Science.gov

Sample records for quantitative mass spectrometry

  1. Quantitative biomedical mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Leenheer, Andrép; Thienpont, Linda M.

    1992-09-01

    The scope of this contribution is an illustration of the capabilities of isotope dilution mass spectrometry (IDMS) for quantification of target substances in the biomedical field. After a brief discussion of the general principles of quantitative MS in biological samples, special attention will be paid to new technological developments or trends in IDMS from selected examples from the literature. The final section will deal with the use of IDMS for accuracy assessment in clinical chemistry. Methodological aspects considered crucial for avoiding sources of error will be discussed.

  2. Targeted quantitation of proteins by mass spectrometry.

    PubMed

    Liebler, Daniel C; Zimmerman, Lisa J

    2013-06-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  3. Quantitative mass spectrometry of urinary biomarkers

    PubMed Central

    Jerebtsova, Marina; Nekhai, Sergei

    2015-01-01

    The effectiveness of treatment of renal diseases is limited because the lack of diagnostic, prognostic and therapeutic markers. Despite the more than a decade of intensive investigation of urinary biomarkers, no new clinical biomarkers were approved. This is in part because the early expectations toward proteomics in biomarkers discovery were significantly higher than the capability of technology at the time. However, during the last decade, proteomic technology has made dramatic progress in both the hardware and software methods. In this review we are discussing modern quantitative methods of mass-spectrometry and providing several examples of their applications for discovery and validation of renal disease biomarkers. We are optimistic about future prospects for the development of novel of specific clinical urinary biomarkers. PMID:25984422

  4. Quantitative matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Roder, Heinrich; Hunsucker, Stephen W.

    2008-01-01

    This review summarizes the essential characteristics of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS), especially as they relate to its applications in quantitative analysis. Approaches to quantification by MALDI-TOF MS are presented and published applications are critically reviewed. PMID:19106161

  5. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    SciTech Connect

    Xie, Fang; Liu, Tao; Qian, Weijun; Petyuk, Vladislav A.; Smith, Richard D.

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  6. Quantitative matrix assisted plasma desorption mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jungclas, Hartmut; Schmidt, Lothar; Köhl, Peter; Fritsch, Hans-Walter

    1993-07-01

    The development of optimized sample preparation methods accompanied the history of successful applications of 252Cf-PDMS. Studying the pharmacokinetics of the antineoplastic agent etoposide serum samples from cancer patients were labelled with the homologeous compounds teniposide as internal standard for the quantitative PDMS analysis. Sample purification by chloroform extraction and by thin layer chromatography turned out to be insufficient to guarantee a satisfying final PDMS result. Embedding the purified sample into a matrix of suitable substances on the target reduced the negative influence of impurities, raised the signal-to-noise ratio of molecular ions and improved the reproducibility of calibration. This preparation method was again successfully employed for the quantitative analysis of the cytostatic drug doxorubicin. The application of a different matrix optimized for the preparation of this anthracycline and its homologeous compound daunorubicin, improved the sensitivity, linearity and detection limit.

  7. Mass Spectrometry-Based Label-Free Quantitative Proteomics

    PubMed Central

    Zhu, Wenhong; Smith, Jeffrey W.; Huang, Chun-Ming

    2010-01-01

    In order to study the differential protein expression in complex biological samples, strategies for rapid, highly reproducible and accurate quantification are necessary. Isotope labeling and fluorescent labeling techniques have been widely used in quantitative proteomics research. However, researchers are increasingly turning to label-free shotgun proteomics techniques for faster, cleaner, and simpler results. Mass spectrometry-based label-free quantitative proteomics falls into two general categories. In the first are the measurements of changes in chromatographic ion intensity such as peptide peak areas or peak heights. The second is based on the spectral counting of identified proteins. In this paper, we will discuss the technologies of these label-free quantitative methods, statistics, available computational software, and their applications in complex proteomics studies. PMID:19911078

  8. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides

    PubMed Central

    2016-01-01

    Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides. PMID:27103886

  9. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides.

    PubMed

    Lee, Ji Eun

    2016-03-01

    Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides. PMID:27103886

  10. Attomole quantitation of protein separations with accelerator mass spectrometry

    SciTech Connect

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  11. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  12. Quantitative Proteomics Using Ultralow Flow Capillary Electrophoresis–Mass Spectrometry

    PubMed Central

    2015-01-01

    In this work, we evaluate the incorporation of an ultralow flow interface for coupling capillary electrophoresis (CE) and mass spectrometry (MS), in combination with reversed-phase high-pressure liquid chromatography (HPLC) fractionation as an alternate workflow for quantitative proteomics. Proteins, extracted from a SILAC (stable isotope labeling by amino acids in cell culture) labeled and an unlabeled yeast strain were mixed and digested enzymatically in solution. The resulting peptides were fractionated using RP-HPLC and analyzed by CE–MS yielding a total of 28 538 quantified peptides that correspond to 3 272 quantified proteins. CE–MS analysis was performed using a neutral capillary coating, providing the highest separation efficiency at ultralow flow conditions (<10 nL/min). Moreover, we were able to demonstrate that CE–MS is a powerful method for the identification of low-abundance modified peptides within the same sample. Without any further enrichment strategies, we succeeded in quantifying 1 371 phosphopeptides present in the CE–MS data set and found 49 phosphopeptides to be differentially regulated in the two yeast strains. Including acetylation, phosphorylation, deamidation, and oxidized forms, a total of 8 106 modified peptides could be identified in addition to 33 854 unique peptide sequences found. The work presented here shows the first quantitative proteomics approach that combines SILAC labeling with CE–MS analysis. PMID:25839223

  13. Investigating quantitation of phosphorylation using MALDI-TOF mass spectrometry

    PubMed Central

    Parker, Laurie; Engel-Hall, Aaron; Drew, Kevin; Steinhardt, George; Helseth, Donald L.; Jabon, David; McMurry, Timothy; Angulo, David S.; Kron, Stephen J.

    2010-01-01

    Despite advances in methods and instrumentation for analysis of phosphopeptides using mass spectrometry, it is still difficult to quantify the extent of phosphorylation of a substrate due to physiochemical differences between unphosphorylated and phosphorylated peptides. Here we report experiments to investigate those differences using MALDI-TOF mass spectrometry for a set of synthetic peptides by creating calibration curves of known input ratios of peptides/phosphopeptides and analyzing their resulting signal intensity ratios. These calibration curves reveal subtleties in sequence-dependent differences for relative desorption/ionization efficiencies that cannot be seen from single-point calibrations. We found that the behaviors were reproducible with a variability of 5–10% for observed phosphopeptide signal. Although these data allow us to begin addressing the issues related to modeling these properties and predicting relative signal strengths for other peptide sequences, it is clear this behavior is highly complex and needs to be further explored. PMID:18064576

  14. Accelerator mass spectrometry for quantitative in vivo tracing

    SciTech Connect

    Vogel, J S

    2005-04-19

    Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low chemical doses ({micro}g) and radiative doses (100 Bq) of isotope labeled compounds in animal models and directly in humans for pharmaceutical, nutritional, or toxicological research. Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high precision after appropriate sample definition.

  15. Quantitative analysis of terbutaline by gas chromatography-mass spectrometry.

    PubMed

    Leferink, J G; Baillie, T A; Lindberg, C

    1984-01-01

    Over the past 6 years, several gas chromatography-mass spectrometry (GC-MS) methods for terbutaline have been developed, each with certain advantages and disadvantages. They all involve monitoring of an ion selected from the mass spectrum of a suitable terbutaline derivative. This technique, often referred to as mass fragmentography or selected ion monitoring, reduces the interference from other drugs and endogenous compounds. Different ionization techniques have been employed to obtain high sensitivity, viz. electron impact and chemical ionization. Typically, the methods can be used to measure terbutaline concentrations down to 0.1-0.3 ng/mL in plasma or serum. Isolation of terbutaline from biological materials is complicated by the low partition of the drug from water to organic solvents. Extraction with a large volume of ethyl acetate, ion pair extraction, or isolation on a cation exchange column have been used. These methods are time consuming, and attempts have therefore been made to modify them. Rapid extraction can be achieved on a disposable reversed-phase octadecylsilyl column with unimpaired sensitivity and selectivity. Preliminary results indicate that negative ion chemical ionization of a fluorine-containing derivative can further increase the sensitivity of the terbutaline assays. PMID:6586484

  16. Sample preparation for quantitation of tritium by accelerator mass spectrometry.

    PubMed

    Chiarappa-Zucca, Marina L; Dingley, Karen H; Roberts, Mark L; Velsko, Carol A; Love, Adam H

    2002-12-15

    The capability to prepare samples accurately and reproducibly for analysis of tritium (3H) content by accelerator mass spectrometry (AMS) greatly facilitates isotopic tracer studies in which attomole levels of 3H can be measured in milligram-sized samples. A method has been developed to convert the hydrogen of organic samples to a solid, titanium hydride, which can be analyzed by AMS. Using a two-step process, the sample is first oxidized to carbon dioxide and water. In the second step, the water is transferred within a heated manifold into a quartz tube, reduced to hydrogen gas using zinc, and reacted with titanium powder. The 3H/1H ratio of the titanium hydride is measured by AMS and normalized to standards whose ratios were determined by decay counting to calculate the amount of 3H in the original sample. Water, organic compounds, and biological samples with 3H activities measured by liquid scintillation counting were utilized to develop and validate the method. The 3H/1H ratios were quantified in samples that spanned 5 orders of magnitude, from 10(-10) to 10(-15), with a detection limit of 3.0 x 10(-15), which is equivalent to 0.02 dpm tritium/mg of material. Samples smaller than 2 mg were analyzed following addition of 2 mg of a tritium-free-hydrogen carrier. Preparation of organic standards containing both 14C and 3H in 2-mg organic samples demonstrated that this sample preparation methodology can also be applied to quantify both of these isotopes from a single sample. PMID:12510750

  17. Quantitative liquid chromatography/mass spectrometry/mass spectrometry warfarin assay for in vitro cytochrome P450 studies.

    PubMed

    Zhang, Z Y; King, B M; Wong, Y N

    2001-11-01

    A sensitive assay using high-performance liquid chromatography tandem mass spectrometry (MS/MS) has been established for the quantitative analysis of cytochrome P450 form-specific activities using warfarin as a probe substrate. Four metabolites, 6-, 7-, 8-, and 10-hydroxywarfarin, were chromatographically resolved within 10 min using gradient mobile phases. The mass spectrometry was operated under negative ionization mode. The MS/MS product ion spectra of warfarin and the metabolites were generated using collision-activated dissociation and interpreted. The abundant product ions of the metabolites were selected for quantification applying multiple reaction monitoring. Quantification was based on a quadratic or power curve of the peak area ratio of the metabolite over the internal standard against the respective concentration of the metabolite. This assay has been validated from 2 to 1000 nM for 10-hydroxywarfarin and from 2 to 5000 nM for 6-, 7-, and 8-hydroxywarfarin and successfully applied to evaluate cytochrome P450-mediated drug-drug interactions in vitro using human hepatocytes and liver microsomal preparations. PMID:11673893

  18. Development of rapid methodologies for the isolation and quantitation of drug metabolites by differential mobility spectrometrymass spectrometry

    PubMed Central

    Coy, Stephen L.; Nazarov, Erkinjon; Vouros, Paul

    2013-01-01

    Clinical and forensic toxicology laboratories are inundated with thousands of samples requiring lengthy chromatographic separations prior to mass spectrometry. Here, we employ differential mobility spectrometry (DMS) interfaced to nano-electrospray ionization-mass spectrometry to provide a rapid ion filtration technique for the separation of ions in gas phase media prior to mass spectral analysis on a DMS-integrated AB SCIEX API 3000 triple-quadrupole mass spectrometer. DMS is efficient at the rapid separation of ions under ambient conditions and provides many advantages when used as an ion filtration technique in tandem with mass spectrometry (MS) and MS/MS. Our studies evaluated DMS-MS/MS as a rapid, quantitative platform for the analysis of drug metabolites isolated from urine samples. In targeted applications, five metabolites of common drugs of abuse were effectively and rapidly separated using isopropanol and ethyl acetate as transport gas modifiers, eliminating the gas chromatography or liquid chromatography-based separations commonly employed in clinical and forensic toxicology laboratories. Calibration curves were prepared for the selected drug metabolites utilizing deuterated internal standards for quantitative purposes. The feasibility of separating and quantitating drug metabolites in a rapid fashion was evaluated by compensation voltage stepping followed by multiple reaction monitoring (MRM) detection. Rapid profiling of clinical and forensic toxicology samples could help to address an urgent need within the scientific community by developing high-throughput analytical methodologies, which could reduce significant case backlogs present within these laboratories. PMID:24311968

  19. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  20. Identification and Quantitative Measurements of Chemical Species by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Zondlo, Mark A.; Bomse, David S.

    2005-01-01

    The development of a miniature gas chromatograph/mass spectrometer system for the measurement of chemical species of interest to combustion is described. The completed system is a fully-contained, automated instrument consisting of a sampling inlet, a small-scale gas chromatograph, a miniature, quadrupole mass spectrometer, vacuum pumps, and software. A pair of computer-driven valves controls the gas sampling and introduction to the chromatographic column. The column has a stainless steel exterior and a silica interior, and contains an adsorbent of that is used to separate organic species. The detection system is based on a quadrupole mass spectrometer consisting of a micropole array, electrometer, and a computer interface. The vacuum system has two miniature pumps to maintain the low pressure needed for the mass spectrometer. A laptop computer uses custom software to control the entire system and collect the data. In a laboratory demonstration, the system separated calibration mixtures containing 1000 ppm of alkanes and alkenes.

  1. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J.

    1986-04-01

    It is the intention of the review to bring together in one source the direction of major developments in mass spectrometry and to illustrate these by citing key contributions from both fundamental and applied research. The Review is intended to provide the reader with a sense of the main currents, their breadth and depth, and probable future directions. It is also intended to provide the reader with a glimpse of the diverse discoveries and results that underpin the eventual development of new methods and instruments - the keys to obtaining new insights in all the physical, chemical, and biological sciences which depend on mass spectrometry at various levels of sophistication. Focal points for future interdisciplinary synergism might be selective quantitative derivatization of large peptides, which would convey properties that direct fragmentation providing specific sequence information, or optimization of LCMS for biooligomer sequencing and mixture analysis, or the perfect way to control or enhance the internal energy of ions of any size, or many others. 1669 references.

  2. Identification of dengue RNA binding proteins using RNA chromatography and quantitative mass spectrometry.

    PubMed

    Ward, Alex M; Gunaratne, J; Garcia-Blanco, Mariano A

    2014-01-01

    A major challenge in dengue virus (DENV) research has been to understand the interaction of the viral RNA with host cell proteins during infection. Until recently, there were no comprehensive studies identifying host RNA binding proteins that interact with DENV RNA (Ward et al. RNA Biol 8 (6):1173-1186, 2011). Here, we describe a method for identifying proteins that associate with DENV RNA using RNA chromatography and quantitative mass spectrometry. The method utilizes a tobramycin RNA aptamer incorporated into an RNA containing the dengue 5' and 3' untranslated regions (UTRs) in order to reversibly bind RNA to a tobramycin matrix. The RNA-tobramycin matrix is incubated with SILAC-labeled cell lysates, and bound proteins are eluted using an excess of tobramycin. The eluate is analyzed using quantitative mass spectrometry, which allows direct and quantitative comparison of proteins bound to DENV UTRs and a control RNA-tobramycin matrix. This technique has the advantage of allowing one to distinguish between specific and nonspecific binding proteins based on the ratio of protein preferentially bound to the DENV UTRs versus the control RNA. This methodology can also be used for validation of quantitative mass spectrometry results using conventional Western blotting for specific proteins. Furthermore, though it was specifically developed to identify DENV RNA binding proteins, the RNA chromatography method described here can be applied to a broad range of viral and cellular RNAs for identification of interacting proteins. PMID:24696342

  3. Building the connectivity map of epigenetics: Chromatin profiling by quantitative targeted mass spectrometry

    PubMed Central

    Creech, Amanda L.; Taylor, Jordan E.; Maier, Verena K.; Wu, Xiaoyun; Feeney, Caitlin M.; Udeshi, Namrata D.; Peach, Sally E.; Boehm, Jesse S.; Lee, Jeannie T.; Carr, Steven A.; Jaffe, Jacob D.

    2014-01-01

    Epigenetic control of genome function is an important regulatory mechanism in diverse processes such as lineage commitment and environmental sensing, and in disease etiologies ranging from neuropsychiatric disorders to cancer. Here we report a robust, high-throughput targeted, quantitative mass spectrometry (MS) method to rapidly profile modifications of the core histones of chromatin that compose the epigenetic landscape, enabling comparisons among cells with differing genetic backgrounds, genomic perturbations, and drug treatments. PMID:25448295

  4. Quantitative characterization of solid state phases by secondary neutral mass spectrometry

    NASA Astrophysics Data System (ADS)

    Oechsner, H.; Getto, R.; Kopnarski, M.

    2009-03-01

    The quantitative determination of chemical solid phases by secondary neutral mass spectrometry (SNMS) based on the quantitative character of this technique is described and demonstrated for several thin film structures. The intermetallic phases in a Ni-Zn coating on Fe are shown to be achieved directly from the concentration ratios determined by SNMS. When correlating the local elemental concentration tupels with the corresponding phase fractions by a matrix equation, the determination of chemical solid phase depth profiles becomes possible. This is exemplified by the detection of temperature induced chemical phases in Ni and Ti/Si films on SiC substrates.

  5. Quantitation of acrylamide in foods by high-resolution mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Fogliano, Vincenzo

    2014-01-01

    Acrylamide detection still represents one of the hottest topics in food chemistry. Solid phase cleanup coupled to liquid chromatography separation and tandem mass spectrometry detection along with GC-MS detection are nowadays the gold standard procedure for acrylamide quantitation thanks to high reproducibility, good recovery, and low relative standard deviation. High-resolution mass spectrometry (HRMS) is particularly suitable for the detection of low molecular weight amides, and it can provide some analytical advantages over other MS techniques. In this paper a liquid chromatography (LC) method for acrylamide determination using HRMS detection was developed and compared to LC coupled to tandem mass spectrometry. The procedure applied a simplified extraction, no cleanup steps, and a 4 min chromatography. It proved to be solid and robust with an acrylamide mass accuracy of 0.7 ppm, a limit of detection of 2.65 ppb, and a limit of quantitation of 5 ppb. The method was tested on four acrylamide-containing foods: cookies, French fries, ground coffee, and brewed coffee. Results were perfectly in line with those obtained by LC-MS/MS. PMID:24369782

  6. Mass Spectrometry Provides Accurate and Sensitive Quantitation of A2E

    PubMed Central

    Gutierrez, Danielle B.; Blakeley, Lorie; Goletz, Patrice W.; Schey, Kevin L.; Hanneken, Anne; Koutalos, Yiannis; Crouch, Rosalie K.; Ablonczy, Zsolt

    2010-01-01

    Summary Orange autofluorescence from lipofuscin in the lysosomes of the retinal pigment epithelium (RPE) is a hallmark of aging in the eye. One of the major components of lipofuscin is A2E, the levels of which increase with age and in pathologic conditions, such as Stargardt disease or age-related macular degeneration. In vitro studies have suggested that A2E is highly phototoxic and, more specifically, that A2E and its oxidized derivatives contribute to RPE damage and subsequent photoreceptor cell death. To date, absorption spectroscopy has been the primary method to identify and quantitate A2E. Here, a new mass spectrometric method was developed for the specific detection of low levels of A2E and compared to a traditional method of analysis. The new mass spectrometry method allows the detection and quantitation of approximately 10,000-fold less A2E than absorption spectroscopy and the detection and quantitation of low levels of oxidized A2E, with localization of the oxidation sites. This study suggests that identification and quantitation of A2E from tissue extracts by chromatographic absorption spectroscopyoverestimates the amount of A2E. This mass spectrometry approach makes it possible to detect low levels of A2E and its oxidized metabolites with greater accuracy than traditional methods, thereby facilitating a more exact analysis of bis-retinoids in animal models of inherited retinal degeneration as well as in normal and diseased human eyes. PMID:20931136

  7. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels

    PubMed Central

    Cordeau, Emmanuelle; Arnaudguilhem, Carine; Bouyssiere, Brice; Hagège, Agnès; Martinez, Jean; Subra, Gilles; Cantel, Sonia

    2016-01-01

    In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC) associated with elemental mass spectrometry (ICP-MS) to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP)/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se) was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully validated and

  8. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    SciTech Connect

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  9. Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry

    PubMed Central

    Mazur, Matthew T.; Cardasis, Helene L.; Spellman, Daniel S.; Liaw, Andy; Yates, Nathan A.; Hendrickson, Ronald C.

    2010-01-01

    Top-down mass spectrometry holds tremendous potential for the characterization and quantification of intact proteins, including individual protein isoforms and specific posttranslationally modified forms. This technique does not require antibody reagents and thus offers a rapid path for assay development with increased specificity based on the amino acid sequence. Top-down MS is efficient whereby intact protein mass measurement, purification by mass separation, dissociation, and measurement of product ions with ppm mass accuracy occurs on the seconds to minutes time scale. Moreover, as the analysis is based on the accurate measurement of an intact protein, top-down mass spectrometry opens a research paradigm to perform quantitative analysis of “unknown” proteins that differ in accurate mass. As a proof of concept, we have applied differential mass spectrometry (dMS) to the top-down analysis of apolipoproteins isolated from human HDL3. The protein species at 9415.45 Da demonstrates an average fold change of 4.7 (p-value 0.017) and was identified as an O-glycosylated form of apolipoprotein C-III [NANA-(2 → 3)-Gal-β(1 → 3)-GalNAc, +656.2037 Da], a protein associated with coronary artery disease. This work demonstrates the utility of top-down dMS for quantitative analysis of intact protein mixtures and holds potential for facilitating a better understanding of HDL biology and complex biological systems at the protein level. PMID:20388904

  10. Rapid quantitation of monoclonal antibody N-glyco-occupancy and afucosylation using mass spectrometry.

    PubMed

    Liu, Suli; Zang, Li

    2016-09-15

    N-glyco-occupancy and afucoslyation level are two important quality attributes associated with N-glycosylation of therapeutic monoclonal antibodies (mAbs). We report here a fast mass spectrometry-based workflow for quantification of N-glycan site-occupancy and afucoslyation level of mAbs with improved throughput, precision, sensitivity and robustness. This method uses the deglycosylation after the first GlcNAc and inter-chain reduction of the mAbs, followed by liquid chromatography/mass spectrometry (LC-MS) analysis. The entire process can be completed within one hour, which provides a rapid quantitation of N-glyco-occupancy and afucosylation to support high-throughput cell line selection and process development for mAb biopharmaceuticals. PMID:27377969

  11. Quantitation of vitamin B6 in biological samples by isotope dilution mass spectrometry

    SciTech Connect

    Hachey, D.L.; Coburn, S.P.; Brown, L.T.; Erbelding, W.F.; DeMark, B.; Klein, P.D.

    1985-11-15

    Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml.

  12. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data.

    PubMed

    Mitchell, Christopher J; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-08-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. PMID:27231314

  13. Quantitative Analysis of Isotope Distributions In Proteomic Mass Spectrometry Using Least-Squares Fourier Transform Convolution

    PubMed Central

    Sperling, Edit; Bunner, Anne E.; Sykes, Michael T.; Williamson, James R.

    2008-01-01

    Quantitative proteomic mass spectrometry involves comparison of the amplitudes of peaks resulting from different isotope labeling patterns, including fractional atomic labeling and fractional residue labeling. We have developed a general and flexible analytical treatment of the complex isotope distributions that arise in these experiments, using Fourier transform convolution to calculate labeled isotope distributions and least-squares for quantitative comparison with experimental peaks. The degree of fractional atomic and fractional residue labeling can be determined from experimental peaks at the same time as the integrated intensity of all of the isotopomers in the isotope distribution. The approach is illustrated using data with fractional 15N-labeling and fractional 13C-isoleucine labeling. The least-squares Fourier transform convolution approach can be applied to many types of quantitive proteomic data, including data from stable isotope labeling by amino acids in cell culture and pulse labeling experiments. PMID:18522437

  14. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    PubMed Central

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  15. Absolute Quantitation of Intact Recombinant Antibody Product Variants Using Mass Spectrometry.

    PubMed

    Macchi, Frank D; Yang, Feng; Li, Charlene; Wang, Chenchen; Dang, Anh Nguyen; Marhoul, Joseph C; Zhang, Hui-min; Tully, Timothy; Liu, Hongbin; Yu, X Christopher; Michels, David A

    2015-10-20

    Accurate and precise quantitative measurement of product-related variants of a therapeutic antibody is essential for product development and testing. Bispecific antibodies (bsAbs) are Abs composed of two different half antibody arms, each of which recognizes a distinct target, and recently they have attracted substantial therapeutic interest. Because of the increased complexity of its structure and its production process, as compared to a conventional monoclonal antibody, additional product-related variants, including covalent and noncovalent homodimers of half antibodies (hAbs), may be present in the bsAb product. Sufficient separation and reliable quantitation of these bsAb homodimers using liquid chromatography (LC) or capillary electrophoresis-based methods is challenging because these homodimer species and the bsAb often have similar physicochemical properties. Formation of noncovalent homodimers and heterodimers can also occur. In addition, since homodimers share common sequences with their corresponding halves and bsAb, it is not suitable to use peptides as surrogates for their quantitation. To tackle these analytical challenges, we developed a mass spectrometry-based quantitation method. Chip-based nanoflow LC-time-of-flight mass spectrometry coupled with a standard addition approach provided unbiased absolute quantitation of these drug-product-related variants. Two methods for the addition of known levels of standard (multi- or single-addition) were evaluated. Both methods demonstrated accurate and reproducible quantitation of homodimers at the 0.2% (w/w) level, with the single-addition method having the promise of higher analytical throughput. PMID:26376221

  16. Absolute Quantitative MALDI Imaging Mass Spectrometry: A Case of Rifampicin in Liver Tissues.

    PubMed

    Chumbley, Chad W; Reyzer, Michelle L; Allen, Jamie L; Marriner, Gwendolyn A; Via, Laura E; Barry, Clifton E; Caprioli, Richard M

    2016-02-16

    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) elucidates molecular distributions in thin tissue sections. Absolute pixel-to-pixel quantitation has remained a challenge, primarily lacking validation of the appropriate analytical methods. In the present work, isotopically labeled internal standards are applied to tissue sections to maximize quantitative reproducibility and yield accurate quantitative results. We have developed a tissue model for rifampicin (RIF), an antibiotic used to treat tuberculosis, and have tested different methods of applying an isotopically labeled internal standard for MALDI IMS analysis. The application of the standard and subsequently the matrix onto tissue sections resulted in quantitation that was not statistically significantly different from results obtained using HPLC-MS/MS of tissue extracts. Quantitative IMS experiments were performed on liver tissue from an animal dosed in vivo. Each microspot in the quantitative images measures the local concentration of RIF in the thin tissue section. Lower concentrations were detected from the blood vessels and around the portal tracts. The quantitative values obtained from these measurements were comparable (>90% similarity) to HPLC-MS/MS results obtained from extracts of the same tissue. PMID:26814665

  17. Detecting outlier peptides in quantitative high-throughput mass spectrometry data.

    PubMed

    Erhard, Florian; Zimmer, Ralf

    2012-06-18

    Quantitative high-throughput mass spectrometry has become an established tool to measure relative gene expression proteome-wide. The output of such an experiment usually consists of a list of expression ratios (fold changes) for several thousand proteins between two conditions. However, we observed that individual peptide fold changes may show a significantly different behavior than other peptides from the same protein and that these differences cannot be explained by imprecise measurements. Such outlier peptides can be the consequence of several technical (misidentifications, misquantifications) or biological (post-translational modifications, differential regulation of isoforms) reasons. We developed a method to detect outlier peptides in mass spectrometry data which is able to delineate imprecise measurements from real outlier peptides with high accuracy when the true difference is as small as 1.4 fold. We applied our method to experimental data and investigated the different technical and biological effects that result in outlier peptides. Our method will assist future research to reduce technical bias and can help to identify genes with differentially regulated protein isoforms in high throughput mass spectrometry data. PMID:22483996

  18. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    PubMed

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest. PMID:26302362

  19. Identification and Quantitation of Biomarkers for Radiation-Induced Injury via Mass Spectrometry

    PubMed Central

    Jones, Jace W.; Scott, Alison J.; Tudor, Gregory; Xu, Pu-Ting; Jackson, Isabel L.; Vujaskovic, Zeljko; Booth, Catherine; MacVittie, Thomas J.; Ernst, Robert K.; Kane, Maureen A.

    2013-01-01

    Biomarker identification and validation for radiation exposure is a rapidly expanding field encompassing the need for well-defined animal models and advanced analytical techniques. The resources within the consortium, Medical Countermeasures Against Radiological Threats (MCART), provide a unique opportunity for accessing well-defined animal models that simulate the key sequelae of the acute radiation syndrome and the delayed effects of acute radiation exposure. Likewise, the use of mass spectrometry-based analytical techniques for biomarker discovery and validation enables a robust analytical platform that is amenable to a variety of sample matrices and considered the benchmark for bio-molecular identification and quantitation. Herein, we demonstrate the use of two targeted mass spectrometry approaches to link established MCART animal models to identified metabolite biomarkers. Circulating citrulline concentration was correlated to gross histological gastrointestinal tissue damage and retinoic acid production in lung tissue was established to be reduced at early and late time points post high dose irradiation. Going forward, the use of mass spectrometry-based metabolomics coupled to well-defined animal models provides the unique opportunity for comprehensive biomarker discovery. PMID:24276554

  20. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry.

    PubMed

    Müller, André C; Giambruno, Roberto; Weißer, Juliane; Májek, Peter; Hofer, Alexandre; Bigenzahn, Johannes W; Superti-Furga, Giulio; Jessen, Henning J; Bennett, Keiryn L

    2016-01-01

    Mass spectrometry-based in vitro kinase screens play an essential role in the discovery of kinase substrates, however, many suffer from biological and technical noise or necessitate genetically-altered enzyme-cofactor systems. We describe a method that combines stable γ-[(18)O2]-ATP with classical in vitro kinase assays within a contemporary quantitative proteomic workflow. Our approach improved detection of known substrates of the non-receptor tyrosine kinase ABL1; and identified potential, new in vitro substrates. PMID:27346722

  1. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry

    PubMed Central

    Müller, André C.; Giambruno, Roberto; Weißer, Juliane; Májek, Peter; Hofer, Alexandre; Bigenzahn, Johannes W.; Superti-Furga, Giulio; Jessen, Henning J.; Bennett, Keiryn L.

    2016-01-01

    Mass spectrometry-based in vitro kinase screens play an essential role in the discovery of kinase substrates, however, many suffer from biological and technical noise or necessitate genetically-altered enzyme-cofactor systems. We describe a method that combines stable γ-[18O2]-ATP with classical in vitro kinase assays within a contemporary quantitative proteomic workflow. Our approach improved detection of known substrates of the non-receptor tyrosine kinase ABL1; and identified potential, new in vitro substrates. PMID:27346722

  2. Comparison of STIM and particle backscattering spectrometry mass determination for quantitative microanalysis of cultured cells

    NASA Astrophysics Data System (ADS)

    Devès, G.; Ortega, R.

    2001-07-01

    In biological sample microanalysis, a mass-normalisation method is commonly used as a quantitative index of elemental concentrations determined by particle-induced X-ray emission (PIXE). The organic mass can either be determined using particle backscattering spectrometry (BS) or scanning transmission ion microscopy (STIM). However, the accuracy of quantitative microanalysis in samples such as cultured cells is affected by beam-induced loss of organic mass during analysis. The aim of this paper is to compare mass measurements determined by particle BS or by STIM. In order to calibrate STIM and BS analyses, we measured by both techniques the thickness of standard foils of polycarbonate (3 and 6 μm) , Mylar ®(4 μm) , Kapton ®(7.5 μm) and Nylon ®(15 μm) , as well as biological samples of mono-layered cultured cells. Non-damaging STIM analysis of samples before PIXE irradiation is certainly one of the most accurate ways to determine the sample mass, however, this requires strong experimental handling. On the other hand, BS performed simultaneously to PIXE is the simplest method to determine the local mass in polymer foils, but appears less accurate in the case of cultured cells.

  3. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    PubMed

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions. PMID:19445975

  4. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging.

    PubMed

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-01-01

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization-MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research. PMID:27026287

  5. Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics.

    PubMed

    Djidja, Marie-Claude; Chang, Joan; Hadjiprocopis, Andreas; Schmich, Fabian; Sinclair, John; Mršnik, Martina; Schoof, Erwin M; Barker, Holly E; Linding, Rune; Jørgensen, Claus; Erler, Janine T

    2014-05-01

    Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using quantitative proteomics combined with MALDI-mass spectrometry imaging (MALDI-MSI). Here we present a comprehensive hypoxic proteome study and are the first to investigate changes in situ using tumor samples. In vitro quantitative mass spectrometry analysis of the hypoxic proteome was performed on breast cancer cells using stable isotope labeling with amino acids in cell culture (SILAC). MS analyses were performed on laser-capture microdissected samples isolated from normoxic and hypoxic regions from tumors derived from the same cells used in vitro. MALDI-MSI was used in combination to investigate hypoxia-regulated protein localization within tumor sections. Here we identified more than 100 proteins, both novel and previously reported, that were associated with hypoxia. Several proteins were localized in hypoxic regions, as identified by MALDI-MSI. Visualization and data extrapolation methods for the in vitro SILAC data were also developed, and computational mapping of MALDI-MSI data to IHC results was applied for data validation. The results and limitations of the methodologies described are discussed. PMID:24702160

  6. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging

    PubMed Central

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-01-01

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization–MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research. PMID:27026287

  7. Quantitative determination of medroxyprogesterone acetate in plasma by liquid chromatography/electrospray ion trap mass spectrometry.

    PubMed

    Kim, S M; Kim, D H

    2001-01-01

    A sensitive and rapid liquid chromatography/electrospray ion trap mass spectrometry (LC/MS/MS) method has been developed for the quantitative determination of medroxyprogesterone acetate (MPA) in human plasma. Plasma samples (1.0 mL) were simply extracted with pentane and the extracts were analyzed by HPLC with the detection of the analyte in the selective reaction monitoring (SRM) mode. The determination of MPA was accurate and reproducible, with a limit of quantitation of 0.05 ng/mL in plasma. The standard calibration curve for MPA was linear (r = 0.998) over the concentration range 0.05-6.0 ng/mL in human plasma. Analysis precision over the concentration range of MPA was lower than 18.8% (relative standard deviation, RSD) and accuracy was between 96.2 and 108.7%. PMID:11675672

  8. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills. PMID:22665301

  9. Multiplicative effects model with internal standard in mobile phase for quantitative liquid chromatography-mass spectrometry.

    PubMed

    Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen

    2014-07-01

    Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. PMID:24840455

  10. Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis.

    PubMed

    Aceña, Jaume; Stampachiacchiere, Serena; Pérez, Sandra; Barceló, Damià

    2015-08-01

    This review summarizes the advances in environmental analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) during the last decade and discusses different aspects of their application. LC-HRMS has become a powerful tool for simultaneous quantitative and qualitative analysis of organic pollutants, enabling their quantitation and the search for metabolites and transformation products or the detection of unknown compounds. LC-HRMS provides more information than low-resolution (LR) MS for each sample because it can accurately determine the mass of the molecular ion and its fragment ions if it can be used for MS-MS. Another advantage is that the data can be processed using either target analysis, suspect screening, retrospective analysis, or non-target screening. With the growing popularity and acceptance of HRMS analysis, current guidelines for compound confirmation need to be revised for quantitative and qualitative purposes. Furthermore, new commercial software and user-built libraries are required to mine data in an efficient and comprehensive way. The scope of this critical review is not to provide a comprehensive overview of the many studies performed with LC-HRMS in the field of environmental analysis, but to reveal its advantages and limitations using different workflows. PMID:26138893

  11. Comparison of two methods for obtaining quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements.

    PubMed

    Qin, Xueying; Bhave, Prakash V; Prather, Kimberly A

    2006-09-01

    Aerosol time-of-flight mass spectrometry (ATOFMS) measurements provide continuous information on the aerodynamic size and chemical composition of individual particles. In this work, we compare two approaches for converting unscaled ATOFMS measurements into quantitative particle mass concentrations using (1) reference mass concentrations from a co-located micro-orifice uniform deposit impactor (MOUDI) with an accurate estimate of instrument busy time and (2) reference number concentrations from a co-located aerodynamic particle sizer (APS). Aerodynamic-diameter-dependent scaling factors are used for both methods to account for particle transmission efficiencies through the ATOFMS inlet. Scaling with APS data retains the high-resolution characteristics of the ambient aerosol because the scaling functions are specific for each hourly time period and account for a maximum in the ATOFMS transmission efficiency curve for larger-sized particles. Scaled mass concentrations obtained from both methods are compared with co-located PM(2.5) measurements for evaluation purposes. When compared against mass concentrations from a beta attenuation monitor (BAM), the MOUDI-scaled ATOFMS mass concentrations show correlations of 0.79 at Fresno, and the APS-scaled results show correlations of 0.91 at Angiola. Applying composition-dependent density corrections leads to a slope of nearly 1 with 0 intercept between the APS-scaled absolute mass concentration values and BAM mass measurements. This paper provides details on the methodologies used to convert ATOFMS data into continuous, quantitative, and size-resolved mass concentrations that will ultimately be used to provide a quantitative estimate of the number and mass concentrations of particles from different sources. PMID:16944899

  12. Annotator: Post-processing Software for generating function-based signatures from quantitative mass spectrometry

    PubMed Central

    Sylvester, Juliesta E.; Bray, Tyler S.; Kron, Stephen J.

    2012-01-01

    Mass spectrometry is used to investigate global changes in protein abundance in cell lysates. Increasingly powerful methods of data collection have emerged over the past decade, but this has left researchers with the task of sifting through mountains of data for biologically significant results. Often, the end result is a list of proteins with no obvious quantitative relationships to define the larger context of changes in cell behavior. Researchers are often forced to perform a manual analysis from this list or to fall back on a range of disparate tools, which can hinder the communication of results and their reproducibility. To address these methodological problems we developed Annotator, an application that filters validated mass spectrometry data and applies a battery of standardized heuristic and statistical tests to determine significance. To address systems-level interpretations we incorporated UniProt and Gene Ontology keywords as statistical units of analysis, yielding quantitative information about changes in abundance for an entire functional category. This provides a consistent and quantitative method for formulating conclusions about cellular behavior, independent of network models or standard enrichment analyses. Annotator allows for “bottom-up” annotations that are based on experimental data and not inferred by comparison to external or hypothetical models. Annotator was developed as an independent post-processing platform that runs on all common operating systems, thereby providing a useful tool for establishing the inherently dynamic nature of functional annotations, which depend on results from on-going proteomic experiments. Annotator is available for download at http://people.cs.uchicago.edu/~tyler/annotator/annotator_desktop_0.1.tar.gz. PMID:22224429

  13. Quantitation of acrylamide in food products by liquid chromatography/mass spectrometry.

    PubMed

    Eberhart, B Loye; Ewald, Deborah K; Sanders, Robert A; Tallmadge, Daniel H; Zyzak, David V; Strothers, Melissa A

    2005-01-01

    A simple and inexpensive liquid chromatography/mass spectrometry (LC/MS) method was developed for the quantitation of acrylamide in various food products. The method involved spiking the isotope-substituted internal standard (1-C13 acrylamide) onto 6.00 g of the food product, adding 40 mL distilled/deionized water, and heating at 65 degrees C for 30 min. Afterwards, 10 mL ethylene dichloride was added and the mixture was homogenized for 30 s and centrifuged at 2700 x g for 30 min, and then 8 g supernatant was extracted with 10, 5, and 5 mL portions of ethyl acetate. The extracts were combined, dried with sodium sulfate, and concentrated to 100-200 microL. Acrylamide was determined by analysis of the final extract on a single quadrupole, bench-top mass spectrometer with electrospray ionization, using a 2 mm id C18 column and monitoring m/z = 72 (acrylamide) and m/z = 73 (internal standard). For difficult food matrixes, such as coffee and cocoa, a solid-phase extraction cleanup step was incorporated to improve both chromatography and column lifetime. The method had a limit of quantitation of 10 ppb, and coefficients of determination (r2) for calibration curves were typically better than 0.998. Acceptable spike recovery results were achieved in 11 different food matrixes. Precision in potato chip analyses was 5-8% (relative standard deviation). This method provides an LC/MS alternative to the current LC/MS/MS methods and derivatization gas chromatography/mass spectrometry methods, and is applicable to difficult food products such as coffee, cocoa, and high-salt foods. PMID:16152941

  14. Improving quantitative precision and throughput by reducing calibrator use in liquid chromatography-tandem mass spectrometry.

    PubMed

    Rule, Geoffrey S; Rockwood, Alan L

    2016-05-01

    To improve efficiency in our mass spectrometry laboratories we have made efforts to reduce the number of calibration standards utilized for quantitation over time. We often analyze three or more batches of 96 samples per day, on a single instrument, for a number of assays. With a conventional calibration scheme at six concentration levels this amounts to more than 5000 calibration points per year. Modern LC-tandem mass spectrometric instrumentation is extremely rugged however, and isotopically labelled internal standards are widely available. This made us consider whether alternative calibration strategies could be utilized to reduce the number of calibration standards analyzed while still retaining high precision and accurate quantitation. Here we demonstrate how, by utilizing a single calibration point in each sample batch, and using the resulting response factor (RF) to update an existing, historical response factor (HRF), we are able to obtain improved precision over a conventional multipoint calibration approach, as judged by quality control samples. The laboratory component of this study was conducted with an existing LC tandem mass spectrometric method for three androgen analytes in our production laboratory. Using examples from both simulated and laboratory data we illustrate several aspects of our single point alternative calibration strategy and compare it with a conventional, multipoint calibration approach. We conclude that both the cost and burden of preparing multiple calibration standards with every batch of samples can be reduced while at the same time maintaining, or even improving, analytical quality. PMID:27086099

  15. Quantitative analysis of antibiotics in aquifer sediments by liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Tong, Lei; Liu, Hui; Xie, Cong; Li, Minjing

    2016-06-24

    A highly effective analytical method for multi-residue determination of antibiotics in aquifer sediments was first established in this study. Microwave-assisted solvent extraction (MASE) and solid-phase extraction were used for sample pre-concentration and purification, ultra-high performance liquid chromatography coupled to hybrid quadrupole-high resolution Orbitrap mass spectrometry (UHPLC-Q-Orbitrap) was applied for detection. For high resolution mass spectrometry (HRMS), the target compounds were tentatively identified by retention time and accurate mass which was measured with precursor ions in Target-SIM scan, and then confirmed by the monitoring of daughter ion fragments which were generated in dd-MS(2) scan. The results provided good mass accuracy with mass deviations below 2ppm (except norfloxacin with -2.3ppm) for quantitative analysis of the compounds by HRMS. Reasonable recoveries of all analytes were obtained more than 60% (except doxytetracycline) in fortification samples at concentrations higher than 10μgkg(-1). Relative standard deviations of repeatability and inter-day precision were below 21% and 11%. Limits of detection (LOD) ranged from 0.1 to 3.8μgkg(-1), whereas limits of quantification (LOQ) were established between 0.3-9.0μgkg(-1). The method was applied to analyze real aquifer sediment samples in different aquifer depth of 4.0, 7.5, 13.0 and 18.0m. Chlorotetracycline and ofloxacin were observed at relative high concentrations of 53 and 19μgkg(-1) respectively in 18.0m deepness. The exposure to low doses of these compounds in subsurface environment increases concerns on long-term ecological security of underground system. PMID:27215464

  16. Validation of the Mass-Extraction-Window for Quantitative Methods Using Liquid Chromatography High Resolution Mass Spectrometry.

    PubMed

    Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand

    2016-03-15

    A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections. PMID:26836506

  17. Dual enzyme activities assay by quantitative electrospray ionization quadrupole-time-of-flight mass spectrometry.

    PubMed

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Wang, Rong; Zhang, Yurong; Guo, Yinlong

    2012-01-01

    A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds. PMID:23654197

  18. ULSI technology and materials: Quantitative answers by combined mass spectrometry surface techniques

    NASA Astrophysics Data System (ADS)

    Bersani, M.; Fedrizzi, M.; Sbetti, M.; Anderle, M.

    1998-11-01

    The progressive microelectronics ULSI device shrinking towards improving the performances has driven the development of new materials and process technologies. A good example is given by oxynitride, an innovative material which is thought for the next generation of 0.25 μm MOS circuits. Oxynitrides have replaced thermal silicon oxides as gate insulator due to the properties of good masking against impurity diffusion, together with the excellent dielectric strength and the better resistance to dielectric breakdown. The strong request from microelectronics industries for a complete and accurate characterization of this new material and the technological processes concerned, has considerably stimulated the research, particularly in the field of analytical methodology. Secondary Ion Mass Spectrometry, linked since the beginning with microelectronics development, shows again to be the most reliable and suitable microanalytical technique to give answers to this topics. In this work we present some examples of methodologies applied to an accurate quantitative characterization of this new material, together with its impact on the production processes. We show how the complementary employing of several mass spectrometry techniques, such as magnetic sector SIMS, SNMS and ToF-SIMS, can give a more complete overview both to process issues and to methodological developements of the techniques themselves.

  19. ULSI technology and materials: Quantitative answers by combined mass spectrometry surface techniques

    SciTech Connect

    Bersani, M.; Fedrizzi, M.; Anderle, M.; Sbetti, M.

    1998-11-24

    The progressive microelectronics ULSI device shrinking towards improving the performances has driven the development of new materials and process technologies. A good example is given by oxynitride, an innovative material which is thought for the next generation of 0.25 {mu}m MOS circuits. Oxynitrides have replaced thermal silicon oxides as gate insulator due to the properties of good masking against impurity diffusion, together with the excellent dielectric strength and the better resistance to dielectric breakdown. The strong request from microelectronics industries for a complete and accurate characterization of this new material and the technological processes concerned, has considerably stimulated the research, particularly in the field of analytical methodology. Secondary Ion Mass Spectrometry, linked since the beginning with microelectronics development, shows again to be the most reliable and suitable microanalytical technique to give answers to this topics. In this work we present some examples of methodologies applied to an accurate quantitative characterization of this new material, together with its impact on the production processes. We show how the complementary employing of several mass spectrometry techniques, such as magnetic sector SIMS, SNMS and ToF-SIMS, can give a more complete overview both to process issues and to methodological developements of the techniques themselves.

  20. Quantitative analysis of tivantinib in rat plasma using ultra performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Bai, Yan-Li; Yuan, Hong-Chang; Zhang, Dong-Tao; Liu, Yuan; Zhang, Yin

    2016-07-15

    In this work, a simple, sensitive and fast ultra performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitative determination of tivantinib in rat plasma. Plasma samples were processed with a protein precipitation. The separation was achieved by an Acquity UPLC BEH C18 (2.1mm×50mm, 1.7μm) column with a gradient mobile phase consisting of 0.1% formic acid in water and acetonitrile. Detection was carried out using positive-ion electrospray tandem mass spectrometry via multiple reaction monitoring (MRM). The validated method had an excellent linearity in the range of 1.0-100ng/mL (r(2)>0.9967) with a lower limit of quantification (1.0ng/mL). The extraction recovery was in the range of 79.4-84.2% for tivantinib and 80.3% for carbamazepine (internal standard, IS). The intra- and inter-day precision was below 8.9% and accuracy was from -7.2% to 9.5%. No notable matrix effect and astaticism was observed for tivantinib. The method has been successfully applied to a pharmacokinetic study of tivantinib in rats for the first time, which provides the basis for the further development and application of tivantinib. PMID:27179187

  1. A gas chromatography-mass spectrometry method for the quantitation of clobenzorex.

    PubMed

    Cody, J T; Valtier, S

    1999-01-01

    Drugs metabolized to amphetamine or methamphetamine are potentially significant concerns in the interpretation of amphetamine-positive urine drug-testing results. One of these compounds, clobenzorex, is an anorectic drug that is available in many countries. Clobenzorex (2-chlorobenzylamphetamine) is metabolized to amphetamine by the body and excreted in the urine. Following administration, the parent compound was detectable for a shorter time than the metabolite amphetamine, which could be detected for days. Because of the potential complication posed to the interpretation of amphetamin-positive drug tests following administration of this drug, the viability of a current amphetamine procedure using liquid-liquid extraction and conversion to the heptafluorobutyryl derivative followed by gas chromatography-mass spectrometry (GC-MS) analysis was evaluated for identification and quantitation of clobenzorex. Qualitative identification of the drug was relatively straightforward. Quantitative analysis proved to be a far more challenging process. Several compounds were evaluated for use as the internal standard in this method, including methamphetamine-d11, fenfluramine, benzphetamine, and diphenylamine. Results using these compounds proved to be less than satisfactory because of poor reproducibility of the quantitative values. Because of its similar chromatographic properties to the parent drug, the compound 3-chlorobenzylamphetamine (3-Cl-clobenzorex) was evaluated in this study as the internal standard for the quantitation of clobenzorex. Precision studies showed 3-Cl-clobenzorex to produce accurate and reliable quantitative results (within-run relative standard deviations [RSDs] < 6.1%, between-run RSDs < 6.0%). The limits of detection and quantitation for this assay were determined to be 1 ng/mL for clobenzorex. PMID:10595847

  2. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    SciTech Connect

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  3. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry.

    PubMed

    Walzthoeni, Thomas; Joachimiak, Lukasz A; Rosenberger, George; Röst, Hannes L; Malmström, Lars; Leitner, Alexander; Frydman, Judith; Aebersold, Ruedi

    2015-12-01

    Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatially discrete states. We describe a generic computational pipeline for quantitative cross-linking mass spectrometry consisting of modules for quantitative data extraction and statistical assessment of the obtained results. We used the method to detect conformational changes in two model systems: firefly luciferase and the bovine TRiC complex. Our method discovers and explains the structural heterogeneity of protein complexes using only sparse structural information. PMID:26501516

  4. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry

    PubMed Central

    Walzthoeni, Thomas; Joachimiak, Lukasz A; Rosenberger, George; Röst, Hannes L; Malmström, Lars; Leitner, Alexander; Frydman, Judith; Aebersold, Ruedi

    2016-01-01

    Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatially discrete states. We describe a generic computational pipeline for quantitative cross-linking mass spectrometry consisting of modules for quantitative data extraction and statistical assessment of the obtained results. We used the method to detect conformational changes in two model systems: firefly luciferase and the bovine TRiC complex. Our method discovers and explains the structural heterogeneity of protein complexes using only sparse structural information. PMID:26501516

  5. Quantitative Composition Analysis of Lipid Membranes by High-Resolution Secondary Ion Mass Spectrometry

    SciTech Connect

    Kraft, M L; Weber, P K; Lin, W C; Blanchette, C D; Longo, M L; Hutcheon, I D; Boxer, S G

    2005-04-29

    The lateral organization and interactions of lipid and protein components within biological membranes are essential for their functions. Investigations of the lateral organization within membranes hinge upon the ability to differentiate one component of interest from another. Typically, fluorophores are conjugated to specific components, and the organization is probed with fluorescence microscopy. However, bulky fluorophores may change the physical properties of the components they label, only the labeled components can be visualized, and the diffraction limit of light restricts the lateral resolution. Here we present a method to image microdomains within supported lipid membranes using isotopic labels and high-resolution secondary ion mass spectrometry (SIMS) performed with the NanoSIMS 50 (Cameca). Lateral resolution of 100 nm is achieved with high sensitivity. Quantitative information on the lipid composition within each domain was determined using calibration curves constructed from homogeneous lipid bilayer samples that systematically varied in the isotopically labeled lipid content.

  6. Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela T.; Thomas, Mathew; Laskin, Julia

    2014-02-04

    Mass spectrometry imaging (MSI) has been extensively used for determining spatial distributions of molecules in biological samples, and there is increasing interest in using MSI for quantification. Nanospray desorption electrospray ionization, or nano-DESI, is an ambient MSI technique where a solvent is used for localized extraction of molecules followed by nanoelectrospray ionization. Doping the nano-DESI solvent with carefully selected standards enables online quantification during MSI experiments. In this proof-of-principle study, we demonstrate this quantification approach can be extended to provide shotgun-like quantification of phospholipids in thin brain tissue sections. Specifically, two phosphatidylcholine (PC) standards were added to the nano-DESI solvent for simultaneous imaging and quantification of 22 PC species observed in nano-DESI MSI. Furthermore, by combining the quantitative data obtained in the individual pixels, we demonstrate quantification of these PC species in seven different regions of a rat brain tissue section.

  7. Quantitative determination of capsaicinoids by liquid chromatography-electrospray mass spectrometry.

    PubMed

    Thompson, Robert Q; Phinney, Karen W; Welch, Michael J; White, Edward

    2005-04-01

    Eight naturally occurring capsaicinoids have been determined in Capsicum by use of high-purity standards, with norcapsaicin as an internal standard. The solid standards were rigorously checked for purity. The sensitivity of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), and coordination ion-spray (CIS; with silver) toward the capsaicinoids were measured and compared. The highest sensitivity was found for positive-ion ESI. Method validation of the liquid chromatography-ESI-mass spectrometry (LC-ESI-MS) determination is reported, including tests for repeatability (4%), detection limit (5 pg injected), linear range (20-6 ng injected), quantitation (excellent linearity; < 2% relative standard deviation), and recovery (99-103%). The major and minor capsaicinoids in a commercial plant extract and in chili pepper fruits were quantified. PMID:15803309

  8. Facilitated Diffusion of Acetonitrile Revealed by Quantitative Breath Analysis Using Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Li, Ming; Ding, Jianhua; Gu, Haiwei; Zhang, Yan; Pan, Susu; Xu, Ning; Chen, Huanwen; Li, Hongmei

    2013-01-01

    By using silver cations (Ag+) as the ionic reagent in reactive extractive electrospray ionization mass spectrometry (EESI-MS), the concentrations of acetonitrile in exhaled breath samples from the volunteers including active smokers, passive smokers, and non-smokers were quantitatively measured in vivo, without any sample pretreatment. A limit of detection (LOD) and relative standard deviation (RSD) were 0.16 ng/L and 3.5% (n = 8), respectively, for the acetonitrile signals in MS/MS experiments. Interestingly, the concentrations of acetonitrile in human breath continuously increased for 1–4 hours after the smoker finished smoking and then slowly decreased to the background level in 7 days. The experimental data of a large number of (> 165) samples indicated that the inhaled acetonitrile is excreted most likely by facilitated diffusion, instead of simple diffusion reported previously for other volatile compounds. PMID:23386969

  9. Quantitative measurement of immunoglobulins and free light chains using mass spectrometry.

    PubMed

    VanDuijn, Martijn M; Jacobs, Joannes F M; Wevers, Ron A; Engelke, Udo F; Joosten, Irma; Luider, Theo M

    2015-08-18

    Serum free light chain (sFLC) assays are well established in the diagnosis and monitoring of plasma cell disorders. However, current FLC immunoassays are subject to several analytical issues, which results in a lack of harmonized results. To facilitate sFLC standardization, we investigated the strengths and limitations of mass spectrometry as a novel technological platform for sFLC quantification. Stable isotope labeled reference peptides are added to serum samples for quantitation by selected reaction monitoring (SRM). The use of redundant peptide sets allows for quality control measures during data analysis. Measurements on serum provide information on intact immunoglobulins, but depletion of these intact molecules from the sera during sample processing permits the quantitation of sFLC. sFLC concentrations measured with SRM were comparable to those obtained by nephelometry and showed excellent linearity (r(2) > 0.99). In samples with high levels of sFLC, SRM data was more consistent with serum protein electrophoresis than nephelometric data and SRM is unaffected by antigen excess. The lower limits of quantitation were 3.8 and 2.7 mg/L for κ and λ sFLC. Errors due to polymorphic sequences were prevented by comparison of redundant peptide pairs. The application of stable isotope labeling combined with SRM can overcome many of the current potential analytical issues of sFLC analysis. We describe which hurdles still need to be taken to make SRM a robust and more accurate method for sFLC measurements. PMID:26168337

  10. A rapid quantitative method of carisoprodol and meprobamate by liquid chromatography-tandem mass spectrometry.

    PubMed

    Essler, Shannon; Bruns, Kerry; Frontz, Michael; McCutcheon, J Rod

    2012-11-01

    The identification and quantitation of carisoprodol (Soma) and its chief metabolite meprobamate, which is also a clinically prescribed drug, remains a challenge for forensic toxicology laboratories. Carisoprodol and meprobamate are notable for their widespread use as muscle relaxants and their frequent identification in the blood of impaired drivers. Routine screening is possible in both an acidic/neutral pH screen and a traditional basic screen. An improvement in directed testing quantitations was desirable over the current options of an underivatized acidic/neutral extraction or a basic screen, neither of which used ideal internal standards. A new method was developed that utilized a simple protein precipitation, deuterated internal standards and a short 2-min isocratic liquid chromatography separation, followed by multiple reaction monitoring with tandem mass spectrometry. The linear quantitative range for carisoprodol was determined to be 1-35mg/L and for meprobamate was 0.5-50mg/L. The method was validated for specificity and selectivity, matrix effects, and accuracy and precision. PMID:23040985

  11. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen

    2015-03-01

    Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (<30 Da) with low proton affinity and collision-induced dissociation efficiency, which are usually poorly visible by conventional ion trap mass spectrometers. Long-term quantitative profiling of eNO by EESI-MS opens new possibilities for the research of human metabolism and clinical diagnosis.

  12. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use. PMID:26086729

  13. Quantitative Analysis of Tetramethylenedisulfotetramine ("Tetramine") Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    SciTech Connect

    Owens, J; Hok, S; Alcaraz, A; Koester, C

    2008-11-13

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  14. Quantitative determination of DNA adducts using liquid chromatography/electrospray ionization mass spectrometry and liquid chromatography/high-resolution inductively coupled plasma mass spectrometry.

    PubMed

    Siethoff, C; Feldmann, I; Jakubowski, N; Linscheid, M

    1999-04-01

    The quantitative determination of nucleotides from DNA modified by styrene oxide is described using a combination of inductively coupled plasma high-resolution mass spectrometry (ICP-HRMS) and electrospray ionization mass spectrometry (ESI-MS), both interfaced to reversed-phase high-performance liquid chromatography (HPLC). LC/ICP-MS (resolution > 1500 to discriminate against 15N16O+ and 14N16OH+) was employed to determine quantitatively the content of modified nucleotides in standard solutions based on the signal of phosphorus; phosphoric acid served as an internal standard. By means of the standard addition technique the sensitivity of the LC/ESI-MS approach was subsequently determined. Since a comparison of UV, ICP and ESI-MS data suggested that in ESI-MS the ionization efficiency of the adducts is identical within the error limits, quantitative determination of all adducts is possible. For LC/ESI-MS with single ion monitoring, the detection limit for styrene oxide adducts of nucleotides was determined to be 20 pg absolute or 14 modified in 10(8) unmodified nucleotides in a 5 micrograms DNA sample, which comes close to the best methods available for the detection of chemical modifications in DNA. PMID:10226366

  15. Quantitation of ethyl glucuronide in serum & urine by gas chromatography - mass spectrometry

    PubMed Central

    Sharma, Priyamvada; Bharat, Venkatesh; Murthy, Pratima

    2015-01-01

    Background & objectives: Alcohol misuse has now become a serious public health problem and early intervention is important in minimizing the harm. Biochemical markers of recent and high levels of alcohol consumption can play an important role in providing feedback regarding the health consequences of alcohol misuse. Existing markers are not sensitive to recent consumption and in detecting early relapse. Ethyl glucuronide (EtG), a phase-II metabolite of ethanol is a promising marker of recent alcohol use and can be detected in body fluids. In this study an analytical technique for quantitation of EtG in body fluids using solid-phase extraction (SPE) and gas chromatography (GC) with mass spectrometric detection (MS) was developed and validated. Methods: De-proteinization of serum and urine samples was done with perchloric acid and hydrochloric acid, respectively. Serum samples were passed through phospholipids removal cartridges for further clean up. EtG was isolated using amino propyl solid phase extraction columns. Chromatographic separation was achieved by gas chromatography with mass spectrometry. Results: Limit of detection and limit of quantitation were 50 and 150 ng/ml for urine and 80 and 210 ng/ml for serum, respectively. Signal to noise ratio was 3:1, mean absolute recovery was 80-85 per cent. Significant correlation was obtained between breath alcohol and serum EtG levels (r=0.853) and urine EtG and time since last abuse (r = -0.903) in clinical samples. Interpretation & conclusions: In the absence of other standardized techniques to quantitate EtG in biological samples, this GC-MS method was found to have high throughput and was sensitive and specific. PMID:25857498

  16. Quantitative, Multidrug Pain Medication Testing by Liquid Chromatography: Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Bodor, Geza S

    2016-01-01

    Chronic pain is often treated with narcotic analgesics. The most commonly used narcotic analgesics are the opiates (natural or modified compounds of the poppy plant) or opioids (synthetic chemicals that act on opiate receptors). While opiates and opioids are excellent analgesics, they can also have significant side effects that include respiratory depression, coma, or death. Tolerance, physical dependence, and addiction (psychological dependence) are other severe side effects of opioid use. Patients who develop dependence or addiction often times abuse other, non-opioid narcotics and may trade their prescription medication for illegal street drugs (called "diversion"). In order to minimize side effects, detect possible multidrug abuse and prove diversion, simultaneous monitoring of numerous prescription and illicit drugs is required. The method described in this chapter is for the quantitative measurement of 43 different drugs in urine. The panel includes narcotic pain medications, benzodiazepines, NIDA drugs, and other, commonly abused medications. The analytes of interests are injected in the presence of deuterated internal standards to correct for possible extraction inefficiencies, ion suppression, or other interferences. The sample is prepared by adding dilution buffer with the deuterated internal standards to the sample, followed by reversed-phase, gradient HPLC separation on a Phenyl-Hexyl column using water and methanol as mobile phases. Detection of the analytes of interest is done by isotope-dilution mass spectrometry on a triple-quadrupole tandem mass spectrometer following electrospray ionization in the positive mode. Mass spectrometric (MS) data are collected in the scheduled MRM (sMRM) mode. Two MRM transitions are monitored for each analyte and one MRM transition is monitored for each IS. Quantitation of the unknown analytes is achieved by comparing the peak area ratios of the analytes to that of the internal standards and reading the unknown

  17. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, J. S.; Dietrich, R. C.; Matusch, A.; Pozebon, D.; Dressler, V. L.

    2008-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13C +, 33S + and 34S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots.

  18. Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry*

    PubMed Central

    Kaake, Robyn M.; Wang, Xiaorong; Huang, Lan

    2010-01-01

    Protein-protein interactions are important for nearly all biological processes, and it is known that aberrant protein-protein interactions can lead to human disease and cancer. Recent evidence has suggested that protein interaction interfaces describe a new class of attractive targets for drug development. Full characterization of protein interaction networks of protein complexes and their dynamics in response to various cellular cues will provide essential information for us to understand how protein complexes work together in cells to maintain cell viability and normal homeostasis. Affinity purification coupled with quantitative mass spectrometry has become the primary method for studying in vivo protein interactions of protein complexes and whole organism proteomes. Recent developments in sample preparation and affinity purification strategies allow the capture, identification, and quantification of protein interactions of protein complexes that are stable, dynamic, transient, and/or weak. Current efforts have mainly focused on generating reliable, reproducible, and high confidence protein interaction data sets for functional characterization. The availability of increasing amounts of information on protein interactions in eukaryotic systems and new bioinformatics tools allow functional analysis of quantitative protein interaction data to unravel the biological significance of the identified protein interactions. Existing studies in this area have laid a solid foundation toward generating a complete map of in vivo protein interaction networks of protein complexes in cells or tissues. PMID:20445003

  19. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry

    PubMed Central

    Lechene, Claude; Hillion, Francois; McMahon, Greg; Benson, Douglas; Kleinfeld, Alan M; Kampf, J Patrick; Distel, Daniel; Luyten, Yvette; Bonventre, Joseph; Hentschel, Dirk; Park, Kwon Moo; Ito, Susumu; Schwartz, Martin; Benichou, Gilles; Slodzian, Georges

    2006-01-01

    Background Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. Results The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. Conclusion MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments. PMID:17010211

  20. Quantitation of Phenol Levels in Oil of Wintergreen Using Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring

    ERIC Educational Resources Information Center

    Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor

    2005-01-01

    Industrial application of gas chromatography-mass spectrometry (GC-MS) analysis is a powerful technique that could be used to elucidate components of a complex mixture while offering the benefits of high-precision quantitative analysis. The natural wintergreen oil is examined for its phenol concentration to determine the level of refining…

  1. Multiplexed Quantitation of Endogenous Proteins in Dried Blood Spots by Multiple Reaction Monitoring - Mass Spectrometry

    PubMed Central

    Chambers, Andrew G.; Percy, Andrew J.; Yang, Juncong; Camenzind, Alexander G.; Borchers, Christoph H.

    2013-01-01

    Dried blood spot (DBS) sampling, coupled with multiple reaction monitoring mass spectrometry (MRM-MS), is a well-established approach for quantifying a wide range of small molecule biomarkers and drugs. This sampling procedure is simpler and less-invasive than those required for traditional plasma or serum samples enabling collection by minimally trained personnel. Many analytes are stable in the DBS format without refrigeration, which reduces the cost and logistical challenges of sample collection in remote locations. These advantages make DBS sample collection desirable for advancing personalized medicine through population-wide biomarker screening. Here we expand this technology by demonstrating the first multiplexed method for the quantitation of endogenous proteins in DBS samples. A panel of 60 abundant proteins in human blood was targeted by monitoring proteotypic tryptic peptides and their stable isotope-labeled analogs by MRM. Linear calibration curves were obtained for 40 of the 65 peptide targets demonstrating multiple proteins can be quantitatively extracted from DBS collection cards. The method was also highly reproducible with a coefficient of variation of <15% for all 40 peptides. Overall, this assay quantified 37 proteins spanning a range of more than four orders of magnitude in concentration within a single 25 min LC/MRM-MS analysis. The protein abundances of the 33 proteins quantified in matching DBS and whole blood samples showed an excellent correlation, with a slope of 0.96 and an R2 value of 0.97. Furthermore, the measured concentrations for 80% of the proteins were stable for at least 10 days when stored at −20 °C, 4 °C and 37 °C. This work represents an important first step in evaluating the integration of DBS sampling with highly-multiplexed MRM for quantitation of endogenous proteins. PMID:23221968

  2. The role of quantitative mass spectrometry in the discovery of pancreatic cancer biomarkers for translational science

    PubMed Central

    2014-01-01

    In the post-genomic era, it has become evident that genetic changes alone are not sufficient to understand most disease processes including pancreatic cancer. Genome sequencing has revealed a complex set of genetic alterations in pancreatic cancer such as point mutations, chromosomal losses, gene amplifications and telomere shortening that drive cancerous growth through specific signaling pathways. Proteome-based approaches are important complements to genomic data and provide crucial information of the target driver molecules and their post-translational modifications. By applying quantitative mass spectrometry, this is an alternative way to identify biomarkers for early diagnosis and personalized medicine. We review the current quantitative mass spectrometric technologies and analyses that have been developed and applied in the last decade in the context of pancreatic cancer. Examples of candidate biomarkers that have been identified from these pancreas studies include among others, asporin, CD9, CXC chemokine ligand 7, fibronectin 1, galectin-1, gelsolin, intercellular adhesion molecule 1, insulin-like growth factor binding protein 2, metalloproteinase inhibitor 1, stromal cell derived factor 4, and transforming growth factor beta-induced protein. Many of these proteins are involved in various steps in pancreatic tumor progression including cell proliferation, adhesion, migration, invasion, metastasis, immune response and angiogenesis. These new protein candidates may provide essential information for the development of protein diagnostics and targeted therapies. We further argue that new strategies must be advanced and established for the integration of proteomic, transcriptomic and genomic data, in order to enhance biomarker translation. Large scale studies with meta data processing will pave the way for novel and unexpected correlations within pancreatic cancer, that will benefit the patient, with targeted treatment. PMID:24708694

  3. Comparison of Different Time of Flight-Mass Spectrometry Modes for Small Molecule Quantitative Analysis.

    PubMed

    Chindarkar, Nandkishor S; Park, Hyung-Doo; Stone, Judith A; Fitzgerald, Robert L

    2015-01-01

    Currently, the use of time of flight (TOF)-mass spectrometry (MS) in quantitative analysis of small molecules is rare. Recently, the quantitative performance of TOF mass analyzers has improved due to the advancements in TOF technology. We evaluated a Q-TOF-MS in different modes, i.e., Q-TOF-full scan (Q-TOF-FS), Q-TOF-enhanced-full scan (Q-TOF-En-FS), MS(E), Q-TOF-targeted (Q-TOF-TGT), Q-TOF-enhanced-targeted (Q-TOF-En-TGT), and compared their quantitative performance against a unit resolution LC-MS-MS (tandem quadrupole) platform. The five modes were investigated for sensitivity, linearity, signal-to-noise ratio, recovery and precision using 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) as a model compound in electrospray ionization (ESI) with negative polarity. Preliminary studies indicated that Q-TOF-FS mode was the least linear and precise; hence, it was eliminated from further investigation. Total imprecision in remaining four modes was <10%. The Q-TOF-En-FS and Q-TOF-En-TGT showed better signal intensity than their respective modes without enhancement. Overall, peak signal intensity was the highest in MS(E) mode, whereas the signal-to-noise ratio was the best in the Q-TOF-En-TGT mode. Relatively, MS(E) and Q-TOF-En-TGT modes were the best overall performers compared with the other modes. Both MS(E) and Q-TOF-En-TGT modes showed excellent precision (coefficient of variation <6%), patient correlation (r > 0.99) and linearity (range, 5-455 ng/mL) for THC-COOH analysis when compared with LC-MS-MS. We also investigated the performance of the same four modes using methamphetamine in positive ESI. Quantitative data obtained by Q-TOF-En-TGT and MS(E), using both positive and negative ESI, suggest that these modes performed better than the other modes. While unit resolution LC-MS-MS remains the optimal technique for quantification, our data showed that Q-TOF-MS can also be used to quantify small molecules in complex biological specimens. PMID:26239972

  4. Development of quantitative laser ionization mass spectrometry (LIMS). Final report, 1 Aug 87-1 Jan 90

    SciTech Connect

    Odom, R.W.

    1991-06-04

    The objective of the research was to develop quantitative microanalysis methods for dielectric thin films using the laser ionization mass spectrometry (LIMS) technique. The research involved preparation of thin (5,000 A) films of SiO2, Al2O3, MgF2, TiO2, Cr2O3, Ta2O5, Si3N4, and ZrO2, and doping these films with ion implant impurities of 11B, 40Ca, 56Fe, 68Zn, 81Br, and 121Sb. Laser ionization mass spectrometry (LIMS), secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS) were performed on these films. The research demonstrated quantitative LIMS analysis down to detection levels of 10-100 ppm, and led to the development of (1) a compound thin film standards product line for the performing organization, (2) routine LIMS analytical methods, and (3) the manufacture of high speed preamplifiers for time-of-flight mass spectrometry (TOF-MS) techniques.

  5. Identification of CRM1-dependent Nuclear Export Cargos Using Quantitative Mass Spectrometry*

    PubMed Central

    Thakar, Ketan; Karaca, Samir; Port, Sarah A.; Urlaub, Henning; Kehlenbach, Ralph H.

    2013-01-01

    Chromosome region maintenance 1/exportin1/Exp1/Xpo1 (CRM1) is the major transport receptor for the export of proteins from the nucleus. It binds to nuclear export signals (NESs) that are rich in leucines and other hydrophobic amino acids. The prediction of NESs is difficult because of the extreme recognition flexibility of CRM1. Furthermore, proteins can be exported upon binding to an NES-containing adaptor protein. Here we present an approach for identifying targets of the CRM1-export pathway via quantitative mass spectrometry using stable isotope labeling with amino acids in cell culture. With this approach, we identified >100 proteins from HeLa cells that were depleted from cytosolic fractions and/or enriched in nuclear fractions in the presence of the selective CRM1-inhibitor leptomycin B. Novel and validated substrates are the polyubiquitin-binding protein sequestosome 1, the cancerous inhibitor of protein phosphatase 2A (PP2A), the guanine nucleotide-binding protein-like 3-like protein, the programmed cell death protein 2-like protein, and the cytosolic carboxypeptidase 1 (CCP1). We identified a functional NES in CCP1 that mediates direct binding to the export receptor CRM1. The method will be applicable to other nucleocytoplasmic transport pathways, as well as to the analysis of nucleocytoplasmic shuttling proteins under different growth conditions. PMID:23242554

  6. Quantitative mass spectrometry of diabetic kidney tubules identifies GRAP as a novel regulator of TGFβ signaling

    PubMed Central

    Cummins, Timothy D.; Barati, Michelle T.; Coventry, Susan C.; Salyer, Sarah A.; Klein, Jon B.; Powell, David W.

    2009-01-01

    The aim of this study was to define novel mediators of tubule injury in diabetic kidney disease. For this, we used state-of-the-art proteomic methods combined with a label-free quantitative strategy to define protein expression differences in kidney tubules from transgenic OVE26 type 1 diabetic and control mice. The analysis was performed with diabetic samples that displayed a pro-fibrotic phenotype. We have identified 476 differentially expressed proteins. Bioinformatic analysis indicated several clusters of regulated proteins in relevant functional groups such as TGF-β signaling, tight junction maintenance, oxidative stress, and glucose metabolism. Mass spectrometry detected expression changes of four physiologically relevant proteins were confirmed by immunoblot analysis. Of these, the Grb2-related adaptor protein (GRAP) was up-regulated in kidney tubules from diabetic mice and fibrotic kidneys from diabetic patients, and subsequently confirmed as a novel component of TGF-β signaling in cultured human renal tubule cells. Thus, indicating a potential novel role for GRAP in TGF-β-induced tubule injury in diabetic kidney disease. Although we targeted a specific disease, this approach offers a robust, high-sensitivity methodology that can be applied to the discovery of novel mediators for any experimental or disease condition. PMID:19836472

  7. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry.

    PubMed

    Renz, Christian; Oeljeklaus, Silke; Grinhagens, Sören; Warscheid, Bettina; Johnsson, Nils; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen. PMID:26871441

  8. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry.

    PubMed

    Serna, Jorge; García-Seisdedos, David; Alcázar, Alberto; Lasunción, Miguel Ángel; Busto, Rebeca; Pastor, Óscar

    2015-07-01

    Knowledge of the plasma lipid composition is essential to clarify the specific roles of different lipid species in various pathophysiological processes. In this study, we developed an analytical strategy combining high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and off-line coupling with matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF/MS) to determine the composition of plasma and major lipoproteins at two levels, lipid classes and lipid species. We confirmed the suitability of MALDI-TOF/MS as a quantitative measurement tool studying the linearity and repeatability for triglycerides (TG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Moreover, data obtained with this method were correlated with other lipid classes and species measurements using currently available technologies. To establish the potential utility of our approach, human plasma very low density- (VLDL), low density- (LDL) and high density- (HDL) lipoproteins from 10 healthy donors were separated using ultracentrifugation, and compositions of nine lipid classes, cholesteryl esters (CE), TG, free cholesterol (FC), PE, phosphatidylinositol (PI), sulfatides (S), PC, lysophosphatidylcholine (LPC) and sphingomyelin (SM), analyzed. In total, 157 lipid species in plasma, 182 in LDL, 171 in HDL, and 148 in VLDL were quantified. The lipidomic profile was consistent with known differences in lipid classes, but also revealed unexpected differences in lipid species distribution of lipoproteins, particularly for LPC and SM. In summary, the methodology developed in this study constitutes a valid approach to determine the lipidomic composition of plasma and lipoproteins. PMID:26004846

  9. A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition.

    PubMed

    Brown, Adam R; Ettefagh, Keivan A; Todd, Daniel; Cole, Patrick S; Egan, Joseph M; Foil, Daniel H; Graf, Tyler N; Schindler, Bryan D; Kaatz, Glenn W; Cech, Nadja B

    2015-01-01

    Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin), were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence. PMID:25961825

  10. A Mass Spectrometry-Based Assay for Improved Quantitative Measurements of Efflux Pump Inhibition

    PubMed Central

    Brown, Adam R.; Ettefagh, Keivan A.; Todd, Daniel; Cole, Patrick S.; Egan, Joseph M.; Foil, Daniel H.; Graf, Tyler N.; Schindler, Bryan D.; Kaatz, Glenn W.; Cech, Nadja B.

    2015-01-01

    Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin), were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence. PMID:25961825

  11. A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics.

    PubMed

    Wang, Xiaoshi; Yuan, Zuo-Fei; Fan, Jing; Karch, Kelly R; Ball, Lauren E; Denu, John M; Garcia, Benjamin A

    2016-07-01

    Over the past decades, protein O-GlcNAcylation has been found to play a fundamental role in cell cycle control, metabolism, transcriptional regulation, and cellular signaling. Nevertheless, quantitative approaches to determine in vivo GlcNAc dynamics at a large-scale are still not readily available. Here, we have developed an approach to isotopically label O-GlcNAc modifications on proteins by producing (13)C-labeled UDP-GlcNAc from (13)C6-glucose via the hexosamine biosynthetic pathway. This metabolic labeling was combined with quantitative mass spectrometry-based proteomics to determine protein O-GlcNAcylation turnover rates. First, an efficient enrichment method for O-GlcNAc peptides was developed with the use of phenylboronic acid solid-phase extraction and anhydrous DMSO. The near stoichiometry reaction between the diol of GlcNAc and boronic acid dramatically improved the enrichment efficiency. Additionally, our kinetic model for turnover rates integrates both metabolomic and proteomic data, which increase the accuracy of the turnover rate estimation. Other advantages of this metabolic labeling method include in vivo application, direct labeling of the O-GlcNAc sites and higher confidence for site identification. Concentrating only on nuclear localized GlcNAc modified proteins, we are able to identify 105 O-GlcNAc peptides on 42 proteins and determine turnover rates of 20 O-GlcNAc peptides from 14 proteins extracted from HeLa nuclei. In general, we found O-GlcNAcylation turnover rates are slower than those published for phosphorylation or acetylation. Nevertheless, the rates widely varied depending on both the protein and the residue modified. We believe this methodology can be broadly applied to reveal turnovers/dynamics of protein O-GlcNAcylation from different biological states and will provide more information on the significance of O-GlcNAcylation, enabling us to study the temporal dynamics of this critical modification for the first time. PMID:27114449

  12. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins.

    PubMed

    Lowenthal, Mark S; Markey, Sanford P; Dosemeci, Ayse

    2015-06-01

    Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD. PMID:25874902

  13. Stable isotope labeling - Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids.

    PubMed

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-28

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d5-Girard reagent P (d5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4-504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related

  14. Quantitative analysis of glycerol levels in human urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Ying; Ma, Yanhua; Yan, Kuan; Shen, Li; Wang, Xiaobing; Xu, Youxuan; He, Genye; Wu, Yun; Lu, Jianghai; Yang, Zhiyong; Feng, Feifei

    2014-04-15

    Glycerol has the latent capacity to act as a plasma volume expander and disguise blood doping practices. Therefore, it has been prohibited in sports as a masking agent by the World Anti-Doping Agency (WADA) since January 2010 and a urinary threshold (1mg/mL) was recommended recently [1]. The purpose of this study was to establish and validate a novel quantitative method for the determination of urinary glycerol concentrations using a liquid chromatography-tandem mass spectrometry approach. This simple yet highly specific method made use of the derivatization of glycerol by benzoyl chloride in aqueous solution at 40°C followed by analysis via LC-ESI-MS/MS without sample pre-concentration or cleanup. The assay was linear over the concentration range of 1.0-1000μg/mL for glycerol in human urine. The lower limit of detection (LLOD) and lower limit of quantitation (LLOQ) were 0.3μg/mL and 1.0μg/mL, respectively. The intra- and inter-day precision of the method at three concentration levels (3, 500 and 900μg/mL) was less than 12.2%. The method also afforded satisfactory results in terms of accuracy, derivatization yield, extraction recovery, matrix effect and specificity. The method has been successfully applied to the detection of glycerol in "Quality Assurance Program" samples provided by the World Association of Anti-Doping Scientists (WAADS) and routine doping-control samples in our laboratory. PMID:24657408

  15. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-01-01

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L−1 (S/N = 3) in lake water samples and ~0.5 μg·L−1 in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10–1000 μg·L−1. Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L−1 gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples. PMID:27529262

  16. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    PubMed

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-01-01

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples. PMID:27529262

  17. Quantitative depth profiling by laser-ionization sputtered neutral mass spectrometry

    NASA Astrophysics Data System (ADS)

    Higashi, Yasuhiro

    1999-01-01

    Depth profiling by laser-ionization sputtered neutral mass spectrometry (SNMS) is reviewed. The matrix effects, including surface and interface effects, in laser-ionization SNMS and secondary ion mass spectrometry (SIMS) are compared with each other and discussed. Laser-ionization SNMS can provide depth profiles with much smaller matrix effects than conventional SIMS. Depth resolution can effectively be improved by using grazing incidence for the primary ion beam with little interfacial effect. The quantification method in laser-ionization SNMS is also mentioned.

  18. Quantitative Analysis of Human Salivary Gland-Derived Intact Proteome Using Top-Down Mass Spectrometry

    SciTech Connect

    Wu, Si; Brown, Joseph N.; Tolic, Nikola; Meng, Da; Liu, Xiaowen; Zhang, Haizhen; Zhao, Rui; Moore, Ronald J.; Pevzner, Pavel A.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2014-05-31

    There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intact N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.

  19. Quantitative analysis of urinary glycerol levels for doping control purposes using gas chromatography-mass spectrometry.

    PubMed

    Thevis, Mario; Guddat, Sven; Flenker, Ulrich; Schänzer, Wilhelm

    2008-01-01

    The administration of glycerol to endurance athletes results in an increased fluid retention and improved performance, particularly under hot and humid conditions. Consequently, glycerol is considered relevant for sports drug testing and methods for its detection in urine specimens are required. A major issue in this regard is the natural occurrence of trace amounts of glycerol in human urine, which necessitates a quantitative analysis and the determination of normal urinary glycerol levels under various sporting conditions. A quantitative method was established using a gas chromatography/isotope-dilution mass spectrometry-based approach that was validated with regard to lower limit of detection (0.3 microg mL(-1)), lower limit of quantification (0.9 microg mL(-1)), specificity, linearity (1.0-98.0 microg mL(-1)), intraday and interday precision (<20% at 2.4, 24.1 and 48.2 microg mL(-1)) as well as accuracy (92-110%). Sample aliquots of 20 microL were enriched with five-fold deuterated glycerol, dried and derivatised using N-methyl-trimethylsilyltrifluoroacetamide (MSTFA) before analysis. The established method was applied to a total of 1039 doping control samples covering various sport disciplines (349 endurance samples, 286 strength sport samples, 325 game sport samples and 79 other samples) in- and out-of-competition, which provided quantitative information about the glycerol content commonly observed in elite athletes' urine samples. About 85% of all specimens yielded glycerol concentrations < 20.0 microg mL(-1) and few reached values up to 132.6 microg mL(-1). One further sample, however, was found to contain 2690 microg mL(-1), which might indicate the misuse of glycerol, but no threshold for urinary glycerol concentrations has been established yet due to the lack of substantial data. Based on the results obtained from the studied reference population, a threshold for glycerol levels in urine set at 200 microg mL(-1) is suggested, which provides a tool to

  20. Direct quantitative determination of cyanamide by stable isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Hiradate, Syuntaro; Kamo, Tsunashi; Nakajima, Eri; Kato, Kenji; Fujii, Yoshiharu

    2005-12-01

    Cyanamide is a multifunctional agrochemical used, for example, as a pesticide, herbicide, and fertilizer. Recent research has revealed that cyanamide is a natural product biosynthesized in a leguminous plant, hairy vetch (Vicia villosa). In the present study, gas chromatography-mass spectrometry (GC-MS) equipped with a capillary column for amines was used for direct quantitative determination of cyanamide. Quantitative signals for ((14)N(2))cyanamide, ((15)N(2))cyanamide (internal standard for stable isotope dilution method), and m-(trifluoromethyl)benzonitrile (internal standard for correcting errors in GC-MS analysis) were recorded as peak areas on mass chromatograms at m/z 42 (A(42)), 44 (A(44)), and 171 (A(IS)), respectively. Total cyanamide content, ((14)N(2))cyanamide plus ((15)N(2))cyanamide, was determined as a function of (A(42)+A(44))/A(IS). Contents of ((14)N(2))cyanamide and ((15)N(2))cyanamide were then calculated by multiplying the total cyanamide content by A(42)/(A(42)+A(44)) and A(44)/(A(42)+A(44)), respectively. The limit of detection for the total cyanamide content by the GC-MS analysis was around 1ng. The molar ratio of ((14)N(2))cyanamide to ((15)N(2))cyanamide in the injected sample was equal to the observed A(42)/A(44) value in the range from 0.1 to 5. It was, therefore, possible to use the stable isotope dilution method to quantify the natural cyanamide content in samples; i.e., the natural cyanamide content was derived by subtracting the A(42)/A(44) ratio of the internal standard from the A(42)/A(44) ratio of sample spiked with internal standard, and then multiplying the resulting difference by the amount of added ((15)N(2))cyanamide (SID-GC-MS method). This method successfully gave a reasonable value for the natural cyanamide content in hairy vetch, concurring with the value obtained by a conventional method in which cyanamide was derivatized to a photometrically active compound 4-cyanimido-1,2-naphthoquinone and analyzed with reversed

  1. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    PubMed

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques. PMID:25997113

  2. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine

    PubMed Central

    Dick Jr, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    ABSTRACT The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90–110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques. PMID:25997113

  3. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts.

    PubMed

    You, Changjun; Wang, Yinsheng

    2016-02-16

    The genetic integrity of living organisms is constantly threatened by environmental and endogenous sources of DNA damaging agents that can induce a plethora of chemically modified DNA lesions. Unrepaired DNA lesions may elicit cytotoxic and mutagenic effects and contribute to the development of human diseases including cancer and neurodegeneration. Understanding the deleterious outcomes of DNA damage necessitates the investigation about the effects of DNA adducts on the efficiency and fidelity of DNA replication and transcription. Conventional methods for measuring lesion-induced replicative or transcriptional alterations often require time-consuming colony screening and DNA sequencing procedures. Recently, a series of mass spectrometry (MS)-based strategies have been developed in our laboratory as an efficient platform for qualitative and quantitative analyses of the changes in genetic information induced by DNA adducts during DNA replication and transcription. During the past few years, we have successfully used these MS-based methods for assessing the replicative or transcriptional blocking and miscoding properties of more than 30 distinct DNA adducts. When combined with genetic manipulation, these methods have also been successfully employed for revealing the roles of various DNA repair proteins or translesion synthesis DNA polymerases (Pols) in modulating the adverse effects of DNA lesions on transcription or replication in mammalian and bacterial cells. For instance, we found that Escherichia coli Pol IV and its mammalian ortholog (i.e., Pol κ) are required for error-free bypass of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) in cells. We also found that the N(2)-CEdG lesions strongly inhibit DNA transcription and they are repaired by transcription-coupled nucleotide excision repair in mammalian cells. In this Account, we focus on the development of MS-based approaches for determining the effects of DNA adducts on DNA replication and transcription

  4. Quantitative determination of perfluorooctanoic acid in serum and plasma by liquid chromatography tandem mass spectrometry.

    PubMed

    Flaherty, John M; Connolly, Paul D; Decker, Emily R; Kennedy, S Mark; Ellefson, Mark E; Reagen, William K; Szostek, Bogdan

    2005-05-25

    A selective and sensitive method for analysis of perfluorooctanoic acid (PFOA) in human serum and plasma, utilizing liquid chromatography tandem mass spectrometry (LC-MS/MS), has been developed and thoroughly validated to satisfy strict FDA guidelines for bioanalytical methods. A simple, automated sample preparation procedure, involving extraction of the target analyte with acetonitrile on protein precipitation media in a 96-well plate format was developed, allowing efficient handling of large numbers of samples. The proposed method uses the calibration standards prepared in a surrogate matrix (rabbit serum or plasma) and (13)C-labeled PFOA as the internal standard to account for matrix effects, instrument drift, and extraction efficiency. Human serum and plasma could not be used for matrix matching of calibration standards as endogenous levels of PFOA observed in the control human serum and plasma significantly exceeded the targeted lower limit of quantitation (LLOQ) of the method. Precision and accuracy of the method were demonstrated by analysis of rabbit serum and plasma control samples fortified at 0.5, 5, and 40 ng/mL PFOA and human serum and plasma fortified at 1.0, 5.0, 40 ng/mL PFOA. The LLOQ of 0.5 ng/mL PFOA was experimentally demonstrated for rabbit and human serum and plasma. Within-day precision and accuracy, short-term stability, freeze-thaw stability, equivalence of response between PFOA and APFO (the ammonium salt of PFOA), and dilution of concentrated samples were also investigated. The results of the validation experiments comply with the precision and accuracy limits defined by the FDA guidance document: "Guidance for Industry, Bioanalytical Method Validation", May 2001. PMID:15833298

  5. Quantitation of Insulin Analogues in Serum Using Immunoaffinity Extraction, Liquid Chromatography, and Tandem Mass Spectrometry.

    PubMed

    Van Der Gugten, J Grace; Wong, Sophia; Holmes, Daniel T

    2016-01-01

    Insulin analysis is used in combination with glucose, C-peptide, beta-hydroxybutyrate, and proinsulin determination for the investigation of adult hypoglycemia. The most common cause is the administration of too much insulin or insulin secretagogue to a diabetic patient or inadequate caloric intake after administration of either. Occasionally there is a question as to whether hypoglycemia has been caused by an exogenous insulin-whether by accident, intent, or even malicious intent. While traditionally this was confirmed by a low or undetectable C-peptide in a hypoglycemic specimen, this finding is not entirely specific and would also be expected in the context of impaired counter-regulatory response, fatty acid oxidation defects, and liver failure-though beta-hydroxybutyrate levels can lend diagnostic clarity. For this reason, insulin is often requested. However, popular automated chemiluminescent immunoassays for insulin have distinctly heterogeneous performance in detecting analogue synthetic insulins with cross-reactivities ranging from near 0 % to greater than 100 %. The ability to detect synthetic insulins is vendor-specific and varies between insulin products. Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS) offers a means to circumvent these analytical issues and both quantify synthetic insulins and identify the specific type. We present an immunoaffinity extraction and LC-MS/MS method capable of independent identification and quantitation of native sequence insulins (endogenous, Insulin Regular, Insulin NPH), and analogues Glargine, Lispro, Detemir, and Aspart with an analytical sensitivity for endogenous insulin of between 1 and 2 μU/mL in patient serum samples. PMID:26602124

  6. Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone.

    PubMed

    Bellis, David J; Hetter, Katherine M; Jones, Joseph; Amarasiriwardena, Dula; Parsons, Patrick J

    2006-01-01

    Lead accumulates in bone over many years or decades. Accordingly, the study of lead in bone is important in determining the fate of ingested lead, the potential for remobilization, and for the application of bone lead measurements as a biomarker of lead exposure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure the spatial distribution of lead in bone on the micrometer scale. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards and/or reference materials for calibration and validation purposes. Here we describe the application of pressed pellets prepared from New York State Department of Health candidate Reference Materials for Lead in Bone (levels 1 through 4), to provide a linear calibration for (208)Pb/(43)Ca in the concentration range <1 to 30 μg g(-1). The limit of detection was estimated as 0.2 μg g(-1). The measured lead values for pelletized NIST SRM 1486 Bone Meal and SRM 1400 Bone Ash were in good agreement with certified reference values. Using this approach, we quantitatively measured the spatial distribution of lead in a cross-section of goat metacarpal from a lead-dosed animal. The lead content was spatially variable in the range of 2 to 30 μg g(-1) with a complex distribution. In some sections, lead appeared to be enriched in the center of the bone relative to peripheral areas, indicating preferential accumulation in trabecular (spongy) rather than cortical bone. In addition, there were discrete areas of lead enrichment, or hot spots, of 100 to 200 μm in width. PMID:22833692

  7. Quantitation of Cotinine in Nonsmoker Saliva Using Chip Based Nanoelectrospray Tandem Mass Spectrometry

    SciTech Connect

    Tomkins, Bruce A; Van Berkel, Gary J; Jenkins, Roger A; Counts, Richard Wayne

    2006-01-01

    A new analytical procedure was developed for the quantitation of nonsmoker salivary cotinine. Small volumes of saliva were diluted with water, fortified with cotinine-d{sub 3} (internal standard), then passed through small extraction columns. The analyte and internal standard were eluted with 0.1% (v/v) acetic acid/acetonitrile. Aliquots of each extract were analyzed directly, without chromatographic separation, using chip-based (NanoMate{sup TM}) nanospray tandem mass spectrometry. The calculated detection limit was 0.49 ng cotinine/mL saliva. This method was used to quantify salivary cotinine collected from nonsmoking human subjects living in one of three environmental tobacco smoke (ETS) exposure categories or 'cells': 1. smoking home/smoking workplace; 2. smoking home/nonsmoking workplace; and 3. nonsmoking home/smoking workplace. Samples were collected during five sequential days, including Saturday, as part of a larger study to evaluate potential variability in exposure to ETS. Salivary cotinine measurements were made for the purpose of excluding misclassified smokers and for comparison with known levels of exposure to airborne nicotine in each exposure category. The concentrations observed were consistent with those reported from other large studies reported elsewhere. A non-parametric statistical test was applied to the data within each cell. No statistically significant differences were found between the mean cotinine concentrations collected on a weekday as compared to those collected on a weekend day. When the non-parametric test was applied to the three cells, a statistically significant difference was observed between cell 1 compared to cells 2 and 3. The salivary cotinine concentrations were thus statistically invariant over a five-day exposure period, and they were greatest under the conditions of smoking home and smoking workplace.

  8. Quantitative Mass Spectrometry Reveals Plasticity of Metabolic Networks in Mycobacterium smegmatis *

    PubMed Central

    Chopra, Tarun; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; McKinney, John D.

    2014-01-01

    Mycobacterium tuberculosis has a remarkable ability to persist within the human host as a clinically inapparent or chronically active infection. Fatty acids are thought to be an important carbon source used by the bacteria during long term infection. Catabolism of fatty acids requires reprogramming of metabolic networks, and enzymes central to this reprogramming have been targeted for drug discovery. Mycobacterium smegmatis, a nonpathogenic relative of M. tuberculosis, is often used as a model system because of the similarity of basic cellular processes in these two species. Here, we take a quantitative proteomics-based approach to achieve a global view of how the M. smegmatis metabolic network adjusts to utilization of fatty acids as a carbon source. Two-dimensional liquid chromatography and mass spectrometry of isotopically labeled proteins identified a total of 3,067 proteins with high confidence. This number corresponds to 44% of the predicted M. smegmatis proteome and includes most of the predicted metabolic enzymes. Compared with glucose-grown cells, 162 proteins showed differential abundance in acetate- or propionate-grown cells. Among these, acetate-grown cells showed a higher abundance of proteins that could constitute a functional glycerate pathway. Gene inactivation experiments confirmed that both the glyoxylate shunt and the glycerate pathway are operational in M. smegmatis. In addition to proteins with annotated functions, we demonstrate carbon source-dependent differential abundance of proteins that have not been functionally characterized. These proteins might play as-yet-unidentified roles in mycobacterial carbon metabolism. This study reveals several novel features of carbon assimilation in M. smegmatis, which suggests significant functional plasticity of metabolic networks in this organism. PMID:24997995

  9. Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone

    PubMed Central

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph; Amarasiriwardena, Dula

    2012-01-01

    Summary Lead accumulates in bone over many years or decades. Accordingly, the study of lead in bone is important in determining the fate of ingested lead, the potential for remobilization, and for the application of bone lead measurements as a biomarker of lead exposure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure the spatial distribution of lead in bone on the micrometer scale. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards and/or reference materials for calibration and validation purposes. Here we describe the application of pressed pellets prepared from New York State Department of Health candidate Reference Materials for Lead in Bone (levels 1 through 4), to provide a linear calibration for 208Pb/43Ca in the concentration range <1 to 30 μg g−1. The limit of detection was estimated as 0.2 μg g−1. The measured lead values for pelletized NIST SRM 1486 Bone Meal and SRM 1400 Bone Ash were in good agreement with certified reference values. Using this approach, we quantitatively measured the spatial distribution of lead in a cross-section of goat metacarpal from a lead-dosed animal. The lead content was spatially variable in the range of 2 to 30 μg g−1 with a complex distribution. In some sections, lead appeared to be enriched in the center of the bone relative to peripheral areas, indicating preferential accumulation in trabecular (spongy) rather than cortical bone. In addition, there were discrete areas of lead enrichment, or hot spots, of 100 to 200 μm in width. PMID:22833692

  10. Quantitative determination of terbutaline and orciprenaline in human plasma by gas chromatography/negative ion chemical ionization/mass spectrometry.

    PubMed

    Leis, H J; Gleispach, H; Nitsche, V; Malle, E

    1990-06-01

    A method for the determination of unconjugated terbutaline and orciprenaline in human plasma is described. The assay is based on stable isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. An inexpensive and rapid method for preparation of stable isotope labelled analogues as well as their use in quantitative gas chromatography/mass spectrometry is shown. A highly efficient sample work-up procedure with product recoveries of more than 95% is presented. The method developed permits quantitative measurement of terbutaline and orciprenaline in human plasma down to 100 pg ml-1, using 1 ml of sample. Plasma levels of terbutaline after oral administration of 5 mg of terbutaline sulphate were estimated. PMID:2357489

  11. Potential of monitoring isotopologues by quantitative gas chromatography with time-of-flight mass spectrometry for metabolomic assay.

    PubMed

    Wang, Yi; Hu, Haiyan; Su, Yue; Zhang, Fang; Guo, Yinlong

    2016-03-01

    Because of the extreme complexity of metabolomic samples, the effectiveness of quantitative gas chromatography with time-of-flight mass spectrometry depends substantially on the expansion of the linear dynamic range. Facing the existence of numerous saturated detector signals, a data processing method based on monitoring isotopologues has been developed. The monoisotopic ion kept the high mass spectrometry sensitivity, and the less abundant isotopologue ions extended the linear dynamic range. This alternative method was proved to extend the linear dynamic range to five orders of magnitude successfully and overcome the quantitative problems induced by the ion detector saturation. Finally, to validate the applicability, the method was applied to a metabolomic assay of Alzheimer's disease. Comparing with the traditional monoisotopic method, the use of monitoring isotopologues helped us to discover an additional eight metabolites with significant difference and to conduct a more reliable principal component analysis as well. The results demonstrated that monitoring isotopologues in quantitative gas chromatography with time-of-flight mass spectrometry could improve the authenticity of metabolomic analysis. PMID:26763370

  12. Quantitation of aflatoxins from corn and other food related materials by direct analysis in real time - mass spectrometry (DART-MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambient ionization coupled to mass spectrometry continues to be applied to new analytical problems, facilitating the rapid and convenient analysis of a variety of analytes. Recently, demonstrations of ambient ionization mass spectrometry applied to quantitative analysis of mycotoxins have been shown...

  13. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  14. Development of Mass Spectrometry Selected Reaction Monitoring Method for Quantitation and Pharmacokinetic Study of Stepharine in Rabbit Plasma

    PubMed Central

    Kopylov, Arthur T.; Kuznetsova, Ksenia G.; Mikhailova, Olga M.; Moshkin, Andrey G.; Turkin, Vladimir V.; Alimov, Andrei A.

    2014-01-01

    Highly sensitive liquid chromatography mass spectrometry method on triple quadrupole (QQQ) mass spectrometer was successfully applied for pharmacokinetic study of stepharine in rabbit plasma. Specific ion transitions of stepharine protonated precursor ion were selected and recorded in the certain retention time employing dynamic selected reaction monitoring mode. The developed method facilitated quantitative measurements of stepharine in plasma samples in linear range of five orders of magnitude with high accuracy and low standard deviation coefficient and pharmacokinetics parameters were calculated. The apparent volume of stepharine distribution (estimated as ratio of clearance to elimination rate constant, data not shown) allows us to assume that stepharine was extensively distributed throughout the body. PMID:24696679

  15. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  16. Quantitative mass spectrometry-based assay development and validation: from small molecules to proteins.

    PubMed

    Božović, Andrea; Kulasingam, Vathany

    2013-04-01

    Mass spectrometry (MS) has emerged as a powerful analytical tool for the identification, characterization and quantification of various biomolecules (small molecules, drug metabolites and proteins) in biological specimens. The use of mass spectrometers in the clinical diagnostic laboratories have gained popularity due to its ease of development of new assays, ability to measure multiple analytes in a single analytical run, low volume requirements and low reagent costs. Novel technological advancements in ionization sources, instrumentation and software have increased the popularity of these platforms. Consequently, a number of home-brew assays, utilizing the power of MS, are being developed and validated for clinical diagnostic use. In this review, we will discuss the two phases that precede method implementation: method development and validation for both small molecule analysis and protein quantification using liquid chromatography tandem mass spectrometry (LC-MS/MS). Some of the challenges facing protein quantification will be highlighted and an outlook for the future of laboratory medicine and MS will be provided. PMID:23041077

  17. Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics

    PubMed Central

    Timm, Wiebke; Scherbart, Alexandra; Böcker, Sebastian; Kohlbacher, Oliver; Nattkemper, Tim W

    2008-01-01

    Background Mass spectrometry is a key technique in proteomics and can be used to analyze complex samples quickly. One key problem with the mass spectrometric analysis of peptides and proteins, however, is the fact that absolute quantification is severely hampered by the unclear relationship between the observed peak intensity and the peptide concentration in the sample. While there are numerous approaches to circumvent this problem experimentally (e.g. labeling techniques), reliable prediction of the peak intensities from peptide sequences could provide a peptide-specific correction factor. Thus, it would be a valuable tool towards label-free absolute quantification. Results In this work we present machine learning techniques for peak intensity prediction for MALDI mass spectra. Features encoding the peptides' physico-chemical properties as well as string-based features were extracted. A feature subset was obtained from multiple forward feature selections on the extracted features. Based on these features, two advanced machine learning methods (support vector regression and local linear maps) are shown to yield good results for this problem (Pearson correlation of 0.68 in a ten-fold cross validation). Conclusion The techniques presented here are a useful first step going beyond the binary prediction of proteotypic peptides towards a more quantitative prediction of peak intensities. These predictions in turn will turn out to be beneficial for mass spectrometry-based quantitative proteomics. PMID:18937839

  18. Chemical modification of deoxyribonucleic acids: Quantitation of 3-methylthymidine and O4-methylthymidine by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wood, Joe M.; Hoke, Steven H., II; Graham Cooks, R.; Chae, Whi-Gun; Chang, Ching-Jer

    1991-12-01

    Quantitation of 3-methylthymidine and O4-methylthymidine generated in the reaction of calf thymus DNA with methyl methanesulfonate (MeMS) and 1-methyl-1nitrosourea (MeNU) by mass spectrometry is reported. Quantitative precision of 7% or better is achieved on samples of 10-12 -10-13 mole in the HPLC and a final stage of separation before quantification by tandem mass spectrometry using desorption chemical ionization. Synthetic CD3-labeled nucleosides were used as internal standards for mass spectral quantification. A unique mass spectrometric scanning procedure, which allowed simultaneous MS--MS product ion analysis of both the analyte and the internal standard, was utilized to enchance precision and accuracy in these low level determinations. MeNU (a potent carcinogen) resulted in 18&%; 3-methylation and 0.17% O4-methylation of deoxythymidine whereas MeMS (a weak carcinogen) produced only 6.8% 3-methylation and 0.005% of deoxythymidine. These results demonstrate that the sensitivity and accuracy of this method should be adequate for the detection and quantification of methyl-nucleosides at the sub-picomole level at which mutation is induced in cell cultures.

  19. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  20. Quantitative analysis of biomolecules by time-of-flight secondary-ion mass spectrometry: Fundamental considerations

    SciTech Connect

    Muddiman, D.C.; Nicola, A.J.; Proctor, A.

    1995-12-31

    Static Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS) has been applied to investigate an extensive assortment of analytical systems; from semiconductors to DNA sequencing. Recently, the TOF-SIMS method has been successfully applied to real biological systems. This report focuses on some important aspects that must be taken into consideration when conducting measurements on biomaterials in order to observe the potential the TOF-SIMS method affords. The current data are presented using Cyclosporin A (CsA, 1202 Da) and cocaine (303 Da) as model compounds. CsA is observed in the TOF-SIMS mass spectrum predominately as a Ag-cationized species and cocaine as a protonated species; thus, they are complementary probe molecules.

  1. Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry

    PubMed Central

    Nemes, Peter; Rubakhin, Stanislav S.; Aerts, Jordan T.; Sweedler, Jonathan V.

    2013-01-01

    Single-cell mass spectrometry (MS) empowers metabolomic investigations by decreasing analytical dimensions to the size of individual cells and subcellular structures. We describe a protocol for investigating and quantifying metabolites in individual isolated neurons using single-cell capillary electrophoresis hyphenated to electrospray ionization time-of-flight MS. The protocol requires ~2 h for sample preparation, neuron isolation, and metabolite extraction, and 1 h for metabolic measurement. The approach was used to detect more than 300 distinct compounds in the mass range of typical metabolites in various individual neurons (25–500-µm in diameter) isolated from the sea slug (Aplysia californica) central and rat (Rattus norvegicus) peripheral nervous systems. A subset of identified compounds was sufficient to reveal metabolic differences among freshly isolated neurons of different types and changes in the metabolite profiles of cultured neurons. The protocol can be applied to the characterization of the metabolome in a variety of smaller cells and/or subcellular domains. PMID:23538882

  2. Quantitative analysis of phenibut in rat brain tissue extracts by liquid chromatography-tandem mass spectrometry.

    PubMed

    Grinberga, Solveiga; Zvejniece, Liga; Liepinsh, Edgars; Dambrova, Maija; Pugovics, Osvalds

    2008-12-01

    Phenibut (3-phenyl-4-aminobutyric acid) is a gamma-aminobutyric acid mimetic drug, which is used clinically as a mood elevator and tranquilizer. In the present work, a rapid, selective and sensitive liquid chromatography-tandem mass spectrometry method for quantification of phenibut in biological matrices has been developed. The method is based on protein precipitation with acidic acetonitrile followed by isocratic chromatographic separation using acetonitrile-formic acid (0.1% in water; 8:92, v/v) mobile phase on a reversed-phase column. Detection of the analyte was performed by electrospray ionization mass spectrometry in multiple reaction monitoring mode with the precursor-to-product ion transition m/z 180.3 --> m/z 117.2. The calibration curve was linear over the concentration range 50-2000 ng/mL. The lower limit of quantification for phenibut in rat brain extracts was 50 ng/mL. Acceptable precision and accuracy were obtained over the whole concentration range. The validated method was successfully applied in a pharmacological study to analyze phenibut concentration in rat brain tissue extract samples. PMID:19034959

  3. The quantitative surface analysis of an antioxidant additive in a lubricant oil matrix by desorption electrospray ionization mass spectrometry

    PubMed Central

    Da Costa, Caitlyn; Reynolds, James C; Whitmarsh, Samuel; Lynch, Tom; Creaser, Colin S

    2013-01-01

    RATIONALE Chemical additives are incorporated into commercial lubricant oils to modify the physical and chemical properties of the lubricant. The quantitative analysis of additives in oil-based lubricants deposited on a surface without extraction of the sample from the surface presents a challenge. The potential of desorption electrospray ionization mass spectrometry (DESI-MS) for the quantitative surface analysis of an oil additive in a complex oil lubricant matrix without sample extraction has been evaluated. METHODS The quantitative surface analysis of the antioxidant additive octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix was carried out by DESI-MS in the presence of 2-(pentyloxy)ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate as an internal standard. A quadrupole/time-of-flight mass spectrometer fitted with an in-house modified ion source enabling non-proximal DESI-MS was used for the analyses. RESULTS An eight-point calibration curve ranging from 1 to 80 µg/spot of octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix and in the presence of the internal standard was used to determine the quantitative response of the DESI-MS method. The sensitivity and repeatability of the technique were assessed by conducting replicate analyses at each concentration. The limit of detection was determined to be 11 ng/mm2 additive on spot with relative standard deviations in the range 3–14%. CONCLUSIONS The application of DESI-MS to the direct, quantitative surface analysis of a commercial lubricant additive in a native oil lubricant matrix is demonstrated. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24097398

  4. Quantitative confirmation of dimetridazole and ipronidazole in swine feed by capillary gas chromatography/mass spectrometry with multiple ion detection.

    PubMed

    Morris, W J; Nandrea, G J; Roybal, J E; Munns, R K; Shimoda, W; Skinner, H R

    1987-01-01

    Extracts from 4 types of swine feed containing 0.11 ppm each of dimetridazole (DMZ) and ipronidazole (IPR) were analyzed by capillary gas chromatography/mass spectrometry (GC/MS) using multiple ion detection (MID) techniques. We demonstrate in this paper that the quantitative results obtained by capillary GC/MS with MID are comparable for both compounds to results obtained by liquid chromatography and have a lower coefficient of variation for DMZ. Moreover, consistency in the ion ratios (5 ions in DMZ and 6 ions in IPR) permits identification of these compounds by electron ionization MS. PMID:3624166

  5. Neuroprotective potential of Linezolid: a quantitative and distribution study via mass spectrometry.

    PubMed

    Baijnath, Sooraj; Shobo, Adeola; Bester, Linda A; Singh, Sanil D; Kruger, Gert; Arvidsson, Per I; Naicker, Tricia; Govender, Thavendran

    2016-08-01

    A study was undertaken to determine the neuroprotective potential of Linezolid (LIN) in an animal model. Female Sprague-Dawley rats were either given a single (100 mg/kg) dose or treated daily for 4 weeks. A validated LC-MS/MS method was used to measure LIN levels in plasma and brain, this was paired with mass spectrometry imaging to determine the tissue spatial distribution of the drug. The results showed that after a single dose there was poor penetration of the drug into the brain. With multiple doses there were high tissue levels, with the drug reaching steady state in subsequent weeks. LIN displayed a promising distribution pattern with localisation in the brainstem. Systemic circulation is fed into the brain by the carotid and vertebral arteries which enter through the brain stem, therefore high drug concentrations is this area may protect against infectious agents entering via this route. PMID:27324049

  6. Rapid whole protein quantitation of staphylococcal enterotoxins A and B by liquid chromatography/mass spectrometry.

    PubMed

    Sospedra, Isabel; Soler, Carla; Mañes, Jordi; Soriano, José Miguel

    2012-05-18

    Staphylococcus aureus is an important pathogen and has been indicated as the fifth causative agent of food-borne human illness throughout the world. Staphylococcal enterotoxins (SEs) are toxic compounds excreted mainly by strains of S. aureus. Among these toxins, enterotoxins A (SEA) and B (SEB) are both of the most prevalent compounds in staphylococcal food poisoning. In this work, reverse phase liquid chromatography coupled to ESI mass spectrometry (LC-ESI/MS) has been applied for its rapid identification and quantification. Limit of detection (LOD) values were 0.5 and 0.2 ng for SEA and SEB, respectively and limit of quantification (LOQ) value was 1 ng for both enterotoxins. SEA and SEB have been analyzed as intact proteins in milk and fruit juices. Analytical methods are essential for routine monitoring purposes and safeguard public health and the proposed technique can detect and quantify successfully SEA and SEB in food samples. PMID:22498351

  7. Fast quantitative detection of cocaine in beverages using nanoextractive electrospray ionization tandem mass spectrometry.

    PubMed

    Hu, Bin; Peng, Xuejiao; Yang, Shuiping; Gu, Haiwei; Chen, Huanwen; Huan, Yanfu; Zhang, Tingting; Qiao, Xiaolin

    2010-02-01

    Without any sample pretreatment, effervescent beverage fluids were manually sprayed into the primary ion plume created by using a nanoelectrospray ionization source for direct ionization, and the analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. Functional ingredients (e.g., vitamins, taurine, and caffeine, etc.) and spiked impurity (e.g., cocaine) in various beverages, such as Red Bull energy drink, Coco-cola, and Pepsi samples were rapidly identified within 1.5 s. The limit of detection was found to be 7-15 fg (S/N = 3) for cocaine in different samples using the characteristic fragment (m/z 150) observed in the MS(3) experiments. Typical relative standard deviation and recovery of this method were 6.9%-8.6% and 104%-108% for direct analysis of three actual samples, showing that nanoextractive electrospray ionization tandem mass spectrometry is a useful technique for fast screening cocaine presence in beverages. PMID:19939702

  8. Hybrid Quadrupole-Orbitrap mass spectrometry for quantitative measurement of quorum sensing inhibition.

    PubMed

    Todd, Daniel A; Zich, David B; Ettefagh, Keivan A; Kavanaugh, Jeffrey S; Horswill, Alexander R; Cech, Nadja B

    2016-08-01

    Drug resistant bacterial infections cause significant morbidity and mortality worldwide, and new strategies are needed for the treatment of these infections. The anti-virulence approach, which targets non-essential virulence factors in bacteria, has been proposed as one way to combat the problem of antibiotic resistance. Virulence in methicillin-resistant Staphylococcus aureus (MRSA) and many other Gram-positive bacterial pathogens is controlled by the quorum sensing system. Thus, there is excellent therapeutic potential for compounds that target this system. With this project, we have developed and validated a novel approach for measuring quorum sensing inhibition in vitro. Ultraperformance liquid chromatography coupled to mass spectrometry (UPLC-MS) was employed to directly measure one of the important outputs of the quorum sensing system in MRSA, auto-inducing peptide I (AIP I) in bacterial cultures. The method for AIP detection was validated and demonstrated limits of detection and quantification of range of 0.0035μM and 0.10μM, respectively. It was shown that the known quorum sensing inhibitor ambuic acid inhibited AIP I production by a clinically relevant strain of MRSA, with an IC50 value of 2.6±0.2μM. The new method performed similarly to previously published methods using GFP reporter assays, but has the advantage of being applicable without the need for engineering of a reporter strain. Additionally, the mass spectrometry-based method could be applicable in situations where interference by the inhibitor prevents the application of fluorescence-based methods. PMID:27237773

  9. A quantitative assay for reductive metabolism of a pesticide in fish using electrochemistry coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2015-04-01

    This is the first study to use electrochemistry to generate a nitro reduction metabolite as a standard for a liquid chromatography-mass spectrometry-based quantitative assay. This approach is further used to quantify 3-trifluoromethyl-4-nitrophenol (TFM) reductive metabolism. TFM is a widely used pesticide for the population control of sea lamprey (Petromyzon marinus), an invasive species of the Laurentian Great Lakes. Three animal models, sea lamprey, lake sturgeon (Acipenser fulvescens), and rainbow trout (Oncorhynchus mykiss), were selected to evaluate TFM reductive metabolism because they have been known to show differential susceptibilities to TFM toxicity. Amino-TFM (aTFM; 3-trifluoromethyl-4-aminophenol) was the only reductive metabolite identified through liquid chromatography-high-resolution mass spectrometry screening of liver extracts incubated with TFM and was targeted for electrochemical synthesis. After synthesis and purification, aTFM was used to develop a quantitative assay of the reductive metabolism of TFM through liquid chromatography and tandem mass spectrometry. The concentrations of aTFM were measured from TFM-treated cellular fractions, including cytosolic, nuclear, membrane, and mitochondrial protein extracts. Sea lamprey extracts produced the highest concentrations (500 ng/mL) of aTFM. In addition, sea lamprey and sturgeon cytosolic extracts showed concentrations of aTFM substantially higher than those of rainbow trout. However, other fractions of lake sturgeon extracts tend to show aTFM concentrations similar to those of rainbow trout but not with sea lamprey. These data suggest that the level of reductive metabolism of TFM may be associated with the sensitivities of the animals to this particular pesticide. PMID:25730707

  10. Liquid chromatography quadrupole linear ion trap mass spectrometry for quantitative steroid hormone analysis in plasma, urine, saliva and hair.

    PubMed

    Gaudl, Alexander; Kratzsch, Juergen; Bae, Yoon Ju; Kiess, Wieland; Thiery, Joachim; Ceglarek, Uta

    2016-09-16

    Steroid analysis is being conquered by liquid chromatography tandem mass spectrometry (LC-MS/MS) benefiting from higher standardization, selectivity and diversity. Regarding high throughput in routine diagnostics rapid chromatography is mandatory. Introducing MS(3) (MS/MS/MS), specificity of mass spectrometric detection can be enhanced without sacrificing analysis time. 100mL of human plasma/serum, saliva, urine and 10-20mg of hair are used for the simultaneous quantification of 17α-hydroxyprogesterone, aldosterone, androstenedione, cortisol, cortisone, dehydroepiandrosterone sulfate (DHEAS), estradiol, progesterone, and testosterone using online solid phase extraction (SPE) LC-MS/MS or LC-MS(3). Steroids can be analyzed in 4min after a single manual dilution and protein precipitation step. In complex sample matrices like hair MS(3) detection was found to be appropriate for quantitation. Lower limits of quantitation ranged from 37pmol/L (estradiol) up to 3.1nmol/L (DHEAS). General accuracy was 89-107% with between-run imprecision ≤10%. Comparison to immunoassays revealed significant differences in quantitation for urinary cortisol (-71% mean), aldosterone (-40% mean) and plasma aldosterone (-45% mean). The comparison of MS(2) and MS(3) quantitation of hair cortisol also revealed significant differences. In general, quantitation via MS(3) was not applicable for a long time. But with the current generation of mass spectrometers quantitation via MS(3) can be superior to MS(2) regarding specificity and accuracy when dealing with matrix issues. However, drawbacks regarding flexibility and precision have to be taken into account. Concludingly, simple protein precipitation combined with rapid online SPE LC-MS/MS/MS allows us to quantify over broad, essential concentration ranges in human serum, saliva, urine and hair. PMID:27554022

  11. Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Lu, Shijun; Tran, Buu N; Nelsen, Jamie L; Aldous, Kenneth M

    2009-08-15

    Mitragynine is the primary active alkaloid extracted from the leaves of Mitragyna speciosa Korth, a plant that originates in South-East Asia and is commonly known as kratom in Thailand. Kratom has been used for many centuries for their medicinal and psychoactive qualities, which are comparable to that of opiate-based drugs. Kratom abuse can lead to a detectable content of mitragynine residue in urine. Ultra trace amount of mitragynine in human urine was determined by a high performance liquid chromatography coupled to an electrospray tandem mass spectrometry (HPLC-ESI/MS/MS). Mitragynine was extracted by methyl t-butyl ether (MTBE) and separated on a HILIC column. The ESI/MS/MS was accomplished using a triple quadrupole mass spectrometer in positive ion detection and multiple reactions monitoring (MRM) mode. Ajmalicine, a mitragynine's structure analog was selected as internal standard (IS) for method development. Quality control (QC) performed at three levels 0.1, 1 and 5 ng/ml of mitragynine in urine gave mean recoveries of 90, 109, and 98% with average relative standard deviation of 22, 12 and 16%, respectively. The regression linearity of mitragynine calibration ranged from 0.01 to 5.0 ng/ml was achieved with correlation coefficient greater than 0.995. A detection limit of 0.02 ng/ml and high precision data within-day and between days analysis were obtained. PMID:19577523

  12. Quantitative determination of nitrendipine in human plasma using high-performance liquid chromatography-mass spectrometry.

    PubMed

    Liu, Ying; Xul, Feng-Guo; Zhang, Zun-Jian; Song, Rui; Tian, Yuan; Chen, Yun

    2008-01-01

    A sensitive and highly selective liquid chromatography-mass spectrometry (LCMS) method was developed to determine nitrendipine (4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3, 5-pyridinedicarboxylic acid ethyl methyl ester, CAS 39562-70-4) in human plasma. The analyte and the internal standard nimodipine (CAS 66085-59-4) were extracted from plasma samples by n-hexane-isopropanol (95:5, v/v), and analyzed on a commercially available column Interfaced with a mass spectrometer. Positive atmospheric pressure chemical ionization (APCI) was empolyed as the ionization source. The samples were detected by the use of selected ion monitoring (SIM) mode. The mobile phase consisted of methanol-water (75:25, v/v). The method has a limit of detection (LOD) of 0.1 ng/ml. The linear calibration curves were obtained in the concentra tions range of 0.3-40 ng/ml (r2 > or = .99). The intra- and inter-day batch precisions were lower than 10% in terms of relative standard deviation (R. S. D.), and the accuracy ranged from 85 to 110% in terms of percent accuracy. The overall extraction recoveries were determined to be about 75% on average. This validated method was successfully applied to the evaluation of the pharmacokinetic profiles of nitrendipine tablets administered to 8 Chinese healthy volunteers. PMID:18488806

  13. Quantitative determination of ondansetron in human plasma by enantioselective liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, Ke; Dai, Xiaojian; Zhong, Dafang; Chen, Xiaoyan

    2008-03-15

    A sensitive and enantioselective method was developed and validated for the determination of ondansetron enantiomers in human plasma using enantioselective liquid chromatography-tandem mass spectrometry. The enantiomers of ondansetron were extracted from plasma using ethyl acetate under alkaline conditions. HPLC separation was performed on an ovomucoid column using an isocratic mobile phase of methanol-5 mM ammonium acetate-acetic acid (20:80:0.02, v/v/v) at a flow rate of 0.40 mL/min. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, using the transitions of m/z 294-->170 for ondansetron enantiomers, and m/z 285-->124 for tropisetron (internal standard). The method was linear in the concentration range of 0.10-40 ng/mL for each enantiomer using 200 microL of plasma. The lower limit of quantification (LLOQ) for each enantiomer was 0.10 ng/mL. The intra- and inter-assay precision was 3.7-11.6% and 5.6-12.3% for R-(-)-ondansetron and S-(+)-ondansetron, respectively. The accuracy was 100.4-107.1% for R-(-)-ondansetron and 103.3-104.9% for S-(+)-ondansetron. No chiral inversion was observed during the plasma storage, preparation and analysis. The method was successfully applied to characterize the pharmacokinetic profiles of ondansetron enantiomers in healthy volunteers after an intravenous infusion of 8 mg racemic ondansetron. PMID:18299256

  14. Quantitative Cross-linking/Mass Spectrometry Using Isotope-labeled Cross-linkers and MaxQuant.

    PubMed

    Chen, Zhuo A; Fischer, Lutz; Cox, Jürgen; Rappsilber, Juri

    2016-08-01

    The conceptually simple step from cross-linking/mass spectrometry (CLMS) to quantitative cross-linking/mass spectrometry (QCLMS) is compounded by technical challenges. Currently, quantitative proteomics software is tightly integrated with the protein identification workflow. This prevents automatically quantifying other m/z features in a targeted manner including those associated with cross-linked peptides. Here we present a new release of MaxQuant that permits starting the quantification process from an m/z feature list. Comparing the automated quantification to a carefully manually curated test set of cross-linked peptides obtained by cross-linking C3 and C3b with BS(3) and isotope-labeled BS(3)-d4 revealed a number of observations: (1) Fully automated process using MaxQuant can quantify cross-links in our reference data set with 68% recall rate and 88% accuracy. (2) Hidden quantification errors can be converted into exposed failures by label-swap replica, which makes label-swap replica an essential part of QCLMS. (3) Cross-links that failed during automated quantification can be recovered by semi-automated re-quantification. The integrated workflow of MaxQuant and semi-automated assessment provides the maximum of quantified cross-links. In contrast, work on larger data sets or by less experienced users will benefit from full automation in MaxQuant. PMID:27302889

  15. Direct and rapid quantitation of ephedrines in human urine by paper spray ionization/high resolution mass spectrometry.

    PubMed

    Jeong, Eun Sook; Kim, Ki Hun; Cha, Eunju; Kwon, Oh-Seung; Cha, Sangwon; Lee, Jaeick

    2016-08-15

    A rapid and direct paper spray ionization/mass spectrometry (PSI/MS) method was developed for quantitative analysis of ephedrine, pseudoephedrine, norpseudoephedrine, and methylephedrine in human urine. This method involves the use of a triangular filter paper and high-resolution mass spectrometry, where the molecular ions of ephedrines were generated by applying high voltage after loading the spray solvent to the paper which urine sample was pre-loaded. Small amounts (2μL) of urine spiked with an internal standard were directly analyzed for ephedrines. The PSI/MS method was validated for linearity, within- and between-run precision, accuracy, and limit of detection. The results showed good linearity (R(2)≥0.9928) and acceptable precision and accuracy. Furthermore, the accuracy of the method was assessed by analyzing a blind urine sample from World Anti-Doping Agency and comparing the measured concentrations with the nominal concentrations. This test resulted in accuracies ranging from 96.4 to 106.1%, indicating that the PSI/MS method has the potential to be an alternative technique for the fast quantitation of ephedrines in doping control analysis. PMID:27393909

  16. Quantitative Cross-linking/Mass Spectrometry Using Isotope-labeled Cross-linkers and MaxQuant*

    PubMed Central

    Cox, Jürgen

    2016-01-01

    The conceptually simple step from cross-linking/mass spectrometry (CLMS) to quantitative cross-linking/mass spectrometry (QCLMS) is compounded by technical challenges. Currently, quantitative proteomics software is tightly integrated with the protein identification workflow. This prevents automatically quantifying other m/z features in a targeted manner including those associated with cross-linked peptides. Here we present a new release of MaxQuant that permits starting the quantification process from an m/z feature list. Comparing the automated quantification to a carefully manually curated test set of cross-linked peptides obtained by cross-linking C3 and C3b with BS3 and isotope-labeled BS3-d4 revealed a number of observations: (1) Fully automated process using MaxQuant can quantify cross-links in our reference data set with 68% recall rate and 88% accuracy. (2) Hidden quantification errors can be converted into exposed failures by label-swap replica, which makes label-swap replica an essential part of QCLMS. (3) Cross-links that failed during automated quantification can be recovered by semi-automated re-quantification. The integrated workflow of MaxQuant and semi-automated assessment provides the maximum of quantified cross-links. In contrast, work on larger data sets or by less experienced users will benefit from full automation in MaxQuant. PMID:27302889

  17. High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices.

    PubMed

    Hopfgartner, Gérard; Tonoli, David; Varesio, Emmanuel

    2012-03-01

    Quantitative and qualitative high-resolution (HR) dependent and independent acquisition schemes on a QqTOF MS (with resolving power 20,000-40,000) were investigated for the analysis of pharmaceutical compounds in biological fluids. High-resolution selected reaction monitoring (HR-SRM) was found to be linear over three orders of magnitude for quantitative analysis of paracetamol in human plasma, offering a real alternative to triple quadrupole LC-SRM/MS. Metabolic stability of talinolol in microsomes was characterized by use of three different acquisition schemes: (i) information-dependent acquisition (IDA) with a TOF MS experiment as survey scan and product-ion scan as dependent scan; (ii) MS(ALL) by collecting TOF mass spectra with and without fragmentation by alternating the collision energy of the collision cell between a low (i.e., 10 eV) and high setting (i.e., 40 eV); and (iii) a novel independent acquisition mode referred to as "sequential window acquisition of all theoretical fragment-ion spectra" (SWATH) or "global precursor ions scan mode" (GPS) in which sequential precursor ions windows (typically 20 u) are used to collect the same spectrum precursor and fragment ions using a collision energy range. SWATH or GPS was found to be superior to IDA or MS(ALL) in combination with UHPLC for qualitative analysis but requires a rapidly acquiring mass spectrometer. Finally, the GPS concept was used for QUAL/QUAN analysis (i.e. integration of qualitative and quantitative analysis) of bosentan and its metabolites in urine over a concentration range from 5 to 2,500 ng mL(-1). PMID:22203371

  18. Quantitative analysis of positional isomers of triacylglycerols via electrospray ionization tandem mass spectrometry of sodiated adducts.

    PubMed

    Herrera, Lisandra Cubero; Potvin, Michael A; Melanson, Jeremy E

    2010-09-01

    Herein we report a reversed-phase high-performance liquid chromatography tandem mass spectrometry (RP-HPLC/MS/MS) method for the analysis of positional isomers of triacylglycerols (TAGs) in vegetable oils. The fragmentation behavior of [M + X](+) ions (X = NH(4), Li, Na or Ag) was studied on a quadrupole-time-of-flight (Q-TOF) mass spectrometer under low-energy collision-induced dissociation (CID) conditions. Mass spectra that were dependent on the X(+) ion and the nature and position of the acyl substituents were observed for four pairs of 'AAB/ABA'-type TAGs, namely PPO/POP, OOP/OPO, LLO/LOL and OOL/OLO (where P is 16:0, palmitic acid; O is 18:1, oleic acid; and L is 18:2, linoleic acid). For the majority of [M + X](+) adducts, the loss of the fatty acid in the outer positions (sn-1 or sn-3) was favored over the loss in the central position (sn-2), which enabled the determination of the fractional abundance of the isomers. Ratios of the intensity of fragment ions at various AAB/ABA compositions produced linear calibration curves with positive slopes, comparable to those obtained traditionally by ESI-MS/MS of [M + NH(4)](+) adducts. The only exceptions were the [M + Ag](+) adducts of the PPO/POP system, which produced calibration curves with negative slopes. Sodium adducts provided the most consistent level of isomeric discrimination for the TAGs studied and also offered the most convenience in that they required no additive to the mobile phase. Therefore, calibration curve data derived from [M + Na](+) adducts were applied to the quantification of TAG regioisomers in sunflower and olive oils. The regiospecific analysis showed that palmitic acid was typically located at positions sn-1 or sn-3, whereas unsaturated fatty acids, oleic and linoleic acids were mostly found at the sn-2 position. PMID:20814981

  19. Multiplexed Isobaric Tagging Protocols for Quantitative Mass Spectrometry Approaches to Auditory Research.

    PubMed

    Vetter, Douglas E; Basappa, Johnvesly

    2016-01-01

    Modern biologists have at their disposal a large array of techniques used to assess the existence and relative or absolute quantity of any molecule of interest in a sample. However, implementing most of these procedures can be a daunting task for the first time, even in a lab with experienced researchers. Just choosing a protocol to follow can take weeks while all of the nuances are examined and it is determined whether a protocol will (a) give the desired results, (b) result in interpretable and unbiased data, and (c) be amenable to the sample of interest. We detail here a robust procedure for labeling proteins in a complex lysate for the ultimate differential quantification of protein abundance following experimental manipulations. Following a successful outcome of the labeling procedure, the sample is submitted for mass spectrometric analysis, resulting in peptide quantification and protein identification. While we will concentrate on cells in culture, we will point out procedures that can be used for labeling lysates generated from tissues, along with any minor modifications required for such samples. We will also outline, but not fully document, other strategies used in our lab to label proteins prior to mass spectrometric analysis, and describe under which conditions each procedure may be desirable. What is not covered in this chapter is anything but the most brief introduction to mass spectrometry (instrumentation, theory, etc.), nor do we attempt to cover much in the way of software used for post hoc analysis. These two topics are dependent upon one's resources, and where applicable, one's collaborators. We strongly encourage the reader to seek out expert advice on topics not covered here. PMID:27259924

  20. Fast extraction and dilution flow injection mass spectrometry method for quantitative chemical residue screening in food.

    PubMed

    Nanita, Sergio C; Stry, James J; Pentz, Anne M; McClory, Joseph P; May, John H

    2011-07-27

    A prototype multiresidue method based on fast extraction and dilution of samples followed by flow injection mass spectrometric analysis is proposed here for high-throughput chemical screening in complex matrices. The method was tested for sulfonylurea herbicides (triflusulfuron methyl, azimsulfuron, chlorimuron ethyl, sulfometuron methyl, chlorsulfuron, and flupyrsulfuron methyl), carbamate insecticides (oxamyl and methomyl), pyrimidine carboxylic acid herbicides (aminocyclopyrachlor and aminocyclopyrachlor methyl), and anthranilic diamide insecticides (chlorantraniliprole and cyantraniliprole). Lemon and pecan were used as representative high-water and low-water content matrices, respectively, and a sample extraction procedure was designed for each commodity type. Matrix-matched external standards were used for calibration, yielding linear responses with correlation coefficients (r) consistently >0.99. The limits of detection (LOD) were estimated to be between 0.01 and 0.03 mg/kg for all analytes, allowing execution of recovery tests with samples fortified at ≥0.05 mg/kg. Average analyte recoveries obtained during method validation for lemon and pecan ranged from 75 to 118% with standard deviations between 3 and 21%. Representative food processed fractions were also tested, that is, soybean oil and corn meal, yielding individual analyte average recoveries ranging from 62 to 114% with standard deviations between 4 and 18%. An intralaboratory blind test was also performed; the method excelled with 0 false positives and 0 false negatives in 240 residue measurements (20 samples × 12 analytes). The daily throughput of the fast extraction and dilution (FED) procedure is estimated at 72 samples/chemist, whereas the flow injection mass spectrometry (FI-MS) throughput could be as high as 4.3 sample injections/min, making very efficient use of mass spectrometers with negligible instrumental analysis time compared to the sample homogenization, preparation, and data

  1. High resolution mass spectrometry for quantitative analysis and untargeted screening of algal toxins in mussels and passive samplers.

    PubMed

    Zendong, Zita; McCarron, Pearse; Herrenknecht, Christine; Sibat, Manoella; Amzil, Zouher; Cole, Richard B; Hess, Philipp

    2015-10-16

    Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No. 15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce

  2. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2016-01-01

    We present the characterization and application of a new gas chromatography time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δm of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found to be approximately 5 ppm in mean after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits are as low as a few femtograms by means of the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. Detector non-linearity was found to be insignificant up to a mixing ratio of roughly 150 ppt at 0.5 L sampled volume. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straightforward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, quadrupole MS with low mass resolving power and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  3. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Feature

    PubMed Central

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-01-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. PMID:26508443

  4. Label-Free Quantitative Mass Spectrometry Reveals a Panel of Differentially Expressed Proteins in Colorectal Cancer

    PubMed Central

    Fan, Nai-Jun; Gao, Jiang-Ling; Liu, Yan; Song, Wei; Zhang, Zhan-Yang; Gao, Chun-Fang

    2015-01-01

    To identify potential biomarkers involved in CRC, a shotgun proteomic method was applied to identify soluble proteins in three CRCs and matched normal mucosal tissues using high-performance liquid chromatography and mass spectrometry. Label-free protein profiling of three CRCs and matched normal mucosal tissues were then conducted to quantify and compare proteins. Results showed that 67 of the 784 identified proteins were linked to CRC (28 upregulated and 39 downregulated). Gene Ontology and DAVID databases were searched to identify the location and function of differential proteins that were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, and so on. Among the differentially expressed proteins, tropomyosin-3 (TPM3), endoplasmic reticulum resident protein 29 (ERp29), 18 kDa cationic antimicrobial protein (CAMP), and heat shock 70 kDa protein 8 (HSPA8) were verified to be upregulated in CRC tissue and seven cell lines through western blot analysis. Furthermore, the upregulation of TPM3, ERp29, CAMP, and HSPA8 was validated in 69 CRCs byimmunohistochemistry (IHC) analysis. Combination of TPM3, ERp29, CAMP, and HSPA8 can identify CRC from matched normal mucosal achieving an accuracy of 73.2% using IHC score. These results suggest that TPM3, ERp29, CAMP, and HSPA8 are great potential IHC diagnostic biomarkers for CRC. PMID:25699276

  5. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features

    NASA Astrophysics Data System (ADS)

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis.

  6. Commercially available antibodies can be applied in quantitative multiplexed peptide immunoaffinity enrichment targeted mass spectrometry assays

    PubMed Central

    Schoenherr, Regine M.; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Kennedy, Jacob; Yan, Ping; Lin, Chenwei; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    Immunoaffinity enrichment of peptides coupled to multiple reaction monitoring-mass spectrometry (immuno-MRM) enables highly specific, sensitive, and precise quantification of peptides and post-translational modifications. Major obstacles to developing a large number of immuno-MRM assays are the poor availability of monoclonal antibodies (mAbs) validated for immunoaffinity enrichment of peptides and the cost and lead time of developing the antibodies de novo. Although many thousands of mAbs are commercially offered, few have been tested for application to immunoaffinity enrichment of peptides. In this study we tested the success rate of using commercially available mAbs for peptide immuno-MRM assays. We selected 105 commercial mAbs (76 targeting non-modified “pan” epitopes, 29 targeting phosphorylation) to proteins associated with the DNA damage response network. We found that 8 of the 76 pan (11%) and 5 of the 29 phospho-specific mAbs (17%) captured tryptic peptides (detected by LC-MS/MS) of their protein targets from human cell lysates. Seven of these mAbs were successfully used to configure and analytically characterize immuno-MRM assays. By applying selection criteria upfront, the results indicate that a screening success rate of up to 24% is possible, establishing the feasibility of screening a large number of catalog antibodies to provide readily-available assay reagents. PMID:27094115

  7. Quantitative determination of methylnaltrexone in human serum using liquid chromatography-tandem mass spectrometry.

    PubMed

    Oswald, Stefan; Schumacher, Gitta; Siegmund, Werner

    2011-12-15

    Methylnaltrexone (MNTX) is a novel peripherally acting μ-opioid antagonist that prevents peripheral side effects of opioid drugs such as constipation without affecting the analgesia. We developed a selective and sensitive assay to measure MTNX concentrations in human serum. The drug was measured after protein precipitation with perchloric acid using naltrexone as internal standard and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for detection. The chromatography was performed isocratically on a RP18 column using 25 mM ammonium acetate buffer (pH 4)/acetonitrile (90%/10%; flow rate 200 μl/min) as mobile phase. The MS/MS analysis was performed in positive ionization mode monitoring the m/z transitions 356.4/284.2 for MNTX and 342.4/324.2 for naltrexone. The method was validated according to selectivity, linearity, accuracy, precision, recovery, matrix effects and stability. The validation range for MNTX in serum was 0.5-250 ng/ml. The developed LC-MS/MS was shown to be valid and successfully applied to measure serum-concentration-time curves of MNTX in a pilot study in healthy volunteers. PMID:21880450

  8. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features.

    PubMed

    Kaddi, Chanchala D; Bennett, Rachel V; Paine, Martin R L; Banks, Mitchel D; Weber, Arthur L; Fernández, Facundo M; Wang, May D

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ. PMID:26508443

  9. Laser Ablation/Ionisation Mass Spectrometry: Sensitive and Quantitative Chemical Depth Profiling of Solid Materials.

    PubMed

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-01-01

    Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed. PMID:27131112

  10. Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry.

    PubMed

    Hopfgartner, Gérard; Bourgogne, Emmanuel

    2003-01-01

    To support pharmacokinetic and drug metabolism studies, LC-MS/MS plays more and more an essential role for the quantitation of drugs and their metabolites in biological matrices. With the new challenges encountered in drug discovery and drug development, new strategies are put in place to achieve high-throughput analysis, using serial and parallel approaches. To speed-up method development and validation, generic approaches with the direct injection of biological fluids is highly desirable. Column-switching, using various packing materials for the extraction columns, is widely applied. Improvement of mass spectrometers performance, and in particular triple quadrupoles, also strongly influences sample preparation strategies, which remain a key element in the bioanalytical process. PMID:12838545

  11. High Sensitivity Quantitative Lipidomics Analysis of Fatty Acids in Biological Samples by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Quehenberger, Oswald; Armando, Aaron M.; Dennis, Edward A.

    2011-01-01

    Historically considered to be simple membrane components serving as structural elements and energy storing entities, fatty acids are now increasingly recognized as potent signaling molecules involved in many metabolic processes. Quantitative determination of fatty acids and exploration of fatty acid profiles have become common place in lipid analysis. We present here a reliable and sensitive method for comprehensive analysis of free fatty acids and fatty acid composition of complex lipids in biological material. The separation and quantitation of fatty acids is achieved by capillary gas chromatography. The analytical method uses pentafluorobenzyl bromide derivatization and negative chemical ionization gas chromatography-mass spectrometry. The chromatographic procedure provides base line separation between saturated and unsaturated fatty acids of different chain lengths as well as between most positional isomers. Fatty acids are extracted in the presence of isotope-labeled internal standards for high quantitation accuracy. Mass spectrometer conditions are optimized for broad detection capacity and sensitivity capable of measuring trace amounts of fatty acids in complex biological samples. PMID:21787881

  12. Quantitative analysis of aberrant protein glycosylation in liver cancer plasma by AAL-enrichment and MRM mass spectrometry.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Kim, Yong-Sam; Oh, Na Ree; Ji, Eun Sun; Kim, Kwang Hoe; Lee, Yeon Jung; Kim, Sung Ho; Yoo, Jong Shin

    2013-11-01

    A lectin-coupled mass spectrometry (MS) approach was employed to quantitatively monitor aberrant protein glycosylation in liver cancer plasma. To do this, we compared the difference in the total protein abundance of a target glycoprotein between hepatocellular carcinoma (HCC) plasmas and hepatitis B virus (HBV) plasmas, as well as the difference in lectin-specific protein glycoform abundance of the target glycoprotein. Capturing the lectin-specific protein glycoforms from a plasma sample was accomplished by using a fucose-specific aleuria aurantia lectin (AAL) immobilized onto magnetic beads via a biotin-streptavidin conjugate. Following tryptic digestion of both the total plasma and its AAL-captured fraction of each HCC and HBV sample, targeted proteomic mass spectrometry was conducted quantitatively by a multiple reaction monitoring (MRM) technique. From the MRM-based analysis of the total plasmas and AAL-captured fractions, differences between HCC and HBV plasma groups in fucosylated glycoform levels of target glycoproteins were confirmed to arise from both the change in the total protein abundance of the target proteins and the change incurred by aberrant fucosylation on target glycoproteins in HCC plasma, even when no significant change occurs in the total protein abundance level. Combining the MRM-based analysis method with the lectin-capturing technique proved to be a successful means of quantitatively investigating aberrant protein glycosylation in cancer plasma samples. Additionally, it was elucidated that the differences between HCC and control groups in fucosylated biomarker candidates A1AT and FETUA mainly originated from an increase in fucosylation levels on these target glycoproteins, rather than an increase in the total protein abundance of the target glycoproteins. PMID:24027776

  13. Rapid and High-Throughput Detection and Quantitation of Radiation Biomarkers in Human and Nonhuman Primates by Differential Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Hall, Adam B.; Fornace, Albert J.; Vouros, Paul

    2016-07-01

    Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure.

  14. Quantitative determination of sarsasapogenin in rat plasma using liquid chromatography-tandem mass spectrometry.

    PubMed

    Yang, Bo; Liu, Zhirui; Hu, Jing; Lai, Xiaodan; Xia, Peiyuan

    2016-06-01

    Sarsasapogenin, a natural compound from Chinese medical herb Anemarrhena asphodeloides Bge., has recently received a great deal of attention due to its various bioactivities. In this study, an easy and applicable liquid chromatography tandem mass spectrometry method for the quantification of sarsasapogenin in rat plasma was developed. Sample preparation was accomplished through a simple one-step protein precipitation procedure with methanol. Negative electrospray ionization was performed using multiple reactions monitoring (MRM) mode with transitions of m/z 417.4/273.2 for sarsasapogenin, and 415.2/271.4 for diosgenin (internal standard). The calibration curve was linear over the range of 0.5-500ng/mL (r=0.9994), with a lower limit of quantification at 0.5ng/mL. The RSD of intra- and inter-day precision was below 6.41%, and accuracy ranged from 87.60% to 99.20%. The RSD of matrix effect and recovery yield was within ±15% of nominal concentrations and sarsasapogenin was stable during stability tests. This validated method had been successfully applied to the preclinical pharmacokinetic studies of sarsasapogenin in rats. The half-life (t1/2) was (15.1±2.3), (16.1±3.0) and (15.4±3.9) h after single intragastric administration of 25, 50 and 100mg/kg sarsasapogenin, respectively. And it was found that, the area under the plasma concentration versus time curve (AUC0-72h) and the maximum plasma concentration (Cmax) were linearly related to dose. PMID:27107248

  15. Quantitative Mass Spectrometry Reveals Dynamics of Factor-inhibiting Hypoxia-inducible Factor-catalyzed Hydroxylation*

    PubMed Central

    Singleton, Rachelle S.; Trudgian, David C.; Fischer, Roman; Kessler, Benedikt M.; Ratcliffe, Peter J.; Cockman, Matthew E.

    2011-01-01

    The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower Km value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate. PMID:21808058

  16. Quantitative Mass Spectrometry Reveals Partial Translational Regulation for Dosage Compensation in Chicken.

    PubMed

    Uebbing, Severin; Konzer, Anne; Xu, Luohao; Backström, Niclas; Brunström, Björn; Bergquist, Jonas; Ellegren, Hans

    2015-10-01

    There is increasing evidence that dosage compensation is not a ubiquitous feature following sex chromosome evolution, especially not in organisms where females are the heterogametic sex, like in birds. Even when it occurs, compensation can be incomplete and limited to dosage-sensitive genes. However, previous work has mainly studied transcriptional regulation of sex-linked genes, which may not reflect expression at the protein level. Here, we used liquid chromatography-tandem mass spectrometry to detect and quantify expressed levels of more than 2,400 proteins in ten different tissues of male and female chicken embryos. For comparison, transcriptome sequencing was performed in the same individuals, five of each sex. The proteomic analysis revealed that dosage compensation was incomplete, with a mean male-to-female (M:F) expression ratio of Z-linked genes of 1.32 across tissues, similar to that at the RNA level (1.29). The mean Z chromosome-to-autosome expression ratio was close to 1 in males and lower than 1 in females, consistent with partly reduced Z chromosome expression in females. Although our results exclude a general mechanism for chromosome-wide dosage compensation at translation, 30% of all proteins encoded from Z-linked genes showed a significant change in the M:F ratio compared with the corresponding ratio at the RNA level. This resulted in a pattern where some genes showed balanced expression between sexes and some close to 2-fold higher expression in males. This suggests that proteomic analyses will be necessary to reveal a more complete picture of gene regulation and sex chromosome evolution. PMID:26108680

  17. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane

    PubMed Central

    Marelli, Marcello; Smith, Jennifer J.; Jung, Sunhee; Yi, Eugene; Nesvizhskii, Alexey I.; Christmas, Rowan H.; Saleem, Ramsey A.; Tam, Yuen Yi C.; Fagarasanu, Andrei; Goodlett, David R.; Aebersold, Ruedi; Rachubinski, Richard A.; Aitchison, John D.

    2004-01-01

    We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis. PMID:15596542

  18. Development and evaluation of a liquid chromatography-mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma.

    PubMed

    Sobsey, Constance A; Han, Jun; Lin, Karen; Swardfager, Walter; Levitt, Anthony; Borchers, Christoph H

    2016-09-01

    Malondialdhyde (MDA) is a commonly used marker of lipid peroxidation in oxidative stress. To provide a sensitive analytical method that is compatible with high throughput, we developed a multiple reaction monitoring-mass spectrometry (MRM-MS) approach using 3-nitrophenylhydrazine chemical derivatization, isotope-labeling, and liquid chromatography (LC) with electrospray ionization (ESI)-tandem mass spectrometry assay to accurately quantify MDA in human plasma. A stable isotope-labeled internal standard was used to compensate for ESI matrix effects. The assay is linear (R(2)=0.9999) over a 20,000-fold concentration range with a lower limit of quantitation of 30fmol (on-column). Intra- and inter-run coefficients of variation (CVs) were <2% and ∼10% respectively. The derivative was stable for >36h at 5°C. Standards spiked into plasma had recoveries of 92-98%. When compared to a common LC-UV method, the LC-MS method found near-identical MDA concentrations. A pilot project to quantify MDA in patient plasma samples (n=26) in a study of major depressive disorder with winter-type seasonal pattern (MDD-s) confirmed known associations between MDA concentrations and obesity (p<0.02). The LC-MS method provides high sensitivity and high reproducibility for quantifying MDA in human plasma. The simple sample preparation and rapid analysis time (5x faster than LC-UV) offers high throughput for large-scale clinical applications. PMID:27437618

  19. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  20. Pathology Tissue-quantitative Mass Spectrometry Analysis to Profile Histone Post-translational Modification Patterns in Patient Samples*

    PubMed Central

    Noberini, Roberta; Uggetti, Andrea; Pruneri, Giancarlo; Minucci, Saverio

    2016-01-01

    Histone post-translational modifications (hPTMs) generate a complex combinatorial code that has been implicated with various pathologies, including cancer. Dissecting such a code in physiological and diseased states may be exploited for epigenetic biomarker discovery, but hPTM analysis in clinical samples has been hindered by technical limitations. Here, we developed a method (PAThology tissue analysis of Histones by Mass Spectrometry - PAT-H-MS) that allows to perform a comprehensive, unbiased and quantitative MS-analysis of hPTM patterns on formalin-fixed paraffin-embedded (FFPE) samples. In pairwise comparisons, histone extracted from formalin-fixed paraffin-embedded tissues showed patterns similar to fresh frozen samples for 24 differentially modified peptides from histone H3. In addition, when coupled with a histone-focused version of the super-SILAC approach, this method allows the accurate quantification of modification changes among breast cancer patient samples. As an initial application of the PAThology tissue analysis of Histones by Mass Spectrometry method, we analyzed breast cancer samples, revealing significant changes in histone H3 methylation patterns among Luminal A-like and Triple Negative disease subtypes. These results pave the way for retrospective epigenetic studies that combine the power of MS-based hPTM analysis with the extensive clinical information associated with formalin-fixed paraffin-embedded archives. PMID:26463340

  1. Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry.

    PubMed

    Ohmura, Mitsuyo; Hishiki, Takako; Yamamoto, Takehiro; Nakanishi, Tsuyoshi; Kubo, Akiko; Tsuchihashi, Kenji; Tamada, Mayumi; Toue, Sakino; Kabe, Yasuaki; Saya, Hideyuki; Suematsu, Makoto

    2015-04-30

    CD44 expressed in cancer cells was shown to stabilize cystine transporter (xCT) that uptakes cystine and excretes glutamate to supply cysteine as a substrate for reduced glutathione (GSH) for survival. While targeting CD44 serves as a potentially therapeutic stratagem to attack cancer growth and chemoresistance, the impact of CD44 targeting in cancer cells on metabolic systems of tumors and host tissues in vivo remains to be fully determined. This study aimed to reveal effects of CD44 silencing on alterations in energy metabolism and sulfur-containing metabolites in vitro and in vivo using capillary electrophoresis-mass spectrometry and quantitative imaging mass spectrometry (Q-IMS), respectively. In an experimental model of xenograft transplantation of human colon cancer HCT116 cells in superimmunodeficient NOG mice, snap-frozen liver tissues containing metastatic tumors were examined by Q-IMS. As reported previously, short hairpin CD44 RNA interference (shCD44) in cancer cells caused significant regression of tumor growth in the host liver. Under these circumstances, the CD44 knockdown suppressed polyamines, GSH and energy charges not only in metastatic tumors but also in the host liver. In culture, HCT116 cells treated with shCD44 decreased total amounts of methionine-pool metabolites including spermidine and spermine, and reactive cysteine persulfides, suggesting roles of these metabolites for cancer growth. Collectively, these results suggest that CD44 expressed in cancer accounts for a key regulator of metabolic interplay between tumor and the host tissue. PMID:25461272

  2. Pathology Tissue-quantitative Mass Spectrometry Analysis to Profile Histone Post-translational Modification Patterns in Patient Samples.

    PubMed

    Noberini, Roberta; Uggetti, Andrea; Pruneri, Giancarlo; Minucci, Saverio; Bonaldi, Tiziana

    2016-03-01

    Histone post-translational modifications (hPTMs) generate a complex combinatorial code that has been implicated with various pathologies, including cancer. Dissecting such a code in physiological and diseased states may be exploited for epigenetic biomarker discovery, but hPTM analysis in clinical samples has been hindered by technical limitations. Here, we developed a method (PAThology tissue analysis of Histones by Mass Spectrometry - PAT-H-MS) that allows to perform a comprehensive, unbiased and quantitative MS-analysis of hPTM patterns on formalin-fixed paraffin-embedded (FFPE) samples. In pairwise comparisons, histone extracted from formalin-fixed paraffin-embedded tissues showed patterns similar to fresh frozen samples for 24 differentially modified peptides from histone H3. In addition, when coupled with a histone-focused version of the super-SILAC approach, this method allows the accurate quantification of modification changes among breast cancer patient samples. As an initial application of the PAThology tissue analysis of Histones by Mass Spectrometry method, we analyzed breast cancer samples, revealing significant changes in histone H3 methylation patterns among Luminal A-like and Triple Negative disease subtypes. These results pave the way for retrospective epigenetic studies that combine the power of MS-based hPTM analysis with the extensive clinical information associated with formalin-fixed paraffin-embedded archives. PMID:26463340

  3. A new approach for the comparative analysis of multiprotein complexes based on 15N metabolic labeling and quantitative mass spectrometry.

    PubMed

    Trompelt, Kerstin; Steinbeck, Janina; Terashima, Mia; Hippler, Michael

    2014-01-01

    The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling ((14)N/(15)N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions. PMID:24686495

  4. New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry

    PubMed Central

    Liu, Ningning; Xiong, Yun; Li, Shanshan; Ren, Yiran; He, Qianqian; Gao, Siqi; Zhou, Jun; Shui, Wenqing

    2015-01-01

    The post-translational modifications (PTMs) occurring on microtubules have been implicated in the regulation of microtubule properties and functions. Acetylated K40 of α-tubulin, a hallmark of long-lived stable microtubules, is known to be negatively controlled by histone deacetylase 6 (HDAC6). However, the vital roles of HDAC6 in microtubule-related processes such as cell motility and cell division cannot be fully explained by the only known target site on tubulin. Here, we attempt to comprehensively map lysine acetylation sites on tubulin purified from mouse brain tissues. Furthermore, mass spectrometry-based quantitative comparison of acetylated peptides from wild-type vs HDAC6 knockout mice allowed us to identify six new deacetylation sites possibly mediated by HDAC6. Thus, adding new sites to the repertoire of HDAC6-mediated tubulin deacetylation events would further our understanding of the multi-faceted roles of HDAC6 in regulating microtubule stability and cellular functions. PMID:26581825

  5. Simultaneous quantitation of six major quassinoids in Tongkat Ali dietary supplements by liquid chromatography with tandem mass spectrometry.

    PubMed

    Han, Young Min; Jang, Moonhee; Kim, In Sook; Kim, Seung Hyun; Yoo, Hye Hyun

    2015-07-01

    Tongkat Ali (Eurycoma longifolia) is one of the most popular traditional herbs in Southeast Asia and generally consumed as forms of dietary supplements, tea, or drink additives for coffee or energy beverages. In this study, the liquid chromatography with tandem mass spectrometry method for the simultaneous quantitation of six major quassinoids of Tongkat Ali (eurycomanone, 13,21-dihydroeurycomanone, 13α(21)-epoxyeurycomanone, 14,15β-dihydroxyklaineanone, eurycomalactone, and longilactone) was developed and validated. Using the developed method, the content of the six quassinoids was measured in Tongkat Ali containing dietary supplement tablets or capsules, and the resulting data were used to confirm the presence of Tongkat Ali in those products. Among the six quassinoids, eurycomanone was the most abundant quassinoid in all samples tested. The developed method would be useful for the quality assessment of Tongkat Ali containing dietary supplements. PMID:25914245

  6. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hattan, Stephen J.; Parker, Kenneth C.; Vestal, Marvin L.; Yang, Jane Y.; Herold, David A.; Duncan, Mark W.

    2016-03-01

    Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.

  7. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples. PMID:24054645

  8. Self-aliquoting microarray plates for accurate quantitative matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Pabst, Martin; Fagerer, Stephan R; Köhling, Rudolf; Küster, Simon K; Steinhoff, Robert; Badertscher, Martin; Wahl, Fabian; Dittrich, Petra S; Jefimovs, Konstantins; Zenobi, Renato

    2013-10-15

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a fast analysis tool employed for the detection of a broad range of analytes. However, MALDI-MS has a reputation of not being suitable for quantitative analysis. Inhomogeneous analyte/matrix co-crystallization, spot-to-spot inhomogeneity, as well as a typically low number of replicates are the main contributing factors. Here, we present a novel MALDI sample target for quantitative MALDI-MS applications, which addresses the limitations mentioned above. The platform is based on the recently developed microarray for mass spectrometry (MAMS) technology and contains parallel lanes of hydrophilic reservoirs. Samples are not pipetted manually but deposited by dragging one or several sample droplets with a metal sliding device along these lanes. Sample is rapidly and automatically aliquoted into the sample spots due to the interplay of hydrophilic/hydrophobic interactions. With a few microliters of sample, it is possible to aliquot up to 40 replicates within seconds, each aliquot containing just 10 nL. The analyte droplet dries immediately and homogeneously, and consumption of the whole spot during MALDI-MS analysis is typically accomplished within few seconds. We evaluated these sample targets with respect to their suitability for use with different samples and matrices. Furthermore, we tested their application for generating calibration curves of standard peptides with α-cyano-4-hdydroxycinnamic acid as a matrix. For angiotensin II and [Glu(1)]-fibrinopeptide B we achieved coefficients of determination (r(2)) greater than 0.99 without the use of internal standards. PMID:24003910

  9. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS).

    PubMed

    Beach, Daniel G; Kerrin, Elliott S; Quilliam, Michael A

    2015-11-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) has been reported in cyanobacteria and shellfish, raising concerns about widespread human exposure. However, inconsistent results for BMAA analysis have led to controversy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the most appropriate method for analysis of BMAA, but the risk of interference from isomers, other sample components, and the electrospray background is still present. We have investigated differential mobility spectrometry (DMS) as an ion filter to improve selectivity in the hydrophilic interaction liquid chromatographic (HILIC)-MS/MS determination of BMAA. We obtained standards for two BMAA isomers not previously analyzed by HILIC-MS, β-amino-N-methylalanine and 3,4-diaminobutanoic acid, and the typically used 2,4-diaminobutanoic acid and N-(2-aminoethyl)glycine. DMS separation of BMAA from these isomers was achieved and optimized conditions were used to develop a sensitive and highly selective multidimensional HILIC-DMS-MS/MS method. This work revealed current technical limitations of DMS for trace quantitation, and practical solutions were implemented. Accurate control of low levels of DMS carrier gas modifier was essential, but required external metering. The linearity of our optimized method was excellent from 0.01 to 6 μmol L(-1). The instrumental LOD was 0.4 pg BMAA injected on-column and the estimated method LOD was 20 ng g(-1) dry weight for BMAA in sample matrix. The method was used to analyze cycad plant tissue, a cyanobacterial reference material, and mussel tissues, by use of isotope-dilution quantitation with deuterated BMAA. This confirmed the presence of BMAA and several of its isomers in cycad and mussel tissues, including commercially available mussel tissue reference materials certified for other biotoxins. Graphical Abstract Differential Mobility Spectrometry is used to increases the selectivity of BMAA analysis by HILIC-MS/MS. PMID:26396078

  10. Quantitative determination of ginsenoside Rh2 in rat biosamples by liquid chromatography electrospray ionization mass spectrometry.

    PubMed

    Gu, Yi; Wang, Guang-Ji; Sun, Jian-Guo; Jia, Yuan-Wei; Xie, Hai-Tang; Wang, Wei

    2006-12-01

    Ginsenoside Rh2 is a "hot" natural compound with great potential as a new anti-cancer drug based on abundant pharmacological experiments. However, no systemic pharmacokinetic study of Rh2 was reported because current analysis methods could not fully meet the requirements. Thus, we developed a simple LC/MS method with highly improved sensitivities for the determination of Rh2 in rat plasma, bile, urine, feces and most tissues. The tissues and feces were firstly homogenized mechanically using buffer and methanol as the media, respectively. Plasma, bile, urine and tissue homogenates were extracted with diethyl ether for sample preparation. Feces homogenates were directly deproteinized with acetonitrile. The subsequent analysis procedures were performed on a Shimadzu LCMS2010A system (electrospray ionization single quadrupole mass analyzer), with an ODS column (150 mm x 2.0-mm i.d., 5 microm) plus a C18 guard column for separation and ammonium chloride (500 micromol) as mobile phase additive. The proportions of mobile phase were changed timely according to gradient programs. Chlorinated adducts of molecular ions [M + Cl]- of Rh2 at m/z 657.35 and internal standard digitoxin at m/z 799.55 were monitored in selective ion monitoring mode of negative ions. The method was validated to be accurate, precise and rugged with good linearity in all matrices, according to the FDA guidelines. The lower limits of quantitation in rat plasma, urine and feces were 0.2, 0.2 and 20 ng/mL respectively. Stability studies were also performed, indicating that there were no stability-related problems in the analytical procedure of Rh2. The proposed method was successfully applied to the preclinical pharmacokinetic research of Rh2 in rats, including plasma kinetics, tissue distribution and excretion studies. PMID:17082877

  11. Development of an isoform-specific tandem mass spectrometry assay for absolute quantitation of maize lipid transfer proteins.

    PubMed

    Stevenson, Severin E; McClain, Scott; Thelen, Jay J

    2015-01-28

    Precise and accurate quantitation of maize grain allergens is important for seed and food industries. The major allergen in maize grain is Zea m 14, a lipid transfer protein (LTP). The B73 maize genome encodes for at least six LTPs sharing 15%-87% sequence identity to Zea m 14. Phylogenetic analysis of the maize LTP family revealed one gene that corresponds to Zea m 14 (denoted as LTPa) and two other genes sharing 43% (LTPc) and 74% (LTPb) identity with Zea m 14 that are putative homologues. Using stable isotope peptide mimics as internal standards for LTPs, we present a multiple reaction monitoring mass spectrometry approach for multiplexed, absolute quantitation of all three LTP proteins and alternative transcript models therein. To validate quantitative accuracy, a redundant peptide, simultaneously representing the two most abundant LTPs, was included. Analysis of 21 maize varieties revealed LTPa was most prominently expressed in maize grain, ranging from 9 to 32 μg LTP/mg protein. Proteins belonging to the LTPb and LTPc gene models were also expressed but at approximately 10- and 100-fold lower levels than LTPa, respectively. The quantitative results provided by the redundant peptide show around 95% agreement with the sum of the two unique peptides, thus providing support for the LTP gene models and validating the accuracy of this method. Though not all Zea m 14-related LTPs are abundant in grain, their high sequence homology and detectable expression in maize grain signify that LTPb and LTPc are putative allergens and should be accounted for in any quantitation strategy for maize LTP allergens. PMID:25540820

  12. The life sciences mass spectrometry research unit.

    PubMed

    Hopfgartner, Gérard; Varesio, Emmanuel

    2012-01-01

    The Life Sciences Mass Spectrometry (LSMS) research unit focuses on the development of novel analytical workflows based on innovative mass spectrometric and software tools for the analysis of low molecular weight compounds, peptides and proteins in complex biological matrices. The present article summarizes some of the recent work of the unit: i) the application of matrix-assisted laser desorption/ionization (MALDI) for mass spectrometry imaging (MSI) of drug of abuse in hair, ii) the use of high resolution mass spectrometry for simultaneous qualitative/quantitative analysis in drug metabolism and metabolomics, and iii) the absolute quantitation of proteins by mass spectrometry using the selected reaction monitoring mode. PMID:22867547

  13. Identification and quantitation of N-(carboxymethyl)valine adduct in hemoglobin by gas chromatography/mass spectrometry.

    PubMed

    Cai, J; Hurst, H E

    1999-05-01

    A sensitive, specific and reproducible method was developed for the quantitation of the hemoglobin (Hb) adduct N-(carboxymethyl)valine (CMV). This adduct is one of various products from the Maillard reaction, involving reducing sugars and amino acids, proteins or other molecules with a free amino group. Such adducts, including N epsilon-(carboxymethyl)lysine (CML), are called advanced glycation end products (AGE) and have been correlated with aging and severity of diabetes in human tissues. This method was developed to examine the CMV-Hb adduct as a possible AGE formed by reaction of Hb with glucose or other oxidation products. CMV was cleaved selectively from isolated globin using pentafluorophenyl isothiocyanate (PFPITC) in a modified Edman degradation at pH 9.5. The carboxyl group of the adduct was derivatized to its methyl ester with diazomethane. The resulting derivative, 5-isopropyl-1-(methyl acetate)-3-pentafluorophenyl-2-thiohydantoin, was detected by gas chromatography/mass spectrometry with selected ion monitoring (GC/SIM/MS). Quantitation was based on the response factor of the derivative molecular ion (m/z 396) from synthesized CMV and N-(2-carboxyethyl)valine (molecular ion m/z 410) as internal standard. This method exhibits reproducibility and linearity in the range 0.2-100 ng CMV. The limit of quantitation (0.2 ng CMV) gave a signal-to-noise ratio greater than 5:1 using a 1:30 sample aliquot. The GC/SIM/MS method can detect CMV adduct in 5 mg globin samples with relative standard deviations less than 5%. This approach avoids tedious acid hydrolysis and interference from other amino acids. The molecular ion and other CMV derivative ion assignments from samples were confirmed by accurate mass determinations using GC/high resolution SIM/MS. Measurements from random mouse, rat and human globin samples gave mean CMV levels of about 6, 5 and 14 nmol g-1 Hb in these species, respectively. PMID:10390858

  14. Mass Spectrometry-Based Quantitative Proteomics for Dissecting Multiplexed Redox Cysteine Modifications in Nitric Oxide-Protected Cardiomyocyte Under Hypoxia

    PubMed Central

    Pan, Kuan-Ting; Chen, Yi-Yun; Pu, Tsung-Hsien; Chao, Yu-Shu; Yang, Chun-Yi; Bomgarden, Ryan D.; Rogers, John C.

    2014-01-01

    Abstract Aims: Distinctive states of redox-dependent cysteine (Cys) modifications are known to regulate signaling homeostasis under various pathophysiological conditions, including myocardial injury or protection in response to ischemic stress. Recent evidence further implicates a dynamic interplay among these modified forms following changes in cellular redox environment. However, a precise delineation of multiplexed Cys modifications in a cellular context remains technically challenging. To this end, we have now developed a mass spectrometry (MS)-based quantitative approach using a set of novel iodoacetyl-based Cys-reactive isobaric tags (irreversible isobaric iodoacetyl Cys-reactive tandem mass tag [iodoTMT]) endowed with unique irreversible Cys-reactivities. Results: We have established a sequential iodoTMT-switch procedure coupled with efficient immunoenrichment and advanced shotgun liquid chromatography-MS/MS analysis. This workflow allows us to differentially quantify the multiple redox-modified forms of a Cys site in the original cellular context. In one single analysis, we have identified over 260 Cys sites showing quantitative differences in multiplexed redox modifications from the total lysates of H9c2 cardiomyocytes experiencing hypoxia in the absence and presence of S-nitrosoglutathione (GSNO), indicative of a distinct pattern of individual susceptibility to S-nitrosylation or S-glutathionylation. Among those most significantly affected are proteins functionally implicated in hypoxic damage from which we showed that GSNO would protect. Innovation: We demonstrate for the first time how quantitative analysis of various Cys-redox modifications occurring in biological samples can be performed precisely and simultaneously at proteomic levels. Conclusion: We have not only developed a new approach to map global Cys-redoxomic regulation in vivo, but also provided new evidences implicating Cys-redox modifications of key molecules in NO-mediated ischemic

  15. Confirmatory and quantitative analysis using experimental design for the extraction and liquid chromatography-UV, liquid chromatography-mass spectrometry and liquid chromatography-mass spectrometry/mass spectrometry determination of quinolones in turkey muscle.

    PubMed

    Clemente, M; Hermo, M P; Barrón, D; Barbosa, J

    2006-12-01

    The aim of this work is to established methods for determination of quinolones (ciprofloxacin, danofloxacin, enrofloxacin, difloxacin and flumequine), regulated by European Union, and sarafloxacin in turkey muscle. An experimental design has been applied for the optimization of the factors that influence the extraction of quinolones from turkey muscle in order to determine the experimental conditions for their extraction with high recoveries. Liquid chromatography with ultraviolet detection (LC-UV), liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS) have been used for the simultaneous quantification of quinolones antibiotics in turkey muscle. The proposed methods have been validated according to the Food Drugs Administration guideline and presents the limit of quantification below the maximum residue limits established by the European Union for quinolones in turkey muscle. The methods developed have been applied to quantification of enrofloxacin and its main metabolite ciprofloxacin in samples of turkey muscle obtained from animals treated with enrofloxacin. PMID:17027811

  16. STRUCTURAL DETERMINATION AND QUANTITATIVE ANALYSIS OF BACTERIAL PHOSPHOLIPIDS USING LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION/MASS SPECTROMETRY

    EPA Science Inventory

    This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...

  17. Quantitative Profiling of Major Neutral Lipid Classes in Human Meibum by Direct Infusion Electrospray Ionization Mass Spectrometry

    PubMed Central

    Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.

    2013-01-01

    Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307

  18. Coumarin and furanocoumarin quantitation in citrus peel via ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS).

    PubMed

    Dugrand, Audray; Olry, Alexandre; Duval, Thibault; Hehn, Alain; Froelicher, Yann; Bourgaud, Frédéric

    2013-11-13

    Coumarins and furanocoumarins are secondary metabolites commonly found in citrus plants. These molecules are allelochemical compounds in plants that have controversial effects on humans, such as phototoxicity and the commonly described interactions with drugs, referred to as the "grapefruit juice effect". Thus, it is important to develop a reliable method to identify and quantitate the coumarins and furanocoumarins in citrus extracts. For this purpose, we herein describe an ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS)-based method. We first developed a rapid UPLC method (20 min) to separate the isomers of each furanocoumarin. A subsequent single ion monitoring MS detection method was performed to distinguish between the molecules, which were possibly coeluting but had different molecular weights. The method was successfully used to separate and quantitate 6 coumarins and 21 furanocoumarins in variable amounts within peel extracts (flavedo and albedo) of 6 varieties of Citrus (sweet orange, lemon, grapefruit, bergamot, pummelo, and clementine). This method combines high selectivity and sensitivity in a rapid analysis and is useful for fingerprinting Citrus species via their coumarin and furanocoumarin contents. PMID:24117278

  19. High-throughput quantitative analysis of domoic acid directly from mussel tissue using Laser Ablation Electrospray Ionization - tandem mass spectrometry.

    PubMed

    Beach, Daniel G; Walsh, Callee M; McCarron, Pearse

    2014-12-15

    Eliminating sample extraction or liquid chromatography steps from methods for analysis of the neurotoxin Domoic Acid (DA) in shellfish could greatly increase throughput in food safety testing laboratories worldwide. To this end, we have investigated the use of Laser Ablation Electrospray Ionization (LAESI) with tandem mass spectrometry (MS/MS) detection for DA analysis directly from mussel tissue homogenates without sample extraction, cleanup or separation. DA could be selectively detected directly from mussel tissue homogenates using MS/MS in selected reaction monitoring scan mode. The quantitative capabilities of LAESI-MS/MS for DA analysis from mussel tissue were evaluated by analysis of four mussel tissue reference materials using matrix-matched calibration. Linear response was observed from 1 mg/kg to 40 mg/kg and the method limit of detection was 1 mg/kg. Results for DA analysis in tissue within the linear range were in good agreement with two established methods, LC-UV and LC-MS/MS (recoveries from 103 to 125%). Beyond the linear range, extraction and clean-up were required to achieve good quantitation. Most notable is the extremely rapid analysis time of about 10 s per sample by LAESI-MS/MS, which corresponds to a significant increase in sample throughput compared with existing methodology for routine DA analysis. PMID:25449096

  20. LaCyTools: A Targeted Liquid Chromatography-Mass Spectrometry Data Processing Package for Relative Quantitation of Glycopeptides.

    PubMed

    Jansen, Bas C; Falck, David; de Haan, Noortje; Hipgrave Ederveen, Agnes L; Razdorov, Genadij; Lauc, Gordan; Wuhrer, Manfred

    2016-07-01

    Bottom-up glycoproteomics by liquid chromatography-mass spectrometry (LC-MS) is an established approach for assessing glycosylation in a protein- and site-specific manner. Consequently, tools are needed to automatically align, calibrate, and integrate LC-MS glycoproteomics data. We developed a modular software package designed to tackle the individual aspects of an LC-MS experiment, called LaCyTools. Targeted alignment is performed using user defined m/z and retention time (tr) combinations. Subsequently, sum spectra are created for each user defined analyte group. Quantitation is performed on the sum spectra, where each user defined analyte can have its own tr, minimum, and maximum charge states. Consequently, LaCyTools deals with multiple charge states, which gives an output per charge state if desired, and offers various analyte and spectra quality criteria. We compared throughput and performance of LaCyTools to combinations of available tools that deal with individual processing steps. LaCyTools yielded relative quantitation of equal precision (relative standard deviation <0.5%) and higher trueness due to the use of MS peak area instead of MS peak intensity. In conclusion, LaCyTools is an accurate automated data processing tool for high-throughput analysis of LC-MS glycoproteomics data. Released under the Apache 2.0 license, it is freely available on GitHub ( https://github.com/Tarskin/LaCyTools ). PMID:27267458

  1. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    PubMed

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications. PMID:24261083

  2. Simultaneous quantitative determination of alpha-ketoglutaric acid and 5-hydroxymethylfurfural in human plasma by gas chromatography-mass spectrometry.

    PubMed

    Wagner, Bernhard M; Donnarumma, Fabrizio; Wintersteiger, Reinhold; Windischhofer, Werner; Leis, Hans J

    2010-04-01

    Alpha-ketoglutaric acid (alpha-KG) and 5-hydroxymethylfurfural (5-HMF) are currently under investigation as promising cancer cell damaging agents. A method for the simultaneous quantitative determination of alpha-KG and 5-HMF in human plasma was established for screening these compounds in human plasma. Plasma samples were directly treated with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride to form the corresponding oximes, thus facilitating subsequent liquid-liquid extraction. After formation of the trimethylsilyl ethers, samples were analyzed by gas chromatography with electron ionization mass spectrometry. Stable isotope labeled standards were used, the preparation of (13)C(6)-5-HMF is described. Limits of quantitation were set to 0.938 microg/mL for alpha-KG and 0.156 microg/mL for 5-HMF. Inter-day accuracy was < or = 93.7% (alpha-KG) and < or = 92.8% (5-HMF). Inter-day precision was < or = 6.0% (alpha-KG) and < or = 4.6% (5-HMF). The method has been successfully applied to pharmacokinetic profiling of the compounds after intravenous application. PMID:20155414

  3. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGESBeta

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; Want, Elizabeth J.; Smith, Colin; O'Maille, Paul; NordstrÖm, Anders; Morita, Hirotoshi; Qin, Chuan; Uritboonthai, Wilasinee; et al

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  4. Factors That Contribute to Assay Variation in Quantitative Analysis of Sex Steroid Hormones Using Liquid and Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Xu, Xia; Veenstra, Timothy D.

    2012-01-01

    The list of physiological events in which sex steroids play a role continues to increase. To decipher the roles that sex steroids play in any condition requires high quality cohorts of samples and assays that provide highly accurate quantitative measures. Liquid and gas chromatography coupled with mass spectrometry (LC-MS and GC-MS) have…

  5. Rapid qualitative and quantitative analysis of proanthocyanidin oligomers and polymers by ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a rapid method with ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) for the qualitative and quantitative analysis of plant proanthocyanidins (PAs) directly from crude plant extracts. The method utilizes a range of cone voltages to achieve the depolymeriza...

  6. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  7. Quantitative determination of coenyzme Q10 by liquid chromatography and liquid chromatography/mass spectrometry in dairy products.

    PubMed

    Strazisar, Monika; Fir, Maja; Golc-Wondra, Alenka; Milivojevic, Luka; Prosek, Mirko; Abram, Veronika

    2005-01-01

    The dietary sources of CoQ10 and the evaluation of CoQ10 in dairy products were characterized. For quantitation of CoQ10 in food samples, 2 liquid chromatography (LC) methods with UV and mass spectrometry (MS) detections were developed. LC with UV detection was performed at 25 degrees C on a Hyperclone ODS 5 microm 150 x 4.6 mm column with mobile phase consisting of methanol-ethanol-2-propanol (70 + 15 + 15, v/v/v). Flow rate was 1.0 mL/min. Retention time of CoQ10 was 10.9 +/- 0.1 min. The method was sensitive [limit of detection (LOD) = 0.2 mg/kg], reproducible [relative standard deviation (RSD) = 3:0%), and linear up to 25 mg/kg (R > 0.999). LC/MS analysis was performed on a LUNA C18 3 microm, 150 x 4.6 mm column, using mobile phase consisting of ethanol-dioxane-acetic acid (9 + 1 + 0.01, v/v/v), flow rate was 0.6 mL/min, and the retention time of CoQ10 was 4.1 +/- 0.1 min. Identification and quantitation were performed with a Finnigan-LCQ mass detector in positive atmospheric pressure chemical ionization mode. Mass spectra were obtained in selected-ion monitoring mode; molecular mass (M+H)+ m/z 863.4 +/- 1 was used for quantitative determination. MS detection is more sensitive than UV detection (LOD = 0.1 mg/kg), less reproducible (RSD = 4.0%), and linear in selected range. Analytical recoveries are 75-90% and depend on the ratio between the amount of fat in the matrix and the concentration of CoQ10 in the sample. Some soybean milk products were analyzed together with different cow, goat, and sheep milk products. Concentrations obtained with LC and LC/MS were compared with a few accessible results available from the literature. Concentrations varied from 0 ppm in soybean milk to nearly 2 ppm in fresh milk from local farms. PMID:16152917

  8. Quantitative Proteomics using Nano-LC with High Accuracy Mass Spectrometry

    SciTech Connect

    Pasa-Tolic, Liljiana; Jacobs, Jon M.; Qian, Weijun; Smith, Richard D.

    2008-01-29

    Despite significant advances in LC-MS based technologies, challenges remain in implementing a proteomics platform for routine clinical applications. These include the needed robustness as well as the sensitivity and dynamic range of detection to both effectively address extremely small tissue samples, for example microdissected or biopsy tissues, or high dynamic range samples, such as blood plasma. Other key components include providing the needed throughput to enable statistically meaningful number of analyses for clinical setting within a robust platform that utilizes effective quantitative approaches for high accuracy and reproducibility. This chapter describes the key components of a nanoLC- MS based technological approach that is designed to target these challenges by virtue of enhancing sensitivity, dynamic range coverage, and throughput, for the generation of robust quantitative measurements in support of clinical studies.

  9. High-throughput pesticide residue quantitative analysis achieved by tandem mass spectrometry with automated flow injection.

    PubMed

    Nanita, Sergio C; Pentz, Anne M; Bramble, Frederick Q

    2009-04-15

    The use of automated flow injection with MS/MS detection for fast quantitation of agrochemicals in food and water samples was demonstrated in this study. Active ingredients from the sulfonylurea herbicide and carbamate insecticide classes were selected as model systems. Samples were prepared using typical procedures from residue methods, placed in an autosampler, and injected directly into a triple quadrupole instrument without chromatographic separation. The technique allows data acquisition in 15 s per injection, with samples being injected every 65 s, representing a significant improvement from the 15-30 min needed in typical HPLC/MS/MS methods. The availability of HPLC systems is an advantage since they can be used in flow-injection mode (bypassing the column compartment). Adequate accuracy, linearity, and precision (R(2) > 0.99 and RSD < 20%) were obtained using external standards prepared in each control matrix. The limit of quantitation (LOQ) achieved for all analytes was 0.01 mg/kg in food samples and 0.1 ng/mL in water; while limits of detection (LOD) were estimated to be about 0.003 mg/kg and 0.03 ng/mL in food and water, respectively. The advantages and limitations of flow injection MS/MS for ultratrace-level quantitative analysis in complex matrixes are discussed. PMID:19296591

  10. Characterization and quantitative analysis of surfactants in textile wastewater by liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    González, Susana; Petrović, Mira; Radetic, Maja; Jovancic, Petar; Ilic, Vesna; Barceló, Damià

    2008-05-01

    A method based on the application of ultra-performance liquid chromatography (UPLC) coupled to hybrid quadrupole-time-of-flight mass spectrometry (QqTOF-MS) with an electrospray (ESI) interface has been developed for the screening and confirmation of several anionic and non-ionic surfactants: linear alkylbenzenesulfonates (LAS), alkylsulfate (AS), alkylethersulfate (AES), dihexyl sulfosuccinate (DHSS), alcohol ethoxylates (AEOs), coconut diethanolamide (CDEA), nonylphenol ethoxylates (NPEOs), and their degradation products (nonylphenol carboxylate (NPEC), octylphenol carboxylate (OPEC), 4-nonylphenol (NP), 4-octylphenol (OP) and NPEO sulfate (NPEO-SO4). The developed methodology permits reliable quantification combined with a high accuracy confirmation based on the accurate mass of the (de)protonated molecules in the TOFMS mode. For further confirmation of the identity of the detected compounds the QqTOF mode was used. Accurate masses of product ions obtained by performing collision-induced dissociation (CID) of the (de)protonated molecules of parent compounds were matched with the ions obtained for a standard solution. The method was applied for the quantitative analysis and high accuracy confirmation of surfactants in complex mixtures in effluents from the textile industry. Positive identification of the target compounds was based on accurate mass measurement of the base peak, at least one product ion and the LC retention time of the analyte compared with that of a standard. The most frequently surfactants found in these textile effluents were NPEO and NPEO-SO4 in concentrations ranging from 0.93 to 5.68 mg/L for NPEO and 0.06 to 4.30 mg/L for NPEO-SO4. AEOs were also identified. PMID:18398847

  11. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  12. Quantitative metabolomic profiling using dansylation isotope labeling and liquid chromatography mass spectrometry.

    PubMed

    Zhou, Ruokun; Li, Liang

    2014-01-01

    Differential chemical isotopic labeling (CIL) LC-MS has been used for quantifying a targeted metabolite in biological samples with high precision and accuracy. Herein we describe a high-performance CIL LC-MS method for generating quantitative and comprehensive profiles of the metabolome for metabolomics applications. After mixing two comparative samples separately labeled by light or heavy isotopic tags through chemical reactions, the peak intensity ratio of the labeled analyte pair can provide relative or absolute quantitative information on the metabolites. We describe the use of (12)C2- and (13)C2-dansyl chloride (DnsCl) as the isotope reagents to profile the metabolites containing amine and phenolic hydroxyl functional groups by LC-MS. This method can be used to compare the relative concentration changes of hundreds or thousands of amine- and phenol-containing metabolites among many comparative samples and generate absolute concentration information on metabolites for which the standards are available. Combined with statistical analysis and metabolite identification tools, this method can be used to identify key metabolites involved in differentiating comparative samples such as disease cases vs. healthy controls. PMID:25270927

  13. Generalized multiple internal standard method for quantitative liquid chromatography mass spectrometry.

    PubMed

    Hu, Yuan-Liang; Chen, Zeng-Ping; Chen, Yao; Shi, Cai-Xia; Yu, Ru-Qin

    2016-05-01

    In this contribution, a multiplicative effects model for generalized multiple-internal-standard method (MEMGMIS) was proposed to solve the signal instability problem of LC-MS over time. MEMGMIS model seamlessly integrates the multiple-internal-standard strategy with multivariate calibration method, and takes full use of all the information carried by multiple internal standards during the quantification of target analytes. Unlike the existing methods based on multiple internal standards, MEMGMIS does not require selecting an optimal internal standard for the quantification of a specific analyte from multiple internal standards used. MEMGMIS was applied to a proof-of-concept model system: the simultaneous quantitative analysis of five edible artificial colorants in two kinds of cocktail drinks. Experimental results demonstrated that MEMGMIS models established on LC-MS data of calibration samples prepared with ultrapure water could provide quite satisfactory concentration predictions for colorants in cocktail samples from their LC-MS data measured 10days after the LC-MS analysis of the calibration samples. The average relative prediction errors of MEMGMIS models did not exceed 6.0%, considerably better than the corresponding values of commonly used univariate calibration models combined with multiple internal standards. The advantages of good performance and simple implementation render MEMGMIS model a promising alternative tool in quantitative LC-MS assays. PMID:27072522

  14. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  15. Streaming visualisation of quantitative mass spectrometry data based on a novel raw signal decomposition method

    PubMed Central

    Zhang, Yan; Bhamber, Ranjeet; Riba-Garcia, Isabel; Liao, Hanqing; Unwin, Richard D; Dowsey, Andrew W

    2015-01-01

    As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control, verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data is stored as contiguous spectra. Recall of individual spectra is quick but panoramas, zooming and panning across whole datasets necessitates processing/memory overheads impractical for interactive use. Moreover, visualisation is challenging if significant quantification data is missing due to data-dependent acquisition of MS/MS spectra. In order to tackle these issues, we leverage our seaMass technique for novel signal decomposition. LC-MS data is modelled as a 2D surface through selection of a sparse set of weighted B-spline basis functions from an over-complete dictionary. By ordering and spatially partitioning the weights with an R-tree data model, efficient streaming visualisations are achieved. In this paper, we describe the core MS1 visualisation engine and overlay of MS/MS annotations. This enables the mass spectrometrist to quickly inspect whole runs for ionisation/chromatographic issues, MS/MS precursors for coverage problems, or putative biomarkers for interferences, for example. The open-source software is available from http://seamass.net/viz/. PMID:25663356

  16. Streaming visualisation of quantitative mass spectrometry data based on a novel raw signal decomposition method.

    PubMed

    Zhang, Yan; Bhamber, Ranjeet; Riba-Garcia, Isabel; Liao, Hanqing; Unwin, Richard D; Dowsey, Andrew W

    2015-04-01

    As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control, verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data is stored as contiguous spectra. Recall of individual spectra is quick but panoramas, zooming and panning across whole datasets necessitates processing/memory overheads impractical for interactive use. Moreover, visualisation is challenging if significant quantification data is missing due to data-dependent acquisition of MS/MS spectra. In order to tackle these issues, we leverage our seaMass technique for novel signal decomposition. LC-MS data is modelled as a 2D surface through selection of a sparse set of weighted B-spline basis functions from an over-complete dictionary. By ordering and spatially partitioning the weights with an R-tree data model, efficient streaming visualisations are achieved. In this paper, we describe the core MS1 visualisation engine and overlay of MS/MS annotations. This enables the mass spectrometrist to quickly inspect whole runs for ionisation/chromatographic issues, MS/MS precursors for coverage problems, or putative biomarkers for interferences, for example. The open-source software is available from http://seamass.net/viz/. PMID:25663356

  17. Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis.

    PubMed

    Soldi, Monica; Cuomo, Alessandro; Bonaldi, Tiziana

    2016-07-01

    Histone PTMs play a crucial role in regulating chromatin structure and function, with impact on gene expression. MS is nowadays widely applied to study histone PTMs systematically. Because histones are rich in arginine and lysine, classical shot-gun approaches based on trypsin digestion are typically not employed for histone modifications mapping. Instead, different protocols of chemical derivatization of lysines in combination with trypsin have been implemented to obtain "Arg-C like" digestion products that are more suitable for LC-MS/MS analysis. Although widespread, these strategies have been recently described to cause various side reactions that result in chemical modifications prone to be misinterpreted as native histone marks. These artefacts can also interfere with the quantification process, causing errors in histone PTMs profiling. The work of Paternoster V. et al. is a quantitative assessment of methyl-esterification and other side reactions occurring on histones after chemical derivatization of lysines with propionic anhydride [Proteomics 2016, 16, 2059-2063]. The authors estimate the effect of different solvents, incubation times, and pH on the extent of these side reactions. The results collected indicate that the replacement of methanol with isopropanol or ACN not only blocks methyl-esterification, but also significantly reduces other undesired unspecific reactions. Carefully titrating the pH after propionic anhydride addition is another way to keep methyl-esterification under control. Overall, the authors describe a set of experimental conditions that allow reducing the generation of various artefacts during histone propionylation. PMID:27373704

  18. Observations on the quantitation of the phosphate content of peptides by fast-atom bombardment mass spectrometry.

    PubMed

    Poulter, L; Ang, S G; Williams, D H; Cohen, P

    1987-07-29

    Equimolar mixtures of the phosphorylated and dephosphorylated forms of several peptides have been subjected to fast-atom bombardment mass spectrometry (FABMS), to investigate whether the stoichiometry of phosphorylation can be determined from the relative molecular-ion abundances of the phospho and dephospho derivatives. It is concluded that quantitation can be achieved for peptides with large positive or negative hydrophobicity/hydrophilicity indices (delta F values) where addition of a phosphate group does not alter the distribution of the peptide within the matrix significantly. For peptides with small positive or negative delta F values, phosphopeptides tend to be partially suppressed by their dephosphorylated counterparts. Suppression can be partially or totally overcome by conversion of the peptide to a hydrophobic derivative, and by the selection of an appropriate matrix. Alternatively, addition of a very strong acid, perchloric acid, can even reverse the original suppression effect. This last effect is believed to be due to the increased ionic strength in the matrix, which forces a relatively hydrophilic analyte to the matrix surface; and the ability of such a phosphorylated analyte to form a more stable gas-phase cation. PMID:3038197

  19. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli

    PubMed Central

    Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R

    2014-01-01

    Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3′ domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3′-domain is unanchored and the 5′-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells. DOI: http://dx.doi.org/10.7554/eLife.04491.001 PMID:25313868

  20. Quantitative Mass Spectrometry Identifies Novel Host Binding Partners for Pathogenic Escherichia coli Type III Secretion System Effectors.

    PubMed

    Law, Robyn J; Law, Hong T; Scurll, Joshua M; Scholz, Roland; Santos, Andrew S; Shames, Stephanie R; Deng, Wanyin; Croxen, Matthew A; Li, Yuling; de Hoog, Carmen L; van der Heijden, Joris; Foster, Leonard J; Guttman, Julian A; Finlay, B Brett

    2016-05-01

    Enteropathogenic and enterohemorrhagic Escherichia coli cause enteric diseases resulting in significant morbidity and mortality worldwide. These pathogens remain extracellular and translocate a set of type III secreted effector proteins into host cells to promote bacterial virulence. Effectors manipulate host cell pathways to facilitate infection by interacting with a variety of host targets, yet the binding partners and mechanism of action of many effectors remain elusive. We performed a mass spectrometry screen to identify host targets for a library of effectors. We found five known effector targets and discovered four novel interactions. Interestingly, we identified multiple effectors that interacted with the microtubule associated protein, ensconsin. Using co-immunoprecipitations, we confirmed that NleB1 and EspL interacted with ensconsin in a region that corresponded to its microtubule binding domain. Ensconsin is an essential cofactor of kinesin-1 that is required for intracellular trafficking, and we demonstrated that intracellular trafficking was severely disrupted during wild type EPEC infections but not during infections with ΔnleB1 or ΔespL mutants. Our findings demonstrate the efficacy of quantitative proteomics for identifying effector-host protein interactions and suggest that vesicular trafficking is a crucial cellular process that may be targeted by NleB1 and EspL through their interaction with ensconsin. PMID:27018634

  1. Improved Sensitivity for the Qualitative and Quantitative Analysis of Active Ricin by MALDI-TOF Mass Spectrometry.

    PubMed

    Wang, Dongxia; Baudys, Jakub; Barr, John R; Kalb, Suzanne R

    2016-07-01

    Ricin is a highly toxic protein which causes cell death by blocking protein synthesis and is considered a potential bioterrorism agent. Rapid and sensitive detection of ricin toxin in various types of sample matrices is needed as an emergency requirement for public health and antibioterrorism response. An in vitro MALDI TOF MS-based activity assay that detects ricin mediated depurination of synthetic substrates was improved through optimization of the substrate, reaction conditions, and sample preparation. In this method, the ricin is captured by a specific polycolonal antibody followed by hydrolysis reaction. The ricin activity is determined by detecting the unique cleavage product of synthetic oligomer substrates. The detection of a depurinated substrate was enhanced by using a more efficient RNA substrate and optimizing buffer components, pH, and reaction temperature. In addition, the factors involved in mass spectrometry analysis, such as MALDI matrix, plate, and sample preparation, were also investigated to improve the ionization of the depurinated product and assay reproducibility. With optimized parameters, the limit of detection of 0.2 ng/mL of ricin spiked in buffer and milk was accomplished, representing more than 2 orders of magnitude enhancement in assay sensitivity. Improving assay's ruggeddness or reproducibility also made it possible to quantitatively detect active ricin with 3 orders of magnitude dynamic range. PMID:27264550

  2. Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin.

    PubMed

    Marie, Anne-Lise; Przybylski, Cédric; Gonnet, Florence; Daniel, Régis; Urbain, Rémi; Chevreux, Guillaume; Jorieux, Sylvie; Taverna, Myriam

    2013-10-24

    The present study describes a reproducible and quantitative capillary zone electrophoresis (CZE) method, which leads to the separation of nine forms (native, oxidized and glycated) of human serum albumin (HSA). In an attempt to identify the different species separated by this CZE method, the capillary electrophoresis was coupled to mass spectrometry using a sheath liquid interface, an optimized capillary coating and a suitable CE running buffer. CE-MS analyses confirmed the heterogeneity of albumin preparation and revealed new truncated and modified forms such as Advanced Glycation End products (AGEs). Assignment of the CZE peaks was carried out using specific antibodies, carboxypeptidase A or sample reduction before or during the CE separation. Thus, five HSA forms were unambiguously identified. Using this CZE method several albumin batches produced by slightly different fractionation ways could be discriminated. Furthermore, analyses of HSA preparations marketed by five pharmaceutical industries revealed that two therapeutic albumins, including that marketed by LFB, contained the highest proportion of native form and lower levels of oxidized forms. PMID:24120174

  3. Ultra Performance Liquid Chromatography with Tandem Mass Spectrometry for the Quantitation of Seventeen Sedative Hypnotics in Six Common Toxicological Matrices.

    PubMed

    Mata, Dani C; Davis, John F; Figueroa, Ariana K; Stanford, Mary June

    2016-01-01

    An ultra performance liquid chromatography triple quadrupole mass spectrometry (LC-MS-MS) method for the quantification of 14 benzodiazepines and three sedative hypnotics is presented. The fast and inexpensive assay was developed for California's Orange County Crime Lab for use in antemortem (AM) and postmortem casework. The drugs were rapidly cleaned up from AM blood, postmortem blood, urine, liver, brain and stomach contents using DPX(®) Weak Anion Exchange (DPX WAX) tips fitted on a pneumatic extractor, which can process up to 48 samples at one time. Assay performance was determined for validation based on recommendations by the Scientific Working Group for Forensic Toxicology for linearity, limit of quantitation, limit of detection, bias, precision (within run and between run), dilution integrity, carry-over, selectivity, recovery, ion suppression and extracted sample stability. Linearity was verified using the therapeutic and toxic ranges of all 17 analytes. Final verification of the method was confirmed by four analysts using 20 blind matrix matched samples. All results were within 20% of each other and the expected value. PMID:26374882

  4. Quantitative determination of the anticancer agent tubeimoside I in rat plasma by liquid chromatography coupled with mass spectrometry.

    PubMed

    Liang, Ming-Jin; Zhang, Wei-Dong; Zhang, Chuan; Liu, Run-Hui; Shen, Yun-Heng; Li, Hui-Liang; Wang, Xiao-Lin; Wang, Xiang-Wei; Zhu, Jian-Bao; Chen, Chun-Lin

    2007-01-01

    Tubeimoside I is an important component isolated from Bolbostemma paniculatum. Tubeimoside I has been demonstrated to possess many pharmacological activities, including anti-inflammatory, antitumor, and antitumor-promoting effects. The purpose of the present study was to examine in vivo pharmacokinetics and bioavailability of tubeimoside I in rats by using a liquid chromatography coupled with mass spectrometry quantitative detection method (LC/MS). The plasma samples were deproteinated, evaporated and reconstituted in 100 microl methanol prior to analysis. The separation was performed by Waters Symmetry C18 reversed-phase column (3.5 microm, 150 mm x 2.1mm, Waters Inc., USA) and a SB-C18 guard column (5 microm, 20 mm x 4.0mm). The mobile phase was a mixture of acetonitrile and water containing 5 microM NaAc (60:40, v/v). The method was validated within the concentration range 20-5000 ng/ml, and the calibration curves were linear with correlation coefficients >0.999. The lowest limit of quantitation (LLOQ) for tubeimoside I was 20 ng/ml in 0.1 ml rat plasma. The intra-assay accuracy and precision ranged from 92.4 to 104.9% and from 5.8 to 10.5%, respectively, while inter-assay accuracy and precision ranged from 94.2 to 95.0% and from 5.1 to 8.8%, respectively. The method was further applied to assess pharmacokinetics and oral bioavailability of tubeimoside I after intravenous and oral administration to rats. The oral bioavailability of tubeimoside I is only 0.23%, which indicates that tubeimoside I has poor absorption or undergoes acid-induced degradation. Practical utility of this new LC/MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration. PMID:16931181

  5. Discovery of Mouse Spleen Signaling Responses to Anthrax using Label-Free Quantitative Phosphoproteomics via Mass Spectrometry*

    PubMed Central

    Manes, Nathan P.; Dong, Li; Zhou, Weidong; Du, Xiuxia; Reghu, Nikitha; Kool, Arjan C.; Choi, Dahan; Bailey, Charles L.; Petricoin, Emanuel F.; Liotta, Lance A.; Popov, Serguei G.

    2011-01-01

    Inhalational anthrax is caused by spores of the bacterium Bacillus anthracis (B. anthracis), and is an extremely dangerous disease that can kill unvaccinated victims within 2 weeks. Modern antibiotic-based therapy can increase the survival rate to ∼50%, but only if administered presymptomatically (within 24–48 h of exposure). To discover host signaling responses to presymptomatic anthrax, label-free quantitative phosphoproteomics via liquid chromatography coupled to mass spectrometry was used to compare spleens from uninfected and spore-challenged mice over a 72 h time-course. Spleen proteins were denatured using urea, reduced using dithiothreitol, alkylated using iodoacetamide, and digested into peptides using trypsin, and the resulting phosphopeptides were enriched using titanium dioxide solid-phase extraction and analyzed by nano-liquid chromatography-Linear Trap Quadrupole-Orbitrap-MS(/MS). The fragment ion spectra were processed using DeconMSn and searched using both Mascot and SEQUEST resulting in 252,626 confident identifications of 6248 phosphopeptides (corresponding to 5782 phosphorylation sites). The precursor ion spectra were deisotoped using Decon2LS and aligned using MultiAlign resulting in the confident quantitation of 3265 of the identified phosphopeptides. ANOVAs were used to produce a q-value ranked list of host signaling responses. Late-stage (48–72 h postchallenge) Sterne strain (lethal) infections resulted in global alterations to the spleen phosphoproteome. In contrast, ΔSterne strain (asymptomatic; missing the anthrax toxin) infections resulted in 188 (5.8%) significantly altered (q<0.05) phosphopeptides. Twenty-six highly tentative phosphorylation responses to early-stage (24 h postchallenge) anthrax were discovered (q<0.5), and ten of these originated from eight proteins that have known roles in the host immune response. These tentative early-anthrax host response signaling events within mouse spleens may translate into presymptomatic

  6. Quantitative analysis of surfactant deposits on human skin by liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Massey, Karen A; Snelling, Anna M; Nicolaou, Anna

    2010-05-15

    Surfactants are commonly used as cleansing agents and yet there are concerns that they may also have a role in skin irritation. The lack of suitable methods for the quantitative and qualitative analysis of surfactant deposition on skin has hindered the in-depth investigation of such effects. Here, we report the application of reversed-phase liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) assays for two surfactants commonly used in consumer products, namely sodium lauryl ether sulfate (SLES) and laurylamidopropyl betaine (LAPB), to a baseline study aiming to assess deposition levels on human skin. The linearity of the assays was established at 3-20 ng, with coefficient of variation below 5%. The detection limits were 100 pg for LAPB and 1 ng for SLES; quantitation limits were 500 pg for LAPB and 2.5 ng for SLES. The baseline study was conducted using a panel of 40 healthy volunteers. Skin extract samples were taken in triplicate from forearms, using ethanol. SLES was detected on most volunteers, with 75% of them having SLES deposits in the range of 100-600 ng/cm(2). LAPB was detected on the skin of all volunteers with 85% of them having deposit levels within the concentration range of 1-100 ng/cm(2). These results demonstrate the extent to which commonly used surfactants remain on the skin during the day. The analytical methods reported here can be applied to the investigation of surfactants in relation to general skin condition and to the development and optimisation of new consumer wash products. PMID:20391611

  7. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  8. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-01-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques. PMID:26070716

  9. Application of liquid chromatography-tandem mass spectrometry in quantitative bioanalyses of organic molecules in aquatic environment and organisms.

    PubMed

    Bussy, Ugo; Li, Ke; Li, Weiming

    2016-05-01

    Analytical methods using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of metabolites or contaminants (or both) in various tissues of aquatic organisms and in the aquatic environment have received increasing attention in the last few years. This review discusses the findings relevant to such procedures published between 2005 and 2015. The aim is to evaluate the advantages, restrictions, and performances of the procedures from sample preparation to mass spectrometry measurement. To support these discussions, a general knowledge on LC-MS/MS is also provided. PMID:26996906

  10. Simultaneous quantitation of amphetamines and opiates in human hair by liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, Hsiu-Chuan; Liu, Ray H; Lin, Dong-Liang

    2015-04-01

    In this study, an incubation, solid-phase extraction (SPE) and LC-MS-MS procedure was developed, validated and used for simultaneous analysis of amphetamine (AP), methamphetamine (MA), morphine (MOR), codeine (COD), 6-acetylmorphine (6-AM) and 6-acetylcodeine (6-AC) in hair. Hair samples were initially cut into sections, washed with dichloromethane, then sonicated in a methanol-trifluoroacetic acid mixture. The resulting solutions were processed with a SPE procedure before undergoing LC-MS-MS analysis. Mass spectrometric analysis was performed in positive-ion, multiple reactions monitoring (MRM) mode, using appropriate collision energy for each selected precursor ion. The overall protocol, when applied to the analysis of hair (50 mg) samples fortified with 100-10,000 pg/mg of the analytes, was found to achieve 55.5-74.6% recovery of the six analytes with the following analytical parameters: (i) intra- and interday precision/accuracy data for the six analytes in the 1.6-7.6%/-6.0-12.8% and 1.3-6.6%/-6.9-9.3% ranges, respectively; (ii) r(2) > 0.998 for all six analytes and (iii) LOD 2 pg/mg for AP and MA, and 8 pg/mg for MOR, COD, 6-AM and 6-AC; LOQ 10 pg/mg for all six analytes. This method was then utilized to (i) analyze hair samples collected from 86 self-reported drug users and (ii) evaluate the deposition pattern of drugs in head hairs from four female MA and heroin users in a rehabilitation facility. This relatively simple protocol was found superior over the GC-MS methods we have previously developed and utilized in our laboratory for the analysis of these six analytes. PMID:25564575

  11. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation.

    PubMed

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G; Fondufe-Mittendorf, Yvonne N

    2016-07-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  12. A Quantitative Mass Spectrometry-based Approach for Identifying Protein Kinase-Clients and Quantifying Kinase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Homo sapiens and Arabidopsis thaliana genomes are believed to encode >500 and >1,000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Mass spectrometry (MS)-based approaches have been integral to the large-scale mapp...

  13. Determination of loperamide in mdr1a/1b knock-out mouse brain tissue using matrix-assisted laser desorption/ionization mass spectrometry and comparison with quantitative electrospray-triple quadrupole mass spectrometry analysis.

    PubMed

    Shin, Young G; Dong, Teresa; Chou, Bilin; Menghrajani, Kapil

    2011-11-01

    Recently matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) imaging has been used to analyze small molecule pharmaceutical compounds directly on tissue sections to determine spatial distribution within target tissue and organs. The data presented to date usually indicate relative amounts of drug within the tissue. The determination of absolute amounts is still done using tissue homogenization followed by traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, the quantitative determination of loperamide, an antidiarrheal agent and a P-glycoprotein substrate, in mdr1a/1b (-/-) mouse brain tissue sections using MALDI MS on a quadrupole time-of-flight mass spectrometry is described. 5 mg/mL α-cyano-4-hydroxycinnamic acid in 50% acetonitrile with 0.1% trifluoroacetic acid and 0.5 μM reserpine was used as the MALDI matrix. The calibration curve constructed by the peak intensities of standard samples from MALDI MS was linear from 0.025 to 0.5 μM with r² = 0.9989. The accuracy of calibration curve standards was 78.3-105.9% and the percent deviation was less than 25%. Comparison between direct MALDI tissue analysis and conventional tissue analysis using homogenization followed by electrospray LC-MS/MS was also explored. PMID:22139698

  14. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  15. Development of a High-Sensitivity Quantitation Method for Arginine Vasopressin by High-Performance Liquid Chromatography Tandem Mass Spectrometry, and Comparison with Quantitative Values by Radioimmunoassay.

    PubMed

    Tsukazaki, Yasuko; Senda, Naoto; Kubo, Kinya; Yamada, Shigeru; Kugoh, Hiroyuki; Kazuki, Yasuhiro; Oshimura, Mitsuo

    2016-01-01

    Human plasma arginine vasopressin (AVP) levels serve as a clinically relevant marker of diabetes and related syndromes. We developed a highly sensitive method for measuring human plasma AVP using high-performance liquid chromatography tandem mass spectrometry. AVP was extracted from human plasma using a weak-cation solid-phase extraction plate, and separated on a wide-bore octadecyl reverse-phase column. AVP was quantified in ion-transition experiments utilizing a product ion (m/z 328.3) derived from its parent ion (m/z 542.8). The sensitivity was enhanced using 0.02% dichloromethane as a mobile-phase additive. The lower limit of quantitation was 0.200 pmol/L. The extraction recovery ranged from 70.2 ± 7.2 to 73.3 ± 6.2% (mean ± SD), and the matrix effect ranged from 1.1 - 1.9%. Quality-testing samples revealed interday/intraday accuracy and precision ranging over 0.9 - 3% and -0.3 - 2%, respectively, which included the endogenous baseline. Our results correlated well with radioimmunoassay results using 22 human volunteer plasma samples. PMID:26860558

  16. Simultaneous quantitative analysis of eight vitamin D analogues in milk using liquid chromatography-tandem mass spectrometry.

    PubMed

    Gomes, Fabio P; Shaw, P Nicholas; Whitfield, Karen; Hewavitharana, Amitha K

    2015-09-01

    Milk is an important source of nutrients for various risk populations, including infants. The accurate measurement of vitamin D in milk is necessary to provide adequate supplementation advice for risk groups and to monitor regulatory compliance. Currently used liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods are capable of measuring only four analogues of vitamin D in unfortified milk. We report here an accurate quantitative analytical method for eight analogues of vitamin D: Vitamin D2 and D3 (D2 and D3), 25-hydroxy D2 and D3, 24,25-dihydroxy D2 and D3, and 1,25-dihydroxyD2 and D3. In this study, we compared saponification and protein precipitation for the extraction of vitamin D from milk and found the latter to be more effective. We also optimised the pre-column derivatisation using 4-phenyl-l,2,4-triazoline-3,5-dione (PTAD), to achieve the highest sensitivity and accuracy for all major vitamin D forms in milk. Chromatography was optimised to reduce matrix effects such as ion-suppression, and the matrix effects were eliminated using co-eluting stable isotope labelled internal standards for the calibration of each analogue. The analogues, 25-hydroxyD3 (25(OH)D3) and its epimer (3-epi-25(OH)D3) were chromatographically resolved, to prevent over-estimation of 25(OH)D3. The method was validated and subsequently applied for the measurement of total vitamin D levels in human, cow, mare, goat and sheep milk samples. The detection limits, repeatability standard deviations, and recovery ranges were from 0.2 to 0.4 femtomols, 6.30-13.5%, and 88.2-105%, respectively. PMID:26388380

  17. Structure of Complement C3(H2O) Revealed By Quantitative Cross-Linking/Mass Spectrometry And Modeling.

    PubMed

    Chen, Zhuo A; Pellarin, Riccardo; Fischer, Lutz; Sali, Andrej; Nilges, Michael; Barlow, Paul N; Rappsilber, Juri

    2016-08-01

    The slow but spontaneous and ubiquitous formation of C3(H2O), the hydrolytic and conformationally rearranged product of C3, initiates antibody-independent activation of the complement system that is a key first line of antimicrobial defense. The structure of C3(H2O) has not been determined. Here we subjected C3(H2O) to quantitative cross-linking/mass spectrometry (QCLMS). This revealed details of the structural differences and similarities between C3(H2O) and C3, as well as between C3(H2O) and its pivotal proteolytic cleavage product, C3b, which shares functionally similarity with C3(H2O). Considered in combination with the crystal structures of C3 and C3b, the QCMLS data suggest that C3(H2O) generation is accompanied by the migration of the thioester-containing domain of C3 from one end of the molecule to the other. This creates a stable C3b-like platform able to bind the zymogen, factor B, or the regulator, factor H. Integration of available crystallographic and QCLMS data allowed the determination of a 3D model of the C3(H2O) domain architecture. The unique arrangement of domains thus observed in C3(H2O), which retains the anaphylatoxin domain (that is excised when C3 is enzymatically activated to C3b), can be used to rationalize observed differences between C3(H2O) and C3b in terms of complement activation and regulation. PMID:27250206

  18. Structure of Complement C3(H2O) Revealed By Quantitative Cross-Linking/Mass Spectrometry And Modeling*

    PubMed Central

    Pellarin, Riccardo; Sali, Andrej; Barlow, Paul N.

    2016-01-01

    The slow but spontaneous and ubiquitous formation of C3(H2O), the hydrolytic and conformationally rearranged product of C3, initiates antibody-independent activation of the complement system that is a key first line of antimicrobial defense. The structure of C3(H2O) has not been determined. Here we subjected C3(H2O) to quantitative cross-linking/mass spectrometry (QCLMS). This revealed details of the structural differences and similarities between C3(H2O) and C3, as well as between C3(H2O) and its pivotal proteolytic cleavage product, C3b, which shares functionally similarity with C3(H2O). Considered in combination with the crystal structures of C3 and C3b, the QCMLS data suggest that C3(H2O) generation is accompanied by the migration of the thioester-containing domain of C3 from one end of the molecule to the other. This creates a stable C3b-like platform able to bind the zymogen, factor B, or the regulator, factor H. Integration of available crystallographic and QCLMS data allowed the determination of a 3D model of the C3(H2O) domain architecture. The unique arrangement of domains thus observed in C3(H2O), which retains the anaphylatoxin domain (that is excised when C3 is enzymatically activated to C3b), can be used to rationalize observed differences between C3(H2O) and C3b in terms of complement activation and regulation. PMID:27250206

  19. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    PubMed

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. PMID:25933590

  20. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Yan, Neng; Zhu, Zhenli; Jin, Lanlan; Guo, Wei; Gan, Yiqun; Hu, Shenghong

    2015-06-16

    Metal nanoparticles (NPs) determination has recently attracted considerable attention because of the continuing boom of nanotechnology. In this study, a novel method for separation and quantitative characterization of NPs in aqueous suspension was established by coupling thin layer chromatography (TLC) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Gold nanoparticles (AuNPs) of various sizes were used as the model system. It was demonstrated that TLC not only allowed separation of gold nanoparticles from ionic gold species by using acetyl acetone/butyl alcohol/triethylamine (6:3:1, v/v) as the mobile phase, but it also achieved the separation of differently sized gold nanoparticles (13, 34, and 47 nm) by using phosphate buffer (0.2 M, pH = 6.8), Triton X-114 (0.4%, w/v), and EDTA (10 mM) as the mobile phase. Various experimental parameters that affecting TLC separation of AuNPs, such as the pH of the phosphate buffer, the coating of AuNPs, the concentrations of EDTA and Triton X-114, were investigated and optimized. It was found that separations of AuNPs by TLC displayed size dependent retention behavior with good reproducibility, and the retardation factors (R(f) value) increased linearly with decreasing nanoparticle size. The analytical performance of the present method was evaluated under optimized conditions. The limits of detection were in the tens of pg range, and repeatability (RSD, n = 7) was 6.3%, 5.9%, and 8.3% for 30 ng of 13 nm AuNPs, 34 nm AuNPs, and 47 nm AuNPs, respectively. The developed TLC-LA-ICP-MS method has also been applied to the analysis of spiked AuNPs in lake water, river water, and tap water samples. PMID:26005902

  1. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  2. Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide

    PubMed Central

    2010-01-01

    Background Salmonella enterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied. Results Using stable isotope labeling coupled with mass spectrometry, we performed quantitative proteomic analysis of Salmonella enterica serovar Enteritidis and identified 76 proteins whose expression is modulated upon exposure to H2O2. SPI-1 effector SipC was expressed about 3-fold higher and SopB was expressed approximately 2-fold lower in the presence of H2O2, while no significant change in the expression of another SPI-1 protein SipA was observed. The relative abundance of SipA, SipC, and SopB was confirmed by Western analyses, validating the accuracy and reproducibility of our approach for quantitative analysis of protein expression. Furthermore, immuno-detection showed substantial expression of SipA and SipC but not SopB in the late phase of infection in macrophages and in the spleen of infected mice. Conclusions We have identified Salmonella proteins whose expression is modulated in the presence of H2O2. Our results also provide the first direct evidence that SipC is highly expressed in the spleen at late stage of salmonellosis in vivo. These results suggest a possible role of SipC and other regulated proteins in

  3. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  4. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  5. Quantitative Analysis of Therapeutic Drugs in Dried Blood Spot Samples by Paper Spray Mass Spectrometry: An Avenue to Therapeutic Drug Monitoring

    NASA Astrophysics Data System (ADS)

    Manicke, Nicholas Edward; Abu-Rabie, Paul; Spooner, Neil; Ouyang, Zheng; Cooks, R. Graham

    2011-09-01

    A method is presented for the direct quantitative analysis of therapeutic drugs from dried blood spot samples by mass spectrometry. The method, paper spray mass spectrometry, generates gas phase ions directly from the blood card paper used to store dried blood samples without the need for complex sample preparation and separation; the entire time for preparation and analysis of blood samples is around 30 s. Limits of detection were investigated for a chemically diverse set of some 15 therapeutic drugs; hydrophobic and weakly basic drugs, such as sunitinib, citalopram, and verapamil, were found to be routinely detectable at approximately 1 ng/mL. Samples were prepared by addition of the drug to whole blood. Drug concentrations were measured quantitatively over several orders of magnitude, with accuracies within 10% of the expected value and relative standard deviation (RSD) of around 10% by prespotting an internal standard solution onto the paper prior to application of the blood sample. We have demonstrated that paper spray mass spectrometry can be used to quantitatively measure drug concentrations over the entire therapeutic range for a wide variety of drugs. The high quality analytical data obtained indicate that the technique may be a viable option for therapeutic drug monitoring.

  6. The coupling of supercritical fluid chromatography and field ionization time-of-flight high-resolution mass spectrometry for rapid and quantitative analysis of petroleum middle distillates.

    PubMed

    Qian, Kuangnan; Diehl, John W; Dechert, Gary J; DiSanzo, Frank P

    2004-01-01

    We report the first coupling of supercritical fluid chromatography (SFC) with field ionization time-of-flight high-resolution mass spectrometry (FI-ToF HRMS), in parallel with ultraviolet (UV) detection and flame ionization detection (FID), for rapid and quantitative analysis of petroleum middle distillates. SFC separates petroleum middle distillates into saturates and 1- to 3-ring aromatics. FI generates molecular ions for hydrocarbon species eluted from the SFC. The high resolution and exact mass measurements by ToF mass spectrometry provide elemental compositions of the molecules in the petroleum product. The amounts of saturates and aromatic ring types were quantified using the parallel SFC-FID assisted by SFC-UV. With a proper carbon-number calibration, the detailed composition of the petroleum middle distillate was rapidly determined. PMID:15103095

  7. Quantitative analysis of polar lipids in the nanoliter level of rat serum by liquid chromatography/mass spectrometry/mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polar lipids in serum, including lysophospholipids (LPLs) and free fatty acids (FFAs), have a broad range of biological activities and require a suitable method for their quantitative analysis. Conventional methods use multistep procedures to simultaneously purify and analyze polar lipids and non-po...

  8. A temporal examination of the planktonic and biofilm proteome of whole cell Pseudomonas aeruginosa PAO1 using quantitative mass spectrometry.

    PubMed

    Park, Amber J; Murphy, Kathleen; Krieger, Jonathan R; Brewer, Dyanne; Taylor, Paul; Habash, Marc; Khursigara, Cezar M

    2014-04-01

    Chronic polymicrobial lung infections are the chief complication in patients with cystic fibrosis. The dominant pathogen in late-stage disease is Pseudomonas aeruginosa, which forms recalcitrant, structured communities known as biofilms. Many aspects of biofilm biology are poorly understood; consequently, effective treatment of these infections is limited, and cystic fibrosis remains fatal. Here we combined in-solution protein digestion of triplicate growth-matched samples with a high-performance mass spectrometry platform to provide the most comprehensive proteomic dataset known to date for whole cell P. aeruginosa PAO1 grown in biofilm cultures. Our analysis included protein-protein interaction networks and PseudoCAP functional information for unique and significantly modulated proteins at three different time points. Secondary analysis of a subgroup of proteins using extracted ion currents validated the spectral counting data of 1884 high-confidence proteins. In this paper we demonstrate a greater representation of proteins related to metabolism, DNA stability, and molecular activity in planktonically grown P. aeruginosa PAO1. In addition, several virulence-related proteins were increased during planktonic growth, including multiple proteins encoded by the pyoverdine locus, uncharacterized proteins with sequence similarity to mammalian cell entry protein, and a member of the hemagglutinin family of adhesins, HecA. Conversely, biofilm samples contained an uncharacterized protein with sequence similarity to an adhesion protein with self-association characteristics (AidA). Increased levels of several phenazine biosynthetic proteins, an uncharacterized protein with sequence similarity to a metallo-beta-lactamase, and lower levels of the drug target gyrA support the putative characteristics of in situ P. aeruginosa infections, including competitive fitness and antibiotic resistance. This quantitative whole cell approach advances the existing P. aeruginosa

  9. A Temporal Examination of the Planktonic and Biofilm Proteome of Whole Cell Pseudomonas aeruginosa PAO1 Using Quantitative Mass Spectrometry*

    PubMed Central

    Park, Amber J.; Murphy, Kathleen; Krieger, Jonathan R.; Brewer, Dyanne; Taylor, Paul; Habash, Marc; Khursigara, Cezar M.

    2014-01-01

    Chronic polymicrobial lung infections are the chief complication in patients with cystic fibrosis. The dominant pathogen in late-stage disease is Pseudomonas aeruginosa, which forms recalcitrant, structured communities known as biofilms. Many aspects of biofilm biology are poorly understood; consequently, effective treatment of these infections is limited, and cystic fibrosis remains fatal. Here we combined in-solution protein digestion of triplicate growth-matched samples with a high-performance mass spectrometry platform to provide the most comprehensive proteomic dataset known to date for whole cell P. aeruginosa PAO1 grown in biofilm cultures. Our analysis included protein–protein interaction networks and PseudoCAP functional information for unique and significantly modulated proteins at three different time points. Secondary analysis of a subgroup of proteins using extracted ion currents validated the spectral counting data of 1884 high-confidence proteins. In this paper we demonstrate a greater representation of proteins related to metabolism, DNA stability, and molecular activity in planktonically grown P. aeruginosa PAO1. In addition, several virulence-related proteins were increased during planktonic growth, including multiple proteins encoded by the pyoverdine locus, uncharacterized proteins with sequence similarity to mammalian cell entry protein, and a member of the hemagglutinin family of adhesins, HecA. Conversely, biofilm samples contained an uncharacterized protein with sequence similarity to an adhesion protein with self-association characteristics (AidA). Increased levels of several phenazine biosynthetic proteins, an uncharacterized protein with sequence similarity to a metallo-beta-lactamase, and lower levels of the drug target gyrA support the putative characteristics of in situ P. aeruginosa infections, including competitive fitness and antibiotic resistance. This quantitative whole cell approach advances the existing P. aeruginosa

  10. Quantitative determination of dexamethasone in bovine milk by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Cherlet, Marc; De Baere, Siegrid; De Backer, Patrick

    2004-06-01

    Dexamethasone (DXM) is a synthetic glucocorticoid that is authorized for therapeutic use in veterinary medicine. The European Community (EC) fixed a maximum residue limit (MRL) at 2ng/g for liver, 0.75ng/g for muscle and kidney tissues, and 0.3ng/ml for milk, while its use as growth-promoter is completely banned. The purpose of this study was to develop and validate a simple and reliable method to determine DXM residues in bovine milk. Milk proteins were removed by the addition of concentrated trichloroacetic acid and paper filtration. Solid-phase extraction clean-up on a C18 reversed phase column was performed to obtain an extract suitable for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Chromatographic separation of DXM and the internal standard desoximetasone, was achieved on a PLRP-S polymeric reversed phase column, using a mixture of 0.1% (v/v) acetic acid in water (mobile phase A) and acetonitrile (mobile phase B) as the mobile phases. They were identified using the MS/MS detection technique, and were subsequently quantified. The method has been validated according to the requirements of the EC at 0.15, 0.30 and 0.60ng/ml (being half the MRL, the MRL and double the MRL levels fixed by the EC). Calibration graphs were prepared in the 0.15-5ng/ml range and good linearity was achieved (r>or=0.99 and goodness of fit quantitative determination of DXM residues in milk after intravenous administration of DXM to lactating cows to determine its depletion

  11. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  12. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  13. Use of proton transfer reaction time-of-flight mass spectrometry for quantitative monitoring of toxic nitramines in the environment

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Zhu, L.; Stenstrøm, Y.; Nielsen, C. J.

    2014-12-01

    Naturally occurring aliphatic amines and industrially emitted aromatic amines and alkanolamines produce toxic nitramines, (R1R2)-N-NO2, when photo-oxidized in the atmosphere in the presence of nitrogen oxides (NOx). Particular concerns arise from amine-based CO2 capture where the amine solution may get nitrated by NOx in the flue gas. An on-line analytical technique for measuring nitramines in industrial emissions and in ambient air is thus in high demand. Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) is a state-of-the-art technique for on-line measurements of volatile organic compounds (VOCs) in air. Herein, we report on the use of high mass resolution proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for on-line analysis of nitramines. We generated a mass spectral library from a series of nitramines and investigated the analytical performance of PTR-ToF-MS in terms of sensitivity, precision, accuracy and detection limit. We will discuss limitations of the innovative technique and propose measurement strategies for future emission and ambient measurements.

  14. Characterization of microbial siderophores by mass spectrometry.

    PubMed

    Pluháček, Tomáš; Lemr, Karel; Ghosh, Dipankar; Milde, David; Novák, Jiří; Havlíček, Vladimír

    2016-01-01

    Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context. PMID:25980644

  15. Real-Time Quantitative Analysis of H2, He, O2, and Ar by Quadrupole Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Harrison, W. W.; Griffin, Timothy P.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    The use of a quadrupole ion trap mass spectrometer for quantitative analysis of hydrogen and helium as well as other permanent gases is demonstrated. The customized instrument utilizes the mass selective instability mode of mass analysis as with commercial instruments; however, this instrument operates at a greater RF trapping frequency and without a buffer gas. With these differences, a useable mass range from 2 to over 50 Da is achieved, as required by NASA for monitoring the Space Shuttle during a launch countdown. The performance of the ion trap is evaluated using part-per-million concentrations of hydrogen, helium, oxygen and argon mixed into a nitrogen gas stream. Relative accuracy and precision when quantitating the four analytes were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were slightly higher than the requirement. The instrument provided adequate performance at fast data recording rates, demonstrating the utility of an ion trap mass spectrometer as a real-time quantitative monitoring device for permanent gas analysis.

  16. Characterization and quantitative amino acids analysis of analgesic peptides in cinobufacini injection by size exclusion chromatography, matrix-assisted laser desorption/ionization time of flight mass spectrometry and gas chromatography mass spectrometry.

    PubMed

    Wu, Xu; Si, Nan; Bo, Gao; Hu, Hao; Yang, Jian; Bian, Baolin; Zhao, Hai Yu; Wang, Hongjie

    2015-01-01

    Cinobufacini injection that comes from the water extract of Bufo bufo gargarizans Cantor skin is widely used for cancer treatment in China. Peptide is one of its major types of constituents, however the biological effects and content of this injection are little reported. In present study, the analgesic effect of peptides was determined and evaluated by in-vivo models. To characterize and quantitatively analyze these peptides, a reliable and efficient method combining size exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with amino acid analysis was developed. The peptides presented as a series of analogs with similar molecular weights mostly ranging from 2 to 8 kDa. The amino acid analysis by gas chromatography mass spectrometry (GC-MS) was developed to determine both free and combined amino acids (FAA and CAA) in cinobufacini injection. This method achieved good linearity (R(2) , 0.9909-0.9999) and low limit of detection and quantification. FAA and CAA samples were efficiently analyzed by modified Phenomenex EZ: faast procedure. For the sample analysis, the method showed good repeatability (relative standard deviation, RSD ≤ 10%). For most FAA and CAA the mean recoveries were >80% with RSD <10%. The GC-MS based method is useful for quality assurance of both FAA and CAA in cinobufacini injection. PMID:24924921

  17. Tissue-specific metabolite profiling of Cyperus rotundus L. rhizomes and (+)-nootkatone quantitation by laser microdissection, ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and gas chromatography-mass spectrometry techniques.

    PubMed

    Jaiswal, Yogini; Liang, Zhitao; Guo, Ping; Ho, Hing-Man; Chen, Hubiao; Zhao, Zhongzhen

    2014-07-23

    Cyperus rotundus L. is a plant species commonly found in both India and China. The caused destruction of this plant is of critical concern for agricultural produce. Nevertheless, it can serve as a potential source of the commercially important sesquiterpenoid (+)-nootkatone. The present work describes comparative metabolite profiling and (+)-nootkatone content determination in rhizome samples collected from these two countries. Laser dissected tissues, namely, the cortex, hypodermal fiber bundles, endodermis, amphivasal vascular bundles, and whole rhizomes were analyzed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Gas chromatography-mass spectrometry (GC-MS) analysis was used for profiling of essential oil constituents and quantitation of (+)-nootkatone. The content of (+)-nootkatone was found to be higher in samples from India (30.47 μg/10 g) compared to samples from China (21.72 μg/10 g). The method was validated as per International Conference on Harmonisation (ICH) guidelines (Q2 R1). The results from this study can be applied for quality control and efficient utilization of this terpenoid-rich plant for several applications in food-based industries. PMID:24938835

  18. Mass Spectrometry Applications for the Identification and Quantitation of Biomarkers Resulting from Human Exposure to Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Smith, J. Richard; Capacio, Benedict R.

    In recent years, a number of analytical methods using biomedical samples such as blood and urine have been developed for the verification of exposure to chemical warfare agents. The majority of methods utilize gas or liquid chromatography in conjunction with mass spectrometry. In a small number of cases of suspected human exposure to chemical warfare agents, biomedical specimens have been made available for testing. This chapter provides an overview of biomarkers that have been verified in human biomedical samples, details of the exposure incidents, the methods utilized for analysis, and the biomarker concentration levels determined in the blood and/or urine.

  19. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  20. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  1. Quantitative determination of dimethyl fumarate in silica gel by solid-phase microextraction/gas chromatography/mass spectrometry and ultrasound-assisted extraction/gas chromatography/mass spectrometry.

    PubMed

    Bocchini, Paola; Pinelli, Francesca; Pozzi, Romina; Ghetti, Federica; Galletti, Guido C

    2015-06-01

    Dimethyl fumarate (DMF) is a chemical compound which has been added to silica gel bags used for preserving leather products during shipment. DMF has recently been singled out due to its ability to induce a number of medical problems in people which touch products contaminated by it. Its use as a biocide has been recently made illegal in Europe. Two different extraction techniques, namely ultrasound-assisted extraction (UAE) and solid-phase microextraction (SPME), both coupled with gas chromatography/mass spectrometry were applied to the quantitative determination of DMF in silica gel. Linearity of the methods, reproducibility and detection limits were determined. The two methods were applied to the quantification of DMF in thirty-four silica gel samples used as anti-mould agents in different leather products sold in Italy, and the obtained results were statistically compared. PMID:25939646

  2. Mass spectrometry data from a quantitative analysis of protein expression in gills of immuno-challenged blue mussels (Mytilus edulis).

    PubMed

    Hörnaeus, K; Guillemant, J; Mi, J; Hernroth, B; Bergquist, J; Lind, S Bergström

    2016-09-01

    Here, we provide the dataset associated with our research article on the potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, "Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis)" [1]. Blue mussels were stimulated with lipopolysaccharides and samples were collected at different time points post injection. Protein extracts were prepared from the gills, digested using trypsin and a full in-depth proteome investigation was performed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Protein identification and quantification was performed using the MaxQuant 1.5.1.2 software, "MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification" [2]. PMID:27358907

  3. Quantitative analysis of human serum corticosterone by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry.

    PubMed

    Ghulam, A; Kouach, M; Racadot, A; Boersma, A; Vantyghem, M C; Briand, G

    1999-04-30

    An original method based upon high-performance liquid chromatography coupled to electrospray ionization mass spectrometry has been developed for corticosterone (B) quantification in human serum. After extraction by diethyl ether using triamcinolone (T) as an internal standard, solutes are separated on a C18 microbore column (250 X 1.0 mm, I.D.), using acetonitrile-water-formic acid (40:59.9:0.1, v/v/v) as the mobile phase (flow-rate 40 microl/min). Detection is performed on an API 1 single quadrupole mass spectrometer equipped with a ESI interface and operated in positive ionization mode. Corticosterone quantifications were realized by computing peak area ratios (B/T) of the serum extracts analyzed in SIM mode (m/z 347 and m/z 395 for B and T. respectively), and comparing them with the calibration curve (r=0.998). PMID:10360442

  4. A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study

    PubMed Central

    2011-01-01

    Background Mass spectrometry-based proteomics has reached a stage where it is possible to comprehensively analyze the whole proteome of a cell in one experiment. Here, the employment of stable isotopes has become a standard technique to yield relative abundance values of proteins. In recent times, more and more experiments are conducted that depict not only a static image of the up- or down-regulated proteins at a distinct time point but instead compare developmental stages of an organism or varying experimental conditions. Results Although the scientific questions behind these experiments are of course manifold, there are, nevertheless, two questions that commonly arise: 1) which proteins are differentially regulated regarding the selected experimental conditions, and 2) are there groups of proteins that show similar abundance ratios, indicating that they have a similar turnover? We give advice on how these two questions can be answered and comprehensively compare a variety of commonly applied computational methods and their outcomes. Conclusions This work provides guidance through the jungle of computational methods to analyze mass spectrometry-based isotope-labeled datasets and recommends an effective and easy-to-use evaluation strategy. We demonstrate our approach with three recently published datasets on Bacillus subtilis [1,2] and Corynebacterium glutamicum [3]. Special focus is placed on the application and validation of cluster analysis methods. All applied methods were implemented within the rich internet application QuPE [4]. Results can be found at http://qupe.cebitec.uni-bielefeld.de. PMID:21663690

  5. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  6. Bioaffinity Mass Spectrometry Screening.

    PubMed

    Yang, Ben; Feng, Yun Jiang; Vu, Hoan; McCormick, Brendan; Rowley, Jessica; Pedro, Liliana; Crowther, Gregory J; Van Voorhis, Wesley C; Forster, Paul I; Quinn, Ronald J

    2016-02-01

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay. PMID:26773071

  7. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  8. Identification and quantitation of glycosidically bound aroma compounds in three tobacco types by gas chromatography-mass spectrometry.

    PubMed

    Cai, Kai; Xiang, Zhangmin; Pan, Wenjie; Zhao, Huina; Ren, Zhu; Lei, Bo; Geng, Zhaoliang

    2013-10-11

    Glycosidically bound aroma compounds in three different types of tobacco were investigated. After isolation of extracts obtained by Amberlite XAD-2 adsorption and ethyl acetate elution, glycosides were analyzed after enzymatic hydrolysis by gas chromatography-mass spectrometry (GC-MS) or directly after trifluoroacetylated (TFA) derivatization by GC-MS in electron ionization (EI) and negative chemical ionization (NCI) mode. In total 21 bound aglycones were identified by β-glucosidase hydrolysis. These aglycones mainly consisted of C13-norisoprenoids, aromatic components and sesquiterpenoids. Additionally, with the aid of enzymatic hydrolysis, 15 β-d-glucopyranosides and 1 β-d-rutinoside were tentatively identified by TFA derivatization. TFA method was validated by repeatability and successfully employed to analyze different types of tobacco. Principal component analysis (PCA) was carried out on identified glycoside variables to visualize the difference between the tobacco types and the relationship between the glycoside variables and the tobacco types was established. PMID:24011421

  9. Quantitative determination of uridine in rabbit plasma and urine by liquid chromatography coupled to a tandem mass spectrometry.

    PubMed

    Kang, Wonku

    2012-04-01

    Recently a pyrimidine nucleoside, uridine, has been show to have a protective effect on cultured human corneal epithelial cells, and on dry eye animal model and patients. In this study, we introduce a sensitive liquid chromatography/tandem mass spectrometry method for the determination of uridine in rabbit plasma and urine. After protein precipitation with methanol including methaqualone (internal standard), the analyte was chromatographed on a reversed-phase column with a mobile phase of 0.1% formic acid aqueous solution and methanol (1:4, v/v). The accuracy and precision of the assay were in accordance with Food and Drug Administration regulations for the validation of bioanalytical methods. This method was used to measure the concentrations of uridine in plasma and urine after a single oral administration of 450 mg/kg uridine in rabbits. PMID:22392515

  10. KiC assay: a quantitative mass spectrometry-based approach for kinase client screening and activity analysis [corrected].

    PubMed

    Huang, Yadong; Thelen, Jay J

    2012-01-01

    Protein phosphorylation is one of the most important posttranslational modifications (PTMs) involved in the transduction of cellular signals. The number of kinases in eukaryotic genomes ranges from several hundred to over one thousand. And with rapidly evolving mass spectrometry (MS)-based approaches, thousands to tens of thousands of phosphorylation sites (phosphosites) have been reported from various eukaryotic organisms, from man to plants. In this relative context, few bona fide kinase-client relationships have been identified to date. To merge the gap between these phosphosites and the cognate kinases that beget these events, comparable large-scale methodologies are required. We describe in detail a MS-based method for identifying kinase-client interactions and quantifying kinase activity. We term this novel Kinase-Client assay, the KiC assay. The KiC assay relies upon the fact that substrate specificities of many kinases are largely determined by primary amino acid sequence or phosphorylation motifs, which consist of key amino acids surrounding the phosphorylation sites. The workflow for detecting kinase-substrate interactions includes four major steps: (1) preparation of purified kinases and synthetic peptide library, (2) in vitro kinase peptide library assay, (3) liquid chromatography (LC)-tandem MS (MS/MS) analysis, and (4) data processing and interpretation. Kinase activity is quantified with the KiC assay by monitoring spectral counts of phosphorylated and unphosphorylated peptides as the readout from LC-tandem mass spectrometry. The KiC assay can be applied as a discovery assay to screen kinases against a synthetic peptide library to find kinase-client relationships or as a targeted assay to characterize kinase kinetics. PMID:22665311

  11. Quantitation of Carisoprodol and Meprobamate in Urine and Plasma Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Slawson, Matthew H; Johnson-Davis, Kamisha L

    2016-01-01

    Carisoprodol and meprobamate are centrally acting muscle relaxant/anxiolytic drugs that can exist in a parent-metabolite relationship (carisoprodol → meprobamate) or as a separate pharmaceutical preparation (meprobamate aka Equanil, others). The monitoring of the use of these drugs has both clinical and forensic applications in pain management applications and in overdose situations. LC-MS/MS is used to analyze urine or plasma/serum extracts with deuterated analogs of each analyte as internal standards to ensure accurate quantitation and control for any potential matrix effects. Positive ion electrospray is used to introduce the analytes into the mass spectrometer. Selected reaction monitoring of two product ions for each analyte allows for the calculation of ion ratios which ensures correct identification of each analyte, while a matrix-matched calibration curve is used for quantitation. PMID:26660179

  12. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  13. Quantitative determination of polycyclic aromatic hydrocarbon adducts to deoxyribonucleic acid using GC/MS (gas chromatography/mass spectrometry) techniques

    SciTech Connect

    Bean, R.M.; Thomas, B.L.; Chess, E.K.; Pavlovich, J.G.; Springer, D.L.

    1988-02-01

    A direct, specific mass spectrometric method useful for determination of polycyclic aromatic adducts has been developed. Our experiments indicated that overall recoveries from the acid hydrolysis, isolation and derivatization steps will be about 50%. It is apparent that a method even for BaP adducts is not yet complete. The methods described in this paper are provided in detail. Other derivatization techniques are needed that are selective and quantitative, and that will enhance the singal in the mass spectrometer to improve instrument selectivity and sensitivity. In addition to improvements in instrument sensitivity and gas chromatography column performance, there is a great need for procedures for rigorous documentation of organic analytical methods at the picogram level. 12 refs., 2 tabs.

  14. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  15. Evaluation of Flow-Injection Tandem Mass Spectrometry for Rapid and High-Throughput Quantitative Determination of B-Vitamins in Nutritional Supplements

    SciTech Connect

    Bhandari, Deepak; Van Berkel, Gary J

    2012-01-01

    The use of flow-injection electrospray ionization tandem mass spectrometry for rapid and high-throughput mass spectral analysis of selected B-vitamins, viz. B1, B2, B3, B5, and B6, in nutritional formulations was demonstrated. A simple and rapid (~5 min) in-tube sample preparation was performed by adding extraction solvent to a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Automated flow injection introduced 1 L of the extracts directly into the mass spectrometer ion source without chromatographic separation. Sample-to-sample analysis time was 60 s representing significant improvement over conventional liquid chromatography approaches which typically require 25-45 min, and often require more significant sample preparation procedures. Quantitative capabilities of the flow-injection analysis were tested using the method of standard additions and NIST standard reference material (SRM 3280) multivitamin/multielement tablets. The quantity determined for each B-vitamin in SRM 3280 was within the statistical range provided for the respective certified values. The same sample preparation and analysis approach was also applied to two different commercial vitamin supplement tablets and proved to be successful in the quantification of the selected B-vitamins as evidenced by an agreement with the labels values and the results obtained using isotope dilution liquid chromatography/mass spectrometry.

  16. Quantitative analysis of gold nanoparticles in single cells by laser ablation inductively coupled plasma-mass spectrometry.

    PubMed

    Wang, Meng; Zheng, Ling-Na; Wang, Bing; Chen, Han-Qing; Zhao, Yu-Liang; Chai, Zhi-Fang; Reid, Helen J; Sharp, Barry L; Feng, Wei-Yue

    2014-10-21

    Single cell analysis has become an important field of research in recent years reflecting the heterogeneity of cellular responses in biological systems. Here, we demonstrate a new method, based on laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), which can quantify in situ gold nanoparticles (Au NPs) in single cells. Dried residues of picoliter droplets ejected by a commercial inkjet printer were used to simulate matrix-matched calibration standards. The gold mass in single cells exposed to 100 nM NIST Au NPs (Reference material 8012, 30 nm) for 4 h showed a log-normal distribution, ranging from 1.7 to 72 fg Au per cell, which approximately corresponds to 9 to 370 Au NPs per cell. The average result from 70 single cells (15 ± 13 fg Au per cell) was in good agreement with the result from an aqua regia digest solution of 1.2 × 10(6) cells (18 ± 1 fg Au per cell). The limit of quantification was 1.7 fg Au. This paper demonstrates the great potential of LA-ICPMS for single cell analysis and the beneficial study of biological responses to metal drugs or NPs at the single cell level. PMID:25225851

  17. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics

    PubMed Central

    Rogers, Richard S; Nightlinger, Nancy S; Livingston, Brittney; Campbell, Phil; Bailey, Robert; Balland, Alain

    2015-01-01

    Regulatory agencies have recently recommended a Quality by Design (QbD) approach for the manufacturing of therapeutic molecules. A QbD strategy requires deep understanding at the molecular level of the attributes that are crucial for safety and efficacy and for insuring that the desired quality of the purified protein drug product is met at the end of the manufacturing process. A mass spectrometry (MS)-based approach to simultaneously monitor the extensive array of product quality attributes (PQAs) present on therapeutic molecules has been developed. This multi-attribute method (MAM) uses a combination of high mass accuracy / high resolution MS data generated by Orbitrap technology and automated identification and relative quantification of PQAs with dedicated software (Pinpoint). The MAM has the potential to replace several conventional electrophoretic and chromatographic methods currently used in Quality Control to release therapeutic molecules. The MAM represents an optimized analytical solution to focus on the attributes of the therapeutic molecule essential for function and implement QbD principles across process development, manufacturing and drug disposition. PMID:26186204

  18. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. PMID:25440666

  19. Simultaneous quantitation and identification of organic and inorganic selenium in diet supplements by liquid chromatography with tandem mass spectrometry.

    PubMed

    Zembrzuska, Joanna; Matusiewicz, Henryk; Polkowska-Motrenko, Halina; Chajduk, Ewelina

    2014-01-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for selenium speciation in dietary supplements. Chromatographic separation was performed on a TSK-Gel ODS-100V column using a mixture of 5mM ammonium acetate water solution and methanol as a mobile phase. Conditions chosen for this process allowed to separate all investigated chemical compounds of selenium: seleno-l-methionine, methyl-seleno-l-cysteine, l-selenocystine, methaneseleninic acid, selenite and selenate. A tandem mass spectrometer with an ion trap operating in negative or positive ion mode according to the selenium form being determined was used as a detector. Three extraction procedures: water extraction, enzymatic hydrolysis and sequential extraction were used for preparation of samples for the determination of the actual forms of selenium in diet supplements. The developed method was used for analysis of six dietary supplements containing selenium bought in a pharmacy and supermarket. Apart from speciation analysis of selenium content in supplements total selenium content was determined using instrumental neutron activation analysis (INAA). All expected forms of selenium except for selenite were determined using LC-MS/MS technique. It should be stressed that amounts of selenate were smaller than expected. PMID:24001829

  20. abFASP-MS: Affinity-Based Filter-Aided Sample Preparation Mass Spectrometry for Quantitative Analysis of Chemically Labeled Protein Complexes

    PubMed Central

    2014-01-01

    Affinity purification coupled to 1-D gel-free liquid chromatography mass spectrometry (LC–MS) is a well-established and widespread approach for the analyses of noncovalently interacting protein complexes. In this study, two proteins conjugated to a streptavidin-binding peptide and hemagglutinin double tag were expressed in the respective Flp-In HEK293 cell lines: green fluorescent protein (SH-GFP) and TANK binding kinase 1 (SH-TBK1_MOUSE). Fluorescent anti-HA immunoblots revealed that the expression level of SH-GFP was ∼50% lower than that of SH-TBK1_MOUSE. Subsequently, the input material was normalized to obtain a similar quantity of purified SH-tagged proteins. Optimization of the release of protein complexes from the anti-HA-agarose with different eluting agents was then assessed. With respect to the total number of protein groups identified in the purified complexes, elution with 2% SDS surpassed both 100 mM glycine and 100 mM formic acid. Relative quantitation of the purified protein complexes using TMT 6-plex reagents confirmed the higher efficiency of the 2% SDS elution followed by filter-aided sample preparation (FASP). The data presented in this study provide a new application of FASP to quantitative MS analysis of affinity-purified protein complexes. We have termed the approach abFASP-MS, or affinity-based filter-aided sample preparation mass spectrometry. PMID:24400740

  1. Sensitive liquid chromatography positive electrospray tandem mass spectrometry method for the quantitation of tegaserod in human plasma using liquid-liquid extraction.

    PubMed

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Mudigonda, Koteshwara

    2009-02-01

    A sensitive and rapid high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method is developed and validated for the quantitation of tegaserod in human plasma. Following liquid-liquid extraction, the analytes are separated using an isocratic mobile phase on a reversed-phase column and analyzed by tandem mass spectrometry in the multiple reaction monitoring mode using the respective (M+H)+ ions, m/z 302 to 173 for tegaserod and m/z 409 to 228 for the internal standard. The assay exhibits a linear dynamic range of 100-10000 pg/mL for tegaserod in human plasma. The lower limit of quantitation is 100 pg/mL with a relative standard deviation of less than 7%. Acceptable precision and accuracy are obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample makes it possible to analyze more than 250 human plasma samples per day. The validated method is successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability, or bioequivalence studies. PMID:19222925

  2. Screening and quantitative determination of twelve acidic and neutral pharmaceuticals in whole blood by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Simonsen, Kirsten Wiese; Steentoft, Anni; Buck, Maike; Hansen, Lene; Linnet, Kristian

    2010-09-01

    We describe a multi-method for simultaneous identification and quantification of 12 acidic and neutral compounds in whole blood. The method involves a simple liquid-liquid extraction, and the identification and quantification are performed using liquid chromatography-tandem mass spectrometry. The method was fully validated for salicylic acid, paracetamol, phenobarbital, carisoprodol, meprobamate, topiramate, etodolac, chlorzoxazone, furosemide, ibuprofen, warfarin, and salicylamide. The method also tentatively includes thiopental, theophylline, piroxicam, naproxen, diclophenac, and modafinil, but these drugs were not included in the full validation program and are not described in detail here. Limit of quantitation was 1 mg/kg for the compounds with coefficients of variation of < 20%, except for furosemide, which had a coefficient of variation of 32% at limit of quantitation. The measuring interval was wide for most components. Extraction efficiencies were high, reflecting the high-yield capacity of the method. PMID:20822673

  3. Development of Gas Chromatographic Mass Spectrometry.

    PubMed

    Hites, Ronald A

    2016-07-19

    Gas chromatographic mass spectrometry is now widely used for the quantitation and identification of organic compounds in almost any imaginable sample. These applications include the measurement of chlorinated dioxins in soil samples, the identification of illicit drugs in human blood, and the quantitation of accelerants in arson investigations, to name just a few. How did GC/MS get so popular? It turns out that it required parallel developments in mass spectrometry, gas chromatography, and computing and that no one person "invented" the technique. This Perspective traces this history from the 1950s until today. PMID:27384908

  4. Multi-allergen Quantitation and the Impact of Thermal Treatment in Industry-Processed Baked Goods by ELISA and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Parker, Christine H; Khuda, Sefat E; Pereira, Marion; Ross, Mark M; Fu, Tong-Jen; Fan, Xuebin; Wu, Yan; Williams, Kristina M; DeVries, Jonathan; Pulvermacher, Brian; Bedford, Binaifer; Zhang, Xi; Jackson, Lauren S

    2015-12-16

    Undeclared food allergens account for 30-40% of food recalls in the United States. Compliance with ingredient labeling regulations and the implementation of effective manufacturing allergen control plans require the use of reliable methods for allergen detection and quantitation in complex food products. The objectives of this work were to (1) produce industry-processed model foods incurred with egg, milk, and peanut allergens, (2) compare analytical method performance for allergen quantitation in thermally processed bakery products, and (3) determine the effects of thermal treatment on allergen detection. Control and allergen-incurred cereal bars and muffins were formulated in a pilot-scale industry processing facility. Quantitation of egg, milk, and peanut in incurred baked goods was compared at various processing stages using commercial enzyme-linked immunosorbent assay (ELISA) kits and a novel multi-allergen liquid chromatography (LC)-tandem mass spectrometry (MS/MS) multiple-reaction monitoring (MRM) method. Thermal processing was determined to negatively affect the recovery and quantitation of egg, milk, and peanut to different extents depending on the allergen, matrix, and analytical test method. The Morinaga ELISA and LC-MS/MS quantitative methods reported the highest recovery across all monitored allergens, whereas the ELISA Systems, Neogen BioKits, Neogen Veratox, and R-Biopharm ELISA Kits underperformed in the determination of allergen content of industry-processed bakery products. PMID:26595064

  5. Quantitative analysis of polydisperse systems via solvent-free matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kulkarni, Sourabh U; Thies, Mark C

    2012-02-15

    Quantitative analysis of partially soluble and insoluble polydisperse materials is challenging due to the lack of both appropriate standards and reliable analytical techniques. To this end, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) incorporating a solvent-free sample preparation technique was investigated for the quantitative analysis of partially soluble, polydisperse, polycyclic aromatic hydrocarbon (PAH) oligomers. Molecular weight standards consisting of narrow molecular weight dimer and trimer oligomers of the starting M-50 petroleum pitch were produced using both dense-gas/supercritical extraction (DGE/SCE) and preparative-scale, gel permeation chromatography (GPC). The validity of a MALDI-based, quantitative analysis technique using solvent-free sample preparation was first demonstrated by applying the method of standard addition to a pitch of known composition. The standard addition method was then applied to the quantitative analysis of two insoluble petroleum pitch fractions of unknown oligomeric compositions, with both the dimer and trimer compositions of these fractions being accurately determined. To our knowledge, this study represents the first successful MALDI application of solvent-free quantitative analysis to insoluble, polydisperse materials. PMID:22223328

  6. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  7. Quantitation of amobarbital, butalbital, pentobarbital, phenobarbital, and secobarbital in urine, serum, and plasma using gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Johnson, Leonard L; Garg, Uttam

    2010-01-01

    Barbiturates are central nervous system depressants with sedative and hypnotic properties. Some barbiturates, with longer half-lives, are used as anticonvulsants. Their mechanism of action includes activation of gamma-aminobutyric acid (GABA) mediated neuronal transmission inhibition. Clinically used barbiturates include amobarbital, butalbital, pentobarbital, phenobarbital, secobarbital, and thiopental. Besides their therapeutic use, barbiturates are commonly abused. Their analysis is useful for both clinical and forensic proposes. Gas chromatography mass spectrometry is a commonly used method for the analysis of barbiturates. In the method described here, barbiturates from serum, plasma, or urine are extracted using an acidic phosphate buffer and methylene chloride. Barbital is used as an internal standard. The organic extract is dried and reconstituted with mixture of trimethylanilinium hydroxide (TMAH) and ethylacetate. The extract is injected into a gas chromatogram mass spectrometer where it undergoes "flash methylation" in the hot injection port. Selective ion monitoring and relative retention times are used for the identification and quantitation of barbiturates. PMID:20077060

  8. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization.

    PubMed

    Bergman, Hilde-Marléne; Lundin, Erik; Andersson, Malin; Lanekoff, Ingela

    2016-06-01

    Small molecule neurotransmitters are essential for the function of the nervous system, and neurotransmitter imbalances are often connected to neurological disorders. The ability to quantify such imbalances is important to provide insights into the biochemical mechanisms underlying the disorder. This proof-of-principle study presents online quantification of small molecule neurotransmitters, specifically acetylcholine, γ-aminobutyric acid (GABA) and glutamate, in rat brain tissue sections using nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging. By incorporating deuterated internal standards in the nano-DESI solvent we show identification, accurate mapping, and quantification of these small neurotransmitters in rat brain tissue without introducing any additional sample preparation steps. We find that GABA is about twice as abundant in the medial septum-diagonal band complex (MSDB) as in the cortex, while glutamate is about twice as abundant in the cortex as compared to the MSDB. The study shows that nano-DESI is well suited for imaging of small molecule neurotransmitters in health and disease. PMID:26859000

  9. Reductive amination-assisted quantitation of tamoxifen and its metabolites by liquid phase chromatography tandem mass spectrometry.

    PubMed

    Liang, Shih-Shin; Wang, Tsu-Nai; Chiu, Chien-Chih; Kuo, Po-Lin; Huang, Mei-Fang; Liu, Meng-Chieh; Tsai, Eing-Mei

    2016-02-19

    Tamoxifen, a hormonal therapy drug against estrogen receptor-positive breast cancer, can be metabolized by cytochrome P450 enzymes such as CYP3A4 and CYP3A5, and converted to N-desmethyltamoxifen, which is subsequently, metabolized by CYP2D6 and inverted to form 4-hydroxy-N-desmethyltamoxifen (endoxifen). Conventional mass spectrometry (MS) analyses of tamoxifen and its metabolites require isotopic internal standards (ISs). In this study, endoxifen and N-desmethyltamoxifen amine groups were modified by reductive amination with formaldehyde-D2 to produce new metabolite molecules. Both endoxifen and N-desmethyltamoxifen generated their corresponding D2-methyl modified analogs. This method is expected to simplify MS detection and overcome the difficulty in selecting adequate ISs when tamoxifen metabolites are analyzed by absolute quantification. It identified tamoxifen, D2-methyl modified endoxifen, and D2-methyl modified N-desmethyltamoxifen with a linearity ranging from 2 to 5000 ng/mL with correlation coefficient (R(2)) values of 0.9868, 0.9849, and 0.9880, respectively. Furthermore, this reductive amination-based method may enhance the signal intensities of D2-methyl modified N-desmethyltamoxifen and endoxifen, thus facilitating the MS detection. PMID:26814364

  10. Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain

    PubMed Central

    Zhang, Yangyang; Wang, Jun; Liu, Jian’an; Han, Juanjuan; Xiong, Shaoxiang; Yong, Weidong; Zhao, Zhenwen

    2016-01-01

    Gangliosides are a family of complex lipids that are abundant in the brain. There is no doubt the investigations about the distribution of gangliosides in brian and the relationship between gangliosides and Alzheimer’s disease is profound. However, these investigations are full of challenges due to the structural complexity of gangliosides. In this work, the method for efficient extraction and enrichment of gangliosides from brain was established. Moreover, the distribution of gangliosides in brain was obtained by matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). It was found that 3-aminoquinoline (3-AQ) as matrix was well-suited for MALDI MS analysis of gangliosides in negative ion mode. In addition, the pretreatment by ethanol (EtOH) cleaning brain section and the addition of ammonium formate greatly improved the MS signal of gangliosides in the brain section when MALDI MSI analysis was employed. The distribution of ganliosides in cerebral cortex, hippocampus and cerebellum was respectively acquired by electrospray ionization (ESI) MS and MALDI MSI, and the data were compared for reliability evaluation of MALDI MSI. Further, applying MALDI MSI technology, the distribution of gangliosides in amyloid precursor protein transgenic mouse brain was obtained, which may provide a new insight for bioresearch of Alzheimer’s disease (AD). PMID:27142336

  11. Simultaneous quantitation of acetylsalicylic acid and clopidogrel along with their metabolites in human plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Chhonker, Yashpal S; Pandey, Chandra P; Chandasana, Hardik; Laxman, Tulsankar Sachin; Prasad, Yarra Durga; Narain, V S; Dikshit, Madhu; Bhatta, Rabi S

    2016-03-01

    The interest in therapeutic drug monitoring has increased over the last few years. Inter- and intra-patient variability in pharmacokinetics, plasma concentration related toxicity and success of therapy have stressed the need of frequent therapeutic drug monitoring of the drugs. A sensitive, selective and rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous quantification of acetylsalicylic acid (aspirin), salicylic acid, clopidogrel and carboxylic acid metabolite of clopidogrel in human plasma. The chromatographic separations were achieved on Waters Symmetry Shield(TM) C18 column (150 × 4.6 mm, 5 µm) using 3.5 mm ammonium acetate (pH 3.5)-acetonitrile (10:90, v/v) as mobile phase at a flow rate of 0.75 mL/min. The present method was successfully applied for therapeutic drug monitoring of aspirin and clopidogrel in 67 patients with coronary artery disease. PMID:26230053

  12. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry

    PubMed Central

    Hamelin, Elizabeth I.; Schulze, Nicholas D.; Shaner, Rebecca L.; Coleman, Rebecca M.; Lawrence, Richard J.; Crow, Brian S.; Jakubowski, E. M.; Johnson, Rudolph C.

    2015-01-01

    Although nerve agent use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. Exposure can be detected through the analysis of the hydrolysis products in urine as well as blood. An analytical method to detect exposure to five nerve agents, including VX, VR (Russian VX), GB (sarin), GD (soman) and GF (cyclosarin), through the analysis of the hydrolysis products, which are the primary metabolites, in serum has been developed and characterized. This method uses solid phase extraction coupled with high performance liquid chromatography for separation and isotopic dilution tandem mass spectrometry for detection. An uncommon buffer of ammonium fluoride was used to enhance ionization and improve sensitivity when coupled with hydrophilic interaction liquid chromatography resulting in detection limits from 0.3–0.5 ng/mL. The assessment of two quality control samples demonstrated high accuracy (101–105%) and high precision (5–8%) for the detection of these five nerve agent hydrolysis products in serum. PMID:24633507

  13. Accelerated solvent extraction and liquid chromatography-tandem mass spectrometry quantitation of corticosteroid residues in bovine liver.

    PubMed

    Draisci, R; Marchiafava, C; Palleschi, L; Cammarata, P; Cavalli, S

    2001-04-01

    A new method for the rapid extraction and unequivocal confirmation of two highly potent fluorinated synthetic corticosteroids, dexamethasone and its beta-epimer betamethasone, in bovine liver was developed. Flumethasone was used as internal standard. An extraction procedure using an accelerated solvent extraction system was employed for the isolation of the analytes in liver samples. The procedure was highly automated, including defatting and extraction steps, sequentially carried out under 1.0 x 10(4) kPa in about 35 min. The extracts were then directly analysed by tandem mass spectrometry with on-line liquid chromatography. The analytes were ionised in a heated nebulizer interface operating in the negative ion mode where the molecular related ions [M-H-CH2O]- were generated for each analyte, at m/z 361 for betamethasone and dexamethasone and at m/z 379 for flumethasone. They served as precursor ions for collision-induced dissociation and three diagnostic product ions for the drugs were identified to carry out analyte confirmation by selected reaction monitoring. Assessment of recovery, specificity and precision for betamethasone, dexamethasone and flumethasone proved the method suitable for confirmatory purposes. The limit of quantification of betamethasone and dexamethasone in liver tissue was 1.0 microg/kg. PMID:11334334

  14. Tandem Mass Spectrometry Quantitation of Lyso-Gb3 and Six Related Analogs in Plasma for Fabry Disease Patients.

    PubMed

    Boutin, Michel; Lavoie, Pamela; Abaoui, Mona; Auray-Blais, Christiane

    2016-01-01

    Fabry disease is an X-linked lysosomal storage disorder, caused by a deficit in α-galactosidase A enzyme activity, leading to the storage of sphingolipids such as globotriaosylsphingosine (lyso-Gb3 ), globotriaosylceramide (Gb3 ), and galabiosylceramide (Ga2 ) in organs, tissues and biological fluids. A recent metabolomic study performed in plasma revealed lyso-Gb3 analogs as novel Fabry disease biomarkers. These molecules correspond to lyso-Gb3 with different chemical modifications on the sphingosine chain (-C2 H4 , -H2 , +O, +H2 O, +H2 O2, and +H2 O3 ). An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the multiplex analysis of lyso-Gb3 and its 6 analogs in plasma. The samples are prepared by solid phase extraction using mixed-mode strong cation exchange (MCX) cartridges. An in-house synthesized N-glycinated lyso-Gb3 derivative was used for the internal standard. The limits of detection (LODs) measured for lyso-Gb3 and its analogs ranged from 0.06 to 0.29 nM. © 2016 by John Wiley & Sons, Inc. PMID:27367163

  15. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry.

    PubMed

    Hamelin, Elizabeth I; Schulze, Nicholas D; Shaner, Rebecca L; Coleman, Rebecca M; Lawrence, Richard J; Crow, Brian S; Jakubowski, E M; Johnson, Rudolph C

    2014-08-01

    Although nerve agent use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. Exposure can be detected through the analysis of hydrolysis products in urine as well as blood. An analytical method to detect exposure to five nerve agents, including VX, VR (Russian VX), GB (sarin), GD (soman), and GF (cyclosarin), through the analysis of the hydrolysis products, which are the primary metabolites, in serum has been developed and characterized. This method uses solid-phase extraction coupled with high-performance liquid chromatography for separation and isotopic dilution tandem mass spectrometry for detection. An uncommon buffer of ammonium fluoride was used to enhance ionization and improve sensitivity when coupled with hydrophilic interaction liquid chromatography resulting in detection limits from 0.3 to 0.5 ng/mL. The assessment of two quality control samples demonstrated high accuracy (101-105%) and high precision (5-8%) for the detection of these five nerve agent hydrolysis products in serum. PMID:24633507

  16. Quantitative determination of 12-hydroxyeicosatetraenoic acids by chiral liquid chromatography tandem mass spectrometry in a murine atopic dermatitis model

    PubMed Central

    Hong, Seong-Ho; Han, Ji Eun; Ko, Ji-Seung; Do, Sun Hee

    2015-01-01

    Atopic dermatitis, one of the most important skin diseases, is characterized by both skin barrier impairment and immunological abnormalities. Although several studies have demonstrated the significant relationship between atopic dermatitis and immunological abnormalities, the role of hydroxyeicosatetraenoic acids (HETE) in atopic dermatitis remains unknown. To develop chiral methods for characterization of 12-HETE enantiomers in a 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis mouse model and evaluate the effects of 12-HETE on atopic dermatitis, BALB/c mice were treated with either DNCB or acetone/olive oil (AOO) to induce atopic dermatitis, after which 12(R)- and 12(S)-HETEs in the plasma, skin, spleen, and lymph nodes were quantified by chiral liquid chromatography-tandem mass spectrometry. 12(R)- and 12(S)-HETEs in biological samples of DNCB-induced atopic dermatitis mice increased significantly compared with the AOO group, reflecting the involvement of 12(R)- and 12(S)-HETEs in atopic dermatitis. These findings indicate that 12(R)- and 12(S)-HETEs could be a useful guide for understanding the pathogenesis of atopic dermatitis. PMID:25797298

  17. Quantitative ester analysis in cachaca and distilled spirits by gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Nascimento, Eduardo S P; Cardoso, Daniel R; Franco, Douglas W

    2008-07-23

    An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) microg L(-1), whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters. PMID:18570431

  18. Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum.

    PubMed

    Smits, Nathalie G E; Blokland, Marco H; Wubs, Klaas L; Nessen, Merel A; van Ginkel, Leen A; Nielen, Michel W F

    2015-08-01

    The use of recombinant bovine somatotropin (rbST) to enhance milk production is approved in several countries, but it is prohibited in the European Union. According to EU legislation, it is necessary to confirm positive screening results prior to enforcement. Although adequate screening assays are available nowadays, development of liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory methods to detect low levels of rbST is still a challenge. Here, we present a novel approach using immuno-affinity enrichment on monolithic micro-columns in combination with state-of-the-art ultra-high pressure LC-MS/MS (UHPLC-MS/MS) detection. The developed approach enables detection and confirmation of rbST in serum at a decision limit (CCα) concentration of 0.8 ng mL(-1). Furthermore, the method is easy to handle, robust and reproducible. We successfully applied the confirmatory method to serum samples from rbST treated cows that were found suspect after immunoassay-based screening. The use of rbST could be confirmed over 1 week after treatment, and the developed method demonstrated the sensitivity needed for effective control. Graphical Abstract Graphical summary of the workflow, for serum preparation, enrichment with monolith microcolumns and LC-MS/MS measurement of rbST. PMID:26077745

  19. Quantitative determination of 26 steroids in eggs from various species using liquid chromatography-triple quadrupole-mass spectrometry.

    PubMed

    Mi, Xiaoxia; Li, Sicong; Li, Yanhua; Wang, Kaiqiang; Zhu, Dan; Chen, Gang

    2014-08-22

    A method for analyzing 26 types of steroids in egg matrix was developed. The method used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in electrospray ionization mode (ESI). The procedure involved extraction with acetonitrile and removal of phospholipids by zinc chloride (ZnCl₂) followed by SPE cleanup with a Plexa cartridge. The effect of ZnCl₂ on phospholipid removal was directly observed using the post column infusion procedure. The SPE washing and elution conditions were optimized using a shallow gradient procedure. The free and conjugated steroids forms were determined using enzyme hydrolysis. The developed method resulted in satisfactory precision (RSD≤15%), and the limits of quantification were between 0.05 and 25 ng/g depending on the steroid types. The recoveries ranged from 63.2% to 121.5%. Finally, the developed method was successfully applied to compare the steroids in eggs from different species (i.e., hen, duck, quail and pigeon eggs) or different raising system (i.e., normal vs. organic eggs). The steroids can be clearly clustered according to species and raising system. The hierarchical clustering analysis indicated similarity of the steroids among the species. The developed method is sensitive and useful for detection and quantification of steroids in eggs and can be used for residue control programs. In addition, the observed steroid content will provide a fundamental reference for food risk assessment analysis. PMID:25017396

  20. Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain.

    PubMed

    Zhang, Yangyang; Wang, Jun; Liu, Jian'an; Han, Juanjuan; Xiong, Shaoxiang; Yong, Weidong; Zhao, Zhenwen

    2016-01-01

    Gangliosides are a family of complex lipids that are abundant in the brain. There is no doubt the investigations about the distribution of gangliosides in brian and the relationship between gangliosides and Alzheimer's disease is profound. However, these investigations are full of challenges due to the structural complexity of gangliosides. In this work, the method for efficient extraction and enrichment of gangliosides from brain was established. Moreover, the distribution of gangliosides in brain was obtained by matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). It was found that 3-aminoquinoline (3-AQ) as matrix was well-suited for MALDI MS analysis of gangliosides in negative ion mode. In addition, the pretreatment by ethanol (EtOH) cleaning brain section and the addition of ammonium formate greatly improved the MS signal of gangliosides in the brain section when MALDI MSI analysis was employed. The distribution of ganliosides in cerebral cortex, hippocampus and cerebellum was respectively acquired by electrospray ionization (ESI) MS and MALDI MSI, and the data were compared for reliability evaluation of MALDI MSI. Further, applying MALDI MSI technology, the distribution of gangliosides in amyloid precursor protein transgenic mouse brain was obtained, which may provide a new insight for bioresearch of Alzheimer's disease (AD). PMID:27142336

  1. Array of Chemically Etched Fused Silica Emitters for Improving the Sensitivity and Quantitation of Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-06-01

    An array of emitters has been developed for increasing the sensitivity of electrospray ionization mass spectrometry (ESI-MS). The linear array consists of 19 chemically etched fused silica capillaries arranged with 500 µm (center-to-center) spacing. The multi-emitter device has a low dead volume to facilitate coupling to capillary liquid chromatography (LC) separations. The high aspect ratio of the emitters enables operation at flow rates as low as 20 nL/min/emitter, effectively extending the benefits of nanoelectrospray to higher flow rate analyses. To accommodate the larger ion current produced by the emitter array, a multi-capillary inlet to the mass spectrometer was also constructed. The inlet, which matched the dimensions of the emitter array, effectively preserved ion transmission efficiency. Standard reserpine solutions of varying concentration were electrosprayed at 1 µL/min using the multi-emitter/multi-inlet combination, and compared to a standard, single emitter configuration. A nine-fold sensitivity enhancement was observed for the multi-emitter relative to the single emitter. A bovine serum albumin tryptic digest was also analyzed and resulted in a sensitivity increase ranging from 2.4 to 12.3-fold for the detected tryptic peptides; the varying response was attributed to reduced ion suppression under the nano-ESI conditions afforded by the emitter array. An equimolar mixture of leucine enkephalin and maltopentaose was studied to verify that ion suppression is indeed reduced for the multi-ESI array relative to a single emitter over a range of flow rates.

  2. Nanopore Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bush, Joseph; Mihovilovic, Mirna; Maulbetsch, William; Frenchette, Layne; Moon, Wooyoung; Pruitt, Cole; Bazemore-Walker, Carthene; Weber, Peter; Stein, Derek

    2013-03-01

    We report on the design, construction, and characterization of a nanopore-based ion source for mass spectrometry. Our goal is to field-extract ions directly from solution into the high vacuum to enable unit collection efficiency and temporal resolution of sequential ion emissions for DNA sequencing. The ion source features a capillary whose tip, measuring tens to hundreds of nanometers in inner diameter, is situated in the vacuum ~ 1.5 cm away from an extractor electrode. The capillary was filled with conductive solution and voltage-biased relative to the extractor. Applied voltages of hundreds of volts extracted tens to hundreds of nA of current from the tip. A mass analysis of the extracted ions showed primarily singly charged clusters comprising the cation or anion solvated by several solvent molecules. Our interpretation of these results, based on the works of Taylor and of de la Mora, is that the applied electric stresses distort the fluid meniscus into a Taylor cone, where electric fields reach ~ 1V/nm and induce significant ion evaporation. Accordingly, the abundances of extracted ionic clusters resemble a Boltzmann distribution. This work was supported by NIH grant NHGRI 1R21HG005100-01.

  3. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  4. Quantitative determination of ɛ-N-carboxymethyl-L-lysine in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Kuang, Liqing; Jing, Zhiqiang; Wang, Jing; Ma, Liyuan; Liu, Xiaoqiang; Yang, Jin

    2014-03-01

    ɛ-N-carboxymethyl-L-lysine (CML) is a stable chemical modification of protein lysine residues resulting from glycation and oxidation reactions and a potential biomarker of oxidative stress caused by sugar and lipid oxidation. In this study, a rapid, simple and sensitive method based on liquid chromatography-tandem spectrometry (LC-MS/MS) for the determination of CML in human plasma has been developed and validated. Sample preparation involved protein precipitation using trichloroacetic acid after addition of deuterated CML as internal standard. Chromatography was performed on an amino column by gradient-elution with a mobile phase containing acetonitrile:ultrapure water (80:20, v/v). CML and CML-d2 were detected by multiple reaction monitoring mode with ion pairs 205.0/130.1 and 207.2/84.1 respectively. The assay was linear in the range 10-1000 ng/mL with a lower limit of quantitation (LLOQ) of 10 ng/mL and recovery >90%. Assay validation showed that inter- and intra-day precision and accuracy were satisfactory. The method was applied to compare plasma CML levels in healthy Chinese subjects and patients with diabetes and uremia. In healthy subjects CML concentration (mean±SD) was 16.6±7.8 ng/mL. CML level in diabetic patients was not significantly different from healthy subjects whereas the level in patients with uremia was significantly higher than both healthy subjects and diabetic patients (P<0.001). The method will be useful to assess the value of CML as a biomarker of diabetic vascular complications resulting from elevated oxidative stress. PMID:24317023

  5. MASS SPECTROMETRY OF FATTY ALDEHYDES

    PubMed Central

    Berdyshev, Evgeny V.

    2011-01-01

    Fatty aldehydes are important components of the cellular lipidome. Significant interest has been developed towards the analysis of the short chain α,β-unsaturated and hydroxylated aldehydes formed as a result of oxidation of polyunsaturated fatty acids. Multiple gas chromatography-mass spectrometry (GC/MS) and subsequently liquid chromatography-mass spectrometry (LC/MS) approaches have been developed to identify and quantify short-chain as well as long-chain fatty aldehydes. Due to the ability to non-enzymaticaly form Schiff bases with amino groups of proteins, lipids, and with DNA guanidine, free aldehydes are viewed as a marker or metric of fatty acid oxidation and not the part of intracellular signaling pathways which has significantly limited the overall attention this group of molecules have received. This review provides an overview of current GC/MS and LC/MS approaches of fatty aldehyde analysis as well as discusses technical challenges standing in the way of free fatty aldehyde quantitation. PMID:21930240

  6. Quantitative mutant analysis of viral quasispecies by chip-based matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry

    PubMed Central

    Amexis, Georgios; Oeth, Paul; Abel, Kenneth; Ivshina, Anna; Pelloquin, Francois; Cantor, Charles R.; Braun, Andreas; Chumakov, Konstantin

    2001-01-01

    RNA viruses exist as quasispecies, heterogeneous and dynamic mixtures of mutants having one or more consensus sequences. An adequate description of the genomic structure of such viral populations must include the consensus sequence(s) plus a quantitative assessment of sequence heterogeneities. For example, in quality control of live attenuated viral vaccines, the presence of even small quantities of mutants or revertants may indicate incomplete or unstable attenuation that may influence vaccine safety. Previously, we demonstrated the monitoring of oral poliovirus vaccine with the use of mutant analysis by PCR and restriction enzyme cleavage (MAPREC). In this report, we investigate genetic variation in live attenuated mumps virus vaccine by using both MAPREC and a platform (DNA MassArray) based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Mumps vaccines prepared from the Jeryl Lynn strain typically contain at least two distinct viral substrains, JL1 and JL2, which have been characterized by full length sequencing. We report the development of assays for characterizing sequence variants in these substrains and demonstrate their use in quantitative analysis of substrains and sequence variations in mixed virus cultures and mumps vaccines. The results obtained from both the MAPREC and MALDI-TOF methods showed excellent correlation. This suggests the potential utility of MALDI-TOF for routine quality control of live viral vaccines and for assessment of genetic stability and quantitative monitoring of genetic changes in other RNA viruses of clinical interest. PMID:11593021

  7. Identification and quantitation of MHC class II-bound peptides from mouse spleen dendritic cells by immunoprecipitation and mass spectrometry analysis

    PubMed Central

    Bozzacco, Leonia; Yu, Haiqiang

    2014-01-01

    Summary Advances in immunology and immune therapies require knowledge of antigenic peptide sequences that are presented on MHC class II and class I molecules of antigen presenting cells. The most specialized antigen presenting cells are dendritic cells (DCs). In the past, the small number of DCs that can be isolated from mouse spleen prevented direct analysis of the MHC II peptide repertoire presented by DCs. Here we describe a protocol that integrates immunological methods (in vivo enrichment of mouse spleen DCs by Flt3L treatment and immunoprecipation of MHC II-peptide complexes), mass spectrometry analysis and peptide synthesis (LC-MS/MS and quantitation analysis for non tryptic peptides) to identify and quantitate the endogenous peptides that are bound to MHC II molecules on DCs. The described method produces quantitative data that are reproducible and reliable enough to cover a wide range of peptide copy numbers. We propose the application of this method in future studies to quantitatively investigate the MHC II repertoire on DCs presented during viral infections or different immunizations in vaccine development research. PMID:23963941

  8. A simple and rapid method to identify and quantitatively analyze triterpenoid saponins in Ardisia crenata using ultrafast liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry.

    PubMed

    Ma, Ling; Li, Wei; Wang, Hanqing; Kuang, Xinzhu; Li, Qin; Wang, Yinghua; Xie, Peng; Koike, Kazuo

    2015-01-01

    Ardisia plant species have been used in traditional medicines, and their bioactive constituents of 13,28-epoxy triterpenoid saponins have excellent biological activities for new drug development. In this study, a fast and simple method based on ultrafast liquid chromatography coupled to electrospray ionization mass spectrometry (UFLC-MS) was developed to simultaneously identify and quantitatively analyze triterpenoid saponins in Ardisia crenata extracts. In total, 22 triterpenoid saponins, including two new compounds, were identified from A. crenata. The method exhibited good linearity, precision and recovery for the quantitative analysis of eight marker saponins. A relative quantitative method was also developed using one major saponin (ardisiacrispin B) as the standard to break through the choke-point of the lack of standards in phytochemical analysis. The method was successfully applied to quantitatively analyze saponins in commercially available plant samples. This study describes the first systematic analysis of 13,28-epoxy-oleanane-type triterpenoid saponins in the genus Ardisia using LC-ESI-MS. The results can provide the chemical support for further biological studies, phytochemotaxonomical studies and quality control of triterpenoid saponins in medicinal plants of the genus Ardisia. PMID:25459939

  9. Quantitative analysis of delta9-tetrahydrocannabinol in preserved oral fluid by liquid chromatography-tandem mass spectrometry.

    PubMed

    Laloup, Marleen; Ramirez Fernandez, Maria del Mar; Wood, Michelle; De Boeck, Gert; Henquet, Cécile; Maes, Viviane; Samyn, Nele

    2005-07-29

    A rapid and sensitive method for the analysis of delta9-tetrahydrocannabinol (THC) in preserved oral fluid was developed and fully validated. Oral fluid was collected with the Intercept, a Food and Drug Administration (FDA) approved sampling device that is used on a large scale in the U.S. for workplace drug testing. The method comprised a simple liquid-liquid extraction with hexane, followed by liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis. Chromatographic separation was achieved using a XTerra MS C18 column, eluted isocratically with 1 mM ammonium formate-methanol (10:90, v/v). Selectivity of the method was achieved by a combination of retention time, and two precursor-product ion transitions. The use of the liquid-liquid extraction was demonstrated to be highly effective and led to significant decreases in the interferences present in the matrix. Validation of the method was performed using both 100 and 500 MicroL of oral fluid. The method was linear over the range investigated (0.5-100 ng/mL and 0. 1-10 ng/mL when 100 and 500 microL, respectively, of oral fluid were used) with an excellent intra-assay and inter-assay precision (relative standard deviations, RSD <6%) for quality control samples spiked at a concentration of 2.5 and 25 ng/mL and 0.5 and 2.5 ng/mL, respectively. Limits of quantification were 0.5 and 0.1 ng/mL when using 100 and 500 microL, respectively. In contrast to existing GC-MS methods, no extensive sample clean-up and time-consuming derivatisation steps were needed. The method was subsequently applied to Intercept samples collected at the roadside and collected during a controlled study with cannabis. PMID:16038190

  10. Quantitation of S-Adenosylmethionine and S-Adenosylhomocysteine in Plasma Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    PubMed

    Arning, Erland; Bottiglieri, Teodoro

    2016-01-01

    We describe a simple stable isotope dilution method for accurate determination of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in plasma as a diagnostic test. SAM and SAH are key metabolic intermediates of methionine metabolism and the methylation cycle. Determination of SAM and SAH in plasma was performed by high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Calibrators (SAM and SAH) and internal standards ((2)H3-SAM and (2)H4-SAH) were included in each analytical run for calibration. Sample preparation involved combining 20 μL sample with 180 μL of internal standard solution consisting of heavy isotope labeled internal standards in mobile phase A and filtering by ultracentrifugation through a 10 kd MW cutoff membrane. Sample filtrate (3 μL) was injected by a Shimadzu Nexera LC System interfaced with a 5500 QTRAP(®) (AB Sciex). Chromatographic separation was achieved on a 250 mm × 2.0 mm EA:faast column from Phenomenex. Samples were eluted at a flow rate of 0.20 mL/min with a binary gradient with a total run time of 10 min. The source operated in positive ion mode at an ion spray voltage of +5000 V. SAM and SAH resolved by a gradient to 100 % methanol with retention times of 6.0 and 5.7 min, respectively. The observed m/z values of the fragment ions were m/z 399 → 250 for SAM, m/z 385 → 136 for SAH, m/z 402 → 250 for (2)H3-SAM, m/z 203 → 46. The calibration curve was linear over the ranges of 12.5-5000 nmol/L for SAM and SAH. PMID:26602137

  11. Real-time, high-resolution quantitative measurement of multiple soil gas emissions: selected ion flow tube mass spectrometry.

    PubMed

    Milligan, D B; Wilson, P F; Mautner, M N; Freeman, C G; McEwan, M J; Clough, T J; Sherlock, R R

    2002-01-01

    A new technique is presented for the rapid, high-resolution identification and quantification of multiple trace gases above soils, at concentrations down to 0.01 microL L(-1) (10 ppb). The technique, selected ion flow tube mass spectrometry (SIFT-MS), utilizes chemical ionization reagent ions that react with trace gases but not with the major air components (N2, O2, Ar, CO2). This allows the real-time measurement of multiple trace gases without the need for preconcentration, trapping, or chromatographic separation. The technique is demonstrated by monitoring the emission of ammonia and nitric oxide, and the search for volatile organics, above containerized soil samples treated with synthetic cattle urine. In this model system, NH3 emissions peaked after 24 h at 2000 nmol m(-2) s(-1) and integrated to approximately 7% of the urea N applied, while NO emissions peaked about 25 d after urine addition at approximately 140 nmol m(-2) s(-1) and integrated to approximately 10% of the applied urea N. The monitoring of organics along with NH3 and NO was demonstrated in soils treated with synthetic urine, pyridine, and dimethylamine. No emission of volatile nitrogen organics from the urine treatments was observed at levels >0.01% of the applied nitrogen. The SIFT method allows the simultaneous in situ measurement of multiple gas components with a high spatial resolution of < 10 cm and time resolution <20 s. These capabilities allow, for example, identification of emission hotspots, and measurement of localized and rapid variations above agricultural and contaminated soils, as well as integrated emissions over longer periods. PMID:11931442

  12. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry.

    PubMed

    Jurica, Karlo; Karačonji, Irena Brčić; Šegan, Sandra; Opsenica, Dušanka Milojković; Kremer, Dario

    2015-09-01

    The phenolic glycoside arbutin and its metabolite with uroantiseptic activity hydroquinone occur naturally in the leaves of various medicinal plants and spices. In this study, an extraction procedure coupled with gas chromatography-mass spectrometry (GC-MS) was developed to determine arbutin and hydroquinone content in strawberry tree (Arbutus unedo L., Ericaceae) leaves. The method showed good linearity (R2>0.9987) in the tested concentration range (0.5-200 μg mL(-1)), as well as good precision (RSD<5%), analytical recovery (96.2-98.0%), and sensitivity (limit of detection=0.009 and 0.004 μg mL(-1) for arbutin and hydroquinone, respectively). The results obtained by the validated GC-MS method corresponded well to those obtained by high performance liquid chromatography (HPLC) method. The proposed method was then applied for determining arbutin and hydroquinone content in methanolic leaf extracts. The amount of arbutin in the leaves collected on the island of Koločep (6.82 mg g(-1) dry weight) was found to be higher (tpaired=43.57, tc=2.92) in comparison to the amount of arbutin in the leaves collected on the island of Mali Lošinj (2.75 mg g(-1) dry weight). Hydroquinone was not detected in any of the samples. The analytical features of the proposed GC-MS method demonstrated that arbutin and hydroquinone could be determined alternatively by gas chromatography. Due to its wide concentration range, the method could also be suitable for arbutin and hydroquinone analysis in leaves of other plant families (Rosaceae, Lamiaceae, etc.). PMID:26444340

  13. Quantitative analysis of trace-level benzene, toluene, ethylbenzene, and xylene in cellulose acetate tow using headspace heart-cutting multidimensional gas chromatography with mass spectrometry.

    PubMed

    Ji, Xiaorong; Zhang, Jing; Guo, Yinlong

    2016-06-01

    This study describes a method for the quantification of trace-level benzene, toluene, ethylbenzene, and xylene in cellulose acetate tow by heart-cutting multidimensional gas chromatography with mass spectrometry in selected ion monitoring mode. As the major volatile component in cellulose acetate tow samples, acetone would be overloaded when attempting to perform a high-resolution separation to analyze trace benzene, toluene, ethylbenzene, and xylene. With heart-cutting technology, a larger volume injection was achieved and acetone was easily cut off by employing a capillary column with inner diameter of 0.32 mm in the primary gas chromatography. Only benzene, toluene, ethylbenzene, and xylene were directed to the secondary column to result in an effective separation. The matrix interference was minimized and the peak shapes were greatly improved. Finally, quantitative analysis of benzene, toluene, ethylbenzene, and xylene was performed using an isotopically labeled internal standard. The headspace multidimensional gas chromatography mass spectrometry system was proved to be a powerful tool for analyzing trace volatile organic compounds in complex samples. PMID:27080077

  14. A validated liquid chromatography-tandem mass spectrometry method for the quantitative determination of 4β-hydroxycholesterol in human plasma.

    PubMed

    van de Merbel, Nico C; Bronsema, Kees J; van Hout, Mischa W J; Nilsson, Ralf; Sillén, Henrik

    2011-07-15

    A novel liquid chromatography-tandem mass spectrometry method is described for the quantitative determination of the endogenous CYP 3A4/5 marker 4β-hydroxycholesterol in human K(2)-EDTA plasma. It is based on alkaline hydrolysis to convert esterified to free 4β-hydroxycholesterol, followed by analyte extraction from plasma by hexane and purification of the hexane extract by normal-phase solid-phase extraction. The analyte is chromatographically separated from endogenous isobaric plasma oxysterols and excess cholesterol by a 16-min reversed-phase gradient on a C18 column; detection is performed by atmospheric pressure photoionization tandem mass spectrometry in the positive ion mode, using toluene as a dopant. Using 400μl of plasma, 4β-hydroxycholesterol can be quantified in the concentration range 10.0-250nM. Validation results show that the method is sufficiently selective towards endogenous plasma sterols and capable of quantifying the analyte with good precision and accuracy. The analyte is sufficiently stable in all relevant matrices and solvents; the addition of the anti-oxidant butylated hydroxytoluene to prevent in vitro formation of 4β-hydroxycholesterol from cholesterol during storage or analysis is not necessary, provided that long-term frozen storage of plasma occurs at -70°C. PMID:21507593

  15. Enhanced Trace-Fiber Color Discrimination by Electrospray Ionization Mass Spectrometry: A Quantitative and Qualitative Tool for the Analysis of Dyes Extracted from Sub-millimeter Nylon Fibers

    SciTech Connect

    2002-09-26

    The application of electrospray-ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color-identity of different samples (i.e., comparative trace-fiber analysis) are shown to be sub-millimeter. Absolute verification of dye-mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound--information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.

  16. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  17. Rapid Quantitation of Ascorbic and Folic Acids in SRM 3280 Multivitamin/Multielement Tablets using Flow-Injection Tandem Mass Spectrometry

    SciTech Connect

    Bhandari, Deepak; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    RATIONALE: Ascorbic acid (AA) and folic acid (FA) are water-soluble vitamins and are usually fortified in food and dietary supplements. For the safety of human health, proper intake of these vitamins is recommended. Improvement in the analysis time required for the quantitative determination of these vitamins in food and nutritional formulations is desired. METHODS: A simple and fast (~5 min) in-tube sample preparation was performed, independently for FA and AA, by mixing extraction solvent with a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Quantitative detection was achieved by flow-injection (1 L injection volume) electrospray ionization tandem mass spectrometry (ESI-MS/MS) in negative ion mode using the method of standard addition. RESULTS: Method of standard addition was employed for the quantitative estimation of each vitamin in a sample extract. At least 2 spiked and 1 non-spiked sample extract were injected in triplicate for each quantitative analysis. Given an injection-to-injection interval of approximately 2 min, about 18 min was required to complete the quantitative estimation of each vitamin. The concentration values obtained for the respective vitamins in the standard reference material (SRM) 3280 using this approach were within the statistical range of the certified values provided in the NIST Certificate of Analysis. The estimated limit of detections of FA and AA were 13 and 5.9 ng/g, respectively. CONCLUSIONS: Flow-injection ESI-MS/MS was successfully applied for the rapid quantitation of FA and AA in SRM 3280 multivitamin/multielement tablets.

  18. High performance liquid chromatography coupled to mass spectrometry for profiling and quantitative analysis of folate monoglutamates in tomato.

    PubMed

    Tyagi, Kamal; Upadhyaya, Pallawi; Sarma, Supriya; Tamboli, Vajir; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2015-07-15

    Folates are essential micronutrients for animals as they play a major role in one carbon metabolism. Animals are unable to synthesize folates and obtain them from plant derived food. In the present study, a high performance liquid chromatography coupled to mass spectrometric (HPLC-MS/MS) method was developed for the high throughput screening and quantitative analysis of folate monoglutamates in tomato fruits. For folate extraction, several parameters were optimized including extraction conditions, pH range, amount of tri-enzyme and boiling time. After processing the extract was purified using ultra-filtration with 10 kDa membrane filter. The ultra-filtered extract was chromatographed on a RP Luna C18 column using gradient elution program. The method was validated by determining linearity, sensitivity and recovery. This method was successfully applied to folate estimation in spinach, capsicum, and garden pea and demonstrated that this method offers a versatile approach for accurate and fast determination of different folate monoglutamates in vegetables. PMID:25722141

  19. Quantitative Determination of Irinotecan and the Metabolite SN-38 by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry in Different Regions of Multicellular Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Hummon, Amanda B.

    2015-04-01

    A new and simple method was developed to evaluate the distribution of therapeutics in three-dimensional multicellular tumor spheroids (MCTS) by combining serial trypsinization and nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS). This methodology was validated with quantitative measurements of irinotecan and its bioactive metabolite, SN-38, in distinct spatial regions of HCT 116 MCTS. Irinotecan showed a time-dependent permeability into MCTS with most of the drug accumulating in the core after 24 h of treatment. The amount of SN-38 detected was 30 times lower than that of the parent drug, and was more abundant in the outer rim and intermediate regions of MCTS where proliferating cells were present. This method can be used to investigate novel and established drugs. It enables investigation of drug penetration properties and identification of metabolites with spatial specificity in MCTS. The new approach has great value in facilitating the drug evaluation process.

  20. Quantitative Determination of Irinotecan and the Metabolite SN-38 by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry in Different Regions of Multicellular Tumor Spheroids

    PubMed Central

    Liu, Xin; Hummon, Amanda B.

    2015-01-01

    A new and simple method was developed to evaluate the distribution of therapeutics in three-dimensional multicellular tumor spheroids (MCTS) by combining serial trypsinization and nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS). This methodology was validated with quantitative measurements of irinotecan and its bioactive metabolite, SN-38, in distinct spatial regions of HCT 116 MCTS. Irinotecan showed a time-dependent permeability into MCTS with most of the drug accumulating in the core after 24 hours of treatment. The amount of SN-38 detected was 30 times lower than that of the parent drug, and was more abundant in the outer rim and intermediate regions of MCTS where proliferating cells were present. This method can be used to investigate novel and established drugs. It enables investigation of drug penetration properties and identification of metabolites with spatial specificity in MCTS. The new approach has great value in facilitating the drug evaluation process. PMID:25604392

  1. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    PubMed

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  2. High-performance liquid chromatography coupled with mass spectrometry for the quantitative analysis of vinca-alkaloids in biological matrices: a concise survey from the literature.

    PubMed

    Damen, Carola W N; Rosing, Hilde; Schellens, Jan H M; Beijnen, Jos H

    2010-01-01

    The bioanalysis of vinca-alkaloids has been investigated extensively. High-performance liquid chromatography coupled to ultraviolet, fluorescence or electrochemical detection have been described. During recent years liquid chromatography coupled with mass spectrometry (LC-MS) has become the first choice for the quantitative bioanalysis of the vinca anticancer agents. This paper reviews recent methods for the bio-analysis of vinca-alkaloids using LC-MS, supplemented with our own experience. We will focus on sample pre-treatment, chromatography and MS detection and pay attention to problems which can occur during the bioanalysis of vinca-alkaloids. These problems encounter carry-over and absorption effects and solutions will be provided how to circumvent these problems. PMID:19606419

  3. Quantitative determination of the hydrolysis products of nitrogen mustards in human urine by liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Lemire, Sharon W; Ashley, David L; Calafat, Antonia M

    2003-01-01

    Nitrogen mustards are a public health concern because of their extreme vesicant properties and the possible exposure of workers during the destruction of chemical stockpiles. A sensitive, rapid, accurate, and precise analysis for the quantitation of ultratrace levels of N-ethyldiethanolamine (EDEA) and N-methyldiethanolamine (MDEA) in human urine as a means of assessing recent exposure to the nitrogen mustards bis(2-chloroethyl)ethylamine and bis(2-chloroethyl)methylamine, respectively, was developed. The method was based on solid-phase extraction, followed by analysis of the urine extract using isotope-dilution high-performance liquid chromatography-mass spectrometry with TurbolonSpray ionization and multiple-reaction monitoring. The method limits of detection were 0.41 ng/mL for EDEA and 0.96 ng/mL for MDEA in 1 mL of urine with coefficients of variation < 10% for both compounds. PMID:12587675

  4. Analytical method for the quantitative determination of cyanuric acid as the degradation product of sodium dichloroisocyanurate in urine by liquid chromatography mass spectrometry.

    PubMed

    Patel, Katan; Jones, Kate

    2007-06-15

    A simple and selective analytical method for the quantitative determination of cyanuric acid, the degradation product of sodium dichloroisocyanurate (NaDCC), in human urine is reported herein. The sample preparation involved the use of diatomaceous earth extraction columns. Quantification was achieved by liquid chromatography mass spectrometry using negative ion electrospray with a cyano (CN) column. Between day relative standard deviation less than 10% (n=6) was obtained at the 5 mg L(-1) level. The assay was linear over the investigated range 0-20 mg L(-1) and the limit of detection (LOD) was confirmed to be 0.1 mg L(-1). The method was applied to monitoring levels of cyanuric acid in healthcare workers using disinfectants products containing NaDCC. PMID:17409034

  5. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry

    PubMed Central

    2011-01-01

    Background Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences. Results Grain from the extensively characterized spring wheat cultivar Triticum aestivum 'Butte 86' was milled to white flour from which proteins were extracted, then separated and quantified by 2-DE. Protein spots were identified by separate digestions with three proteases, followed by tandem mass spectrometry analysis of the peptides. The spectra were used to interrogate an improved protein sequence database and results were integrated using the Scaffold program. Inclusion of cultivar specific sequences in the database greatly improved the results, and 233 spots were identified, accounting for 93.1% of normalized spot volume. Identified proteins were assigned to 157 wheat sequences, many for proteins unique to wheat and nearly 40% from Butte 86. Alpha-gliadins accounted for 20.4% of flour protein, low molecular weight glutenin subunits 18.0%, high molecular weight glutenin subunits 17.1%, gamma-gliadins 12.2%, omega-gliadins 10.5%, amylase/protease inhibitors 4.1%, triticins 1.6%, serpins 1.6%, purinins 0.9%, farinins 0.8%, beta-amylase 0.5%, globulins 0.4%, other enzymes and factors 1.9%, and all other 3%. Conclusions This is the first successful effort to identify the majority of abundant flour proteins for a single wheat cultivar, relate them to individual gene sequences and estimate their relative levels. Many genes for wheat flour proteins are not expressed, so this study represents further progress in describing the expressed wheat genome. Use of cultivar-specific contigs helped to overcome

  6. Quantitative Mass Spectrometry-Based Analysis of β-D-Glucosyl-5-Hydroxymethyluracil in Genomic DNA of Trypanosoma brucei

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Ji, Debin; Cliffe, Laura; Sabatini, Robert; Wang, Yinsheng

    2014-10-01

    β-D-glucosyl-5-hydroxymethyluracil (base J) is a hyper-modified nucleobase found in the nuclear DNA of kinetoplastid parasites. With replacement of a fraction of thymine in DNA, J is localized primarily in telomeric regions of all organisms carrying this modified base. The biosynthesis of J occurs in two putative steps: first, a specific thymine in DNA is recognized and converted into 5-hydroxymethyluracil (5-HmU) by J-binding proteins (JBP1 and JBP2); a glucosyl transferase (GT) subsequently glucosylates the 5-HmU to yield J. Although several recent studies revealed the roles of internal J in regulating transcription in kinetoplastids, functions of telomeric J and proteins involved in J synthesis remain elusive. Assessing the functions of base J and understanding fully its biosynthesis necessitate the measurement of its level in cells and organisms. In this study, we reported a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS) method, together with the use of a surrogate internal standard (β-D-glucosyl-5-hydroxymethyl-2'-deoxycytidine, 5-gHmdC), for the accurate detection of β-D-glucosyl-5-hydroxymethyl-2'-deoxyuridine (dJ) in Trypanosoma brucei DNA. For comparison, we also measured the level of the precursor for dJ synthesis [i.e. 5-hydroxymethyl-2'-deoxyuridine (5-HmdU)]. We found that base J was not detectable in the JBP-null cells whereas it replaced approximately 0.5% thymine in wild-type cells, which was accompanied with a markedly decreased level of 5-HmdU in JBP1/JBP2-null strain relative to the wild-type strain. These results provided direct evidence supporting that JBP proteins play an important role in oxidizing thymidine to form 5-HmdU, which facilitated the generation of dJ. This is the first report about the application of LC-MS/MS for the quantification of base J. The analytical method built a solid foundation for dissecting the molecular mechanisms of J biosynthesis and assessing the biological functions of base J in the

  7. A simultaneous quantitative method for vitamins A, D and E in human serum using liquid chromatography-tandem mass spectrometry.

    PubMed

    Albahrani, Ali A; Rotarou, Victor; Roche, Peter J; Greaves, Ronda F

    2016-05-01

    Non-classical roles of fat-soluble vitamins (FSVs) in many pathologies including cancer have been identified. There is also evidence of hormonal interactions between two of these vitamins, A and D. As a result of this enhanced clinical association with disease, translational clinical research and laboratory requests for FSV measurement has significantly increased. However there are still gaps in the analytical methods available for the measurement of these vitamins. This study aimed to develop a method for simultaneous quantification of 25-hydroxyvitamin-D2 (25-OHD2), 25-hydroxyvitamin-D3 (25-OHD3) and its 3-epimer (epi-25-OHD3), retinol and α-tocopherol in human serum using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The procedure was developed and validated across two LC-MS/MS platforms, using commercial calibrators referenced to certified reference materials, controls, and deuterated internal standards. The samples were prepared by liquid-liquid extraction prior to injection and LC separation (using a Pursuit-PFP column) on two Agilent MS/MS systems (6410 and 6490) in electrospray ionisation positive mode with multiple reaction monitoring. Identification and quantification of 25-OHD3 from its 3-epimer as well as 25-OHD2, retinol and α-tocopherol were achieved. The dynamic ranges were 4-160 nmol/L for 25-OHD2 and epi-25-OHD3, 4-200 nmol/L for 25-OHD3, 0.1-4.0μmol/L for retinol and 4-70μmol/L for α-tocopherol with correlation (r(2)) of 0.997-0.998. Based on participation in an external quality assurance program, the overall performance of the simultaneous methods were: imprecision (CV%) and inaccuracy (average bias) 3.0% and 3.2 nmol/L, respectively, for 25-OHD3; 5.0% and 0.04μmol/L, respectively, for retinol; and 4.7% and 0.2μmol/L, respectively, for α-tocopherol. In summary, two simple LC-MS/MS methods were successfully developed and validated for the simultaneous quantification of the three vitamin D metabolites (25-OHD2, 25-OHD3 and 3

  8. Stable isotope dilution ultra-high performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid.

    PubMed

    Hényková, Eva; Vránová, Hana Přikrylová; Amakorová, Petra; Pospíšil, Tomáš; Žukauskaitė, Asta; Vlčková, Magdaléna; Urbánek, Lubor; Novák, Ondřej; Mareš, Jan; Kaňovský, Petr; Strnad, Miroslav

    2016-03-11

    Many compounds related to L-tryptophan (L-TRP) have interesting biological or pharmacological activity, and their abnormal neurotransmission seems to be linked to a wide range of neurodegenerative and psychiatric diseases. A high-throughput method based on ultra-high performance liquid chromatography connected to electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS) was developed for the quantitative analysis of L-TRP and 16 of its metabolites in human serum and cerebrospinal fluid (CSF), representing both major and minor routes of L-TRP catabolism. The combination of a fast LC gradient with selective tandem mass spectrometry enabled accurate analysis of almost 100 samples in 24h. The standard isotope dilution method was used for quantitative determination. The method's lower limits of quantification for serum and cerebrospinal fluid ranged from 0.05 to 15nmol/L and 0.3 to 45nmol/L, respectively. Analytical recoveries ranged from 10.4 to 218.1% for serum and 22.1 to 370.0% for CSF. The method's accuracy ranged from 82.4 to 128.5% for serum matrix and 90.7 to 127.7% for CSF matrix. All intra- and inter-day coefficients of variation were below 15%. These results demonstrate that the new method is capable of quantifying endogenous serum and CSF levels of a heterogeneous group of compounds spanning a wide range of concentrations. The method was used to determine the physiological levels of target analytes in serum and CSF samples from 18 individuals, demonstrating its reliability and potential usefulness in large-scale epidemiological studies. PMID:26879452

  9. A universal SI-traceable isotope dilution mass spectrometry method for protein quantitation in a matrix by tandem mass tag technology.

    PubMed

    Li, Jiale; Wu, Liqing; Jin, Youxun; Su, Ping; Yang, Bin; Yang, Yi

    2016-05-01

    Isotope dilution mass spectrometry (IDMS), an important metrological method, is widely used for absolute quantification of peptides and proteins. IDMS employs an isotope-labeled peptide or protein as an internal standard although the use of a protein provides improved accuracy. Generally, the isotope-labeled protein is obtained by stable isotope labeling by amino acids in cell culture (SILAC) technology. However, SILAC is expensive, laborious, and time-consuming. To overcome these drawbacks, a novel universal SI-traceable IDMS method for absolute quantification of proteins in a matrix is described with human transferrin (hTRF). The hTRF and a human serum sample were labeled with different tandem mass tags (TMTs). After mixing the TMT-labeled hTRF and serum sample together followed by digestion, the peptides were separated by nano-liquid chromatography and analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the signature peptides, we calculated the ratios of reporter ions from the TMT-labeled peptides which, in turn, allowed determination of the mass fraction of hTRF. The recovery ranged from 97% to 105% with a CV of 3.9%. The LOD and LOQ were 1.71 × 10(-5) g/g and 5.69 × 10(-5) g/g of hTRF in human serum, respectively, and the relative expanded uncertainty was 4.7% with a mass fraction of 2.08 mg/g. For comparison, an enzyme-linked immunosorbent assay (ELISA) method for hTRF yielded a mass fraction of 2.03 mg/g. This method provides a starting point for establishing IDMS technology to accurately determine the mass fractions of protein biomarkers in a matrix with traceability to SI units. This technology should support the development of a metrological method useful for quantification of a wide variety of proteins. PMID:26942737

  10. Combination of quantitative analysis and chemometric analysis for the quality evaluation of three different frankincenses by ultra high performance liquid chromatography and quadrupole time of flight mass spectrometry.

    PubMed

    Zhang, Chao; Sun, Lei; Tian, Run-tao; Jin, Hong-yu; Ma, Shuang-Cheng; Gu, Bing-ren

    2015-10-01

    Frankincense has gained increasing attention in the pharmaceutical industry because of its pharmacologically active components such as boswellic acids. However, the identity and overall quality evaluation of three different frankincense species in different Pharmacopeias and the literature have less been reported. In this paper, quantitative analysis and chemometric evaluation were established and applied for the quality control of frankincense. Meanwhile, quantitative and chemometric analysis could be conducted under the same analytical conditions. In total 55 samples from four habitats (three species) of frankincense were collected and six boswellic acids were chosen for quantitative analysis. Chemometric analyses such as similarity analysis, hierarchical cluster analysis, and principal component analysis were used to identify frankincense of three species to reveal the correlation between its components and species. In addition, 12 chromatographic peaks have been tentatively identified explored by reference substances and quadrupole time-of-flight mass spectrometry. The results indicated that the total boswellic acid profiles of three species of frankincense are similar and their fingerprints can be used to differentiate between them. PMID:26228790

  11. Quantitative and qualitative analysis of hemicellulose, cellulose and lignin bio-oils by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    PubMed

    Michailof, Chrysoula; Sfetsas, Themistoklis; Stefanidis, Stylianos; Kalogiannis, Konstantinos; Theodoridis, Georgios; Lappas, Angelos

    2014-11-21

    Thermal and catalytic pyrolysis are efficient processes for the transformation of biomass to bio-oil, a liquid energy carrier and a general source of chemicals. The elucidation of the bio-oil's composition is essential for a rational design of both its production and utilization process. However, the complex composition of bio-oils hinders their complete qualitative and quantitative analysis, and conventional chromatographic techniques lack the necessary separation power. Two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-ToFMS) is considered a suitable technique for bio-oil analysis due to its increased separation and resolution capacity. This work presents the tentative qualitative and quantitative analysis of bio-oils resulting from the thermal and catalytic pyrolysis of standard xylan, cellulose, lignin and their mixture by GC×GC-ToFMS. Emphasis is placed on the development of the quantitative method using phenol-d6 as internal standard. During the method development, a standard solution of 39 compounds was used for the determination of the respective Relative Response Factors (RRF) employing statistical methods, ANOVA and WLSLR, for verification of the data. The developed method was applied to the above mentioned bio-oils and their detailed analysis is presented. The different compounds produced and their diverse concentration allows for an elucidation of the pyrolysis mechanism and highlight the effect of the catalyst. PMID:25441082

  12. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  13. A mass spectrometry-based method for comprehensive quantitative determination of post-transcriptional RNA modifications: the complete chemical structure of Schizosaccharomyces pombe ribosomal RNAs

    PubMed Central

    Taoka, Masato; Nobe, Yuko; Hori, Masayuki; Takeuchi, Aiko; Masaki, Shunpei; Yamauchi, Yoshio; Nakayama, Hiroshi; Takahashi, Nobuhiro; Isobe, Toshiaki

    2015-01-01

    We present a liquid chromatography–mass spectrometry (LC-MS)-based method for comprehensive quantitative identification of post-transcriptional modifications (PTMs) of RNA. We incorporated an in vitro-transcribed, heavy isotope-labeled reference RNA into a sample RNA solution, digested the mixture with a number of RNases and detected the post-transcriptionally modified oligonucleotides quantitatively based on shifts in retention time and the MS signal in subsequent LC-MS. This allowed the determination and quantitation of all PTMs in Schizosaccharomyces pombe ribosomal (r)RNAs and generated the first complete PTM maps of eukaryotic rRNAs at single-nucleotide resolution. There were 122 modified sites, most of which appear to locate at the interface of ribosomal subunits where translation takes place. We also identified PTMs at specific locations in rRNAs that were altered in response to growth conditions of yeast cells, suggesting that the cells coordinately regulate the modification levels of RNA. PMID:26013808

  14. Qualitative and quantitative end-group analysis of a small molecular weight polyester by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Laine, O; Osterholm, H; Järvinen, H; Wickström, K; Vainiotalo, P

    2000-01-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for qualitative and quantitative end-group analysis of a small molecular weight polyester, poly(2-butyl-2-ethyl-1,3-propylene phthalate). The presence of carboxyl-terminated linear and cyclic polyester oligomers was confirmed with the help of simple sample preparation methods. The presence of carboxyl end-groups in the polyester chains was verified through their formation of carboxylate salts with alkali metal cations. Cyclic oligomers were identified through deuterium exchange of the exchangeable protons of the polyester. Various inorganic salts were tested for salt formation of the carboxyl end-groups, but only the alkali metal salts proved effective. The influence of the alkali metal salts on the results of the quantitative end-group analysis was also studied. The relative amounts of differently terminated and cyclic oligomers were calculated when the alkali metal salts were used with different matrices. The results showed that both the salts and the matrices used in sample preparation can have a marked effect on the quantitative results of the end-group analysis. The measurements were carried out using 2,5-dihydroxybenzoic acid (DHB), 1,8, 9-trihydroxyanthracene (dithranol), and 2-(4-hydroxyphenylazo)benzoic acid (HABA) as matrix compounds. Dithranol and HABA repeatably exhibited similar results, and these results differed from those obtained with DHB probably because of the different ionization mechanisms in the MALDI process. PMID:10717660

  15. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantitation of Microcystins in Blue-Green Algal Dietary Supplements.

    PubMed

    Parker, Christine H; Stutts, Whitney L; DeGrasse, Stacey L

    2015-12-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous detection and quantitation of seven microcystin congeners (1-7) and nodularin-R (8) in blue-green algal dietary supplements. Single-laboratory method validation data were collected in four supplement matrices (capsule, liquid, powder, and tablet) fortified at toxin concentrations from 0.25-2.00 μg/g (ppm). Average recoveries and relative standard deviations (RSD) using matrix-corrected solvent calibration curves were 101% (6% RSD) for all congeners and supplements investigated. Limits of detection (0.006-0.028 μg/g) and quantitation (0.018-0.084 μg/g) were sufficient to confirm the presence of microcystin contamination at the Oregon-mandated guidance concentration of 1.0 μg of microcystin-LReq/g. Quantitated concentrations of microcystin contamination in market-available Aphanizomenon flos-aquae blue-green algal supplements ranged from 0.18-1.87 μg of microcystin-LReq/g for detected congeners microcystin-LR, microcystin-LA, and microcystin-LY (3-5). Microcystin-RR, -YR, -LW, and -LF and nodularin-R (1, 2, and 6-8) were not detected in the supplements examined. PMID:26466789

  16. [Direct quantitative analysis of amino acids in fermented beverage of plant extract using high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Zheng, Zhong; Sun, Qi; Shi, Yongwei; Qu, Jiale; Song, Fengruil; Liu, Zhiqiang

    2015-03-01

    A method was established for underivatized amino acid determination in fermented beverage of plant extract. Samples were diluted with methanol for five times, extracted by ultrasonic vibration for 30 min, and high-speed centrifuged for 15 min at 10,000 r/min. The supernatant was separated and detected by, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The chromatographic column was Venusil ASB C18 (250 mm x 4.6 mm, 5 µm). The elution was performed at a flow rate of 0.5 mL/min using the mobile phases of methanol-acetic acid-water mixture. The MS detector was set as follows: ion source voltage 3 kV, ion source temperature 150 t, solvent temperature 350 t, gas flow rate 800 L/h. The collision gas was argon with a pressure of 0.17 Pa. The quantitation analysis was carried out with peak area in extracted ion chromatograms. Good linearities were acquired in the range of 0.5-200 µmol/L (r2 > 0.99) for the amino acids. The recoveries were between 86% and 110%. There were 16 amino acids in the fermented beverage of plant extract quantitatively analyzed. The method is simple, rapid, accurate and reliable in quantitative analysis of amino acid samples in the fields of pharmaceutical, food and natural products. PMID:26182474

  17. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided. PMID:18200615

  18. Quantitative imaging of the tissue contrast agent [Gd(DTPA)]²⁻ in articular cartilage by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Sussulini, Alessandra; Wiener, Edzard; Marnitz, Tim; Wu, Bei; Müller, Berit; Hamm, Bernd; Sabine Becker, J

    2013-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an emerging analytical technique in the generation of quantitative images of MR contrast agent distribution in thin tissue sections of articular cartilage. An analytical protocol is described that includes sample preparation by cryo-cutting of tissue sections, mass spectrometric measurements by LA-ICP-MS and quantification of gadolinium images by one-point calibration, standard addition method (employing matrix-matched laboratory standards) and isotope dilution analysis using highly enriched stable Gd-155 isotope (abundance 92 vs 14.8% in the [Gd(DTPA)]²⁻ contrast agent). The tissue contrast agent concentrations of [Gd(DTPA)]²⁻ in cartilage measured in this work are in agreement with findings obtained by magnetic resonance imaging and other analytical methodologies. The LA-ICP-MS imaging data also confirm the observation that the spatial distribution of [Gd(DTPA)]²⁻ in the near-equilibrium state is highly inhomogeneous across cartilage thickness with the highest concentration measured in superficial cartilage and a strong decrease toward the subchondral bone. In the present work, it is shown for the first time that LA-ICP-MS can be applied to validate the results from quantitative gadolinium-enhanced MRI technique of articular cartilage. PMID:23281293

  19. Method for Detection and Quantitation of Fathead Minnow Vitellogenin (Vtg) by Liquid Chromatography and Matrix Assisted Laser Desorption/ Ionization Mass Spectrometry

    SciTech Connect

    Wunschel, David S.; Schultz, Irv R.; Skillman, Ann D.; Wahl, Karen L.

    2005-03-11

    Vitellogenin (Vtg) is a well recognized biomarker of estrogen exposure in many species, particularly fish. This large protein shares a high degree of sequence homology across a large number of species. Quantitative measurement is currently done using antibody-based assays. These assays frequently require purification of Vtg and antibody production from each species because there is poor cross reactivity between antibodies for different fish. Therefore, complementary methods of measuring Vtg are desirable. Mass spectrometric (MS) analysis coupled to database searching offers the promise of a general method for protein identification. In this study we used the well characterized Vtg from rainbow trout (O. mykiss) to evaluate the analytical parameters for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of the intact and tryptic digested protein. An analytical scale HPLC separation combined with MALDI-MS was used to measure and confirm the identity of Vtg from the plasma of an important species for regulatory agencies, fathead minnow (Pimephales promelas). The small volume requirement of this method (< 10 uL) was found to be compatible with the plasma volume obtained from a few minnows. A semi quantitative measurement of Vtg from minnows exposed to estradiol was achieved, which was similar to previously obtained ELISA data.

  20. Direct quantitative analysis of organic compounds in the gas and particle phase using a modified atmospheric pressure chemical ionization source in combination with ion trap mass spectrometry.

    PubMed

    Warscheid, Bettina; Kückelmann, Ulrich; Hoffmann, Thorsten

    2003-03-15

    A slightly modified atmospheric pressure chemical ionization source is employed for direct quantitative analysis of volatile or semivolatile organic compounds in air. The method described here is based on the direct introduction of an analyte in the gas or particle phase, or both, into the ion source of a commercial ion trap mass spectrometer. For quantitation, a standard solution is directly transferred into the vaporizer unit of the ion source via a deactivated fused-silica capillary by using the sheath liquid syringe pump, which is part of the mass spectrometer. The standard addition procedure is conducted by varying the pump rate of a diluted solution of the standard compound in methanol/water. A N2 sheath gas flow is applied for optimal vaporization and mixing with the analyte gas stream. By performing detailed reagent ion monitoring experiments, it is shown that the relative signal intensity of [M + H]+ ions is dependent on the relative humidity of the analyte gas stream as well as the composition and concentration of CI reagent ions. The method is validated by a comparison of the standard addition results with a calibration test gas of known concentration. To demonstrate the potential of atmospheric pressure chemical ionization mass spectrometry as a quantitative analytical technique for on-line investigations, a tropospherically relevant reaction is carried out in a 493-L reaction chamber at atmospheric pressure and 296 K in synthetic air at 50% relative humidity. Finally, the applicability of the technique to rapidly differentiate between analytes in the gas and particle phase is demonstrated. PMID:12659203

  1. Large-scale qualitative and quantitative characterization of components in Shenfu injection by integrating hydrophilic interaction chromatography, reversed phase liquid chromatography, and tandem mass spectrometry.

    PubMed

    Song, Yuelin; Zhang, Na; Shi, Shepo; Li, Jun; Zhang, Qian; Zhao, Yunfang; Jiang, Yong; Tu, Pengfei

    2015-08-14

    It is of great importance to clarify in depth the chemical composition, including qualitative and quantitative aspects, of traditional Chinese medicine (TCM) injection that contains a great number of hydrophilic and hydrophobic ingredients to guarantee its safe medication in clinic. Column-switching hydrophilic interaction liquid chromatography-reversed phase liquid chromatography coupled with tandem mass spectrometry (HILIC-RPLC-MS/MS) has been revealed to be advantageous at simultaneous measurement of compounds covering a broad polarity range. Previous studies have profiled the hydrophobic components, mainly aconite alkaloids and ginsenosides, in Shenfu Injection (SFI); however, the hydrophilic substances haven't been taken into account. In the present study, we aim to holistically characterize the hydrophilic constituents and to simultaneously quantitate both hydrophilic and hydrophobic components in SFI. A strategy integrating predefined multiple reaction monitoring, step-wise multiple ion monitoring, and enhanced product ion scans was proposed to universally screen the hydrophilic substances using a hybrid triple quadrupole-linear ion trap mass spectrometer. Structural identification was carried out by comparing with authentic compounds, analyzing MS(2) spectra, and referring to accessible databases (e.g., MassBank, METLIN and HMDB). A total of 157 hydrophilic compounds were detected from SFI, and 154 ones were identified as amino acids, nucleosides, organic acid, carbohydrates, etc. A column-switching HILIC-RPLC-MS/MS system was developed and validated for simultaneously quantitative analysis of 40 primary hydrophilic and hydrophobic ingredients in SFI, including eleven amino acids, nine nucleosides, nine aconite alkaloids, and eleven ginsenosides. Taken together, the findings obtained could provide meaningful information for comprehensively understanding the chemical composition and offer a reliable approach for the quality control of SFI. PMID:26143607

  2. Quantitative determination of trimebutine maleate and its three metabolites in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Hongyun; Zhou, Hui; Horimoto, Shingo; Jiang, Ji; Mayumi, Tsuyoshi; Hu, Pei

    2002-11-01

    A sensitive and selective HPLC-MS-MS method was developed for the determination of trimebutine maleate (TM) and its major metabolites N-monodemethyltrimebutine (TM-MPB), N-didemethyltrimebutine (APB) and 3,4,5-trimethoxybenzoic acid (TMBA) in human plasma. The analytes were extracted from plasma samples by liquid-liquid extraction and chromatographed on a YMC J'sphere C(18) column. The mobile phase consisted of 2 mM ammonium acetate buffer (pH 6.5)-methanol (20:80, v/v), and at a flow-rate of 0.2 ml/min. Detection was carried out on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring (MRM) mode using positive-negative switching electrospray ionization (ESI). The method was validated over the concentration range of 1-100 ng/ml for trimebutine maleate and APB, 1-500 ng/ml for MPB, and 50-10,000 ng/ml for TMBA. Inter- and intra-day precision (RSD%) for trimebutine maleate and its three metabolites were all within +/-15% and the accuracy was within 85-115%. The limit of quantitation was 1 ng/ml for trimebutine maleate, TM-MPB and APB, and 50 ng/ml for TMBA. The extraction recovery was on average 58.2% for trimebutine maleate, 69.6% for MPB, 51.2% for APB and 62.5% for TMBA. The method was applied to the pharmacokinetic study of trimebutine maleate and its metabolites in healthy Chinese volunteers. PMID:12361732

  3. Quantitative analysis of the DNA adduct N2,3-ethenoguanine using liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Yen, T Y; Christova-Gueoguieva, N I; Scheller, N; Holt, S; Swenberg, J A; Charles, M J

    1996-11-01

    The need for specificity and sensitivity in the analysis of DNA adducts has led the development of GC/MS methods. Such methods require chemical derivatization (i.e. silylation, electrophore labelling), which can also bring its own sets of problems, including the production of artifacts, interferences and sample to sample variability in derivatization. To obviate such problems, a liquid chromatographic/electrospray ionization mass spectrometric (LC/ESI-MS) method was developed to quantify N2,3-ethenoguanine (epsilon Gua), a promutagenic DNA adduct of vinyl chloride exposure. The response of epsilon Gua to isotopically labelled internal standard [13C4]epsilon Gua was linear (r2 = 0.999) and reproducible from 0.027 to 0.538 pmol microliter-1. We obtained an accuracy of 86 +/- 14% by analyzing chloroethylene oxide (CEO)-treated calf thymus DNA enriched with authentic epsilon Gua. The analysis of CEO-treated calf thymus DNA samples not enriched with authentic epsilon Gua provided a precision of 15%. The detection limits with a signal-to-noise ratio (S/N) 2.5:1 were obtained in the determination of authentic epsilon Gua at 5 fmol per injection. The detection limit obtained in the routine analysis of the biological samples was 50 fmol epsilon Gua with S/N = 3:1. The applicability of the method was established by determining epsilon Gua in rats treated with CEO by portal vein injection and an unexposed human liver. It was observed that the concentration of epsilon Gua in the rat livers increased with increase in dose and was inversely related to the time after, CEO exposure. This trend suggests rapid repair of the adduct in rat livers. In the human liver DNA sample, epsilon Gua was quantitated at 0.06 +/- 0.01 pmol mg-1 DNA. PMID:8946734

  4. Quantitative analysis of intracellular nucleoside triphosphates and other polar metabolites using ion pair reversed-phase liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Wu, Jianmei; Zhang, Yingtao; Wiegand, Richard; Wang, Jian; Bepler, Gerold; Li, Jing

    2015-12-01

    Simultaneous, quantitative determination of intracellular nucleoside triphosphates and other polar metabolites using liquid chromatography with electrospray ionization tandem mass spectrometry (LC-MS/MS) represents a bioanalytic challenge because of charged, highly hydrophilic analytes presented at a large concentration range in a complex matrix. In this study, an ion pair LC-MS/MS method using triethylamine (TEA)-hexafluoroisopropanol (HFIP) ion-pair mobile phase was optimized and validated for simultaneous and unambiguous determination of 8 nucleoside triphosphates (including ATP, CTP, GTP, UTP, dATP, dCTP, dGTP, and dTTP) in cellular samples. Compared to the the less volatile ion-pair reagent, triethylammonium acetate (100mM, pH 7.0), the combination of HFIP (100mM) and TEA (8.6mM) increased the MS signal intensity by about 50-fold, while retaining comparable chromatographic resolution. The isotope-labeled internal standard method was used for the quantitation. Lower limits of quantitation were determined at 0.5nM for CTP, UTP, dATP, dCTP, and dTTP, at 1nM for ATP, and at 5nM for GTP and dGTP. The intra- and inter-day precision and accuracy were within the generally accepted criteria for bioanalytical method validation (<15%). While the present method was validated for the quantitation of intracellular nucleoside triphosphates, it had a broad application potential for quantitative profiling of nucleoside mono- and bi-phosphates as well as other polar, ionic metabolic intermediates (including carbohydrate derivatives, carboxylic acid derivatives, co-acyl A derivatives, fatty acyls, and others) in biological samples. PMID:26551209

  5. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  6. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  7. Qualitative and quantitative analysis of polycyclic polyprenylated acylphloroglucinols from Garcinia species using ultra performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Zhou, Yan; Lee, Stephanie; Choi, Franky Fung Kei; Xu, Gang; Liu, Xin; Song, Jing-Zheng; Li, Song-Lin; Qiao, Chun-Feng; Xu, Hong-Xi

    2010-09-23

    Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a group of natural products isolated from different Garcinia species with a wide range of important biological activities. In this study, an ultra performance liquid chromatography (UPLC) coupled to photodiode-array detection and quadrupole time-of-flight mass spectrometry (Q-TOF) method was developed to characterize 16 PPAPs in 10 Garcinia species. In source dissociation techniques based on cone voltage fragmentation were used to fragment the deprotonated molecules and multiple mass spectrometry (MS/MS) using ramping collision energy were used to further break down the resulting product ions. The resulting characteristic fragment ions were generated by cleavage of C1-C5 bond and C7-C8 bond through concerted pericyclic reaction, which is especially valuable for differentiating three types of PPAPs isomers. As such, two new PPAPs isomers present in minor amount in the extracts of Garcinia oblongifolia were tentatively characterized by comparing their tandem mass spectra to the known ones. In addition, an UPLC-Q-TOF-MS method was validated for the quantitative determination of PPAPs. The method exhibited limits of detection from 2.7 to 21.4 ng mL(-1) and intra-day and inter-day variations were less than 3.7% and the recovery was in the range of 89-107% with RSD less than 9.0%. This UPLC-Q-TOF-MS method has successfully been applied to quantify 16 PPAPs in 32 samples of 10 Garcinia species, which were found to be a rich source of PPAPs. PMID:20869510

  8. [Rapid screening and quantitative detection of 11 illegally added antidiabetics in health care products by ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry].

    PubMed

    Du, Yanshan; Li, Qiang; Wu, Chunmin; Zhang, Yan

    2015-04-01

    A method for rapid screening and quantification of 11 antidiabetics (nateglinide, pioglitazone hydrochloride, gliquidone, gliclazide, glipizide, glibenclamide, metformin hydrochloride, repaglinide, phenformin hydrochloride, rosiglitazone hydrochloride, glimepiride) illegally added in health care products by ultra performance liquid chromatography (UPLC)-quadrupole/ electrostatic field orbitrap mass spectrometry was established. The samples were extracted with methanol, and separated on an Agilent Poroshell 120 SB-C18 column (100 mm x 4.6 mm, 2.7 µm) with acetonitrile-10 mmol/L ammonium acetate solution as mobile phases by gradient elution. The positive mode was used in the MS detection. The resolution of the precursor mass was 70,000, while the resolution of the product mass was 17,500. The results indicated that the linearity of all the 11 antidiabetics ranged from 0.005 mg/L to 0.5 mg/L with the correlation coefficients greater than 0.99. The limits of detection were confirmed by spiked samples, and were between 2.7 and 5.1 µg/kg for the 11 antidiabetics. The recoveries were in the range of 87.3% to 98.3%, with the relative standard deviations in the range of 2.18%-5.21%. This method is accurate, simple and rapid, and can be used in rapid screening and quantitative analysis of the 11 illegally added antidiabetics in health care products. PMID:26292406

  9. Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global 13C-labeled internal standards improve performance for quantitative metabolomics in bacteria

    PubMed Central

    Yang, Song; Sadilek, Martin; Lidstrom, Mary E.

    2010-01-01

    Streamlined quantitative metabolomics in central metabolism of bacteria would be greatly facilitated by a high-efficiency liquid chromatography (LC) method in conjunction with accurate quantitation. To achieve this goal, a methodology for LC-tandem quadrupole mass spectrometry (LC-MS/MS) involving a pentafluorophenylpropyl (PFPP) column and culture-derived global 13C-labeled internal standards (I.Ss.) has been developed and compared to hydrophilic interaction liquid chromatography (HILIC)-MS/MS and published combined two-dimensional gas chromatography and LC methods. All 50 tested metabolite standards from 5 classes (amino acids, carboxylic acids, nucleotides, acyl-CoAs and sugar phosphates) displayed good chromatographic separation and sensitivity on the PFPP column. In addition, many important critical pairs such as isomers / isobars (e.g. isoleucine / leucine, methylsuccinic acid / ethylmalonic acid and malonyl-CoA / 3-hydroxybutyryl-CoA) and metabolites of similar structure (e.g. malate / fumarate) were resolved better on the PFPP than on the HILIC column. Compared to only one 13C-labeled I.S., the addition of global 13C-labeled I.Ss. improved quantitative linearity and accuracy. PFPP-MS/MS with global 13C-labeled I.Ss. allowed the absolute quantitation of 42 metabolite pool sizes in M. extorquens AM1. A comparison of metabolite level changes published previously for ethylamine (C2) versus succinate (C4) cultures of Methylobacterium extorquens AM1 indicated a good consistency with the data obtained by PFPP-MS/MS, suggesting this single approach has the capability of providing comprehensive metabolite profiling similar to the combination of methods. The more accurate quantification obtained by this method forms a fundamental basis for flux measurements and can be used for metabolism modeling in bacteria in future studies. PMID:20950815

  10. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.

    PubMed

    Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Borchers, Christoph H

    2016-01-01

    Absolute quantitative strategies are emerging as a powerful and preferable means of deriving concentrations in biological samples for systems biology applications. Method development is driven by the need to establish new-and validate current-protein biomarkers of high-to-low abundance for clinical utility. In this chapter, we describe a methodology involving two-dimensional (2D) reversed-phase liquid chromatography (RPLC), operated under alkaline and acidic pH conditions, combined with multiple reaction monitoring (MRM)-mass spectrometry (MS) (also called selected reaction monitoring (SRM)-MS) and a complex mixture of stable isotope-labeled standard (SIS) peptides, to quantify a broad and diverse panel of 253 proteins in human blood plasma. The quantitation range spans 8 orders of magnitude-from 15 mg/mL (for vitamin D-binding protein) to 450 pg/mL (for protein S100-B)-and includes 31 low-abundance proteins (defined as being <10 ng/mL) of potential disease relevance. The method is designed to assess candidates at the discovery and/or verification phases of the biomarker pipeline and can be adapted to examine smaller or alternate panels of proteins for higher sample throughput. Also detailed here is the application of our recently developed software tool-Qualis-SIS-for protein quantitation (via regression analysis of standard curves) and quality assessment of the resulting data. Overall, this chapter provides the blueprint for the replication of this quantitative proteomic method by proteomic scientists of all skill levels. PMID:26867735

  11. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  12. Mass Spectrometry Based Identification of Geometric Isomers during Metabolic Stability Study of a New Cytotoxic Sulfonamide Derivatives Supported by Quantitative Structure-Retention Relationships

    PubMed Central

    Belka, Mariusz; Hewelt-Belka, Weronika; Sławiński, Jarosław; Bączek, Tomasz

    2014-01-01

    A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers’ geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the

  13. Mass spectrometry based identification of geometric isomers during metabolic stability study of a new cytotoxic sulfonamide derivatives supported by quantitative structure-retention relationships.

    PubMed

    Belka, Mariusz; Hewelt-Belka, Weronika; Sławiński, Jarosław; Bączek, Tomasz

    2014-01-01

    A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers' geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the

  14. Quantitation of low molecular weight sugars by chemical derivatization-liquid chromatography/multiple reaction monitoring/mass spectrometry.

    PubMed

    Han, Jun; Lin, Karen; Sequria, Carita; Yang, Juncong; Borchers, Christoph H

    2016-07-01

    A new method for the separation and quantitation of 13 mono- and disaccharides has been developed by chemical derivatization/ultra-HPLC/negative-ion ESI-multiple-reaction monitoring MS. 3-Nitrophenylhydrazine (at 50°C for 60 min) was shown to be able to quantitatively derivatize low-molecular weight (LMW) reducing sugars. The nonreducing sugar, sucrose, was not derivatized. A pentafluorophenyl-bonded phase column was used for the chromatographic separation of the derivatized sugars. This method exhibits femtomole-level sensitivity, high precision (CVs of ≤ 4.6%) and high accuracy for the quantitation of LMW sugars in wine. Excellent linearity (R(2) ≥ 0.9993) and linear ranges of ∼500-fold for disaccharides and ∼1000-4000-fold for monosaccharides were achieved. With internal calibration ((13) C-labeled internal standards), recoveries were between 93.6% ± 1.6% (xylose) and 104.8% ± 5.2% (glucose). With external calibration, recoveries ranged from 82.5% ± 0.8% (ribulose) to 105.2% ± 2.1% (xylulose). Quantitation of sugars in two red wines and two white wines was performed using this method; quantitation of the central carbon metabolism-related carboxylic acids and tartaric acid was carried out using a previously established derivatization procedure with 3-nitrophenylhydrazine as well. The results showed that these two classes of compounds-both of which have important organoleptic properties-had different compositions in red and white wines. PMID:27120558

  15. Quantitative analysis of amoxicillin, its major metabolites and ampicillin in eggs by liquid chromatography combined with electrospray ionization tandem mass spectrometry.

    PubMed

    Sun, Lirui; Jia, Longfei; Xie, Xing; Xie, Kaizhou; Wang, Jianfeng; Liu, Jianyu; Cui, Lulu; Zhang, Genxi; Dai, Guojun; Wang, Jinyu

    2016-02-01

    In this present study, we developed a simple, rapid and specific method for the quantitative analysis of the contents of amoxicillin (AMO), AMO metabolites and ampicillin (AMP) in eggs. This method uses a simple liquid-liquid extraction with acetonitrile followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized method has been validated according to requirements defined by the European Union and Food and Drug Administration. Extraction recoveries of the target compounds from the egg at 5, 10 and 25 μg/kg were all higher than 80%, with relative standard deviations not exceeding 10.00%. The limits of quantification in eggs were below the maximum residue limits (MRLs). The decision limits (CCα) ranged between 11.1 and 11.5 μg/kg, while detection capabilities (CCβ) from 12.1 to 13.0 μg/kg. These values were very close to the corresponding MRLs. Finally, the new approach was successfully verified for the quantitative determination of these analytes in 40 commercial eggs from local supermarkets. PMID:26304353

  16. High-resolution gas chromatography/mass spectrometry method for characterization and quantitative analysis of ginkgolic acids in Ginkgo biloba plants, extracts, and dietary supplements.

    PubMed

    Wang, Mei; Zhao, Jianping; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Chittiboyina, Amar G; Wylie, Philip L; Parcher, Jon F; Khan, Ikhlas A

    2014-12-17

    A high-resolution gas chromatography/mass spectrometry (GC/MS) with selected ion monitor method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts, and commercial products was developed and validated. The method involved sample extraction with (1:1) methanol and 10% formic acid, liquid-liquid extraction with n-hexane, and derivatization with trimethylsulfonium hydroxide (TMSH). Separation of two saturated (C13:0 and C15:0) and six unsaturated ginkgolic acid methyl esters with different positional double bonds (C15:1 Δ8 and Δ10, C17:1 Δ8, Δ10, and Δ12, and C17:2) was achieved on a very polar (88% cyanopropyl) aryl-polysiloxane HP-88 capillary GC column. The double bond positions in the GAs were determined by ozonolysis. The developed GC/MS method was validated according to ICH guidelines, and the quantitation results were verified by comparison with a standard high-performance liquid chromatography method. Nineteen G. biloba authenticated and commercial plant samples and 21 dietary supplements purported to contain G. biloba leaf extracts were analyzed. Finally, the presence of the marker compounds, terpene trilactones and flavonol glycosides for Ginkgo biloba in the dietary supplements was determined by UHPLC/MS and used to confirm the presence of G. biloba leaf extracts in all of the botanical dietary supplements. PMID:25383633

  17. Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and Parkinson's disease brain tissue by intact protein mass spectrometry.

    PubMed

    Kellie, John F; Higgs, Richard E; Ryder, John W; Major, Anthony; Beach, Thomas G; Adler, Charles H; Merchant, Kalpana; Knierman, Michael D

    2014-01-01

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03). PMID:25052239

  18. Quantitative Measurement of Intact Alpha-Synuclein Proteoforms from Post-Mortem Control and Parkinson's Disease Brain Tissue by Intact Protein Mass Spectrometry

    PubMed Central

    Kellie, John F.; Higgs, Richard E.; Ryder, John W.; Major, Anthony; Beach, Thomas G.; Adler, Charles H.; Merchant, Kalpana; Knierman, Michael D.

    2014-01-01

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03). PMID:25052239

  19. Immunoaffinity enrichment and liquid chromatography-selected reaction monitoring mass spectrometry for quantitation of carbonic anhydrase 12 in cultured renal carcinoma cells

    PubMed Central

    Rafalko, Agnes; Iliopoulos, Othon; Fusaro, Vincent A.; Hancock, William; Hincapie, Marina

    2010-01-01

    Liquid chromatography-selected reaction monitoring (LC-SRM) is a highly specific and sensitive mass spectrometry (MS) technique that is widely being applied to selectively qualify and validate candidate markers within complex biological samples. However, in order for LC-SRM methods to take on these attributes, target-specific optimization of sample processing is required, in order to reduce analyte complexity, prior to LC-SRM. In this study, we have developed a targeted platform consisting of protein immunoaffinity enrichment on magnetic beads and LC-SRM for measuring carbonic anhydrase 12 (CA12) protein in a renal cell carcinoma (RCC) cell line (PRC3), a candidate biomarker for RCC whose expression at the protein level has not been previously reported. Sample processing and LC-SRM assay were optimized for signature peptides selected as surrogate markers of CA12 protein. Using LC-SRM coupled with stable isotope dilution, we achieved limits of quantitation in the low fmol range sufficient for measuring clinically relevant biomarkers with good intra- and inter-assay accuracy and precision (≤17%). Our results show that using a quantitative immunoaffinity capture approach provides specific, accurate, and robust assays amenable to high-throughput verification of potential biomarkers. PMID:20936840

  20. Immunoaffinity enrichment and liquid chromatography-selected reaction monitoring mass spectrometry for quantitation of carbonic anhydrase 12 in cultured renal carcinoma cells.

    PubMed

    Rafalko, Agnes; Iliopoulos, Othon; Fusaro, Vincent A; Hancock, William; Hincapie, Marina

    2010-11-01

    Liquid chromatography-selected reaction monitoring (LC-SRM) is a highly specific and sensitive mass spectrometry (MS) technique that is widely being applied to selectively qualify and validate candidate markers within complex biological samples. However, in order for LC-SRM methods to take on these attributes, target-specific optimization of sample processing is required, in order to reduce analyte complexity, prior to LC-SRM. In this study, we have developed a targeted platform consisting of protein immunoaffinity enrichment on magnetic beads and LC-SRM for measuring carbonic anhydrase 12 (CA12) protein in a renal cell carcinoma (RCC) cell line (PRC3), a candidate biomarker for RCC whose expression at the protein level has not been previously reported. Sample processing and LC-SRM assay were optimized for signature peptides selected as surrogate markers of CA12 protein. Using LC-SRM coupled with stable isotope dilution, we achieved limits of quantitation in the low fmol range sufficient for measuring clinically relevant biomarkers with good intra- and interassay accuracy and precision (≤17%). Our results show that using a quantitative immunoaffinity capture approach provides specific, accurate, and robust assays amenable to high-throughput verification of potential biomarkers. PMID:20936840

  1. Quantitative Measurement of Intact Alpha-Synuclein Proteoforms from Post-Mortem Control and Parkinson's Disease Brain Tissue by Intact Protein Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kellie, John F.; Higgs, Richard E.; Ryder, John W.; Major, Anthony; Beach, Thomas G.; Adler, Charles H.; Merchant, Kalpana; Knierman, Michael D.

    2014-07-01

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).

  2. A selective and sensitive method for quantitation of lysergic acid diethylamide (LSD) in whole blood by gas chromatography-ion trap tandem mass spectrometry.

    PubMed

    Libong, Danielle; Bouchonnet, Stéphane; Ricordel, Ivan

    2003-01-01

    A gas chromatography-ion trap tandem mass spectrometry (GC-ion trap MS-MS) method for detection and quantitation of LSD in whole blood is presented. The sample preparation process, including a solid-phase extraction step with Bond Elut cartridges, was performed with 2 mL of whole blood. Eight microliters of the purified extract was injected with a cold on-column injection method. Positive chemical ionization was performed using acetonitrile as reagent gas; LSD was detected in the MS-MS mode. The chromatograms obtained from blood extracts showed the great selectivity of the method. GC-MS quantitation was performed using lysergic acid methylpropylamide as the internal standard. The response of the MS was linear for concentrations ranging from 0.02 ng/mL (detection threshold) to 10.0 ng/mL. Several parameters such as the choice of the capillary column, the choice of the internal standard and that of the ionization mode (positive CI vs. EI) were rationalized. Decomposition pathways under both ionization modes were studied. Within-day and between-day stability were evaluated. PMID:12587679

  3. A rapid & sensitive liquid chromatography- tandem mass spectrometry method for the quantitation of busulfan levels in plasma & application for routine therapeutic monitoring in haematopoietic stem cell transplantation

    PubMed Central

    Desire, Salamun; Mohanan, Ezhil Pavai; George, Biju; Mathews, Vikram; Chandy, Mammen; Srivastava, Alok; Balasubramanian, Poonkuzhali

    2013-01-01

    Background & objectives: Busulfan (Bu) in combination with cyclophosphamide is widely used in myeloablative conditioning regimen prior to haematopoietic stem cell transplantation (HSCT). Its narrow therapeutic range and toxic side effects at high systemic exposure and graft rejection at low exposure emphasize the need for busulfan dose optimization using targeted dose adjustment prior to HSCT. We report here a rapid and sensitive method to quantitate busulfan plasma levels in patients receiving busulfan as part of pre-transplant conditioning. Methods: The method involves simple protein precipitation of the plasma followed by analysis using a high performance liquid chromatography (HPLC) with tandem mass spectrometry - electrospray ionization technique (LC-ESI MS/MS) in positive ionization mode and quantified using multiple reaction monitoring (MRM). Deuterated busulfan (d8-busulf`an) was used as the internal standard. Results: The method was linear for the concentration ranging from 0 to 4000 ng/ml of busulfan with a limit of detection of 2 ng/ml and limit of quantitation of 5 ng/ml. The assay was accurate for serial concentrations of Bu in plasma for five consecutive days and the CV was less than 10 per cent. Conclusion: Using this rapid and sensitive method, busulfan levels were targeted and subsequent doses adjusted at our center in 26 patients receiving high dose busulfan in combination with cyclophosphamide or fludarabine. PMID:23703347

  4. Qualitative and quantitative analysis of an alkaloid fraction from Piper longum L. using ultra-high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry.

    PubMed

    Li, Kuiyong; Fan, Yunpeng; Wang, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2015-05-10

    In a previous research, an alkaloid fraction and 18 alkaloid compounds were prepared from Piper longum L. by series of purification process. In this paper, a qualitative and quantitative analysis method using ultra-high performance liquid chromatography-diode array detector-mass spectrometry (UHPLC-DAD-MS) was developed to evaluate the alkaloid fraction. Qualitative analysis of the alkaloid fraction was firstly completed by UHPLC-DAD method and 18 amide alkaloid compounds were identified. A further qualitative analysis of the alkaloid fraction was accomplished by UHPLC-MS/MS method. Another 25 amide alkaloids were identified according to their characteristic ions and neutral losses. At last, a quantitative method for the alkaloid fraction was established using four marker compounds including piperine, pipernonatine, guineensine and N-isobutyl-2E,4E-octadecadienamide. After the validation of this method, the contents of above four marker compounds in the alkaloid fraction were 57.5mg/g, 65.6mg/g, 17.7mg/g and 23.9mg/g, respectively. Moreover, the relative response factors of other three compounds to piperine were calculated. A comparative study between external standard quantification and relative response factor quantification proved no remarkable difference. UHPLC-DAD-MS method was demonstrated to be a powerful tool for the characterization of the alkaloid fraction from P. longum L. and the result proved that the quality of alkaloid fraction was efficiently improved after appropriate purification. PMID:25746504

  5. Direct Standard-Free Quantitation of Tamiflu® and Other Pharmaceutical Tablets using Clustering Agents with Electrospray Ionization Mass Spectrometry

    PubMed Central

    Flick, Tawnya G.; Leib, Ryan D.; Williams, Evan R.

    2010-01-01

    Accurate and rapid quantitation is advantageous to identify counterfeit and substandard pharmaceutical drugs. A standard-free electrospray ionization mass spectrometry method is used to directly determine the dosage in the prescription and over-the-counter drugs, Tamiflu®, Sudafed®, and Dramamine®. A tablet of each drug was dissolved in aqueous solution, filtered, and introduced into solutions containing a known concentration of either L-tryptophan, L-phenylalanine or prednisone as clustering agents. The active ingredient(s) incorporates statistically into large clusters of the clustering agent where effects of differential ionization/detection are substantially reduced. From the abundances of large clusters, the dosages of the active ingredients in each of the tablets were determined to typically better than 20% accuracy even when the ionization/detection efficiency of the individual components differed by over 100×. Although this unorthodox method for quantitation is not as accurate as using conventional standards, it has the advantages that it is fast, it can be applied to mixtures where the identities of the analytes are unknown, and it can be used when suitable standards may not be readily available, such as schedule I or II controlled substances or new designer drugs that have not previously been identified. PMID:20092258

  6. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo-Si-B coatings using laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cakara, Anja; Bonta, Maximilian; Riedl, Helmut; Mayrhofer, Paul H.; Limbeck, Andreas

    2016-06-01

    Nowadays, for the production of oxidation protection coatings in ultrahigh temperature environments, alloys of Mo-Si-B are employed. The properties of the material, mainly the oxidation resistance, are strongly influenced by the Si to B ratio; thus reliable analytical methods are needed to assure exact determination of the material composition for the respective applications. For analysis of such coatings, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been reported as a versatile method with no specific requirements on the nature of the sample. However, matrix effects represent the main limitation of laser-based solid sampling techniques and usually the use of matrix-matched standards for quantitative analysis is required. In this work, LA-ICP-MS analysis of samples with known composition and varying Mo, Si and B content was carried out. Between known analyte concentrations and derived LA-ICP-MS signal intensities no linear correlation could be found. In order to allow quantitative analysis independent of matrix effects, a multiple linear regression model was developed. Besides the three target analytes also the signals of possible argides (40Ar36Ar and 98Mo40Ar) as well as detected impurities of the Mo-Si-B coatings (108Pd) were considered. Applicability of the model to unknown samples was confirmed using external validation. Relative deviations from the values determined using conventional liquid analysis after sample digestion between 5 and 10% for the main components Mo and Si were observed.

  7. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    PubMed

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops. PMID:26237374

  8. Quantitative imaging of platinum based on laser ablation-inductively coupled plasma-mass spectrometry to investigate toxic side effects of cisplatin.

    PubMed

    Köppen, C; Reifschneider, O; Castanheira, I; Sperling, M; Karst, U; Ciarimboli, G

    2015-12-01

    This work presents a quantitative bioimaging method for platinum based on laser ablation-inductively coupled plasma-mass spectrometry and its application for a biomedical study concerning toxic side effects of cisplatin. To trace the histopathology back to cisplatin, platinum was localized and quantified in major functional units of testicle, cochlea, kidney, nerve and brain sections from cisplatin treated mice. The direct consideration of the histology enables precise interpretation of the Pt images and the novel quantitative evaluation approach allows significantly more precise investigations than the pure image. For the first time, platinum was detected and quantified in all major injured structures including organ of Corti of cochlea and seminiferous tubule of testicle. In this way, proximal tubule in kidney, Leydig cells in testicle, stria vascularis and organ of Corti in cochlea and nerve fibers in sciatic nerves are confirmed as targets of cisplatin in these organs. However, the accumulation of platinum in almost all investigated structures also raises questions about more complex pathogenesis including direct and indirect interruption of several biological processes. PMID:26477751

  9. Development of a quantitation method to assay both lyoniresinol enantiomers in wines, spirits, and oak wood by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Cretin, Blandine N; Dubourdieu, Denis; Marchal, Axel

    2016-05-01

    Wine taste balance evolves during oak aging by the release of volatile and non-volatile compounds from wood. Among them, an enantiomer of lyoniresinol, (+)-lyoniresinol, has been shown to exhibit bitterness. To evaluate the impact of (+)-lyoniresinol on wine taste, a two-step quantitation method was developed and validated. First, (±)-lyoniresinol was assayed in wines, spirits, and oak wood macerates by C-18 liquid chromatography-high resolution mass spectrometry (LC-HRMS). Then, the lyoniresinol enantiomeric ratio was determined by chiral LC-HRMS in order to calculate the (+)-lyoniresinol content. In red and white wines, the average concentrations of (+)-lyoniresinol were 1.9 and 0.8 mg/L, respectively. The enantiomer proportions were not affected by bottle aging, and lyoniresinol appeared to remain stable over time. The sensory study of (+)-lyoniresinol established its perception threshold at 0.46 mg/L in wine. All the commercial wines quantitated were above this perception threshold, demonstrating its impact on wine taste by an increase in bitterness. In spirits, (+)-lyoniresinol ranged from 2.0 to 10.0 mg/L and was found to be released continuously during oak aging. Finally, neither botanical origin nor toasting was found to significantly affect the (+)-lyoniresinol content of oak wood. Graphical abstract From oak wood to wine: evaluation of the influence of (+)-lyoniresinol on the bitterness of wines and spirits. PMID:27000563

  10. Gas chromatography-mass spectrometry method optimized using response surface modeling for the quantitation of fungal off-flavors in grapes and wine.

    PubMed

    Sadoughi, Navideh; Schmidtke, Leigh M; Antalick, Guillaume; Blackman, John W; Steel, Christopher C

    2015-03-25

    An optimized method for the quantitation of volatile compounds responsible for off-aromas, such as earthy odors, found in wine and grapes was developed. The method involved a fast and simple headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) for simultaneous determination of 2-isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine, 3-octanone, fenchone, 1-octen-3-one, trans-2-octen-1-ol, fenchol, 1-octen-3-ol, 2-methylisoborneol, 2,4,6-trichloroanisole, geosmin, 2,4,6-tribromoanisole, and pentachloroanisole. The extraction of the temperature and time were optimized using response surface methodology in both wine base (WB) and grape base (GB). Low limits of detection (0.1-5 ng/L in WB and 0.05-1.6 in GB) and quantitation (0.3-17 in WB and 0.2-6.2 in GB) with good recoveries (83-131%) and repeatability [4.3-9.8% coefficient of variation (CV) in WB and 5.1-11.1% CV in GB] and reproducibility (3.6-10.2 in WB and 1.9-10.9 in GB) indicate that the method has excellent sensitivity and is suitable for the analysis of these off-flavor compounds in wine and grape juice samples. PMID:25703150

  11. More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry

    SciTech Connect

    Luo, Quanzhou; Tang, Keqi; Yang, Feng; Elias, Ayesha; Shen, Yufeng; Moore, Ronald J.; Zhao, Rui; Hixson, Kim K.; Rossie, Sandra S.; Smith, Richard D.

    2006-05-01

    The sensitivity of proteomics measurements using liquid chromatography (LC) separations interfaced with electrospray ionization-mass spectrometry (ESI-MS) improves approximately inversely with liquid flow rate, making attractive the use of smaller inner diameter LC columns. We report the development and initial application of 10 µm i.d. silica-based monolithic LC columns providing more sensitive proteomics measurements. The implementation provides robust performance and suitability for automated proteome analyses due to integration with a micro solid phase extraction pre-column for ease of sample injection and clean-up prior to the reversed phased LC separation. Greater than 10-fold improvement in sensitivity was obtained compared to analyses using more conventional capillary LC, enabling e.g. the identification of >5000 different peptides by MS/MS from 100-ng of a Shewanella oneidensis tryptic digest using an ion trap MS. The low nL/min LC flow rates provide more uniform signal intensities for different peptides, and provided improved quantitative measurements compared to conventional separation systems without the use of internal standards or isotopic labeling. The improved sensitivity allowed LC-MS measurements of immunopurified protein phosphatase 5 that were in good agreement with quantitative western blot analyses.

  12. Simultaneous chemical fingerprint and quantitative analysis of Rhizoma Smilacis Glabrae by accelerated solvent extraction and high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Dai, Weiquan; Zhao, Weiquan; Gao, Fangyuan; Shen, Jingjing; Lv, Diya; Qi, Yunpeng; Fan, Guorong

    2015-05-01

    Rhizoma Smilacis Glabrae (RSG) is a well-known herbal medicine with the homology of medicine and food. In this study, simultaneous chemical fingerprint and quantitative analysis of the bioactive flavonoid components of RSG were developed using accelerated solvent extraction and high-performance liquid chromatography coupled with ion trap tandem mass spectrometry. The operational parameters of accelerated solvent extraction including extraction solvent, extraction temperature, static extraction time, solid-to-liquid ratio, and extraction cycles were optimized. Hierarchical cluster analysis, similarity analysis, and principal component analysis were performed to evaluate the similarity and variation of the samples collected from several provinces in China. Subsequently, high-performance liquid chromatography fingerprints were established for the discrimination of 16 batches of RSG samples, and the major six flavonoids, namely, toxifolin, neoastilbin, astilbin, neoisoastilbin, isoastilbin, and engeletin were then quantitatively determined. The calibration curves for all the six analytes showed good linearity (r(2) > 0.999), and the limits of detection and quantification were less than 0.10 and 0.27 μg·mL(-1) , respectively. Therefore, the proposed extraction and determination methods were proved to be robust and reliable for the quality control of RSG. PMID:25678068

  13. Distinct energy metabolism of auditory and vestibular sensory epithelia revealed by quantitative mass spectrometry using MS2 intensity.

    PubMed

    Spinelli, Kateri J; Klimek, John E; Wilmarth, Phillip A; Shin, Jung-Bum; Choi, Dongseok; David, Larry L; Gillespie, Peter G

    2012-01-31

    Measuring the abundance of many proteins over a broad dynamic range requires accurate quantitation. We show empirically that, in MS experiments, relative quantitation using summed dissociation-product ion-current intensities is accurate, albeit variable from protein to protein, and outperforms spectral counting. By applying intensities to quantify proteins in two complex but related tissues, chick auditory and vestibular sensory epithelia, we find that glycolytic enzymes are enriched threefold in auditory epithelia, whereas enzymes responsible for oxidative phosphorylation are increased at least fourfold in vestibular epithelia. This striking difference in relative use of the two ATP-production pathways likely reflects the isolation of the auditory epithelium from its blood supply, necessary to prevent heartbeat-induced mechanical disruptions. The global view of protein expression afforded by label-free quantitation with a wide dynamic range reveals molecular specialization at a tissue or cellular level. PMID:22307652

  14. Surrogate analyte approach for quantitation of endogenous NAD(+) in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Liu, Liling; Cui, Zhiyi; Deng, Yuzhong; Dean, Brian; Hop, Cornelis E C A; Liang, Xiaorong

    2016-02-01

    A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of NAD(+) in human whole blood using a surrogate analyte approach was developed and validated. Human whole blood was acidified using 0.5N perchloric acid at a ratio of 1:3 (v:v, blood:perchloric acid) during sample collection. 25μL of acidified blood was extracted using a protein precipitation method and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization mass spectrometry. (13)C5-NAD(+) was used as the surrogate analyte for authentic analyte, NAD(+). The standard curve ranging from 0.250 to 25.0μg/mL in acidified human blood for (13)C5-NAD(+) was fitted to a 1/x(2) weighted linear regression model. The LC-MS/MS response between surrogate analyte and authentic analyte at the same concentration was obtained before and after the batch run. This response factor was not applied when determining the NAD(+) concentration from the (13)C5-NAD(+) standard curve since the percent difference was less than 5%. The precision and accuracy of the LC-MS/MS assay based on the five analytical QC levels were well within the acceptance criteria from both FDA and EMA guidance for bioanalytical method validation. Average extraction recovery of (13)C5-NAD(+) was 94.6% across the curve range. Matrix factor was 0.99 for both high and low QC indicating minimal ion suppression or enhancement. The validated assay was used to measure the baseline level of NAD(+) in 29 male and 21 female human subjects. This assay was also used to study the circadian effect of endogenous level of NAD(+) in 10 human subjects. PMID:26766786

  15. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  16. Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flour proteins from the US bread wheat Butte 86 were extracted in 0.5% SDS using a two-step procedure with and without sonication and further separated by size exclusion chromatography into monomeric and polymeric fractions. Proteins in each fraction were analyzed by quantitative two-dimensional gel...

  17. Quantitative analysis of poly- and perfluoroalkyl compounds in water matrices using high resolution mass spectrometry: optimization for a laser diode thermal desorption method.

    PubMed

    Munoz, Gabriel; Vo Duy, Sung; Budzinski, Hélène; Labadie, Pierre; Liu, Jinxia; Sauvé, Sébastien

    2015-06-30

    An alternative analysis technique for the quantitation of 15 poly- and perfluoroalkyl substances (PFASs) in water matrices is reported. Analysis time between each sample was reduced to less than 20s, all target molecules being analyzed in a single run with the use of laser diode thermal desorption atmospheric pressure chemical ionization (LDTD/APCI) coupled with high resolution accurate mass (HRMS) orbitrap mass spectrometry. LDTD optimal settings were investigated using either one-factor-at-a-time or experimental design methodologies, while orbitrap parameters were optimized simultaneously by means of a Box-Behnken design. Following selection of an adequate sample concentration and purification procedure based on solid-phase extraction and graphite clean-up, the method was validated in an influent wastewater matrix. Environmentally significant limits of detection were reported (0.3-4ngL(-1) in wastewater and 0.03-0.2ngL(-1) in surface water) and out of the 15 target analytes, 11 showed excellent accuracies (±20% of the target values) and recovery rates (75-125%). The method was successfully applied to a selection of environmental samples, including wastewater samples in 7 locations across Canada, as well as surface and tap water samples from the Montreal region, providing insights into the degree of PFAS contamination in this area. PMID:26041525

  18. Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Hare, Dominic J; Grubman, Alexandra; Ryan, Timothy M; Lothian, Amber; Liddell, Jeffrey R; Grimm, Rudolf; Matsuda, Toshiaki; Doble, Philip A; Cherny, Robert A; Bush, Ashley I; White, Anthony R; Masters, Colin L; Roberts, Blaine R

    2013-12-01

    Metals often determine the chemical reactivity of the proteins to which they are bound. Each cell in the body tightly maintains a unique metalloproteomic profile, mostly dependent on function. This paper describes an analytical online flow injection quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) method, which was applied to profiling the metal-binding proteins found in primary cultures of neurons and astrocytes. This method can be conducted using similar amounts of sample to those used for Western blotting (20-150 μg protein), and has a turnaround time of <15 minutes. Metalloprotein standards for Fe (as ferritin), Cu and Zn (as superoxide dismutase-1) were used to construct multi-point calibration curves for online quantification of metalloproteins by SEC-ICP-MS. Homogenates of primary neuron and astrocyte cultures were analysed by SEC-ICP-MS. Online quantification by external calibration with metalloprotein standards determined the mass of metal eluting from the column relative to time (as pg s(-1)). Total on-column Fe, Cu and Zn detection limits ranged from 0.825 ± 0.005 ng to 13.6 ± 0.7 pg. Neurons and astrocytes exhibited distinct metalloprotein profiles, featuring both ubiquitous and unique metalloprotein species. Separation and detection by SEC-ICP-MS allows appraisal of these metalloproteins in their native state, and online quantification was achieved using this relatively simple external calibration process. PMID:24132241

  19. A liquid chromatography method with single quadrupole mass spectrometry for quantitative determination of indomethacin in maternal plasma and urine of pregnant patients

    PubMed Central

    Wang, Xiaoming; Vernikovskaya, Daria I.; Nanovskaya, Tatiana N.; Rytting, Erik; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2013-01-01

    A liquid chromatography with single quadrupole mass spectrometry method was developed for the quantitative determination of indomethacin in the maternal plasma and urine of pregnant patients under treatment. A deuterium-labeled isotope of indomethacin (d4-indomethacin) was used as an internal standard. The maternal plasma and urine samples were acidified with 1.0 MHCl then extracted with chloroform to achieve the extraction recovery range of 94% to 104% with variation less than 11%. Chromatographic separation was achieved by a Waters Symmetry C18 column with isocratic elution of 0.05% (v/v) formic acid aqueous solution and acetonitrile (47:53, v/v). An in-source fragmentation was applied on the single quadrupole mass spectrometer equipped with an electrospray ionization source at positive mode. The LC-ESI-MS quantification was performed in the selected ion monitoring mode targeting ions at m/z 139 for indomethacin and m/z 143 for its internal standard. The calibration curves were linear in the concentration ranges between 14.8 and 2.97×103 ng/mL for plasma samples and between 10.5 and 4.21×103 ng/mL for urine samples. The relative standard deviation of this method was less than 8% for intra- and inter-day assays, and the accuracy ranged between 90% and 108%. PMID:23474812

  20. Quantitative determination of famotidine in human maternal plasma, umbilical cord plasma and urine using high-performance liquid chromatography-mass spectrometry.

    PubMed

    Wang, Xiaoming; Rytting, Erik; Abdelrahman, Doaa R; Nanovskaya, Tatiana N; Hankins, Gary D V; Ahmed, Mahmoud S

    2013-07-01

    Liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53 to 64% and 72 to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi™ Hydro-RP™ column with a gradient elution of acetonitrile and 10 mm ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon-13-labeled famotidine was used as internal standard. The calibration curves were linear (r(2) > 0.99) in the concentration ranges of 0.631-252 ng/mL for umbilical and maternal plasma samples and 0.075-30.0 µg/mL for urine samples. The relative deviation of method was <14% for intra- and inter-day assays, and the accuracy ranged between 93 and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma was less than 17%. PMID:23401067

  1. Digital Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.

  2. Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications

    PubMed Central

    Cvetesic, Nevena; Semanjski, Maja; Soufi, Boumediene; Krug, Karsten; Gruic-Sovulj, Ita; Macek, Boris

    2016-01-01

    The genetic code is virtually universal in biology and was likely established before the advent of cellular life. The extent to which mistranslation occurs is poorly understood and presents a fundamental question in basic research and production of recombinant proteins. Here we used shotgun proteomics combined with unbiased protein modification analysis to quantitatively analyze in vivo mistranslation in an E. coli strain with a defect in the editing mechanism of leucyl-tRNA synthetase. We detected the misincorporation of a non-proteinogenic amino acid norvaline on 10% of all measured leucine residues under microaerobic conditions and revealed preferential deployment of a tRNALeu(CAG) isoacceptor during norvaline misincorporation. The strain with the norvalylated proteome demonstrated a substantial reduction in cell fitness under both prolonged aerobic and microaerobic cultivation. Unlike norvaline, isoleucine did not substitute for leucine even under harsh error-prone conditions. Our study introduces shotgun proteomics as a powerful tool in quantitative analysis of mistranslation. PMID:27377007

  3. Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications.

    PubMed

    Cvetesic, Nevena; Semanjski, Maja; Soufi, Boumediene; Krug, Karsten; Gruic-Sovulj, Ita; Macek, Boris

    2016-01-01

    The genetic code is virtually universal in biology and was likely established before the advent of cellular life. The extent to which mistranslation occurs is poorly understood and presents a fundamental question in basic research and production of recombinant proteins. Here we used shotgun proteomics combined with unbiased protein modification analysis to quantitatively analyze in vivo mistranslation in an E. coli strain with a defect in the editing mechanism of leucyl-tRNA synthetase. We detected the misincorporation of a non-proteinogenic amino acid norvaline on 10% of all measured leucine residues under microaerobic conditions and revealed preferential deployment of a tRNA(Leu)(CAG) isoacceptor during norvaline misincorporation. The strain with the norvalylated proteome demonstrated a substantial reduction in cell fitness under both prolonged aerobic and microaerobic cultivation. Unlike norvaline, isoleucine did not substitute for leucine even under harsh error-prone conditions. Our study introduces shotgun proteomics as a powerful tool in quantitative analysis of mistranslation. PMID:27377007

  4. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS).

    PubMed

    Chandra, Subhash; Parker, Dylan J; Barth, Rolf F; Pannullo, Susan C

    2016-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry, a CAMECA IMS-3f ion microscope, for studying Mg distribution with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/kg wet weight in infiltrating tumor cells (p < 0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations have established that there was enhanced influx and increased binding of Mg in tumor cells. They provide strong support for further investigation of altered Mg homeostasis and activation of Mg-transporting channels in GBMs as possible therapeutic targets. PMID:26703785

  5. Quantitative analysis of fragrance in selectable one dimensional or two dimensional gas chromatography-mass spectrometry with simultaneous detection of multiple detectors in single injection.

    PubMed

    Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui

    2014-03-14

    A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). PMID:24548435

  6. Comprehensive quantitative analysis of Chinese patent drug YinHuang drop pill by ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry.

    PubMed

    Wong, Tin-Long; An, Ya-Qi; Yan, Bing-Chao; Yue, Rui-Qi; Zhang, Tian-Bo; Ho, Hing-Man; Ren, Tian-Jing; Fung, Hau-Yee; Ma, Dik-Lung; Leung, Chung-Hang; Liu, Zhong-Liang; Pu, Jian-Xin; Han, Quan-Bin; Sun, Han-Dong

    2016-06-01

    YinHuang drop pill (YHDP) is a new preparation, derived from the traditional YinHuang (YH) decoction. Since drop pills are one of the newly developed forms of Chinese patent drugs, not much research has been done regarding the quality and efficacy. This study aims to establish a comprehensive quantitative analysis of the chemical profile of YHDP. ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify 34 non-sugar small molecules including 15 flavonoids, 9 phenolic acids, 5 saponins, 1 iridoid, and 4 iridoid glycosides in YHDP samples, and 26 of them were quantitatively determined. Sugar composition of YHDP in terms of fructose, glucose and sucrose was examined via a high performance liquid chromatography-evaporative light scattering detector on an amide column (HPLC-NH2P-ELSD). Macromolecules were examined by high performance gel permeation chromatography coupled with ELSD (HPGPC-ELSD). The content of the drop pill's skeleton component PEG-4000 was also quantified via ultra-high performance liquid chromatography coupled with charged aerosol detector (UHPLC-CAD). The results showed that up to 73% (w/w) of YHDP could be quantitatively determined. Small molecules accounted for approximately 5%, PEG-4000 represented 68%, while no sugars or macromolecules were found. Furthermore, YHDP showed no significant differences in terms of daily dosage, compared to YinHuang granules and YinHuang oral liquid; however, it has a higher small molecules content compared to YinHuang lozenge. PMID:27131804

  7. Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatography time-of-flight mass spectrometry.

    PubMed

    Villar-Pulido, Marina; Gilbert-López, Bienvenida; García-Reyes, Juan F; Martos, Natividad Ramos; Molina-Díaz, Antonio

    2011-09-15

    A fast liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) method has been developed for simultaneous quantitative multiclass determination of residues of selected antibiotics and other veterinary drugs (benzalkonium chloride, ethoxyquin, leucomalachite green (LMG), malachite green (MG), mebendazole, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfanilamide, sulfapyridine, sulfathiazole and trimethoprim) in shrimps. Different sample treatment methodologies were tested for the extraction of the targeted species based on either liquid partitioning with different solvents, solid-phase extraction or and matrix solid-phase dispersion. The final selected extraction method consisted of solid-liquid extraction protocol using acetonitrile as solvent followed by a clean-up step with primary secondary amine (QuEChERS). Recovery rates for the extraction of the selected multiclass chemicals were in the range 58-133%. Subsequent identification, confirmation and quantitation were carried out by LC-TOFMS analysis using a reverse-phase C(18) column with 1.8 μm particle size. The confirmation of the target species was based on accurate mass measurements of the protonated molecules ([M+H](+)) and their fragment ions, obtaining routine accuracy errors lower than 2 ppm in most cases. The optimized LC-TOFMS method displayed excellent sensitivity for the studied analytes, with limits of detection (LODs) in the range 0.06-7 μg kg(-1). Finally, the proposed method was successfully applied to the analysis of 12 shrimp samples collected from different supermarkets, showing the potential applicability of the method for ultratrace detection of these chemicals in such complex matrix. PMID:21807204

  8. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  9. Identification and Quantitation of Various Inositols and O-methylinositols Present in Plant Roots Using Gas Chromatograpghy/Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many inositols and O-methylinositols serve important roles in medicine and plant biology. A simple method was developed for the identification of these compounds in plant roots by extracting with 80% ethanol, derivatizing with trimethylsilyl imidazole, and analyzing by gas chromatography/mass spect...

  10. The use of generic surrogate peptides for the quantitative analysis of human immunoglobulin G1 in pre-clinical species with high-resolution mass spectrometry.

    PubMed

    Lanshoeft, Christian; Wolf, Thierry; Heudi, Olivier; Cianférani, Sarah; Barteau, Samuel; Walles, Markus; Picard, Franck; Kretz, Olivier

    2016-02-01

    In the present study, the application of a liquid chromatography high-resolution mass spectrometry (LC-HRMS) analytical assay for the quantitative analysis of a recombinant human immunoglobulin G1 (hIgG1) in rat serum is reported using three generic peptides GPSVFPLAPSSK (GPS), TTPPVLDSDGSFFLYSK (TTP), and VVSVLTVLHQDWLNGK (VVS). Moreover, the deamidation site of a fourth peptide FNWYVDGVEVHNAK (FNW) was identified and further excluded from the assay evaluation due to the inaccuracy of the quantitative results. The rat serum samples were spiked with a fully labeled hIgG1 as internal standard (ISTD). The digestion with trypsin was performed onto the pellet prior to peptide analysis by LC-HRMS using a quadrupole time of flight (QTOF) mass analyzer operating in selected reaction monitoring (SRM) mode with enhanced duty cycles (EDC). The assay linearity for the three investigated peptides was established for a hIgG1 (hIgG1A) from 1.00 to 1000 μg mL(-1) with a mean coefficient of determination (R (2)) higher than 0.9868. The inter-day accuracy and precision obtained in rat serum over 3 days were ≤11.4 and ≤10.5%, respectively. Short-term stability on the auto-sampler at 6 °C for 30 h, at RT for 48 h, and a 100-fold dilution factor were demonstrated. In addition, QC samples prepared in cynomolgus monkey serum and measured with the present method met the acceptance criteria of ±20.0 and ≤20.0% for all three peptides regarding accuracy and precision, respectively. The LC-HRMS method was applied to the analysis of samples from five individual cynomolgus monkeys dosed with a second hIgG1 (hIgG1B) and consistent data were obtained compared to the LC-MS/MS method (conventional triple quadrupole (QqQ) mass analyzer operating in SRM). The present data demonstrate that LC-HRMS can be used for the quantitative analysis of hIgG1 in both species and that quantification is not only limited to classical QqQ instruments. PMID:26758601

  11. Quantitation of trace metals in liquid samples by dried-droplet laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Yang, Lu; Sturgeon, Ralph E; Mester, Zoltán

    2005-05-01

    A new, discrete sample introduction approach based on laser ablation (LA) is described for the quantitation of several trace metals in aqueous samples by ICPMS. Dried microdroplets of sample, previously mixed with a sodium acetate matrix, were quantitatively ablated from a polystyrene substrate. Calibration via the method of standard additions or isotope dilution provided accurate results for Ni, Cd, and Pb in drinking water and Se in a yeast extract. Compared to conventional solution nebulization, LA sample introduction provided a 2-7-fold enhancement in absolute sensitivity and transport efficiency of 2-14% for the elements examined. Estimated detection limits are 1-7-fold poorer for the dried-droplet LA technique, primarily a result of degraded precision arising from counting statistics limitations for discrete sample introduction. On the basis of the several-second half-width of the resulting transient signals, sample throughput can be in the range of 250 samples per hour. Additionally, integration of the transient signal should eliminate contributions to elemental fractionation from the LA step. Dried-droplet LA-ICPMS offers several advantages over its counterpart, ETV-ICPMS, with respect to background intensity, throughput, and ease of desorption. PMID:15859618

  12. A validated UHPLC-tandem mass spectrometry method for quantitative analysis of flavonolignans in milk thistle (Silybum marianum) extracts.

    PubMed

    Graf, Tyler N; Cech, Nadja B; Polyak, Stephen J; Oberlies, Nicholas H

    2016-07-15

    Validated methods are needed for the analysis of natural product secondary metabolites. These methods are particularly important to translate in vitro observations to in vivo studies. Herein, a method is reported for the analysis of the key secondary metabolites, a series of flavonolignans and a flavonoid, from an extract prepared from the seeds of milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)]. This report represents the first UHPLC MS-MS method validated for quantitative analysis of these compounds. The method takes advantage of the excellent resolution achievable with UHPLC to provide a complete analysis in less than 7min. The method is validated using both UV and MS detectors, making it applicable in laboratories with different types of analytical instrumentation available. Lower limits of quantitation achieved with this method range from 0.0400μM to 0.160μM with UV and from 0.0800μM to 0.160μM with MS. The new method is employed to evaluate variability in constituent composition in various commercial S. marianum extracts, and to show that storage of the milk thistle compounds in DMSO leads to degradation. PMID:27136284

  13. A quantitative method for residues of macrolide antibiotics in porcine kidney by liquid chromatography/tandem mass spectrometry.

    PubMed

    Dickson, Leslie C; O'Byrne, Collin; Chan, Wayne

    2012-01-01

    An LC/MS/MS-based multiresidue quantitative method was developed for the macrolides erythromycin A, neospiramycin I, oleandomycin, spiramycin I, tilmicosin, and tylosin A in porcine kidney tissues. The Canadian Food Inspection Agency (CFIA) had as part of its analytical scope an LC/UV method for quantification of residues of two macrolide antibiotics, tilmicosin and tylosin A, in the kidney, liver, and muscle of cattle, swine, and poultry. The method could not reliably detect concentrations below 10 microg/kg. To increase the scope of the CFIA's analytical capabilities, a sensitive multiresidue quantitative method for macrolide residues in food animal tissues was required. Porcine kidney samples were extracted with acetonitrile and alkaline buffer and cleaned-up using silica-based C18 SPE cartridges. Sample extracts were analyzed using LC/MS/MS with positive electrospray ionization. Fitness for purpose was verified in a single-laboratory validation study using a second analyst. The working analytical range was 5 to 50 microg/kg. LOD and LOQ were 0.5 to 0.6 microg/kg and 1.5 to 3.0 microg/kg, respectively. Limits of identification were 0.5 to 2.0 microg/kg. Relative intermediate precisions were 8 to 17%. Average absolute recoveries were 68 to 76%. PMID:22649946

  14. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  15. Mass spectrometry based quantitative proteomics and integrative network analysis accentuates modulating roles of annexin-1 in mammary tumorigenesis.

    PubMed

    Swa, Hannah L F; Shaik, Asfa Alli; Lim, Lina H K; Gunaratne, Jayantha

    2015-01-01

    Annexin-1 (ANXA1) is known to be involved in important cellular processes and implicated in cancer. Our previous study showed its roles in cell migration and DNA-damage response processes in breast cancer initiation. In order to understand its roles in tumorigenesis, we extended our studies to analyze tumors derived from polyomavirus middle T-antigen ANXA1 heterozygous (ANXA1(+/-) ) and ANXA1 null (ANXA1(-/-) ) mice. We performed quantitative comparison of ANXA1(+/-) and ANXA1(-/-) tumors employing reductive dimethyl labeling quantitative proteomics. We observed 253 differentially expressed proteins (DEPs) with high statistical significance among over 5000 quantified proteins. Combinatorial use of pathway and network-based computational analyses of the DEPs revealed that ANXA1 primarily modulates processes related to cytoskeletal remodeling and immune responses in these mammary tumors. Of particular note, ANXA1(-/-) tumor showed reduced expression of a known epithelial-to-mesenchymal transition (EMT) marker vimentin, as well as myosin light-chain kinase, which has been reported to induce Rho-kinase mediated assembly of stress fibers known to be implicated in EMT. Integrative network analysis of established interactome of ANXA1 alongside with DEPs further highlights the involvement of ANXA1 in EMT. Functional role of ANXA1 in tumorigenesis was established in invasion assay where knocking down ANXA1 in murine mammary tumor cell line 168FARN showed lower invasive capability. Altogether, this study emphasizes that ANXA1 plays modulating roles contributing to invasion-metastasis in mammary tumorigenesis, distinctive to its roles in cancer initiation. PMID:25124533

  16. Quantitative determination of potent alpha-glucosidase inhibitors, salacinol and kotalanol, in Salacia species using liquid chromatography-mass spectrometry.

    PubMed

    Muraoka, Osamu; Morikawa, Toshio; Miyake, Sohachiro; Akaki, Junji; Ninomiya, Kiyofumi; Yoshikawa, Masayuki

    2010-09-01

    A practical HPLC-MS method for the quantitative determination of salacinol (1) and kotalanol (2), potent alpha-glucosidase inhibitors from Salacia species (Hippocrateaceae) as a specific remedy for diabetes in Ayurvedic system, was developed. The optimum conditions of separation and detection of these two constituents were achieved on a Asahipak NH2P-50 column (5 mcirom particle size, 2.0 mm i.d. x 150 mm) with a CH(3)CN-H(2)O mobile phase, associated with MS using electrospray ionization source. The overall recoveries of 1 (85.8-112.6%) and 2 (99.7-106.1%), and relative standard deviation values of intra- and inter-day precision were lower than 6.8 and 8.5%, respectively. The detection (S/N=3) and quantitation limits (S/N=10) were established to be 0.015 and 0.050 ng for 1, and 0.030 and 0.10 ng for 2, respectively. The correlation coefficients of all the calibration curves showed good linearity within test ranges. The extraction process was also optimized as 2 h immersion in water under reflux. The method was applied to evaluate extracts of three kinds of Salacia species, i.e. S. reticulata, S. oblonga, and S. chinensis, and those of four different parts, i.e. roots, stems, leaves and fruits of the same material, revealing that the extract from the roots of S. reticulata had the highest contents of these compounds. The results indicated that the assay was reproducible and precise and could be readily utilized for the evaluation of Salacia species. PMID:20303690

  17. Liquid chromatography tandem mass spectrometric quantitation of sulfamethazine and its metabolites: direct analysis of swine urine by triple quadrupole and by ion trap mass spectrometry.

    PubMed

    Bartolucci, G; Pieraccini, G; Villanelli, F; Moneti, G; Triolo, A

    2000-01-01

    This work describes a new method for the quantitation of trace amounts of sulfamethazine (SMZ) and its main metabolite, N4-acetylsulfamethazine (Ac-SMZ), in swine urine, using high-performance liquid chromatography (HPLC) tandem mass spectrometric analysis of crude urine after addition of internal standard and simple dilution with water. The aim was to determine whether residues of this sulfamidic drug, normally administered to swine in order to prevent infectious diseases, were present in urine at levels lower than those permitted by regulatory authorities before human consumption (EU Project SMT, contract number CT 96-2092). A 10 microL volume of diluted urine was injected into a very short, narrow-bore chromatographic column (Zorbax SB-C18 2.1 i. d. x30 mm length, 3.5 microm pore size). Elution of the analytes of interest was achieved in less than seven minutes using a rapid gradient (from 20 to 80% methanol in 3 minutes). Either a PE Sciex API 365 triple quadrupole (QqQ), operated in the selected reaction monitoring (SRM) mode, or a Finnigan LCQ ion trap (IT) mass spectrometer, operated in narrow-range product ion scan, was used as the final detector. Electrospray (ESI) was used as the ionization technique. A comparison of the two tandem mass spectrometers was performed by analyzing the same set of test samples, at three concentration levels, on three different days. Linearity of responses of the calibration standards, intra- and inter-assay precision of the samples, specificity and limits of detection were evaluated for both systems. Both the QqQ and the IT instrument was suitable for rapid, sensitive and specific determination of the analytes, although the overall performance of the QqQ was slightly superior in terms of linearity, precision and sensitivity. PMID:10844733

  18. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    PubMed

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images. PMID:21355549

  19. Mass spectrometry for biomarker development

    SciTech Connect

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  20. Quantitative imaging analysis and investigation of transmission loss in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry method.

    PubMed

    Zhang, Guoxia; Wang, Zheng; Li, Qing; Zhou, Hui; Zhu, Yan; Du, Yiping

    2016-07-01

    We developed a procedure for preparing matrix-matched calibration standards for the quantitative imaging of multiple trace elements in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). In this facile approach, PbO powder was employed as the matrix with the addition of a series of standard solutions, followed by drying and tableting, for determining the concentrations of (24)Mg, (27)Al, (89)Y, (103)Rh, (133)Cs, (175)Lu and (209)Bi in transparent samples (with homogeneous element distribution). (206)Pb was chosen as the internal standard and the correlation coefficients of the calibration curves for all elements ranged from 0.9987 to 0.9999 after internal standard correction. The analysis showed good agreement with the results observed by established ICP-MS methods, following acid dissolution of the samples. Finally, the element distributions and transmission curves of a PbF2 sample with non-transparent and transparent sections were visualized. The distribution images, in conjunction with the transmission curves, suggested that the enrichment of Mg, Al, Rh, Cs, and Bi atoms in the non-transparent section of the sample could explain the loss in transmission observed for that section. PMID:27154704

  1. A multiplexed targeted assay for high-throughput quantitative analysis of serum methylamines by ultra performance liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Kadar, Hanane; Dubus, Justine; Dutot, Jérémie; Hedjazi, Lyamine; Srinivasa, Suman; Fitch, Kathleen V; Grinspoon, Steven K; Nicholson, Jeremy K; Dumas, Marc-Emmanuel; Gauguier, Dominique

    2016-05-01

    Methylamines are biologically-active metabolites present in serum and urine samples, which play complex roles in metabolic diseases. Methylamines can be detected by proton nuclear magnetic resonance (NMR), but specific methods remain to be developed for their routine assay in human serum in clinical settings. Here we developed and validated a novel reliable "methylamine panel" method for simultaneous quantitative analysis of trimethylamine (TMA), its major detoxification metabolite trimethylamine-N-oxide (TMAO), and precursors choline, betaine and l-carnitine in human serum using Ultra Performance Liquid Chromatography (UPLC) coupled to High Resolution Mass Spectrometry (HRMS). Metabolite separation was carried out on a HILIC stationary phase. For all metabolites, the assay was linear in the range of 0.25-12.5 μmol/L and enabled to reach limit of detection of about 0.10 μmol/L. Relative standard deviations were below 16% for the three levels of concentrations. We demonstrated the strong reliability and robustness of the method, which was applied to serum samples from healthy individuals to establish the range of concentrations of the metabolites and their correlation relationships and detect gender differences. Our data provide original information for implementing in a clinical environment a MS-based diagnostic method with potential for targeted metabolic screening of patients at risk of cardiometabolic diseases. PMID:27036856

  2. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Fan, Ruo-Jing; Guan, Qing; Zhang, Fang; Leng, Jia-Peng; Sun, Tuan-Qi; Guo, Yin-Long

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, l-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (l-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. PMID:26826695

  3. Quantitative analysis of biologically active ingredients of Five Seeds Combo by liquid chromatography-quadrupole time-of-flight mass spectrometry for quality control of commercial herbal product.

    PubMed

    Chen, Meng-Li; Miao, Lan; Cao, Jin; Ip, Siu-Po; Che, Chun-Tao

    2012-07-01

    Five Seeds Combo (wu zi yan zong wan) is a traditional Chinese herbal formula composed of fructus Lycii, semen Cuscutae, fructus Rubi, semen Plantaginis, and fructus Schisandrae. This herbal prescription has been developed into herbal products by many pharmaceutical manufacturers for treating age-related symptoms. The present study aims to develop an analytical method for the quality control of this herbal drug. Nine active ingredients including schisantherin A, schisandrin B, schisandrin, schisandrin A, quercitrin, betaine, verbascoside, hyperoside, and kaempferol were selected as the targeted analytes for the analysis. By using liquid chromatogram/quadrupole time-of-flight mass spectrometry (MS), the nine chemical compounds were determined simultaneously from the chromatogram. The parameters for MS were optimized by orthogonal array testing and the best condition of the MS for the determination of the nine marker compounds was found to be 175, 75, and 700 V for fragmentor, skimmer, and voltage of capillary, respectively. The method validation showed that this analytical method had high precision and sensitivity (limit of quantitation was smaller than 10 ng/mL for most of the analytes). The method was found to be able to demonstrate the quality of Five Seeds Combo from different manufacturers. PMID:22761139

  4. A novel quantitation approach for maximizing detectable targets for offensive/volatile odorants with diverse functional groups by thermal desorption-gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2016-07-01

    A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at ‑25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity.

  5. A novel quantitation approach for maximizing detectable targets for offensive/volatile odorants with diverse functional groups by thermal desorption-gas chromatography-mass spectrometry

    PubMed Central

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2016-01-01

    A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at −25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity. PMID:27404037

  6. Quantitative comparison of structure and dynamics of elastin following three isolation schemes by 13C solid state NMR and MALDI mass spectrometry

    PubMed Central

    Papaioannou, A.; Louis, M.; Dhital, B.; Ho, H. P.; Chang, E. J.

    2015-01-01

    Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning 13C NMR spectroscopy and relaxation methodologies, we have measured the modification in structure and dynamics following three known purification protocols. Our experimental data reveal that the 13C spectra of the hydrated samples appear remarkably similar across the various purification methods. Subtle differences in the half maximum widths were observed in the backbone carbonyl suggesting possible structural heterogeneity across the different methods of purification. Additionally, small differences in the relative signal intensities were observed between purified samples. Lyophilizing the samples results in a reduction of backbone motion and reveals additional differences across the purification methods studied. These differences were most notable in the alanine motifs indicating possible changes in cross-linking or structural rigidity. The measured correlation times of glycine and proline moieties are observed to also vary considerably across the different purification methods, which may be related to peptide bond cleavage. Lastly, the relative concentration of desmosine cross-links in the samples quantified by MALDI mass spectrometry is reported. PMID:25592991

  7. Bioanalysis of therapeutic peptides: differentiating between total and anti-drug antibody bound drug using liquid chromatography-tandem mass spectrometry quantitation.

    PubMed

    Heinig, Katja; Wirz, Thomas; Schick, Eginhard; Guenzi, Alberto

    2013-11-01

    An acylated peptide with MW ~4.5 kDa was measured in samples from pharmacokinetic, toxicology and clinical studies using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lower limits of quantitation of 2 ng/mL and 50 pg/mL were achieved for animal and human plasma, respectively. Repeated drug administration may lead to anti-drug antibodies (ADA) which can inactivate the drug by formation of drug-ADA complexes. Hence, the LC-MS/MS assay incorporated cleavage of potential drug-ADA complexes to quantify the total plasma concentration. To obtain information on active drug levels, an assay that measures the free concentration or alternatively the ADA-unbound concentration would be needed. Ultrafiltration experiments through 100 kD cutoff membranes to remove Ig-bound peptide were not successful due to nonspecific binding. Extraction of Ig-bound drug using Protein A or G (bacterial cell wall proteins with high affinity to the Fc region of IgG) was suitable to distinguish between ADA-bound drug and [free+protein bound (not ADA-bound)] drug and correlated with findings from ELISA ADA measurement. PMID:24119751

  8. A novel quantitation approach for maximizing detectable targets for offensive/volatile odorants with diverse functional groups by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2016-01-01

    A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at -25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity. PMID:27404037

  9. Quantitation of sorafenib and its active metabolite sorafenib N-oxide in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Lie; Zhao, Ming; Navid, Fariba; Pratz, Keith; Smith, B Doug; Rudek, Michelle A; Baker, Sharyn D

    2010-11-01

    A simple and rapid method with high performance liquid chromatography/tandem mass spectrometry is described for the quantitation of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma. A protein precipitation extraction procedure was applied to 50 μL of plasma. Chromatographic separation of the two analytes, and the internal standard [(2)H(3)(13)C]-sorafenib, was achieved on a C(18) analytical column and isocratic flow at 0.3 mL/min for 4 min. Mean within-run and between-run precision for all analytes were <6.9% and accuracy was <5.3%. Calibration curves were linear over the concentration range of 50-10,000 ng/mL for sorafenib and 10-2500 ng/mL for sorafenib N-oxide. This method allows a specific, sensitive, and reliable determination of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma in a single analytical run. PMID:20870468

  10. Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Elci, S Gokhan; Yan, Bo; Kim, Sung Tae; Saha, Krishnendu; Jiang, Ying; Klemmer, Gunnar A; Moyano, Daniel F; Tonga, Gulen Yesilbag; Rotello, Vincent M; Vachet, Richard W

    2016-04-21

    Functionalized gold nanoparticles (AuNPs) have unique properties that make them important biomedical materials. Optimal use of these materials, though, requires an understanding of their fate in vivo. Here we describe the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to image the biodistributions of AuNPs in tissues from mice intravenously injected with AuNPs. We demonstrate for the first time that the distributions of very small (∼2 nm core) monolayer-protected AuNPs can be imaged in animal tissues at concentrations in the low parts-per-billion range. Moreover, the LA-ICP-MS images reveal that the monolayer coatings on the injected AuNPs influence their distributions, suggesting that the AuNPs remain intact in vivo and their surface chemistry influences how they interact with different organs. We also demonstrate that quantitative images of the AuNPs can be generated when the appropriate tissue homogenates are chosen for matrix matching. Overall, these results demonstrate the utility of LA-ICP-MS for tracking the fate of biomedically-relevant AuNPs in vivo, facilitating the design of improved AuNP-based therapeutics. PMID:26979648

  11. Quantitative analysis of dendron-conjugated cisplatin-complexed gold nanoparticles using scanning particle mobility mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tsai, De-Hao; Cho, Tae Joon; Elzey, Sherrie R.; Gigault, Julien C.; Hackley, Vincent A.

    2013-05-01

    We report a high-resolution and traceable method to quantify the drug loading on nanoparticle-based cancer therapeutics, and demonstrate this method using a model cisplatin functionalized dendron-gold nanoparticle (AuNP) conjugate. Electrospray differential mobility analysis (ES-DMA) provides upstream size classification based on the electrical mobility of AuNP conjugates in aerosol form following electrospray conversion from the aqueous suspension. A condensation particle counter (CPC) and inductively coupled plasma mass spectrometer (ICP-MS) provide the principal downstream quantification. CPC and ICP-MS yield complementary number-based and elemental mass-based particle size distributions, respectively. Conjugation using three different dendron formulations was differentiated based on changes in the mean mobility particle size. The subsequent cisplatin complexation to the dendron conjugates was quantified by coupling ES-DMA with ICP-MS. Discrete AuNP clusters (e.g., dimers, trimers) could be resolved from the relative quantity of atoms (i.e., Au and Pt) per particle after separation by ES-DMA. Surface density of cisplatin on Au was shown to be proportional to the density of carboxylic groups present and was independent of the state of AuNP clustering. Additionally, we found that colloidal stability of the conjugate is inversely proportional to the surface loading of cisplatin. This study demonstrates a prototype methodology to provide traceable quantification and to determine other important formulation factors relevant to therapeutic performance.We report a high-resolution and traceable method to quantify the drug loading on nanoparticle-based cancer therapeutics, and demonstrate this method using a model cisplatin functionalized dendron-gold nanoparticle (AuNP) conjugate. Electrospray differential mobility analysis (ES-DMA) provides upstream size classification based on the electrical mobility of AuNP conjugates in aerosol form following electrospray conversion

  12. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  13. Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence.

    PubMed

    Chen, Yu; Hoover, Michael E; Dang, Xibei; Shomo, Alan A; Guan, Xiaoyan; Marshall, Alan G; Freitas, Michael A; Young, Nicolas L

    2016-03-01

    Breast cancer was the second leading cause of cancer related mortality for females in 2014. Recent studies suggest histone H1 phosphorylation may be useful as a clinical biomarker of breast and other cancers because of its ability to recognize proliferative cell populations. Although monitoring a single phosphorylated H1 residue is adequate to stratify high-grade breast tumors, expanding our knowledge of how H1 is phosphorylated through the cell cycle is paramount to understanding its role in carcinogenesis. H1 analysis by bottom-up MS is challenging because of the presence of highly homologous sequence variants expressed by most cells. These highly basic proteins are difficult to analyze by LC-MS/MS because of the small, hydrophilic nature of peptides produced by tryptic digestion. Although bottom-up methods permit identification of several H1 phosphorylation events, these peptides are not useful for observing the combinatorial post-translational modification (PTM) patterns on the protein of interest. To complement the information provided by bottom-up MS, we utilized a top-down MS/MS workflow to permit identification and quantitation of H1 proteoforms related to the progression of breast cells through the cell cycle. Histones H1.2 and H1.4 were observed in MDA-MB-231 metastatic breast cells, whereas an additional histone variant, histone H1.3, was identified only in nonneoplastic MCF-10A cells. Progressive phosphorylation of histone H1.4 was identified in both cell lines at mitosis (M phase). Phosphorylation occurred first at S172 followed successively by S187, T18, T146, and T154. Notably, phosphorylation at S173 of histone H1.2 and S172, S187, T18, T146, and T154 of H1.4 significantly increases during M phase relative to S phase, suggesting that these events are cell cycle-dependent and may serve as markers for proliferation. Finally, we report the observation of the H1.2 SNP variant A18V in MCF-10A cells. PMID:26209608

  14. [Quantitative gas chromatography-mass spectrometry determination of pentaerythrityl tetranitrate metabolites pentaerythrityl trinitrate, pentaerythrityl dinitrate and pentaerythrityl in human plasma].

    PubMed

    Schütz, A; Kötting, J; Epple, F; Ziegler, R; Maier-Lenz, H; Stalleicken, D

    1999-11-01

    Assay methods based on gas chromatography/mass spectroscopy (GC-MS) may be used to measure PE1N (pentaerithrityl mononitrate, CAS 1607-00-7), PE2N (pentaerithrityl dinitrate, CAS 1607-01-8) and intermediate pentaerithrityltrinitrate (PE3N, CAS 1607-17-6) in human plasma. Based on this method a simplified method to quantify the metabolites of PETN (pentaerithrityl tetranitrate, CAS 78-11-5, Pentalong) is described. In the present study a consistent method to extract the metabolites of human plasma and following derivatisation is described. Since PE1N can be quantified up to 150 ng/ml, PE2N and PE3N up to 30 ng/ml in human plasma, a dilution of the plasma samples can be avoided. The mean recovery rate is not so high as in other described methods, and inaccuracy is about 10%. Therefore a calibration range between 0.2-30 ng/ml of PE2N and 1-150 ng/ml of PE1N has to be considered. The described method offers an alternative and applicable option to quantify the PETN-metabolites and elucidate their part as NO-donors. PMID:10604040

  15. Quantitative subcellular study of doxorubicin in MCF-7/Adr cells using liquid chromatography-tandem mass spectrometry.

    PubMed

    Ma, Wenzhuan; Wang, Jinling; Guo, Qiang; Tu, Pengfei

    2015-12-15

    A rapid, sensitive and selective high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) method has been developed and validated for the determination of doxorubicin in intracellular compartments using glibenclamide as internal standard (IS). MCF-7/Adr cancer cells (1×10(6)) were incubated with doxorubicin (8μg/mL) for 0.5, 1, 2 and 4h and then subjected to sequential extraction of cytosolic, membrane/organelle, nuclear and cytoskeleton soluble protein. Samples were extracted using protein precipitation with methanol. Chromatographic separation was carried out on a C18 column with acetonitrile and 0.1% formic acid water as mobile phase and with gradient elution at a flow rate of 0.2mL/min. The method was linear over the range of 1-300ng/mL with a lower limit of quantification (LLOQ) of 1ng/mL. The distribution of doxorubicin in subcellular components of MCF-7/Adr cancer cells was mainly in nucleic protein fraction. PMID:26562803

  16. Mass spectrometry of large complexes.

    PubMed

    Bich, Claudia; Zenobi, Renato

    2009-10-01

    Mass spectrometry is becoming a more and more powerful tool for investigating protein complexes. Recent developments, based on different ionization techniques, electrospray, desorption/ionization and others are contributing to the usefulness of MS to describe the organization and structure of large non-covalent assemblies. PMID:19782560

  17. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  18. Quantitative determination of capsaicin, a transient receptor potential channel vanilloid 1 agonist, by liquid chromatography quadrupole ion trap mass spectrometry: evaluation of in vitro metabolic stability.

    PubMed

    Beaudry, Francis; Vachon, Pascal

    2009-02-01

    Capsaicin is the most abundant pungent molecule present in red peppers and it is widely used for food flavoring, in pepper spray in self-defense devices and more recently in ointments for the relief of neuropathic pain. Capsaicin is a selective agonist of transient receptor potential channel, vanilloid subfamily member 1. A selective and sensitive quantitative method for the determination of capsaicin by LC-ESI/MS/MS was developed. The method consisted of a protein precipitation extraction followed by analysis using liquid chromatography electrospray quadrupole ion trap mass spectrometry. The chromatographic separation was achieved using a 100 x 2 mm C(18) Waters Symmetry column combined with a gradient mobile phase composed of acetonitrile and 0.1% formic acid aqueous solution at a flow rate of 220 microL/min. The mass spectrometer was operating in full-scan MS/MS mode using two-segment analysis. An analytical range of 10-5000 ng/mL was used in the calibration curve constructed in rat plasma. The interbatch precision and accuracy observed were 6.5, 6.7, 5.3 and 101.2, 102.7, 103.5% at 50, 500 and 5000 ng/mL, respectively. An in vitro metabolic stability study was performed in rat, dog and mouse liver microsomes and the novel analytical method was adapted and used to determine intrinsic clearance of capsaicin. Results suggest very rapid degradation with T(1/2) ranging from 2.3 to 4.1 min and high clearance values suggesting that drug bioavailability will be considerably reduced, consequently affecting drug response and efficacy. PMID:18816461

  19. Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Jäntti, Sirkku E; Kivilompolo, Maarit; Ohrnberg, Leena; Pietiläinen, Kirsi H; Nygren, Heli; Orešič, Matej; Hyötyläinen, Tuulia

    2014-12-01

    An ultra high performance liquid chromatography tandem mass spectrometry method (UHPLC-MS/MS) was developed for the determination of 33 target and 28 unknown bile acids (BAs) in biological samples. Sixty-one BAs could be measured in 20 min using only a small amount of sample and with a simple sample preparation. The method proved to be very sensitive (limit of detection 5-350 pg/mL, lower limit of quantitation 0.1-2.6 ng/mL), linear (R(2) > 0.99) and reproducible (typically CV <15 % in biological matrixes). The method was used to analyze human adipose tissue, plasma, and serum (from same subjects) and mouse serum, gall bladder, small intestine, and colon samples (from same animals). Cholic acid, ursodeoxycholic acid, and chenodeoxycholic acid, deoxycholic acid, and their conjugates (mainly glycine, but also taurine conjugates) were the main metabolites in human samples, and cholic acid, glycine cholic acid, and several taurine conjugates in mouse samples. Using the method, 28 unknown BAs could also be detected. UHPLC-MS/MS spectra, accurate mass, and tissue distribution suggested that nine of the unknown bile acids were taurine conjugates, 13 were glycine conjugates, and six were intact BAs, respectively. To our knowledge, this was the first time BAs were detected in adipose tissue. Results showed that 17 targeted BAs were found at ng/g level in human adipose tissue. Our findings give a novel insight of the endogenous role of BAs in adipose tissue and their role as biomarkers (e.g., in metabolic diseases). PMID:25384335

  20. [Determination of the interaction kinetics between meloxicam and β-cyclodextrin using the quantitative high-performance affinity chromatography coupled with mass spectrometry].

    PubMed

    Wang, Cai-fen; Li, Zhuo; Wang, Xiao-bo; Li, Hai-yan; Zhang, Ji-wen; Sun, Li-xin

    2015-09-01

    The association rate constant and dissociation rate constant are important parameters of the drug-cyclodextrin supermolecule systems, which determine the dissociation of drugs from the complex and the further in vivo absorption of drugs. However, the current studies of drug-cyclodextrin interactions mostly focus on the thermodynamic parameter of equilibrium constants (K). In this paper, a method based on quantitative high performance affinity chromatography coupled with mass spectrometry was developed to determine the apparent dissociation rate constant (k(off,app)) of drug-cyclodextrin supermolecule systems. This method was employed to measure the k(off,app) of meloxicam and acetaminophen. Firstly, chromatographic peaks of drugs and non-retained solute (uracil) on β-cyclodextrin column at different flow rates were acquired, and the retention time and variance values were obtained via the fitting the peaks. Then, the plate heights of drugs (H(R)) and uracil (H(M,C)) were calculated. The plate height of theoretical non-retained solute (H(M,T)) was calculated based on the differences of diffusion coefficient and the stagnant mobile phase mass transfer between drugs and uracil. Finally, the k(off,app) was calculated from the slope of the regression equation between (H(R)-H(M,T)) and uk/(1+k)2, (0.13 ± 0.00) s(-1) and (4.83 ± 0.10) s(-1) for meloxicam and acetaminophen (control drug), respectively. In addition, the apparent association rate constant (k(on,app)) was also calculated through the product of K (12.53 L x mol(-1)) and k(off,app). In summary, it has been proved that the method established in our study was simple, efficiently fast and reproducible for investigation on the kinetics of drug-cyclodextrin interactions. PMID:26757555

  1. Accelerator mass spectrometry

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.; Finkel, R.; Nelson, D.E.

    1995-06-01

    Accelerator mass spectroscopy (AMS) can be used for efficient detection of long-lived isotopes at part-per-quadrillion sensitivities with good precision. In this article we present an overview of AMS and its recent use in archaeology, geochemistry and biomolecular tracing. All AMS systems use cesium sputter ion sources to produce negative ions from a small button of a solid sample containing the element of interest, such as graphite, metal halide, or metal oxide, often mixed with a metal powder as binder and thermal conductor. Experience shows that both natural and biomedical samples are compatible in a single AMS system, but few other AMS sites make routine {sup 14}C measurements for both dating and tracing. AMS is, in one sense, just `a very sensitive decay counter`, but if AMS sensitivity is creatively coupled to analytical chemistry of certain isotopes, whole new areas of geosciences, archaeology, and life sciences can be explored. 29 refs., 2 figs., 1 tab.

  2. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  3. Absolute Quantitation of Met Using Mass Spectrometry for Clinical Application: Assay Precision, Stability, and Correlation with MET Gene Amplification in FFPE Tumor Tissue

    PubMed Central

    Catenacci, Daniel V. T.; Liao, Wei-Li; Thyparambil, Sheeno; Henderson, Les; Xu, Peng; Zhao, Lei; Rambo, Brittany; Hart, John; Xiao, Shu-Yuan; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Krizman, David B.; Cecchi, Fabiola; Bottaro, Donald P.; Karrison, Theodore; Veenstra, Timothy D.; Hembrough, Todd; Burrows, Jon

    2014-01-01

    Background Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for ‘high Met’ expressing tumors for Met inhibitor trials. IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue. Methods After describing the development of the Liquid-Tissue-Selected Reaction Monitoring-mass spectrometry (LT-SRM-MS) Met assay, we evaluated the expression level of Met in 130 FFPE gastroesophageal cancer (GEC) tissues. We assessed the correlation of SRM Met expression to IHC and mean MET gene copy number (GCN)/nucleus or MET/CEP7 ratio by fluorescence in situ hybridization (FISH). Results Proteomic mapping of recombinant Met identified 418TEFTTALQR426 as the optimal SRM peptide. Limits of detection (LOD) and quantitation (LOQ) for this peptide were 150 and 200 amol/µg tumor protein, respectively. The assay demonstrated excellent precision and temporal stability of measurements in serial sections analyzed one year apart. Expression levels of 130 GEC tissues ranged (<150 amol/µg to 4669.5 amol/µg. High correlation was observed between SRM Met expression and both MET GCN and MET/CEP7 ratio as determined by FISH (n = 30; R2 = 0.898). IHC did not correlate well with SRM (n = 44; R2 = 0.537) nor FISH GCN (n = 31; R2 = 0.509). A Met SRM level of ≥1500 amol/µg was 100% sensitive (95% CI 0.69–1) and 100% specific (95% CI 0.92–1) for MET amplification. Conclusions The Met SRM assay measured the absolute Met levels in clinical tissues with high precision. Compared to IHC, SRM provided a quantitative and linear measurement of Met expression, reliably distinguishing between non-amplified and amplified MET

  4. Quantitation of Benzo[a]pyrene Metabolic Profiles in Human Bronchoalveolar H358) Cells by Stable Isotope Dilution Liquid Chromatography-Atmospheric Chemical Ionization Mass Spectrometry

    PubMed Central

    Lu, Ding; Harvey, Ronald G.; Blair, Ian A.; Penning, Trevor M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and are carcinogenic in multiple organs and species. Benzo[a]pyrene (B[a]P) is a representative PAH and has been studied extensively for its carcinogenicity and toxicity. B[a]P itself is chemically inert and requires metabolic activation to exhibit its toxicity and carcinogenicity. Three major metabolic pathways have been well documented. The signature metabolites generated from the radical cation (peroxidase or monooxygenase mediated) pathway are B[a]P-1,6-dione and B[a]P-3,6-dione, the signature metabolite generated from the diol-epoxide (P450 mediated) pathway is B[a]P-r-7,t-8,t-9,c-10-tetrahydrotetrol (B[a]P-tetrol-1) and the signature metabolite generated from the o-quinone (aldo-keto reductase mediated) pathway is B[a]P-7,8-dione. The contributions of these different metabolic pathways to cancer initiation and the exploitation of this information for cancer prevention are still under debate. With the availability of a library of [13C4]-labeled B[a]P metabolite internal standards, we developed a sensitive stable isotope dilution atmospheric pressure chemical ionization tandem mass spectrometry method to address this issue by quantitating B[a]P metabolites from each metabolic pathway in human lung cells. This analytical method represents a 500 fold increased sensitivity compared with a method using HPLC-radiometric detection. The limit of quantitation (LOQ) was determined to be 6 fmol on column for 3-hydroxybenzo[a]pyrene (3-OH-B[a]P), the generally accepted biomarker for B[a]P exposure. This high level of sensitivity and robustness of the method was demonstrated in a study of B[a]P metabolic profiles in human bronchoalveolar H358 cells induced or uninduced with the AhR ligand, 2,3,7,8-tetrachlorodibenzodioxin (TCDD). All the signature metabolites were detected and successfully quantitated. Our results suggest that all three metabolic pathways contribute equally in the overall

  5. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    ERIC Educational Resources Information Center

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  6. Mass spectrometry and renal calculi

    PubMed Central

    Purcarea, VL; Sisu, I; Sisu, E

    2010-01-01

    The present review represents a concise and complete survey of the literature covering 2004–2009, concerning the mass spectrometric techniques involved in the structural investigation of renal calculi. After a short presentation of the fundamental mass spectrometric techniques (MALDI–TOF, QTOF, MS–MS) as well as hyphenated methods (GC–MS, LC–MS, CE–MS), an extensive study of the urinary proteome analysis as well as the detection and quantification by mass spectrometry of toxins, drugs and metabolites from renal calculi is presented. PMID:20968197

  7. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  8. Mass spectrometry imaging for biomedical applications

    PubMed Central

    Liu, Jiangjiang; Ouyang, Zheng

    2013-01-01

    The development of mass spectrometry imaging technologies is of significant current research interest. Mass spectrometry potentially is capable of providing highly specific information about the distribution of chemical compounds on tissues at highly sensitive levels. The required in-situ analysis for the tissue imaging forced MS analysis being performed off the traditional conditions optimized in pharmaceutical applications with intense sample preparation. This critical review seeks to present an overview of the current status of the MS imaging with different sampling ionization methods and to discuss the 3D imaging and quantitative imaging capabilities needed to be further developed, the importance of the multi-modal imaging, and a balance between the pursuit of the high imaging resolution and the practical application of MS imaging in biomedicine. PMID:23539099

  9. Quantitative profiling of bacteriocins present in dairy-free probiotic preparations of Lactobacillus acidophilus by nanoliquid chromatography-tandem mass spectrometry.

    PubMed

    Nandakumar, Renu; Talapatra, Kesh

    2014-01-01

    Bacteriocins are a heterogeneous group of ribosomally synthesized peptides or proteins with antimicrobial activity, produced predominantly by lactic acid bacteria, with potential applications as biopreservatives and probiotics. We describe here a novel strategy based on a bottom-up, shotgun proteomic approach using nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) with multiple fragmentation techniques for the quantitative profiling of bacteriocins present in the probiotic preparations of Lactobacillus acidophilus. A direct LC-MS/MS analysis with alternate collision-induced dissociation, high-energy collision dissociation, and electron-transfer dissociation fragmentation following a filter-assisted size-exclusion sample prefractionation has resulted in the identification of peptides belonging to 37 bacteriocins or related proteins. Peptides from lactacin F, helveticin J, lysin, avicin A, acidocin M, curvaticin FS47, and carocin D were predominant. The process of freeze drying under vacuum was observed to affect both the diversity and abundance of bacteriocins. Data acquisition using alternating complementary peptide fragmentation modes, especially electron-transfer dissociation, has significantly enhanced the peptide sequence coverage and number of bacteriocin peptides identified. Multi-enzyme proteolytic digestion was observed to increase the sample complexity and dynamic range, lowering the chances of detection of low-abundant bacteriocin peptides by LC-MS/MS. An analytical platform integrating size exclusion prefractionation, nanoLC-MS/MS analysis with multiple fragmentation techniques, and data-dependent decision tree-driven bioinformatic data analysis is novel in bacteriocin research and suitable for the comprehensive bioanalysis of diverse, low-abundant bacteriocins in complex samples. PMID:24565320

  10. Quantitative Analysis of Staphylococcal Enterotoxins A and B in Food Matrices Using Ultra High-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS)

    PubMed Central

    Zuberovic Muratovic, Aida; Hagström, Thomas; Rosén, Johan; Granelli, Kristina; Hellenäs, Karl-Erik

    2015-01-01

    A method that uses mass spectrometry (MS) for identification and quantification of protein toxins, staphylococcal enterotoxins A and B (SEA and SEB), in milk and shrimp is described. The analysis was performed using a tryptic peptide, from each of the toxins, as the target analyte together with the corresponding 13C-labeled synthetic internal standard peptide. The performance of the method was evaluated by analyzing spiked samples in the quantification range 2.5–30 ng/g (R2 = 0.92–0.99). The limit of quantification (LOQ) in milk and the limit of detection (LOD) in shrimp was 2.5 ng/g, for both SEA and SEB toxins. The in-house reproducibility (RSD) was 8%–30% and 5%–41% at different concentrations for milk and shrimp, respectively. The method was compared to the ELISA method, used at the EU-RL (France), for milk samples spiked with SEA at low levels, in the quantification range of 2.5 to 5 ng/g. The comparison showed good coherence for the two methods: 2.9 (MS)/1.8 (ELISA) and 3.6 (MS)/3.8 (ELISA) ng/g. The major advantage of the developed method is that it allows direct confirmation of the molecular identity and quantitative analysis of SEA and SEB at low nanogram levels using a label and antibody free approach. Therefore, this method is an important step in the development of alternatives to the immune-assay tests currently used for staphylococcal enterotoxin analysis. PMID:26378579

  11. Development of a novel high-throughput analytical methodology, multiple injection method, for quantitative analysis in drug metabolism and pharmacokinetic studies using liquid chromatography with tandem mass spectrometry.

    PubMed

    Tanaka, Yukari; Ohkawa, Tomoyuki; Yasui, Hiroyuki

    2011-01-01

    In this study, we developed a novel methodology, multiple injection method (MIM), for higher-throughput screening of compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS). MIM involves continuous injections of multiple samples containing a different compound respectively into the column, and then temporarily trapping of analytes at the column head in high-pressure liquid chromatography (HPLC) system. This is followed by elution of all the compounds from the column and detection of them by MS/MS. In this study, fexofenadine, verapamil, risperidone, ondansetron, and imipramine were used as model compounds to investigate the effectiveness of MIM in pharmacokinetic studies. Analytical time of validation samples of these model compounds could be shortened to one third by MIM, compared with the conventional method. In addition, both the accuracy and precision of MIM met the general criteria for quantitative analysis. The peak intensity was found to be unaffected by overlapping compounds even if they have wide range of ionization efficiency. As a result of the comparison of MIM and conventional method in the analysis of samples in pharmacokinetic studies using model compounds, no difference was shown in the quantification values. Consequently, this method has some advantages, reduction of analytical time, the improvement of sensitivity, and the simplicity of system, compared to the conventional methods. MIM should be very useful and powerful method for drug development without an additional hardware and can be used for the measurement of compounds in biological samples for pharmacokinetic studies, especially it greatly contributes to accelerating drug development in its discovery stages. PMID:21804204

  12. Quantitative profiling of bile acids in rat bile using ultrahigh-performance liquid chromatography-orbitrap mass spectrometry: Alteration of the bile acid composition with aging.

    PubMed

    Lee, Gakyung; Lee, Hyunbeom; Hong, Jongki; Lee, Soo Hyun; Jung, Byung Hwa

    2016-09-15

    Bile acids (BAs) play important roles in physiological functions, including the homeostasis of cholesterol and lipids and as ligands for G protein-coupled receptors (GPCRs). With the increasing importance of BAs, analytical methods for their quantification and screening have been developed. However, due to the diverse range and variety of BAs with different activation potency, a simple, effective, and sensitive method is required to screen BAs for accurate quantification and identification. This paper presents an application of ultrahigh-performance liquid chromatography-orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS) for profiling BAs in bile. Using this method, along with the accurate quantification of 19 targeted BAs, 22 unknown BAs were detected and characterized by their fragmentation patterns. The method is beneficial for screening most of the BAs (quantitatively and qualitatively) in rat bile with simple preparation in a single run. The sample dilution ranges of each BA were optimized depending on the concentration of BAs in the bile to obtain good peak separation and accurate data. The method validation was performed successfully using charcoal-treated bile and the intra and inter-day coefficients of variation were less than 20% for all BAs while the recovery were above 88.5% except for the lithocholic acid. The method was applied to profile the age-dependent changes in the contents of rat BAs. Through statistical analysis, we found that as the rats aged, unconjugated BAs and glycine-conjugated BAs decreased or were unaffected, while taurine-conjugated BAs were increased in general. Among the unknown BAs, 5 of the taurine-conjugated BAs increased, while a glycine-conjugated BA decreased, in agreement with the trends of the targeted BAs. PMID:27450898

  13. Quantitative analysis of amino acids and acylcarnitines combined with untargeted metabolomics using ultra-high performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    PubMed

    Roy, Cynthia; Tremblay, Pierre-Yves; Bienvenu, Jean-François; Ayotte, Pierre

    2016-08-01

    Metabolomics is an "omic" technique being increasingly used in epidemiological and clinical studies. We developed a method combining untargeted metabolomics with the quantitative determination of eight amino acids (AA) and eight acylcarnitines (AC) in plasma using ultra-high pressure liquid chromatography (UHPLC), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QTOFMS). Separation of metabolites is performed by ion-pair reverse phase UHPLC using a HSS T3 column (2.1×100mm, 100Å, 1.8μm particle size) and formic acid-ammonium acetate-heptafluorobutyric acid in water and formic acid-ammonium acetate in methanol as mobile phases. Metabolite identification and quantification are achieved using a QTOFMS operating in ESI-positive and full-scan mode along with MS(E) acquisition of fragmentation patterns. Targeted metabolites are quantified using the appropriate labeled standards and include branched-chain AA (leucine, isoleucine, valine), aromatic AA (phenylalanine, tyrosine) as well as acetylcarnitine and propionylcarnitine, which have been identified as biomarkers of future cardiometabolic disease risk. The inter-day precision (relative standard deviation) for the targeted method was <15% for all but one metabolite and accuracy (bias) of amino acids ranged from 0.5% to 13.9% using SRM 1950 as the external standard. Untargeted metabolomics in 30 plasma samples from the general Canadian population revealed 5018 features, of which 48 metabolites were identified using the MZmine 2.19 software including 23 by our in-house library that comprises 671 annotated metabolites. SRM 1950 analysis revealed 11,684 features, among which 154 metabolites were identified. Our method is currently applied in several epidemiological studies to better characterize cardiometabolic diseases and identify new biomarkers for disease prevention. PMID:27240302

  14. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers.

    PubMed

    Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas

    2016-05-13

    Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds. PMID:27086283

  15. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  16. Ammonium chloride salting out extraction/cleanup for trace-level quantitative analysis in food and biological matrices by flow injection tandem mass spectrometry.

    PubMed

    Nanita, Sergio C; Padivitage, Nilusha L T

    2013-03-20

    A sample extraction and purification procedure that uses ammonium-salt-induced acetonitrile/water phase separation was developed and demonstrated to be compatible with the recently reported method for pesticide residue analysis based on fast extraction and dilution flow injection mass spectrometry (FED-FI-MS). The ammonium salts evaluated were chloride, acetate, formate, carbonate, and sulfate. A mixture of NaCl and MgSO4, salts used in the well-known QuEChERS method, was also tested for comparison. With thermal decomposition/evaporation temperature of <350°C, ammonium salts resulted in negligible ion source residual under typical electrospray conditions, leading to consistent method performance and less instrument cleaning. Although all ammonium salts tested induced acetonitrile/water phase separation, NH4Cl yielded the best performance, thus it was the preferred salting out agent. The NH4Cl salting out method was successfully coupled with FI/MS/MS and tested for fourteen pesticide active ingredients: chlorantraniliprole, cyantraniliprole, chlorimuron ethyl, oxamyl, methomyl, sulfometuron methyl, chlorsulfuron, triflusulfuron methyl, azimsulfuron, flupyrsulfuron methyl, aminocyclopyrachlor, aminocyclopyrachlor methyl, diuron and hexazinone. A validation study was conducted with nine complex matrices: sorghum, rice, grapefruit, canola, milk, eggs, beef, urine and blood plasma. The method is applicable to all analytes, except aminocyclopyrachlor. The method was deemed appropriate for quantitative analysis in 114 out of 126 analyte/matrix cases tested (applicability rate=0.90). The NH4Cl salting out extraction/cleanup allowed expansion of FI/MS/MS for analysis in food of plant and animal origin, and body fluids with increased ruggedness and sensitivity, while maintaining high-throughput (run time=30s/sample). Limits of quantitation (LOQs) of 0.01mgkg(-1) (ppm), the 'well-accepted standard' in pesticide residue analysis, were achieved in >80% of cases tested; while

  17. Quantitative measurement of full-length and C-terminal proteolyzed RBP4 in serum of normal and insulin-resistant humans using a novel mass spectrometry immunoassay.

    PubMed

    Yang, Qin; Eskurza, Iratxe; Kiernan, Urban A; Phillips, David A; Blüher, Matthias; Graham, Timothy E; Kahn, Barbara B

    2012-03-01

    Serum retinol-binding protein 4 (RBP4) levels are increased in insulin-resistant humans and correlate with severity of insulin resistance in metabolic syndrome. Quantitative Western blotting (qWestern) has been the most accurate method for serum RBP4 measurements, but qWestern is technically complex and labor intensive. The lack of a reliable, high-throughput method for RBP4 measurements has resulted in variability in findings in insulin-resistant humans. Many commonly used ELISAs have limited dynamic range. Neither the current ELISAs nor qWestern distinguish among full-length and carboxyl terminus proteolyzed forms of circulating RBP4 that are altered in different medical conditions. Here, we report the development of a novel quantitative mass spectrometry immunoaffinity assay (qMSIA) to measure full-length and proteolyzed forms of RBP4. qMSIA and qWestern of RBP4 were performed in identical serum aliquots from insulin-sensitive/normoglycemic or insulin-resistant humans with impaired glucose tolerance or type 2 diabetes. Total RBP4 qMSIA measurements were highly similar to qWestern and correlated equally well with clinical severity of insulin resistance (assessed by clamp glucose disposal rate, r = -0.74), hemoglobin A1c (r = 0.63), triglyceride/high-density lipoprotein (r = 0.55), waist/hip (r = 0.61), and systolic blood pressure (r = 0.53, all P < 0.001). Proteolyzed forms of RBP4 accounted for up to 50% of total RBP4 in insulin-resistant subjects, and des(Leu)-RBP4 (cleavage of last leucine) correlated highly with insulin resistance (assessed by glucose disposal rate, r = -0.69). In multiple regression analysis, insulin resistance but not glomerular filtration rate was the strongest, independent predictor of serum RBP4 levels. Thus, qMSIA provides a novel tool for accurately measuring serum RBP4 levels as a biomarker for severity of insulin resistance and risk for type 2 diabetes and metabolic syndrome. PMID:22253430

  18. Glycosaminoglycan Glycomics Using Mass Spectrometry*

    PubMed Central

    Zaia, Joseph

    2013-01-01

    The fact that sulfated glycosaminoglycans (GAGs) are necessary for the functioning of all animal physiological systems drives the need to understand their biology. This understanding is limited, however, by the heterogeneous nature of GAG chains and their dynamic spatial and temporal expression patterns. GAGs have a regulated structure overlaid by heterogeneity but lack the detail necessary to build structure/function relationships. In order to provide this information, we need glycomics platforms that are sensitive, robust, high throughput, and information rich. This review summarizes progress on mass-spectrometry-based GAG glycomics methods. The areas covered include disaccharide analysis, oligosaccharide profiling, and tandem mass spectrometric sequencing. PMID:23325770

  19. Mass spectrometry. [review of techniques

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  20. Quantitative profiling of retinyl esters in milk from different ruminant species by using high performance liquid chromatography-diode array detection-tandem mass spectrometry.

    PubMed

    Rocchi, Silvia; Caretti, Fulvia; Gentili, Alessandra; Curini, Roberta; Perret, Daniela; Pérez-Fernández, Virginia

    2016-11-15

    An effective high performance liquid chromatography-diode array detection-tandem mass spectrometry (HPLC-DAD-MS/MS) analytical approach was developed for retinoid profiling in raw milk samples (cow, buffalo, ewe, and goat). The analytes were isolated by means of liquid-liquid extraction, including a "lipid freezing" step, with yields exceeding 66%. Since the positive atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) detection is not completely selective, a reliable identification has been accomplished by fully separating the analytes on a tandem C18/C30 column system under non-aqueous reversed phase (NARP) chromatography conditions. After validation, different milk varieties obtained from pasture-fed animals were analysed, providing, for the first time, the retinoid composition of both buffalo's and ewe's milk. According to the literature, retinyl palmitate has been found to be the most abundant vitamin A vitamer, but retinyl oleate is the prevalent form in the caprine milk. PMID:27283655

  1. Simultaneous detection and quantitation of highly water-soluble herbicides in serum using ion-pair liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Kuang-Chuan; Chen, Shih-Ming; Hsu, Jung-Fa; Cheng, Sheaw-Guey; Lee, Ching-Kuo

    2008-12-15

    We report the simultaneous screening of highly polar, water-soluble, and less-volatile herbicides, including glyphosate, glufosinate, paraquat, and diquat, in serum using liquid chromatography-mass spectrometry. The herbicides were separated by solid-phase extraction using a Strata-XC cartridge. A heptafluorobutyric acid solution was chosen as the mobile phase for ion-pair liquid chromatography. Mass spectrometry was used for analysis and was optimized for operation in the positive mode for all analytes. The serum specimens were screened for the presence of the herbicides at the following concentrations: 5 ng/mL for glyphosate, 2 ng/mL for glufosinate, 1 ng/mL for diquat, and 5 ng/mL for paraquat. This is the first report on the simultaneous detection of these compounds. PMID:19022710

  2. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  3. Membrane composition analysis by imaging mass spectrometry

    SciTech Connect

    Boxer, S G; Kraft, M L; Longo, M; Hutcheon, I D; Weber, P K

    2006-03-29

    Membranes on solid supports offer an ideal format for imaging. Secondary ion mass spectrometry (SIMS) can be used to obtain composition information on membrane-associated components. Using the NanoSIMS50, images of composition variations in membrane domains can be obtained with a lateral resolution better than 100 nm. By suitable calibration, these variations in composition can be translated into a quantitative analysis of the membrane composition. Progress towards imaging small phase-separated lipid domains, membrane-associated proteins and natural biological membranes will be described.

  4. An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Song, Yuelin; Song, Qingqing; Li, Jun; Zhang, Na; Zhao, Yunfang; Liu, Xiao; Jiang, Yong; Tu, Pengfei

    2016-01-15

    It is important to conduct large-scale detection, identification, and quantitation of metabolites in a given sample. Herein, a practical strategy was proposed to quantitatively compare the chemome between Cistanche deserticola (CD) and C. tubulosa (CT), which have been widely believed as the ideal edible and medicinal plants for conquering the deserts. The entire workflow was implemented on high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometer and consisted of three primary steps: (1) component detection and identification, various mass spectrometric approaches were applied to globally screen the chemical constituents, and structural elucidation was achieved by comparing with authentic compounds, analyzing MS(2) spectra, and referring to the literature along with accessible databases; (2) comprehensive relative quantitation, scheduled multiple reaction monitoring algorithm was introduced for relative quantitation of all detected ingredients; and (3) chemome comparison, the quantitative dataset was subjected for multivariate statistical analysis to carry out comparative study. A total of 513 metabolites were detected and relatively quantitated, and 379 ones were annotated. Betaine, Krebs cycle intermediates, phenylethanoid glycosides, and iridoids were picked out as the chemical markers being responsible for the discrimination of the chemical profiles between CD and CT. Above all, the quantitative chemome of CD and CT were exhaustively characterized and compared, which could advance their values concerning drug development, economics, and desertification control. The proposed strategy is expected as a reliable choice for widely targeted metabolomics of plants. PMID:26742897

  5. Understanding the Mechanisms Enabling an Ultra-high Efficiency Moving Wire Interface for Real-time Carbon 14 Accelerator Mass Spectrometry Quantitation of Samples Suspended in Solvent

    NASA Astrophysics Data System (ADS)

    Thomas, Avraham Thaler

    Carbon 14 (14C) quantitation by accelerator mass spectrometry (AMS) is a powerfully sensitive and uniquely quantitative tool for tracking labeled carbonaceous molecules in biological systems. This is due to 14C's low natural abundance of 1 ppt, the nominal difference in biological activity between an unlabeled and a 14C-labeled molecule, and the ability of AMS to measure isotopic ratios independently of a sample's other characteristics. To make AMS more broadly accessible, a moving wire interface for real-time coupling of high pressure liquid chromatography (HPLC) to AMS and high throughput AMS quantitation of minute single samples has been developed. Prior to this work, samples needed to be converted to solid carbon before measurement. This conversion process has many steps and requires that the sample size be large enough to allow precise handling of the resulting graphite. These factors make the process susceptible to error and time consuming, as well as requiring 0.5 ug of carbon. Samples which do not contain enough carbon, such as HPLC fractions, must be bulked up. This adds background and increases effort. The moving wire interface overcomes these limitations by automating sample processing. Samples placed on the wire are transported through a solvent removal stage followed by a combustion stage after which the combustion products are directed to a gas accepting ion source. The ion source converts the carbon from the CO2 combustion product into C ions, from which an isotopic ratio can be determined by AMS. Although moving wire interfaces have been implemented for various tasks since 1964, the efficiency of these systems at transferring fluid from an HPLC to the wire was only 3%, the efficiency of transferring combustion products from the combustion oven to ion source was only 30%, the flow and composition of the carrier gas from the combustion oven to the ion source needed to be optimized for coupling to an AMS gas accepting ion source and the drying ovens

  6. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  7. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  8. Capillary Isoelectric Focusing-Tandem Mass Spectrometry And Reversed-Phase Liquid Chromatography-Tandem Mass Spectrometry For Quantitative Proteomic Analysis Of Differentiating PC12 Cells By Eight-Plex iTRAQ

    PubMed Central

    Zhu, Guijie; Sun, Liangliang; Keithley, Richard B.; Dovichi, Norman J.

    2013-01-01

    We report the application of capillary isoelectric focusing for quantitative analysis of a complex proteome. Biological duplicates were generated from PC12 cells at days 0, 3, 7, and 12 following treatment with nerve growth factor. These biological duplicates were digested with trypsin, labeled using eight-plex iTRAQ chemistry, and pooled. The pooled peptides were separated into 25 fractions using reversed-phase liquid chromatography (RPLC). Technical duplicates of each fraction were separated by capillary isoelectric focusing (cIEF) using a set of amino acids as ampholytes. The cIEF column was interfaced to an Orbitrap Velos mass spectrometer with an electrokinetically-pumped sheath-flow nanospray interface. This HPLC-cIEF-ESIMS/MS approach identified 835 protein groups and produced 2,329 unique peptides IDs. The biological duplicates were analyzed in parallel using conventional strong-cation exchange (SCX) – RPLC-ESIMS/MS. The iTRAQ peptides were first separated into eight fractions using SCX. Each fraction was then analyzed by RPLC-ESI-MS/MS. The SCX-RPLC approach generated 1,369 protein groups and 3,494 unique peptide IDs. For protein quantitation, 96 and 198 differentially expressed proteins were obtained with RPLC-cIEF and SCX-RPLC, respectively. The combined set identified 231 proteins. Protein expression changes measured by RPLC-cEIF and SCX-RPLC were highly correlated. PMID:23822771

  9. Ultra high performance liquid chromatography coupled with high resolution quantitation mass spectrometry method development and validation for determining genotoxic 2,5-dichlorobenzoyl chloride in MLN9708 drug substance.

    PubMed

    Fu, Mingkun; Lu, Qing; Hewitt, Elizabeth; Wang, Jun

    2014-02-01

    A novel reversed-phase ultra high performance liquid chromatography coupled with high resolution quantitation mass spectrometry (UHPLC/HRQMS) method was developed to quantify 2,5-dichlorobenzoyl chloride (DCBC), a genotoxic impurity, in MLN9708 drug substance. A surrogate strategy was utilized whereby DCBC was intentionally hydrolyzed to 2,5-dichlorobenzoic acid (DCBA) to provide a stable and reliable detection target. The hydrolysis approach was conservative since the measured signal represented the sum of DCBC and DCBA in MLN9708 drug substance, and such approach was acknowledged and accepted by food and drug administration (FDA). HRQMS was used as the detection method since conventional MS/MS methodology gave poor sensitivity and selectivity due to non-specific fragmentation of carbon dioxide loss upon collision activation dissociation. Profile algorithm mass spectrometry data were acquired with mass resolving power (MRP) of 60,000. Quantitation was based on the extracted ion chromatography (EIC) peak area signal, which was extracted at m/z 188.9515 with a mass extraction window (MEW) of 5ppm. The UHPLC/HRQMS method was validated based on International Conference on Harmonization (ICH) guidelines, which included selectivity, limit of detection (LOD), limit of quantitation (LOQ), repeatability, linearity, accuracy, and stability. PMID:24309557

  10. Highly efficient microextraction of chlorophenoxy acid herbicides in natural waters using a decanoic acid-based nanostructured solvent prior to their quantitation by liquid chromatography-mass spectrometry.

    PubMed

    Moral, Antonia; Caballo, Carmen; Sicilia, María Dolores; Rubio, Soledad

    2012-01-01

    Solvents used in microextraction require high solubilising capability to efficiently extract the target compounds. In this article, nanostructured solvents made up of alkyl carboxylic acids (ACAs) aggregate are proposed for the efficient microextraction of acidic pesticides from natural waters. The target compounds were chlorophenoxy acid herbicides (CPAHs) widely used in agriculture, forestry and gardening (viz. 2,4-D, MCPA, MCPP, 2,4,5-T and MCPB). The supramolecular solvents (SUPRASs) tested were generated from solutions of reverse micelles of octanoic (OcA), decanoic (DeA) and dodecanoic (DoA) acid in THF by the addition of water, which acted as the coacervating agent. The DeA-based SUPRAS was the most efficient extractant for CPAHs; actual concentration factors (ACFs) of 260 for 2,4-D, 290 for MCPA, and 400 for MCPP, 2,4,5-T and MCPB were obtained. The explanation for so high ACFs can be found in the extremely efficient retention mechanisms that the DeA-based SUPRAS provides for CPAHs (i.e. formation of hydrogen bonds and hydrophobic interactions), and the high number of binding sites that it contains (i.e. the concentration of biosurfactant in the SUPRAS was 0.56 mg μL(-1)). Both characteristics permitted to effectively extract the target analytes in a low volume of solvent (about 2 μL of solvent per mL of sample). Others assets of the proposed supramolecular solvent-based microextraction (SUSME) approach included recoveries no dependent on matrix composition, rapidity (sample treatment spent about 15 min), use of low volume of sample (63 mL per analysis) and simplicity (no special lab equipments was needed). Combination with liquid chromatography/ion-trap mass spectrometry [LC-(IT)MS] afforded method quantitation limits for CPAHs within the interval 22-30 ng L(-1). The precision of the method, expressed as relative standard deviation (n=11, [CPAH]=200 ng L(-1)), was in the range 2.9-5.8%. The applicability of the method to the analysis of natural waters

  11. Quantitation of the Minor Tobacco Alkaloids Nornicotine, Anatabine, and Anabasine in Smokers' Urine by High Throughput Liquid Chromatography-Mass Spectrometry.

    PubMed

    von Weymarn, Linda B; Thomson, Nicole M; Donny, Eric C; Hatsukami, Dorothy K; Murphy, Sharon E

    2016-03-21

    Nicotine is the most abundant alkaloid in tobacco accounting for 95% of the alkaloid content. There are also several minor tobacco alkaloids; among these are nornicotine, anatabine, and anabasine. We developed and applied a 96 well plate-based capillary LC-tandem mass spectrometry method for the analysis of nornicotine, anatabine, and anabasine in urine. The method was validated with regard to accuracy and precision. Anabasine was quantifiable to low levels with a limit of quantitation (LOQ) of 0.2 ng/mL even when nicotine, which is isobaric, is present at concentrations >2500-fold higher than anabasine. This attribute of the method is important since anatabine and anabasine in urine have been proposed as biomarkers of tobacco use for individuals using nicotine replacement therapies. In the present study, we analyzed the three minor tobacco alkaloids in urine from 827 smokers with a wide range of tobacco exposures. Nornicotine (LOQ 0.6 ng/mL) was detected in all samples, and anatabine (LOQ, 0.15 ng/mL) and anabasine were detected in 97.7% of the samples. The median urinary concentrations of nornicotine, anatabine, and anabasine were 98.9, 4.02, and 5.53 ng/mL. Total nicotine equivalents (TNE) were well correlated with anatabine (r(2) = 0.714) and anabasine (r(2) = 0.760). TNE was most highly correlated with nornicotine, which is also a metabolite of nicotine. Urine samples from a subset of subjects (n = 110) were analyzed for the presence of glucuronide conjugates by quantifying any increase in anatabine and anabasine concentrations after β-glucuronidase treatment. The median ratio of the glucuronidated to free anatabine was 0.74 (range, 0.1 to 10.9), and the median ratio of glucuronidated to free anabasine was 0.3 (range, 0.1 to 2.9). To our knowledge, this is the largest population of smokers for whom the urinary concentrations of these three tobacco alkaloids has been reported. PMID:26825008

  12. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  13. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-05-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  14. Neuroscience and Accelerator Mass Spectrometry

    SciTech Connect

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  15. Simultaneous qualitative and quantitative analysis of flavonoids and alkaloids from the leaves of Nelumbo nucifera Gaertn. using high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Guo, Yujie; Chen, Xi; Qi, Jin; Yu, Boyang

    2016-07-01

    A reliable method, combining qualitative analysis by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and quantitative assessment by high-performance liquid chromatography with photodiode array detection, has been developed to simultaneously analyze flavonoids and alkaloids in lotus leaf extracts. In the qualitative analysis, a total of 30 compounds, including 12 flavonoids, 16 alkaloids, and two proanthocyanidins, were identified. The fragmentation behaviors of four types of flavone glycoside and three types of alkaloid are summarized. The mass spectra of four representative components, quercetin 3-O-glucuronide, norcoclaurine, nuciferine, and neferine, are shown to illustrate their fragmentation pathways. Five pairs of isomers were detected and three of them were distinguished by comparing the elution order with reference substances and the mass spectrometry data with reported data. In the quantitative analysis, 30 lotus leaf samples from different regions were analyzed to investigate the proportion of eight representative compounds. Quercetin 3-O-glucuronide was found to be the predominant constituent of lotus leaf extracts. For further discrimination among the samples, hierarchical cluster analysis, and principal component analysis, based on the areas of the eight quantitative peaks, were carried out. PMID:27161554

  16. Quantitation of Flecainide, Mexiletine, Propafenone, and Amiodarone in Serum or Plasma Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Slawson, Matthew H; Johnson-Davis, Kamisha L

    2016-01-01

    Flecainide, mexiletine, propafenone, and amiodarone are antiarrhythmic drugs that are used primarily in the treatment of cardiac arrhythmias. The monitoring of the use of these drugs has applications in therapeutic drug monitoring and overdose situations. LC-MS/MS is used to analyze plasma/serum extracts with loxapine as the internal standard to ensure accurate quantitation and control for any potential matrix effects. Positive ion electrospray is used to introduce the analytes into the mass spectrometer. Selected reaction monitoring of two product ions for each analyte allows for the calculation of ion ratios which ensures correct identification of each analyte, while a matrix matched calibration curve is used for quantitation. PMID:26660169

  17. Global identification and quantitative analysis of chemical constituents in traditional Chinese medicinal formula Qi-Fu-Yin by ultra-high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Li, Meng-Ning; Dong, Xin; Gao, Wen; Liu, Xin-Guang; Wang, Rui; Li, Ping; Yang, Hua

    2015-10-10

    Qi-Fu-Yin (QFY), a classical traditional Chinese medicine formula, is proven to have significant neuroprotective effects by modern pharmacological studies. However, the chemical constituents of QFY have not been fully explored. In this study, an ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF MS) was developed for comprehensive analysis of chemical constituents in QFY. By using characteristic ions and fragmentation rules, a reliable identification of 156 compounds was described here, including 69 triterpene saponins, 23 oligosaccharide esters, 22 flavanoids, 9 alkaloids, 9 phenolic acids, 8 phthalides, 7 phenylethanoid glycosides, 3 xanthones, 3 sesquiterpene lactones, 2 ionones and 1 iridoid glycoside. Twenty-six major compounds were then determined in a single run by UHPLC coupled with triple quadrupole tandem mass spectrometry (QQQ MS) with fast positive/negative polarity switching. It allows for the acquisition of MS data in both ionization modes from a single run. The proposed method was then validated in terms of linearity, accuracy, precision and recovery. The overall recoveries for 26 analytes ranged from 91.35% to 109.58%, with RSDs ranging from 0.82% to 4.83%. In addition, the content of 26 analytes in QFY prepared by five batches of herbal materials was also analyzed. These results demonstrated that our present method was effective and reliable for comprehensive quality evaluation of QFY. Meanwhile, the study might provide the chemical evidence for revealing the material basis of its therapeutic effects. PMID:26112926

  18. Simple quantitative determination of potent thiols at ultratrace levels in wine by derivatization and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis.

    PubMed

    Capone, Dimitra L; Ristic, Renata; Pardon, Kevin H; Jeffery, David W

    2015-01-20

    Volatile sulfur compounds contribute characteristic aromas to foods and beverages and are widely studied, because of their impact on sensory properties. Certain thiols are particularly important to the aromas of roasted coffee, cooked meat, passion fruit, grapefruit, and guava. These same thiols enhance the aroma profiles of different wine styles, imparting pleasant aromas reminiscent of citrus and tropical fruits (due to 3-mercaptohexan-1-ol, 3-mercaptohexyl acetate, 4-mercapto-4-methylpentan-2-one), roasted coffee (2-furfurylthiol), and struck flint (benzyl mercaptan), at nanogram-per-liter levels. In contrast to the usual gas chromatography (GC) approaches, a simple and unique high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for routine analysis of five wine thiols, using 4,4'-dithiodipyridine (DTDP) as a derivatizing agent and polydeuterated internal standards for maximum accuracy and precision. DTDP reacted rapidly with thiols at wine pH and provided stable derivatives, which were enriched by solid-phase extraction (SPE) prior to analysis by HPLC-MS/MS. All steps were optimized and the method was validated in different wine matrices, with method performance being comparable to a well-optimized but more cumbersome gas chromatography-mass spectrometry (GC-MS) method. A range of commercial wines was analyzed with the new method, revealing the distribution of the five thiols in white, red, rosé, and sparkling wine styles. PMID:25562625

  19. Evaluation of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Quantitative Determination of Lead in Different Parts of Archeological Human Teeth

    PubMed Central

    Bellis, David J.; Parsons, Patrick J.; Jones, Joseph; Amarasiriwardena, Dula

    2011-01-01

    The lead content of teeth or tooth-parts has been used as a biomarker of cumulative lead exposure in clinical, epidemiological, environmental, and archaeological studies. Through the application of laser ablation inductively coupled plasma mass spectrometry, a pilot study of the micrometer-scale distribution and quantification of lead was conducted for two human teeth obtained from an archeological burial site in Manhattan, New York, USA. Lead was highly localized within each tooth, with accumulation in circumpulpal dentine and cementum. The maximum localized lead content in circumpulpal dentine was remarkably high, almost 2000 μg g-1, compared to the mean enamel and dentine content of about 5 μg g-1. The maximum lead content in cementum was approximately 700 μg g-1. The large quantity of cementum found in the teeth suggested that the subjects had hypercementosis (excess cementum formation) of the root, a condition reported to have been prevalent among African-American slave populations. The distribution of lead in these human teeth was remarkably similar to the distribution that we previously reported in the teeth of present-day lead-dosed goats. The data shown demonstrate the feasibility of using laser ablation inductively coupled plasma mass spectrometry to examine lead exposure in archaeological studies. PMID:22467976

  20. Quantification of diacylglycerol by mass spectrometry.

    PubMed

    vom Dorp, Katharina; Dombrink, Isabel; Dörmann, Peter

    2013-01-01

    Diacylglycerol (DAG) is an important intermediate of lipid metabolism and a component of phospholipase C signal transduction. Quantification of DAG in plant membranes represents a challenging task because of its low abundance. DAG can be measured by direct infusion mass spectrometry (MS) on a quadrupole time-of-flight mass spectrometer after purification from the crude plant lipid extract via solid-phase extraction on silica columns. Different internal standards are employed to compensate for the dependence of the MS and MS/MS signals on the chain length and the presence of double bonds in the acyl moieties. Thus, using a combination of single MS and MS/MS experiments, quantitative results for the different molecular species of DAGs from Arabidopsis can be obtained. PMID:23681522

  1. Propolis specimens from different locations of central Italy: chemical profiling and gas chromatography-mass spectrometry (GC-MS) quantitative analysis of the allergenic esters benzyl cinnamate and benzyl salicylate.

    PubMed

    Aliboni, Andrea; D'Andrea, Armando; Massanisso, Paolo

    2011-01-12

    Propolis is a beehive product popular in natural medicine thanks to its noteworthy properties. Propolis is non-toxic but is responsible for allergic reactions in sensitive individuals. In this paper, we propose a new gas chromatography-mass spectrometry (GC-MS) analytical methodology for the quantitative analysis of two allergenic esters in propolis specimens, benzyl salicylate and benzyl cinnamate, and test it on specimens from different locations of central Italy. We also present the results obtained in the chemical characterization of the same specimens. The characterization showed that the resin fractions of all of the specimens are of poplar origin. PMID:21126078

  2. Counting Molecules by Desorption Ionization and Mass Spectrometry/Mass Spectrometry.

    ERIC Educational Resources Information Center

    Cooks, R. G.; Busch, K. L.

    1982-01-01

    Discusses two newer methods in mass spectrometry and shows how they can increase signal and signal-to-noise ratios, respectively. The first method, desorption ionization (DI), increases sensitivity while the second method, mass spectrometry/mass spectrometry (MS/MS), increases specificity. Together, the two methods offer improved analytical…

  3. Nanotip Ambient Ionization Mass Spectrometry.

    PubMed

    Zhou, Zhenpeng; Lee, Jae Kyoo; Kim, Samuel C; Zare, Richard N

    2016-05-17

    A method called nanotip ambient ionization mass spectrometry (NAIMS) is described, which applies high voltage between a tungsten nanotip and a metal plate to generate a plasma in which ionized analytes on the surface of the metal plate are directed to the inlet and analyzed by a mass spectrometer. The dependence of signal intensity is investigated as a function of the tip-to-plate distance, the tip size, the voltage applied at the tip, and the current. These parameters are separately optimized to achieve sensitivity or high spatial resolution. A partially observable Markov decision process is used to achieve a stabilized plasma as well as high ionization efficiency. As a proof of concept, the NAIMS technique has been applied to phenanthrene and caffeine samples for which the limits of detection were determined to be 0.14 fmol for phenanthrene and 4 amol for caffeine and to a printed caffeine pattern for which a spatial resolution of 8 ± 2 μm, and the best resolution of 5 μm, was demonstrated. The limitations of NAIMS are also discussed. PMID:27087600

  4. Detection and quantitation of benzo(a)pyrene-derived DNA adducts in mouse liver by liquid chromatography - tandem mass spectrometry: comparison with P-32-postlabeling

    SciTech Connect

    Singh, R.; Gaskell, M.; Le Pla, R.C.; Kaur, B.; Azim-Araghi, A.; Roach, J.; Koukouves, G.; Souliotis, V.L.; Kyrtopoulos, S.A.; Farmer, P.B.

    2006-06-19

    The polycyclic aromatic hydrocarbon, benzo(a)pyrene (B(a)P) is a proven animal carcinogen that is potentially carcinogenic to humans. B( a)P is an ubiquitous environmental pollutant and is also present in tobacco smoke, coal tar, automobile exhaust emissions, and charred food. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using electrospray ionization and selected reaction monitoring (SRM) has been developed for the detection of 10-(deoxyguanosin-N{sub 2}-yl)-7,8,9-trihydroxy-7,8,9,10- tetrahydrobenzo(a)pyrene (B(a)PDE-N{sub 2}dG) adducts formed in DNA following the metabolic activation of B(a)P to benzo(a) pyrene-7,8-dihydrodiol-9,10-epoxide (B(a)PDE).

  5. Diagnostic application of the exponentially modified Gaussian model for peak quality and quantitation in high-throughput liquid chromatography-tandem mass spectrometry.

    PubMed

    Zabell, Adam P R; Foxworthy, Tyler; Eaton, Kimberly Napoli; Julian, Randall K

    2014-11-21

    Typical area calculation for a chromatographic peak assumes the observed signal strength at every measurement is an exactly accurate count of the signal. We compared that approach to one using the exponentially modified Gaussian (EMG) in an automated, clinical production setting. Peak areas in a 47 analyte high throughput clinical production liquid chromatography-tandem mass spectrometry assay were compared across four months of production data to determine trends over the lifespan of a chromatographic column. The EMG parameters were superior to traditional quality control methods for monitoring data reproducibility, accuracy and precision. Because the EMG calculations are performed for every peak in the system, a constant monitor of system health is integrated into the operational workflow. Parameter trends confirmed the need for column replacement, and indicated the opportunity for a reduced schedule of preventive and routine maintenance. PMID:25441075

  6. Quantitation of Cotinine and its Metabolites in Rat Plasma and Brain Tissue by Hydrophilic Interaction Chromatography Tandem Mass Spectrometry (HILIC-MS/MS)

    PubMed Central

    Li, Pei; Beck, Wayne D.; Callahan, Patrick M.; Terry, Alvin V.; Bartlett, Michael G.

    2014-01-01

    In this work, we developed a sensitive method to quantify cotinine (COT), norcotinine (NCOT), trans-3′-hydroxycotinine (OHCOT) and cotinine-N-oxide (COTNO) in rat plasma and brain tissue, using solid phase extraction (SPE), hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry (MS/MS). The linear range was 1–100 ng/ml for each analyte in rat plasma and brain homogenate (3–300 ng/g brain tissue). The method was validated with precision within 15% relative standard deviation (RSD) and accuracy within 15% relative error (RE). Stable isotope-labeled internal standards (IS) were used for all the analytes to achieve good reproducibility, minimizing the influence of recovery and matrix effects. This method can be used in future studies to simultaneously determine the concentrations of COT and three major metabolites in rat plasma and brain tissue. PMID:23022114

  7. Validation of a headspace trap gas chromatography and mass spectrometry method for the quantitative analysis of volatile compounds from degraded rapeseed oil.

    PubMed

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2016-05-01

    Due to lipid oxidation, off-flavors, characterized by a fishy odor, are emitted during the heating of rapeseed oil in a fryer and affect the flavor of rapeseed oil even at low concentrations. Thus, there is a need for analytical methods to identify and quantify these products. To study the headspace composition of degraded rapeseed oil, and more specifically the compounds responsible for the fishy odor, a headspace trap gas chromatography with mass spectrometry method was developed and validated. Six volatile compounds formed during the degradation of rapeseed oil were quantified: 1-penten-3-one, (Z)-4-heptenal, hexanal, nonanal, (E,E)-heptadienal, and (E)-2-heptenal. Validation using accuracy profiles allowed us to determine the valid ranges of concentrations for each compound, with acceptance limits of 40% and tolerance limits of 80%. This method was then successfully applied to real samples of degraded oils. PMID:26990911

  8. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum.

    PubMed

    Geib, Timon; Sleno, Lekha; Hall, Rabea A; Stokes, Caroline S; Volmer, Dietrich A

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease. Graphical Abstract ᅟ. PMID:27154021

  9. Quantitative Analysis of Bioactive Compounds from Aromatic Plants by Means of Dynamic Headspace Extraction and Multiple Headspace Extraction-Gas Chromatography-Mass Spectrometry.

    PubMed

    Omar, Jone; Olivares, Maitane; Alonso, Ibone; Vallejo, Asier; Aizpurua-Olaizola, Oier; Etxebarria, Nestor

    2016-04-01

    Seven monoterpenes in 4 aromatic plants (sage, cardamom, lavender, and rosemary) were quantified in liquid extracts and directly in solid samples by means of dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS) and multiple headspace extraction-gas chromatography-mass spectrometry (MHSE), respectively. The monoterpenes were 1st extracted by means of supercritical fluid extraction (SFE) and analyzed by an optimized DHS-GC-MS. The optimization of the dynamic extraction step and the desorption/cryo-focusing step were tackled independently by experimental design assays. The best working conditions were set at 30 °C for the incubation temperature, 5 min of incubation time, and 40 mL of purge volume for the dynamic extraction step of these bioactive molecules. The conditions of the desorption/cryo-trapping step from the Tenax TA trap were set at follows: the temperature was increased from 30 to 300 °C at 150 °C/min, although the cryo-trapping was maintained at -70 °C. In order to estimate the efficiency of the SFE process, the analysis of monoterpenes in the 4 aromatic plants was directly carried out by means of MHSE because it did not require any sample preparation. Good linearity (r2) > 0.99) and reproducibility (relative standard deviation % <12) was obtained for solid and liquid quantification approaches, in the ranges of 0.5 to 200 ng and 10 to 500 ng/mL, respectively. The developed methods were applied to analyze the concentration of 7 monoterpenes in aromatic plants obtaining concentrations in the range of 2 to 6000 ng/g and 0.25 to 110 μg/mg, respectively. PMID:26925555

  10. A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry.

    PubMed

    Zavřel, Tomáš; Knoop, Henning; Steuer, Ralf; Jones, Patrik R; Červený, Jan; Trtílek, Martin

    2016-02-01

    The prediction of the world's future energy consumption and global climate change makes it desirable to identify new technologies to replace or augment fossil fuels by environmentally sustainable alternatives. One appealing sustainable energy concept is harvesting solar energy via photosynthesis coupled to conversion of CO2 into chemical feedstock and fuel. In this work, the production of ethylene, the most widely used petrochemical produced exclusively from fossil fuels, in the model cyanobacterium Synechocystis sp. PCC 6803 is studied. A novel instrumentation setup for quantitative monitoring of ethylene production using a combination of flat-panel photobioreactor coupled to a membrane-inlet mass spectrometer is introduced. Carbon partitioning is estimated using a quantitative model of cyanobacterial metabolism. The results show that ethylene is produced under a wide range of light intensities with an optimum at modest irradiances. The results allow production conditions to be optimized in a highly controlled setup. PMID:26708481

  11. Developments in ion mobility spectrometry-mass spectrometry.

    PubMed

    Collins, D C; Lee, M L

    2002-01-01

    Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs. PMID:11939214

  12. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  13. A validated assay for the quantitative analysis of vatalanib in human EDTA plasma by liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Lankheet, A G; Hillebrand, M J X; Langenberg, M H G; Rosing, H; Huitema, A D R; Voest, E E; Schellens, J H M; Beijnen, J H

    2009-11-01

    A sensitive and accurate method for the determination of vatalanib in human EDTA plasma was developed using high-performance liquid chromatography and detection with tandem mass spectrometry. Stable isotopically labeled imatinib was used as internal standard. Plasma proteins were precipitated and an aliquot of the supernatant was directly injected onto a Phenomenex Gemini C18 analytical column (50 mm x 2.0 mm ID, 5.0 microm particle size) and then compounds were eluted with a linear gradient. The outlet of the column was connected to a Sciex API 365 triple quadrupole mass spectrometer and ions were detected in positive multiple reaction monitoring mode. The lower limit of quantification was 10 ng/mL (S/N approximately 10, CV < or = 8.4%). This method was validated over a linear range from 10 to 2500 ng/mL, and results from the validation study demonstrated a good intra- and inter-assay accuracy (inaccuracy < or = 9.57%) and precision (CV < or = 8.81%). This method has been used to determine plasma vatalanib concentrations in patients with advanced solid tumor, enrolled in a phase I pharmacokinetic trial with the drug. PMID:19762293

  14. Development of a thermal desorption gas chromatography-mass spectrometry method for quantitative determination of haloanisoles and halophenols in wineries' ambient air.

    PubMed

    Camino-Sánchez, F J; Ruiz-García, J; Zafra-Gómez, A

    2013-08-30

    An analytical method for the detection and quantification of haloanisoles and their corresponding halophenols in wineries' ambient air was developed. The target analytes were haloanisoles and halophenols, reported by previous scientific literature as responsible for wine taint. A calibrated pump and active tubes filled with Tenax GR™ were used for sampling. These tubes were thermally desorbed and analyzed using gas chromatography-triple quadrupole mass spectrometry in the selected reaction monitoring mode. The adsorption efficiencies of five commercial sampling tubes filled with different materials were evaluated. The efficiencies of the selected adsorbent were close to 100% for all sampled compounds. Desorption, chromatographic and mass spectrometric conditions were accurately optimized allowing very low limits of quantification and wide linear ranges. The limits of quantification in ambient air ranged from 0.8pgtube(-1) for 2,4,6-trichlorophenol, to 28pgtube(-1) for pentachlorophenol. These results are of great importance because human sensory threshold for haloanisoles is very low. The chromatographic method was also validated and the instrumental precision and trueness were established, a maximum RSD of 9% and a mean recovery of 91-106% were obtained. The proposed method involves an easy and sensitive technique for the early detection of haloanisoles and their precursor halophenols in ambient air avoiding contamination of wine or winery facilities. PMID:23891369

  15. Quantitative determination of un-derivatised amino acids in artistic mural paintings using high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry.

    PubMed

    Zangrando, Roberta; Piazza, Rossano; Cairns, Warren R L; Izzo, Francesca C; Vianello, Alvise; Zendri, Elisabetta; Gambaro, Andrea

    2010-08-18

    The tempera painting technique is one of the most common methods used throughout art history. Tempera is defined by the type of binders used and in this work we study protein-based temperas. Proteinaceous binders can be characterized by the chromatographic determination of the amino acids present where techniques are either based on gas chromatography or high-performance liquid chromatography (HPLC) coupled to mass spectrometry. The objective of this work was to develop a derivatisation-free HPLC method with triple quadrupole tandem mass spectrometric detection (HPLC/ESI-MS/MS) of 21 amino acids contained in the protein-based binders of tempera paints. The analytical method identifies the painting techniques of two contemporary artists: Sironi and DeLuigi. The sample data are compared to painting material standards. The results show that the samples from works by DeLuigi contain mainly animal glue binders, while the samples from Sironi paintings contain binders that are an amino acid mixture with an overall composition between that of eggs and casein. PMID:20708108

  16. Quantitative analysis of the major constituents in Chinese medicinal preparation SuoQuan formulae by ultra fast high performance liquid chromatography/quadrupole tandem mass spectrometry

    PubMed Central

    2013-01-01

    Background The SuoQuan formulae containing Fructus Alpiniae Oxyphyllae has been used to combat the urinary incontinence symptoms including frequency, urgency and nocturia for hundreds of years in China. However, the chemical information was not well characterized. The quality control marker constituent only focused on one single compound in the current Chinese Pharmacopeia. Hence it is prudent to identify and quantify the main constituents in this herbal product. This study aimed to analyze the main constituents using ultra-fast performance liquid chromatography coupled to tandem mass spectrometry (UFLC-MS/MS). Results Fourteen phytochemicals originated from five chemical classes constituents were identified by comparing the molecular mass, fragmentation pattern and retention time with those of the reference standards. A newly developed UFLC-MS/MS was validated demonstrating that the new assay was valid, reproducible and reliable. This method was successfully applied to simultaneously quantify the fourteen phytochemicals. Notably, the content of these constituents showed significant differences in three pharmaceutical preparations. The major constituent originated from each of chemical class was isolinderalactone, norisoboldine, nootkatone, yakuchinone A and apigenin-4’,7-dimethylther, respectively. The variation among these compounds was more than 1000 times. Furthermore, the significant content variation between the two different Suoquan pills was also observed. Conclusion The proposed method is sensitive and reliable; hence it can be used to analyze a variety of SuoQuan formulae products produced by different pharmaceutical manufacturers. PMID:23899222

  17. QUANTITATION OF ESTROGENS IN GROUND WATER AND SWINE LAGOON SAMPLE USING SOLID PHASE EXTRACTION, PENTAFLUROBENZYL/TRIMETHYLSILYL DERIVATIZATIONS AND GAS CHROMATOGRAPHY NEGATIVE ION CHEMICAL IONIZATION/MASS SPECTROMETRY/MASS SPECTROMETRY

    EPA Science Inventory

    A method was developed for the confirmed identification and quantitation of 17B-estradiol, estrone, 17B-ethynylestrodial and 16a-hydroxy-17B-estradiol (estriol) in ground water and swine lagoon samples. Centrifuged and filtered samples were extracted using solid phase extraction...

  18. Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis.

    PubMed

    Yamamoto, Shinya; Bamba, Takeshi; Sano, Atsushi; Kodama, Yukako; Imamura, Miho; Obata, Akio; Fukusaki, Eiichiro

    2012-08-01

    Soy sauces, produced from different ingredients and brewing processes, have variations in components and quality. Therefore, it is extremely important to comprehend the relationship between components and the sensory attributes of soy sauces. The current study sought to perform metabolite profiling in order to devise a method of assessing the attributes of soy sauces. Quantitative descriptive analysis (QDA) data for 24 soy sauce samples were obtained from well selected sensory panelists. Metabolite profiles primarily concerning low-molecular-weight hydrophilic components were based on gas chromatography with time-of-flightmass spectrometry (GC/TOFMS). QDA data for soy sauces were accurately predicted by projection to latent structure (PLS), with metabolite profiles serving as explanatory variables and QDA data set serving as a response variable. Moreover, analysis of correlation between matrices of metabolite profiles and QDA data indicated contributing compounds that were highly correlated with QDA data. Especially, it was indicated that sugars are important components of the tastes of soy sauces. This new approach which combines metabolite profiling with QDA is applicable to analysis of sensory attributes of food as a result of the complex interaction between its components. This approach is effective to search important compounds that contribute to the attributes. PMID:22608993

  19. Utility of mass spectrometry in the diagnosis of prion diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a sensitive mass spectrometry-based method of quantitating the prions present in a variety of mammalian species. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to their homologous stable isotope labeled internal standards were pre...

  20. Diagnosing Prion Diseases: Mass Spectrometry-Based Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass spectrometry is an established means of quantitating the prions present in infected hamsters. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limi...

  1. Analysis of proteins using DIGE and MALDI mass spectrometry

    EPA Science Inventory

    In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...

  2. Broadband Analysis of Bioagents by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine; Wynne, Colin; Edwards, Nathan

    Mass spectrometry was first reported to provide analysis of intact metabolite biomarkers from whole cells in 1975.1 Since then advances in ionization techniques have extended our capabilities to polar lipids and, eventually, to proteins.2, 3 Mass spectrometry provides a broadband detection system, which, however, has great specificity. Bioinformatics plays an important role in providing flexible and rapid characterization of species, based on protein and peptide mass spectra collected in the field.

  3. Qualitative and Quantitative Analysis of Volatile Components of Zhengtian Pills Using Gas Chromatography Mass Spectrometry and Ultra-High Performance Liquid Chromatography

    PubMed Central

    Liu, Cui-ting; Zhang, Min; Yan, Ping; Liu, Hai-chan; Liu, Xing-yun; Zhan, Ruo-ting

    2016-01-01

    Zhengtian pills (ZTPs) are traditional Chinese medicine (TCM) which have been commonly used to treat headaches. Volatile components of ZTPs extracted by ethyl acetate with an ultrasonic method were analyzed by gas chromatography mass spectrometry (GC-MS). Twenty-two components were identified, accounting for 78.884% of the total components of volatile oil. The three main volatile components including protocatechuic acid, ferulic acid, and ligustilide were simultaneously determined using ultra-high performance liquid chromatography coupled with diode array detection (UHPLC-DAD). Baseline separation was achieved on an XB-C18 column with linear gradient elution of methanol-0.2% acetic acid aqueous solution. The UHPLC-DAD method provided good linearity (R2 ≥ 0.9992), precision (RSD < 3%), accuracy (100.68–102.69%), and robustness. The UHPLC-DAD/GC-MS method was successfully utilized to analyze volatile components, protocatechuic acid, ferulic acid, and ligustilide, in 13 batches of ZTPs, which is suitable for discrimination and quality assessment of ZTPs. PMID:26904360

  4. Quantitative determination of isoquinoline alkaloids and chlorogenic acid in Berberis species using ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Singh, Awantika; Bajpai, Vikas; Kumar, Sunil; Arya, Kamal Ram; Sharma, Kulwant Rai; Kumar, Brijesh

    2015-06-01

    Berberis species are well known and used extensively as medicinal plants in traditional medicine. They have many medicinal values attributable to the presence of alkaloids having different pharmacological activities. In this study, a method was developed and validated as per international conference on harmonization guidelines using ultra high performance liquid chromatography with hybrid triple quadrupole-linear ion trap mass spectrometry operated in the multiple reaction monitoring mode for nine bioactive compounds, including protoberberine alkaloids, aporphine alkaloids and chlorogenic acid. This method was applied in different plant parts of eight Berberis species to determine variations in content of nine bioactive compounds. The separation was achieved on an ACQUITY UPLC CSH™ C18 column using a gradient mobile phase at flow rate 0.3 mL/min. Calibration curves for all the nine analytes provided optimum linear detector response (with R(2) ≥0.9989) over the concentration range of 0.5-1000 ng/mL. The precision and accuracy were within RSDs ≤2.4 and ≤2.3%, respectively. The results indicated significant variation in the total contents of the nine compounds in Berberis species. PMID:25847792

  5. Quantitative Determination and Subcellular Imaging of Cu in Single Cells via Laser Ablation-ICP-Mass Spectrometry Using High-Density Microarray Gelatin Standards.

    PubMed

    Van Malderen, Stijn J M; Vergucht, Eva; De Rijcke, Maarten; Janssen, Colin; Vincze, Laszlo; Vanhaecke, Frank

    2016-06-01

    This manuscript describes the development and characterization of a high-density microarray calibration standard, manufactured in-house and designed to overcome the limitations in precision, accuracy, and throughput of current calibration approaches for the quantification of elemental concentrations on the cellular level using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS). As a case study, the accumulation of Cu in the model organism Scrippsiella trochoidea resulting from transition metal exposure (ranging from 0.5 to 100 μg/L) was evaluated. After the Cu exposure, cells of this photosynthetic dinoflagellate were treated with a critical point drying protocol, transferred to a carbon stub, and sputter-coated with a Au layer for scanning electron microscopy (SEM) analysis. In subsequent LA-ICPMS analysis, approximately 100 cells of each population were individually ablated. This approach permitted the evaluation of the mean concentration of Cu in the cell population across different exposure levels and also allowed the examination of the cellular distribution of Cu within the populations. In a cross-validation exercise, subcellular LA-ICPMS imaging was demonstrated to corroborate synchrotron radiation confocal X-ray fluorescence (SR-XRF) microimaging of single cells investigated under in vivo conditions. PMID:27149342

  6. Comparison of Follicle-Stimulating Hormone Glycosylation Microheterogenity by Quantitative Negative Mode Nano-Electrospray Mass Spectrometry of Peptide-N Glycanase-Released Oligosaccharides

    PubMed Central

    Bousfield, George R.; Butnev, Vladimir Y.; White, William K.; Hall, Aaron Smalter; Harvey, David J.

    2015-01-01

    Glycans from six highly purified hFSH preparations were released by peptide-N-glycanase digestion and analyzed by negative mode nano-ESI mass spectrometry before and after neuraminidase digestion. Pituitary glycan structures were mainly high-mannose, di-, tri-, and tetra-antennary, and their abundance largely paralleled that reported by other investigators using different approaches. For most of the FSH preparations, the differences in glycosylation appeared to be restricted to relative abundances of the major glycan families, as defined by their neutral core oligosaccharide structures. Qualitative differences between glycan populations were largely relegated to those species that were lowest in abundance. Significant qualitative differences were noted in two cases. Recombinant GH3-hFSH triantennary glycans appeared to have the third antenna exclusively on the mannose6-branch, in contrast to all pituitary and urinary hFSH triantennary glycans, in which this antenna was exclusively attached to the mannose3-branch. The hypo-glycosylated hFSH preparation isolated from purified hLH was decorated with high mannose glycans that accounted for over 40% of the total in this population. As this preparation was found to be consistently 20-fold more active than hFSH24 in FSH receptor-binding assays, it appears that both macroheterogeneity and microheterogeneity in FSH preparations need to be taken into account. PMID:25960929

  7. Quantitative determination of octylphenol, nonylphenol, alkylphenol ethoxylates and alcohol ethoxylates by pressurized liquid extraction and liquid chromatography-mass spectrometry in soils treated with sewage sludges.

    PubMed

    Andreu, Vicente; Ferrer, Emilia; Rubio, José Luís; Font, Guillermina; Picó, Yolanda

    2007-05-25

    Surfactants have one of the highest production rates of all organic chemicals. Non-ionic surfactants, especially alkylphenol ethoxylates, received most attention as precursors of estrogenic metabolic products generated during wastewater treatment. Alkylphenols (octyl and nonylphenol), alkylphenol polyethoxylates (APEOs), and alcohol ethoxylates (AEOs) have been determined in a Mediterranean forest soil (Mediterranean Rendzic Leptosol) amended with sludges from six waste water treatment plants (WWTPs) located in the Valencian Community. These compounds were isolated from soil by pressurized liquid extraction (PLE) using a mixture acetone-hexane (50:50 v/v), the extracts were cleaned up by solid-phase extraction (SPE) with C(18), and determined by liquid chromatography atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) using analytical standards for quantification. The method enabled high-reliable identification by monitoring the corresponding ammonium adduct [M+NH(3)](+) for AEOs and APEOs, and the deprotonated molecule [M-H](-) for octyl and nonylphenol. Recoveries, determined spiking soil samples at different concentrations, ranged from 89 to 94%, with limits of quantification from 1 to 100 microg kg(-1). Data obtained from a soil sample mixed with biosolids in the laboratory showed that these compounds are present at concentrations ranging from 0.02 to 5 mg kg(-1). According to these concentrations, levels of possible risk can be concluded for the presence of non-ionic surfactants in soil. However, further assessment will be necessary to establish the relationship between exposure and effect findings. PMID:17306341

  8. Quantitative analysis of N‐acylphosphatidylethanolamine molecular species in rat brain using solid‐phase extraction combined with reversed‐phase chromatography and tandem mass spectrometry

    PubMed Central

    Triebl, Alexander; Weissengruber, Sabrina; Lankmayr, Ernst; Köfeler, Harald

    2016-01-01

    A novel method for the sensitive and selective identification and quantification of N‐acylphosphatidylethanolamine molecular species was developed. Samples were prepared using a combination of liquid–liquid and solid‐phase extraction, and intact N‐acylphosphatidylethanolamine species were determined by reversed‐phase high‐performance liquid chromatography coupled to positive electrospray tandem mass spectrometry. As a result of their biological functions as precursors for N‐acylethanolamines and as signaling molecules, tissue concentrations of N‐acylphosphatidylethanolamines are very low, and their analysis is additionally hindered by the vast excess of other sample components. Our sample preparation methods are able to selectively separate the analytes of interest from any expected biological interferences. Finally, the highest selectivity is achieved by coupling chromatographic separation and two N‐acyl chain specific selected reaction monitoring scans per analyte, enabling identification of both the N‐acyl chain and the phosphatidylethanolamine moiety. The validated method is suitable for the reliable quantification of N‐acylphosphatidylethanolamine species from rat brain with a lower limit of quantification of 10 pmol/g and a linear range up to 2300 pmol/g. In total, 41 N‐acylphosphatidylethanolamine molecular species with six different N‐acyl chains, amounting to a total concentration of 3 nmol/g, were quantified. PMID:27144983

  9. Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil.

    PubMed

    Olofsson, Madelen A; Bylund, Dan

    2016-01-01

    This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter-ionic stationary phase (ZIC-HILIC), and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0) and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. The two isomers form the same precursor and product ions and could not be chromatographically separated using this rapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid. Limits of detection were in the nanomolar range for all included analytes. The total analysis time was 6 min, providing a high sample throughput method. PMID:26977151

  10. Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil

    PubMed Central

    Olofsson, Madelen A.; Bylund, Dan

    2016-01-01

    This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter-ionic stationary phase (ZIC-HILIC), and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0) and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. The two isomers form the same precursor and product ions and could not be chromatographically separated using this rapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid. Limits of detection were in the nanomolar range for all included analytes. The total analysis time was 6 min, providing a high sample throughput method. PMID:26977151

  11. Qualitative and Quantitative Analysis of Volatile Components of Zhengtian Pills Using Gas Chromatography Mass Spectrometry and Ultra-High Performance Liquid Chromatography.

    PubMed

    Liu, Cui-Ting; Zhang, Min; Yan, Ping; Liu, Hai-Chan; Liu, Xing-Yun; Zhan, Ruo-Ting

    2016-01-01

    Zhengtian pills (ZTPs) are traditional Chinese medicine (TCM) which have been commonly used to treat headaches. Volatile components of ZTPs extracted by ethyl acetate with an ultrasonic method were analyzed by gas chromatography mass spectrometry (GC-MS). Twenty-two components were identified, accounting for 78.884% of the total components of volatile oil. The three main volatile components including protocatechuic acid, ferulic acid, and ligustilide were simultaneously determined using ultra-high performance liquid chromatography coupled with diode array detection (UHPLC-DAD). Baseline separation was achieved on an XB-C18 column with linear gradient elution of methanol-0.2% acetic acid aqueous solution. The UHPLC-DAD method provided good linearity (R (2) ≥ 0.9992), precision (RSD < 3%), accuracy (100.68-102.69%), and robustness. The UHPLC-DAD/GC-MS method was successfully utilized to analyze volatile components, protocatechuic acid, ferulic acid, and ligustilide, in 13 batches of ZTPs, which is suitable for discrimination and quality assessment of ZTPs. PMID:26904360

  12. Liquid chromatography tandem mass spectrometry method for the quantitation of NTBC (2-(nitro-4-trifluoromethylbenzoyl)1,3-cyclohexanedione) in plasma of tyrosinemia type 1 patients.

    PubMed

    Herebian, Diran; Spiekerkötter, Ute; Lamshöft, Marc; Thimm, Eva; Laryea, Maurice; Mayatepek, Ertan

    2009-05-15

    In this study, we describe a bioanalytical method for quantification of NTBC in plasma of patients with hereditary tyrosinemia type 1 (HT-1) using high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). After protein precipitation with acetonitrile including Mesotrione as internal standard, separation of NTBC was achieved by RP-HPLC. Detection was performed by positive ion electrospray ionization (ESI) in selected reaction monitoring (SRM) mode. NTBC recovery in the developed method was found to be more than 90%. The lower limit of quantification was calculated to be 0.35 microM. The intra-day and inter-day precision of three different quality control samples (measured as RSD%) was less than 10% and 15%, respectively. The standard calibration curves showed good linearity within the range of 2.5-40 microM and the determined correlation coefficients were r(2)>or=0.995. This presented method is rapid, sensitive, specific and suitable for clinical practice and research. PMID:19345648

  13. Development of immobilized-pepsin microreactors coupled to nano liquid chromatography and tandem mass spectrometry for the quantitative analysis of human butyrylcholinesterase.

    PubMed

    Bonichon, Maud; Combès, Audrey; Desoubries, Charlotte; Bossée, Anne; Pichon, Valérie

    2016-08-26

    Human butyrylcholinesterase is a serine hydrolase that reacts with organophosphorus compounds (OP) to form stable adducts. These adducts are valuable biomarkers for OP exposure and can be analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after a preliminary digestion step in solution. However, this digestion step is time-consuming and cannot be directly coupled with LC-MS set ups. Therefore, the aim of this work was to develop pepsin-based immobilized enzyme microreactors (IMERs) for the rapid digestion of human butyrylcholinesterase (HuBuChE). Various IMERs were synthesized by grafting different amounts of pepsin on a CNBr-sepharose gel and the grafting yield was measured by a bicinchoninic acid assay (BCA). A sensitive nanoLC-MS/MS method was developed to evaluate the digestion yields of HuBuChE on IMERs which was made possible by a synthetic peptide which was used as a calibrant. The digestion was optimized by studying the impact of different parameters such as the digestion time, the temperature and the amount of pepsin grafted on IMER. This optimization allowed HuBuChE to be digested with-in 20min without pretreatment and with digestion yields up to 20%. The repeatability of the IMER synthesis and HuBuChE digestion was highlighted with the characterization of 3 similar IMERs. Finally, the digestion yields of HuBuChE were higher with IMERs when compared to a typical in solution digestion. PMID:27492594

  14. Quantitative bile acid profiling by liquid chromatography quadrupole time-of-flight mass spectrometry: monitoring hepatitis B therapy by a novel Na(+)-taurocholate cotransporting polypeptide inhibitor.

    PubMed

    Haag, Mathias; Hofmann, Ute; Mürdter, Thomas E; Heinkele, Georg; Leuthold, Patrick; Blank, Antje; Haefeli, Walter E; Alexandrov, Alexander; Urban, Stephan; Schwab, Matthias

    2015-09-01

    A novel analytical approach for the targeted profiling of bile acids (BAs) in human serum/plasma based on liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) is presented. Reversed-phase chromatography enabled the baseline separation of 15 human BA species which could be readily detected by accurate mass analysis in negative ion mode. Blood proteins were removed by methanol precipitation in the presence of deuterium-labeled internal standards which allowed BA quantification in 50 μl plasma/serum. The assay was validated according to FDA guidance achieving quantification limits from 7.8 to 156 nM. Calibration curves prepared in charcoal-stripped serum/plasma showed excellent regression coefficients (R (2) > 0.997) and covered quantities from 7.8 to 10,000 nM depending on the analyzed species. Intra- and inter-day accuracy and precision were below 15 % for all analytes. Apparent extraction recoveries were above 97 %, and ion suppression rates were between 4 and 53 %. Mean BA level in serum/plasma from healthy volunteers ranged from 11 ± 4 nM (tauroursodeoxycholic acid) to 1321 ± 1442 nM (glycochenodeoxycholic acid). As a proof of concept, the assay was applied to plasma samples derived from a clinical phase I study of myrcludex B, a novel first-in-class virus entry inhibitor for the treatment of chronic hepatitis B and D. The results demonstrate that myrcludex-induced inhibition of the hepatic BA transporter Na(+)-taurocholate cotransporting polypeptide (NTCP) significantly affects plasma BA level. These observations p