point clouds in a variety of ways (using spatial- and frequency-domain statistics). TopCAT (Topographic Point Cloud Analysis Toolkit; Brasington et al., 2012) and PySESA (Python program for Spatially Explicit Spectral Analysis) both work by applying a small moving window to (x,y,z) data to calculate a suite of (spatial and spectral domain) statistics, which are then spatially-referenced on a regular (x,y) grid at a user-defined resolution. Collectively, these tools facilitate quantitative description of surfaces and may allow, for example, fully automated texture characterization and segmentation, roughness and grain size calculation, and feature detection and classification, on very large point clouds with great computational efficiency. Using tools such as these, it may be possible to detect geomorphic change in surfaces which have undergone minimal elevation difference, for example deflation surfaces which have coarsened but undergone no net elevation change, or surfaces which have eroded and accreted, leaving behind a different textural surface expression than before. The functionalities of the two toolboxes are illustrated with example high-resolution bathymetric point cloud data collected with multibeam echosounder, and topographic data collected with LiDAR.
Geometric superalgebra and the Dirac equation
NASA Astrophysics Data System (ADS)
Keller, Jaime; Rodríguez, Adán
1992-01-01
A unified mathematical approach to spinors and multivectors or superalgebra is constructed in a form useful to study the mathematical description of matter and its interaction fields. The formalism then encompasses both points of view: multivectors for the description of (space-time) geometry and the description of the integer spin, interaction fields, and spinor representations suitable for the description of half odd integer, matter fields. An application is made to study the change of the Dirac equation under the spinors to multivectors (to scalars) mapping. The physical and geometric content of the multivector solutions of the Dirac-Hestenes equation is clearly shown.
Coherent cancellation of geometric phase for the OH molecule in external fields
NASA Astrophysics Data System (ADS)
Bhattacharya, M.; Marin, S.; Kleinert, M.
2014-05-01
The OH molecule in its ground state presents a versatile platform for precision measurement and quantum information processing. These applications vitally depend on the accurate measurement of transition energies between the OH levels. Significant sources of systematic errors in these measurements are shifts based on the geometric phase arising from the magnetic and electric fields used for manipulating OH. In this article, we present these geometric phases for fields that vary harmonically in time, as in the Ramsey technique. Our calculation of the phases is exact within the description provided by our recent analytic solution of an effective Stark-Zeeman Hamiltonian for the OH ground state. This Hamiltonian has been shown to model experimental data accurately. We find that the OH geometric phases exhibit rich structure as a function of the field rotation rate. Remarkably, we find rotation rates where the geometric phase accumulated by a specific state is zero, or where the relative geometric phase between two states vanishes. We expect these findings to be of importance to precision experiments on OH involving time-varying fields. More specifically, our analysis quantitatively characterizes an important item in the error budget for precision spectroscopy of ground-state OH.
Geometric Algebra for Physicists
NASA Astrophysics Data System (ADS)
Doran, Chris; Lasenby, Anthony
2007-11-01
Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.
Geometric approach to dislocation and disclination theory
Nesterov, A.I.; Ovchinnikov, S.G.
1988-05-01
Cartan structure equations are used to create a four-dimensional geometric description of dislocations in continuum theory. It is shown that the dislocation distribution is determined by the torsion tensor, while the disclination distribution is determined by the curvature tensor. An analogy to electrodynamics is offered.
Exploring New Geometric Worlds
ERIC Educational Resources Information Center
Nirode, Wayne
2015-01-01
When students work with a non-Euclidean distance formula, geometric objects such as circles and segment bisectors can look very different from their Euclidean counterparts. Students and even teachers can experience the thrill of creative discovery when investigating these differences among geometric worlds. In this article, the author describes a…
Bayro-Corrochano, E J
2001-01-01
This paper shows the analysis and design of feedforward neural networks using the coordinate-free system of Clifford or geometric algebra. It is shown that real-, complex-, and quaternion-valued neural networks are simply particular cases of the geometric algebra multidimensional neural networks and that some of them can also be generated using support multivector machines (SMVMs). Particularly, the generation of radial basis function for neurocomputing in geometric algebra is easier using the SMVM, which allows one to find automatically the optimal parameters. The use of support vector machines in the geometric algebra framework expands its sphere of applicability for multidimensional learning. Interesting examples of nonlinear problems show the effect of the use of an adequate Clifford geometric algebra which alleviate the training of neural networks and that of SMVMs. PMID:18249926
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
Geometric intrinsic symmetries
Gozdz, A. Szulerecka, A.; Pedrak, A.
2013-08-15
The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
Toroidal Precession as a Geometric Phase
J.W. Burby and H. Qin
2012-09-26
Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.
Inflation from geometrical tachyons
Thomas, Steven; Ward, John
2005-10-15
We propose an alternative formulation of tachyon inflation using the geometrical tachyon arising from the time dependent motion of a BPS D3-brane in the background geometry due to k parallel NS5-branes arranged around a ring of radius R. Because of the fact that the mass of this geometrical tachyon field is {radical}(2/k) times smaller than the corresponding open-string tachyon mass, we find that the slow-roll conditions for inflation and the number of e-foldings can be satisfied in a manner that is consistent with an effective 4-dimensional model and with a perturbative string coupling. We also show that the metric perturbations produced at the end of inflation can be sufficiently small and do not lead to the inconsistencies that plague the open-string tachyon models. Finally we argue for the existence of a minimum of the geometrical tachyon potential which could give rise to a traditional reheating mechanism.
NASA Technical Reports Server (NTRS)
Shahshahani, M.
1991-01-01
The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.
Hühn, Jonas; Fedeli, Chiara; Zhang, Qian; Masood, Atif; Del Pino, Pablo; Khashab, Niveen M; Papini, Emanuele; Parak, Wolfgang J
2016-06-01
Protein adsorption to nanoparticles is described as a chemical reaction in which proteins attach to binding sites on the nanoparticle surface. This process is defined by a dissociation coefficient, which tells how many proteins are adsorbed per nanoparticle in dependence of the protein concentration. Different techniques to experimentally determine dissociation coefficients of protein adsorption to nanoparticles are reviewed. Results of more than 130 experiments in which dissociation coefficients have been determined are compared. Data show that different methods, nanoparticle systems, and proteins can lead to significantly different dissociation coefficients. However, we observed a clear tendency of smaller dissociation coefficients upon less negative towards more positive zeta potentials of the nanoparticles. The zeta potential thus is a key parameter influencing protein adsorption to the surface of nanoparticles. Our analysis highlights the importance of the characterization of the parameters governing protein-nanoparticle interaction for quantitative evaluation and objective literature comparison. PMID:26748245
Morphing of geometric composites via residual swelling.
Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P
2015-08-01
Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques. PMID:26076671
PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism
NASA Astrophysics Data System (ADS)
Gardner, Jason S.
2011-04-01
Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals
NASA Technical Reports Server (NTRS)
Ives, David
1995-01-01
This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.
ERIC Educational Resources Information Center
Burgess, Claudia R.
2014-01-01
Designed for a broad audience, including educators, camp directors, afterschool coordinators, and preservice teachers, this investigation aims to help individuals experience mathematics in unconventional and exciting ways by engaging them in the physical activity of building geometric shapes using ropes. Through this engagement, the author…
ERIC Educational Resources Information Center
Smart, Julie; Marshall, Jeff
2007-01-01
Children possess a genuine curiosity for exploring the natural world around them. One third grade teacher capitalized on this inherent trait by leading her students on "A Geometric Scavenger Hunt." The four-lesson inquiry investigation described in this article integrates mathematics and science. Among the students' discoveries was the fact that…
NASA Astrophysics Data System (ADS)
Le Pape, Olivier; Baulier, Loîc; Cloarec, Aurélie; Martin, Jocelyne; Le Loc'h, François; Désaunay, Yves
2007-02-01
This study describes the spatial distribution of young-of-the-year common sole based on beam trawl surveys conducted in late summer in the coastal and estuarine parts of the Bay of Biscay (France). Previous studies showed that habitat suitability for juvenile common sole varies according to physical factors and notably bathymetry and sediment structure. Nevertheless, the use of these descriptors alone to model habitat suitability led to considerable unexplained variability in juvenile common sole distribution. Hence, the epibenthic macro- and megafauna collected during beam trawl surveys was taken into account to improve models of habitat suitability for these juvenile flatfish. Ecotrophic guilds based on life traits (behaviour, mobility and feeding) were used to develop generic indicators of trawled benthic fauna. These synthetic descriptors were used in generalized linear models of habitat suitability in order to characterize the distribution of juvenile common sole. This approach significantly improved the description based on physical descriptors and allowed demonstrating that young common sole distribution is related to the density of trawled deposit and suspension feeders and also of carnivorous organisms. These models provide a reliable method to develop indicators of nursery habitat suitability from trawl survey data with the aim of assessing and surveying their quality.
NASA Astrophysics Data System (ADS)
Chapoullié, Cédric; Da Costa, Jean-Pierre; Cataldi, Michel; Vignoles, Gérard L.; Germain, Christian
2015-11-01
This paper proposes a two-scale approach for the description of fibrous materials from tomographic data. It operates at two scales: coarse scale to describe weaving patterns and fine scale to depict fiber layout within yarns. At both scales, the proposed approach starts with the segmentation of yarns and fibers. Then, the fibrous structure (fiber diameters, fiber and yarn orientations, fiber density within yarns) is described. The segmentation algorithms are applied to a chunk of a woven ceramic-matrix composite observed at yarn and fiber scales using tomographic data from the European synchrotron radiation facility. The fiber and yarn segmentation results allow investigation of intrayarn fiber layout. The analysis of intrayarn fiber density and orientations shows the effects of the weaving process on fiber organization, in particular fiber compaction or yarn shearing. These results pave the way toward a deeper analysis of such materials. Indeed, the data collected with the proposed methods are a key starting point for realistic image synthesis. Such images may in turn be used to validate the fiber and yarn segmentation algorithms. Besides, and above all, they will allow material behavior simulation, aiming at the evaluation of the material's strengths and weaknesses inferred from its fibrous architecture.
The geometrical structure of quantum theory as a natural generalization of information geometry
Reginatto, Marcel
2015-01-13
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
The geometrical structure of quantum theory as a natural generalization of information geometry
NASA Astrophysics Data System (ADS)
Reginatto, Marcel
2015-01-01
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
Fang, B; Zhang, M; Fan, X; Ren, F Z
2016-08-01
An α-lactalbumin-oleic acid (α-LA-OA) complex has exhibited selective antitumor activity in animal models and clinical trials. Although apoptosis and autophagy are activated and the functions of several organelles are disrupted in response to α-LA-OA, the detailed antitumor mechanism remains unclear. In this study, we used a novel technique, isobaric tags for relative and absolute quantitation, to analyze the proteome of tumor cells treated with α-LA-OA. We identified 112 differentially expressed proteins: 95 were upregulated to satisfy the metabolism of tumor cells; 17 were downregulated and targets of α-LA-OA. According to the differentially expressed proteins, α-LA-OA exerted its antitumor activity by disrupting cytoskeleton stability and cell motility, and by inhibiting DNA, lipid, and ATP synthesis, leading to cellular stress and activation of programmed cell death. This study provides a systematic evaluation of the antitumor activity of α-LA-OA, identifying its interacting targets and establishing the theoretical basis of α-LA-OA for use in cancer therapy. PMID:27236751
Decaestecker, C; Lopes, B S; Gordower, L; Camby, I; Cras, P; Martin, J J; Kiss, R; VandenBerg, S R; Salmon, I
1997-04-01
The oligoastrocytoma, as a mixed glioma, represents a nosologic dilemma with respect to precisely defining the oligodendroglial and astroglial phenotypes that constitute the neoplastic cell lineages of these tumors. In this study, cell image analysis with Feulgen-stained nuclei was used to distinguish between oligodendroglial and astrocytic phenotypes in oligodendrogliomas and astrocytomas and then applied to mixed oligoastrocytomas. Quantitative features with respect to chromatin pattern (30 variables) and DNA ploidy (8 variables) were evaluated on Feulgen-stained nuclei in a series of 71 gliomas using computer-assisted microscopy. These included 32 oligodendrogliomas (OLG group: 24 grade II and 8 grade III tumors according to the WHO classification), 32 astrocytomas (AST group: 13 grade II and 19 grade III tumors), and 7 oligoastrocytomas (OLGAST group). Initially, image analysis with multivariate statistical analyses (Discriminant Analysis) could identify each glial tumor group. Highly significant statistical differences were obtained distinguishing the morphonuclear features of oligodendrogliomas from those of astrocytomas, regardless of their histological grade. When compared with the 7 mixed oligoastrocytomas under study, 5 exhibited DNA ploidy and chromatin pattern characteristics similar to grade II oligodendrogliomas, I to grade III oligodendrogliomas, and I to grade II astrocytomas. Using multifactorial statistical analyses (Discriminant Analysis combined with Principal Component Analysis). It was possible to quantify the proportion of "typical" glial cell phenotypes that compose grade II and III oligodendrogliomas and grade II and III astrocytomas in each mixed glioma. Cytometric image analysis may be an important adjunct to routine histopathology for the reproducible identification of neoplasms containing a mixture of oligodendroglial and astrocytic phenotypes. PMID:9100670
Geometric Brownian Motion with Tempered Stable Waiting Times
NASA Astrophysics Data System (ADS)
Gajda, Janusz; Wyłomańska, Agnieszka
2012-08-01
One of the earliest system that was used to asset prices description is Black-Scholes model. It is based on geometric Brownian motion and was used as a tool for pricing various financial instruments. However, when it comes to data description, geometric Brownian motion is not capable to capture many properties of present financial markets. One can name here for instance periods of constant values. Therefore we propose an alternative approach based on subordinated tempered stable geometric Brownian motion which is a combination of the popular geometric Brownian motion and inverse tempered stable subordinator. In this paper we introduce the mentioned process and present its main properties. We propose also the estimation procedure and calibrate the analyzed system to real data.
Geometrical deuteron stripping revisited
Neoh, Y. S.; Yap, S. L.
2014-03-05
We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.
Geometric measures of entanglement
Uyanik, K.; Turgut, S.
2010-03-15
The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.
Geometric diffusion of quantum trajectories
Yang, Fan; Liu, Ren-Bao
2015-01-01
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745
Geometric diffusion of quantum trajectories.
Yang, Fan; Liu, Ren-Bao
2015-01-01
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745
Quantum computation using geometric algebra
NASA Astrophysics Data System (ADS)
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Matalas, N.C.
1991-01-01
What constitutes a comprehensive description of drought, a description forming a basis for answering why a drought occurred is outlined. The description entails two aspects that are "naturally" coupled, named physical and economic, and treats the set of hydrologic measures of droughts in terms of their multivariate distribution, rather than in terms of a collection of the marginal distributions. ?? 1991 Springer-Verlag.
Sudden change of geometric quantum discord in finite temperature reservoirs
Hu, Ming-Liang Sun, Jian
2015-03-15
We investigate sudden change (SC) behaviors of the distance-based measures of geometric quantum discords (GQDs) for two non-interacting qubits subject to the two-sided and the one-sided thermal reservoirs. We found that the GQDs defined by different distances exhibit different SCs, and thus the SCs are the combined result of the chosen discord measure and the property of a state. We also found that the thermal reservoir may generate states having different orderings related to different GQDs. These inherent differences of the GQDs reveal that they are incompatible in characterizing quantum correlations both quantitatively and qualitatively. - Highlights: • Comparable study of different distance-based geometric quantum discords. • Evolution of the geometric quantum discords in finite temperature reservoirs. • Different geometric quantum discords exhibit distinct sudden changes. • Nonunique states ordering imposed by different geometric quantum discords.
Geometric Heat Engines Featuring Power that Grows with Efficiency
NASA Astrophysics Data System (ADS)
Raz, O.; Subaşı, Y.; Pugatch, R.
2016-04-01
Thermodynamics places a limit on the efficiency of heat engines, but not on their output power or on how the power and efficiency change with the engine's cycle time. In this Letter, we develop a geometrical description of the power and efficiency as a function of the cycle time, applicable to an important class of heat engine models. This geometrical description is used to design engine protocols that attain both the maximal power and maximal efficiency at the fast driving limit. Furthermore, using this method, we also prove that no protocol can exactly attain the Carnot efficiency at nonzero power.
Geometric Heat Engines Featuring Power that Grows with Efficiency.
Raz, O; Subaşı, Y; Pugatch, R
2016-04-22
Thermodynamics places a limit on the efficiency of heat engines, but not on their output power or on how the power and efficiency change with the engine's cycle time. In this Letter, we develop a geometrical description of the power and efficiency as a function of the cycle time, applicable to an important class of heat engine models. This geometrical description is used to design engine protocols that attain both the maximal power and maximal efficiency at the fast driving limit. Furthermore, using this method, we also prove that no protocol can exactly attain the Carnot efficiency at nonzero power. PMID:27152782
Voltage Controlled Geometric Phase Rotation in ^{208}Pb^{19}F.
NASA Astrophysics Data System (ADS)
Furneaux, J. E.; Shafer-Ray, Neil; Coker, J.; Rupasinghe, P. M.; McRaven, C. P.
2013-06-01
Many theoretical publications have investigated the impact of the geometric phase on measurements of the e-EDM. However, there has been surprisingly little quantitative comparison of these models with experiment. Here we create a quantum beat experiment that starts with an optical pump and ends with an optical probe of ^{208}Pb^{19}F. This measurement includes the ability to control a geometric phase variation of the molecular alignment by applying an appropriate bias voltage. These experiments will then used to test the accuracy of our model calculations of geometric phase rotation.
Quantitative crystal structure descriptors from multiplicative congruential generators.
Hornfeck, Wolfgang
2012-03-01
Special types of number-theoretic relations, termed multiplicative congruential generators (MCGs), exhibit an intrinsic sublattice structure. This has considerable implications within the crystallographic realm, namely for the coordinate description of crystal structures for which MCGs allow for a concise way of encoding the numerical structural information. Thus, a conceptual framework is established, with some focus on layered superstructures, which proposes the use of MCGs as a tool for the quantitative description of crystal structures. The multiplicative congruential method eventually affords an algorithmic generation of three-dimensional crystal structures with a near-uniform distribution of atoms, whereas a linearization procedure facilitates their combinatorial enumeration and classification. The outlook for homometric structures and dual-space crystallography is given. Some generalizations and extensions are formulated in addition, revealing the connections of MCGs with geometric algebra, discrete dynamical systems (iterative maps), as well as certain quasicrystal approximants. PMID:22338652
Geometric hysteresis of alveolated ductal architecture.
Kojic, M; Butler, J P; Vlastelica, I; Stojanovic, B; Rankovic, V; Tsuda, A
2011-11-01
Low Reynolds number airflow in the pulmonary acinus and aerosol particle kinetics therein are significantly conditioned by the nature of the tidal motion of alveolar duct geometry. At least two components of the ductal structure are known to exhibit stress-strain hysteresis: smooth muscle within the alveolar entrance rings, and surfactant at the air-tissue interface. We hypothesize that the geometric hysteresis of the alveolar duct is largely determined by the interaction of the amount of smooth muscle and connective tissue in ductal rings, septal tissue properties, and surface tension-surface area characteristics of surfactant. To test this hypothesis, we have extended the well-known structural model of the alveolar duct by Wilson and Bachofen (1982, "A Model for Mechanical Structure of the Alveolar Duct," J. Appl. Physiol. 52(4), pp. 1064-1070) by adding realistic elastic and hysteretic properties of (1) the alveolar entrance ring, (2) septal tissue, and (3) surfactant. With realistic values for tissue and surface properties, we conclude that: (1) there is a significant, and underappreciated, amount of geometric hysteresis in alveolar ductal architecture; and (2) the contribution of smooth muscle and surfactant to geometric hysteresis are of opposite senses, tending toward cancellation. Quantitatively, the geometric hysteresis found experimentally by Miki et al. (1993, "Geometric Hysteresis in Pulmonary Surface-to-Volume Ratio during Tidal Breathing," J. Appl. Physiol. 75(4), pp. 1630-1636) is consistent with little or no smooth muscle tone in anesthetized rabbits in control conditions, and with substantial smooth muscle activation following methacholine challenge. The observed local hysteretic boundary motion of the acinar duct would result in irreversible acinar flow fields, which might be important mechanistic contributors to aerosol mixing and deposition deep in the lung. PMID:22168737
The relationship between strain geometry and geometrically necessary dislocations
NASA Astrophysics Data System (ADS)
Hansen, Lars; Wallis, David
2016-04-01
The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed
Goldberg, P.W.
1993-04-01
In this paper we consider the problem of learning the positions of spheres in metric spaces, given as data randomly drawn points classified according to whether they are internal or external to an unknown sphere. The particular metrics under consideration are geometrical shape metrics, and the results are intended to be applicable to the problem of learning to identify a shape from related shapes classified according to whether they resemble it visually. While it is typically NP-hard to locate a central point for a hypothesis sphere, we find that it is however often possible to obtain a non-spherical hypothesis which can accurately predict whether further random points lie within the unknown sphere. We exhibit algorithms which achieve this, and in the process indicate useful general techniques for computational learning. Finally we exhibit a natural shape metric and show that it defines a class of spheres not predictable in this sense, subject to standard cryptographic assumptions.
Geometrical aspects of entanglement
Leinaas, Jon Magne; Myrheim, Jan; Ovrum, Eirik
2006-07-15
We study geometrical aspects of entanglement, with the Hilbert-Schmidt norm defining the metric on the set of density matrices. We focus first on the simplest case of two two-level systems and show that a 'relativistic' formulation leads to a complete analysis of the question of separability. Our approach is based on Schmidt decomposition of density matrices for a composite system and nonunitary transformations to a standard form. The positivity of the density matrices is crucial for the method to work. A similar approach works to some extent in higher dimensions, but is a less powerful tool. We further present a numerical method for examining separability and illustrate the method by a numerical study of bound entanglement in a composite system of two three-level systems.
Information geometric nonlinear filtering
NASA Astrophysics Data System (ADS)
Newton, Nigel J.
2015-06-01
This paper develops information geometric representations for nonlinear filters in continuous time. The posterior distribution associated with an abstract nonlinear filtering problem is shown to satisfy a stochastic differential equation on a Hilbert information manifold. This supports the Fisher metric as a pseudo-Riemannian metric. Flows of Shannon information are shown to be connected with the quadratic variation of the process of posterior distributions in this metric. Apart from providing a suitable setting in which to study such information-theoretic properties, the Hilbert manifold has an appropriate topology from the point of view of multi-objective filter approximations. A general class of finite-dimensional exponential filters is shown to fit within this framework, and an intrinsic evolution equation, involving Amari's -1-covariant derivative, is developed for such filters. Three example systems, one of infinite dimension, are developed in detail.
Enhancing geometric reasoning.
Mistretta, R M
2000-01-01
Geometry is an important part of the mathematics curriculum. However, students are not demonstrating strong conceptual knowledge of this subject. The research of Van Hiele and Van Hiele-Geldof has focused on the concept of thinking levels in geometry and the role of instruction in raising levels of thinking. This paper describes a field trial of a supplemental geometry unit intended to raise Van Hiele thinking levels in a group of 23 eighth-grade students by having them become more adept at using higher order thinking skills. Sample questions assessing particular Van Hiele thinking levels and attitudes toward geometry, as well as field-tested activities yielding the most positive results, are presented. Educators can benefit from this application of the Van Hiele model of geometric thinking, since the thought processes involved in learning geometry are explained, along with teaching techniques and tools for assessment. By having teachers become more aware of their students' cognitive skills, attitudes, and misconceptions, teaching practices and student achievement can be enhanced. PMID:11019778
Geometric Reasoning in an Active-Engagement Upper-Division E&M Classroom
ERIC Educational Resources Information Center
Cerny, Leonard Thomas
2012-01-01
A combination of theoretical perspectives is used to create a rich description of student reasoning when facing a highly-geometric electricity and magnetism problem in an upper-division active-engagement physics classroom at Oregon State University. Geometric reasoning as students encounter problem situations ranging from familiar to novel is…
Shi, Runhua; McLarty, Jerry W
2009-10-01
In this article, we introduced basic concepts of statistics, type of distributions, and descriptive statistics. A few examples were also provided. The basic concepts presented herein are only a fraction of the concepts related to descriptive statistics. Also, there are many commonly used distributions not presented herein, such as Poisson distributions for rare events and exponential distributions, F distributions, and logistic distributions. More information can be found in many statistics books and publications. PMID:19891281
Xie, Lei; Bourne, Philip E
2007-01-01
Background An accurate description of protein shape derived from protein structure is necessary to establish an understanding of protein-ligand interactions, which in turn will lead to improved methods for protein-ligand docking and binding site analysis. Most current shape descriptors characterize only the local properties of protein structure using an all-atom representation and are slow to compute. We need new shape descriptors that have the ability to capture both local and global structural information, are robust for application to models and low quality structures and are computationally efficient to permit high throughput analysis of protein structures. Results We introduce a new shape description that requires only the Cα atoms to represent the protein structure, thus making it both fast and suitable for use on models and low quality structures. The notion of a geometric potential is introduced to quantitatively describe the shape of the structure. This geometric potential is dependent on both the global shape of the protein structure as well as the surrounding environment of each residue. When applying the geometric potential for binding site prediction, approximately 85% of known binding sites can be accurately identified with above 50% residue coverage and 80% specificity. Moreover, the algorithm is fast enough for proteome-scale applications. Proteins with fewer than 500 amino acids can be scanned in less than two seconds. Conclusion The reduced representation of the protein structure combined with the geometric potential provides a fast, quantitative description of protein-ligand binding sites with potential for use in large-scale predictions, comparisons and analysis. PMID:17570152
The geometric resistivity correction factor for several geometrical samples
NASA Astrophysics Data System (ADS)
Yilmaz, Serdar
2015-08-01
This paper reviews the geometric resistivity correction factor of the 4-point probe DC electrical conductivity measurement method using several geometrical samples. During the review of the literature, only the articles that include the effect of geometry on resistivity calculation were considered. Combinations of equations used for various geometries were also given. Mathematical equations were given in the text without details. Expressions for the most commonly used geometries were presented in a table for easy reference.
Geometric algorithms for sensor networks.
Gao, Jie; Guibas, Leonidas
2012-01-13
This paper surveys the use of geometric methods for wireless sensor networks. The close relationship of sensor nodes with their embedded physical space imposes a unique geometric character on such systems. The physical locations of the sensor nodes greatly impact on system design in all aspects, from low-level networking and organization to high-level information processing and applications. This paper reviews work in the past 10 years on topics such as network localization, geometric routing, information discovery, data-centric routing and topology discovery. PMID:22124080
Geometric approaches to mesh generation
Hoffmann, C.M.
1995-12-31
We review three approaches to mesh generation that axe based on analyzing and accounting for the geometric structure of the domain. In the first approach, due to Armstrong, the domain is partitioned into subdomains based on the medial-axis transform, a tool for analyzing spatial structures. In the second approach, due to Cox, the design history defines a geometric structure of the domain. The design primitives of that structure are meshed separately, and mesh overlap is accounted for by coupling equations. The third approach argues that mesh generation ought to be integrated into the shape design process, by meshing design features separately and resolving overlapping meshes by standard geometric computations.
Geometric phase shifting digital holography.
Jackin, Boaz Jessie; Narayanamurthy, C S; Yatagai, Toyohiko
2016-06-01
A new phase shifting digital holographic technique using a purely geometric phase in Michelson interferometric geometry is proposed. The geometric phase in the system does not depend upon either optical path length or wavelength, unlike dynamic phase. The amount of geometric phase generated is controllable through a rotating wave plate. The new approach has unique features and major advantages in holographic measurement of transparent and reflecting three-dimensional (3D) objects. Experimental results on surface shape measurement and imaging of 3D objects are presented using the proposed method. PMID:27244436
Geometric Effects on Electron Cloud
Wang, L
2007-07-06
The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit the machine performances by inducing beam instabilities, beam emittance increase, beam loss, vacuum pressure increases and increased heat load on the vacuum chamber wall. The electron multipacting is a kind of geometric resonance phenomenon and thus is sensitive to the geometric parameters such as the aperture of the beam pipe, beam shape and beam bunch fill pattern, etc. This paper discusses the geometric effects on the electron cloud build-up in a beam chamber and examples are given for different beams and accelerators.
Current Concept of Geometrical Accuracy
NASA Astrophysics Data System (ADS)
Görög, Augustín; Görögová, Ingrid
2014-06-01
Within the solving VEGA 1/0615/12 research project "Influence of 5-axis grinding parameters on the shank cutteŕs geometric accuracy", the research team will measure and evaluate geometrical accuracy of the produced parts. They will use the contemporary measurement technology (for example the optical 3D scanners). During the past few years, significant changes have occurred in the field of geometrical accuracy. The objective of this contribution is to analyse the current standards in the field of geometric tolerance. It is necessary to bring an overview of the basic concepts and definitions in the field. It will prevent the use of outdated and invalidated terms and definitions in the field. The knowledge presented in the contribution will provide the new perspective of the measurement that will be evaluated according to the current standards.
Guitars, Violins, and Geometric Sequences
ERIC Educational Resources Information Center
Barger, Rita; Haehl, Martha
2007-01-01
This article describes middle school mathematics activities that relate measurement, ratios, and geometric sequences to finger positions or the placement of frets on stringed musical instruments. (Contains 2 figures and 2 tables.)
ERIC Educational Resources Information Center
Beller, Charley
2013-01-01
The study of definite descriptions has been a central part of research in linguistics and philosophy of language since Russell's seminal work "On Denoting" (Russell 1905). In that work Russell quickly dispatches analyses of denoting expressions with forms like "no man," "some man," "a man," and "every…
Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners
Viscosi, Vincenzo; Cardini, Andrea
2011-01-01
Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less
Morphogenesis of the human palma arch using three-dimensional geometric modeling.
Durand, Sebastien; Marin, Frederic; Oberlin, Christophe; Ho Ba Tho, Marie-Christine
2011-10-01
The hand goes through complex morphological modifications during embryogenesis. The goal of this study was to use geometric modeling to study the morphometric modifications of the palmar arch. Five embryos were used for the study (sizes: 15, 17, 23, 30, and 44 mm). After digitalization of histologic sections (Sony DXC-930P 3CCD camera, Leica Qwin) and segmentation of the metacarpal cartilaginous matrices (Winsurf 4.3 software), geometric modeling and calculations were performed using MSC.Patran 2005r2 software. Correlations (r > 0.99) were found between embryo size and metacarpal volume, metacarpal surface, and the surface of the modeled palmar arch. The growth of the palmar arch is nonhomothetic. Significant reduction (P = 0.05) in the divergence of the 2nd, 3rd, 4th, and 5th metacarpals was observed. Deepening of the palmar arch is correlated with embryo size and age (r > 0.99). Geometric modeling allows 3D rendering of histologic sections and thus quantitative description of the morphogenesis. The results of this study support the hypothesis that opposition of the thumb in correlation with deepening of the palmar arch appears early in embryological development. It constitutes a specific morphological characteristic that appears very early in the human phylum. The fact that the human thumb is naturally in opposition in the resting position is a consequence of this morphogenesis. The thumb's resting position has received little attention in clinical settings and should be considered as the reference position for biomechanical analysis of the thumb column. PMID:21538563
Antenna with Dielectric Having Geometric Patterns
NASA Technical Reports Server (NTRS)
Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)
2013-01-01
An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.
Geometric Observers for Dynamically Evolving Curves
Niethammer, Marc; Vela, Patricio A.; Tannenbaum, Allen
2009-01-01
This paper proposes a deterministic observer design for visual tracking based on nonparametric implicit (level-set) curve descriptions. The observer is continuous discrete with continuous-time system dynamics and discrete-time measurements. Its state-space consists of an estimated curve position augmented by additional states (e.g., velocities) associated with every point on the estimated curve. Multiple simulation models are proposed for state prediction. Measurements are performed through standard static segmentation algorithms and optical-flow computations. Special emphasis is given to the geometric formulation of the overall dynamical system. The discrete-time measurements lead to the problem of geometric curve interpolation and the discrete-time filtering of quantities propagated along with the estimated curve. Interpolation and filtering are intimately linked to the correspondence problem between curves. Correspondences are established by a Laplace-equation approach. The proposed scheme is implemented completely implicitly (by Eulerian numerical solutions of transport equations) and thus naturally allows for topological changes and subpixel accuracy on the computational grid. PMID:18421113
Gaussian geometric discord in terms of Hellinger distance
Suciu, Serban Isar, Aurelian
2015-12-07
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we address the quantification of general non-classical correlations in Gaussian states of continuous variable systems from a geometric perspective. We give a description of the Gaussian geometric discord by using the Hellinger distance as a measure for quantum correlations between two non-interacting non-resonant bosonic modes embedded in a thermal environment. We evaluate the Gaussian geometric discord by taking two-mode squeezed thermal states as initial states of the system and show that it has finite values between 0 and 1 and that it decays asymptotically to zero in time under the effect of the thermal bath.
Geometric transitions and D-term SUSY breaking
Aganagic, Mina; Aganagic, Mina; Beem, Christopher
2007-11-05
We propose a new way of using geometric transitions to study metastable vacua in string theory and certain confining gauge theories. The gauge theories in question are N=2 supersymmetric theories deformed to N=1 by superpotential terms. We first geometrically engineer supersymmetry-breaking vacua by wrapping D5 branes on rigid 2-cycles in noncompact Calabi-Yau geometries, such that the central charges of the branes are misaligned. In a limit of slightly misaligned charges, this has a gauge theory description, where supersymmetry is broken by Fayet-Iliopoulos D-terms. Geometric transitions relate these configurations to dual Calabi-Yaus with fluxes, where H_RR, H_NS and dJ are all nonvanishing. We argue that the dual geometry can be effectively used to study the resulting non-supersymmetric, confining vacua
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach
Arrieta, Jorge; Cartwright, Julyan H. E.; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number— in an inertialess environment—is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the “belly phase,” peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing. PMID:26154384
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing. PMID:26154384
NASA Astrophysics Data System (ADS)
Baader, Franz
Description Logics (DLs) are a well-investigated family of logic-based knowledge representation formalisms, which can be used to represent the conceptual knowledge of an application domain in a structured and formally well-understood way. They are employed in various application domains, such as natural language processing, configuration, and databases, but their most notable success so far is the adoption of the DL-based language OWL as standard ontology language for the semantic web.
Geometric incompatibility in a fault system.
Gabrielov, A; Keilis-Borok, V; Jackson, D D
1996-01-01
Interdependence between geometry of a fault system, its kinematics, and seismicity is investigated. Quantitative measure is introduced for inconsistency between a fixed configuration of faults and the slip rates on each fault. This measure, named geometric incompatibility (G), depicts summarily the instability near the fault junctions: their divergence or convergence ("unlocking" or "locking up") and accumulation of stress and deformations. Accordingly, the changes in G are connected with dynamics of seismicity. Apart from geometric incompatibility, we consider deviation K from well-known Saint Venant condition of kinematic compatibility. This deviation depicts summarily unaccounted stress and strain accumulation in the region and/or internal inconsistencies in a reconstruction of block- and fault system (its geometry and movements). The estimates of G and K provide a useful tool for bringing together the data on different types of movement in a fault system. An analog of Stokes formula is found that allows determination of the total values of G and K in a region from the data on its boundary. The phenomenon of geometric incompatibility implies that nucleation of strong earthquakes is to large extent controlled by processes near fault junctions. The junctions that have been locked up may act as transient asperities, and unlocked junctions may act as transient weakest links. Tentative estimates of K and G are made for each end of the Big Bend of the San Andreas fault system in Southern California. Recent strong earthquakes Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both reduced K but had opposite impact on G: Landers unlocked the area, whereas Northridge locked it up again. Images Fig. 1 Fig. 2 PMID:11607673
Geometric incompatibility in a fault system.
Gabrielov, A; Keilis-Borok, V; Jackson, D D
1996-04-30
Interdependence between geometry of a fault system, its kinematics, and seismicity is investigated. Quantitative measure is introduced for inconsistency between a fixed configuration of faults and the slip rates on each fault. This measure, named geometric incompatibility (G), depicts summarily the instability near the fault junctions: their divergence or convergence ("unlocking" or "locking up") and accumulation of stress and deformations. Accordingly, the changes in G are connected with dynamics of seismicity. Apart from geometric incompatibility, we consider deviation K from well-known Saint Venant condition of kinematic compatibility. This deviation depicts summarily unaccounted stress and strain accumulation in the region and/or internal inconsistencies in a reconstruction of block- and fault system (its geometry and movements). The estimates of G and K provide a useful tool for bringing together the data on different types of movement in a fault system. An analog of Stokes formula is found that allows determination of the total values of G and K in a region from the data on its boundary. The phenomenon of geometric incompatibility implies that nucleation of strong earthquakes is to large extent controlled by processes near fault junctions. The junctions that have been locked up may act as transient asperities, and unlocked junctions may act as transient weakest links. Tentative estimates of K and G are made for each end of the Big Bend of the San Andreas fault system in Southern California. Recent strong earthquakes Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both reduced K but had opposite impact on G: Landers unlocked the area, whereas Northridge locked it up again. PMID:11607673
Geometrically nonlinear behavior of piezoelectric laminated plates
NASA Astrophysics Data System (ADS)
Rabinovitch, Oded
2005-08-01
The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.
Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach.
Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Alvarez-Sierra, M Ángeles
2013-01-01
Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera. PMID:24236090
Dietary Ecology of Murinae (Muridae, Rodentia): A Geometric Morphometric Approach
Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Álvarez-Sierra, M. Ángeles
2013-01-01
Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera. PMID:24236090
Geometric scalar theory of gravity
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Geometrical modelling of textile reinforcements
NASA Technical Reports Server (NTRS)
Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene
1995-01-01
The mechanical properties of textile composites are dictated by the arrangement of yarns contained with the material. Thus to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made form highly flexible yarn systems which experience a certain degree of compressability. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical prediction models are demonstrated. Although more costly than its predecessors, the present analysis is based on the detailed architecture developed by one of the authors and his colleagues and accounts for many of the geometric complexities that other analyses ignore.
Geometric pumping in autophoretic channels.
Michelin, Sébastien; Montenegro-Johnson, Thomas D; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric
2015-08-01
Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory. PMID:26000567
Geometrical spin symmetry and spin
Pestov, I. B.
2011-07-15
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Geometric validation plan for ASTER
NASA Astrophysics Data System (ADS)
Iwasaki, Akira; Matsumoto, Ken; Fujisada, Hiroyuki
1998-12-01
The ASTER system is a multispectral imager which covers a spectral range from visible to thermal infrared light by combining three subsystems composed of four telescopes. To ensure the high-quality data products concerning to the geolocation and band-to-band matching performance, the geometric registration is needed. This paper describes the geometric validation procedure for a multi-telescope imager with a cross-track pointing function. The strategy for the maintenance of database files and the preparation a GCP library is also shown.
Geometric integration for particle accelerators
NASA Astrophysics Data System (ADS)
Forest, Étienne
2006-05-01
This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.
Geometrical Optics of Dense Aerosols
Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.
2013-04-24
Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________
Multiscale geometric modeling of macromolecules II: Lagrangian representation
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-01-01
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
Multiscale geometric modeling of macromolecules II: Lagrangian representation.
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-09-15
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics, and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR, and cryo-electron microscopy, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation, and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger's functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, whereas our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
Geometric Quantum Noise of Spin
NASA Astrophysics Data System (ADS)
Shnirman, Alexander; Gefen, Yuval; Saha, Arijit; Burmistrov, Igor S.; Kiselev, Mikhail N.; Altland, Alexander
2015-05-01
The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schön effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.
Vergence, Vision, and Geometric Optics
ERIC Educational Resources Information Center
Keating, Michael P.
1975-01-01
Provides a definition of vergence in terms of the curvature of the wave fronts, and gives examples to illustrate the advantages of this approach. The vergence treatment of geometrical optics provides both conceptual and algebraic advantages, particularly for the life science student, over the traditional object distance-image distance-focal length…
Celestial mechanics with geometric algebra
NASA Technical Reports Server (NTRS)
Hestenes, D.
1983-01-01
Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.
Platonic Symmetry and Geometric Thinking
ERIC Educational Resources Information Center
Zsombor-Murray, Paul
2007-01-01
Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…
Geometrical Phases in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
NASA Astrophysics Data System (ADS)
Ford, David; Huntsman, Steven
2006-06-01
Thermodynamics (in concert with its sister discipline, statistical physics) can be regarded as a data reduction scheme based on partitioning a total system into a subsystem and a bath that weakly interact with each other. Whereas conventionally, the systems investigated require this form of data reduction in order to facilitate prediction, a different problem also occurs, in the context of communication networks, markets, etc. Such “empirically accessible” systems typically overwhelm observers with the sort of information that in the case of (say) a gas is effectively unobtainable. What is required for such complex interacting systems is not prediction (this may be impossible when humans besides the observer are responsible for the interactions) but rather, description as a route to understanding. Still, the need for a thermodynamical data reduction scheme remains. In this paper, we show how an empirical temperature can be computed for finite, empirically accessible systems, and further outline how this construction allows the age-old science of thermodynamics to be fruitfully applied to them.
Geometrical approach to tumor growth.
Escudero, Carlos
2006-08-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived. PMID:17025466
The verdict geometric quality library.
Knupp, Patrick Michael; Ernst, C.D. (Elemental Technologies, Inc., American Fork, UT); Thompson, David C.; Stimpson, C.J.; Pebay, Philippe Pierre
2006-03-01
Verdict is a collection of subroutines for evaluating the geometric qualities of triangles, quadrilaterals, tetrahedra, and hexahedra using a variety of metrics. A metric is a real number assigned to one of these shapes depending on its particular vertex coordinates. These metrics are used to evaluate the input to finite element, finite volume, boundary element, and other types of solvers that approximate the solution to partial differential equations defined over regions of space. The geometric qualities of these regions is usually strongly tied to the accuracy these solvers are able to obtain in their approximations. The subroutines are written in C++ and have a simple C interface. Each metric may be evaluated individually or in combination. When multiple metrics are evaluated at once, they share common calculations to lower the cost of the evaluation.
Geometrical modelling of textile reinforcements
NASA Technical Reports Server (NTRS)
Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene
1995-01-01
The mechanical properties of textile composites are dictated by the arrangement of yarns contained within the material. Thus, to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made from highly flexible yarn systems which experience a certain degree of compressibility. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical property predictions models are demonstrated.
Geometrical scaling for identified particles
NASA Astrophysics Data System (ADS)
Praszalowicz, Michal
2013-12-01
We show that recently measured transverse momentum spectra of identified particles exhibit geometrical scaling (GS) in scaling variable τ=(( where m=√{m2+pT2}-m. We explore consequences of GS and show that both mid rapidity multiplicity and mean transverse momenta grow as powers of scattering energy. Furthermore, assuming Tsallis-like parametrization of the spectra we calculate the coefficients of this growth. We also show that Tsallis temperature is related to the average saturation scale.
Geometrical interpretation of optical absorption
Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L.; Montesinos-Amilibia, J. M.
2011-08-15
We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.
Geometric Landau-Zener interferometry.
Gasparinetti, S; Solinas, P; Pekola, J P
2011-11-11
We propose a new type of interferometry, based on geometric phases accumulated by a periodically driven two-level system undergoing multiple Landau-Zener transitions. As a specific example, we study its implementation in a superconducting charge pump. We find that interference patterns appear as a function of the pumping frequency and the phase bias, and clearly manifest themselves in the pumped charge. We also show that the effects described should persist in the presence of realistic decoherence. PMID:22181761
Polar metals by geometric design
NASA Astrophysics Data System (ADS)
Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.
2016-05-01
Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
Quantitative Pedagogy: A Digital Two Player Game to Examine Communicative Competence.
Lopez-Rosenfeld, Matías; Carrillo, Facundo; Garbulsky, Gerry; Fernandez Slezak, Diego; Sigman, Mariano
2015-01-01
Inner concepts are much richer than the words that describe them. Our general objective is to inquire what are the best procedures to communicate conceptual knowledge. We construct a simplified and controlled setup emulating important variables of pedagogy amenable to quantitative analysis. To this aim, we designed a game inspired in Chinese Whispers, to investigate which attributes of a description affect its capacity to faithfully convey an image. This is a two player game: an emitter and a receiver. The emitter was shown a simple geometric figure and was asked to describe it in words. He was informed that this description would be passed to the receiver who had to replicate the drawing from this description. We capitalized on vast data obtained from an android app to quantify the effect of different aspects of a description on communication precision. We show that descriptions more effectively communicate an image when they are coherent and when they are procedural. Instead, the creativity, the use of metaphors and the use of mathematical concepts do not affect its fidelity. PMID:26554833
Quantitative Pedagogy: A Digital Two Player Game to Examine Communicative Competence
Lopez-Rosenfeld, Matías; Carrillo, Facundo; Garbulsky, Gerry; Fernandez Slezak, Diego; Sigman, Mariano
2015-01-01
Inner concepts are much richer than the words that describe them. Our general objective is to inquire what are the best procedures to communicate conceptual knowledge. We construct a simplified and controlled setup emulating important variables of pedagogy amenable to quantitative analysis. To this aim, we designed a game inspired in Chinese Whispers, to investigate which attributes of a description affect its capacity to faithfully convey an image. This is a two player game: an emitter and a receiver. The emitter was shown a simple geometric figure and was asked to describe it in words. He was informed that this description would be passed to the receiver who had to replicate the drawing from this description. We capitalized on vast data obtained from an android app to quantify the effect of different aspects of a description on communication precision. We show that descriptions more effectively communicate an image when they are coherent and when they are procedural. Instead, the creativity, the use of metaphors and the use of mathematical concepts do not affect its fidelity. PMID:26554833
The effect of electron beam geometric deformation errors on the small-signal characteristic of ECRM
NASA Astrophysics Data System (ADS)
Yongjian, Yu
1993-08-01
In this paper is studied the effect of electron beam geometric deformation errors on the small — signal characteristics of the TE{mn/o} mode Electron Cyclotron Resonance Maser (ECRM), based on the elliptically cross—sectional e—beam deformation model. As an example, the effect of small geometric deformation errors on the TE{01/o} mode fundamental ECRM coupling coefficient is quantitatively shown.
Development of a Geometric Spatial Visualization Tool
ERIC Educational Resources Information Center
Ganesh, Bibi; Wilhelm, Jennifer; Sherrod, Sonya
2009-01-01
This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns)…
Geometrical Visualisation--Epistemic and Emotional
ERIC Educational Resources Information Center
Rodd, Melissa
2010-01-01
A well-documented experience of students of elementary Euclidean geometry is "seeing" a geometric result and being sure about its truth; this sort of experience gives rise to the notion of geometrical visualisation that is developed here. In this essay a philosophical argument for the epistemic potential of geometrical visualisation is reviewed,…
Fundus image change analysis: geometric and radiometric normalization
NASA Astrophysics Data System (ADS)
Shin, David S.; Kaiser, Richard S.; Lee, Michael S.; Berger, Jeffrey W.
1999-06-01
Image change analysis will potentiate fundus feature quantitation in natural history and intervention studies for major blinding diseases such as age-related macular degeneration and diabetic retinopathy. Geometric and radiometric normalization of fundus images acquired at two points in time are required for accurate change detection, but existing methods are unsatisfactory for change analysis. We have developed and explored algorithms for correction of image misalignment (geometric) and inter- and intra-image brightness variation (radiometric) in order to facilitate highly accurate change detection. Thirty-five millimeter color fundus photographs were digitized at 500 to 1000 dpi. Custom-developed registration algorithms correcting for translation only; translation and rotation; translation, rotation, and scale; and polynomial based image-warping algorithms allowed for exploration of registration accuracy required for change detection. Registration accuracy beyond that offered by rigid body transformation is required for accurate change detection. Radiometric correction required shade-correction and normalization of inter-image statistical parameters. Precise geometric and radiometric normalization allows for highly accurate change detection. To our knowledge, these results are the first demonstration of the combination of geometric and radiometric normalization offering sufficient accuracy to allow for accurate fundus image change detection potentiating longitudinal study of retinal disease.
Modeling concepts for communication of geometric shape data
NASA Technical Reports Server (NTRS)
Collins, M. F.; Emnett, R. F.; Magedson, R. L.; Shu, H. H.
1984-01-01
ANSI5, an abbreviation for Section 5 of the American National Standard under Engineering Drawing and Related Documentation Practices (Committee Y14) on Digital Representation for Communication of Product Definition Data (ANSI Y14.26M-1981), allows encoding of a broad range of geometric shapes to be communicated through digital channels. A brief review of its underlying concepts is presented. The intent of ANSI5 is to devise a unified set of concise language formats for transmission of data pertaining to five types of geometric entities in Euclidean 3 space (E(3)). These are regarded as point like, curve like, surface like, solid like, and a combination of these types. For the first four types, ANSI5 makes a distinction between the geometry and topology. Geometry is a description of the spatial occupancy of the entity, and topology discusses the interconnectedness of the entity's boundary components.
Geometric and kinematic modelling of a human costal slice.
Minotti, P; Lexcellent, C
1991-01-01
More and more powerful calculation methods are being used in the modelization of the human thorax, and considering the progress made in the domain of numerical analysis, this modelization is naturally being oriented toward the utilization of finite element methods. However, thoracic models are usually based on extremely simple geometric hypotheses, due mostly to the lack of dependable experimental data. Hence, the exploitation of sophisticated software is far from optimal. This study is based on experimental observations which allow the capabilities of the current means of calculation to be exploited to a maximum. The objectives of the study are the geometric and kinematic representations of a typical costal slice. A precise topographical measurement, performed by a robot, allows description of the costal geometry. The exploitation of these measurements then allows the identification of the costo-vertebral articulation. PMID:2055910
A Geometric Crescent Model for Black Hole Images
NASA Astrophysics Data System (ADS)
Kamruddin, Ayman Bin; Dexter, J.
2013-01-01
The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimeter wavelengths, is spatially resolving the immediate environment of black holes for the first time. The current observations of the Galactic center black hole, Sagittarius A* (Sgr A*), have been interpreted in terms of unmotivated geometric models (e.g., a symmetric Gaussian) or detailed calculations involving accretion onto a black hole. The latter are subject to large systematic uncertainties. Motivated by relativistic effects around black holes, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A*, superior to the Gaussian. It also closely matches physically predicted models, bridging accretion theory and observation. Based on our results, we make predictions for future observations for the accessibility of the black hole shadow, direct evidence for a black hole event horizon.
Geometric foundations of Cartan gauge gravity
NASA Astrophysics Data System (ADS)
Catren, Gabriel
2015-03-01
We use the theory of Cartan connections to analyze the geometrical structures underpinning the gauge-theoretical descriptions of the gravitational interaction. According to the theory of Cartan connections, the spin connection ω and the soldering form θ that define the fundamental variables of the Palatini formulation of general relativity can be understood as different components of a single field, namely a Cartan connection A = ω + θ. In order to stress both the similarities and the differences between the notions of Ehresmann connection and Cartan connection, we explain in detail how a Cartan geometry (PH → M, A) can be obtained from a G-principal bundle PG → M endowed with an Ehresmann connection (being the Lorentz group H a subgroup of G) by means of a bundle reduction mechanism. We claim that this reduction must be understood as a partial gauge fixing of the local gauge symmetries of PG, i.e. as a gauge fixing that leaves "unbroken" the local Lorentz invariance. We then argue that the "broken" part of the symmetry — that is the internal local translational invariance — is implicitly preserved by the invariance under the external diffeomorphisms of M.
Geometrical pre-planning for conformal radiotherapy.
Tsougos, Ioannis; Schreibmann, Eduard; Lahanas, Michael; Theodorou, Kiki; Kappas, Constantin; Baltas, Dimos
2007-01-01
The optimum selection of beams and arcs in conformal techniques is of the outmost importance in modern radiotherapy. In this work we give a description of an analytic method to aid optimum selection, which is based on minimizing the intersection between beams and organs at risk (OAR) and on minimizing the intersection between the beam and the planning target volume (PTV). An arc-selection function that permits selection of irradiation arcs based on individual beam feasibility is introduce. The method simulates the treatment process by defining a computed beam feasibility, for every possible set of gantry-table angles, by taking into account accurately computer intersection volumes between the OAR and beams. The beams are shaped to conform the target using realistic parameters for the treatment process. The results are displayed on a virtual sphere centred at the isocenter with color-coded regions indicating beam feasibility. Arcs selections are performed by searching the map for successive gantry positions at a certain table angle, with feasibility values greater than a user-specified threshold. The accuracy of the method was confirmed by using geometrical regular shapes, as well as real clinical cases. PMID:17851850
SQCD Vacua and Geometrical Engineering
Tatar, Radu; Wetenhall, Ben
2008-11-23
We consider the geometrical engineering constructions for the N = 1 SQCD vacua. After one T-duality, these geometries with wrapped D5 branes become N = 1 brane configurations with NS-branes and D4-branes. After performing a flop, the geometries contain branes, antibranes and branes wrapped on non-holomorphic cycles. The various tachyon condensations between pairs of wrapped D5 branes and anti-D5 branes together with deformations of the cycles give rise to a variety of supersymmetric and metastable non-supersymmetric vacua.
Geometric reasoning and spatial understanding
Binford, T.O.
1982-01-01
Progress has been made on extensions to ACRONYM which include: representation and reasoning with time, events, and sequences; collaboration with MIT to develop geometric learning: representation of function, and reasoning between structure and function. A new ribbon finder for ACRONYM is under construction. Work in figure/ground separation is underway as a basis for the ribbon finder. Preliminary results are shown in grouping operations to determine regularities in images. A stereo system has been completed which combines edge-based stereo matching with surface interpolation utilizing correspondence of gray levels. Design of a new stereo vision system is underway.
Geometric reconstruction of biological orthogonal plywoods.
Aguilar Gutierrez, Oscar F; Rey, Alejandro D
2016-01-28
In this paper we focus on the structural determination of biological orthogonal plywoods, fiber-like composite analogues of liquid crystalline phases, where the fibrils of the building blocks show sharp 90° orientation jumps between fibers in adjacent domains. We present an original geometric and computational modelling that allows us to determine the fibrillary orientation in biological plywoods from periodic herringbone patterns commonly observed in cross-sections. Although herringbone patterns were long reported, the specific and quantitative relationships between herringbones and the orthogonal plywoods were absent or at best incomplete. Here we provide an efficient and new procedure to perform an inverse problem that connects two specific features of the herringbone patterns (aperture angle and wavelength) with the 3D morphology of the structure, whose accuracy and validity were ascertained through in silico simulations and also with real specimens ("Eremosphaera viridis"). This contribution extends significantly the better known characterization methods of 2D cross sections, such as the arced patterns observed in biological helicoidal plywoods, and with the present proposed methodology it adds another characterization tool for a variety of biological fibrous composites that form cornea-like tissues. PMID:26583687
NPP VIIRS Geometric Performance Status
NASA Technical Reports Server (NTRS)
Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro
2011-01-01
Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.
NPP VIIRS geometric performance status
NASA Astrophysics Data System (ADS)
Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro
2011-10-01
Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.
Measurement error in geometric morphometrics.
Fruciano, Carmelo
2016-06-01
Geometric morphometrics-a set of methods for the statistical analysis of shape once saluted as a revolutionary advancement in the analysis of morphology -is now mature and routinely used in ecology and evolution. However, a factor often disregarded in empirical studies is the presence and the extent of measurement error. This is potentially a very serious issue because random measurement error can inflate the amount of variance and, since many statistical analyses are based on the amount of "explained" relative to "residual" variance, can result in loss of statistical power. On the other hand, systematic bias can affect statistical analyses by biasing the results (i.e. variation due to bias is incorporated in the analysis and treated as biologically-meaningful variation). Here, I briefly review common sources of error in geometric morphometrics. I then review the most commonly used methods to measure and account for both random and non-random measurement error, providing a worked example using a real dataset. PMID:27038025
Geometric pumping in autophoretic channels
NASA Astrophysics Data System (ADS)
Michelin, Sebastien; Montenegro Johnson, Thomas; de Canio, Gabriele; Lobatto-Dauzier, Nicolas; Lauga, Eric
2015-11-01
Pumping at the microscale has important applications from biological fluid handling to lab-on-a-chip systems. It can be achieved either from a global (e.g. imposed pressure gradient) or local forcing (e.g. ciliary pumping). Phoretic slip flows generated from concentration or temperature gradients are examples of such local flow forcing. Autophoresis is currently receiving much attention for the design of self-propelled particles achieving force- and torque-free locomotion by combining two essential surface properties: (i) an activity that modifies the solute content of the particle's environment (e.g. catalytic reaction or solute release), and (ii) a mobility that generates a slip flow from the resulting local concentration gradients. Recent work showed that geometric asymmetry is sufficient for a chemically-homogeneous particle to self-propel. Here we extend this idea to micro-pumping in active channels whose walls possess both chemical activity and phoretic mobility. Using a combination of theoretical analysis and numerical simulations, we show that geometrically-asymmetric but chemically-homogeneous channels can generate pumping and analyze the resulting flow patterns.
Geometrical interpretation for the outer SU(3) outer multiplicity label
NASA Technical Reports Server (NTRS)
Draayer, Jerry P.; Troltenier, D.
1995-01-01
A geometrical interpretation for the outer multiplicity rho that occurs in a reduction of the product of two SU(3) representations, (lambda(sub pi), mu(sub pi)) x (lambda(sub nu), mu(sub nu)) approaches sigma(sub rho)(lambda, mu)(sub rho), is introduced. This coupling of proton (pi) and neutron (nu) representations arises, for example, in both boson and fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises the possibility of introducing a simple interaction that provides a physically meaningful way for distinguishing multiple occurrences of (lambda, mu) values that can arise in such products.
Geometric optimization of thermal systems
NASA Astrophysics Data System (ADS)
Alebrahim, Asad Mansour
2000-10-01
The work in chapter 1 extends to three dimensions and to convective heat transfer the constructal method of minimizing the thermal resistance between a volume and one point. In the first part, the heat flow mechanism is conduction, and the heat generating volume is occupied by low conductivity material (k 0) and high conductivity inserts (kp) that are shaped as constant-thickness disks mounted on a common stem of kp material. In the second part the interstitial spaces once occupied by k0 material are bathed by forced convection. The internal and external geometric aspect ratios of the elemental volume and the first assembly are optimized numerically subject to volume constraints. Chapter 2 presents the constrained thermodynamic optimization of a cross-flow heat exchanger with ram air on the cold side, which is used in the environmental control systems of aircraft. Optimized geometric features such as the ratio of channel spacings and flow lengths are reported. It is found that the optimized features are relatively insensitive to changes in other physical parameters of the installation and relatively insensitive to the additional irreversibility due to discharging the ram-air stream into the atmosphere, emphasizing the robustness of the thermodynamic optimum. In chapter 3 the problem of maximizing exergy extraction from a hot stream by distributing streams over a heat transfer surface is studied. In the first part, the cold stream is compressed in an isothermal compressor, expanded in an adiabatic turbine, and discharged into the ambient. In the second part, the cold stream is compressed in an adiabatic compressor. Both designs are optimized with respect to the capacity-rate imbalance of the counter-flow and the pressure ratio maintained by the compressor. This study shows the tradeoff between simplicity and increased performance, and outlines the path for further conceptual work on the extraction of exergy from a hot stream that is being cooled gradually. The aim
Geometric analysis of transient bursts
NASA Astrophysics Data System (ADS)
Osinga, Hinke M.; Tsaneva-Atanasova, Krasimira T.
2013-12-01
We consider the effect of a brief stimulation from the rest state of a minimal neuronal model with multiple time scales. Such transient dynamics brings out the intrinsic bursting capabilities of the system. Our main goal is to show that a minimum of three dimensions is enough to generate spike-adding phenomena in transient responses, and that the onset of a new spike can be tracked using existing continuation packages. We take a geometric approach to illustrate how the underlying fast subsystem organises the spike adding in much the same way as for spike adding in periodic bursts, but the bifurcation analysis for spike onset is entirely different. By using a generic model, we further strengthen claims made in our earlier work that our numerical method for spike onset can be used for a broad class of systems.
Geometric Mean Neutrino Mass Relation
NASA Astrophysics Data System (ADS)
He, Xiao-Gang; Zee, A.
Present experimental data from neutrino oscillations have provided much information about the neutrino mixing angles. Since neutrino oscillations only determine the mass squared differences Δ m2ij = m2i - m2j, the absolute values for neutrino masses mi, can not be determined using data just from oscillations. In this work we study implications on neutrino masses from a geometric mean mass relation m2 = √ {m1m_3} which enables one to determined the absolute masses of the neutrinos. We find that the central values of the three neutrino masses and their 2σ errors to be m1 = (1.58 ± 0.18)meV, m2 = (9.04 ± 0.42)meV, and m3 = (51.8 ± 3.5)meV. Implications for cosmological observation, beta decay and neutrinoless double beta decays are discussed.
Geometric asymmetry driven Janus micromotors.
Zhao, Guanjia; Pumera, Martin
2014-10-01
The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a "coconut" micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. PMID:25122607
Complex geometrical optics of inhomogeneous and nonlinear saturable media
NASA Astrophysics Data System (ADS)
Berczynski, Pawel
2013-05-01
The method of complex geometrical optics (CGO) is presented, which describes Gaussian beam (GB) diffraction and self-focusing along curvilinear trajectory in smoothly inhomogeneous and nonlinear saturable media. CGO method reduces the problem of Gaussian beam propagation in inhomogeneous and nonlinear media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, CGO radically simplifies the description of Gaussian beam diffraction and self-focusing effects as compared to the other methods of nonlinear optics such as: variational method approach, method of moments and beam propagation method. The power of CGO method is presented on the example of the evolution of beam intensity and wave front cross-section along curvilinear central ray with torsion in weakly absorptive and nonlinear saturable graded-index fiber, where the effect of initial beam ellipticity is included into our description.
Dualities and geometrical invariants for static and spherically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Seidel, Paola Terezinha; Cabral, Luís Antonio
2016-04-01
In this work, we consider spinless particles in curved spacetime and symmetries related to extended isometries. We search for solutions of a generalized Killing equation whose structure entails a general class of Killing tensors. The conserved quantities along particle’s geodesic are associated with a dual description of the spacetime metric. In the Hamiltonian formalism, some conserved quantities generate a dual description of the metric. The Killing tensors belonging to the conserved objects imply in a nontrivial class of dual metrics even for a Schwarzschild metric in the original spacetime. From these metrics, we construct geometrical invariants for classes of dual spacetimes to explore their singularity structure. A nontrivial singularity behavior is obtained in the dual sector.
Optimizing the geometrical accuracy of curvilinear meshes
NASA Astrophysics Data System (ADS)
Toulorge, Thomas; Lambrechts, Jonathan; Remacle, Jean-François
2016-04-01
This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Hausdorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a particular role of the enhanced mesh boundary smoothness.
Geometric solitons of Hamiltonian flows on manifolds
Song, Chong; Sun, Xiaowei; Wang, Youde
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Geometric solitons of Hamiltonian flows on manifolds
NASA Astrophysics Data System (ADS)
Song, Chong; Sun, Xiaowei; Wang, Youde
2013-12-01
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements
NASA Technical Reports Server (NTRS)
Liu, Tianshu
2002-01-01
This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.
NASA Technical Reports Server (NTRS)
Meyer, Peter; Green, Robert O.; Chrien, Thomas G.
1993-01-01
Remotely sensed data are affected by system (sensor and platform), and scene related effects. For quantitative investigations the spectral, radiometric characteristics of the system and scene have to be known. The relevant effects and their possible influence on an image have to be specifically determined for every remote sensing system and adequate description parameters need to be updated and reported on a regular basis as they are carried out, e.g., for the AVIRIS system. It is evident that the strength of the influence of similar effects in very dependent on the accessibility of auxiliary information about such sensor systems. Degradation in a spaceborne system can normally be just reported and cannot be corrected. In contrast, an airborne sensor can be evaluated, maintained and improved periodically. Such maintenance efforts are particularly important because airborne systems are exposed to extreme and changing environments. These include tens of takeoffs and landing each year as well as extreme changes in temperature and humidity on the tarmac and in flight. For the AVIRIS system there are environmental stresses such as changes in temperature, air pressure, humidity, vibration of the platform or scene-related reasons like atmospheric conditions, and topography. The information contained in the auxiliary files included with the AVIRIS data can be used to assess these effects and compensate for them. In addition the spectral, radiometer and geometric calibration data contained in the auxiliary file are required for quantitative analysis of the data. The paper describes tools to access the auxiliary information that characterizes the AVIRIS system. These tools allow the examination of parameters that may impact the quality of the measured AVIRIS image. An example of the use of this auxiliary data was carried out with regard to a parametric geocoding approach. Emphasis is placed on the reported auxiliary information that describes the geometric character of the
Clarifying Level Descriptors for Childrens' Understanding of Some Basic 2-D Geometric Shapes.
ERIC Educational Resources Information Center
Pegg, John; Davey, Geoff
1989-01-01
Written descriptions by students in grades 3-7 (n=274) of common 2-dimensional geometric shapes were examined to compare the level descriptors of the van Hiele Theory and the SOLO Taxonomy. Results indicate that descriptors associated with the SOLO Taxonomy more accurately describe the quality of student thinking. (MDH)
NASA Astrophysics Data System (ADS)
Morrison, David R.; Ronen Plesser, M.
2015-09-01
For complete intersection Calabi-Yau manifolds in toric varieties, Gross and Haase-Zharkov have given a conjectural combinatorial description of the special Lagrangian torus fibrations whose existence was predicted by Strominger, Yau and Zaslow. We present a geometric version of this construction, generalizing an earlier conjecture of the first author.
Geometrical and Graphical Solutions of Quadratic Equations.
ERIC Educational Resources Information Center
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Gaussian geometric discord of two-mode systems in a thermal environment
Suciu, Serban Isar, Aurelian
2014-11-24
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the Gaussian geometric discord for a system consisting of two non-interacting non-resonant bosonic modes embedded in a thermal environment. We take as initial state of the system a two-mode squeezed thermal state and describe the time evolution of the Gaussian geometric discord under the influence of the thermal bath. By tracing the distance between the state of the considered subsystem and the closest classical-quantum Gaussian state we evaluate the Gaussian geometric discord for all times and temperatures. The geometric discord has finite values between 0 and 1 and decreases asymptotically to zero at large times and temperatures with oscillations on the time axis.
Geometric Reasoning in an Active-Engagement Upper-Division E&M Classroom
NASA Astrophysics Data System (ADS)
Cerny, Leonard Thomas
A combination of theoretical perspectives is used to create a rich description of student reasoning when facing a highly-geometric electricity and magnetism problem in an upper-division active-engagement physics classroom at Oregon State University. Geometric reasoning as students encounter problem situations ranging from familiar to novel is described using van Zee and Manogue's (2010) ethnography of communication. Bing's (2008) epistemic framing model is used to illuminate how students are framing what they are doing and whether or not they see the problem as geometric. Kuo, Hull, Gupta, and Elby's (2010) blending model and Krutetskii's (1976) model of harmonic reasoning are used to illuminate ways students show problem-solving expertise. Sayer and Wittmann's (2008) model is used to show how resource plasticity impacts students' geometric reasoning and the degree to which students accept incorrect results.
A geometric crescent model for black hole images
NASA Astrophysics Data System (ADS)
Kamruddin, Ayman Bin; Dexter, Jason
2013-09-01
The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimetre wavelengths, is spatially resolving the immediate environments of black holes for the first time. The current observations of the Galactic centre black hole, Sagittarius A* (Sgr A*), and M87 have been interpreted in terms of either geometric models (e.g. a symmetric Gaussian) or detailed calculations of the appearance of black hole accretion flows. The former are not physically motivated, while the latter are subject to large systematic uncertainties. Motivated by the dominant relativistic effects of Doppler beaming and gravitational lensing in many calculations, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A* and M87, superior to other geometric models for Sgr A*. It also qualitatively matches physically predicted models, bridging accretion theory and observation. Based on our results, we make predictions for the detectability of the black hole shadow, a signature of strong gravity, in future observations.
ERIC Educational Resources Information Center
DuBridge, Lee A.
An appeal for more research to determine how to educate children as effectively as possible is made. Mathematics teachers can readily examine the educational problems of today in their classrooms since learning progress in mathematics can easily be measured and evaluated. Since mathematics teachers have learned to think in quantitative terms and…
ERIC Educational Resources Information Center
Sandelowski, Margarete; Voils, Corrine I.; Knafl, George
2009-01-01
"Quantitizing", commonly understood to refer to the numerical translation, transformation, or conversion of qualitative data, has become a staple of mixed methods research. Typically glossed are the foundational assumptions, judgments, and compromises involved in converting disparate data sets into each other and whether such conversions advance…
Abstract: In toxicology, the role of quantitative assessment of brain morphology can be understood in the context of two types of treatment-related alterations. One type of alteration is specifically associated with treatment and is not observed in control animals. Measurement ...
Tomlinson, A; Coupland, R E
1990-01-01
The innervation of the adrenal medulla has been investigated in normal Wistar rats from birth to old age and ultrastructural findings compared with biochemical markers of the cholinergic innervation of the adrenal gland and catecholamine storage. Morphological evidence of the immaturity of the innervation during the first postnatal week is provided and using quantitative morphometry the innervation of chromaffin cells is shown to reach a mean total of 5.4 synapses per chromaffin cell during the period 26 days to 12 weeks of age. The variation in contents of synaptic profiles is discussed in the light of recent work that demonstrates a major sensory as well as visceral efferent innervation of the gland. Adrenal medullary neurons usually occur in closely packed groups, intimately associated with Schwann cells. Axodendritic and axosomatic synapses on these neurons are described and the likely origin of axonal processes innervating the neurons discussed. In old age the density of innervation remains the same as in young adult animals even though the medulla shows evidence of hyperplasia and hypertrophy of individual chromaffin cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 Fig. 23 Fig. 24 Fig. 25 PMID:2384334
A geometric model of defensive peripersonal space
Bufacchi, R. J.; Liang, M.; Griffin, L. D.
2015-01-01
Potentially harmful stimuli occurring within the defensive peripersonal space (DPPS), a protective area surrounding the body, elicit stronger defensive reactions. The spatial features of the DPPS are poorly defined and limited to descriptive estimates of its extent along a single dimension. Here we postulated a family of geometric models of the DPPS, to address two important questions with respect to its spatial features: What is its fine-grained topography? How does the nervous system represent the body area to be defended? As a measure of the DPPS, we used the strength of the defensive blink reflex elicited by electrical stimulation of the hand (hand-blink reflex, HBR), which is reliably modulated by the position of the stimulated hand in egocentric coordinates. We tested the goodness of fit of the postulated models to HBR data from six experiments in which we systematically explored the HBR modulation by hand position in both head-centered and body-centered coordinates. The best-fitting model indicated that 1) the nervous system's representation of the body area defended by the HBR can be approximated by a half-ellipsoid centered on the face and 2) the DPPS extending from this area has the shape of a bubble elongated along the vertical axis. Finally, the empirical observation that the HBR is modulated by hand position in head-centered coordinates indicates that the DPPS is anchored to the face. The modeling approach described in this article can be generalized to describe the spatial modulation of any defensive response. PMID:26510762
A geometric model of defensive peripersonal space.
Bufacchi, R J; Liang, M; Griffin, L D; Iannetti, G D
2016-01-01
Potentially harmful stimuli occurring within the defensive peripersonal space (DPPS), a protective area surrounding the body, elicit stronger defensive reactions. The spatial features of the DPPS are poorly defined and limited to descriptive estimates of its extent along a single dimension. Here we postulated a family of geometric models of the DPPS, to address two important questions with respect to its spatial features: What is its fine-grained topography? How does the nervous system represent the body area to be defended? As a measure of the DPPS, we used the strength of the defensive blink reflex elicited by electrical stimulation of the hand (hand-blink reflex, HBR), which is reliably modulated by the position of the stimulated hand in egocentric coordinates. We tested the goodness of fit of the postulated models to HBR data from six experiments in which we systematically explored the HBR modulation by hand position in both head-centered and body-centered coordinates. The best-fitting model indicated that 1) the nervous system's representation of the body area defended by the HBR can be approximated by a half-ellipsoid centered on the face and 2) the DPPS extending from this area has the shape of a bubble elongated along the vertical axis. Finally, the empirical observation that the HBR is modulated by hand position in head-centered coordinates indicates that the DPPS is anchored to the face. The modeling approach described in this article can be generalized to describe the spatial modulation of any defensive response. PMID:26510762
Geometric Quantization and Foliation Reduction
NASA Astrophysics Data System (ADS)
Skerritt, Paul
A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether "quantization commutes with reduction." Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kahler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kahler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds. In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kahler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or "admissible", values of momentum. We first propose a reduction procedure for the prequantum geometric structures that "covers" symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems. We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces. Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees
Geometric asymmetry driven Janus micromotors
NASA Astrophysics Data System (ADS)
Zhao, Guanjia; Pumera, Martin
2014-09-01
The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S
Multiple representation approach to geometric model construction from range data
NASA Astrophysics Data System (ADS)
Koivunen, Visa; Vezien, Jean-Marc; Bajcsy, Ruzena
1995-04-01
A method is presented for constructing geometric design data from noisy 3-D sensor measurements of physical parts. In early processing phase, RLTS regression filters stemming from robust estimation theory are used for separating the desired part of the signal in contaminated sensor data from undesired part. Strategies for producing a complete 3-D data set from partial views are studied. Surface triangulation, NURBS, and superellipsoids are employed in model construction to be able to represent efficiently polygonal shapes, free form surfaces and standard primitive solids. Multiple representations are used because there is no single representation that would be most appropriate in all situations. The size of the required control point mesh for spline description is estimated using a surface characterization process. Surfaces of arbitrary topology are modeled using triangulation and trimmed NURBS. A user given tolerance value is driving refinement of the obtained surface model. The resulting model description is a procedural CAD model which can convey structural information in addition to low level geometric primitives. The model is translated to IGES standard product data exchange format to enable data sharing with other processes in concurrent engineering environment. Preliminary results on view registration and integration using simulated data are shown. Examples of model construction using both real and simulated data are also given.
Generalized Geometric Quantum Speed Limits
NASA Astrophysics Data System (ADS)
Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.
2016-04-01
The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
Geometric reasoning about assembly tools
Wilson, R.H.
1997-01-01
Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.
Geometrical aspects of quantum spaces
Ho, P.M.
1996-05-11
Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S{sub 1}{sup 2} and the quantum complex projective space CP{sub q}(N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S{sub q}{sup 2} and CP{sub q}(N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP{sub q}(N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given.
Geometric Reasoning for Automated Planning
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
Phenomenological modeling of geometric metasurfaces.
Ye, Weimin; Guo, Qinghua; Xiang, Yuanjiang; Fan, Dianyuan; Zhang, Shuang
2016-04-01
Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, focusing on achiral meta-atoms only with electric polarizability and thickness far less than the wavelength of light, and ignoring the coupling between meta-atoms, we propose a general phenomenological method to analytically model the metasurfaces based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces constituted by identical meta-atoms with different orientations, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces. PMID:27137005
Geometric morphology of cellular solids
Schlei, B. R.; Prasad, L.; Skourikhine, A. N.
2001-01-01
We demonstrate how to derive morphological information from micrographs, i.e., grey-level images, of polymeric foams. The segmentation of the images is performed by applying a pulse-coupled neural network. This processing generates blobs of the foams walls/struts and voids, respectively. The contours of the blobs and their corresponding points form the input to a constrained Delaunay tessellation, which provides an unstructured grid of the material under consideration. The subsequently applied Chordal Axis Transform captures the intrinsic shape characteristics, and facilitates the identification and localization of key morphological features. While stochastic features of the polymeric foams struts/walls such as areas, aspect ratios, etc., already can be computed at this stage, the foams voids require further geometric processing. The voids are separated into single foam cells. This shape manipulation leads to a refinement of the initial blob contours, which then requires the repeated application of the constrained Delaunay tessellation and Chordal Axis Transform, respectively. Using minimum enclosing rectangles for each foam cell, finally the stochastic features of the foam voids are computed.
Students' Geometrical Perception on a Task-Based Dynamic Geometry Platform
ERIC Educational Resources Information Center
Leung, Allen; Lee, Arthur Man Sang
2013-01-01
This paper describes a task-based dynamic geometry platform that is able to record student responses in a collective fashion to pre-designed dragging tasks. The platform provides a new type of data and opens up a quantitative dimension to interpret students' geometrical perception in dynamic geometry environments. The platform is capable of…
Gaining Insights into Children's Geometric Knowledge
ERIC Educational Resources Information Center
Mack, Nancy K.
2007-01-01
This article describes how research on children's geometric thinking was used in conjunction with the picture book "The Greedy Triangle" to gain valuable insights into children's prior geometric knowledge of polygons. Exercises focused on the names, visual appearance, and properties of polygons, as well as real-world connections for each, are…
On geometric interpretation of the berry phase
NASA Astrophysics Data System (ADS)
Katanaev, M. O.
2012-03-01
A geometric interpretation of the Berry phase and its Wilczek-Zee non-Abelian generalization are given in terms of connections on principal fiber bundles. It is demonstrated that a principal fiber bundle can be trivial in all cases, while the connection and its holonomy group are nontrivial. Therefore, the main role is played by geometric rather than topological effects.
Solving Absolute Value Equations Algebraically and Geometrically
ERIC Educational Resources Information Center
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Geometric Growing Patterns: What's the Rule?
ERIC Educational Resources Information Center
Hourigan, Mairéad; Leavy, Aisling
2015-01-01
While within a geometric repeating pattern, there is an identifiable core which is made up of objects that repeat in a predictable manner, a geometric growing pattern (also called visual or pictorial growing patterns in other curricula) "is a pattern that is made from a sequence of figures [or objects] that change from one term to the next in…
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-01
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. PMID:26124252
Early Sex Differences in Weighting Geometric Cues
ERIC Educational Resources Information Center
Lourenco, Stella F.; Addy, Dede; Huttenlocher, Janellen; Fabian, Lydia
2011-01-01
When geometric and non-geometric information are both available for specifying location, men have been shown to rely more heavily on geometry compared to women. To shed insight on the nature and developmental origins of this sex difference, we examined how 18- to 24-month-olds represented the geometry of a surrounding (rectangular) space when…
Quantitative Literacy: Geosciences and Beyond
NASA Astrophysics Data System (ADS)
Richardson, R. M.; McCallum, W. G.
2002-12-01
Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.
Mobility in geometrically confined membranes.
Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia
2011-08-01
Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336
Geometric metastability, quivers and holography
Aganagic, Mina; Aganagic, Mina; Beem, Christopher; Freivogel, Ben
2007-09-06
We use large N duality to study brane/anti-brane configurations on a class of Calabi-Yau manifolds. With only branes present, the Calabi-Yau manifolds in question give rise to N=2 ADE quiver theories deformed by superpotential terms. We show that the large N duality conjecture of hep-th/0610249 reproduces correctly the known qualitative features of the brane/anti-brane physics. In the supersymmetric case, the gauge theories have Seiberg dualities which are represented as flops in the geometry. Moreover, the holographic dual geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case, the large N duality predicts that the brane/anti-brane theories also enjoy such dualities, and allows one to pick out the good description at a given energy scale.
Quantitative Radiological Diagnosis Of The Temporomandibular Joint
NASA Astrophysics Data System (ADS)
Jordan, Steven L.; Heffez, Leslie B.
1989-05-01
Recent impressive technological advances in imaging techniques for the human temporomandibular (tm) joint, and in enabling geometric algorithms have outpaced diagnostic analyses. The authors present a basis for systematic quantitative diagnoses that exploit the imaging advancements. A reference line, coordinate system, and transformations are described that are appropriate for tomography of the tm joint. These yield radiographic measurements (disk displacement) and observations (beaking of radiopaque dye and disk shape) that refine diagnostic classifications of anterior displacement of the condylar disk. The relevance of these techniques has been clinically confirmed. Additional geometric invariants and procedures are proposed for future clinical verification.
Geometric quantum discord under noisy environment
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Qiu, Daowen
2016-05-01
In this work, we mainly analyze the dynamics of geometric quantum discord under a common dissipating environment. Our results indicate that geometric quantum discord is generated when the initial state is a product state. The geometric quantum discord increases from zero to a stable value with the increasing time, and the variations of stable values depend on the system size. For different initial product states, geometric quantum discord has some different behaviors in contrast with entanglement. For initial maximally entangled state, it is shown that geometric quantum discord decays with the increasing dissipated time. It is found that for EPR state, entanglement is more robust than geometric quantum discord, which is a sharp contrast to the existing result that quantum discord is more robust than entanglement in noisy environments. However, for GHZ state and W state, geometric quantum discord is more stable than entanglement. By the comparison of quantum discord and entanglement, we find that a common dissipating environment brings complicated effects on quantum correlation, which may deepen our understanding of physical impacts of decohering environment on quantum correlation. In the end, we analyze the effects of collective dephasing noise and rotating noise to a class of two-qubit X states, and we find that quantum correlation is not altered by the collective noises.
Conceptual aspects of geometric quantum computation
NASA Astrophysics Data System (ADS)
Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.
2016-07-01
Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.
On geometric factors for neutral particle analyzers
Stagner, L.; Heidbrink, W. W.
2014-11-15
Neutral particle analyzers (NPA) detect neutralized energetic particles that escape from plasmas. Geometric factors relate the counting rate of the detectors to the intensity of the particle source. Accurate geometric factors enable quick simulation of geometric effects without the need to resort to slower Monte Carlo methods. Previously derived expressions [G. R. Thomas and D. M. Willis, “Analytical derivation of the geometric factor of a particle detector having circular or rectangular geometry,” J. Phys. E: Sci. Instrum. 5(3), 260 (1972); J. D. Sullivan, “Geometric factor and directional response of single and multi-element particle telescopes,” Nucl. Instrum. Methods 95(1), 5–11 (1971)] for the geometric factor implicitly assume that the particle source is very far away from the detector (far-field); this excludes applications close to the detector (near-field). The far-field assumption does not hold in most fusion applications of NPA detectors. We derive, from probability theory, a generalized framework for deriving geometric factors that are valid for both near and far-field applications as well as for non-isotropic sources and nonlinear particle trajectories.
Stereo Orthogonal Axonometric Perspective for the Teaching of Descriptive Geometry
ERIC Educational Resources Information Center
Méxas, José Geraldo Franco; Guedes, Karla Bastos; Tavares, Ronaldo da Silva
2015-01-01
Purpose: The purpose of this paper is to present the development of a software for stereo visualization of geometric solids, applied to the teaching/learning of Descriptive Geometry. Design/methodology/approach: The paper presents the traditional method commonly used in computer graphic stereoscopic vision (implemented in C language) and the…
Geometric Gyrokinetic Theory for Edge Plasma
Qin, H; Cohen, R H; Nevins, W M; Xu, X Q
2007-01-18
It turns out that gyrokinetic theory can be geometrically formulated as special cases of a geometrically generalized Vlasov-Maxwell system. It is proposed that the phase space of the spacetime is a 7-dimensional fiber bundle P over the 4-dimensional spacetime M, and that a Poincare-Cartan-Einstein 1-form {gamma} on the 7-dimensional phase space determines particles worldlines in the phase space. Through Liouville 6-form {Omega} and fiber integral, the 1-form {gamma} also uniquely defines a geometrically generalized Vlasov-Maxwell system as a field theory for the collective electromagnetic field. The geometric gyrokinetic theory is then developed as a special case of the geometrically generalized Vlasov-Maxwell system. In its most general form, gyrokinetic theory is about a symmetry, called gyro-symmetry, for magnetized plasmas, and the 1-form {gamma} again uniquely defines the gyro-symmetry. The objective is to decouple the gyro-phase dynamics from the rest of particle dynamics by finding the gyro-symmetry in {gamma}. Compared with other methods of deriving the gyrokinetic equations, the advantage of the geometric approach is that it allows any approximation based on mathematical simplification or physical intuition to be made at the 1-form level, and yet the field theories still have the desirable exact conservation properties such as phase space volume conservation and energy-momentum conservation if the 1-form does not depend on the spacetime coordinate explicitly. A set of generalized gyrokinetic equations valid for the edge plasmas is then derived using this geometric method. This formalism allows large-amplitude, time-dependent background electromagnetic fields to be developed fully nonlinearly in addition to small-amplitude, short-wavelength electromagnetic perturbations. The fact that we adopted the geometric method in the present study does not necessarily imply that the major results reported here can not be achieved using classical methods. What the
NASA Technical Reports Server (NTRS)
Parse, Joseph B.; Wert, J. A.
1991-01-01
Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.
Numerical procedure to determine geometric view factors for surfaces occluded by cylinders
NASA Technical Reports Server (NTRS)
Sawyer, P. L.
1978-01-01
A numerical procedure was developed to determine geometric view factors between connected infinite strips occluded by any number of infinite circular cylinders. The procedure requires a two-dimensional cross-sectional model of the configuration of interest. The two-dimensional model consists of a convex polygon enclosing any number of circles. Each side of the polygon represents one strip, and each circle represents a circular cylinder. A description and listing of a computer program based on this procedure are included in this report. The program calculates geometric view factors between individual strips and between individual strips and the collection of occluding cylinders.
Acquisition of teleological descriptions
NASA Astrophysics Data System (ADS)
Franke, David W.
1992-03-01
Teleology descriptions capture the purpose of an entity, mechanism, or activity with which they are associated. These descriptions can be used in explanation, diagnosis, and design reuse. We describe a technique for acquiring teleological descriptions expressed in the teleology language TeD. Acquisition occurs during design by observing design modifications and design verification. We demonstrate the acquisition technique in an electronic circuit design.
Surgical correction of gynecomastia: a geometric approach.
Martin, Antony E; Olinger, Thomas A; Yu, Jack C
2015-05-01
Many techniques are available for surgical correction of gynecomastia. In this article, we describe a technique based on geometrical principles that is simple to execute, effective, highly reproducible, and relies less on intuition of the surgeon. PMID:25919255
Geometric symmetries in superfluid vortex dynamics
Kozik, Evgeny; Svistunov, Boris
2010-10-01
Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z), describing the instant shape of the line. Along with a natural set of Noether's constants of motion, which - apart from their rather specific expressions in terms of w(z) - are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.
The Pentagon Problem: Geometric Reasoning with Technology.
ERIC Educational Resources Information Center
Zbiek, Rose Mary
1996-01-01
Presents an activity, involving pentagons and using a figure manipulator such as The Geometer's Sketchpad, that requires students to reason geometrically without making unsubstantiated assumptions based on diagrams. (MKR)
The perception of geometrical structure from congruence
NASA Technical Reports Server (NTRS)
Lappin, Joseph S.; Wason, Thomas D.
1989-01-01
The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.
Barkmann, R; Glüer, C-C
2006-10-01
Methods of quantitative ultrasound (QUS) can be used to obtain knowledge about bone fragility. Comprehensive study results exist showing the power of QUS for the estimation of osteoporotic fracture risk. Nevertheless, the variety of technologies, devices, and variables as well as different degrees of validation of the single devices have to be taken into account. Using methods to simulate ultrasound propagation, the complex interaction between ultrasound and bone could be understood and the propagation could be visualized. Preceding widespread clinical use, it has to be clarified if patients with low QUS values will profit from therapy, as it has been shown for DXA. Moreover, the introduction of quality assurance measures is essential. The user should know the limitations of the methods and be able to interpret the results correctly. Applied in an adequate manner QUS methods could then, due to lower costs and absence of ionizing radiation, become important players in osteoporosis management. PMID:16896637
Machine Learning and Geometric Technique for SLAM
NASA Astrophysics Data System (ADS)
Bernal-Marin, Miguel; Bayro-Corrochano, Eduardo
This paper describes a new approach for building 3D geometric maps using a laser rangefinder, a stereo camera system and a mathematical system the Conformal Geometric Algebra. The use of a known visual landmarks in the map helps to carry out a good localization of the robot. A machine learning technique is used for recognition of objects in the environment. These landmarks are found using the Viola and Jones algorithm and are represented with their position in the 3D virtual map.
The Geometric Grids of the Hieratic Numeral.
NASA Astrophysics Data System (ADS)
Aboulfotouh, Hossam M. K.
The paper discusses the geometrical designs of the hieratic numeral signs. It shows the regular-grid-patterns of squares upon which, the shapes of the already decoded hieratic numeral-signs, have been designed. Also, it shows the design of some hieratic numeral signs, based on subdividing the circle; and the hieratic signs of modular notation. It might reveal the basic geometrical level of understanding of anonymous ancient Egyptians who designed them some four thousand years ago.
Towards quantitative assessment of calciphylaxis
NASA Astrophysics Data System (ADS)
Deserno, Thomas M.; Sárándi, István.; Jose, Abin; Haak, Daniel; Jonas, Stephan; Specht, Paula; Brandenburg, Vincent
2014-03-01
Calciphylaxis is a rare disease that has devastating conditions associated with high morbidity and mortality. Calciphylaxis is characterized by systemic medial calcification of the arteries yielding necrotic skin ulcerations. In this paper, we aim at supporting the installation of multi-center registries for calciphylaxis, which includes a photographic documentation of skin necrosis. However, photographs acquired in different centers under different conditions using different equipment and photographers cannot be compared quantitatively. For normalization, we use a simple color pad that is placed into the field of view, segmented from the image, and its color fields are analyzed. In total, 24 colors are printed on that scale. A least-squares approach is used to determine the affine color transform. Furthermore, the card allows scale normalization. We provide a case study for qualitative assessment. In addition, the method is evaluated quantitatively using 10 images of two sets of different captures of the same necrosis. The variability of quantitative measurements based on free hand photography is assessed regarding geometric and color distortions before and after our simple calibration procedure. Using automated image processing, the standard deviation of measurements is significantly reduced. The coefficients of variations yield 5-20% and 2-10% for geometry and color, respectively. Hence, quantitative assessment of calciphylaxis becomes practicable and will impact a better understanding of this rare but fatal disease.
Cylinder light concentrator and absorber: theoretical description.
Kildishev, Alexander V; Prokopeva, Ludmila J; Narimanov, Evgenii E
2010-08-01
We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications--from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the desired ray-optical performance, can provide absorption efficiencies comparable to those of ideal devices with a smooth gradient in index. PMID:20721056
Auto-Parametric Resonance in Cyclindrical Shells Using Geometric Averaging
NASA Astrophysics Data System (ADS)
MCROBIE, F. A.; POPOV, A. A.; THOMPSON, J. M. T.
1999-10-01
A study is presented of internal auto-parametric instabilities in the free non-linear vibrations of a cylindrical shell, focussed on two modes (a concertina mode and a chequerboard mode) whose non-linear interaction breaks the in-out symmetry of the linear vibration theory: the two mode interaction leads to preferred vibration patterns with larger deflection inwards than outwards, and at internal resonance, significant energy transfer occurs between the modes. A Rayleigh-Ritz discretization of the von Kármán-Donnell equations leads to the Hamiltonian and transformation into action-angle co-ordinates followed by averaging provides readily a geometric description of the modal interaction. It was established that the interaction should be most pronounced when there are slightly less than 2√N square chequerboard panels circumferentially, where N is the ratio of shell radius to thickness.
Determining Geometrically Stable Domains in Molecular Conformation Sets.
Romanowska, Julia; Nowiński, Krzysztof S; Trylska, Joanna
2012-08-14
Detecting significant conformational changes occurring in biomolecules is a challenging task, especially when considering tens to hundreds of thousands of conformations. Conformational variability can be described by dividing a biomolecule into dynamic domains, i.e., by finding compact fragments that move as coherent units. Typical approaches, based on calculating a dynamical cross-correlation matrix, are limited by their inability to reveal correlated rotations and anticorrelated motions. We propose a geometric approach for finding dynamic domains, where we compare traces of atomic movements in a pairwise manner, and search for their best superposition. A quaternion representation of rotation is used to simplify the complex calculations. The algorithm was implemented in a Java graphical program: Geometrically Stable Substructures (GeoStaS). The program processes PDB and DCD binary files with large structural sets for proteins, nucleic acids, and their complexes. We demonstrate its efficiency in analyzing (a) ensembles of structures generated by NMR experiments and (b) conformation sets from biomolecular simulations, such as molecular dynamics. The results provide a clear description of the molecular movements even for large biomolecules. Compared to a standard dynamic cross-correlation matrix, our algorithm detects the correlations in both translational and rotational motions. PMID:26592104
Excitation and geometrically matched local encoding of curved slices.
Weber, Hans; Gallichan, Daniel; Schultz, Gerrit; Cocosco, Chris A; Littin, Sebastian; Reichardt, Wilfried; Welz, Anna; Witschey, Walter; Hennig, Jürgen; Zaitsev, Maxim
2013-05-01
In this work, the concept of excitation and geometrically matched local in-plane encoding of curved slices (ExLoc) is introduced. ExLoc is based on a set of locally near-orthogonal spatial encoding magnetic fields, thus maintaining a local rectangular shape of the individual voxels and avoiding potential problems arising due to highly irregular voxel shapes. Unlike existing methods for exciting curved slices based on multidimensional radiofrequency-pulses, excitation and geometrically matched local encoding of curved slices does not require long duration or computationally expensive radiofrequency-pulses. As each encoding field consists of a superposition of potentially arbitrary (spatially linear or nonlinear) magnetic field components, the resulting field shape can be adapted with high flexibility to the specific region of interest. For extended nonplanar structures, this results in improved relevant volume coverage for fewer excited slices and thus increased efficiency. In addition to the mathematical description for the generation of dedicated encoding fields and data reconstruction, a verification of the ExLoc concept in phantom experiments and examples for in vivo curved single and multislice imaging are presented. PMID:22711656
Geometric supergravity in D=11 and its hidden supergroup
NASA Astrophysics Data System (ADS)
D'Auria, R.; Fré, P.
1982-06-01
In this paper we address two questions: the geometrical formulation of D = 11 supergravity and the derivation of the super Lie algebra it is based on. The solutions of the two problems are intimately related and are obtained via the introduction of the new concept of a Cartan integrable system described in this paper. The previously developed group manifold framework can be naturally extended to a Cartan integrable system manifold approach. Within this scheme we obtain a geometric action for D = 11 supergravity based on a suitable Cartan system. This latter turns out to be a compact description of a two-element class of supergroups containing, besides Lorentz Jab, translation Pa and ordinary supersymmetry Q, the following extra generators: two- and five-index skew-symmetric tensors Za1 a2 , Za1… a5 and a further spinorial charge Q'. Q' commutes with itself and everything Jab. It appears in the commutators of Q with Pa, Za1 a2 , Za1 … a5.
Quantitative description of realistic wealth distributions by kinetic trading models.
Lammoglia, Nelson; Muñoz, Víctor; Rogan, José; Toledo, Benjamín; Zarama, Roberto; Valdivia, Juan Alejandro
2008-10-01
Data on wealth distributions in trading markets show a power law behavior x(-)(1+alpha) at the high end, where, in general, alpha is greater than 1 (Pareto's law). Models based on kinetic theory, where a set of interacting agents trade money, yield power law tails if agents are assigned a saving propensity. In this paper we are solving the inverse problem, that is, in finding the saving propensity distribution which yields a given wealth distribution for all wealth ranges. This is done explicitly for two recently published and comprehensive wealth datasets. PMID:18999570
Quantitative representation and description of intravoxel fiber complexity in HARDI
NASA Astrophysics Data System (ADS)
Sun, Chang-yu; Chu, Chun-yu; Liu, Wan-yu; Hsu, Edward W.; Korenberg, Julie R.; Zhu, Yue-min
2015-11-01
Diffusion tensor imaging and high angular resolution diffusion imaging are often used to analyze the fiber complexity of tissues. In these imaging techniques, the most commonly calculated metric is anisotropy, such as fractional anisotropy (FA), generalized anisotropy (GA), and generalized fractional anisotropy (GFA). The basic idea underlying these metrics is to compute the deviation from free or spherical diffusion. However, in many cases, the question is not really to know whether it concerns spherical diffusion. Instead, the main concern is to describe and quantify fiber complexity such as fiber crossing in a voxel. In this context, it would be more direct and effective to compute the deviation from a single fiber bundle instead of a sphere. We propose a new metric, called PEAM (PEAnut Metric), which is based on computing the deviation of orientation diffusion functions (ODFs) from a single fiber bundle ODF represented by a peanut. As an example, the proposed PEAM metric is used to classify intravoxel fiber configurations. The results on simulated data, physical phantom data and real brain data consistently showed that the proposed PEAM provides greater accuracy than FA, GA and GFA and enables parallel and complex fibers to be better distinguished.
Dual Enrollment in a Rural Environment: A Descriptive Quantitative Study
ERIC Educational Resources Information Center
Dodge, Mary Beth
2012-01-01
Dual enrollment is a federally funded program that offers high school students the opportunity to earn both high school and postsecondary credits for the same course. While the phenomenon of concurrent enrollment in postsecondary and college educational programs is not new, political support and public funding has drawn focus to the policies of…
Quantitative description of realistic wealth distributions by kinetic trading models
NASA Astrophysics Data System (ADS)
Lammoglia, Nelson; Muñoz, Víctor; Rogan, José; Toledo, Benjamín; Zarama, Roberto; Valdivia, Juan Alejandro
2008-10-01
Data on wealth distributions in trading markets show a power law behavior x-(1+α) at the high end, where, in general, α is greater than 1 (Pareto’s law). Models based on kinetic theory, where a set of interacting agents trade money, yield power law tails if agents are assigned a saving propensity. In this paper we are solving the inverse problem, that is, in finding the saving propensity distribution which yields a given wealth distribution for all wealth ranges. This is done explicitly for two recently published and comprehensive wealth datasets.
A Survey of Quantitative Descriptions of Molecular Structure
Guha, Rajarshi; Willighagen, Egon
2013-01-01
Numerical characterization of molecular structure is a first step in many computational analysis of chemical structure data. These numerical representations, termed descriptors, come in many forms, ranging from simple atom counts and invariants of the molecular graph to distribution of properties, such as charge, across a molecular surface. In this article we first present a broad categorization of descriptors and then describe applications and toolkits that can be employed to evaluate them. We highlight a number of issues surrounding molecular descriptor calculations such as versioning and reproducibility and describe how some toolkits have attempted to address these problems. PMID:23110530
Geometric complexity is increased in in vitro activated platelets.
Bianciardi, Giorgio
2015-06-01
This article investigates the use of computerized fractal analysis for objective characterization of the complexity of platelets in vitro stimulated by low level thrombin (0.02 U mL(-1) ), collected from healthy individuals and observed by means of transmission electron microscopy. Platelet boundaries were extracted by means of automatically image analysis. Local fractal dimension was evaluated by the box-counting technique (measure of geometric complexity of the platelet outline). The results showed that the platelet boundary is fractal when observed by transmission electron microscopy and that, after an in vitro platelet activation test, the shape of platelets present increased geometric complexity in comparison to the no stimulated platelets (P < 0.001), with 100% correct classification. Computerized fractal analysis of platelet shape by transmission electron microscopy can provide accurate, quantitative, data to study platelet activation. The results may play important roles in the evaluation of the platelets status in pathological conditions, like as atherosclerosis and diabetes mellitus, where in in vivo activated platelets have been described. PMID:25808036
Geometric estimation method for x-ray digital intraoral tomosynthesis
NASA Astrophysics Data System (ADS)
Li, Liang; Yang, Yao; Chen, Zhiqiang
2016-06-01
It is essential for accurate image reconstruction to obtain a set of parameters that describes the x-ray scanning geometry. A geometric estimation method is presented for x-ray digital intraoral tomosynthesis (DIT) in which the detector remains stationary while the x-ray source rotates. The main idea is to estimate the three-dimensional (3-D) coordinates of each shot position using at least two small opaque balls adhering to the detector surface as the positioning markers. From the radiographs containing these balls, the position of each x-ray focal spot can be calculated independently relative to the detector center no matter what kind of scanning trajectory is used. A 3-D phantom which roughly simulates DIT was designed to evaluate the performance of this method both quantitatively and qualitatively in the sense of mean square error and structural similarity. Results are also presented for real data acquired with a DIT experimental system. These results prove the validity of this geometric estimation method.
Rational and efficient geometric definition of pharmacophores is essential for the patent process.
Guérin, Georges-Alexandre; Pratuangdejkul, Jaturong; Alemany, Monica; Launay, Jean-Marie; Manivet, Philippe
2006-11-01
The geometric description of pharmacophores suffers from approximations. No consensus has been clearly established, despite the increasing interest in using pharmacophores in drug design and in patent applications. We therefore propose an original definition of a pharmacophore using spherical coordinates. These coordinates give a precise description of each point using three parameters: distance to a geometric origin and two angles. If necessary, these parameters can be easily and rapidly converted to cartesian coordinates. Our method can guarantee, to the patent applicant, the safe protection of his intellectual property by both improving markedly the readability of a pharmacophore definition and bringing, to the person who is skilled in the art, enough information to understand easily the essence of the invention. PMID:17055408
Introduction to Dynamical Systems and Geometric Mechanics
NASA Astrophysics Data System (ADS)
Maruskin, Jared M.
2012-01-01
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explores similar systems that instead evolve on differentiable manifolds. In the study of geometric mechanics, however, additional geometric structures are often present, since such systems arise from the laws of nature that govern the motions of particles, bodies, and even galaxies. In the first part of the text, we discuss linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, PoincarÃ© maps, Floquet theory, the PoincarÃ©-Bendixson theorem, bifurcations, and chaos. The second part of the text begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms. The final chapters cover Lagrangian and Hamiltonian mechanics from a modern geometric perspective, mechanics on Lie groups, and nonholonomic mechanics via both moving frames and fiber bundle decompositions. The text can be reasonably digested in a single-semester introductory graduate-level course. Each chapter concludes with an application that can serve as a springboard project for further investigation or in-class discussion.
Unifying Geometrical Representations of Gauge Theory
NASA Astrophysics Data System (ADS)
Alsid, Scott; Serna, Mario
2015-01-01
We unify three approaches within the vast body of gauge-theory research that have independently developed distinct representations of a geometrical surface-like structure underlying the vector-potential. The three approaches that we unify are: those who use the compactified dimensions of Kaluza-Klein theory, those who use Grassmannian models (also called gauge theory embedding or models) to represent gauge fields, and those who use a hidden spatial metric to replace the gauge fields. In this paper we identify a correspondence between the geometrical representations of the three schools. Each school was mostly independently developed, does not compete with other schools, and attempts to isolate the gauge-invariant geometrical surface-like structures that are responsible for the resulting physics. By providing a mapping between geometrical representations, we hope physicists can now isolate representation-dependent physics from gauge-invariant physical results and share results between each school. We provide visual examples of the geometrical relationships between each school for electric and magnetic fields. We highlight a first new result: in all three representations a static electric field (electric field from a fixed ring of charge or a sphere of charge) has a hidden gauge-invariant time dependent surface that is underlying the vector potential.
Geometric rectification of airborne sensor data using GPS-based attitude and position information
Wilson, A.K.; Mockridge, W.
1996-11-01
The geometric rectification of remotely sensed data, acquired using airborne platforms, is an essential prerequisite for quantitative processing and analysis, due to the complex distortions inherent in such imagery. The Natural Environment Research Council (NERC) has implemented an Integrated Data System (IDS) on-board its survey aircraft to derive both attitude and position for use in a parametric solution to the geometric correction of data from two airborne sensors. This paper describes the elements of the NERC IDS and the complementary ground data processing system that carries out navigation pre-processing and geometric resampling of the airborne data. Test flights have been flown and processed to demonstrate the potential of this completely GPS-based solution to providing high quality, spatially referenced, data for use in environmental monitoring applications. 6 refs., 5 figs., 1 tab.
Multimedia content description framework
NASA Technical Reports Server (NTRS)
Bergman, Lawrence David (Inventor); Kim, Michelle Yoonk Yung (Inventor); Li, Chung-Sheng (Inventor); Mohan, Rakesh (Inventor); Smith, John Richard (Inventor)
2003-01-01
A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.
The geometric phase controls ultracold chemistry.
Kendrick, B K; Hazra, Jisha; Balakrishnan, N
2015-01-01
The geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born-Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O+OH→H+O2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity. PMID:26224326
Quantification of Osteon Morphology Using Geometric Histomorphometrics.
Dillon, Scott; Cunningham, Craig; Felts, Paul
2016-03-01
Many histological methods in forensic anthropology utilize combinations of traditional histomorphometric parameters which may not accurately describe the morphology of microstructural features. Here, we report the novel application of a geometric morphometric method suitable when considering structures without anatomically homologous landmarks for the quantification of complete secondary osteon size and morphology. The method is tested for its suitability in the measurement of intact secondary osteons using osteons digitized from transverse femoral diaphyseal sections prepared from two human individuals. The results of methodological testing demonstrate the efficacy of the technique when applied to intact secondary osteons. In providing accurate characterization of micromorphology within the robust mathematical framework of geometric morphometrics, this method may surpass traditional histomorphometric variables currently employed in forensic research and practice. A preliminary study of the intersectional histomorphometric variation within the femoral diaphysis is made using this geometric histomorphometric method to demonstrate its potential. PMID:26478136
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545
Geometric direct search algorithms for image registration.
Lee, Seok; Choi, Minseok; Kim, Hyungmin; Park, Frank Chongwoo
2007-09-01
A widely used approach to image registration involves finding the general linear transformation that maximizes the mutual information between two images, with the transformation being rigid-body [i.e., belonging to SE(3)] or volume-preserving [i.e., belonging to SL(3)]. In this paper, we present coordinate-invariant, geometric versions of the Nelder-Mead optimization algorithm on the groups SL(3), SE(3), and their various subgroups, that are applicable to a wide class of image registration problems. Because the algorithms respect the geometric structure of the underlying groups, they are numerically more stable, and exhibit better convergence properties than existing local coordinate-based algorithms. Experimental results demonstrate the improved convergence properties of our geometric algorithms. PMID:17784595
The Geometric Phase of Stock Trading.
Altafini, Claudio
2016-01-01
Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote. PMID:27556642
MM Algorithms for Geometric and Signomial Programming
Lange, Kenneth; Zhou, Hua
2013-01-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545
Detection of geometric phases in superconducting nanocircuits
NASA Astrophysics Data System (ADS)
Falci, Giuseppe; Fazio, Rosario; Palma, G. Massimo; Siewert, Jens; Vedral, Vlatko
2000-09-01
When a quantum-mechanical system undergoes an adiabatic cyclic evolution, it acquires a geometrical phase factor in addition to the dynamical one; this effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnology should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be realized, and show how the effect may be applied to the design of gates for quantum computation.
The geometric phase controls ultracold chemistry
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-01-01
The geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O+OH→H+O2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity. PMID:26224326
New developments on the geometric nonholonomic integrator
NASA Astrophysics Data System (ADS)
Ferraro, Sebastián; Jiménez, Fernando; Martín de Diego, David
2015-04-01
In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28 Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed to account for some of the special geometric structures associated to a nonholonomic motion, like preservation of energy, preservation of constraints or the nonholonomic momentum equation. First, we study the GNI versions of the symplectic-Euler methods, paying special attention to their convergence behaviour. Then, we construct an extension of the GNI in the case of affine constraints. Finally, we generalize the proposed method to nonholonomic reduced systems, an important subclass of examples in nonholonomic dynamics. We illustrate the behaviour of the proposed method with the example of the inhomogeneous sphere rolling without slipping on a table.
The Geometric Phase of Stock Trading
2016-01-01
Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote. PMID:27556642
The geometric phase controls ultracold chemistry
NASA Astrophysics Data System (ADS)
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-07-01
The geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born-Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O+OH-->H+O2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.
The geometric phase controls ultracold chemistry
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-07-30
In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + O_{2} reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.
Geometric spin echo under zero field
Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo
2016-01-01
Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936
Overview on METEOSAT geometrical image data processing
NASA Technical Reports Server (NTRS)
Diekmann, Frank J.
1994-01-01
Digital Images acquired from the geostationary METEOSAT satellites are processed and disseminated at ESA's European Space Operations Centre in Darmstadt, Germany. Their scientific value is mainly dependent on their radiometric quality and geometric stability. This paper will give an overview on the image processing activities performed at ESOC, concentrating on the geometrical restoration and quality evaluation. The performance of the rectification process for the various satellites over the past years will be presented and the impacts of external events as for instance the Pinatubo eruption in 1991 will be explained. Special developments both in hard and software, necessary to cope with demanding tasks as new image resampling or to correct for spacecraft anomalies, are presented as well. The rotating lens of MET-5 causing severe geometrical image distortions is an example for the latter.
Geometric spin echo under zero field.
Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo
2016-01-01
Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936
Gender recognition based on face geometric features
NASA Astrophysics Data System (ADS)
Xiao, Jie; Guo, Zhaoli; Cai, Chao
2013-10-01
Automatic gender recognition based on face images plays an important role in computer vision and machine vision. In this paper, a novel and simple gender recognition method based on face geometric features is proposed. The method is divided in three steps. Firstly, Pre-processing step provides standard face images for feature extraction. Secondly, Active Shape Model (ASM) is used to extract geometric features in frontal face images. Thirdly, Adaboost classifier is chosen to separate the two classes (male and female). We tested it on 2570 pictures (1420 males and 1150 females) downloaded from the internet, and encouraging results were acquired. The comparison of the proposed geometric feature based method and the full facial image based method demonstrats its superiority.
Geometric spin echo under zero field
NASA Astrophysics Data System (ADS)
Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo
2016-05-01
Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors.
The effect of photometric and geometric context on photometric and geometric lightness effects
Lee, Thomas Y.; Brainard, David H.
2014-01-01
We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects. PMID:24464163
Primary School Teacher Candidates' Geometric Habits of Mind
ERIC Educational Resources Information Center
Köse, Nilu¨fer Y.; Tanisli, Dilek
2014-01-01
Geometric habits of mind are productive ways of thinking that support learning and using geometric concepts. Identifying primary school teacher candidates' geometric habits of mind is important as they affect the development of their future students' geometric thinking. Therefore, this study attempts to determine primary school…
Scale-invariant geometric random graphs
NASA Astrophysics Data System (ADS)
Xie, Zheng; Rogers, Tim
2016-03-01
We introduce and analyze a class of growing geometric random graphs that are invariant under rescaling of space and time. Directed connections between nodes are drawn according to influence zones that depend on node position in space and time, mimicking the heterogeneity and increased specialization found in growing networks. Through calculations and numerical simulations we explore the consequences of scale invariance for geometric random graphs generated this way. Our analysis reveals a dichotomy between scale-free and Poisson distributions of in- and out-degree, the existence of a random number of hub nodes, high clustering, and unusual percolation behavior. These properties are similar to those of empirically observed web graphs.
Geometric accuracy in airborne SAR images
NASA Technical Reports Server (NTRS)
Blacknell, D.; Quegan, S.; Ward, I. A.; Freeman, A.; Finley, I. P.
1989-01-01
Uncorrected across-track motions of a synthetic aperture radar (SAR) platform can cause both a severe loss of azimuthal positioning accuracy in, and defocusing of, the resultant SAR image. It is shown how the results of an autofocus procedure can be incorporated in the azimuth processing to produce a fully focused image that is geometrically accurate in azimuth. Range positioning accuracy is also discussed, leading to a comprehensive treatment of all aspects of geometric accuracy. The system considered is an X-band SAR.
Geometric-phase atom optics and interferometry
NASA Astrophysics Data System (ADS)
Zygelman, B.
2015-10-01
We illustrate how geometric gauge forces and topological phase effects emerge in atomic and molecular systems without employing assumptions that rely on adiabaticity. We show how geometric magnetism may be harnessed to engineer novel quantum devices including a velocity sieve, a component in mass spectrometers, for neutral atoms. We introduce and outline a possible experimental setup that demonstrates topological interferometry for neutral spin-1/2 systems. For that two-level system, we study the transition from Abelian to non-Abelian behavior and explore its relation to the molecular Aharonov-Bohm effect.
The geometric phase in quantum physics
Bohm, A.
1993-03-01
After an explanatory introduction, a quantum system in a classical time-dependent environment is discussed; an example is a magnetic moment in a classical magnetic field. At first, the general abelian case is discussed in the adiabatic approximation. Then the geometric phase for nonadiabatic change of the environment (Anandan--Aharonov phase) is introduced, and after that general cyclic (nonadiabatic) evolution is discussed. The mathematics of fiber bundles is introduced, and some of its results are used to describe the relation between the adiabatic Berry phase and the geometric phase for general cyclic evolution of a pure state. The discussion is restricted to the abelian, U(1) phase.
Local Geometrical Machinery for Complexity and Control
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
In this Chapter, we present local geometrical machinery for studying complexity and control, consisting of dynamics on Kähler manifolds, which combine three geometrical structures-Riemannian, symplectic and complex (Hermitian)-in a mutually compatible way. In other words, every Kähler manifold is simultaneously Riemannian, symplectic and complex (Hermitian). It is well known that Riemannian manifolds represent the stage on which Lagrangian dynamics is set, symplectic manifolds represent the stage for Hamiltonian dynamics, and complex (Hermitian) varieties comprise the stage for quantum dynamics. Therefore, Kähler manifolds represent the richest dynamical stage available where Lagrangian, Hamiltonian, and quantum dynamics all dance together.
Model-based vision using geometric hashing
NASA Astrophysics Data System (ADS)
Akerman, Alexander, III; Patton, Ronald
1991-04-01
The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.
Physics 3204. Course Description.
ERIC Educational Resources Information Center
Newfoundland and Labrador Dept. of Education.
A description of the physics 3204 course in Newfoundland and Labrador is provided. The description includes: (1) statement of purpose, including general objectives of science education; (2) a list of six course objectives; (3) course content for units on sound, light, optical instruments, electrostatics, current electricity, Michael Faraday and…
Descriptive Metadata: Emerging Standards.
ERIC Educational Resources Information Center
Ahronheim, Judith R.
1998-01-01
Discusses metadata, digital resources, cross-disciplinary activity, and standards. Highlights include Standard Generalized Markup Language (SGML); Extensible Markup Language (XML); Dublin Core; Resource Description Framework (RDF); Text Encoding Initiative (TEI); Encoded Archival Description (EAD); art and cultural-heritage metadata initiatives;…
Descriptive models for single-jet sluicing of sludge waste
Erian, F.F.; Mahoney, L.A.; Terrones, G.
1997-12-01
Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better
Theoretical description of Coulomb balls: Fluid phase
Wrighton, J.; Dufty, J. W.; Kaehlert, H.; Bonitz, M.
2009-12-15
A theoretical description for the radial density profile of a finite number of identical charged particles confined in a harmonic trap is developed for application over a wide range of Coulomb coupling (or, equivalently, temperatures) and particle numbers. A simple mean-field approximation neglecting correlations yields a density profile which is monotonically decreasing with radius for all temperatures, in contrast to molecular dynamics simulations and experiments showing shell structure at lower temperatures. A more complete theoretical description including charge correlations is developed here by an extension of the hypernetted chain approximation, developed for bulk fluids, to the confined charges. The results reproduce all of the qualitative features observed in molecular dynamics simulations and experiments. These predictions are then tested quantitatively by comparison with benchmark Monte Carlo simulations. Quantitative accuracy of the theory is obtained by correcting the hypernetted chain approximation with a representation for the associated bridge functions.
Geometrical Tile Design for Complex Neighborhoods
Czeizler, Eugen; Kari, Lila
2009-01-01
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a “tall” von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 × 5 “filled” rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 × (2k + 1) rectangle. PMID:19956398
More Meaning from the Geometric Mean.
ERIC Educational Resources Information Center
Dorner, Bryan C.
2003-01-01
Provides classroom suggestions for combining numerical, algebraic, and geometric techniques with the understanding of a simple method for computing square roots. Historical origins of the method illustrate the debt owed to ancient minds living in what are now India, Pakistan, Iraq, and Egypt. (Author/NB)
Geometric Representations for Discrete Fourier Transforms
NASA Technical Reports Server (NTRS)
Cambell, C. W.
1986-01-01
Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.
Modern Geometric Algebra: A (Very Incomplete!) Survey
ERIC Educational Resources Information Center
Suzuki, Jeff
2009-01-01
Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…
Impossible Geometric Constructions: A Calculus Writing Project
ERIC Educational Resources Information Center
Awtrey, Chad
2013-01-01
This article discusses a writing project that offers students the opportunity to solve one of the most famous geometric problems of Greek antiquity; namely, the impossibility of trisecting the angle [pi]/3. Along the way, students study the history of Greek geometry problems as well as the life and achievements of Carl Friedrich Gauss. Included is…
The geometrical significance of the Laplacian
NASA Astrophysics Data System (ADS)
Styer, Daniel F.
2015-12-01
The Laplacian operator can be defined, not only as a differential operator, but also through its averaging properties. Such a definition lends geometric significance to the operator: a large Laplacian at a point reflects a "nonconformist" (i.e., different from average) character for the function there. This point of view is used to motivate the wave equation for a drumhead.
Understanding Suomi NPP VIIRS geometric performance
NASA Astrophysics Data System (ADS)
Wolfe, R. E.; Lin, G.; Nishihama, M.
2012-12-01
The NASA/NOAA Visible Infrared Imager Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (SNPP) satellite. VIIRS will be used by the science research community to continue long-term measurements of geophysical variables and the by operational community for weather forecasting and disaster relief and other applications. Since the first VIIRS data became available in December 2011, our team has been assessing VIIRS' geometric performance using earth and lunar data. We have measured the sensor's on-orbit spatial response, band-to-band co-registration, and geolocation accuracy and precision. Our geometric performance assessment is an important aspect of the VIIRS sensor data record calibration and validation process. We will discuss VIIRS' geometric performance based on this first year of VIIRS on-orbit data. These results will be compared to the at-launch performance and modeling. Overall, VIIRS' on-orbit geometric performance is very good and matches the pre-launch performance expectations, and so is likely to meet the needs of both the long-term monitoring and operational communities.
If Only Clairaut Had Dynamic Geometric Tools
ERIC Educational Resources Information Center
Chang, Hyewon; Reys, Barbara J.
2013-01-01
Geometry is a major area of study in middle school mathematics, yet middle school and secondary students have difficulty learning important geometric concepts. This article considers Alexis-Claude Clairaut's approach that emphasizes engaging student curiosity about key ideas and theorems instead of directly teaching theorems before their…
Geometrical tile design for complex neighborhoods.
Czeizler, Eugen; Kari, Lila
2009-01-01
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle. PMID:19956398
Geometric Determinants of Human Spatial Memory
ERIC Educational Resources Information Center
Hartley, Tom; Trinkler, Iris; Burgess, Neil
2004-01-01
Geometric alterations to the boundaries of a virtual environment were used to investigate the representations underlying human spatial memory. Subjects encountered a cue object in a simple rectangular enclosure, with distant landmarks for orientation. After a brief delay, during which they were removed from the arena, subjects were returned to it…
Generic scalar potentials in geometric scalar gravity
NASA Astrophysics Data System (ADS)
Kan, Nahomi; Shiraishi, Kiyoshi
2016-06-01
We discuss a generic form of the scalar potential appearing in the geometric scalar theory of gravity. We find the conditions on the potential by considering weak and strong gravity. The modified black hole solutions are obtained for generic potentials and the inverse problems on a black hole and on a spherical body (`pseudo-gravastar') are investigated.
Children's Learning of Geometrical Concepts Through Logo.
ERIC Educational Resources Information Center
Noss, Richard
1987-01-01
Exploratory study aimed to investigate elements of geometrical concepts that children learn through Logo programing. A test designed to assess three components of length and angle was administered to 84 children who had learned Logo for one year and 92 who had not. Data indicated a positive effect of Logo work on some items, but not all.…
Geometric interpretations for resonances of plasmonic nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Wei; Oulton, Rupert F.; Kivshar, Yuri S.
2015-07-01
The field of plasmonics can be roughly categorized into two branches: surface plasmon polaritons (SPPs) propagating in waveguides and localized surface plasmons (LSPs) supported by scattering particles. Investigations along these two directions usually employ different approaches, resulting in more or less a dogma that the two branches progress almost independently of each other, with few interactions. Here in this work we interpret LSPs from a Bohr model based geometric perspective relying on SPPs, thus establishing a connection between these two sub-fields. Besides the clear explanations of conventional scattering features of plasmonic nanoparticles, based on this geometric model we further demonstrate other anomalous scattering features (higher order modes supported at lower frequencies, and blueshift of the resonance with increasing particle sizes) and multiple electric resonances of the same order supported at different frequencies, which have been revealed to originate from backward SPP modes and multiple dispersion bands supported in the corresponding plasmonic waveguides, respectively. Inspired by this geometric model, it is also shown that, through solely geometric tuning, the absorption of each LSP resonance can be maximized to reach the single channel absorption limit, provided that the scattering and absorption rates are tuned to be equal.
Genuine vacuum-induced geometric phases
NASA Astrophysics Data System (ADS)
Wang, Minghao; Wei, L. F.; Liang, J. Q.
2015-04-01
Since a pioneer work on vacuum-induced Berry phase (VIBP) was done by Fuentes-Guridi et al. [Phys. Rev. Lett. 89 (2002) 220404], much attention has been paid to the geometric phase effects of vacuum field. However, all the so-called VIBPs investigated previously are not purely vacuum-induced (i.e. the nonvacuum components of the field are also involved). In this paper, we discuss how to deliver geometric phases from the evolution of a genuine vacuum field in a standard cavity quantum electrodynamics (QED) system. First, we design a cyclic evolution of an atom-field system with the atom being initially prepared at the excited state and the field at the genuine vacuum. Then, we calculate the geometric phases acquired during such a cyclic evolution. It is found that such geometric phases are really induced by an evolution of the genuine vacuum field. Specifically, our generic proposal is demonstrated with both the one- and two-mode Jaynes-Cummings model interactions (JCM).
Reinforcing Geometric Properties with Shapedoku Puzzles
ERIC Educational Resources Information Center
Wanko, Jeffrey J.; Nickell, Jennifer V.
2013-01-01
Shapedoku is a new type of puzzle that combines logic and spatial reasoning with understanding of basic geometric concepts such as slope, parallelism, perpendicularity, and properties of shapes. Shapedoku can be solved by individuals and, as demonstrated here, can form the basis of a review for geometry students as they create their own. In this…
A graph spectrum based geometric biclustering algorithm.
Wang, Doris Z; Yan, Hong
2013-01-21
Biclustering is capable of performing simultaneous clustering on two dimensions of a data matrix and has many applications in pattern classification. For example, in microarray experiments, a subset of genes is co-expressed in a subset of conditions, and biclustering algorithms can be used to detect the coherent patterns in the data for further analysis of function. In this paper, we present a graph spectrum based geometric biclustering (GSGBC) algorithm. In the geometrical view, biclusters can be seen as different linear geometrical patterns in high dimensional spaces. Based on this, the modified Hough transform is used to find the Hough vector (HV) corresponding to sub-bicluster patterns in 2D spaces. A graph can be built regarding each HV as a node. The graph spectrum is utilized to identify the eigengroups in which the sub-biclusters are grouped naturally to produce larger biclusters. Through a comparative study, we find that the GSGBC achieves as good a result as GBC and outperforms other kinds of biclustering algorithms. Also, compared with the original geometrical biclustering algorithm, it reduces the computing time complexity significantly. We also show that biologically meaningful biclusters can be identified by our method from real microarray gene expression data. PMID:23079285
A Geometric Approach to Fair Division
ERIC Educational Resources Information Center
Barbanel, Julius
2010-01-01
We wish to divide a cake among some collection of people (who may have very different notions of the comparative value of pieces of cake) in a way that is both "fair" and "efficient." We explore the meaning of these terms, introduce two geometric tools to aid our analysis, and present a proof (due to Dietrich Weller) that establishes the existence…
Van Hiele Levels of Geometric Thought Revisited.
ERIC Educational Resources Information Center
Teppo, Anne
1991-01-01
Compared are the van Hiele levels of geometric thinking and the geometry curriculum recommended by the National Council of Teachers of Mathematics Curriculum and Evaluation Standards for School Mathematics. Activities which illustrate the various levels are provided by grade level with procedures. (CW)
Geometric Models for Collaborative Search and Filtering
ERIC Educational Resources Information Center
Bitton, Ephrat
2011-01-01
This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…
Geometric Transformations in Middle School Mathematics Textbooks
ERIC Educational Resources Information Center
Zorin, Barbara
2011-01-01
This study analyzed treatment of geometric transformations in presently available middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four widely used textbook series were evaluated: two mainline publisher series, Pearson (Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF) funded curriculum…
Using geometric algebra to study optical aberrations
Hanlon, J.; Ziock, H.
1997-05-01
This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.
Geometric interpretations for resonances of plasmonic nanoparticles
Liu, Wei; Oulton, Rupert F.; Kivshar, Yuri S.
2015-01-01
The field of plasmonics can be roughly categorized into two branches: surface plasmon polaritons (SPPs) propagating in waveguides and localized surface plasmons (LSPs) supported by scattering particles. Investigations along these two directions usually employ different approaches, resulting in more or less a dogma that the two branches progress almost independently of each other, with few interactions. Here in this work we interpret LSPs from a Bohr model based geometric perspective relying on SPPs, thus establishing a connection between these two sub-fields. Besides the clear explanations of conventional scattering features of plasmonic nanoparticles, based on this geometric model we further demonstrate other anomalous scattering features (higher order modes supported at lower frequencies, and blueshift of the resonance with increasing particle sizes) and multiple electric resonances of the same order supported at different frequencies, which have been revealed to originate from backward SPP modes and multiple dispersion bands supported in the corresponding plasmonic waveguides, respectively. Inspired by this geometric model, it is also shown that, through solely geometric tuning, the absorption of each LSP resonance can be maximized to reach the single channel absorption limit, provided that the scattering and absorption rates are tuned to be equal. PMID:26173797
Pauli spinors and Hestenes' geometric algebra
NASA Astrophysics Data System (ADS)
Hamilton, J. Dwayne
1984-01-01
Hestenes' geometric algebra and Pauli's two-component spinors are reviewed and are united into a simple mathematical system. The resulting formalism is used to develop a new method for spin 1/2 projection calculations and is also applied to a spin 1/2 electron magnetic resonance problem.
Rejuvenating Allen's Arc with the Geometric Mean.
ERIC Educational Resources Information Center
Phillips, William A.
1994-01-01
Contends that, despite ongoing criticism, Allen's arc elasticity formula remains entrenched in the microeconomics principles curriculum. Reviews the evolution and continuing scrutiny of the formula. Argues that the use of the geometric mean offers pedagogical advantages over the traditional arithmetic mean approach. (CFR)
A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE
Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V. E-mail: brc@iac.e
2010-09-10
Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.
Can EPR non-locality be geometrical?
Ne`eman, Y. |; Botero, A.
1995-10-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.
Towards standardized assessment of endoscope optical performance: geometric distortion
NASA Astrophysics Data System (ADS)
Wang, Quanzeng; Desai, Viraj N.; Ngo, Ying Z.; Cheng, Wei-Chung; Pfefer, Joshua
2013-12-01
Technological advances in endoscopes, such as capsule, ultrathin and disposable devices, promise significant improvements in safety, clinical effectiveness and patient acceptance. Unfortunately, the industry lacks test methods for preclinical evaluation of key optical performance characteristics (OPCs) of endoscopic devices that are quantitative, objective and well-validated. As a result, it is difficult for researchers and developers to compare image quality and evaluate equivalence to, or improvement upon, prior technologies. While endoscope OPCs include resolution, field of view, and depth of field, among others, our focus in this paper is geometric image distortion. We reviewed specific test methods for distortion and then developed an objective, quantitative test method based on well-defined experimental and data processing steps to evaluate radial distortion in the full field of view of an endoscopic imaging system. Our measurements and analyses showed that a second-degree polynomial equation could well describe the radial distortion curve of a traditional endoscope. The distortion evaluation method was effective for correcting the image and can be used to explain other widely accepted evaluation methods such as picture height distortion. Development of consensus standards based on promising test methods for image quality assessment, such as the method studied here, will facilitate clinical implementation of innovative endoscopic devices.
Quantitative analysis of qualitative images
NASA Astrophysics Data System (ADS)
Hockney, David; Falco, Charles M.
2005-03-01
We show optical evidence that demonstrates artists as early as Jan van Eyck and Robert Campin (c1425) used optical projections as aids for producing their paintings. We also have found optical evidence within works by later artists, including Bermejo (c1475), Lotto (c1525), Caravaggio (c1600), de la Tour (c1650), Chardin (c1750) and Ingres (c1825), demonstrating a continuum in the use of optical projections by artists, along with an evolution in the sophistication of that use. However, even for paintings where we have been able to extract unambiguous, quantitative evidence of the direct use of optical projections for producing certain of the features, this does not mean that paintings are effectively photographs. Because the hand and mind of the artist are intimately involved in the creation process, understanding these complex images requires more than can be obtained from only applying the equations of geometrical optics.
NASA Astrophysics Data System (ADS)
Dubbini, Marco; Benedetti, Gianluca; Lucente, Corrado Claudio
2015-04-01
The need to have three-dimensional digital products of high accuracy and high resolution is now increasingly important for the study of the hydrogeological instability phenomena both from a geomorphological point of view and a geotechnical-geomechanical one. What until now was considered the prerogative of the laser scanner (both air-transported and terrestrial) for data acquisition, in many contexts is to be integrated and often replaced by photogrammetric techniques. The integration of the typical photogrammetry algorithms (Aerial Triangulation, bundle adjustment, collinearity equations, etc.) with Structure from Motion (SFM) algorithms derived from Computer Vision (CV) allows to get products "dense points cloud" of high quality and high resolution with almost complete automation of processes. The use of Remotely Piloted Aerial System (RPAS) equipped with high resolution photogrammetric and positioning sensors, allows to obtain, in a very short time and with low costs, all necessary data for the purpose. Through all stages of the photogrammetric processing, is obtained, as a base product, a dense cloud of points. Subsequently, after the phase of cleaning and classification of data, it will be possible to obtained all the necessary products for studing the geomorphological characterization and, in specific cases, also geotechnical-geomechanical characterization. The high repeatability of surveys, due to the insertion of data always in the same reference system without introducing transformations between coordinate systems, and the high accuracy in the determination of Ground Control Point (GCP) measured and processed with geodetic techniques, mainly by GNSS instrumentation, allows to compare data and models over time. The possibility of the RPAS to carry on board the double frequency satellite positioning systems, so as to define the spatial coordinates of the perspective center with centimetric accuracy, it also allows to obtain repeatability of the data in difficult or absolutely no access areas (high-risk zones and so on). The high repeatability, therefore, makes it possible to perform evaluations of volumes variation and of the surfaces shape. When the data is very dense and, for example in case of rock slopes, you can also define the dip and dip-direction of discontinuity planes (like joints and faults), through specific procedures. With a high radiometric accuracy, when the situation allows it and when the texturing of the model is at a very high resolution, there is also the possibility of determining the "rake" parameter.
ERIC Educational Resources Information Center
Ertekin, E.; Solak, S.; Yazici, E.
2010-01-01
The aim of this study is to identify the effects of formalism in teaching on primary and secondary school mathematics teacher trainees' algebraic and geometric interpretations of the notions of linear dependency/independency. Quantitative research methods are drawn in order to determine differences in success levels between algebraic and geometric…
NASA Astrophysics Data System (ADS)
Zhevlakov, A. P.; Zatsepina, M. E.; Kirillovskii, V. K.
2014-06-01
The principles of transformation of a Foucault shadowgram into a quantitative map of wave-front deformation based on creation of a system of isophotes are unveiled. The presented studies and their results prove that there is a high degree of correspondence between a Foucault shadowgram and the geometrical model of a shear interferogram with respect to displaying wave-front deformations.
Hardware description languages
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.
1994-01-01
Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.
Geometric nomenclature and classification of RNA base pairs.
Leontis, N B; Westhof, E
2001-01-01
Non-Watson-Crick base pairs mediate specific interactions responsible for RNA-RNA self-assembly and RNA-protein recognition. An unambiguous and descriptive nomenclature with well-defined and nonoverlapping parameters is needed to communicate concisely structural information about RNA base pairs. The definitions should reflect underlying molecular structures and interactions and, thus, facilitate automated annotation, classification, and comparison of new RNA structures. We propose a classification based on the observation that the planar edge-to-edge, hydrogen-bonding interactions between RNA bases involve one of three distinct edges: the Watson-Crick edge, the Hoogsteen edge, and the Sugar edge (which includes the 2'-OH and which has also been referred to as the Shallow-groove edge). Bases can interact in either of two orientations with respect to the glycosidic bonds, cis or trans relative to the hydrogen bonds. This gives rise to 12 basic geometric types with at least two H bonds connecting the bases. For each geometric type, the relative orientations of the strands can be easily deduced. High-resolution examples of 11 of the 12 geometries are presently available. Bifurcated pairs, in which a single exocyclic carbonyl or amino group of one base directly contacts the edge of a second base, and water-inserted pairs, in which single functional groups on each base interact directly, are intermediate between two of the standard geometries. The nomenclature facilitates the recognition of isosteric relationships among base pairs within each geometry, and thus facilitates the recognition of recurrent three-dimensional motifs from comparison of homologous sequences. Graphical conventions are proposed for displaying non-Watson-Crick interactions on a secondary structure diagram. The utility of the classification in homology modeling of RNA tertiary motifs is illustrated. PMID:11345429
Quantitative Measurement of Trans-Fats by Infrared Spectroscopy
ERIC Educational Resources Information Center
Walker, Edward B.; Davies, Don R.; Campbell, Mike
2007-01-01
Trans-fat is a general term, which is mainly used to describe the various trans geometric isomers present in unsaturated fatty acids. Various techniques are now used for a quantitative measurement of the amount of trans-fats present in foods and cooking oil.
Chang, Y.M.; Grot, R.A.; Wood, J.T.
1985-06-01
This report presents the description of the laboratory apparatus and preliminary results of the quantitative evaluation of three high-resolution and two low-resolution infrared imaging systems. These systems which are commonly used for building diagnostics are tested under various background temperatures (from -20/sup 0/C to 25/sup 0/C) for their minimum resolvable temperature differences (MRTD) at spatial frequencies from 0.03 to 0.25 cycles per milliradian. The calibration curves of absolute and differential temperature measurements are obtained for three systems. The signal transfer function and line spread function at ambient temperature of another three systems are also measured. Comparisons of the dependence of the MRTD on background temperatures from the measured data with the predicted values given in ASHRAE Standards 101-83 are also included. The dependence of background temperatures for absolute temperature measurements are presented, as well as comparison of measured data and data given by the manufacturer. Horizontal on-axis magnification factors of the geometric transfer function of two systems are also established to calibrate the horizontal axis for the measured line spread function to obtain the modulation transfer function. The variation of the uniformity for horizontal display of these two sensors are also observed. Included are detailed descriptions of laboratory design, equipment setup, and evaluation procedures of each test. 10 refs., 38 figs., 12 tabs.
Robust quantitative scratch assay
Vargas, Andrea; Angeli, Marc; Pastrello, Chiara; McQuaid, Rosanne; Li, Han; Jurisicova, Andrea; Jurisica, Igor
2016-01-01
The wound healing assay (or scratch assay) is a technique frequently used to quantify the dependence of cell motility—a central process in tissue repair and evolution of disease—subject to various treatments conditions. However processing the resulting data is a laborious task due its high throughput and variability across images. This Robust Quantitative Scratch Assay algorithm introduced statistical outputs where migration rates are estimated, cellular behaviour is distinguished and outliers are identified among groups of unique experimental conditions. Furthermore, the RQSA decreased measurement errors and increased accuracy in the wound boundary at comparable processing times compared to previously developed method (TScratch). Availability and implementation: The RQSA is freely available at: http://ophid.utoronto.ca/RQSA/RQSA_Scripts.zip. The image sets used for training and validation and results are available at: (http://ophid.utoronto.ca/RQSA/trainingSet.zip, http://ophid.utoronto.ca/RQSA/validationSet.zip, http://ophid.utoronto.ca/RQSA/ValidationSetResults.zip, http://ophid.utoronto.ca/RQSA/ValidationSet_H1975.zip, http://ophid.utoronto.ca/RQSA/ValidationSet_H1975Results.zip, http://ophid.utoronto.ca/RQSA/RobustnessSet.zip, http://ophid.utoronto.ca/RQSA/RobustnessSet.zip). Supplementary Material is provided for detailed description of the development of the RQSA. Contact: juris@ai.utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26722119
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1993-01-01
Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms.
Geometric stability of topological lattice phases
Jackson, T. S.; Möller, Gunnar; Roy, Rahul
2015-01-01
The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments. PMID:26530311
The bouncing ball through a geometrical series
NASA Astrophysics Data System (ADS)
Flores, Sergio; Alfaro, Luis L.; Chavez, Juan E.; Bastarrachea, Aztlan; Hurtado, Jazmin
2008-10-01
The mathematical representation of the physical situation related to a bouncing ball on the floor is an important understanding difficulty for most of the students during the introductory mechanics and mathematics courses. The research group named Physics and mathematics in context from the University of Ciudad Juarez is concerned about the versatility in the change from a mathematical representation to the own physical context of any problem under a traditional instruction. In this case, the main idea is the association of the physical properties of the bouncing ball situation to the nearest mathematical model based on a geometrical series. The proposal of the cognitive development is based on a geometrical series that shows the time the ball takes to stop. In addition, we show the behavior of the ratio of the consecutive heights during the motion.
Precise formation of geometrically focused ion beams
Davydenko, V.I.; Ivanov, A.A.; Korepanov, S.A.; Kotelnikov, I.A.
2006-03-15
Geometrically focused intense neutral beams for plasma diagnostic consist of many elementary beams formed by a multiaperture ion-optical system and aimed at the focal point. In real conditions, some of the elementary beams may have increased angular divergence and/or deviate from the intended direction, thus diminishing the neutral beam density at the focus. Several improvements to the geometrical focusing are considered in the article including flattening of the plasma profile across the emission surface, using of quasi-Pierce electrodes at the beam periphery, and minimizing the deviation of the electrodes from the spherical form. Application of these measures to the neutral beam Russian diagnostic injector developed in Budker Institute of Nuclear Physics allows an increase of neutral beam current density in the focus by {approx}50%.
Geometrical geodesy techniques in Goddard earth models
NASA Technical Reports Server (NTRS)
Lerch, F. J.
1974-01-01
The method for combining geometrical data with satellite dynamical and gravimetry data for the solution of geopotential and station location parameters is discussed. Geometrical tracking data (simultaneous events) from the global network of BC-4 stations are currently being processed in a solution that will greatly enhance of geodetic world system of stations. Previously the stations in Goddard earth models have been derived only from dynamical tracking data. A linear regression model is formulated from combining the data, based upon the statistical technique of weighted least squares. Reduced normal equations, independent of satellite and instrumental parameters, are derived for the solution of the geodetic parameters. Exterior standards for the evaluation of the solution and for the scale of the earth's figure are discussed.
Geometric continuum regularization of quantum field theory
Halpern, M.B. . Dept. of Physics)
1989-11-08
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.
Broadband Hybrid Holographic Multiplexing with Geometric Metasurfaces.
Huang, Lingling; Mühlenbernd, Holger; Li, Xiaowei; Song, Xu; Bai, Benfeng; Wang, Yongtian; Zentgraf, Thomas
2015-11-01
An effective way for broadband holographic multiplexing based on geometric metasurfaces is demonstrated by the integration of several recording channels into a single device. Each image can be individually addressed with a unique set of parameters, such as circular polarization, position, and angle. Such a technique paves the way for a wide range of applications related to optical patterning, encryption, and information processing. PMID:26398589
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Geometric Transitions and Dynamical SUSY Breaking
Aganagic, Mina; Beem, Christopher; Kachru, Shamit; /UC, Berkeley /SLAC
2007-10-01
We show that the physics of D-brane theories that exhibit dynamical SUSY breaking due to stringy instanton effects is well captured by geometric transitions, which recast the non-perturbative superpotential as a classical flux superpotential. This allows for simple engineering of Fayet, Polonyi, O'Raifeartaigh, and other canonical models of supersymmetry breaking in which an exponentially small scale of breaking can be understood either as coming from stringy instantons or as arising from the classical dynamics of fluxes.
Differential Geometric Analysis of Alterations in MH α-Helices
Hischenhuber, Birgit; Havlicek, Hans; Todoric, Jelena; Höllrigl-Binder, Sonja; Schreiner, Wolfgang; Knapp, Bernhard
2013-01-01
Antigen presenting cells present processed peptides via their major histocompatibility (MH) complex to the T cell receptors (TRs) of T cells. If a peptide is immunogenic, a signaling cascade can be triggered within the T cell. However, the binding of different peptides and/or different TRs to MH is also known to influence the spatial arrangement of the MH α-helices which could itself be an additional level of T cell regulation. In this study, we introduce a new methodology based on differential geometric parameters to describe MH deformations in a detailed and comparable way. For this purpose, we represent MH α-helices by curves. On the basis of these curves, we calculate in a first step the curvature and torsion to describe each α-helix independently. In a second step, we calculate the distribution parameter and the conical curvature of the ruled surface to describe the relative orientation of the two α-helices. On the basis of four different test sets, we show how these differential geometric parameters can be used to describe changes in the spatial arrangement of the MH α-helices for different biological challenges. In the first test set, we illustrate on the basis of all available crystal structures for (TR)/pMH complexes how the binding of TRs influences the MH helices. In the second test set, we show a cross evaluation of different MH alleles with the same peptide and the same MH allele with different peptides. In the third test set, we present the spatial effects of different TRs on the same peptide/MH complex. In the fourth test set, we illustrate how a severe conformational change in an α-helix can be described quantitatively. Taken together, we provide a novel structural methodology to numerically describe subtle and severe alterations in MH α-helices for a broad range of applications. © 2013 Wiley Periodicals, Inc. PMID:23703160
Syntactic Approach To Geometric Surface Shell Determination
NASA Astrophysics Data System (ADS)
DeGryse, Donald G.; Panton, Dale J.
1980-12-01
Autonomous terminal homing of a smart missile requires a stored reference scene of the target for which the missle is destined. The reference scene is produced from stereo source imagery by deriving a three-dimensional model containing cultural structures such as buildings, towers, bridges, and tanks. This model is obtained by the precise matching of cultural features from one image of the stereo pair to the other. In the past, this stereo matching process has relied heavily on local edge operators and a gray scale matching metric. The processing is performed line by line over the imagery and the amount of geometric control is minimal. As a result, the gross structure of the scene is determined but the derived three-dimensional data is noisy, oscillatory, and at times significantly inaccurate. This paper discusses new concepts that are currently being developed to stabilize this geometric reference preparation process. The new concepts involve the use of a structural syntax which will be used as a geometric constraint on automatic stereo matching. The syntax arises from the stereo configuration of the imaging platforms at the time of exposure and the knowledge of how various cultural structures are constructed. The syntax is used to parse a scene in terms of its cultural surfaces and to dictate to the matching process the allowable relative positions and orientations of surface edges in the image planes. Using the syntax, extensive searches using a gray scale matching metric are reduced.
Geometric absorption of electromagnetic angular momentum
NASA Astrophysics Data System (ADS)
Konz, C.; Benford, Gregory
2003-10-01
Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.
Geometric phase effects in ultracold chemistry
NASA Astrophysics Data System (ADS)
Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.
2016-05-01
In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).
Landsat-5 bumper-mode geometric correction
Storey, J.C.; Choate, Michael J.
2004-01-01
The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.
Geometric Morphometrics of Rodent Sperm Head Shape
Varea Sánchez, María; Bastir, Markus; Roldan, Eduardo R. S.
2013-01-01
Mammalian spermatozoa, particularly those of rodent species, are extremely complex cells and differ greatly in form and dimensions. Thus, characterization of sperm size and, particularly, sperm shape represents a major challenge. No consensus exists on a method to objectively assess size and shape of spermatozoa. In this study we apply the principles of geometric morphometrics to analyze rodent sperm head morphology and compare them with two traditional morphometry methods, that is, measurements of linear dimensions and dimensions-derived parameters calculated using formulae employed in sperm morphometry assessments. Our results show that geometric morphometrics clearly identifies shape differences among rodent spermatozoa. It is also capable of discriminating between size and shape and to analyze these two variables separately. Thus, it provides an accurate method to assess sperm head shape. Furthermore, it can identify which sperm morphology traits differ between species, such as the protrusion or retraction of the base of the head, the orientation and relative position of the site of flagellum insertion, the degree of curvature of the hook, and other distinct anatomical features and appendices. We envisage that the use of geometric morphometrics may have a major impact on future studies focused on the characterization of sperm head formation, diversity of sperm head shape among species (and underlying evolutionary forces), the effects of reprotoxicants on changes in cell shape, and phenotyping of genetically-modified individuals. PMID:24312234
The geometric phase controls ultracold chemistry
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-07-30
In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + O2more » reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.« less
Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
Geometric prediction structure for multiview video coding
NASA Astrophysics Data System (ADS)
Lee, Seok; Wey, Ho-Cheon; Park, Du-Sik
2010-02-01
One of the critical issues to successful service of 3D video is how to compress huge amount of multi-view video data efficiently. In this paper, we described about geometric prediction structure for multi-view video coding. By exploiting the geometric relations between each camera pose, we can make prediction pair which maximizes the spatial correlation of each view. To analyze the relationship of each camera pose, we defined the mathematical view center and view distance in 3D space. We calculated virtual center pose by getting mean rotation matrix and mean translation vector. We proposed an algorithm for establishing the geometric prediction structure based on view center and view distance. Using this prediction structure, inter-view prediction is performed to camera pair of maximum spatial correlation. In our prediction structure, we also considered the scalability in coding and transmitting the multi-view videos. Experiments are done using JMVC (Joint Multiview Video Coding) software on MPEG-FTV test sequences. Overall performance of proposed prediction structure is measured in the PSNR and subjective image quality measure such as PSPNR.
A Geometric Theory of Nonlinear Morphoelastic Shells
NASA Astrophysics Data System (ADS)
Sadik, Souhayl; Angoshtari, Arzhang; Goriely, Alain; Yavari, Arash
2016-08-01
Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.
A survey of the core-congruential formulation for geometrically nonlinear TL finite elements
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Crivelli, Luis A.; Haugen, Bjorn
1994-01-01
This article presents a survey of the core-congruential formulation (CCF) for geometrically nonlinear mechanical finite elements based on the total Lagrangian (TL) kinematic description. Although the key ideas behind the CCF can be traced back to Rajasekaran and Murray in 1973, it has not subsequently received serious attention. The CCF is distinguished by a two-phase development of the finite element stiffness equations. The initial phase developed equations for individual particles. These equations are expressed in terms of displacement gradients as degrees of freedom. The second phase involves congruential-type transformations that eventually binds the element particles of an individual element in terms of its node-displacement degrees of freedom. Two versions of the CCF, labeled direct and generalized, are distinguished. The direct CCF (DCCF) is first described in general form and then applied to the derivation of geometrically nonlinear bar, and plane stress elements using the Green-Lagrange strain measure. The more complex generalized CCF (GCCF) is described and applied to the derivation of 2D and 3D Timoshenko beam elements. Several advantages of the CCF, notably the physically clean separation of material and geometric stiffnesses, and its independence with respect to the ultimate choice of shape functions and element degrees of freedom, are noted. Application examples involving very large motions solved with the 3D beam element display the range of applicability of this formulation, which transcends the kinematic limitations commonly attributed to the TL description.
Geometrization of the physics with teleparallelism. II. Towards a fully geometric Dirac equation
NASA Astrophysics Data System (ADS)
Vargas, José G.; Torr, Douglas G.; Lecompte, Alvaro
1992-04-01
In an accompanying paper (I), it is shown that the basic equations of the theory of Lorentzian connections with teleparallelism (TP) acquire standard forms of physical field equations upon removal of the constraints represented by the Bianchi identities. A classical physical theory results that supersedes general relativity and Maxwell-Lorentz electrodynamics if the connection is viewed as Finslerian. The theory also encompasses a short-range, strong, classical interaction. It has, however, an open end, since the source side of the torsion field equation is not geometric. In this paper, Kaehler's partial geometrization of the Dirac equation is taken as a starting point for the development of fully geometric Dirac equations via the correspondence principle given in I. For this purpose, Kaehler's calculus (where the spinors are differential forms) is generalized so that it also applies when the torsion is not zero. The point is then made that the forms can take values in tangent Clifford algebras rather than in tensor algebras. The basic “Eigenschaft” of the Kaehler calculus also is examined from the physical perspective of dimensional analysis. Geometric Dirac equations of great structural simplicity are finally inferred from the standard Dirac equation by using the aforementioned correspondence principle. The realm of application of the Dirac theory is thus enriched in principle, though only at an abstract level at this point: the standard spinors, which are scalar-valued forms in the Kaehler version of that theory, become Clifford-valued. In addition, the geometrization of the Dirac equation implies a geometrization of the Dirac current. When this current is replaced in the field equations for the torsion, the theory of Paper I becomes fully geometric.
Gaussian beam diffraction in inhomogeneous media: solution in frame of complex geometrical optics
NASA Astrophysics Data System (ADS)
Kravtsov, Yu. A.; Berczynski, P.
2005-09-01
The method of paraxial complex geometrical optics is presented to describe Gaussian beam diffraction in arbitrary smoothly inhomogeneous media, including lens-like media. The method modifies and specifies the results by Babic' (1968), Kirpichnikova (1971), Cerveny, Popov, Psencik (1982), Cerveny (1983, 2001), Timofeev (1995) and Pereverzev (1996) as applied to the optical problems. The method of paraxial complex geometrical optics reduces the problem of Gaussian beam diffraction in inhomogeneous media to the solution of the system of the ordinary differential equations of first order, which can be readily calculated numerically by the Runge-Kutta method. Thereby the paraxial complex geometrical optics radically simplifies description of Gaussian beam diffraction in inhomogeneous media as compared to the numerical methods of wave optics. By the way of example the known analytical solution for Gaussianbeam diffraction both in a free space and in lens-like medium (Bornatici, Maj 2003) are presented. It is pointed out, that the method of paraxial complex geometrical optics turns out to be equivalent to the solutions of the abridged parabolic wave equation.
Quantitative Literacy Provision in the First Year of Medical Studies
ERIC Educational Resources Information Center
Frith, V.
2011-01-01
This article presents a description of and motivation for the quantitative literacy (numeracy) intervention in the first year of medical studies at a South African university. This intervention is a response to the articulation gap between the quantitative literacy of many first-year medical students and the demands of their curriculum.…
Quantitative Analysis of Face Symmetry.
Tamir, Abraham
2015-06-01
The major objective of this article was to report quantitatively the degree of human face symmetry for reported images taken from the Internet. From the original image of a certain person that appears in the center of each triplet, 2 symmetric combinations were constructed that are based on the left part of the image and its mirror image (left-left) and on the right part of the image and its mirror image (right-right). By applying a computer software that enables to determine length, surface area, and perimeter of any geometric shape, the following measurements were obtained for each triplet: face perimeter and area; distance between the pupils; mouth length; its perimeter and area; nose length and face length, usually below the ears; as well as the area and perimeter of the pupils. Then, for each of the above measurements, the value C, which characterizes the degree of symmetry of the real image with respect to the combinations right-right and left-left, was calculated. C appears on the right-hand side below each image. A high value of C indicates a low symmetry, and as the value is decreasing, the symmetry is increasing. The magnitude on the left relates to the pupils and compares the difference between the area and perimeter of the 2 pupils. The major conclusion arrived at here is that the human face is asymmetric to some degree; the degree of asymmetry is reported quantitatively under each portrait. PMID:26080172
Design of geometric phase measurement in EAST Tokamak
NASA Astrophysics Data System (ADS)
Lan, T.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Wang, Y. L.; Gao, X.; Qin, H.
2016-07-01
The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.
Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.
1984-03-01
The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.
Parametric modeling for quantitative analysis of pulmonary structure to function relationships
NASA Astrophysics Data System (ADS)
Haider, Clifton R.; Bartholmai, Brian J.; Holmes, David R., III; Camp, Jon J.; Robb, Richard A.
2005-04-01
While lung anatomy is well understood, pulmonary structure-to-function relationships such as the complex elastic deformation of the lung during respiration are less well documented. Current methods for studying lung anatomy include conventional chest radiography, high-resolution computed tomography (CT scan) and magnetic resonance imaging with polarized gases (MRI scan). Pulmonary physiology can be studied using spirometry or V/Q nuclear medicine tests (V/Q scan). V/Q scanning and MRI scans may demonstrate global and regional function. However, each of these individual imaging methods lacks the ability to provide high-resolution anatomic detail, associated pulmonary mechanics and functional variability of the entire respiratory cycle. Specifically, spirometry provides only a one-dimensional gross estimate of pulmonary function, and V/Q scans have poor spatial resolution, reducing its potential for regional assessment of structure-to-function relationships. We have developed a method which utilizes standard clinical CT scanning to provide data for computation of dynamic anatomic parametric models of the lung during respiration which correlates high-resolution anatomy to underlying physiology. The lungs are segmented from both inspiration and expiration three-dimensional (3D) data sets and transformed into a geometric description of the surface of the lung. Parametric mapping of lung surface deformation then provides a visual and quantitative description of the mechanical properties of the lung. Any alteration in lung mechanics is manifest by alterations in normal deformation of the lung wall. The method produces a high-resolution anatomic and functional composite picture from sparse temporal-spatial methods which quantitatively illustrates detailed anatomic structure to pulmonary function relationships impossible for translational methods to provide.
A Geometrical Descriptionof the Discrete Painlevé VI and V Equations
NASA Astrophysics Data System (ADS)
Ramani, A.; Grammaticos, B.; Ohta, Y.
We present a geometrical approach for the discrete Painlevé equations based on Weyl groups. The method relies on the bilinear formalism and assumes that the multidimensional τ-function lives on the weight lattice of the appropriate affine Weyl group. The equations for the τ-function, a system of nonautonomous Hirota-Miwa equations, govern the evolution along the independent variable and the parameters of the equation (the latter evolution induced by the Schlesinger transformations). In the present paper we analyse the case of the E(1)7 group. Using the geometrical description we derive the nonlinear discrete equations. We find that in the case of the E(1)7 group these are the ``asymmetric''q-PVI and d-PV that were recently proposed.
On-ground characterization of Rosetta/VIRTIS-M. I. Spectral and geometrical calibrations
Ammannito, E.; Filacchione, G.; Coradini, A.; Capaccioni, F.; Piccioni, G.; De Sanctis, M. C.; Dami, M.; Barbis, A.
2006-09-15
The complete characterization of complex imaging spectrometers, such as VIRTIS-M (visual infrared thermal imaging spectrometer) aboard the Rosetta mission, requires a detailed and prolonged activity starting with the instrument integration and continuing during the entire operational life of the experiment. In this article we report the main experimental activities realized during the on-ground characterizations to evaluate the spectral and geometric performances in order to check the conformance with the technical requirements derived from the scientific goals of the experiment. Spectral calibrations allow to confirm instrumental spectral range, resolution, and sampling; geometric calibrations are necessary to estimate the pixel and slit functions, field of view extension, and possible optical aberrations. Two separate sections are dedicated to each one of these subjects, including the strategy followed to prepare measurements, a basic description of the on-ground experimental setups, and the analysis of the collected data.
NASA Astrophysics Data System (ADS)
Yang, Kun
2016-04-01
We show that an acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wavelength limit. To study such response we generalize Haldane's geometrical description of fractional quantum Hall states to situations where the external metric is time dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrapolar mode at long wavelength, and magnetoroton at finite wavelength. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.
A geometric comparison of entanglement and quantum nonlocality in discrete systems
NASA Astrophysics Data System (ADS)
Spengler, Christoph; Huber, Marcus; Hiesmayr, Beatrix C.
2011-02-01
We compare entanglement with quantum nonlocality employing a geometric structure of the state space of bipartite qudits. The central object is a regular simplex spanned by generalized Bell states. The Collins-Gisin-Linden-Massar-Popescu-Bell inequality is used to reveal states of this set that cannot be described by local-realistic theories. Optimal measurement settings necessary to ascertain nonlocality are determined by means of a recently proposed parameterization of the unitary group {U}(d) combined with robust numerical methods. The main results of this paper are descriptive geometric illustrations of the state space that emphasize the difference between entanglement and quantum nonlocality. Namely, it is found that the shape of the boundaries of separability and Bell inequality violation are essentially different. Moreover, it is also shown that for mixtures of states sharing the same amount of entanglement, Bell inequality violations and entanglement measures are non-monotonically related.
Electronic structure theory: Applications and geometrical aspects
NASA Astrophysics Data System (ADS)
Coh, Sinisa
This thesis contains several applications of the first-principles electronic-structure theory with special emphasis in parts of the thesis on the geometrical aspects of the theory. We start by reviewing the basics of the first-principles electronic-structure methods which are then used throughout the thesis. The first application of these methods is on the analysis of the stability and lattice dynamics of alpha- and beta-cristobalite phases of SiO2. We also map the complete low-energy landscape connecting these two structures and give implications on the phase transition in this compound. Next we study a family of Pbnm perovskites that are promising candidates for silicon-compatible high-K dielectrics. We calculate their structure and dielectric response, and compare with experimental results where available. The third application of these methods is to the large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites. We explain the origin of the peculiar energy landscape topology as a function of epitaxial strain. In the part of the thesis devoted to the geometrical aspects of electronic structure theory, we begin by extending the concept of electronic polarization to a Chern insulators. These insulators are characterized by a non-zero off-diagonal sigma_xy conductivity tensor component, quantized in units of e 2/h. Finally we discuss another geometrical quantity, the Chern-Simons orbital magnetoelectric coupling. We present a first-principles based calculation of this quantity in several compounds, and motivated by recent developments in the theory of topological insulators, we speculate about the existence of "large-theta materials," in which this kind of coupling could be unusually large.
ERIC Educational Resources Information Center
Brashers, H. C.
1968-01-01
As the inexperienced writer becomes aware of the issues involved in the composition of effective descriptive prose, he also develops a consistent control over his materials. The persona he chooses, if coherently thought out, can function as an index of many choices, helping him to manipulate the tone, intent, and mood of this style; to regulate…
Generalized Geometric Error Correction in Coordinate Measurement
NASA Astrophysics Data System (ADS)
Hermann, Gyula
Software compensation of geometric errors in coordinate measuring is hot subject because it results the decrease of manufacturing costs. The paper gives a summary of the results and achievements of earlier works on the subject. In order to improve these results a method is adapted to capture simultaneously the new coordinate frames in order use exact transformation values at discrete points of the measuring volume. The interpolation techniques published in the literature have the draw back that they could not maintain the orthogonality of the rotational part of the transformation matrices. The paper gives a technique, based on quaternions, which avoid this problem and leads to better results.
Advanced geometric camera calibration for machine vision
NASA Astrophysics Data System (ADS)
Vo, Minh; Wang, Zhaoyang; Luu, Long; Ma, Jun
2011-11-01
In many machine vision applications, a crucial step is to accurately determine the relation between the image of the object and its physical dimension by performing a calibration process. Over time, various calibration techniques have been developed. Nevertheless, the existing methods cannot satisfy the ever-increasing demands for higher accuracy performance. In this letter, an advanced geometric camera calibration technique which employs a frontal image concept and a hyper-precise control point detection scheme with digital image correlation is presented. Simulation and real experimental results have successfully demonstrated the superior of the proposed technique.
Nonadiabatic fluctuation in the measured geometric phase
NASA Astrophysics Data System (ADS)
Ai, Qing; Huo, Wenyi; Long, Gui Lu; Sun, C. P.
2009-08-01
We study how the nonadiabatic effect causes the observable fluctuation in the “geometric phase” for a two-level system, which is defined as the experimentally measurable quantity in the adiabatic limit. From the Rabi exact solution to this model, we give a reasonable explanation to the experimental discovery of phase fluctuation in the superconducting circuit system [P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraf, Science 318, 1889 (2007)], which seemed to be regarded as the conventional experimental error.
Evolution equation for geometric quantum correlation measures
NASA Astrophysics Data System (ADS)
Hu, Ming-Liang; Fan, Heng
2015-05-01
A simple relation is established for the evolution equation of quantum-information-processing protocols such as quantum teleportation, remote state preparation, Bell-inequality violation, and particularly the dynamics of geometric quantum correlation measures. This relation shows that when the system traverses the local quantum channel, various figures of merit of the quantum correlations for different protocols demonstrate a factorization decay behavior for dynamics. We identified the family of quantum states for different kinds of quantum channels under the action of which the relation holds. This relation simplifies the assessment of many quantum tasks.
Geometrical Aspect of Pinning in Superconducting Material
NASA Astrophysics Data System (ADS)
Tanaka, Izumi
2002-12-01
We have examined superconducting matter with disclination. The deformed medium is well described geometrically. For flat area, paramagnetic current is very small and diamagnetic current is proportional to the vector potential Aμ(x). As a result, the area exhibits the Meissner effect. On the other hand, for the domain where disclination exists, the domain does not become superconducting. Superconductivity is not maintained on the domain, and the magnetic flux breaks into the domain. When the disclination is enclosed by flat a area (i.e. being superconducting state), the extra paramagnetic current operator causes current only in enclosed domain...
Overview of geometrical room acoustic modeling techniques.
Savioja, Lauri; Svensson, U Peter
2015-08-01
Computerized room acoustics modeling has been practiced for almost 50 years up to date. These modeling techniques play an important role in room acoustic design nowadays, often including auralization, but can also help in the construction of virtual environments for such applications as computer games, cognitive research, and training. This overview describes the main principles, landmarks in the development, and state-of-the-art for techniques that are based on geometrical acoustics principles. A focus is given to their capabilities to model the different aspects of sound propagation: specular vs diffuse reflections, and diffraction. PMID:26328688
The minimal geometric deformation approach extended
NASA Astrophysics Data System (ADS)
Casadio, R.; Ovalle, J.; da Rocha, Roldão
2015-11-01
The minimal geometric deformation approach was introduced in order to study the exterior spacetime around spherically symmetric self-gravitating systems, such as stars or similar astrophysical objects, in the Randall-Sundrum brane-world framework. A consistent extension of this approach is developed here, which contains modifications of both the time component and the radial component of a spherically symmetric metric. A modified Schwarzschild geometry is obtained as an example of its simplest application, and a new solution that is potentially useful to describe stars in the brane-world is also presented.
Geometrical Wake of a Smooth Flat Collimator
Stupakov, G.V.; /SLAC
2011-09-09
A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.
Crystallization kinetics: A solution for geometrical impingement
NASA Astrophysics Data System (ADS)
Clemente, R. A.; Saleh, A. M.
2002-04-01
Starting from the wrong derivation by Erukhimovitch and Baram of an equation alternative to the classical Kolmogoroff-Johnson-Mehl-Avrami one for the transformed fraction in an infinite specimen, undergoing an isothermal first-order phase transformation, it is shown that a different exact solution of the geometrical problem of impingement can be obtained. Such solution is equivalent to the empirical one already presented by Austin and Rickett more than sixty years ago and allows to better fit experimental results for isothermal transformations. This also suggests that perhaps different statistical derivations could allow to reach the same result.
A geometrical formulation of fermionic integrable systems
Das, A.; Huang, W.; Roy, S. )
1991-10-01
A fermionic Hamiltonian system is formulated on a supermanifold. It is shown that if the system possesses a bi-Hamiltonian structure, one can naturally define a Lax equation associated with a (1,1) tensor on this supermanifold and this allows one to construct a set of conserved quantities. Furthermore, if the corresponding Nijenhuis tensor vanishes, it is shown that all these conserved quantities would be in involution which is a sufficient condition for integrability of the system. The fermionic extension of the KdV equation with a bi-Hamiltonian structure within this geometrical approach is studied.
Aerospace plane guidance using geometric control theory
NASA Technical Reports Server (NTRS)
Van Buren, Mark A.; Mease, Kenneth D.
1990-01-01
A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.
Geometric derivation of the quantum speed limit
Jones, Philip J.; Kok, Pieter
2010-08-15
The Mandelstam-Tamm and Margolus-Levitin inequalities play an important role in the study of quantum-mechanical processes in nature since they provide general limits on the speed of dynamical evolution. However, to date there has been only one derivation of the Margolus-Levitin inequality. In this paper, alternative geometric derivations for both inequalities are obtained from the statistical distance between quantum states. The inequalities are shown to hold for unitary evolution of pure and mixed states, and a counterexample to the inequalities is given for evolution described by completely positive trace-preserving maps. The counterexample shows that there is no quantum speed limit for nonunitary evolution.
Geometric optics and the "hairy ball theorem"
NASA Astrophysics Data System (ADS)
Bormashenko, Edward; Kazachkov, Alexander
Applications of the hairy ball theorem to the geometrical optics are discussed. When the ideal mirror, topologically equivalent to a sphere, is illuminated at every point, the "hairy ball theorem" prescribes the existence of at least one point at which the incident light will be normally reflected. For the more general case of the surface, topologically equivalent to a sphere, which is both reflecting and refracting the "hairy ball theorem" predicts the existence of at least one point, at which the incident light will be normally reflected and also normally refracted.
Geometrical characterization of hard-sphere systems.
Richard, P; Oger, L; Troadec, J P; Gervois, A
1999-10-01
By using molecular dynamics simulations on a large number of hard spheres and the Voronoï tessellation we characterize hard-sphere systems geometrically at any packing fraction eta along the different branches of the phase diagram. Crystallization of disordered packings occurs only for a small range of packing fraction. For the other packing fractions the system behaves as either a fluid (stable or metastable) or a glass. We have studied the evolution of the statistics of the Voronoï tessellation during crystallization and characterized the apparition of order by an order parameter (Q(6)) built from spherical harmonics. PMID:11970312
Supersymmetric QCD vacua and geometrical engineering
Tatar, Radu; Wetenhall, Ben
2008-02-15
We consider the geometrical engineering constructions for the N=1 supersymmetric QCD vacua recently proposed by Giveon and Kutasov. After 1 T-duality, the geometries with wrapped D5 branes become N=1 brane configurations with NS branes and D4 branes. The field theories encoded by the geometries contain extra massive adjoint fields for the flavor group. After performing a flop, the geometries contain branes, antibranes and branes wrapped on nonholomorphic cycles. The various tachyon condensations between pairs of wrapped D5 branes and anti-D5 branes together with deformations of the cycles give rise to a variety of supersymmetric and metastable nonsupersymmetric vacua.
Minimal representations, geometric quantization, and unitarity.
Brylinski, R; Kostant, B
1994-01-01
In the framework of geometric quantization we explicitly construct, in a uniform fashion, a unitary minimal representation pio of every simply-connected real Lie group Go such that the maximal compact subgroup of Go has finite center and Go admits some minimal representation. We obtain algebraic and analytic results about pio. We give several results on the algebraic and symplectic geometry of the minimal nilpotent orbits and then "quantize" these results to obtain the corresponding representations. We assume (Lie Go)C is simple. PMID:11607478
Geometrical design for aspheric reflecting systems.
Mertz, L
1979-12-15
Two separate geometric design procedures are presented for calculating aspheric surfaces. The first calculates individual reflecting surfaces for correcting the optical path length (OPL) of a system. The second jointly calculates pairs of surfaces for the simultaneous correction of OPL and offense against the sine condition (OCS). The procedures remain valid for extreme focal ratios. Applications of these procedures are made to the design of Arecibo-style (stationary spherical primary) telescopes, coma-correctors for such telescopes, three-mirror aplanats with deep spherical primaries, and two-mirror aplanats. Unusual new forms of aplanatic telescope and microscope objectives have emerged from these applications. PMID:20216777
The Dirac equation and Hestenes' geometric algebra
NASA Astrophysics Data System (ADS)
Hamilton, J. Dwayne
1984-06-01
Hestenes' geometric algebra and Dirac spinors are reviewed and united into a common mathematical formalism, a unification that establishes the Dirac equation as being manifestly covariant under the Lorentz group, and one that needs no matrix representation of the Dirac algebra. New and simple methods of amplitude or ``trace'' calculations are then described. A number of problems are then considered within the context of the new approach, such as relativistic spin projections, new and covariant C and T-transformations and spinors for massless and Majorana fields.
Information-geometric measure for neural spikes.
Nakahara, Hiroyuki; Amari, Shun-ichi
2002-10-01
This study introduces information-geometric measures to analyze neural firing patterns by taking not only the second-order but also higher-order interactions among neurons into account. Information geometry provides useful tools and concepts for this purpose, including the orthogonality of coordinate parameters and the Pythagoras relation in the Kullback-Leibler divergence. Based on this orthogonality, we show a novel method for analyzing spike firing patterns by decomposing the interactions of neurons of various orders. As a result, purely pairwise, triple-wise, and higher-order interactions are singled out. We also demonstrate the benefits of our proposal by using several examples. PMID:12396564
DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.
SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.
2004-03-24
Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.
On the minimum of independent geometrically distributed random variables
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco; Leemis, Lawrence M.; Nicol, David
1994-01-01
The expectations E(X(sub 1)), E(Z(sub 1)), and E(Y(sub 1)) of the minimum of n independent geometric, modifies geometric, or exponential random variables with matching expectations differ. We show how this is accounted for by stochastic variability and how E(X(sub 1))/E(Y(sub 1)) equals the expected number of ties at the minimum for the geometric random variables. We then introduce the 'shifted geometric distribution' and show that there is a unique value of the shift for which the individual shifted geometric and exponential random variables match expectations both individually and in the minimums.
Finite octree meshing through topologically driven geometric operators
NASA Technical Reports Server (NTRS)
Grice, Kurt R.
1987-01-01
The octree technique is developed into the finite octree, and an overview is given. Modeler requirements are given. The octree discretization is discussed along with geometric communication operators. Geometric communication operators returning topological associativity and geometric communication operators returning spatial data are also discussed and illustrated. The advantages are given of the boundary representation and of geometric communication operators. The implementation plays an important role in the integration with a variety of geometric modelers. The capabilities of closed loop processes within a complete finite element system are presented.
NASA Astrophysics Data System (ADS)
Szekely, Gabor; Koller, Thomas; Kikinis, Ron; Gerig, Guido
1994-09-01
Medical image analysis has to support the clinicians ability to identify, manipulate and quantify anatomical structures. On scalar 2D image data, a human observer is often superior to computer assisted analysis, but the interpretation of vector- valued data or data combined from different modalities, especially in 3D, can benefit from computer assistance. The problem of how to convey the complex information to the clinician is often tackled by providing colored multimodality renderings. We propose to go a step beyond by supplying a suitable modelling of anatomical and functional structures encoding important shape features and physical properties. The multiple attributes regarding geometry, topology and function are carried by the symbolic description and can be interactively queried and edited. Integrated 3D rendering of object surfaces and symbolic representation acts as a visual interface to allow interactive communication between the observer and the complex data, providing new possibilities for quantification and therapy planning. The discussion is guided by the prototypical example of investigating the cerebral vasculature in MRA volume data. Geometric, topological and flow-related information can be assessed by interactive analysis on a computer workstation, providing otherwise hidden qualitative and quantitative information. Several case studies demonstrate the potential usage for structure identification, definition of landmarks, assessment of topology for catheterization, and local simulation of blood flow.
Geometric Quality Assessment of LIDAR Data Based on Swath Overlap
NASA Astrophysics Data System (ADS)
Sampath, A.; Heidemann, H. K.; Stensaas, G. L.
2016-06-01
This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope
Quantitative measures for redox signaling.
Pillay, Ché S; Eagling, Beatrice D; Driscoll, Scott R E; Rohwer, Johann M
2016-07-01
Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events. Based on these principles, we then develop a working definition for redox signaling and review a number of quantitative methods that have been employed to describe signaling in other systems. Using computational modeling and published data, we show how time- and concentration- dependent analyses, in particular, could be used to quantitatively describe redox signaling and therefore provide important insights into the functional organization of redox networks. Finally, we consider some of the key challenges with implementing these methods. PMID:27151506
Geometric complexity identifies platelet activation in familial hypercholesterolemic patients.
Bianciardi, Giorgio; Aglianò, Margherita; Volpi, Nila; Stefanutti, Claudia
2015-06-01
Familial hypercholesterolemia (FH), a genetic disease, is associated with a severe incidence of athero-thrombotic events, related, also, to platelet hyperreactivity. A plethora of methods have been proposed to identify those activated circulating platelets, none of these has proved really effective. We need efficient methods to identify the circulating platelet status in order to follow the patients after therapeutic procedures. We propose the use of computerized fractal analysis for an objective characterization of the complexity of circulating platelet shapes observed by means of transmission electron microscopy in order to characterize the in vivo hyperactivated platelets of familial hypercholesterolemic patients, distinguishing them from the in vivo resting platelets of healthy individuals. Platelet boundaries were extracted by means of automatically image analysis. Geometric complexity (fractal dimension, D) by box counting was automatically calculated. The platelet boundary observed by electron microscopy is fractal, the shape of the circulating platelets is more complex in FH (n = 6) than healthy subjects (n = 5, P < 0.01), with 100% correct classification in selected individuals. In vitro activated platelets from healthy subjects show an analogous increase of D. The observed high D in the platelet boundary in FH originates from the in vivo platelet activation. Computerized fractal analysis of platelet shape observed by transmission electron microscopy can provide accurate, quantitative data to study platelet activation in familial hypercholesterolemia and after administration of drugs or other therapeutic procedures. PMID:25877374
The genetics of speciation: Insights from Fisher's geometric model.
Fraïsse, Christelle; Gunnarsson, P Alexander; Roze, Denis; Bierne, Nicolas; Welch, John J
2016-07-01
Research in speciation genetics has uncovered many robust patterns in intrinsic reproductive isolation, and fitness landscape models have been useful in interpreting these patterns. Here, we examine fitness landscapes based on Fisher's geometric model. Such landscapes are analogous to models of optimizing selection acting on quantitative traits, and have been widely used to study adaptation and the distribution of mutational effects. We show that, with a few modifications, Fisher's model can generate all of the major findings of introgression studies (including "speciation genes" with strong deleterious effects, complex epistasis and asymmetry), and the major patterns in overall hybrid fitnesses (including Haldane's Rule, the speciation clock, heterosis, hybrid breakdown, and male-female asymmetry in the F1). We compare our approach to alternative modeling frameworks that assign fitnesses to genotypes by identifying combinations of incompatible alleles. In some cases, the predictions are importantly different. For example, Fisher's model can explain conflicting empirical results about the rate at which incompatibilities accumulate with genetic divergence. In other cases, the predictions are identical. For example, the quality of reproductive isolation is little affected by the manner in which populations diverge. PMID:27252049
Fundamental Principles of Classical Mechanics: a Geometrical Perspectives
NASA Astrophysics Data System (ADS)
Lam, Kai S.
2014-07-01
Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...
Validation of geometric models for fisheye lenses
NASA Astrophysics Data System (ADS)
Schneider, D.; Schwalbe, E.; Maas, H.-G.
The paper focuses on the photogrammetric investigation of geometric models for different types of optical fisheye constructions (equidistant, equisolid-angle, sterographic and orthographic projection). These models were implemented and thoroughly tested in a spatial resection and a self-calibrating bundle adjustment. For this purpose, fisheye images were taken with a Nikkor 8 mm fisheye lens on a Kodak DSC 14n Pro digital camera in a hemispherical calibration room. Both, the spatial resection and the bundle adjustment resulted in a standard deviation of unit weight of 1/10 pixel with a suitable set of simultaneous calibration parameters introduced into the camera model. The camera-lens combination was treated with all of the four basic models mentioned above. Using the same set of additional lens distortion parameters, the differences between the models can largely be compensated, delivering almost the same precision parameters. The relative object space precision obtained from the bundle adjustment was ca. 1:10 000 of the object dimensions. This value can be considered as a very satisfying result, as fisheye images generally have a lower geometric resolution as a consequence of their large field of view and also have a inferior imaging quality in comparison to most central perspective lenses.
Geometric defects in quantum Hall states
NASA Astrophysics Data System (ADS)
Gromov, Andrey
2016-08-01
We describe a geometric (or gravitational) analog of the Laughlin quasiholes in fractional quantum Hall states. Analogously to the quasiholes, these defects can be constructed by an insertion of an appropriate vertex operator into the conformal block representation of a trial wave function; however, unlike the quasiholes these defects are extrinsic and do not correspond to true excitations of the quantum fluid. We construct a wave function in the presence of such defects and explain how to assign an electric charge and a spin to each defect and calculate the adiabatic, non-Abelian statistics of the defects. The defects turn out to be equivalent to the genons in that their adiabatic exchange statistics can be described in terms of representations of the mapping class group of an appropriate higher genus Riemann surface. We present a general construction that, in principle, makes it possible to calculate the statistics of Zn genons for any "parent" topological phase. We illustrate the construction on the example of the Laughlin state and perform an explicit calculation of the braiding matrices. In addition to non-Abelian statistics, geometric defects possess a universal Abelian overall phase, determined by the gravitational anomaly.
Geometric and Radiometric Evaluation of Rasat Images
NASA Astrophysics Data System (ADS)
Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar
2016-06-01
RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.
Geometrical, response, and gap properties of Lindbladians
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Bradlyn, Barry; Fraas, Martin; Jiang, Liang
We study Lindbladians admitting multi-dimensional steady-state subspaces (SSS) which can be used to store, protect, and process quantum information. We derive an analytical formula for the left eigenmatrices of such Lindbladians corresponding to purely imaginary eigenvalues. This formula resolves how Lindbladian evolution affects perturbative response and geometrical features of the SSS and allows us to generalize recent work to all types of SSS. We show that Hamiltonian and certain jump operator perturbations induce, to first order, exclusively unitary evolution on the SSS. Similarly, the holonomy (generalization of geometric phase) induced on the SSS after adiabatic traversal of a closed path in parameter space is unitary. We derive a new Riemannian metric tensor in parameter space induced by one type of SSS, generalizing the Fubini-Study metric to Lindbladians possessing one or more mixed steady states. We derive a Kubo formula governing linear response of the SSS to Hamiltonian perturbations. Finally, we show that the energy scale governing leakage out of the SSS is different from the conventional Lindbladian dissipative gap.
Geometric Modelling of Octagonal Lamp Poles
NASA Astrophysics Data System (ADS)
Chan, T. O.; Lichti, D. D.
2014-06-01
Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.
Geometric-optical illusions at isoluminance.
Hamburger, Kai; Hansen, Thorsten; Gegenfurtner, Karl R
2007-12-01
The idea of a largely segregated processing of color and form was initially supported by observations that geometric-optical illusions vanish under isoluminance. However, this finding is inconsistent with some psychophysical studies and also with physiological evidence showing that color and luminance are processed together by largely overlapping sets of neurons in the LGN, in V1, and in extrastriate areas. Here we examined the strength of nine geometric-optical illusions under isoluminance (Delboeuf, Ebbinghaus, Hering, Judd, Müller-Lyer, Poggendorff, Ponzo, Vertical, Zöllner). Subjects interactively manipulated computer-generated line drawings to counteract the illusory effect. In all cases, illusions presented under isoluminance (both for colors drawn from the cardinal L-M or S-(L+M) directions of DKL color space) were as effective as the luminance versions (both for high and low contrast). The magnitudes of the illusion effects were highly correlated across subjects for the different conditions. In two additional experiments we determined that the strong illusions observed under isoluminance were not due to individual deviations from the photometric point of isoluminance or due to chromatic aberrations. Our findings show that our conscious percept is affected similarly for both isoluminance and luminance conditions, suggesting that the joint processing for chromatic and luminance defined contours may extend well beyond early visual areas. PMID:17950398
Geometric representation of fundamental particles' inertial mass
Schachter, L.; Spencer, James
2015-07-22
A geometric representation of the (N = 279) masses of quarks, leptons, hadrons and gauge bosons was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in terms of a single particle, the Masson, which might be in one of the N eigen-states. Geometrically, its mass is the radius of the Riemann Sphere. Dynamically, its derived mass is near the mass of the nucleon regardless of whether it is determined from all N particles of only the hadrons, the mesons or the baryons separately. Ignoring all the other properties of these particles, it is shown that the eigen-values, the polar representation θ_{ν} of the masses on the Sphere, satisfy the symmetry θ_{ν} + θ_{N+1-ν} = π within less than 1% relative error. In addition, these pair correlations include the pairs θ_{γ} + θ_{top} ≃ π and θ_{gluon} + θ_{H} ≃ π as well as pairing the weak gauge bosons with the three neutrinos.
Geometrical Classification of Spaghetti-Like Nanoclusters
NASA Astrophysics Data System (ADS)
Purqon, Acep; Sugiyama, Ayumu; Nagao, Hidemi; Takasu, Masako; Nishikawa, Kiyoshi
2008-02-01
Spaghetti-like nanoclusters show irregular shapes. We investigate their shapes by using the concept of symmetry and isotropy. The Symmetry-S evaluates the degree of symmetry of a cluster implying aggregate orderness, while, the Isotropy-I evaluates the degree of parallelism of a cluster. To investigate cluster dynamics in detail, we perform molecular dynamics simulation for POPC and POPE lipids for 300 K and 340 K.>From the simulations, the clusters are not easy to configure S≈0; which implies that the cluster shapes are neither sphere nor rod shapes; simply disorder shapes. However, at some times, the clusters show similar shapes with definite shapes implying some regions or classifications. For the reasons, we classify the irregular shapes in spaghetti-like nanoclusters by using geometrical classification as physical meaning of the concepts of symmetry and isotropy. We find, at least, four cluster modes: sphere-like, rod-like, cone-like, and monolayer-like. We also use geometrical classification as diagnostics of stability or anomalous behaviour and discuss the dependence of cluster shapes to temperature, number of lipids and odd-even number of lipids.
Geometrical acoustics and transonic helicopter sound
NASA Technical Reports Server (NTRS)
Isom, Morris; Purcell, Timothy W.; Strawn, Roger C.
1987-01-01
A new method is presented for predicting the impulsive noise generated by a transonic rotor blade. The method is a combined approach involving computational fluid dynamics and geometrical acoustics. A full-potential finite-difference method is used to obtain the pressure field close to the blade. A Kirchhoff integral formulation is then used to extend these finite-difference results into the far field. This Kirchhoff formula is based on geometrical acoustics approximations. It requires initial data across a plane at the sonic radius in a blade-fixed coordinate system. This data is provided by the finite-difference solution. Acoustic pressure predictions show good agreement with hover experimental data for cases with hover tip Mach numbers of 0.88 through 0.96. The cases above 0.92 tip Mach number are dominated by non-linear transonic effects seen as strong shocks on and off the blade tip. This paper gives the first successful predictions of far-field acoustic pressures for high-speed impulsive noise over a range of Mach numbers after delocalization.
Geometrical versus wave optics under gravitational waves
NASA Astrophysics Data System (ADS)
Angélil, Raymond; Saha, Prasenjit
2015-06-01
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely, null geodesics and Maxwell's equations, or geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics—rather than solving Maxwell's equations directly for the fields, as in most previous approaches—we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.
Geometrical basis for the Standard Model
Potter, F. )
1994-02-01
The robust character of the Standard Model is confirmed. Examination of its geometrical basis in three equivalent internal symmetry spaces - the unitary plane C[sup 2], the quaternion space Q, and the real space R[sup 4] - as well as the real space R[sup 3] uncovers mathematical properties that predict the physical properties of leptons and quarks. The finite rotational subgroups of the gauge group SU(2)[sub L] [times] U(1)[sub Y] generate exactly three lepton families and four quark families and reveal how quarks and leptons are related. Among the physical properties explained are the mass ratios of the six leptons and eight quarks, the origin of the left-handed preference by the weak interaction, the geometrical source of color symmetry, and the zero neutrino masses. The (u,d) and (c,s) quark families team together to satisfy the triangle anomaly cancellation with the electron family, while the other families pair one-to-one for cancellation. The spontaneously broken symmetry is discrete and needs no Higgs mechanism. Predictions include all massless neutrinos, the top quark at 160 GeV/c[sup 2], the b[prime] quark at 80 GeV/c[sup 2], and the t[prime] quark at 2600 GeV/c[sup 2].
Geometrical Detector Considerations in Laser Sensing Applications
NASA Technical Reports Server (NTRS)
Killinger, Dennis
2000-01-01
We have studied the influence of the geometrical interaction of different detectors with the impinging optical/laser received beam for a wide range of laser sensing applications. Although different techniques apply, it is found that similar aspects of geometrical physics plays a role in direct detection of a range-resolved large M(sup 2) OPO atmospheric Lidar, heterodyne multi-detector reception of atmospheric turbulence distorted coherent lidar type laser sensing, and the distribution and summation of laser induced fluorescence signals after being spectrally resolved with a spectrometer and detected by a column summing CCD detector. In each of these systems, the focused received light is spatially and spectrally distributed due to several factors including Field-of-View considerations, laser beam quality/divergence, multi-detector aspects, and hardware and software summation (coherent and non-coherent) of multi-element or spatially integrated signals. This invited talk will present some of our recent results in these areas and show the similarities in the detector spatial and temporal summation techniques of these different laser sensing systems.
Processing geometric representations on SIMD computers
Hung, Y.
1988-01-01
This thesis contributes to designing parallel algorithms to process border and linear quadtree representations on mesh-connected computers (MCCs) and hypercubes. This thesis consists of two parts. The first part studies some primitive operations on mesh-connected computers and hypercubes. These include various routing tasks and several versions of the parallel prefix algorithms. It is shown how general routings can be done in O(n) time on an n {times} n mesh and O(d{sup 2}) on a d-dimensional hypercube (d-cube). Also presented are optimal routing algorithms for some classes of permutation routings. For the parallel prefix problem, the author describes how the initial prefixes can be computed efficiently when the data are mapped into the MCC or the hypercube in some specific manners. The second part deals with processing border codes and linear quadtrees. These include generating border codes and linear quadtrees from a given image, reconstructing the image from its geometric representations, computing various geometric properties, answering the point-in-region query, performing set operations, etc. For linear quadtrees, algorithms are also designed for finding neighbors of equal or larger size for all nodes simultaneously. A connected component-labeling algorithm is also presented.
Translating cosmological special relativity into geometric algebra
NASA Astrophysics Data System (ADS)
Horn, Martin Erik
2012-11-01
Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.
Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors.
Türetken, Engin; González, Germán; Blum, Christian; Fua, Pascal
2011-09-01
We present a novel probabilistic approach to fully automated delineation of tree structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly on local evidence, ours builds a set of candidate trees over many different subsets of points likely to belong to the optimal tree and then chooses the best one according to a global objective function that combines image evidence with geometric priors. Since the best tree does not necessarily span all the points, the algorithm is able to eliminate false detections while retaining the correct tree topology. Manually annotated brightfield micrographs, retinal scans and the DIADEM challenge datasets are used to evaluate the performance of our method. We used the DIADEM metric to quantitatively evaluate the topological accuracy of the reconstructions and showed that the use of the geometric regularization yields a substantial improvement. PMID:21573886
Geometric Toys in the Attic? A Corpus Analysis of Early Exposure to Geometric Shapes
ERIC Educational Resources Information Center
Resnick, Ilyse; Verdine, Brian; Golinkoff, Roberta; Hirsh-Pasek, Kathy
2016-01-01
Preschoolers' experiences with shapes are important because geometry is foundational to aspects of mathematics and it is now part of the Common Core for school-readiness. Exposure to shapes also provides experiences that are key to developing spatial thinking more broadly. Yet achieving a strong conceptual understanding of geometric categories can…
RETRIEVAL EQUIPMENT DESCRIPTIONS
J. Steinhoff
1997-08-25
The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler.
NASA Technical Reports Server (NTRS)
Anuta, P. E.
1975-01-01
Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.
Spacelab J experiment descriptions
Miller, T.Y.
1993-08-01
Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm. Separate abstracts have been prepared for articles from this report.
Spacelab J experiment descriptions
NASA Technical Reports Server (NTRS)
Miller, Teresa Y. (Editor)
1993-01-01
Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm.
Scaief, C.C.
1995-10-17
This document provides a description of the Tank Monitor and Control System (TMACS). It is intended as an introduction for those persons unfamiliar with the system as well as a reference document for the users, maintenance personnel, and system designers. In addition to describing the system, the document outlines the associated drawing documentation, provides maintenance and spare parts information, and discusses other TMACS documents that provide additional detail
MartiTracks: a geometrical approach for identifying geographical patterns of distribution.
Echeverría-Londoño, Susy; Miranda-Esquivel, Daniel Rafael
2011-01-01
Panbiogeography represents an evolutionary approach to biogeography, using rational cost-efficient methods to reduce initial complexity to locality data, and depict general distribution patterns. However, few quantitative, and automated panbiogeographic methods exist. In this study, we propose a new algorithm, within a quantitative, geometrical framework, to perform panbiogeographical analyses as an alternative to more traditional methods. The algorithm first calculates a minimum spanning tree, an individual track for each species in a panbiogeographic context. Then the spatial congruence among segments of the minimum spanning trees is calculated using five congruence parameters, producing a general distribution pattern. In addition, the algorithm removes the ambiguity, and subjectivity often present in a manual panbiogeographic analysis. Results from two empirical examples using 61 species of the genus Bomarea (2340 records), and 1031 genera of both plants and animals (100118 records) distributed across the Northern Andes, demonstrated that a geometrical approach to panbiogeography is a feasible quantitative method to determine general distribution patterns for taxa, reducing complexity, and the time needed for managing large data sets. PMID:21533259
Management control system description
Bence, P. J.
1990-10-01
This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.
NASA Astrophysics Data System (ADS)
van Brummelen, Glen
2006-07-01
In terms of complexity, planetary latitudes are the culmination of Ptolemy's mathematical astronomy. Al-Kashi's remarkable system removes its mathematical flaws, and demonstrates that Muslim astronomers not only mastered this apex of Ptolemaic astronomy, but also perfected its mathematics. The remainder of this paper is devoted first to a brief description of the mathematics of Ptolemy's latitude model, and then to a technical account of the part of the Khaqani Zij devoted to al-Kashi's spherical approach. Al-Kashi's text falls roughly into three sections: a geometrical description of the spherical model, a mathematical discussion of how one might generate planetary positions from it, and a sample calculation for Venus. A translation by Sergei Tourkin of the passage in which al-Kashi describes the geometric structure of his model may be found in an appendix.
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
Hoi, Yiemeng; Woodward, Scott H.; Kim, Minsuok; Taulbee, Dale B.; Meng, Hui
2009-01-01
Background Computational fluid dynamics (CFD) simulations using medical-image-based anatomical vascular geometry are now gaining clinical relevance. This study aimed at validating the CFD methodology for studying cerebral aneurysms by using particle image velocimetry (PIV) measurements, with a focus on the effects of small geometric variations in aneurysm models on the flow dynamics obtained with CFD. Method of Approach. An experimental phantom was fabricated out of silicone elastomer to best mimic a spherical aneurysm model. PIV measurements were obtained from the phantom and compared with the CFD results from an ideal spherical aneurysm model (S1). These measurements were also compared with CFD results, based on the geometry reconstructed from three-dimensional images of the experimental phantom. We further performed CFD analysis on two geometric variations, S2 and S3, of the phantom to investigate the effects of small geometric variations on the aneurysmal flow field. Results. We found poor agreement between the CFD results from the ideal spherical aneurysm model and the PIV measurements from the phantom, including inconsistent secondary flow patterns. The CFD results based on the actual phantom geometry, however, matched well with the PIV measurements. CFD of models S2 and S3 produced qualitatively similar flow fields to that of the phantom but quantitatively significant changes in key hemodynamic parameters such as vorticity, positive circulation, and wall shear stress. Conclusion. CFD simulation results can closely match experimental measurements as long as both are performed on the same model geometry. Small geometric variations on the aneurysm model can significantly alter the flow-field and key hemodynamic parameters. Since medical images are subjected to geometric uncertainties, image-based patient-specific CFD results must be carefully scrutinized before providing clinical feedback. PMID:17154684
Solitons of geometric flows and their applications
NASA Astrophysics Data System (ADS)
Helmensdorfer, Sebastian
In this thesis we construct solitons of geometric flows with applications in three different settings. The first setting is related to nonuniqueness for geometric heat flows. We show that certain double cones in Euclidean space have several self-expanding evolutions under mean curvature flow. The construction of the associated self-expanding solitons leads to an application in fluid dynamics. We present a new model for the behaviour of oppositely charged droplets of fluid, based on the mean curvature flow of double cones. If two oppositely charged droplets of fluid are close to each other, they start attracting each other and touch eventually. Surprisingly, experiments have shown, that if the strength of the charges is high enough, then the droplets are repelled from each other, after making short contact. The constructed self-expanders can be used to correctly predict the experimental results, using our theoretical model. Secondly we employ space-time solitons of the mean curvature flow to give a geometric proof of Hamilton's Harnack estimate for the mean curvature flow. This proof is based on the observation that the associated Harnack quantity is the second fundamental form of a space-time self-expander. Moreover the self-expander is asymptotic to a cone over the convex initial hypersurface. Hence the self-expander can be seen as the mean curvature evolution of a convex cone, which we exploit to show that preservation of convexity directly implies the Harnack estimate. In the last chapter we study solutions of the mean curvature flow in a Ricci flow backgound. We show that the space-time track of such a solution can be seen as a soliton. Moreover the second fundamental form of this soliton matches the evolution of a functional, which is the analogue of G. Perelman's F-functional for the Ricci flow on a manifold with boundary and which also has relations to quantum gravity. Furthermore our construction provides a link between the Harnack estimate for the mean
Geometric scaling factors for the pediatric brainstem.
Danelson, Kerry A; Yu, Mao; Gayzik, F Scott; Geer, Carol P; Slice, Dennis E; Stitzel, Joel D
2008-01-01
Injuries caused by motor vehicle crashes (MVCs) are the leading cause of death for children in the United States as well as the leading cause of head injury. Improved finite element models that integrate the correct shape of the pediatric brain with current injury prediction metrics would improve occupant response prediction for the pediatric occupant. The focus of this study is the improvement of geometric scaling factors for the brainstem to adapt current adult brain models to a pediatric model. The method used to assess shape change for this study was a geometric morphometric analysis technique. A sliding landmark form of a general Procrustes analysis was selected for its ability to compare curved structures with few true landmarks. The dataset consisted of fifty-nine individuals ranging in age from newborn to twenty-one years of age with groups specified at newborn, three months, six months, one year, three years, six years, ten years, fifteen years, and twenty-one years of age. Data was collected by outlining the structure on transverse and sagittal scans of magnetic resonance images and then creating a landmark dataset with a user-defined number of points for each individual. Once all individuals had the same number of landmarks, these points are allowed to slide on planes tangent to the surface until a value described as bending energy is minimized relative to an iteratively computed mean configuration from a Generalized Procrustes Analysis. A General Procrustes Analysis was completed for this data set to determine the shape differences between the age groups. Then, the coordinate locations were regressed onto age, and this analysis resulted in a model that predicted landmark locations based on age. From this model, the dimensions of the brainstem were calculated using the specified age groups. The final step was taking the dimensions of the predicted twenty-one year old model as the base and calculating a geometric scaling factor for shape, without
Continuum description of avalanches in granular media.
Aranson, I. S.; Tsimring, L. S.
2000-12-05
A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.
NASA Astrophysics Data System (ADS)
Mayes, R.; Lyford, M. E.; Myers, J. D.
2009-12-01
The Quantitative Reasoning in STEM (QR STEM) project is a state level Mathematics and Science Partnership Project (MSP) with a focus on the mathematics and statistics that underlies the understanding of complex global scientific issues. This session is a companion session to the QR STEM: The Science presentation. The focus of this session is the quantitative reasoning aspects of the project. As students move from understandings that range from local to global in perspective on issues of energy and environment, there is a significant increase in the need for mathematical and statistical conceptual understanding. These understandings must be accessible to the students within the scientific context, requiring the special understandings that are endemic within quantitative reasoning. The QR STEM project brings together interdisciplinary teams of higher education faculty and middle/high school teachers to explore complex problems in energy and environment. The disciplines include life sciences, physics, chemistry, earth science, statistics, and mathematics. These interdisciplinary teams develop open ended performance tasks to implement in the classroom, based on scientific concepts that underpin energy and environment. Quantitative reasoning is broken down into three components: Quantitative Literacy, Quantitative Interpretation, and Quantitative Modeling. Quantitative Literacy is composed of arithmetic concepts such as proportional reasoning, numeracy, and descriptive statistics. Quantitative Interpretation includes algebraic and geometric concepts that underlie the ability to interpret a model of natural phenomena which is provided for the student. This model may be a table, graph, or equation from which the student is to make predictions or identify trends, or from which they would use statistics to explore correlations or patterns in data. Quantitative modeling is the ability to develop the model from data, including the ability to test hypothesis using statistical
Topological rewriting and the geometrization of programming
NASA Astrophysics Data System (ADS)
Giavitto, Jean-Louis; Spicher, Antoine
2008-07-01
Spatial computing is an emerging field that recognizes the importance of explicitly handling spatial relationships at three levels: computer architectures, programming languages and applications. In this context, we present MGS, an experimental programming language where data structures are fields on abstract spaces. In MGS, fields are transformed using rules. We show that this approach is able to unify, at least for programming purposes, several computational models like Lindenmayer systems and cellular automata. The MGS notions of topological collection and transformation are formalized using concepts developed in algebraic topology. We propose to use transformations in order to implement a discrete version of some differential operators. These transformations satisfy a Stokes-like theorem. This result constitutes a geometric view of programming where data are handled like fields in physics. The relevance of this approach for the design of autonomic software systems is discussed in the conclusion.
Facial symmetry assessment based on geometric features
NASA Astrophysics Data System (ADS)
Xu, Guoping; Cao, Hanqiang
2015-12-01
Face image symmetry is an important factor affecting the accuracy of automatic face recognition. Selecting high symmetrical face image could improve the performance of the recognition. In this paper, we proposed a novel facial symmetry evaluation scheme based on geometric features, including centroid, singular value, in-plane rotation angle of face and the structural similarity index (SSIM). First, we calculate the value of the four features according to the corresponding formula. Then, we use fuzzy logic algorithm to integrate the value of the four features into a single number which represents the facial symmetry. The proposed method is efficient and can adapt to different recognition methods. Experimental results demonstrate its effectiveness in improving the robustness of face detection and recognition.
Time Series Analysis Using Geometric Template Matching.
Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina
2013-03-01
We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data. PMID:22641699
Improved geometrical model of fringe projection profilometry.
Huang, Zhengrong; Xi, Jiangtao; Yu, Yanguang; Guo, Qinghua; Song, Limei
2014-12-29
The accuracy performance of fringe projection profilometry (FPP) depends on accurate phase-to-height (PTH) mapping and system calibration. The existing PTH mapping is derived based on the condition that the plane formed by axes of camera and projector is perpendicular to the reference plane, and measurement error occurs when the condition is not met. In this paper, a new geometric model for FPP is presented to lift the condition, resulting in a new PTH mapping relationship. The new model involves seven parameters, and a new system calibration method is proposed to determine their values. Experiments are conducted to verify the performance of the proposed technique, showing a noticeable improvement in the accuracy of 3D shape measurement. PMID:25607188
A geometrical perspective for the bargaining problem.
Wong, Kelvin Kian Loong
2010-01-01
A new treatment to determine the Pareto-optimal outcome for a non-zero-sum game is presented. An equilibrium point for any game is defined here as a set of strategy choices for the players, such that no change in the choice of any single player will increase the overall payoff of all the players. Determining equilibrium for multi-player games is a complex problem. An intuitive conceptual tool for reducing the complexity, via the idea of spatially representing strategy options in the bargaining problem is proposed. Based on this geometry, an equilibrium condition is established such that the product of their gains over what each receives is maximal. The geometrical analysis of a cooperative bargaining game provides an example for solving multi-player and non-zero-sum games efficiently. PMID:20436675
Geometric characterization of true quantum decoherence
NASA Astrophysics Data System (ADS)
Kayser, Julius; Luoma, Kimmo; Strunz, Walter T.
2015-11-01
Surprisingly often decoherence is due to classical fluctuations of ambient fields and may thus be described in terms of random unitary (RU) dynamics. However, there are decoherence channels where such a representation cannot exist. Based on a simple and intuitive geometric measure for the distance of an extremal channel to the convex set of RU channels we are able to characterize the set of true quantum phase-damping channels. Remarkably, using the Caley-Menger determinant, our measure may be assessed directly from the matrix representation of the channel. We find that the channel of maximum quantumness is closely related to a symmetric, informationally complete positive operator-valued measure on the environment. Our findings are in line with numerical results based on the entanglement of assistance.
Random broadcast on random geometric graphs
Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias
2009-01-01
In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.
Geometrical scaling in charm structure function ratios
NASA Astrophysics Data System (ADS)
Boroun, G. R.; Rezaei, B.
2014-09-01
By using a Laplace-transform technique, we solve the next-to-leading-order master equation for charm production and derive a compact formula for the ratio Rc = FLccbar/F2ccbar, which is useful for extracting the charm structure function from the reduced charm cross section, in particular, at DESY HERA, at small x. Our results show that this ratio is independent of x at small x. In this method of determining the ratios, we apply geometrical scaling in charm production in deep inelastic scattering (DIS). Our analysis shows that the renormalization scales have a sizable impact on the ratio Rc at high Q2. Our results for the ratio of the charm structure functions are in a good agreement with some phenomenological models.
On the geometric form of volcanoes - Comment
NASA Technical Reports Server (NTRS)
Wood, C. A.
1982-01-01
The model of Lacey et al. (1981) accounting for the geometric regularity and approximate cone shape of volcanoes is discussed. It is pointed out that, contrary to the model, volcano eruptions do not occur randomly in elevation and azimuth, but are commonly restricted to summit vents and a few well defined flank zones, so that the form of a volcano is determined by its vent locations and styles of eruption. Other false predictions of the model include the constancy of lava volumes at all vent elevations, the increase in volcano radius as the square root of time, a critical height for volcano growth, the influence of planetary gravity on volcano height and the negligible influence of ash falls and flows and erosional deposition. It is noted that the model of Shteynberg and Solov'yev, in which cone shape is related to stresses due to increasing cone height, may provide a better understanding of volcano morphology.
Geometric signature of complex synchronisation scenarios
NASA Astrophysics Data System (ADS)
Feldhoff, J. H.; Donner, R. V.; Donges, J. F.; Marwan, N.; Kurths, J.
2013-05-01
Synchronisation between coupled oscillatory systems is a common phenomenon in many natural as well as technical systems. Varying the coupling strength often leads to qualitative changes in the dynamics exhibiting different types of synchronisation. Here, we study the geometric signatures of coupling along with the onset of generalised synchronisation (GS) between two coupled chaotic oscillators by mapping the systems' individual as well as joint recurrences in phase space to a complex network. For a paradigmatic continuous-time model system, we show that the transitivity properties of the resulting joint recurrence networks display distinct variations associated with changes in the structural similarity between different parts of the considered trajectories. They therefore provide a useful new indicator for the emergence of GS. This paper is dedicated to the 25th anniversary of the introduction of recurrence plots by Eckmann et al. (EPL, 4 (1987) 973).
Geometric optics of arrays of reflective surfaces.
Chapman, H N; Rode, A V
1994-05-01
We present an analysis of the geometric optics of spherically curved arrays of reflective surfaces. In particular we consider optical devices in which reflective surfaces are arranged on a spherical interface and every ray reflects once from a reflector. The orientation of the reflective surfaces is not necessarily related in any way to the orientation of the interface. The analysis can be applied to any radiation that may specularly reflect from the reflectors. This may be reflection from stacks of mirrors or diffraction from the atomic planes. The principles are applied to x-ray optical systems such as capillary arrays and curved crystals. The calculations are used to find optimum configurations of reflective arrays for applications such as x-ray condensers and telescopes, to find the tolerances to which reflective arrays must be constructed, and to find the conditions in which primary aberrations are eliminated. PMID:20885592
A geometric approach to quantum state separation
NASA Astrophysics Data System (ADS)
Bagan, E.; Yerokhin, V.; Shehu, A.; Feldman, E.; Bergou, J. A.
2015-12-01
Probabilistic quantum state transformations can be characterized by the degree of state separation they provide. This, in turn, sets limits on the success rate of these transformations. We consider optimum state separation of two known pure states in the general case where the known states have arbitrary a priori probabilities. The problem is formulated from a geometric perspective and shown to be equivalent to the problem of finding tangent curves within two families of conics that represent the unitarity constraints and the objective functions to be optimized, respectively. We present the corresponding analytical solutions in various forms. In the limit of perfect state separation, which is equivalent to unambiguous state discrimination, the solution exhibits a phenomenon analogous to a second order symmetry breaking phase transition. We also propose a linear optics implementation of separation which is based on the dual rail representation of qubits and single-photon multiport interferometry.
Determination of geometric distortion in STIS images
NASA Technical Reports Server (NTRS)
Malumuth, Eliot M.; Bowers, Charles W.
1997-01-01
This is a report on the characterization of the geometric distortion of the Space Telescope Imaging Spectrograph (STIS) Charge Coupled Devices (CCD) and the STIS Far-Ultraviolet Multi-Anode Microchannel Arrays (FUV-MAMA) detectors when used in imaging mode. We find that the amount of the distortion is fairly small over most of the field. The maximum displacement is 1.66 pixels for the CCD and 2.71 pixels for the FUV-MAMA. This data also allows us to determine the plate scale for both cameras. For the CCD the scale is 0".05071 +/- 0".00007 /pixel. For the FUV-MAMA the scale is 0".02447 +/- 0".00001 /pixel in x and 0".02467 +/-0".00002 /pixel in y.
Random geometric graphs with general connection functions
NASA Astrophysics Data System (ADS)
Dettmann, Carl P.; Georgiou, Orestis
2016-03-01
In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.
Geometric Phase of a Transported Oscillator
Dittirich, W.
2004-02-25
An oscillator constrained to a plane that is transported along some surface will rotate by an angle dependent only on the path and the surface, not on the speed at which it is transported. This is thus an example of a geometric phase. We analyze this phase using the methods of parallel transport. This concept plays a key role in General Relativity, but it can also be applied in classical mechanics. The Foucault pendulum can be seen as an application of this analysis, where the surface is a sphere and the curve is a line of constant latitude. In view of some considerable confusion and erroneous treatments in the recent literature, we here present a rather simple way for visualizing the motion of the Foucault pendulum using concepts that are based on Frenet's formulae and the methods of parallel displacement.
Geometric massive gravity in multiconnection framework
NASA Astrophysics Data System (ADS)
Khosravi, Nima
2014-01-01
What is the right way to interpret a massive graviton? We generalize the kinematical framework of general relativity to multiple connections. The average of the connections is itself a connection and plays the role of the canonical connection in standard general relativity. At the level of dynamics, the simplest choice of the Einstein-Hilbert action is indistinguishable from the single-connection case. However, inspired by Weyl geometry, we show how one can construct massive gravity to all orders in perturbation theory compatible with the de Rham-Gabadadze-Tolley ghost-free model. We conclude that the mass of the graviton can be interpreted as a geometrical property of spacetime arising from two connections. Furthermore, in the multiconnection framework there is no ambiguity in the definition of the physical metric and consequently coupling to matter.
On the geometrization of quantum mechanics
NASA Astrophysics Data System (ADS)
Tavernelli, Ivano
2016-08-01
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave-particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie-Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity.
Efficient broadcast on random geometric graphs
Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias; Sauerwald, Thomas
2009-01-01
A Randon Geometric Graph (RGG) is constructed by distributing n nodes uniformly at random in the unit square and connecting two nodes if their Euclidean distance is at most r, for some prescribed r. They analyze the following randomized broadcast algorithm on RGGs. At the beginning, there is only one informed node. Then in each round, each informed node chooses a neighbor uniformly at random and informs it. They prove that this algorithm informs every node in the largest component of a RGG in {Omicron}({radical}n/r) rounds with high probability. This holds for any value of r larger than the critical value for the emergence of a giant component. In particular, the result implies that the diameter of the giant component is {Theta}({radical}n/r).
A Geometrical Approach to Bell's Theorem
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2000-01-01
Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.
Geometric Correction System Capabilities, Processing, and Application
Brewster, S.B.
1999-06-30
The U.S. Department of Energy's Remote Sensing Laboratory developed the geometric correction system (GCS) as a state-of-the-art solution for removing distortions from multispectral line scanner data caused by aircraft motion. The system operates on Daedalus AADS-1268 scanner data acquired from fixed-wing and helicopter platforms. The aircraft attitude, altitude, acceleration, and location are recorded and applied to the data, thereby determining the location of the earth with respect to a given datum and projection. The GCS has yielded a positional accuracy of 0.5 meters when used with a 1-meter digital elevation model. Data at this level of accuracy are invaluable in making precise areal estimates and as input into a geographic information system. The combination of high-spatial resolution and accurate geo-rectification makes the GCS a unique tool in identifying and locating environmental conditions, finding targets of interest, and detecting changes as they occur over time.
Geometrical model of the Baltic artesian basin
NASA Astrophysics Data System (ADS)
Sennikovs, J.; Virbulis, J.; Bethers, U.
2012-04-01
Baltic artesian basin (BAB) is a multi-layer sedimentary basin spanning around 480'000 km2. BAB is located in the territory of Latvia, Lithuania and Estonia, parts of Poland, Russia, Belarus and large area of the Baltic Sea, including island of Gotland. The thickness of sedimentary cover is about 5000 m in the south-western part. Crystalline bedding reaches the surface in the northern and north-western parts. The aim of the present work is development of the model of geometric structure and three dimensional finite element mesh for the hydrogeological model of the whole BAB. The information that is used to build the geometrical structure includes: (1) Stratigraphic information from boreholes in Latvia and Estonia (2) Maps of height isolines of geological layers for Latvia and Lithuania (3) Maps of sub-quaternary deposits in Latvia and Lithuania (4) Maps of fault lines on the crystalline basement surface in Latvia, Lithuania and Estonia (5) Buried valley data from Latvia and Estonia (6) Earth topography data (7) Baltic sea depth data (8) Data from published geological cross-sections, information from books and other sources. Unification of the heterogeneous information from different sources, which are employed for building of the geometrical structure of the model are performed. Special algorithms are developed for this purpose considering the priority, importance and plausibility of each of the data sources. Pre-processing of the borehole information to screen out the outlying borehole data has been performed. Model of geological structure contains 42 layers. It includes aquifers and aquitards from Cambrian up to the Quaternary deposits. Fault displacements are incorporated into the model taking into account data from the published structural maps. Four reconstructed regional erosion surfaces (upper Ordovician, Devonian, Permian and Quaternary) are included into the model Three dimensional mesh of the geological structure is constructed layer-wise. The triangular
Geometrically nonlinear analysis of adhesively bonded joints
NASA Technical Reports Server (NTRS)
Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.
1982-01-01
A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.
Color Image Magnification: Geometrical Pattern Classification Approach
NASA Astrophysics Data System (ADS)
Yong, Tien Fui; Choo, Wou Onn; Meian Kok, Hui
In an era where technology keeps advancing, it is vital that high-resolution images are available to produce high-quality displayed images and fine-quality prints. The problem is that it is quite impossible to produce high-resolution images with acceptable clarity even with the latest digital cameras. Therefore, there is a need to enlarge the original images using an effective and efficient algorithm. The main contribution of this paper is to produce an enlarge color image with high visual quality, up to four times the original size of 100x100 pixels image. In the classification phase, the basic idea is to separate the interpolation region in the form of geometrical shape. Then, in the intensity determination phase, the interpolator assigns a proper color intensity value to the undefined pixel inside the interpolation region. This paper will discuss about problem statement, literature review, research methodology, research outcome, initial results, and finally, the conclusion.
Geometric invariance of compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Robust optical alignment systems using geometric invariants
NASA Astrophysics Data System (ADS)
Ho, Tzung-Hsien; Rzasa, John; Milner, Stuart D.; Davis, Christopher C.
2007-09-01
Traditional coarse pointing, acquisition, and tracking (CPAT) systems are pre-calibrated to have the center pixel of the camera aligned to the laser pointing vector and the center pixel is manually moved to the target of interest to complete the alignment process. Such a system has previously demonstrated its capability in aligning with distant targets and the pointing accuracy is on the order of sensor resolution. However, aligning with targets at medium range where the distance between angular sensor and transceiver is not negligible is its Achilles Heel. This limitation can be resolved by imposing constraints, such as the trifocal tensor (TT), which is deduced from the geometrical dependence between cameras and transceivers. Two autonomous CPAT systems are introduced for FSO transceiver alignment in mid- and long-range scenarios. This work focuses on experimental results that validate the pointing performance for targets at different distances, backed up by the theoretical derivations. A mid-range CPAT system, applying a trifocal tensor as its geometric invariant, includes two perspective cameras as sensors to perceive target distances. The long-range CPAT system, applying linear mapping as the invariant, requires only one camera to determine the pointing angle. Calibration procedures for both systems are robust to measurement noise and the resulting system can autonomously point to a target of interest with a high accuracy, which is also on the order of sensor resolution. The results of this work are not only beneficial to the design of CPAT systems for FSO transceiver alignment, but also in new applications such as surveillance and navigation.
A Geometric Representation of Collective Attention Flows
Shi, Peiteng; Huang, Xiaohan; Wang, Jun; Zhang, Jiang; Deng, Su; Wu, Yahui
2015-01-01
With the fast development of Internet and WWW, “information overload” has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery). 20% popular sites (Google.com, Myspace.com, Facebook.com, etc.) attracting 75% attention flows with only 55% dissipations (log off users) locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by “S”-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation. PMID:26325390
A Geometric Representation of Collective Attention Flows.
Shi, Peiteng; Huang, Xiaohan; Wang, Jun; Zhang, Jiang; Deng, Su; Wu, Yahui
2015-01-01
With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery). 20% popular sites (Google.com, Myspace.com, Facebook.com, etc.) attracting 75% attention flows with only 55% dissipations (log off users) locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation. PMID:26325390
Geometric morphometric footprint analysis of young women
2013-01-01
Background Most published attempts to quantify footprint shape are based on a small number of measurements. We applied geometric morphometric methods to study shape variation of the complete footprint outline in a sample of 83 adult women. Methods The outline of the footprint, including the toes, was represented by a comprehensive set of 85 landmarks and semilandmarks. Shape coordinates were computed by Generalized Procrustes Analysis. Results The first four principal components represented the major axes of variation in foot morphology: low-arched versus high-arched feet, long and narrow versus short and wide feet, the relative length of the hallux, and the relative length of the forefoot. These shape features varied across the measured individuals without any distinct clusters or discrete types of footprint shape. A high body mass index (BMI) was associated with wide and flat feet, and a high frequency of wearing high-heeled shoes was associated with a larger forefoot area of the footprint and a relatively long hallux. Larger feet had an increased length-to-width ratio of the footprint, a lower-arched foot, and longer toes relative to the remaining foot. Footprint shape differed on average between left and right feet, and the variability of footprint asymmetry increased with BMI. Conclusions Foot shape is affected by lifestyle factors even in a sample of young women (median age 23 years). Geometric morphometrics proved to be a powerful tool for the detailed analysis of footprint shape that is applicable in various scientific disciplines, including forensics, orthopedics, and footwear design. PMID:23886074
The Need (?) for Descriptive Geometry in a World of 3D Modeling.
ERIC Educational Resources Information Center
Croft, Frank M. Jr.
1998-01-01
Evaluates the use of modern CAD methods to solve geometric problems. Solves descriptive geometry problems using the layout and position of the successive auxiliary views from the projection of three-dimensional figures onto a two-dimensional plane of paper. (CCM)
A Descriptive Analysis of High School Student Motivators for Success
ERIC Educational Resources Information Center
Booker, Janet Maria
2011-01-01
The purpose of the quantitative descriptive study was to gain an understanding of the motivating factors leading high school students from rural and urban schools to receive a diploma. A revised version of the High School Motivation Scale (Close, 2001; Solberg et al., 2007) generated from SurveyMonkey.com was administered to high school graduates…
NASA Astrophysics Data System (ADS)
Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.
2012-07-01
The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations
Generalizations of fuzzy linguistic control points in geometric design
NASA Astrophysics Data System (ADS)
Sallehuddin, M. H.; Wahab, A. F.; Gobithaasan, R. U.
2014-07-01
Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models.
Formal descriptions for formulation.
This, Hervé
2007-11-01
Two formalisms used to describe the physical microstructure and the organization of formulated products are given. The first, called "complex disperse systems formalism" (CDS formalism) is useful for the description of the physical nature of disperse matter. The second, called "non periodical organizational space formalism" (NPOS formalism) has the same operators as the CDS formalism, but different elements; it is useful to describe the arrangement of any objects in space. Both formalisms can be viewed as the same, applied to different orders of magnitude for spatial size. PMID:17875375
MCO Monitoring activity description
SEXTON, R.A.
1998-11-09
Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.
Effect of noise on geometric logic gates for quantum computation
Blais, A.; Tremblay, A.-M.S.
2003-01-01
We introduce the nonadiabatic, or Aharonov-Anandan, geometric phase as a tool for quantum computation and show how this phase on one qubit can be monitored by a second qubit without any dynamical contribution. We also discuss how this geometric phase could be implemented with superconducting charge qubits. While the nonadiabatic geometric phase may circumvent many of the drawbacks related to the adiabatic (Berry) version of geometric gates, we show that the effect of fluctuations of the control parameters on nonadiabatic phase gates is more severe than for the standard dynamic gates. Similarly, fluctuations also affect to a greater extent quantum gates that use the Berry phase instead of the dynamic phase.
Geometry and dynamics of one-norm geometric quantum discord
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Qiu, Daowen; Mateus, Paulo
2016-01-01
We investigate the geometry of one-norm geometric quantum discord and present a geometric interpretation of one-norm geometric quantum discord for a class of two-qubit states. It is found that one-norm geometric quantum discord has geometric behavior different from that described in Lang and Caves (Phys Rev Lett 105:150501, 2010), Li et al. (Phys Rev A 83:022321, 2011) and Yao et al. (Phys Lett A 376:358-364, 2012). We also compare the dynamics of the one-norm geometric quantum discord and other measures of quantum correlations under correlated noise. It is shown that different decoherent channels bring different influences to quantum correlations measured by concurrence, entropic quantum discord and geometric quantum discord, which depend on the memory parameter and decoherence parameter. We lay emphasis on the behaviors such as entanglement sudden death and sudden transition of quantum discord. Finally, we study the dynamical behavior of one-norm geometric quantum discord in one-dimensional anisotropic XXZ model by utilizing the quantum renormalization group method. It is shown that the one-norm geometric quantum discord demonstrates quantum phase transition through renormalization group approach.
Comparison of geometrical and diffraction optical transfer functions
NASA Astrophysics Data System (ADS)
Mahajan, Virendra N.; Díaz, José Antonio
2015-09-01
The geometrical and diffraction point-spread functions of an optical imaging system have been reviewed and compared in the past [V. N. Mahajan, "Comparison of geometrical and diffraction point-spread functions," SPIE Proc. 3729, 434-445 (1999)]. In this paper, we review and compare its corresponding optical transfer functions. While the truth lies with the diffraction OTF, it is considered easier and quicker to calculate the geometrical OTF, especially for large aberrations. We briefly describe the theory of the two OTFs, and explore the range of spatial frequencies and the magnitude of the primary aberrations over which the geometrical OTF may provide a reasonable approximation of the diffraction OTF.
Geometric phase for collinear conical intersections. I. Geometric phase angle and vector potentials
Li Xuan; Brue, Daniel A.; Blandon, Juan D.; Parker, Gregory A.; Kendrick, Brian K.
2011-02-14
We present a method for properly treating collinear conical intersections in triatomic systems. The general vector potential (gauge theory) approach for including the geometric phase effects associated with collinear conical intersections in hyperspherical coordinates is presented. The current study develops an introductory method in the treatment of collinear conical intersections by using the phase angle method. The geometric phase angle, {eta}, in terms of purely internal coordinates is derived using the example of a spin-aligned quartet lithium triatomic system. A numerical fit and thus an analytical form for the associated vector potentials are explicitly derived for this triatomic A{sub 3} system. The application of this methodology to AB{sub 2} and ABC systems is also discussed.
Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation
NASA Astrophysics Data System (ADS)
Hod, Shahar
2009-09-01
It has long been known that null unstable geodesics are related to the characteristic modes of black holes—the so-called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability time scale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null rays is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation waves in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.
Kuprat, A.; George, D.
1998-12-01
When modeling deformation of geometrically complex regions, unstructured tetrahedral meshes provide the flexibility necessary to track interfaces as they change geometrically and topologically. In the class of time-dependent simulations considered in this paper, multimaterial interfaces are represented by sets of triangular facets, and motion of the interfaces is controlled by physical considerations. The motion of interior points in the conforming tetrahedral mesh (i.e., points not on interfaces) is arbitrary and may be chosen to produce good element shapes. In the context of specified boundary motion driven by physical considerations, they have found that a rather large glossary of mesh changes is required to allow the simulation to survive all the transitions of interface geometry and topology that occur during time evolution. This paper will describe mesh changes required to maintain good element quality as the geometry evolves, as well as mesh changes required to capture changes i n topology that occur when material regions collapse or pinch off. This paper will present a detailed description of mesh changes necessary for capturing the aforementioned geometrical and topological changes, as implemented in the code GRAIN3D, and will provide examples from a metallic grain growth simulation in which the normal velocity of the grain boundary is proportional to mean curvature.
Navia, Denise; Ferreira, Cecília B S; Reis, Aleuny C; Gondim, Manoel G C
2015-09-01
Cryptic diversity has been confirmed for several phytophagous mites in the Eriophyoidea superfamily previously considered as presenting low host specificity. Among generalist eriophyoids is the phytoptid Retracrus johnstoni Keifer, which has been reported in 19 palm species belonging to 11 genera, causing severe damage on some of them. Surprisingly this species was recently reported on another monocot family, Heliconiaceae, infesting Heliconia plants in Costa Rica and Brazil, being the only in the tribe Mackiellini to not be associated with palm trees. This study aimed to investigate the occurrence of cryptic species in R. johnstoni and to clarify the taxonomic status of populations associated with heliconias in the Americas. With this purpose traditional and geometric morphometric analyses were conducted as well as a detailed morphological study. Measurable trait data were analysed via univariate and multivariate analyses. Shapes of specimens from different populations were compared via geometric morphometric landmark methods. Morphometric analysis supported occurrence of at least two cryptic species previously identified as R. johsntoni and suggested occurrence of cryptic species among populations associated with different palm trees. Taxonomic descriptions of two new taxa associated with heliconias, namely Retracrus costaricensis n. sp. Ferreira and Navia and Retracrus heliconiae n. sp. Ferreira and Navia are presented. Morphometric traits that can be useful in the taxonomic identification are noted and their value is discussed. Results of the traditional morphometry and geometric methods were compared and the advantages of their joint use for Eriophyoidea systematics are discussed. PMID:26089124
NASA Astrophysics Data System (ADS)
Horn, Martin Erik
2014-10-01
It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics.
Efficient Geometric Sound Propagation Using Visibility Culling
NASA Astrophysics Data System (ADS)
Chandak, Anish
2011-07-01
Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying
Seismic coherent states and ray geometrical spreading
NASA Astrophysics Data System (ADS)
Thomson, C. J.
2001-02-01
The coherent-state transform (CST) is essentially a Gaussian-windowed Fourier transform and it yields a combined slowness-position (p,x) domain representation of seismic wavefields. Several forms of the inverse CST exist and the set of `coherent states' form an overcomplete basis for wave analysis, in many ways similar to modern wavelets. The asymptotic or `ray' solution to the CST of the seismic wave equation involves a phase function S(p,x) that is complex due to the Gaussian decay. Hence one must consider complex rays, as well as a higher-dimensional phase space (p,x,∂pS,∂xS) corresponding to the extended configuration or base space (p,x). The initial conditions and geometrical spreading of these rays involve generalizations of standard procedures, exemplified by analysis of the coherent states excited by a ray theory incident wavefield. Surfaces of constant S are `tangential' to the standard ray theory wavefront T(x) and the Maslov phase fronts given by the Legendre transformation of T. Hence the real rays of T (and the Maslov phase) are particular rays of S. The geometrical spreading of an individual coherent-state (CS) wavefield requires careful consideration. Although the transport equation involves divergence in the higher-dimensional base space (p,x), Smirnov's Lemma applied in this space still gives the solution. The incorporation of initial conditions is correspondingly intricate, but the final spreading function is better behaved (`smoother') than either a standard ray or Maslov theory amplitude. This provides a solution to the problem of pseudo-caustics. The task of finding a `KMAH index' for each ray contributing to the inverse CST is simplified to choosing a complex square root that is smoothly connected between these rays (i.e. it does not fork). It is suggested that in practice only real rays are needed and then the method can be reduced to a smoothed form of the Maslov Snell wave sum representation. This is achieved by approximating the
Asymptotic geometric phase and purity for phase qubit dispersively coupled to lossy LC circuit
Mohamed, A.-B.A.; Obada, A.-S.F.
2011-09-15
Analytical descriptions of the geometric phases (GPs) for the total system and subsystems are studied for a current biased Josephson phase qubit strongly coupled to a lossy LC circuit in the dispersive limit. It is found that, the GP and purity depend on the damping parameter which leads to the phenomenon of GP death. Coherence parameter delays the phenomenon of a regular sequence of deaths and births of the GP. The asymptotic behavior of the GP and the purity for the qubit-LC resonator state closely follow that for the qubit state, but however, for the LC circuit these asymptotic values are equal to zero. - Highlights: > The model of a current biased Josephson phase qubit, strongly coupled to loss LC circuit, is considered. > Analytical descriptions of the geometric phase (GP) of this model, in the dispersive limit, are studied. > The GP and purity depend on the dissipation which leads to the GP death phenomenon. > Coherence parameter delays the phenomenon of a regular sequence of deaths and births of the GP.
Quantitative autoradiography of neurochemicals
Rainbow, T.C.; Biegon, A.; Bleisch, W.V.
1982-05-24
Several new methods have been developed that apply quantitative autoradiography to neurochemistry. These methods are derived from the 2-deoxyglucose (2DG) technique of Sokoloff (1), which uses quantitative autoradiography to measure the rate of glucose utilization in brain structures. The new methods allow the measurement of the rate of cerbral protein synthesis and the levels of particular neurotransmitter receptors by quantitative autoradiography. As with the 2DG method, the new techniques can measure molecular levels in micron-sized brain structures; and can be used in conjunction with computerized systems of image processing. It is possible that many neurochemical measurements could be made by computerized analysis of quantitative autoradiograms.
Ballyns, Jeffrey J; Cohen, Daniel L; Malone, Evan; Maher, Suzanne A; Potter, Hollis G; Wright, Timothy; Lipson, Hod; Bonassar, Lawrence J
2010-08-01
Quantification of shape fidelity of complex geometries for tissue-engineered constructs has not been thoroughly investigated. The objective of this study was to quantitatively describe geometric fidelities of various approaches to the fabrication of anatomically shaped meniscal constructs. Ovine menisci (n = 4) were imaged using magnetic resonance imaging (MRI) and microcomputed tomography (microCT). Acrylonitrile butadiene styrene plastic molds were designed from each imaging modality and three-dimensional printed on a Stratasys FDM 3000. Silastic impression molds were fabricated directly from ovine menisci. These molds were used to generate shaped constructs using 2% alginate with 2% CaSO(4). Solid freeform fabrication was conducted on a custom open-architecture three-dimensional printing platform. Printed samples were made using 2% alginate with 0.75% CaSO(4). Hydrogel constructs were scanned via laser triangulation distance sensor. The point cloud images were analyzed to acquire computational measurements for key points of interest (e.g., height, width, and volume). Silastic molds were within + or - 10% error with respect to the native tissue for seven key measurements, microCT molds for six of seven, microCT prints for four of seven, MRI molds for five of seven, and MRI prints for four of seven. This work shows the ability to generate and quantify anatomically shaped meniscal constructs of high geometric fidelity and lends insight into the relative geometric fidelities of several tissue engineering techniques. PMID:19788346
Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics
Berrada, K.
2014-01-15
Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit–environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: •Geometric phase under noise phase laser. •Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. •Solution of master equation of the system in terms atomic inversion. •Nonlocal correlation between the system and its environment under non-Markovianity.
Analysis of geometrical relations between multiple sclerosis lesions and brain vasculature
NASA Astrophysics Data System (ADS)
Kozinska, Dorota E.; Holland, Christopher; Krissian, Karl; Westin, Carl-Fredrik; Guttmann, Charles R. G.
2004-04-01
Due to histological evidence of the fundamental role of the cerebral vessels in white matter abnormalities, recently there has been an increased interest in analyzing the relationship between brain white matter lesions in multiple sclerosis (MS) and brain vasculature. We developed a method for visualization and measurement of geometrical relationships between MS lesions and the brain vessels imaged with magnetic resonance (MR) imaging techniques. Using MR images we create surface models of lesions and vessels that constitute a base for quantitative analysis. In this work we analyze correlation between basic lesion geometrical characteristics and two features: 1) distances to vessels, and 2) vessel caliber. For the former, we compute a distance map from the vessel structure, such that each voxel stores its distance vector to the closest vessel. This allows the measurements of Euclidean distances to the closest vessels. For the latter, we compute a radius map in which each voxel stores the radius of its closest vessel. It is used to measure distribution of lesions with respect to the vessel caliber. We compute and analyze relations between the basic geometrical characteristics of lesions and the closest vessels locations and calibers. To demonstrate the feasibility of the developed technique we present results from the study of 3 MS cases.
Geometrical Formation of Compound Starch Grains in Rice Implements Voronoi Diagram.
Matsushima, Ryo; Maekawa, Masahiko; Sakamoto, Wataru
2015-11-01
Starch forms transparent grains, called starch grains (SGs), in amyloplasts. One of the major morphological SG forms in Poaceae, called a compound SG, is formed by assemblies of small starch granules in an amyloplast. Starch granules assemble as a well-ordered structure; however, the mechanism that regulates this organization has not been identified. In this study, we examined how starch granules grow and converge into the final SG morphology. First, we found that the number of starch granules in an amyloplast is almost constant from the early developmental stage until endosperm maturity. Next, we quantitatively evaluated the geometrical similarities between starch granules and a Voronoi diagram, which is a mathematical tessellation of space based on the distance to a specific set of points in the space. The in silico growth simulation showed that the geometrical patterns of compound SGs resembling a Voronoi diagram is determined by physical interactions among the free-growing starch granules and the amyloplast envelope membrane. The geometrical similarity between compound SGs and a Voronoi diagram is likely a result of maximum loading and storage of starch in the amyloplast. The simulation described in this study provides a greater understanding of how compound SGs are formed and also has the potential to explain morphological variations of SGs. PMID:26320209
Complex geometrical optics of nonlinear inhomogeneous fibres
NASA Astrophysics Data System (ADS)
Berczynski, Pawel
2011-03-01
This paper analyses the Gaussian beam (GB) evolution in nonlinear fibres with special attention given to the influence of the initial curvature of the wavefront and to the fibres' permittivity profile. The analysis is performed in the framework of paraxial complex geometrical optics (PCGO). This method reduces the problem of GB evolution in nonlinear and inhomogeneous media to the solution of ordinary differential equations, which can be easily solved either analytically or numerically. It is shown that the PCGO approach radically simplifies modelling of nonlinear phenomena in fibres as compared with standard methods of nonlinear optics such as the variational method approach and the method of moments. It is shown that the PCGO method readily supplies the solution of the nonlinear Schrödinger equation (NLS) for a self-focusing fibre with a focusing permittivity profile and provides a number of new results. The discussion on the interplay between the nonlinear (self-focusing and self-defocusing) and linear (focusing and defocusing) components of the total permittivity demonstrates the new possibilities to limit the collapse phenomenon in nonlinear fibres of Kerr type taking into account the effect of initial beam divergence.
Geometric stiffening in multibody dynamics formulations
NASA Technical Reports Server (NTRS)
Sharf, Inna
1993-01-01
In this paper we discuss the issue of geometric stiffening as it arises in the context of multibody dynamics. This topic has been treated in a number of previous publications in this journal and appears to be a debated subject. The controversy revolves primarily around the 'correct' methodology for incorporating the stiffening effect into dynamics formulations. The main goal of this work is to present the different approaches that have been developed for this problem through an in-depth review of several publications dealing with this subject. This is done with the goal of contributing to a precise understanding of the existing methodologies for modelling the stiffening effects in multibody systems. Thus, in presenting the material we attempt to illuminate the key characteristics of the various methods as well as show how they relate to each other. In addition, we offer a number of novel insights and clarifying interpretations of these schemes. The paper is completed with a general classification and comparison of the different approaches.
The Geometric Solution of Laplace's Equation
NASA Astrophysics Data System (ADS)
Bakhoum, Ezzat Gamal
In 1891, J.J. Thomson--the discoverer of the electron--stated a formula that relates the first derivative of the electric field intensity to the mean curvature of an equipotential surface. That formula was later proved by others, but remained unexploited in any practical purpose to this date. This dissertation presents a numerical method based on Thomson's formula for the rapid solution of Laplace's equation, the governing equation of field theory. The presented method is based on geometric construction principles. Specifically, the method uses the concept of representing equipotential surfaces by polynomials for the rapid tracing of these surfaces; and is therefore fundamentally different from previously-known techniques which are based on discretizing the domain or the boundary of the problem. The new method is especially suited for problems which have complicated or irregular boundaries as well as problems in exterior domains. Previously, such types of problems have required a number of computations of O(N.M), where N is the number of points taken on the boundary of the problem and M is the number of points inside the domain at which the solution is to be computed. The new method requires an O(M) computations only; and is therefore significantly faster than the previous techniques. Applications include problems of electrostatics, cosmology, biomedical engineering, nuclear and particle physics, etc.
D Catenary Curve Fitting for Geometric Calibration
NASA Astrophysics Data System (ADS)
Chan, T.-O.; Lichti, D. D.
2011-09-01
In modern road surveys, hanging power cables are among the most commonly-found geometric features. These cables are catenary curves that are conventionally modelled with three parameters in 2D Cartesian space. With the advent and popularity of the mobile mapping system (MMS), the 3D point clouds of hanging power cables can be captured within a short period of time. These point clouds, similarly to those of planar features, can be used for feature-based self-calibration of the system assembly errors of an MMS. However, to achieve this, a well-defined 3D equation for the catenary curve is needed. This paper proposes three 3D catenary curve models, each having different parameters. The models are examined by least squares fitting of simulated data and real data captured with an MMS. The outcome of the fitting is investigated in terms of the residuals and correlation matrices. Among the proposed models, one of them could estimate the parameters accurately and without any extreme correlation between the variables. This model can also be applied to those transmission lines captured by airborne laser scanning or any other hanging cable-like objects.
The inertial and geometrical properties of helmets.
Njus, G O; Liu, Y K; Nye, T A
1984-10-01
The center of gravity (CG) and the principal mass moments of inertia about the CG of Army aviator, American football, and bicycle helmets were experimentally determined by a variation of the classic differential weighing and torsional pendulum techniques. In the course of these experiments, an innovative method for three-dimensional (3D) digitization was found. An electronic caliper, which measured length, was used with a computer algorithm to achieve 3D digitization. The results of the above measurements show that the weight of the helmet and the distances from the CG to the orthogonal coordinate axes intercepts with the outer shell surface were highly correlated with its principal mass moments of inertia. A set of regression equations was derived on theoretical considerations and served to unify the experimentally obtained data. Our results indicate that the principal mass moments of inertia of helmets vary linearly with its mass but nonlinearly with size and shape. For a helmet, given its weight and certain geometrical distances, the regression equations estimate the principal mass moments of inertia to within 5% of its experimentally-determined values. For the helmets studied in this series, a modified linear-regression relationship between the principal mass moments of inertia and its mass was found. This result is reasonable because the mass distribution of the current generation of helmets are set primarily by the head size and secondarily by helmet size, shape, and materials. PMID:6513769
Geometric methods for the design of mechanisms
NASA Astrophysics Data System (ADS)
Stokes, Ann Westagard
1993-01-01
Challenges posed by the process of designing robotic mechanisms have provided a new impetus to research in the classical subjects of kinematics, elastic analysis, and multibody dynamics. Historically, mechanism designers have considered these areas of analysis to be generally separate and distinct sciences. However, there are significant classes of problems which require a combination of these methods to arrive at a satisfactory solution. For example, both the compliance and the inertia distribution strongly influence the performance of a robotic manipulator. In this thesis, geometric methods are applied to the analysis of mechanisms where kinematics, elasticity, and dynamics play fundamental and interactive roles. Tools for the mathematical analysis, design, and optimization of a class of holonomic and nonholonomic mechanisms are developed. Specific contributions of this thesis include a network theory for elasto-kinematic systems. The applicability of the network theory is demonstrated by employing it to calculate the optimal distribution of joint compliance in a serial manipulator. In addition, the advantage of applying Lie group theoretic approaches to mechanisms requiring specific dynamic properties is demonstrated by extending Brockett's product of exponentials formula to the domain of dynamics. Conditions for the design of manipulators having inertia matrices which are constant in joint angle coordinates are developed. Finally, analysis and design techniques are developed for a class of mechanisms which rectify oscillations into secular motions. These techniques are applied to the analysis of free-floating chains that can reorient themselves in zero angular momentum processes and to the analysis of rattleback tops.
Effect of geometrical frustration on inverse freezing
NASA Astrophysics Data System (ADS)
Schmidt, M.; Morais, C. V.; Zimmer, F. M.
2016-01-01
The interplay between geometrical frustration (GF) and inverse freezing (IF) is studied within a cluster approach. The model considers first-neighbor (J1) and second-neighbor (J2) intracluster antiferromagnetic interactions between Ising spins on a checkerboard lattice and long-range disordered couplings (J ) among clusters. We obtain phase diagrams of temperature versus J1/J in two cases: the absence of J2 interaction and the isotropic limit J2=J1 , where GF takes place. An IF reentrant transition from the spin-glass (SG) to paramagnetic (PM) phase is found for a certain range of J1/J in both cases. The J1 interaction leads to a SG state with high entropy at the same time that can introduce a low-entropy PM phase. In addition, it is observed that the cluster size plays an important role. The GF increases the PM phase entropy, but larger clusters can give an entropic advantage for the SG phase that favors IF. Therefore, our results suggest that disordered systems with antiferromagnetic clusters can exhibit an IF transition even in the presence of GF.
Geometric Facial Gender Scoring: Objectivity of Perception
Gilani, Syed Zulqarnain; Rooney, Kathleen; Shafait, Faisal; Walters, Mark; Mian, Ajmal
2014-01-01
Gender score is the cognitive judgement of the degree of masculinity or femininity of a face which is considered to be a continuum. Gender scores have long been used in psychological studies to understand the complex psychosocial relationships between people. Perceptual scores for gender and attractiveness have been employed for quality assessment and planning of cosmetic facial surgery. Various neurological disorders have been linked to the facial structure in general and the facial gender perception in particular. While, subjective gender scoring by human raters has been a tool of choice for psychological studies for many years, the process is both time and resource consuming. In this study, we investigate the geometric features used by the human cognitive system in perceiving the degree of masculinity/femininity of a 3D face. We then propose a mathematical model that can mimic the human gender perception. For our experiments, we obtained 3D face scans of 64 subjects using the 3dMDface scanner. The textureless 3D face scans of the subjects were then observed in different poses and assigned a gender score by 75 raters of a similar background. Our results suggest that the human cognitive system employs a combination of Euclidean and geodesic distances between biologically significant landmarks of the face for gender scoring. We propose a mathematical model that is able to automatically assign an objective gender score to a 3D face with a correlation of up to 0.895 with the human subjective scores. PMID:24923319
On geometric artifacts in cryo electron tomography.
Turoňová, Beata; Marsalek, Lukas; Slusallek, Philipp
2016-04-01
Single-tilt scheme is nowadays the prevalent acquisition geometry in electron tomography and subtomogram averaging experiments. Being an incomplete scheme that induces ill-posedness in the sense of the X-ray or Radon transform inverse problem, it introduces a number of artifacts that directly influence the quality of tomographic reconstructions. Though individually described by different authors before, a systematic study of these acquisition geometry-related artifacts in one place and across representative set of reconstruction methods has not been, to our knowledge, performed before. Moreover, the effects of these artifacts on the reconstructed density are sometimes misinterpreted, attributing them to the wrong cause, especially if their effects accumulate. In this work, we systematically study the major artifacts of single-tilt geometry known as the missing wedge (incomplete projection set problem), the missing information and the specimen-level interior problem (long-object problem). First, we illustratively describe, using a unified terminology, how and why these artifacts arise and when they can be avoided. Next, we describe the effects of these artifacts on the reconstructions across all major classes of reconstruction methods, including newly-appeared methods like the Iterative Nonuniform fast Fourier transform based Reconstruction method (INFR) and the Progressive Stochastic Reconstruction Technique (PSRT). Finally, we draw conclusions and recommendations on numerous points, especially regarding the mutual influence of the geometric artifacts, ability of different reconstruction methods to suppress them as well as implications to the interpretation of both electron tomography and subtomogram averaging experiments. PMID:26916079
Geometric Modeling of Inclusions as Ellipsoids
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.
2008-01-01
Nonmetallic inclusions in gas turbine disk alloys can have a significant detrimental impact on fatigue life. Because large inclusions that lead to anomalously low lives occur infrequently, probabilistic approaches can be utilized to avoid the excessively conservative assumption of lifing to a large inclusion in a high stress location. A prerequisite to modeling the impact of inclusions on the fatigue life distribution is a characterization of the inclusion occurrence rate and size distribution. To help facilitate this process, a geometric simulation of the inclusions was devised. To make the simulation problem tractable, the irregularly sized and shaped inclusions were modeled as arbitrarily oriented, three independent dimensioned, ellipsoids. Random orientation of the ellipsoid is accomplished through a series of three orthogonal rotations of axes. In this report, a set of mathematical models for the following parameters are described: the intercepted area of a randomly sectioned ellipsoid, the dimensions and orientation of the intercepted ellipse, the area of a randomly oriented sectioned ellipse, the depth and width of a randomly oriented sectioned ellipse, and the projected area of a randomly oriented ellipsoid. These parameters are necessary to determine an inclusion s potential to develop a propagating fatigue crack. Without these mathematical models, computationally expensive search algorithms would be required to compute these parameters.
Geometrical constraints for robust tractography selection.
de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos
2013-11-01
Tract-based analysis from DTI has become a widely employed procedure to study the white matter of the brain and its alterations in neurological and neurosurgical pathologies. Automatic tractography selection methods, where a subset of detected tracts corresponding to a specific white matter structure are selected, are a key component of the DTI processing pipeline. Using automatic tractography selection, repeatable results free of intra and inter-expert variability can be obtained rapidly, without the need for cumbersome manual segmentation. Many of the current approaches for automatic tractography selection rely on a previous registration procedure using an atlas; hence, these methods are likely very sensitive to the accuracy of the registration. In this paper we show that the performance of the registration step is critical to the overall result. This effect can in turn affect the calculation of scalar parameters derived subsequently from the selected tracts and often used in clinical practice; we show that such errors may be comparable in magnitude to the subtle differences found in clinical studies to differentiate between healthy and pathological. As an alternative, we propose a tractography selection method based on the use of geometrical constraints specific for each fiber bundle. Our experimental results show that the approach proposed performs with increased robustness and accuracy with respect to other approaches in the literature, particularly in the presence of imperfect registration. PMID:23707405
Geometric Model of a Coronal Cavity
NASA Technical Reports Server (NTRS)
Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; Schmidt, D. J.; Sterling, A. C.; Tripathi, D. K.; Williams, D. R.; Zhang, M.
2010-01-01
We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities
Geometric Hall effects in topological insulator heterostructures
NASA Astrophysics Data System (ADS)
Yasuda, K.; Wakatsuki, R.; Morimoto, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Ezawa, M.; Kawasaki, M.; Nagaosa, N.; Tokura, Y.
2016-06-01
Geometry, both in momentum and in real space, plays an important role in the electronic dynamics of condensed matter systems. Among them, the Berry phase associated with nontrivial geometry can be an origin of the transverse motion of electrons, giving rise to various geometric effects such as the anomalous, spin and topological Hall effects. Here, we report two unconventional manifestations of Hall physics: a sign-reversal of the anomalous Hall effect, and the emergence of a topological Hall effect in magnetic/non-magnetic topological insulator heterostructures, Crx(Bi1-ySby)2-xTe3/(Bi1-ySby)2Te3. The sign-reversal in the anomalous Hall effect is driven by a Rashba splitting at the bulk bands, which is caused by the broken spatial inversion symmetry. Instead, the topological Hall effect arises in a wide temperature range below the Curie temperature, in a region where the magnetic-field dependence of the Hall resistance largely deviates from the magnetization. Its origin is assigned to the formation of a Néel-type skyrmion induced by the Dzyaloshinskii-Moriya interaction.
Studying avian encephalization with geometric morphometrics.
Marugán-Lobón, Jesús; Watanabe, Akinobu; Kawabe, Soichiro
2016-08-01
Encephalization is a core concept in comparative neurobiology, aiming to quantify the neurological capacity of organisms. For measuring encephalization, many studies have employed relative brain sizes corrected for expected allometric scaling to body size. Here we highlight the utility of a multivariate geometric morphometric (GM) approach for visualizing and analyzing neuroanatomical shape variation associated with encephalization. GM readily allows the statistical evaluation of covariates, such as size, and many software tools exist for visualizing their effects on shape. Thus far, however, studies using GM have not attempted to translate the meaning of encephalization to shape data. As such, we tested the statistical relationship between size and encephalization quotients (EQs) to brain shape utilizing a broad interspecific sample of avian endocranial data. Although statistically significant, the analyses indicate that allometry accounts for <10% of total neuroanatomical shape variation. Notably, we find that EQs, despite being corrected for allometric scaling based on size, contain size-related neuroanatomical shape changes. In addition, much of what is traditionally considered encephalization comprises clade-specific trends in relative forebrain expansion, particularly driven by landbirds. EQs, therefore, fail to capture 90% of the total neuroanatomical variation after correcting for allometry and shared phylogenetic history. Moving forward, GM techniques provide crucial tools for investigating key drivers of this vast, largely unexplored aspect of avian brain morphology. PMID:27112986
Geometric median for missing rainfall data imputation
NASA Astrophysics Data System (ADS)
Burhanuddin, Siti Nur Zahrah Amin; Deni, Sayang Mohd; Ramli, Norazan Mohamed
2015-02-01
Missing data is a common problem faced by researchers in environmental studies. Environmental data, particularly, rainfall data are highly vulnerable to be missed, which is due to several reasons, such as malfunction instrument, incorrect measurements, and relocation of stations. Rainfall data are also affected by the presence of outliers due to the temporal and spatial variability of rainfall measurements. These problems may harm the quality of rainfall data and subsequently, produce inaccuracy in the results of analysis. Thus, this study is aimed to propose an imputation method that is robust towards the presence of outliers for treating the missing rainfall data. Geometric median was applied to estimate the missing values based on the available rainfall data from neighbouring stations. The method was compared with several conventional methods, such as normal ratio and inverse distance weighting methods, in order to evaluate its performance. Thirteen rainfall stations in Peninsular Malaysia were selected for the application of the imputation methods. The results indicated that the proposed method provided the most accurate estimation values compared to both conventional methods based on the least mean absolute error. The normal ratio was found to be the worst method in estimating the missing rainfall values.
Geometrical aspects on the dark matter problem
Capistrano, A.J.S.; Cabral, L.A.
2014-09-15
In the present paper we apply Nash’s theory of perturbative geometry to the study of dark matter gravity in a higher-dimensional space–time. It is shown that the dark matter gravitational perturbations at local scale can be explained by the extrinsic curvature of the standard cosmology. In order to test our model, we use a spherically symmetric metric embedded in a five-dimensional bulk. As a result, considering a sample of 10 low surface brightness and 6 high surface brightness galaxies, we find a very good agreement with the observed rotation curves of smooth hybrid alpha-HI measurements. - Highlights: • The metric perturbation and the embedding lead naturally to a “brane-world”-like higher dimensional structure. • Nash’s theorem as a cornerstone of the formation of geometrical structures. • The dark matter gravitational perturbations at local scale can be explained by the extrinsic curvature. • A good agreement was found with the observed rotation curves of smooth hybrid alpha-HI measurements.
Exploring Eucladoceros ecomorphology using geometric morphometrics.
Curran, Sabrina C
2015-01-01
An increasingly common method for reconstructing paleoenvironmental parameters of hominin sites is ecological functional morphology (ecomorphology). This study provides a geometric morphometric study of cervid rearlimb morphology as it relates to phylogeny, size, and ecomorphology. These methods are then applied to an extinct Pleistocene cervid, Eucladoceros, which is found in some of the earliest hominin-occupied sites in Eurasia. Variation in cervid postcranial functional morphology associated with different habitats can be summarized as trade-offs between joint stability versus mobility and rapid movement versus power-generation. Cervids in open habitats emphasize limb stability to avoid joint dislocation during rapid flight from predators. Closed-adapted cervids require more joint mobility to rapidly switch directions in complex habitats. Two skeletal features (of the tibia and calcaneus) have significant phylogenetic signals, while two (the femur and third phalanx) do not. Additionally, morphology of two of these features (tibia and third phalanx) were correlated with body size. For the tibial analysis (but not the third phalanx) this correlation was ameliorated when phylogeny was taken into account. Eucladoceros specimens from France and Romania fall on the more open side of the habitat continuum, a result that is at odds with reconstructions of their diet as browsers, suggesting that they may have had a behavioral regime unlike any extant cervid. PMID:25338504