Science.gov

Sample records for quantitative nondestructive evaluation

  1. Review of progress in quantitative nondestructive evaluation. Volume 6B

    SciTech Connect

    Thompson, D.O.; Chimenti, D.E.

    1987-01-01

    This volume comprises the second half of the proceedings of the Thirteenth Annual Review of Progress in Quantitative Nondestructive Evaluation and consists of 87 papers on the following topics: nondestructive property, defect and processing evaluation and monitoring of advanced composites; nondestructive testing of electronic materials and devices; nondestructive materials characterization for mechanical and microstructural properties along with acoustoelasticity, stress, and texture; nondestructive evaluation for cracks and deformation; and nondestructive evaluation for ferromagnetic materials and weldments and bonds. The nondestructive techniques employed range from ultrasonic, thermal, eddy current and electromagnetic to x-ray radiography procedures.

  2. Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.

  3. Modeling for quantitative non-destructive evaluation.

    PubMed

    Achenbach, Jan D

    2002-05-01

    A quantitative approach to non-destructive evaluation (NDE) must be based on models of the measurement processes. A model's purpose is to predict, from first principles, the measurement system's response to material properties and anomalies in a material or structure. For the ultrasonic case a measurement model should include modeling of the generation, propagation and reception of ultrasonic signals, and the ultrasonic interactions that generate the system's response function. A measurement model has many benefits, which are discussed in the paper. Three examples of the productive use of quantitative modeling in conjunction with measured data are presented: the detection and sizing of fatigue cracks which emanate from weep holes in the risers of wing panels in the interior of an aircraft wing by the use of ultrasound generated on the exterior surface of the wing, the determination of the elastic constants of anisotropic thin films deposited on a substrate, and the detection and sizing of surface-breaking cracks by the use of the laser-source scanning technique for laser generated and detected ultrasound. PMID:12159913

  4. Quantitative nondestructive evaluation of materials and structures

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1991-01-01

    An experimental investigation was undertaken to quantify damage tolerance and resistance in composite materials impacted using the drop-weight method. Tests were conducted on laminates of several different carbon-fiber composite systems, such as epoxies, modified epoxies, and amorphous and semicrystalline thermoplastics. Impacted composite specimens were examined using destructive and non-destructive techniques to establish the characteristic damage states. Specifically, optical microscopy, ultrasonic, and scanning electron microscopy techniques were used to identify impact induced damage mechanisms. Damage propagation during post impact compression was also studied.

  5. Review of progress in quantitative nondestructive evaluation. Volume 6A

    SciTech Connect

    Thompson, D.O.; Chimenti, D.E.

    1987-01-01

    This volume consists of the keynote address and the first 116 papers presented at the annual Review of Progress in Quantitative Nondestructive Evaluation conference. The first chapter includes papers which discuss generic techniques and fundamentals in ultrasonic, eddy current, thermal wave, acoustic emission, x-ray, computerized tomographic, NMR and other nondestructive testing methods. Papers included in the second chapter describe imaging,microscopy, inversion and reconstruction techniques, while those in the third chapter investigate various ultrasonic and electromagnetic sensors and probes. Chapter 4 discusses image analysis, signal processing and artificial intelligence applications to NDE. Chapter 5 presents various NDE systems and approaches for determining their reliability. Evaluation of aircraft and reactor components are among the applications discussed. A companion volume--Volume 6B--contains the remaining half of the conference proceedings.

  6. The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations

    NASA Astrophysics Data System (ADS)

    Matzie, Regis A.

    2007-03-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.

  7. Dual-band infrared thermography for quantitative nondestructive evaluation

    SciTech Connect

    Durbin, P.F.; Del Grande, N.K.; Dolan, K.W.; Perkins, D.E.; Shapiro, A.B.

    1993-04-01

    The authors have developed dual-band infrared (DBIR) thermography that is being applied to quantitative nondestructive evaluation (NDE) of aging aircraft. The DBIR technique resolves 0.2 degrees C surface temperature differences for inspecting interior flaws in heated aircraft structures. It locates cracks, corrosion sites, disbonds or delaminations in metallic laps and composite patches. By removing clutter from surface roughness effects, the authors clarify interpretation of subsurface flaws. To accomplish this, the authors ratio images recorded at two infrared bands, centered near 5 microns and 10 microns. These image ratios are used to decouple temperature patterns associated with interior flaw sites from spatially varying surface emissivity noise. They also discuss three-dimensional (3D) dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional thermography provides single-band infrared images which are difficult to interpret. Standard procedures yield imprecise (or qualitative) information about subsurface flaw sites which are typically masked by surface clutter. They use a DBIR imaging technique pioneered at LLNL to capture the time history of surface temperature difference patterns for flash-heated targets. They relate these patterns to the location, size, shape and depth of subsurface flaws. They have demonstrated temperature accuracies of 0.2{degree}C, timing synchronization of 3 ms (after onset of heat flash) and intervals of 42 ms, between images, during an 8 s cooling (and heating) interval characterizing the front (and back) surface temperature-time history of an epoxy-glue disbond site in a flash-heated aluminum lap joint.

  8. Nondestructive evaluation

    SciTech Connect

    Martz, H.E.

    1997-02-01

    Research reported in the thrust area of nondestructive evaluation includes: advanced 3-D imaging technologies; new techniques in laser ultrasonic testing; infrared computed tomography for thermal NDE of materials, structures, sources, and processes; automated defect detection for large laser optics; multistatic micropower impulse radar imaging for nondestructive evaluation; and multi-modal NDE for AVLIS pod shielding components.

  9. Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)

    SciTech Connect

    Not Available

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)

  10. Quantitative non-destructive evaluation of composite materials based on ultrasonic parameters

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Research into the nondestructive evaluation of advanced reinforced composite laminates is summarized. The applicability of the Framers-Kronig equations to the nondestructive evaluation of composite materials is described.

  11. Nondestructive evaluations

    SciTech Connect

    Kulkarni, S.

    1993-03-01

    This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc.; and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

  12. Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1986-01-01

    The application and interpretation of specific ultrasonic nondestructive evaluation techniques are studied. The Kramers-Kronig or generalized dispersion relationships are applied to nondestructive techniques. Progress was made on an improved determination of material properties of composites inferred from elastic constant measurements.

  13. Review of progress in quantitative nondestructive evaluation. Volume 8A and Volume 8B

    SciTech Connect

    Thompson, D.O.; Chimenti, D.E.

    1989-01-01

    Volume 8 contains the edited papers presented at the 1988 Review of Progress in Quantitative Nondestructive Evaluation meeting. The 288 papers discuss such topics as fundamental techniques as acoustic testing, eddy current testing, and x-ray radiography; advanced techniques using x-ray computed tomography and laser ultrasonics; interpretive signal and image processing using expert systems and adaptive analysis; NDE probes and sensors and NDE systems and instrumentation; materials process control and inspection reliability including human factors. Materials discussed range from electronic circuit materials, coatings, adhesive bonds, smart structures, composite materials, welded joints, ferrous materials, and steels and alloys. Stress, texture, structural and fracture properties of materials are characterized using various NDE techniques. Applications to reactor, aircraft, and space vehicle components are investigated.

  14. Quantitative Non-Destructive Evaluation (qnde) of the Elastic Moduli of Porous Tial Alloys

    NASA Astrophysics Data System (ADS)

    Yeheskel, O.

    2008-02-01

    The elastic moduli of ?-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals.

  15. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  16. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.

  17. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1998-01-01

    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters.

  18. A Bayesian quantitative nondestructive evaluation (QNDE) approach to estimating remaining life of aging pressure vessels and piping*

    NASA Astrophysics Data System (ADS)

    Fong, J. T.; Filliben, J. J.; Heckert, N. A.; Guthrie, W. F.

    2013-01-01

    In this paper, we use a Bayesian quantitative nondestructive evaluation (QNDE) approach to estimating the remaining life of aging structures and components. Our approach depends on in-situ NDE measurements of detectable crack lengths and crack growth rates in a multi-crack region of an aging component as a basis for estimating the mean and standard deviation of its remaining life. We introduce a general theory of crack growth involving multiple cracks such that the mean and standard deviation of the initial crack lengths can be directly estimated from NDEmeasured crack length data over a period of several inspection intervals. A numerical example using synthetic NDE data for high strength steels is presented to illustrate this new methodology.

  19. Quantitative nondestructive in-service evaluation of stay cables of cable-stayed bridges: methods and practical experience

    NASA Astrophysics Data System (ADS)

    Weischedel, Herbert R.; Hoehle, Hans-Werner

    1995-05-01

    Stay cables of cable-stayed bridges have corrosion protection systems that can be elaborate. For example, such a system may simply consist of one or several coats of paint, or--more complex--of plastic pipes that are wrapped with tape and filled with grout. Frequently, these corrosion protection systems prevent visual inspections. Therefore, alternative nondestructive examination methods are called for. For example, modern dual-function electromagnetic (EM) instruments allow the simultaneous detection of external and internal localized flaws (such as external and internal broken wires and corrosion piting) and the measurement of loss of metallic cross-sectional area (typically caused by external or internal corrosion or wear). Initially developed for mining and skiing applications, these instruments have been successfully used for the inspection of stays of cable-stayed bridges, and for the inspection of guys of smoke stacks, flare stacks, broadcast towers, suspended roofs, etc. As a rule, guys and bridge cables are not subjected to wear and bending stresses. However, their safety can be compromised by corrosion caused by the failure of corrosion protection systems. Furthermore, live loads and wind forces create intermittent tensile stresses that can cause fatigue breaks of wires. This paper discusses the use of dual-function EM instruments for the detection and the nondestructive quantitative evaluation of cable deterioration. It explains the underlying principles. Experiences with this method together with field inspection results will be presented.

  20. [Nondestructive Evaluation (NDE) Capabilities

    NASA Technical Reports Server (NTRS)

    Born, Martin

    2010-01-01

    These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)

  1. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.

  2. Review of progress in quantitative nondestructive evaluation. Vol. 11B; Proceedings of the 18th Annual Review, Brunswick, ME, July 28-Aug. 2, 1991 Vol. 11B

    SciTech Connect

    Thompson, D.O.; Chimenti, D.E.

    1992-01-01

    The present volume on progress in quantitative nondestructive evaluation discusses the application of guided acoustic waves to delamination deduction, an ultrasonic evaluation of environmentally degraded adhesive joints, an assessment of aircraft structural integrity by the detection of disbonds through ultrasonic scanning, and an ultrasonic scanning technique for the quantitative determination of the cohesive properties of adhesive joints. Attention is given to the detection of a weak adhesive/adherend interface in bonded joints by ultrasonic reflection measurements, an LF ultrasonic-spectroscopy technique for NDE of adhesive joints, a quantitative nondestructive evaluation of adhesive lap joints in a sheet molding compound by adaptation of a commercial bond tester, and an ultrasonic testing technique or measurement of the Poisson's ratio of thin adhesive layers. Topics addressed include physically based feature mapping concepts in bond interface evaluation and the examination of adhesive bonds using optically generated periodic surface acoustic waves.

  3. Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1984-01-01

    The size, shape, and orientation of damage correlates well between the polar backscatter technique and the deply technique. There is good quantitative correlation between the areas of damage indicated by the two techniques. These results suggest that the polar backscatter technique is sensitive to specific orientations of damage. The polar backscatter technique provides a good qualitative image of the size and shape of the largest zone of damage in each of the principal orientations. A quantitative estimate of the extent of these largest damage zones is obtained from the polar backscatter technique. The selective sensitivity of polar backscatter provides a useful tool for further studies of the mechanisms of impact damage in graphite fiber reinforced composite laminates.

  4. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  5. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1992-01-01

    The development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of composite materials requires a better understanding of the physics underlying the interaction of ultrasound with the material. The purpose of this investigation is to identify and characterize the features of complex, three dimensional materials that limit the ability of ultrasound to detect flaws in this broad class of emerging materials. In order to explore the interaction of ultrasound with such complex media, we investigate the characteristics of ultrasonic fields which have propagated through samples with complex geometries and/or internal architecture. We focus on the physics that underlies the detection of flaws in such materials.

  6. Nondestructive evaluation sourcebook

    SciTech Connect

    Ammirato, F.V.; Walker, S.M.; Nottingham, L.D.; Stephens, H.; Shankar, R.; Krzywosz, K.; Gothard, M. Applied Research Co., Charlotte, NC )

    1991-09-01

    Utility executives and upper level managers often make decisions based on inspection data and opinions of inspection personnel regarding inservice inspections of critical components such as pressure vessels, piping, steam generators, and turbine-generator rotors. Few utility executives and upper level managers, however, are well versed in the non-destructive evaluation (NDE) technology that is applied in their nuclear plants. The capabilities and limitations of NDE technology, even though well established and documented for many applications, are not well known at the upper management level. The purpose of this sourcebook is to provide utility upper management and executives with information that explains how NDE is performed in their plants, how the NDE data is used, what training and qualifications are required for NDE personnel, and where and how to get more information. The sourcebook is not intended as an NDE textbook or training manual; its main objective, rather, is to provide an overview of NDE and to give the reader access to the wide selection of available, detailed information on NDE and its application in nuclear plants. Although the sourcebook addresses mainly nuclear plant NDE, much of the information is applicable to fossil plants. 6 refs.

  7. NONDESTRUCTIVE DAMAGE EVALUATION OF ELECTRO-MECHANICAL COMPONENTS USING A HYBRID,

    E-print Network

    Furlong, Cosme

    NONDESTRUCTIVE DAMAGE EVALUATION OF ELECTRO-MECHANICAL COMPONENTS USING A HYBRID, COMPUTATIONAL. This, in turn, indicates a need for effective quantitative testing methodologies. In this paper, a novel hybridized use of nondestructive, noninvasive, remote, full field of view, quantitative opto

  8. Evaluation of nondestructive tensile testing

    NASA Technical Reports Server (NTRS)

    Bowe, J. J.; Polcari, S. M.

    1971-01-01

    The results of a series of experiments performed in the evaluation of nondestructive tensile testing of chip and wire bonds are presented. Semiconductor devices were subjected to time-temperature excursions, static-load life testing and multiple pre-stressing loads to determine the feasibility of a nondestructive tensile testing approach. The report emphasizes the importance of the breaking angle in determining the ultimate tensile strength of a wire bond, a factor not generally recognized nor implemented in such determinations.

  9. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  10. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.

  11. Fast, Quantitative, and Nondestructive Evaluation on Hydrided LWR Fuel Cladding by Small Angle Incoherent Neutron Scattering of Hydrogen

    SciTech Connect

    Yan, Yong; Qian, Shuo; Littrell, Ken; Parish, Chad M; Plummer, Lee K

    2015-01-01

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.

  12. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C. M.; Plummer, L. K.

    2015-05-01

    A nondestructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless-steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount (?20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for determining absolute hydrogen concentrations.

  13. Overview of nondestructive evaluation technologies

    SciTech Connect

    Thomas, G.

    1995-04-01

    The infrastructure in the US and the world is aging. There is an increasing awareness of the need to assess the severity of the damage occurring to the infrastructure. Limited resources preclude the replacement of all structures that need repairs or have exceeded their life times. Methods to assess the amount and severity of damage are crucial to implementing a systematic, cost effective approach to repair and/or replace the damaged structures. The challenges of inspecting aging structures without impairing their usefulness rely on a variety of technologies and techniques for nondestructive evaluation (NDE). This paper will briefly describe several nondestructive evaluation technologies that are required for inspecting a variety of systems and structures.

  14. Nondestructive evaluation of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Kautz, Harold E.

    1988-01-01

    A review is presented of Lewis Research Center efforts to develop nondestructive evaluation techniques for characterizing advanced ceramic materials. Various approaches involved the use of analytical ultrasonics to characterize monolythic ceramic microstructures, acousto-ultrasonics for characterizing ceramic matrix composites, damage monitoring in impact specimens by microfocus X-ray radiography and scanning ultrasonics, and high resolution computed X-ray tomography to identify structural features in fiber reinforced ceramics.

  15. Nondestructive evaluation of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    A review is presented on research and development of techniques for nondestructive evaluation and characterization of advanced ceramics for heat engine applications. Highlighted in this review are Lewis Research Center efforts in microfocus radiography, scanning laser acoustic microscopy (SLAM), scanning acoustic microscopy (SAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM). The techniques were evaluated by applying them to research samples of green and sintered silicon nitride and silicon carbide in the form of modulus-of-rupture bars containing seeded voids. Probabilities of detection of voids were determined for diameters as small as 20 microns for microfucus radiography, SLAM, and SAM. Strengths and limitations of the techniques for ceramic applications are identified. Application of ultrasonics for characterizing ceramic microstructures is also discussed.

  16. Nondestructive evaluation of electrodeposited chromium

    NASA Astrophysics Data System (ADS)

    Todaro, Mark E.

    1992-11-01

    Benet Laboratories is pursuing methods for nondestructively evaluating the quality and adhesion of electrodeposited chromium coatings on the bore of large caliber gun tubes. The Army currently has no suitable means for testing such coatings nondestructively. A poor quality or poorly adherent coating shows up only when several test rounds are fired through the tube, removing portions of the coating and exposing the steel underneath. Recent in-house work has investigated both photothermal and ultrasonic methods. The photothermal method involves briefly heating the surface of the chromium with a laser pulse. After the initial heating, the surface temperature decreases as heat diffuses into the coating and substrate. The characteristics of the coating, interface, and substrate affect the surface temperature profile in distinct ways. The temperature of the surface can be measured by observing the emitted infrared radiation with a focused detector or an infrared scanner. Although no experimental data using the photothermal technique has been obtained yet, a one-dimensional finite difference algorithm was used to model temperature changes on the surface of a chromium coating on steel due to an incident energy pulse. The model verifies that with a suitable choice of laser pulse width, one could measure the thermal characteristics of the coating and detect the presence of a thermal discontinuity at the interface.

  17. Problems associated with nondestructive evaluation of bridges

    NASA Astrophysics Data System (ADS)

    Prine, David W.

    1995-05-01

    The US has 542,000 bridges that consume billions of dollars per year in construction, rehabilitation, and maintenance funds and which are the lifelines of US commerce. The 1992 ISTEA (Intermodal Surface Transportation Efficiency Act) mandates the implementation of a quantitative computerized bridge management system by 1996. A prime need of such a system are quantitative bridge inspection methods to feed accurate reliable condition information to the huge database of bridges. Nondestructive evaluation (NDE) will fill a critical need in the implementation of effective bridge management. However, many serious barriers exist to the widespread routine application of this technology to bridges. This paper provides an overview of the typical problems associated with applying NDE to bridges.

  18. Nondestructive evaluation of structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1986-01-01

    Research on nondestructive evaluation (NDE) of structural ceramics for heat engine applications is reviewed. Microfocus radiography and scanning laser acoustic microscopy are the NDE techniques highlighted. The techniques were applied to research samples of sintered silicon nitride and silicon carbide in the form of modulus-of-rupture (MOR) bars. The strength and limitations of the aforementioned techniques are given in terms of probablility of detection for voids in green and sintered MOR bars. Voids for this purpose were introduced by seeding green ceramic bars and characterizing each void in terms of its size, shape, location, and nature before and after sintering. The effects of material density, microstructure, surface finish, thickness, void depth, and size characteristics on detectability are summarized.

  19. Assessment of and standardization for quantitative nondestructive test

    NASA Technical Reports Server (NTRS)

    Neuschaefer, R. W.; Beal, J. B.

    1972-01-01

    Present capabilities and limitations of nondestructive testing (NDT) as applied to aerospace structures during design, development, production, and operational phases are assessed. It will help determine what useful structural quantitative and qualitative data may be provided from raw materials to vehicle refurbishment. This assessment considers metal alloys systems and bonded composites presently applied in active NASA programs or strong contenders for future use. Quantitative and qualitative data has been summarized from recent literature, and in-house information, and presented along with a description of those structures or standards where the information was obtained. Examples, in tabular form, of NDT technique capabilities and limitations have been provided. NDT techniques discussed and assessed were radiography, ultrasonics, penetrants, thermal, acoustic, and electromagnetic. Quantitative data is sparse; therefore, obtaining statistically reliable flaw detection data must be strongly emphasized. The new requirements for reusable space vehicles have resulted in highly efficient design concepts operating in severe environments. This increases the need for quantitative NDT evaluation of selected structural components, the end item structure, and during refurbishment operations.

  20. Practical applications of nondestructive evaluation for airport pavement analysis

    NASA Astrophysics Data System (ADS)

    McQueen, Roy D.; Guo, Edward

    1995-07-01

    This paper discusses the equipment and methodologies currently used for nondestructive testing (NDT) and nondestructive evaluation (NDE) of the structural capacity of military and civil airport pavements, including: (1) commonly used equipment and test methods for measuring pavement response to dynamic loads; (2) qualitative and quantitative evaluation of NDT data; (3) methods for back-calculating layer properties from NDT data; (4) layered elastic methods for evaluating pavement performance using processed NDT data; and (5) application of analytical results for developing pavement rehabilitation and management strategies.

  1. Quantitative nondestructive characterization of visco-elastic materials at high pressure

    SciTech Connect

    Aizawa, Tatsuhiko; Kihara, Junji; Ohno, Jun

    1995-11-01

    New anvil apparatus was developed to realize high pressure atmosphere suitable to investigation of viscoelastic behaviors of such soft materials as polymers, lubricants, proteins and so forth. In addition, ultrasonic spectroscopy system was also newly constructed to make quantitative nondestructive evaluation of elasticity and viscosity of soft materials at high pressure. In order to demonstrate the validity and effectiveness of the developed system and methodology for quantitative nondestructive visco-elastic characterization, various silicone oils are employed, and measured spectra are compared to the theoretical results calculated by the three linear element model.

  2. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  3. Advancing technologies and applications in nondestructive evaluation

    SciTech Connect

    Logan, C.

    1997-12-01

    The methods used to inspect and evaluate materials, decides, and products are now based on imaging systems that collect digital data and process and interpret them through specially developed computer algorithms. Lawrence Livermore`s Nondestructive and Materials Evaluation Section has been developing a wide range of imaging systems, implementing them through a range of technologies, including digital radiography, computed tomography, machine vision, ultrasonics, and infrared computer thermography. Applications of these various technologies are described in the article. They demonstrate the range and increasing flexibility of the concept of nondestructive evaluation.

  4. Nondestructive quantitative stress characterization of wire rope and steel cables

    NASA Astrophysics Data System (ADS)

    Brauss, Michael E.; Pineault, James A.; Belassel, M.; Teodoropol, Stefan I.

    1998-03-01

    This paper describes a new approach to nondestructive and quantitative characterization of residual and applied stress (absolute stress) on wire rope and steel cable. Examples are given from both field work as well as laboratory tests, including stress characterization of post-tensioning cables, bridge suspension cables, wire rope and thin strand steel wire. The approach is based on x-ray diffraction techniques. A detailed description of the results and the methodologies used to obtain them are provided.

  5. NONDESTRUCTIVE EVALUATION (NDE) OF DAMAGED STRUCTURAL CERAMICS

    SciTech Connect

    Brennan, R. E.; Green, W. H.; Sands, J. M.; Yu, J. H.

    2009-03-03

    A combination of destructive and nondestructive testing methods was utilized to evaluate the impact velocity and energy conditions that caused fracture in alumina structural ceramics. Drop tower testing was used for low velocity impact with a high mass indenter and fragment simulating projectile testing was used for high velocity impact with a low mass projectile. The damaged samples were nondestructively evaluated using digital radiography and ultrasound C-scan imaging. The bulk damage detected by these techniques was compared to surface damage observed by visual inspection.

  6. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  7. Development of instrumentation for magnetic nondestructive evaluation

    SciTech Connect

    Hariharan, S.

    1991-09-23

    The use of failure-prone components in critical applications has been traditionally governed by removing such components from service prior to the expiration of their predicted life expectancy. Such early retirement of materials does not guarantee that a particular sample will not fail in actual usage. The increasing cost of such life expectancy based operation and increased demand for improved reliability in industrial settings has necessitated an alternate form of quality control. Modern applications employ nondestructive evaluation (NDE), also known as nondestructive testing (NDT), as a means of monitoring the levels and growth of defects in a material throughout its operational life. This thesis describes the modifications made to existing instrumentation used for magnetic measurements at the Center for Nondestructive Evaluation at Iowa State University. Development of a new portable instrument is also given. An overview of the structure and operation of this instrumentation is presented. This thesis discusses the application of the magnetic hysteresis and Barkhausen measurement techniques, described in Sections 1.3.1 and 1.3.2 respectively, to a number of ferromagnetic specimens. Specifically, measurements were made on a number of railroad steel specimens for fatigue characterization, and on specimens of Damascus steel and Terfenol-D for materials evaluation. 60 refs., 51 figs., 5 tabs.

  8. Nondestructive evaluation of sintered ceramics

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Klima, Stanley J.; Sanders, William A.

    1988-01-01

    Radiography and several acoustic and thermoacoustic microscopy techniques are investigated for application to structural ceramics for advanced heat engines. A comparison is made of the results obtained from the use of scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), and thermoacoustic microscopy (TAM). These techniques are evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture (MOR) bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described, with the emphasis being on statistics of detectability of flaws that constitute potential fracture origins. Further, it is shown that radiographic evaluation and guidance helped develop uniform high-density Si3N4 MOR bars with improved four-point flexural strength (875, 544, and 462 MPa at room temperature, 1200 C, 1370 C, respectively) and reduced scatter in bend strength.

  9. Ultrasonic nondestructive evaluation of armor ceramics

    NASA Astrophysics Data System (ADS)

    Brennan, Raymond Edwin, IV

    Ceramic materials have been incorporated into armor systems to reduce their weight while providing high hardness, strength, and elastic response to stress. However, the presence of defects and flaws in armor ceramics can lead to ballistic failure. Nondestructive evaluation (NDE) techniques have been studied to locate and characterize defects and inhomogeneities in these materials. High frequency ultrasound NDE has been explored for detecting and locating micron-range defects and identifying microstructural changes in dense armor ceramics such as silicon carbide (SiC). Ultrasound parameters such as transducer frequency have been analyzed to determine system conditions necessary for obtaining C-scan image maps based on differences in intensity of the collected ultrasound signals (reflected signal amplitudes) or transit time of ultrasound energy through materials (time-of-flight TOF). While TOF has have been used to evaluate changes in thickness, velocity, density, and acoustic impedance, reflected signal amplitude has been used to analyze attenuation, or loss, through a test specimen. Reflected signal amplitude and TOF C-scan imaging have been useful for identifying and locating isolated defects and microstructural differences. Elastic property maps have been developed to plot differences in Poisson's ratio, elastic modulus, shear modulus, and bulk modulus. Quantitative analysis techniques have been used to evaluate cumulative effects of reflected signal amplitude and TOF changes over scanned regions and their distributions over selected areas. Amplitude and TOF histogram curves, which have been characterized by area-under-the-curve values, full-width at half-maximum values, and critical tail regions, have provided a valuable means of sample comparison. Generally, more narrow distributions of amplitude and TOF values have corresponded to high density armor-grade samples, while broad distributions have indicated defects or inhomogeneous regions in the samples. In addition to developing techniques for determining individual defect size distributions within a bulk specimen, histogram simulations have been explored to study amplitude and TOF distribution trends by analyzing how the addition of defects of varying size, quantity, and acoustic impedance affect histogram characteristics. These data have been utilized to establish a representative materials fingerprint that provides defect input data which can be further quantified and applied to property, design, and performance modeling of armor ceramic materials.

  10. Nondestructive evaluation by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1988-01-01

    Acousto-ultrasonics is an ultrasonic technique that was originally devised to cope with the particular problems associated with nondestructive evaluation (NDE) of fiber/polymer composite structures. The fiber/polymer composites are more attenuating to ultrasound than any other material presently of interest. This limits the applicability of high-frequency ultrasonics. A common use of ultrasound is the imaging of flaws internal to a structure by scattering from the interface with the flaw. However, structural features of composites can scatter ultrasound internally, thus obscuring the flaws. A need relative to composites is to be able to nondestructively measure the strength of laminar boundaries in order to assess the integrity of a structure. Acousto-ultrasonics has exhibited the ability to use the internal scattering to provide information for determining the strength of laminar boundaries. Analysis of acousto-ultrasonic signals by the wave ray paths that compose it leads to waveform partitioning that enhances the sensitivity to mechanical strength parameters.

  11. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  12. Nondestructive evaluation techniques for enhanced bridge inspection

    SciTech Connect

    Thomas, G.; Benson, S.; Durbin, P.; Del Grande, N.; Haskins, J.; Brown, A.; Schneberk, D.

    1993-10-01

    Nondestructive evaluation of bridges is a critical aspect in the US aging infrastructure problem. For example in California there are 26,000 bridges, 3000 are made of steel, and of the steel bridges, 1000 are fracture critical. California Department of Transportation (Caltrans), Federal Highway Administration, and Lawrence Livermore National Laboratory (LLNL) are collaborating to develop and field NDE techniques to improve bridge inspections. We have demonstrated our NDE technologies on several bridge inspection applications. An early collaboration was to ultrasonically evaluate the steel pins in the E-9 pier on the San Francisco Bay Bridge. Following the Loma-Prieta earthquake in 1989 and the road way collapse at the E-9 pier, a complete nondestructive evaluation was conducted by Caltrans inspectors and several ultrasonic indications were noted. LLNL worked with Caltrans to help identify the source of these reflections. Another project was to digitally enhance high energy radiographs of bridge components such as cable end caps. We demonstrated our ability to improve the detection of corrosion and fiber breakage inside the end cap. An extension of this technology is limited view computer tomography (CT). We implemented our limited view CT software and produced cross-sectional views of bridge cables from digitized radiographic films. Most recently, we are developing dual band infrared imaging techniques to assess bridge decks for delaminations. We have demonstrated the potential of our NDE technology for enhancing the inspection of the country`s aging bridges.

  13. Nondestructive Evaluation of Nuclear-Grade Graphite

    SciTech Connect

    Dennis C. Kunerth; Timothy R. McJunkin

    2011-07-01

    Nondestructive Evaluation of Nuclear Grade Graphite Dennis C. Kunerth and Timothy R. McJunkin Idaho National Laboratory Idaho Falls, ID, 83415 This paper discusses the nondestructive evaluation of nuclear grade graphite performed at the Idaho National Laboratory. Graphite is a composite material highly dependent on the base material and manufacturing methods. As a result, material variations are expected within individual billets as well billet to billet and lot to lot. Several methods of evaluating the material have been explored. Particular technologies each provide a subset of information about the material. This paper focuses on techniques that are applicable to in-service inspection of nuclear energy plant components. Eddy current examination of the available surfaces provides information on potential near surface structural defects and although limited, ultrasonics can be utilized in conventional volumetric inspection. Material condition (e.g. micro-cracking and porosity induced by radiation and stress) can be derived from backscatter or acousto-ultrasound (AU) methods. Novel approaches utilizing phased array ultrasonics have been attempted to expand the abilities of AU techniques. By combining variable placement of apertures, angle and depth of focus, the techniques provide the potential to obtain parameters at various depths in the material. Initial results of the study and possible procedures for application of the techniques are discussed.

  14. Nondestructive evaluation of nuclear-grade graphite

    SciTech Connect

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-17

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  15. NONDESTRUCTIVE EVALUATION OF CERAMIC CANDLE FILTERS

    SciTech Connect

    Roger H.L. Chen, Ph.D.; Alejandro Kiriakidis

    1999-09-01

    Nondestructive evaluation (NDE) techniques have been used to reduce the potential mechanical failures and to improve the reliability of a structure. Failure of a structure is usually initiated at some type of flaw in the material. NDE techniques have been developed to determine the presence of flaws larger than an acceptable size and to estimate the remaining stiffness of a damaged structure (Chen, et. al, 1995). Ceramic candle filters have been tested for use in coal-fueled gas turbine systems. They protect gas turbine components from damage due to erosion. A total of one hundred and one candle filters were nondestructively evaluated in this study. Ninety-eight ceramic candle filters and three ceramic composite filters have been nondestructively inspected using dynamic characterization technique. These ceramic filters include twelve unused Coors alumina/mullite, twenty-four unused and fifteen used Schumacher-Dia-Schumalith TF-20, twenty-five unused and nine used Refractron 326, eight unused and three used Refractron 442T, one new Schumacher-T 10-20, and one used Schumacher-Dia-Schumalith F-40. All filters were subjected to a small excitation and the dynamic response was picked up by a piezoelectric accelerometer. The evaluation of experimental results was processed using digital signal analysis technique including various forms of data transformation. The modal parameters for damage assessment for the unexposed (unused) vs. exposed (used) specimen were based on two vibration parameters: natural frequencies and mode shapes. Finite Element models were built for each specimen type to understand its dynamic response. Linear elastic modal analysis was performed using eight nodes, three-dimensional isotropic solid elements. Conclusions based on our study indicate that dynamic characterization is a feasible NDE technique in studying structural properties of ceramic candle filters. It has been shown that the degradation of the filters due to long working hours (or excessive back pulsing conditions and high temperature transient) could be reflected from the shift of vibration frequencies. These shifts are due to changes in structural properties such as stiffness, which are directly related to the Young's modulus of the candle filters. Further studies are necessary in implementing and verifying the applicability of dynamic NDE characterization methods for actual in-situ conditions, and in establishing a systematic testing procedure for field applications. Also investigations on the filter's natural frequency due to the effect of dust cake or due to the change of boundary conditions may provide insight as to how the filter will perform in the field.

  16. Thermographic nondestructive evaluation: overview of recent progress

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Galmiche, Francois; Darabi, Akbar; Pilla, Mariacristina; Klein, Matthieu; Ziadi, Adel; Vallerand, Steve; Pelletier, Jean-François; Maldague, Xavier P.

    2003-04-01

    This paper presents a summary of recent research activities carried out at our laboratory in the field of Infrared Thermography for Nondestructive Evaluation (TNDE). First, we explore the latest developments in signal improvement. We describe three approaches: multiple pulse stimulation; the use of Synthetic Data for de-noising of the signal; and a new approach derived from the Fourier diffusion equation called the Differentiated Absolute Contrast method (DAC). Secondly, we examine the advances carried out in inverse solutions. We describe the use of the Wavelet Transform to manage pulsed thermographic data, and we present a summary on Neural Networks for TNDE. Finally, we look at the problem of complex geometry inspection. In this case, due to surface shape, heat variations might be incorrectly identified as flaws. We describe the Shape-from-Heating approach and we propose some potential research avenues to deal with this problem.

  17. Non-destructive evaluation of composites

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1996-01-01

    The composite materials have been used in aerospace industries for quite some time. Several non-destructive evaluation (NDE) methods have been developed to inspect composites in order to detect flaws, matrix cracking, and delamination. These methods include ultrasonics, acoustic emission, shearography, thermography, X-ray, and digital image correlation. The NDE Branch of Marshall Space Flight Center has recently acquired a thermal imaging NDE system. The same system has been used at NASA Langley Research Center for detecting disbonds. In order to compare different NDE methods, three carbon/carbon composite panels were used for experiment using ultrasonic C-scan, shearography, and thermography methods. These panels have teflon inserts to simulate the delamination between plies in a composite panel. All three methods have successfully located the insert. The experiment and results are presented in the following sections.

  18. Nondestructive Evaluation of Trunnion Bearing Pins

    NASA Astrophysics Data System (ADS)

    Story, B.; Fry, G. T.; Hurlebaus, S.

    2010-02-01

    Currently, there are several issues plaguing the bridge infrastructure in the United States. These structures are aging and reaching the end of their original design life while simultaneously experiencing increases in train speed, axle load, and train length. As a result of reaching the end of their original design lives, special attention must be given to evaluate the effects of deterioration such as corrosion and fatigue. This research project investigates the integrity of trunnion bearing pins using ultrasonic techniques that (1) minimize disassembling of the bearing, (2) minimize the lock time of the bridge, and (3) are nondestructive. The proposed technique uses an ultrasonic probe to inspect the bearing pin from the center hole as well as an ultrasonic transducer to inspect the pins from their faces. The results of this project show that the proposed method is capable of detecting discontinuities in the bearing pin such as the keyholes.

  19. [Evaluation of walnut by terahertz nondestructive technology].

    PubMed

    Qi, Shu-Ye; Zhang, Zhen-Wei; Zhao, Kun; Han, Dong-Hai

    2012-12-01

    The deterioration and shell thickness of walnut were studied using the terahertz time domain spectroscopy. Firstly, the THz spectra of moth-eaten, moldy and normal walnuts were compared, and the bad walnuts were properly rejected due to the differences of absorption peaks. Secondly, the transmission-type and reflection-type terahertz time domain spectroscopy system was used simultaneously, and a new formula to calculate shell thickness of walnut was built in the THz system. Then the authors measured the shell thickness based on the detectable refractive index of walnut, and the relative error was 3.7%. Consequently, the quality of walnut was evaluated nondestructively according to physical and chemical indicators from walnut THz spectra respectively. PMID:23427574

  20. Non-destructive evaluation of composites

    SciTech Connect

    Chu, T.P.

    1996-02-01

    The composite materials have been used in aerospace industries for quite some time. Several non-destructive evaluation (NDE) methods have been developed to inspect composites in order to detect flaws, matrix cracking, and delamination. These methods include ultrasonics, acoustic emission, shearography, thermography, X-ray, and digital image correlation. The NDE Branch of Marshall Space Flight Center has recently acquired a thermal imaging NDE system. The same system has been used at NASA Langley Research Center for detecting disbonds. In order to compare different NDE methods, three carbon/carbon composite panels were used for experiment using ultrasonic C-scan, shearography, and thermography methods. These panels have teflon inserts to simulate the delamination between plies in a composite panel. All three methods have successfully located the insert.

  1. Preliminary nondestructive evaluation manual for the space shuttle. [preliminary nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Pless, W. M.

    1974-01-01

    Nondestructive evaluation (NDE) requirements are presented for some 134 potential fracture-critical structural areas identified, for the entire space shuttle vehicle system, as those possibly needing inspection during refurbishment/turnaround and prelaunch operations. The requirements include critical area and defect descriptions, access factors, recommended NDE techniques, and descriptive artwork. Requirements discussed include: Orbiter structure, external tank, solid rocket booster, and thermal protection system (development area).

  2. Nondestructive evaluation development for process control

    SciTech Connect

    Ellingson, W.A.; Holloway, D.L.; Sivers, E.A.; Ling, J.; Pollinger, J.P.; Yeh, H.C.

    1991-12-31

    A joint project between Garrett Ceramic Components (GCC) of Allied Signal Aerospace Corporation and Argonne National Laboratory (ANL) is ongoing to evaluate nondestructive characterization (NDC) methods to detect and measure process-induced variations in ceramic materials. The process methods of current focus on slip-casting and injection molding and the NDC methods being evaluated are microfocus X-ray computed tomography (XCT) and nuclear magnetic resonance computed tomography (MRCT). As part of this work, SiC whisker reinforced Si{sub 3}N{sub 4} (GCC`s GN-10 material) has been pressure slip-cast at two casting pressures, 15 and 40 psi; and at length/diameter ratios of 1.5, 2.5 and 3.0 with whisker contents of 20, 23, 27 and 30 wt %. Three-dimensional microfocus XCT has been used to study density variations in billets produced by different process conditions. Destructive measurement of density variation has been compared to the XCT measurements and correlations established. XCT has been shown to be able to detect <5% variations in as-cast density and these were destructively verified.

  3. Nondestructive evaluation development for process control

    SciTech Connect

    Ellingson, W.A.; Holloway, D.L.; Sivers, E.A. ); Ling, J. . Inst. for Ceramics); Pollinger, J.P.; Yeh, H.C. . Garrett Ceramic Components Div.)

    1991-01-01

    A joint project between Garrett Ceramic Components (GCC) of Allied Signal Aerospace Corporation and Argonne National Laboratory (ANL) is ongoing to evaluate nondestructive characterization (NDC) methods to detect and measure process-induced variations in ceramic materials. The process methods of current focus on slip-casting and injection molding and the NDC methods being evaluated are microfocus X-ray computed tomography (XCT) and nuclear magnetic resonance computed tomography (MRCT). As part of this work, SiC whisker reinforced Si{sub 3}N{sub 4} (GCC's GN-10 material) has been pressure slip-cast at two casting pressures, 15 and 40 psi; and at length/diameter ratios of 1.5, 2.5 and 3.0 with whisker contents of 20, 23, 27 and 30 wt %. Three-dimensional microfocus XCT has been used to study density variations in billets produced by different process conditions. Destructive measurement of density variation has been compared to the XCT measurements and correlations established. XCT has been shown to be able to detect <5% variations in as-cast density and these were destructively verified.

  4. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  5. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  6. Nondestructive evaluation of composite rods using ultrasonic wave propagation

    E-print Network

    Pharr, Vanea R. (Vanea Ryann)

    2015-01-01

    Nondestructive Evaluation (NDE) is a branch of applied science that is concerned with assessing the properties and serviceability of materials and structures without causing collateral damage or depreciation. This study ...

  7. Nondestructive Evaluation Correlated with Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Azid, Ali; Baaklini, George Y.

    1999-01-01

    Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.

  8. Guided wave nuances for ultrasonic nondestructive evaluation.

    PubMed

    Rose, J L

    2000-01-01

    Recent developments in guided wave generation, reception, and mode control show that increased penetration power and sensitivity are possible. A tone burst function generator and appropriate signal processing are generally used. Variable angle beam and comb-type transducers are the key to this effort. Problems in tubing, piping, hidden corrosion detection in aging aircraft, adhesive and diffusion bonding, and ice detection are discussed. Additionally, sample configurations, inspection objectives, and logic are being developed for such sample problems as defect detection and analysis in lap splice joints, tear straps, cracks in a second layer, hidden corrosion in multiple layers, cracks from rivet holes, transverse cracking in a beam, and cracks in landing gear assembly. Theoretical and experimental aspects of guided wave analysis include phase velocity, group velocity, and attenuation dispersion curves; boundary element model analysis for reflection and transmission factor analysis; use of wave structure for defect detection sensitivity; source influence on the phase velocity spectrum, and the use of angle beam and comb transducer technology. Probe design and modeling considerations are being explored. Utilization of in-plane and out-of-plane displacement patterns on the surface and longitudinal power distribution across the structural cross-section are considered for improved sensitivity, penetration power, and resolution in nondestructive evaluation. Methods of controlling the phase velocity spectrum for mode and frequency selection are available. Such features as group velocity change, mode cut-off measurements, mode conversion, amplitude ratios of transmission, and reflection factors of specific mode and frequency as input will be introduced for their ability to be used in flaw and material characterization analysis. PMID:18238584

  9. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  10. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    SciTech Connect

    Kiefel, Denis E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (?-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this ?-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  11. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (?-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this ?-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  12. Nondestructive evaluation of electron-beam braze joins

    SciTech Connect

    Boyd, D.M.; Shackelford, J.F.; Maxfield, B.W.; Taylor, G.M.

    1981-08-18

    A nondestructive evaluation (NDE) program has been carried out using holographic interferometry, microradiography, and eddy current testing for the inspection of electron beam braze joining of dissimilar metals. Stainless steel tubing was joined to a gold-copper disk using a Cusil (copper/silver) brazing alloy. Holographic interferometry provided an indirect measure of strength by detecting the plastic deformation occurring as a result of applying a stress. Microradiography with the aid of computer graphics displays provided a means of measuring braze penetration into the stainless steel tube. Correlation of results with metallographic examination and microhardness measurements show that holography and microradiography each provide quantitative braze quality rankings. Each method correctly identified variations in braze quality independent of electron beam power (the only processing variable in sample fabrication). Eddy current results were consistent with the other NDE methods but appear to be based on variation in surface topography rather than electrical conductivity. The usefulness of the eddy current method for this problem is questionable due to its sensitivity to the small, complex test piece geometry.

  13. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.

    2008-01-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter extracted from acoustic harmonic generation measurements. The parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  14. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.

    2009-03-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter ? extracted from acoustic harmonic generation measurements. The ? parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4 and 410 Cb stainless steel specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  15. Evaluation of methods for nondestructive testing of brazed joints

    NASA Technical Reports Server (NTRS)

    Kanno, A.

    1968-01-01

    Evaluation of nondestructive methods of testing brazed joints reveals that ultrasonic testing is effective in the detection of nonbonds in diffusion bonded samples. Radiography provides excellent resolutions of void or inclusion defects, and the neutron radiographic technique shows particular advantage for brazing materials containing cadmium.

  16. Non-Destructive Damage Evaluation Based on Element Strain Energies 

    E-print Network

    Li, Ran

    2013-05-01

    The objective of this thesis is to develop a nondestructive evaluation method that could accurately locate and size damage in structures. The method is to be based on pre-damage and post-damage strain energies of beam and column elements. The method...

  17. Airborne Ultrasonics for Nondestructive Evaluation of Leather Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent research has shown that besides Acoustic Emission (AE), Airborne Ultrasonics (AU) can also be applied for the nondestructive evaluation (NDE) of leather quality. Implementation of these methods in the manufacturing process could save a considerable amount of money, decrease the use of ch...

  18. Quantitative electromechanical impedance method for nondestructive testing based on a piezoelectric bimorph cantilever

    NASA Astrophysics Data System (ADS)

    Fu, Ji; Tan, Chi; Li, Faxin

    2015-06-01

    The electromechanical impedance (EMI) method, which holds great promise in structural health monitoring (SHM), is usually treated as a qualitative method. In this work, we proposed a quantitative EMI method based on a piezoelectric bimorph cantilever using the sample’s local contact stiffness (LCS) as the identification parameter for nondestructive testing (NDT). Firstly, the equivalent circuit of the contact vibration system was established and the analytical relationship between the cantilever’s contact resonance frequency and the LCS was obtained. As the LCS is sensitive to typical defects such as voids and delamination, the proposed EMI method can then be used for NDT. To verify the equivalent circuit model, two piezoelectric bimorph cantilevers were fabricated and their free resonance frequencies were measured and compared with theoretical predictions. It was found that the stiff cantilever’s EMI can be well predicted by the equivalent circuit model while the soft cantilever’s cannot. Then, both cantilevers were assembled into a homemade NDT system using a three-axis motorized stage for LCS scanning. Testing results on a specimen with a prefabricated defect showed that the defect could be clearly reproduced in the LCS image, indicating the validity of the quantitative EMI method for NDT. It was found that the single-frequency mode of the EMI method can also be used for NDT, which is faster but not quantitative. Finally, several issues relating to the practical application of the NDT method were discussed. The proposed EMI-based NDT method offers a simple and rapid solution for damage evaluation in engineering structures and may also shed some light on EMI-based SHM.

  19. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    NASA Astrophysics Data System (ADS)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  20. Hyperspectral imaging for nondestructive evaluation of tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Machine vision methods for quality and defect evaluation of tomatoes have been studied for online sorting and robotic harvesting applications. We investigated the use of a hyperspectral imaging system for quality evaluation and defect detection for tomatoes. Hyperspectral reflectance images were a...

  1. A Modeling-Based Technique for Nondestructive Evaluation of Metal Powders Undergoing Microwave Sintering

    E-print Network

    Yakovlev, Vadim

    , microwave imaging, neural network applications, nondestructive testing. I. INTRODUCTION Microwave (MWA Modeling-Based Technique for Nondestructive Evaluation of Metal Powders Undergoing Microwave of MW sintering raises demand on the techniques of testing/monitoring the state of powder samples

  2. Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Schaschl, Leslie

    2011-01-01

    The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.

  3. Aging management of major LWR components with nondestructive evaluation

    SciTech Connect

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-12-31

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments.

  4. Nondestructive evaluation of hollow clay tile walls

    SciTech Connect

    Wynn, C.C.; Fletcher, W.M.; Jones, W.D.

    1992-03-12

    Experiments have been conducted using sonics, ultrasonics, infrared thermography, and microwave NDE techniques on hollow clay tile masonry construction at the Department of Energy Oak Ridge Y-12 Plant in Oak Ridge, Tennessee. The experiments are part of a major test program to evaluate the seismic and wind load capacity of existing hollow clay tile infilled steel frame buildings at the Y-12 Plant and to recommended the extent of retrofit required to ensure these structures will meet the current requirements for natural hazards survival. Many of the techniques that showed promise in bench top experiments proved to be disappointing for in situ evaluations. For the problem definitions specific to the Y-12 Plant test program, at least two NDE techniques continue to justify funding of further development into a useful methodology: infrared thermography and low power microwave spectrography.

  5. Nondestructive Evaluation of the VSC-17 Cask

    SciTech Connect

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.

  6. Nondestructive methods for quality evaluation of livestock products.

    PubMed

    Narsaiah, K; Jha, Shyam N

    2012-06-01

    The muscles derived from livestock are highly perishable. Rapid and nondestructive methods are essential for quality assurance of such products. Potential nondestructive methods, which can supplement or replace many of traditional time consuming destructive methods, include colour and computer image analysis, NIR spectroscopy, NMRI, electronic nose, ultrasound, X-ray imaging and biosensors. These methods are briefly described and the research work involving them for products derived from livestock is reviewed. These methods will be helpful in rapid screening of large number of samples, monitoring distribution networks, quick product recall and enhance traceability in the value chain of livestock products. With new developments in the areas of basic science related to these methods, colour, image processing, NIR spectroscopy, biosensors and ultrasonic analysis are expected to be widespread and cost effective for large scale meat quality evaluation in near future. PMID:23729854

  7. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    PubMed Central

    Dassios, Konstantinos G.; Kordatos, Evangelos Z.; Aggelis, Dimitrios G.; Matikas, Theodore E.

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428

  8. Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.

    PubMed

    Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428

  9. A versatile nondestructive evaluation imaging workstation

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  10. Efficient Nondestructive Evaluation of Prototype Carbon Fiber Reinforced Structures

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.; Workman, Gary; Thom, Robert (Technical Monitor)

    2002-01-01

    Thermography inspection is an optic based technology that can reduce the time and cost required to inspect propellant tanks or aero structures fabricated from composite materials. Usually areas identified as suspect in the thermography inspection are examined with ultrasonic methods to better define depth, orientation and the nature of the anomaly. This combination of nondestructive evaluation techniques results in a rapid and comprehensive inspection of composite structures. Examples of application of this inspection philosophy to prototype will be presented. Methods organizing the inspection and evaluating the results will be considered.

  11. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  12. Probabilistic Risk Assessment: Impact of Human Factors on Nondestructive Evaluation and Sensor Degradation on Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Medina, Enrique A.; Allwine, Daniel A.; QadeerAhmed, Mohammed; Fisher, Joseph; Knopp, Jeremy S.; Lindgren, Eric A.

    2007-03-01

    Managing human factors in nondestructive evaluation is critical for maintaining inspection reliability. Reliability of structural health monitoring systems is particularly sensitive to sensor degradation over time. To investigate the impact of these issues, probabilistic models for risk assessment and cost-benefit analysis tools have been developed. Quantitative studies are presented evaluating the effects of variations in probability of detection associated with human factors, plus in-situ sensor degradation effects on life cycle measures such as cost and probability of failure.

  13. Experimental implementation of reverse time migration for nondestructive evaluation applications.

    PubMed

    Anderson, Brian E; Griffa, Michele; Bas, Pierre-Yves Le; Ulrich, Timothy J; Johnson, Paul A

    2011-01-01

    Reverse time migration (RTM) is a commonly employed imaging technique in seismic applications (e.g., to image reservoirs of oil). Its standard implementation cannot account for multiple scattering/reverberation. For this reason it has not yet found application in nondestructive evaluation (NDE). This paper applies RTM imaging to NDE applications in bounded samples, where reverberation is always present. This paper presents a fully experimental implementation of RTM, whereas in seismic applications, only part of the procedure is done experimentally. A modified RTM imaging condition is able to localize scatterers and locations of disbonding. Experiments are conducted on aluminum samples with controlled scatterers. PMID:21302980

  14. Needs and opportunities: nondestructive evaluation for energy systems

    NASA Astrophysics Data System (ADS)

    Bond, Leonard J.

    2015-03-01

    Advanced manufacturing and new energy systems are presenting a wide variety of challenges for nondestructive testing and evaluation (NDT/NDE). This paper discusses the state of the art, needs and opportunities for NDE to provide reliable, effective and economic inspection and monitoring for energy systems. It introduces issues of materials, defects and allowables, the evolution of advanced NDT and NDE and then considers examples of NDE for energy systems. These include applications in the petrochemical industry, advanced and additive manufacturing, solar cells, wind turbines, nuclear systems and some underlying issues of large scale composites, pipes and concrete.

  15. Liberty Bell 7 Recovery Evaluation and Nondestructive Testing

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Smith, William L.

    1999-01-01

    An inspection of the Mercury capsule, Liberty Bell 7, and its contents was made on September 1 and 2, 1999. The condition of the capsule and its contents was consistent with long-term exposure to salt water and high pressures at the bottom of the ocean. Many of the metallic materials suffered corrosion, whereas the polymer-based materials seem to have survived remarkably well. No identifiable items or structures were found that appeared to have any scientific value. At this time, no further nondestructive evaluation appears to be justified.

  16. PRESSURE BAG MOLDING: MANUFACTURING, MECHANICAL TESTING, NON-DESTRUCTIVE EVALUATION, AND ANALYSIS

    E-print Network

    PRESSURE BAG MOLDING: MANUFACTURING, MECHANICAL TESTING, NON-DESTRUCTIVE EVALUATION, AND ANALYSIS..........................................................................................................4 Pressure Bag Molding-up ..............................................................................................................13 Resin Transfer Molding

  17. Nondestructive Degradation Evaluation of Ceramic Candle Filters Using Vibration Signatures

    SciTech Connect

    Chen, R.H.L.; Parthasarathy, B.

    1996-12-31

    The structural integrity of ceramic candle filters is a key element for hot gas cleanup systems, They protect the heat exchanger and gas turbine components from getting clogged and also prevent erosion. Ceramic candle filters used in the recent demonstration plant have experienced degradation and fracturing. Preliminary examination of these ceramic filters indicated that damage of the filters may have resulted from strength degradation at consistent high temperature operation, thermal transient events, excessive ash accumulation and bridging and pulse cleaning. The ceramic candle filter is a slender structure made of layers of porous materials. The structure has high acoustic attenuation which has greatly limited the conventional ultrasonic detection capability. In general, stiffness reduction of a structure will cause the change of the modal parameters of the structure. This study proposes a nondestructive approach for evaluating the structural properties of the ceramic filters using dynamic characterization method. The vibration signatures of the ceramic filters at different degradation levels are established using transient impact-response technique. Results from this study indicate that the vibration signatures of the filters can be used as an index to quantify the darnage condition of the filters. The results also indicate the feasibility of using the vibration mode shapes to predict the damage location. The application of this study can be implemented to develop a nondestructive evaluation method for future in-situ inspection of the ceramic filters.

  18. Proceedings of the First Annual Symposium for Nondestructive Evaluation of Bond Strength

    NASA Technical Reports Server (NTRS)

    Roberts, Mark J. (Compiler)

    1999-01-01

    Quantitative adhesive bond strength measurement has been an issue for over thirty years. Utilization of nonlinear ultrasonic nondestructive evaluation methods has shown more effectiveness than linear methods on adhesive bond analysis, resulting in an increased sensitivity to changes in bondline conditions. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown and could relate to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. This increased sensitivity will assist in getting closer to quantitative measurement of adhesive bond strength. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been successfully measured. This paper reviews nonlinear bond strength research efforts presented by university and industry experts at the First Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1997.

  19. Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials

    NASA Technical Reports Server (NTRS)

    Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor

    2007-01-01

    This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.

  20. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  1. Acoustic diagnosis for nondestructive evaluation of ceramic coatings on steel substrates

    SciTech Connect

    Aizawa, Tatsuhiko; Kihara, Junji; Ito, Manabu

    1995-11-01

    New methodology is proposed and developed to make quantitative nondestructive evaluation of TiN coated SKH steel substrates. Since the measured acoustic structure is in precise correspondence with the multi-layered elastic media, change of elastic properties by degradation and damage can be easily distinguished by the acoustic spectro microscopy. In particular, rather complex acoustic structure can be measured by the present method for ceramic coated steel substrate system, but it is completely described by the two-layer model in two dimensional elasticity. Typical example is the cut-off phenomenon where the dispersion curve for the leaky surface wave velocity is forced to be terminated by alternative activation of shear wave instead of it. The quantitative nondestructive diagnosis was developed on the basis of this predictable acoustic structure. Furthermore, the effect of coating conditions on the acoustic structure is also discussed to make residual stress distribution analysis in coating by the acoustic spectro microscopy with reference to the X-ray stress analysis. Some comments are made on further advancement of the present acoustic spectro microscopy adaptive to precise characterization of ceramic coatings and practical sensing system working in practice.

  2. Physical model assisted probability of detection in nondestructive evaluation

    SciTech Connect

    Li, M.; Meeker, W. Q.; Thompson, R. B.

    2011-06-23

    Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.

  3. Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.

  4. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  5. Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens

    NASA Technical Reports Server (NTRS)

    Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.

    2008-01-01

    A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.

  6. Infrared non-destructive evaluation method and apparatus

    DOEpatents

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  7. Nondestructive evaluation of environmental barrier coatings in CFCC combustor liners.

    SciTech Connect

    Sun, J. G.; Benz, J.; Ellingson, W. A.; Kimmel, J. B.; Price, J. R.; Energy Technology; Solar Turbines, Inc

    2007-01-01

    Advanced combustor liners fabricated of SiC/SiC continuous fiber-reinforced ceramic composite (CFCC) and covered with environmental barrier coatings (EBCs) have been successfully tested in Solar Turbines Inc. field engines. The primary goal for the CFCC/EBC liners is to reach a 30,000-h lifetime. Because the EBCs, when applied on the hot surfaces of liners, protect the underlying CFCC from oxidation damage, their performance is critical in achieving the lifetime goal. To determine CFCC/EBC liner condition and assess operating damage, the liners were subjected to nondestructive evaluation (NDE) during various processing stages, as well as before and after the engine test. The NDE techniques included pulsed infrared thermal imaging, air-coupled ultrasonic scanning, and X-ray computerized tomography. It was found that EBC damage and spallation depend on the condition of the CFCC material. The NDE results and correlations with destructive examination are discussed.

  8. Nondestructive Evaluation Methodologies Developed for Certifying Composite Flywheels

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Konno, Kevin E.; Martin, Richard E.; Thompson, Richard

    2001-01-01

    Manufacturing readiness of composite rotors and certification of flywheels depend in part on the maturity of nondestructive evaluation (NDE) technology for process optimization and quality assurance, respectively. At the NASA Glenn Research Center, the capabilities and limitations of x-ray-computed tomography and radiography, as well as advanced ultrasonics were established on NDE ring and rotor standards with electrical discharge machining (EDM) notches and drilled holes. Also, intentionally seeded delamination, tow break, and insert of bagging material were introduced in hydroburst-rings to study the NDE detection capabilities of such anomalies and their effect on the damage tolerance and safe life margins of subscale rings and rotors. Examples of possible occurring flaws or anomalies in composite rings as detected by NDE and validated by destructive metallography are shown. The general NDE approach to ensure the quality of composite rotors and to help in the certification of flywheels is briefly outlined.

  9. Millimeter-wave imaging for nondestructive evaluation of materials

    SciTech Connect

    Gopalsami, N; Bakhtiari, S.; Dieckman, S.L.; Raptis, A.C.; Lepper, M.J. . Energy Technology Div.)

    1994-03-01

    A millimeter-wave imaging system has been developed in the W band (75--110 GHz) for nondestructive evaluation of low-loss materials. The system employs a focused beam to provide spatial resolution of about one wavelength. A plane-wave model is used to calculate the effective reflection (or transmission) coefficient of a multilayer geometry. Theoretical analysis is used to optimize the measurement frequency for higher image contrast and to interpret the experimental results. Both reflection and transmission images, based on backscattered and forward-scattered powers, were made with Kevlar/epoxy samples containing artificially introduced defects such as subsurface voids and disbonds. The results indicate that millimeter wave imaging has high potential for noncontact detection of defects in low-loss materials.

  10. Nerva fuel nondestructive evaluation and characterization equipment and facilities

    NASA Astrophysics Data System (ADS)

    Caputo, Anthony J.

    1993-01-01

    Nuclear Thermal Propulsion (NTP) is one of the technologies that the Space Exploration Initiative (SEI) has identified as essential for a manned mission to Mars. A base or prior work is available upon which to build in the development of nuclear rockets. From 1955 to 1973, the U.S Atomic Energy Commission (AEC) sponsored development and testing of a nuclear rocket engine under Project Rover. The rocket engine, called the Nuclear Engine for Rocket Vehicle Application (NERVA), used a graphite fuel element incorporating coated particle fuel. Much of the NERVA development and manufacturing work was performed at the Oak Ridge Y-12 Plant. This paper gives a general review of that work in the area of nondestructive evaluation and characterization. Emphasis is placed on two key characteristics: uranium content and distribution and thickness profile of metal carbide coatings deposited in the gas passage holes.

  11. Non-Destructive Evaluation of Bridge Stay Cable and External Post-Tensioning Systems 

    E-print Network

    McCoy, Katlyn Mae

    2014-10-09

    Non-destructive evaluation (NDE) of bridge stay cable and external post-tensioning (PT) systems is an essential tool to thorough bridge inspections and also eliminates any necessary repair of destructions made during evaluation. Conditions...

  12. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  13. Nondestructive evaluation techniques for nickel-cadmium aerospace battery cells

    NASA Technical Reports Server (NTRS)

    Haak, R.; Tench, D.

    1982-01-01

    The ac impedance characteristics of Ni-Cd cells as an in-situ, nondestructive means of determining cell lifetime, particularly with respect to the probability of premature failure were evaluated. Emphasis was on evaluating Ni-Cd cell impedance over a wide frequency range (10,000 to 0.0004 Hz) as the cells were subjected to charge/discharge cycle testing. The results indicate that cell degradation is reflected in the low frequency (Warburg) impedance characteristics associated with diffusion processes. The Warburg slope (W) was found to steadily increase as a function of cell aging for completely discharged cells. In addition, based on data for two cells, a high or rapidly increasing value for W signals imminent cell failure by one mechanism. Degradation by another mechanism is apparently reflected in a fall-off (roll-over) of W at lower frequencies. As a secondary result, the frequency dependence of the absolute cell impedance at low frequencies (5 - 500 mHz) was found to be a good indication of the cell state-of-charge.

  14. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian

    2015-03-01

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.

  15. Non-destructive evaluation of anchorage zones by ultrasonics techniques.

    PubMed

    Kharrat, M; Gaillet, L

    2015-08-01

    This work aims to evaluate the efficiency and reliability of two Non-Destructive Testing (NDT) methods for damage assessment in bridges' anchorages. The Acousto-Ultrasonic (AU) technique is compared to classical Ultrasonic Testing (UT) in terms of defect detection and structural health classification. The AU technique is firstly used on single seven-wire strands damaged by artificial defects. The effect of growing defects on the waves traveling through the strands is evaluated. Thereafter, three specimens of anchorages with unknown defects are inspected by the AU and UT techniques. Damage assessment results from both techniques are then compared. The structural health conditions of the specimens can be then classified by a damage severity criterion. Finally, a damaged anchorage socket with mastered defects is controlled by the same techniques. The UT allows the detection and localization of damaged wires. The AU technique is used to bring out the effect of defects on acoustic features by comparing a healthy and damaged anchorage sockets. It is concluded that the UT method is suitable for local and crack-like defects, whereas the AU technique enables the assessment of the global structural health of the anchorage zones. PMID:25824342

  16. Incorporation of nondestructive evaluation in Pontis Bridge Management System

    NASA Astrophysics Data System (ADS)

    Hadavi, Ahmad

    1998-03-01

    The highway system in the United States includes nearly 577,000 bridges, the majority of which were built during two major bridge building periods -- just before World War II (1930s) and in the first two decades of the Cold War (1950s and 1960s). Given the age and increased usage of these bridges over the years, many now require substantial maintenance to satisfy their desired level of service. The complex task of allocating scarce funds for the repair, maintenance, and rehabilitation of this large number of bridges led to the development of several optimization studies and two major bridge management system, namely BRIDGIT and Pontis. Pontis has emerged as the system of choice for all states in the Nation. At this time over 40 highway agencies continue to license, evaluate and implement the current AASHTOWARE Program, Pontis V. 3.2. However, all data currently required by Pontis to assess the structural stability and resulting suggestions for repair and maintenance of bridges are based on visual inspection and judgement. Consequently, all suggestions are based on that visual inspection. This paper discusses development of a plan for how non-destructive evaluation (NDE) data can be used to provide more information than visual inspection.

  17. Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    1998-01-01

    The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.

  18. Nondestructive evaluation of ceramic candle filter with various boundary conditions

    SciTech Connect

    Chen, H.L.; Kiriakidis, A.C.

    2005-06-01

    Nondestructive evaluation (NDE) using a dynamic characterization technique was conducted to study ceramic candle filters. Ceramic candle filters are hollow cylindrical structures made of porous ceramic materials used to protect gas turbine in coal-fired power plants. Deterioration and failure of ceramic filters occurs after being exposed to high-temperature and high-pressure operational environment over a period of time. This paper focuses on the development of an NDE method that can predict the in-situ structural stiffness of the candle filters while still being attached to the plenum. A combination of laboratory testing, theoretical analysis, and finite element method (FEM) simulations are presented. The candle filters were tested using a laser vibrometer/accelerometer setup with variable boundary restraints. A variable end-restraint Timoshenko beam equation was derived to determine the dynamic response of the candle filters with simulated in-situ boundary conditions. Results from the FEM simulation were verified with the analysis to determine the stiffness degradation of the candle filters as well as the boundary conditions. Results from this study show that the vibration characteristics can be used effectively to evaluate both the structural stiffness and the in-situ boundary restraints of the ceramic candle filters during field inspections.

  19. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  20. Comparison of ultrasonic array imaging algorithms for nondestructive evaluation.

    PubMed

    Jie Zhang; Drinkwater, B W; Wilcox, P D

    2013-08-01

    Ultrasonic array imaging algorithms have been widely used and developed in nondestructive evaluation in the last 10 years. In this paper, three imaging algorithms [total focusing method (TFM), phase-coherent imaging (PCI), and spatial compounding imaging (SCI)] are compared through both simulation and experimental measurements. In the simulation, array data sets were generated using a hybrid forward model containing a single defect among a multitude of randomly distributed point scatterers to represent backscatter from material microstructure. The number of point scatterers per unit area and their scattering amplitude were optimized to reduce computation cost. The SNR of the final images and their resolution were used to indicate the quality of the different imaging algorithms. The images of different types of defects (point reflectors and planar cracks) were used to investigate the robustness of the imaging algorithms. It is shown that PCI can yield higher image resolution and higher SNR for defects in material with weak backscatter than TFM, but that the images of cracks are distorted. Overall, TFM is the most robust algorithm across a range of different types of defects. It is also shown that the detection limit of all three imaging algorithms is almost equal for weakly scattering defects. PMID:25004543

  1. Probabilistic model for bridge structural evaluation using nondestructive inspection data

    NASA Astrophysics Data System (ADS)

    Carrion, Francisco; Lopez, Jose Alfredo; Balankin, Alexander

    2005-05-01

    A bridge management system developed for the Mexican toll highway network applies a probabilistic-reliability model to estimate load capacity and structural residual life. Basic inputs for the system are the global inspection data (visual inspections and vibration testing), and the information from the environment conditions (weather, traffic, loads, earthquakes); although, the model takes account for additional non-destructive testing or permanent monitoring data. Main outputs are the periodic maintenance, rehabilitation and replacement program, and the updated inspection program. Both programs are custom-made to available funds and scheduled according to a priority assignation criterion. The probabilistic model, tailored to typical bridges, accounts for the size, age, material and structure type. Special bridges in size or type may be included, while in these cases finite element deterministic models are also possible. Key feature is that structural qualification is given in terms of the probability of failure, calculated considering fundamental degradation mechanisms and from actual direct observations and measurements, such as crack distribution and size, materials properties, bridge dimensions, load deflections, and parameters for corrosion evaluation. Vibration measurements are basically used to infer structural resistance and to monitor long term degradation.

  2. Non-Destructive Evaluation of Materials via Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2008-01-01

    A document discusses the use of ultraviolet spectroscopy and imaging for the non-destructive evaluation of the degree of cure, aging, and other properties of resin-based composite materials. This method can be used in air, and is portable for field use. This method operates in reflectance, absorbance, and luminescence modes. The ultraviolet source is used to illuminate a composite surface of interest. In reflectance mode, the reflected response is acquired via the imaging system or via the spectrometer. The spectra are analyzed for organic compounds (conjugated organics) and inorganic compounds (semiconducting band-edge states; luminescing defect states such as silicates, used as adhesives for composite aerospace applications; and metal oxides commonly used as thermal coating paints on a wide range of spacecraft). The spectra are compared with a database for variation in conjugation, substitution, or length of molecule (in the case of organics) or band edge position (in the case of inorganics). This approach is useful in the understanding of material quality. It lacks the precision in defining the exact chemical structure that is found in other materials analysis techniques, but it is advantageous over methods such as nuclear magnetic resonance, infrared spectroscopy, and chromatography in that it can be used in the field to assess significant changes in chemical structure that may be linked to concerns associated with weaknesses or variations in structural integrity, without disassembly of or destruction to the structure of interest.

  3. Ultrasonic nondestructive evaluation and imaging of defects in reinforced cementitious materials

    E-print Network

    Wang, Ji-yong, 1967-

    2003-01-01

    Characterization of defect is one of the important objectives of nondestructive evaluation (NDE) for condition assessment of structures. Among many other NDE techniques, ultrasonic methods play a prominent role in the both ...

  4. Assessment of FRP-confined concrete : understanding behavior and issues in nondestructive evaluation using radar

    E-print Network

    Ortega, Jose Alberto, 1978-

    2006-01-01

    Increase in the use of fiber-reinforced polymer (FRP) composite materials for strengthening and retrofitting of concrete columns and bridge piers has urged the development of' an effective non-destructive evaluation (NDE) ...

  5. Ultrasonic Correlation Spectroscopy: new techniques for the Nondestructive Evaluation of strongly scattering media

    E-print Network

    Page, John

    Ultrasonic Correlation Spectroscopy: new techniques for the Nondestructive Evaluation of strongly, Cambridge, MA 02138 Two new techniques in ultrasonic correlation spectroscopy, Dynamic Sound Scattering materials [1,2] has facilitated the development of two new techniques in ultrasonic correlation spectroscopy

  6. Study Of Nondestructive Techniques For Testing Composites

    NASA Technical Reports Server (NTRS)

    Roth, D.; Kautz, H.; Draper, S.; Bansal, N.; Bowles, K.; Bashyam, M.; Bishop, C.

    1995-01-01

    Study evaluates some nondestructive methods for characterizing ceramic-, metal-, and polymer-matrix composite materials. Results demonstrated utility of two ultrasonic methods for obtaining quantitative data on microstructural anomalies in composite materials.

  7. Nondestructive Evaluation for the Space Shuttle's Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Prosser, William H.; Wincheski, Russell A.; Cramer, K. Elliot

    2005-01-01

    The loss of the Space Shuttle Columbia highlighted concerns about the integrity of the Shuttle's thermal protection system, which includes Reinforced Carbon-Carbon (RCC) on the leading edge. This led NASA to investigate nondestructive evaluation (NDE) methods for certifying the integrity of the Shuttle's wing leading edge. That investigation was performed simultaneously with a large study conducted to understand the impact damage caused by errant debris. Among the many advanced NDE methods investigated for applicability to the RCC material, advanced digital radiography, high resolution computed tomography, thermography, ultrasound, acoustic emission and eddy current systems have demonstrated the maturity and success for application to the Shuttle RCC panels. For the purposes of evaluating the RCC panels while they are installed on the orbiters, thermographic detection incorporating principal component analysis (PCA) and eddy current array scanning systems demonstrated the ability to measure the RCC panels from one side only and to detect several flaw types of concern. These systems were field tested at Kennedy Space Center (KSC) and at several locations where impact testing was being conducted. Another advanced method that NASA has been investigating is an automated acoustic based detection system. Such a system would be based in part on methods developed over the years for acoustic emission testing. Impact sensing has been demonstrated through numerous impact tests on both reinforced carbon-carbon (RCC) leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. A variety of impact materials and conditions have been evaluated including foam, ice, and ablator materials at ascent velocities as well as simulated hypervelocity micrometeoroid and orbital debris impacts. These tests have successfully demonstrated the capability to detect and localize impact events on Shuttle's wing structures. A first generation impact sensing system has been designed for the next Shuttle flight and is undergoing final evaluation for deployment on the Shuttle's first return to flight. This system will employ wireless accelerometer sensors that were qualified for other applications on previous Shuttle flights. These sensors will be deployed on the wing's leading edge to detect impacts on the RCC leading edge panels. The application of these methods will help to insure the continued integrity of the Shuttle wing's leading edge system as the Shuttle flights resume and until their retirement.

  8. Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the work carried out in the effort reported here has been to prepare reports introducing the newly commercially available thermoelastic measurements to the appropriate user communities.

  9. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.

  10. Quantitative evaluation of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Duchesne, S.; Frisoni, G. B.

    2009-02-01

    We propose a single, quantitative metric called the disease evaluation factor (DEF) and assess its efficiency at estimating disease burden in normal, control subjects (CTRL) and probable Alzheimer's disease (AD) patients. The study group consisted in 75 patients with a diagnosis of probable AD and 75 age-matched normal CTRL without neurological or neuropsychological deficit. We calculated a reference eigenspace of MRI appearance from reference data, in which our CTRL and probable AD subjects were projected. We then calculated the multi-dimensional hyperplane separating the CTRL and probable AD groups. The DEF was estimated via a multidimensional weighted distance of eigencoordinates for a given subject and the CTRL group mean, along salient principal components forming the separating hyperplane. We used quantile plots, Kolmogorov-Smirnov and ?2 tests to compare the DEF values and test that their distribution was normal. We used a linear discriminant test to separate CTRL from probable AD based on the DEF factor, and reached an accuracy of 87%. A quantitative biomarker in AD would act as an important surrogate marker of disease status and progression.

  11. Quantitative evaluation of dermatological antiseptics.

    PubMed

    Leitch, C S; Leitch, A E; Tidman, M J

    2015-12-01

    Topical antiseptics are frequently used in dermatological management, yet evidence for the efficacy of traditional generic formulations is often largely anecdotal. We tested the in vitro bactericidal activity of four commonly used topical antiseptics against Staphylococcus aureus, using a modified version of the European Standard EN 1276, a quantitative suspension test for evaluation of the bactericidal activity of chemical disinfectants and antiseptics. To meet the standard for antiseptic effectiveness of EN 1276, at least a 5 log10 reduction in bacterial count within 5 minutes of exposure is required. While 1% benzalkonium chloride and 6% hydrogen peroxide both achieved a 5 log10 reduction in S. aureus count, neither 2% aqueous eosin nor 1 : 10 000 potassium permanganate showed significant bactericidal activity compared with control at exposure periods of up to 1 h. Aqueous eosin and potassium permanganate may have desirable astringent properties, but these results suggest they lack effective antiseptic activity, at least against S. aureus. PMID:26456933

  12. A study on the quantitative evaluation of skin barrier function

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomomi; Kabetani, Yasuhiro; Kido, Michiko; Yamada, Kenji; Oikaze, Hirotoshi; Takechi, Yohei; Furuta, Tomotaka; Ishii, Shoichi; Katayama, Haruna; Jeong, Hieyong; Ohno, Yuko

    2015-03-01

    We propose a quantitative evaluation method of skin barrier function using Optical Coherence Microscopy system (OCM system) with coherency of near-infrared light. There are a lot of skin problems such as itching, irritation and so on. It has been recognized skin problems are caused by impairment of skin barrier function, which prevents damage from various external stimuli and loss of water. To evaluate skin barrier function, it is a common strategy that they observe skin surface and ask patients about their skin condition. The methods are subjective judgements and they are influenced by difference of experience of persons. Furthermore, microscopy has been used to observe inner structure of the skin in detail, and in vitro measurements like microscopy requires tissue sampling. On the other hand, it is necessary to assess objectively skin barrier function by quantitative evaluation method. In addition, non-invasive and nondestructive measuring method and examination changes over time are needed. Therefore, in vivo measurements are crucial for evaluating skin barrier function. In this study, we evaluate changes of stratum corneum structure which is important for evaluating skin barrier function by comparing water-penetrated skin with normal skin using a system with coherency of near-infrared light. Proposed method can obtain in vivo 3D images of inner structure of body tissue, which is non-invasive and non-destructive measuring method. We formulate changes of skin ultrastructure after water penetration. Finally, we evaluate the limit of performance of the OCM system in this work in order to discuss how to improve the OCM system.

  13. Nondestructive Evaluation of Ceramic Matrix Composite Combustor Components

    NASA Technical Reports Server (NTRS)

    Sun, J. G.; Verrilli, M. J.; Stephan, R.; Barnett, T. R.; Ojard, G.

    2003-01-01

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. The thermography indications in the SiC/SiC liners were delaminations and damaged fiber tows, as determined through microstructural examinations. [copyright] 2003 American Institute of Physics

  14. Nondestructive evaluation of ceramic matrix composite combustor components.

    SciTech Connect

    Sun, J. G.; Verrilli, M. J.; Stephan, R.; Barnett, T. R.; Ojard, G.

    2002-11-08

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.

  15. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    SciTech Connect

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  16. Nondestructive evaluation of repairs on aircraft composite structures

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Barnard, Daniel J.; Peters, John J.

    2001-08-01

    Composite sandwiches have been used widely in flight controls of aircraft for many years; solid laminates have also begun to appear in primary structures such as the empennage. In their normal service life, composite parts may suffer damages and require repair and post-repair inspection. Nondestructive inspection is also needed for many of the rebuilt and refurbished parts in the maintenance, repair and overhaul industry. This paper describes the development of fieldable nondestructive inspection methods and instruments for composite structures and their repairs. For composite sandwiches the method developed is an instrumented tap test using the Computer Aided Tap Test (CATT) system. For repairs in solid laminates, the method used is ultrasonic pulse-echo C-scan using the Dripless Bubbler. The CATT system maps out the repaired region and produces an image of the local stiffness. Such images reveal voids and unbonds in a repair as areas of anomalously low stiffness; it also maps out areas of increased stiffness due to core potting and splicing. A number of examples of composite repairs inspected with the CATT system will be described. For engineered flaws in solid laminate repair panels from Boeing, scan images obtained with the Dripless Bubbler as a function of depth will be shown.

  17. Ultrasound Nondestructive Evaluation (NDE) Imaging with Transducer Arrays and Adaptive Processing

    PubMed Central

    Li, Minghui; Hayward, Gordon

    2012-01-01

    This paper addresses the challenging problem of ultrasonic non-destructive evaluation (NDE) imaging with adaptive transducer arrays. In NDE applications, most materials like concrete, stainless steel and carbon-reinforced composites used extensively in industries and civil engineering exhibit heterogeneous internal structure. When inspected using ultrasound, the signals from defects are significantly corrupted by the echoes form randomly distributed scatterers, even defects that are much larger than these random reflectors are difficult to detect with the conventional delay-and-sum operation. We propose to apply adaptive beamforming to the received data samples to reduce the interference and clutter noise. Beamforming is to manipulate the array beam pattern by appropriately weighting the per-element delayed data samples prior to summing them. The adaptive weights are computed from the statistical analysis of the data samples. This delay-weight-and-sum process can be explained as applying a lateral spatial filter to the signals across the probe aperture. Simulations show that the clutter noise is reduced by more than 30 dB and the lateral resolution is enhanced simultaneously when adaptive beamforming is applied. In experiments inspecting a steel block with side-drilled holes, good quantitative agreement with simulation results is demonstrated. PMID:22368457

  18. Optimization of ISOCS Parameters for Quantitative Non-Destructive Analysis of Uranium in Bulk Form

    NASA Astrophysics Data System (ADS)

    Kutniy, D.; Vanzha, S.; Mikhaylov, V.; Belkin, F.

    2011-12-01

    Quantitative calculation of the isotopic masses of fissionable U and Pu is important for forensic analysis of nuclear materials. ?-spectrometry is the most commonly applied tool for qualitative detection and analysis of key radionuclides in nuclear materials. Relative isotopic measurement of U and Pu may be obtained from ?-spectra through application of special software such as MGAU (Multi-Group Analysis for Uranium, LLNL) or FRAM (Fixed-Energy Response Function Analysis with Multiple Efficiency, LANL). If the concentration of U/Pu in the matrix is unknown, however, isotopic masses cannot be calculated. At present, active neutron interrogation is the only practical alternative for non-destructive quantification of fissionable isotopes of U and Pu. An active well coincidence counter (AWCC), an alternative for analyses of uranium materials, has the following disadvantages: 1) The detection of small quantities (?100 g) of 235U is not possible in many models; 2) Representative standards that capture the geometry, density and chemical composition of the analyzed unknown are required for precise analysis; and 3) Specimen size is severely restricted by the size of the measuring chamber. These problems may be addressed using modified ?-spectrometry techniques based on a coaxial HPGe-detector and ISOCS software (In Situ Object Counting System software, Canberra). We present data testing a new gamma-spectrometry method uniting actinide detection with commonly utilized software, modified for application in determining the masses of the fissionable isotopes in unknown samples of nuclear materials. The ISOCS software, widely used in radiation monitoring, calculates the detector efficiency curve in a specified geometry and range of photon energies. In describing the geometry of the source-detector, it is necessary to clearly describe the distance between the source and the detector, the material and the thickness of the walls of the container, as well as material, density and chemical composition of the matrix of the specimen. Obviously, not all parameters can be characterized when measuring samples of unknown composition or uranium in bulk form. Because of this, and especially for uranium materials, the IAEA developed an ISOCS optimization procedure. The target values for the optimization are ?matrixfixed, the matrix mass determined by weighing with a known mass container, and ?fixed, the 235U enrichment, determined by MGAU. Target values are fitted by varying the matrix density (?), and the concentration of uranium in the matrix of the unknown (w). For each (?i, wi), an efficiency curve is generated, and the masses of uranium isotopes, ?235Ui and ?238Ui, determined using spectral activity data and known specific activities for U. Finally, fitted parameters are obtained for ?matrixi = ?matrixfixed ± 1?, ?i = ?fixed ± 1?, as well as important parameters (?i, wi, ?235Ui, ?238Ui, ?Ui). We examined multiple forms of uranium (powdered, pressed, and scrap UO2 and U3O8) to test this method for its utility in accurately identifying the mass and enrichment of uranium materials, and will present the results of this research.

  19. Nondestructive evaluation of concrete structures by nonstationary thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Panda, Soma Sekhara Balaji; Mude, Rupla Naik; Amarnath, Muniyappa

    2012-06-01

    Reinforced concrete structures (RCS) have potential application in civil engineering and with the advent of nuclear engineering RCS to be capable enough to withstanding a variety of adverse environmental conditions. However, failures/loss of durability of designed structures due to premature reinforcement corrosion of rebar is a major constrain. Growing concern of safety of structure due to pre-mature deterioration has led to a great demand for development of non-destructive and non-contact testing techniques for monitoring and assessing health of RCS. This paper presents an experimental investigation of rebar corrosion by non-stationary thermal wave imaging. Experimental results have been proven, proposed approach is an effective technique for identification of corrosion in rebar in the concrete samples.

  20. Nondestructive evaluation of load transfer at rigid airport pavement joints

    NASA Astrophysics Data System (ADS)

    Hammons, Michael I.

    1995-07-01

    Current design criteria for rigid pavements for commercial and military airfields assume that 25% of the load applied to an edge of a slab is transferred through the joint to an adjacent unloaded slab. A nondestructive testing technique using a falling weight deflectometer (FWD) was used to conduct field testing at a number of sites. A transfer function, developed from an analytical study, was used to estimate load transfer from the measured joint efficiency as a function of the loaded area and the radius of relative stiffness of the pavement. This procedure, although analytically sound, lacks actual field verification at an instrumented pavement site. This procedure was used to estimate load transfer at a number of commercial and military airfields for a variety of joint types, climate conditions, and pavement structures. The results of these tests indicate that the assumption of load transfer as a constant value of 25% appears to be unconservative, especially during the winter months.

  1. Quantitative Evaluation of Industrial Components

    NASA Astrophysics Data System (ADS)

    Juptner, Werner

    1987-09-01

    Holographic Interferometry was thought to be a powerful tool for a lot of applications, since it was invented by Stetson and Powell /II. Although till today only few industrial applications - mainly in Holographic Non-Destructive Testing (HNDT) -are known, this is still valid. There are tasks, which can be solved by means of this technique better and more economically than by conventional methods. For example, it is nearly impossible to calculate the deformation behaviour of complex parts of pressure vessels till today: The very complex form would lead to a very long calculation time, using e.g. Finite-Element-Methods (FEM). Even when a calculation is performed, it is necessary to prove the calculation by experimen-tal stress analysis. For complex objects it needs up to 1000 strain gauges. This means several months of preparing time and approximately 100.000$ costs for one result. In this application holographic interferometry could do the job for less than half the amount of costs.

  2. Nondestructive evaluation: A survey of NASA contributions, chapter 1, Chapter 11, cover page, acknowledgements, and contents

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A survey of nondestructive evaluation (NDE) technology, which is discussed in terms of popular demands for a greater degree of quality, reliability, and safety in industrial products, is presented as an overview of the NDE field to serve the needs of middle management. Three NDE methods are presented: acoustic emission, the use of coherent (laser)light, and ultrasonic holography.

  3. DECONVOLUTION OF ULTRASONIC NONDESTRUCTIVE EVALUATION SIGNALS USING HIGHER-ORDER STATISTICS

    E-print Network

    Ghouti, Lahouari

    DECONVOLUTION OF ULTRASONIC NONDESTRUCTIVE EVALUATION SIGNALS USING HIGHER-ORDER STATISTICS Darmouth North Darmouth, MA 02747-2300. USA. E-mail: ghoutiBccse.kfupm.edu.sa ABSTRACT In ultrasonic of the measuring instruments, the prop- agation paths taken by the ultrasonic pulses, and are corrupted by additive

  4. Low velocity impact testing and nondestructive evaluation of transparent materials

    SciTech Connect

    Brennan, R. E.; Green, W. H.

    2011-06-23

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  5. Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products.

    PubMed

    He, Hong-Ju; Wu, Di; Sun, Da-Wen

    2015-01-01

    Nowadays, people have increasingly realized the importance of acquiring high quality and nutritional values of fish and fish products in their daily diet. Quality evaluation and assessment are always expected and conducted by using rapid and nondestructive methods in order to satisfy both producers and consumers. During the past two decades, spectroscopic and imaging techniques have been developed to nondestructively estimate and measure quality attributes of fish and fish products. Among these noninvasive methods, visible/near-infrared (VIS/NIR) spectroscopy, computer/machine vision, and hyperspectral imaging have been regarded as powerful and effective analytical tools for fish quality analysis and control. VIS/NIR spectroscopy has been widely applied to determine intrinsic quality characteristics of fish samples, such as moisture, protein, fat, and salt. Computer/machine vision on the other hand mainly focuses on the estimation of external features like color, weight, size, and surface defects. Recently, by incorporating both spectroscopy and imaging techniques in one system, hyperspectral imaging cannot only measure the contents of different quality attributes simultaneously, but also obtain the spatial distribution of such attributes when the quality of fish samples are evaluated and measured. This paper systematically reviews the research advances of these three nondestructive optical techniques in the application of fish quality evaluation and determination and discuss future trends in the developments of nondestructive technologies for further quality characterization in fish and fish products. PMID:24915393

  6. Special nondestructive techniques for evaluating space shuttle surface insulation

    NASA Technical Reports Server (NTRS)

    Stinebring, R. C.

    1972-01-01

    NDT techniques have been developed for performing in-process evaluations for material variability and for process control. Several of these techniques show considerable promise for evaluating the reusable surface insulation during the operational phase of the shuttle. Considered are radiographic dosimetry, sonic velocity and modulus sounding, infrared coating evaluation, and beta backscatter monitoring of coating thickness.

  7. Stress-wave nondestructive evaluation of green veneer: southern yellow pine and Douglas fir

    NASA Astrophysics Data System (ADS)

    Brashaw, Brian K.; Ross, Robert J.; Pellerin, Roy F.

    1996-11-01

    The potential of using stress wave nondestructive evaluation techniques to sort green southern yellow pine and DOuglas fir veneer into stress grades was evaluated. Stress wave nondestructive evaluation was used to separate green veneer into several grades for use in manufacturing engineered wood composites, most notably laminated veneer lumber. The effect of moisture content and preservative treatment on stress wave determined properties of green (wet) southern yellow pine and Douglas fir veneer was investigated during the preliminary stages of the project. A digital oscilloscope and a commercial stress wave timer were used to measure the transit time it took for an induced stress wave to travel the longitudinal length of each veneer. Stress wave transit times were measured in each piece in the wet condition, during drying, and at a dry equilibrated moisture content of approximately 10 percent. Strong correlative relationships exist between stress wave velocity measured in untreated and preservative treated green (wet) and dry veneer.

  8. Nondestructive evaluation of helicopter rotor blades using guided Lamb modes.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay

    2014-03-01

    This paper presents an application for turning and direct modes in a complex composite laminate structure. The propagation and interaction of turning modes and fundamental Lamb modes are investigated in the skin, spar and web sections of a helicopter rotor blade. Finite element models were used to understand the various mode conversions at geometric discontinuities such as web-spar joints. Experimental investigation was carried out with the help of air coupled ultrasonic transducers. The turning and direct modes were confirmed with the help of particle displacements and velocities. Experimental B-Scans were performed on damaged and undamaged samples for qualitative and quantitative assessment of the structure. A strong correlation between the numerical and experimental results was observed and reported. PMID:24210414

  9. Proceedings of the Second Annual Symposium for Nondestructive Evaluation of Bond Strength

    NASA Technical Reports Server (NTRS)

    Roberts, Mark J. (Compiler)

    1999-01-01

    Ultrasonics, microwaves, optically stimulated electron emission (OSEE), and computational chemistry approaches have shown relevance to bond strength determination. Nonlinear ultrasonic nondestructive evaluation methods, however, have shown the most effectiveness over other methods on adhesive bond analysis. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown related to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been measured. This paper reviews bond strength research efforts presented by university and industry experts at the Second Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1998.

  10. Method and apparatus for non-destructive evaluation of composite materials with cloth surface impressions

    NASA Technical Reports Server (NTRS)

    Madras, Eric I. (inventor)

    1995-01-01

    A method and related apparatus for nondestructive evaluation of composite materials by determination of the quantity known as Integrated Polar Backscatter, which avoids errors caused by surface texture left by cloth impressions by identifying frequency ranges associated with peaks in a power spectrum for the backscattered signal, and removing such frequency ranges from the calculation of Integrated Polar Backscatter for all scan sites on the composite material is presented.

  11. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  12. Quantitative evaluation of optical lock-in and pulsed thermography for aluminum foam material

    NASA Astrophysics Data System (ADS)

    Duan, Yuxia; Huebner, Stefanie; Hassler, Ulf; Osman, Ahmad; Ibarra-Castanedo, Clemente; Maldague, Xavier P. V.

    2013-09-01

    In this article, quantitative evaluation of optical thermographic techniques relative to the non-destructive inspection of aluminum foam material is studied. For this purpose, a set of aluminum foam specimens with flat-bottom holes (FBH) was inspected by both optical lock-in thermography (LT) and pulsed thermography (PT). Probability of detection (PoD) analysis, as a quantitative method to estimate the capability and reliability of a particular inspection technique, was studied and compared for both optical LT and PT inspection results.

  13. Quantitative evaluation of self-checking circuits

    NASA Astrophysics Data System (ADS)

    Lu, D. J.; McCluskey, E. J.

    1984-04-01

    Quantitative measures of self-checking power are defined for evaluation, comparison, and design of self-checking circuits. The self-testing and fault-secure properties have the corresponding quantitative measures testing input fraction (TIF), and secure input fraction (SIF). Averaging these measures over the fault set yields basic figures of merit. These simple averages can conceal faults with low values of TIF or SIF. Improved figures of merit, based on geometric means, are defined to provide greater sensitivity to low TIF or SIF. As a demonstration, self-checking linear feedback shift registers (LFSR's) based on duplication and serial parity prediction are evaluated.

  14. Nondestructive evaluation of residual stress in anisotropic materials

    SciTech Connect

    Johnson, G.C. . Dept. of Mechanical Engineering)

    1990-05-01

    The specific focus on anisotropic materials in the research was addressed in a manner which was primarily analytical. All of the experiments involving materials with substantial elastic or plastic anisotropy indicated that the materials in question exhibited a level of acoustoelastic response which was at or below the limit for useful stress evaluation. Nevertheless, the analysis performed indicates that if an experimental system is built which allows determination of the velocity variation roughly an order of magnitude more precisely than is possible with the system used in this work, the complete state of residual stress may be obtained, despite the presence of anisotropy. This report consists of a detailed description of the technique and experimental system proposed for the evaluation of residual stress states. The underlying analytical developments are reviewed, and a numerical investigation into the application of this approach for anisotropic materials is presented. It is shown that an accurate assessment of the complete residual stress state may be obtained even in cases of extreme anisotropy. Finally, an experimental investigation of the technique is presented in which the experimentally determined stress state is compared with that predicted numerically. It is shown that the two estimates of stress agree well for the material involved. 12 refs., 5 figs., 1 tab.

  15. [Activities of Center for Nondestructive Evaluation, Iowa State University

    NASA Technical Reports Server (NTRS)

    Gray, Joe

    2002-01-01

    The final report of NASA funded activities at Iowa State University (ISU) for the period between 1/96 and 1/99 includes two main areas of activity. The first is the development and delivery of an x-ray simulation package suitable for evaluating the impact of parameters affects the inspectability of an assembly of parts. The second area was the development of images processing tools to remove reconstruction artifacts in x-ray laminagraphy images. The x-ray simulation portion of this work was done by J. Gray and the x-ray laminagraphy work was done by J. Basart. The report is divided into two sections covering the two activities respectively. In addition to this work reported the funding also covered NASA's membership in the NSF University/Industrial Cooperative Research Center.

  16. Nondestructive evaluation of aircraft coatings with infrared diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Korth, Hans G.; Wilson, Kody A.; Gross, Kevin C.; Hawks, Michael R.; Zens, Timothy W. C.

    2015-05-01

    Aircraft coatings degrade over time, but aging can be difficult to detect before failure and delamination. We present a method to evaluate aircraft coatings in situ using infrared diffuse reflectance spectra. This method can detect and classify coating degradation much earlier than visual inspection. The method has been tested on two different types of coatings that were artificially aged in an autoclave. Spectra were measured using a hand-held diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). One set of 72 samples can be classified as either aged or unaged with 100% accuracy. A second sample set contained samples that had been artificially aged for 0, 24, 48 or 96 hours. Several classification methods are compared, with accuracy better than 98% possible.

  17. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  18. A systems approach of the nondestructive evaluation techniques applied to Scout solid rocket motors.

    NASA Technical Reports Server (NTRS)

    Oaks, A. E.

    1971-01-01

    Review and appraisal of the status of the nondestructive tests applied to Scout solid-propellant rocket motors, using analytical techniques to evaluate radiography for detecting internal discontinuities such as voids and unbonds. Information relating to selecting, performing, controlling, and evaluating the results of NDE tests was reduced to a common simplified format. With these data and the results of the analytical studies performed, it was possible to make the basic appraisals of the ability of a test to meet all pertinent acceptance criteria and, where necessary, provide suggestions to improve the situation.

  19. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  20. Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Chakradhar, I.; Rao, K. R. C.; Rao, V. V. L.; Kaza, Marutiram

    2015-06-01

    Weld quality evaluation was conducted on laser welded thin sectsions (2 mm) of hot-rolled (HR) low-carbon steel coils during cold rolling process. The analysis revealed that the poor welds consisting of the weld defects like incomplete fusion, cluster of porosity, and large difference in hardness between the weld zone and base metal were responsible for the weld failures. Experiments were conducted by varying the welding parameters; laser power and welding speed to optimize the parameters for minimizing the weld defects. The optimized weld process parameters have helped elimination of weld defects and the results are verified with microscopy and microhardness measurements. As destructive evaluation techniques are time consuming and not always permitted in industrial applications, attempts have been made in the present investigation for the utilization of suitable non-destructive techniques for the evaluation of weld quality. Non-destructive magnetic techniques of magnetic hysteresis loop and magnetic Barkhausen emissions were used in the present investigation to establish possible correlations of magnetic properties across the weld seam with the mechanical property (microhardness) for evaluation of weld quality. It is inferred that the magnetic properties of coercivity and inverse of root mean square voltage can be effectively utilized to determine weld quality in HR steel coils.

  1. Nondestructive Evaluation of Foam Insulation for the External Tank Return to Flight

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Nondestructive evaluation methods have been developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Terahertz imaging and backscatter radiography have been brought from prototype lab systems to production hardened inspection tools in just a few years. These methods have been demonstrated to be capable of detecting void type defects under many inches of foam which, if not repaired, could lead to detrimental foam loss. The evolution of these methods from lab tools to implementation on the ET will be discussed.

  2. Parallel three-dimensional acoustic and elastic wave simulation methods with applications in nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Rudd, Kevin Edward

    In this dissertation, we present two parallelized 3D simulation techniques for three-dimensional acoustic and elastic wave propagation based on the finite integration technique. We demonstrate their usefulness in solving real-world problems with examples in the three very different areas of nondestructive evaluation, medical imaging, and security screening. More precisely, these include concealed weapons detection, periodontal ultrasography, and guided wave inspection of complex piping systems. We have employed these simulation methods to study complex wave phenomena and to develop and test a variety of signal processing and hardware configurations. Simulation results are compared to experimental measurements to confirm the accuracy of the parallel simulation methods.

  3. Highly sensitive anisotropic magnetoresistance magnetometer for Eddy-current nondestructive evaluation.

    PubMed

    He, D F; Tachiki, M; Itozaki, H

    2009-03-01

    Using a commercially available anisotropic magnetoresistance (AMR) sensor of HMC1001, we developed a sensitive magnetometer. It could operate in amplifier mode or feedback mode. The magnetic field sensitivity of the AMR sensor was about 3.2 mV/V G. When the AMR sensor was biased by a voltage of 24 V, the magnetic field resolutions of the AMR magnetometer were about 12 pT/square root(Hz) at 1 kHz and 20 pT/square root(Hz) at 100 Hz. We used the AMR magnetometer for Eddy-current nondestructive evaluation in unshielded environment. PMID:19334957

  4. Computed tomography for non-destructive evaluation of composites: Applications and correlations

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Hediger, L.; Noel, E.

    1985-01-01

    The state-of-the-art fabrication techniques for composite materials are such that stringent species-specific acceptance criteria must be generated to insure product reliability. Non-destructive evaluation techniques including computed tomography (CT), X-ray radiography (RT), and ultrasonic scanning (UT) are investigated and compared to determine their applicability and limitations to graphite epoxy, carbon-carbon, and carbon-phenolic materials. While the techniques appear complementary, CT is shown to provide significant, heretofore unattainable data. Finally, a correlation of NDE techniques to destructive analysis is presented.

  5. Nondestructive Evaluation Tests Performed on Space Shuttle Leading- Edge Materials Subjected to Impact

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Bodis, James R.

    2005-01-01

    In support of the space shuttle Return To Flight efforts at the NASA Glenn Research Center, a series of nondestructive evaluation (NDE) tests were performed on reinforced carbon/carbon (RCC) composite panels subjected to ballistic foam impact. The impact tests were conducted to refine and verify analytical models of an external tank foam strike on the space shuttle leading edge. The NDE tests were conducted to quantify the size and location of the resulting damage zone as well as to identify hidden damage.

  6. Shearography for Non-Destructive Evaluation with Applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Lysak, Daniel B.

    2003-01-01

    In this report we examine the applicability of shearography techniques for nondestructive inspection and evaluation in two unique application areas. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the BAT gamma ray mask for the NASA Swift program. By exciting the mask with a vibration, the more poorly bonded tiles can be distinguished by their greater displacement response, which is readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. Generally speaking, the results show good agreement. Further investigation would be useful to optimize certain test parameters such as vibration frequency and amplitude. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach. For the particular panel examined here, some scaling issues should be examined further to resolve the measurement scale down to the very small size of the core cells. In addition, further development should be undertaken to determine the general applicability of the new approach and to establish a firm quantitative foundation.

  7. A Quantitative, Non-Destructive Methodology for Habitat Characterisation and Benthic Monitoring at Offshore Renewable Energy Developments

    PubMed Central

    Sheehan, Emma V.; Stevens, Timothy F.; Attrill, Martin J.

    2010-01-01

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a “flying array” that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms?1 current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and MREIs pre- and post-device deployment. PMID:21206748

  8. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments.

    PubMed

    Sheehan, Emma V; Stevens, Timothy F; Attrill, Martin J

    2010-01-01

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a "flying array" that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms?¹ current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and MREIs pre- and post-device deployment. PMID:21206748

  9. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  10. Nondestructive evaluation of fatigue damage on low alloy steel by magnetomechanical acoustic emission technique

    SciTech Connect

    Hiraasawa, T.; Saito, K.; Komura, I.

    1995-08-01

    A modified magnetomechanical acoustic emission (MAE) technique, denoted Pulse-MAE, in which the magnetization by current pulse was adopted, was newly developed and its applicability was assessed for the nondestructive detection and evaluation of fatigue damage in reactor pressure vessel steel SFVV2 and SA508 class2. MAE signals were measured with both conventional MAE and Pulse-MAE technique for fatigue damaged specimens having several damage fractions, and peak voltage ratio Vp/Vo, where Vp and Vo were the peak voltage for damaged and undamaged specimen respectively, was chosen as a measure. Vp/Vo was found to increase monotonously at the early stage of fatigue process and the rate of increase in Vp/Vo during the fatigue process was larger in Pulse-MAE than conventional MAE. Therefore, Pulse-MAE technique proved to have higher sensitivity for the detection of fatigue damage compared with the conventional MAE and to have the potential of a practical technique for nondestructive detection and evaluation of fatigue damage in actual components.

  11. Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun

    This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.

  12. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.

  13. Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before all the available techniques can be transferred from laboratory to industrial environments.

  14. Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique.

    PubMed

    Sun, Kaihua; Yuan, Ling; Shen, Zhonghua; Zhu, Qingping; Lu, Jian; Ni, Xiaowu

    2013-10-01

    In this paper, a nondestructive laser ultrasonic technique is used to generate and detect broadband surface acoustic waves (SAWs) on human teeth with different demineralization treatment. A scanning laser line-source technique is used to generate a series of SAW signals for obtaining the dispersion spectrum through a two-dimensional fast Fourier translation method. The experimental dispersion curves of SAWs are studied for evaluating the elastic properties of the sound tooth and carious tooth. The propagation and dispersion of SAWs in human teeth are also been studied using the finite element method. Results from numerical simulation and experiment are compared and discussed, and the elastic properties of teeth with different conditions are evaluated by combining the simulation and experimental results. PMID:24085203

  15. Non-destructive evaluation of depth of surface cracks using ultrasonic frequency analysis.

    PubMed

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  16. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  17. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  18. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials

    PubMed Central

    Savin, Adriana; Steigmann, Rozina; Bruma, Alina; Šturm, Roman

    2015-01-01

    This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than ?/2000. PMID:26151206

  19. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials.

    PubMed

    Savin, Adriana; Steigmann, Rozina; Bruma, Alina; Šturm, Roman

    2015-01-01

    This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than ?/2000. PMID:26151206

  20. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    SciTech Connect

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain size variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.

  1. Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods-a review.

    PubMed

    Jha, Shyam Narayan; Narsaiah, K; Basediya, A L; Sharma, Rajiv; Jaiswal, Pranita; Kumar, Ramesh; Bhardwaj, Rishi

    2011-08-01

    Non-destructive systems are recent trends for quality evaluation of fruits and vegetables. Information on post-harvest variations in electrical properties is needed to develop new instruments for this purpose. Electrical properties are finding increasing application in agriculture and food processing industries. Knowledge of dielectric properties of foods as a function of moisture content and temperature is essential in the design and control of drying systems. As simple, rapid and non-destructive measuring techniques, dielectric spectroscopy provides information about the dielectric response of materials to electromagnetic field. Electrical properties of agricultural materials have been of interest for many years. The interest in dielectric properties of materials has historically been associated with the design of electrical equipment. This review paper covers theoretical aspects of different electrical properties, their measurement techniques, applications of dielectric properties in agriculture/food processing sector and potential applications of thermal imaging (TI) for quality and safety assessment in food processing. The values of dielectric properties of a number of products including food grains, fruits and vegetables, and meat and meat products are presented in table form. This comprehensive coverage will be useful for academic, scientific and industrial community in treating and applying the facts in developing/testing new processes and products based on electromagnetic energy application. PMID:23572764

  2. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    PubMed

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. PMID:23351273

  3. Challenges in Integrating Nondestructive Evaluation and Finite Element Methods for Realistic Structural Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.

    2000-01-01

    Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.

  4. The National Aeronautics and Space Administration Nondestructive Evaluation Program for Safe and Reliable Operations

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Nondestructive Evaluation (NDE) Program is presented. As a result of the loss of seven astronauts and the Space Shuttle Columbia on February 1, 2003, NASA has undergone many changes in its organization. NDE is one of the key areas that are recognized by the Columbia Accident Investigation Board (CAIB) that needed to be strengthened by warranting NDE as a discipline with Independent Technical Authority (iTA). The current NASA NDE system and activities are presented including the latest developments in inspection technologies being applied to the Space Transportation System (STS). The unfolding trends and directions in NDE for the future are discussed as they apply to assuring safe and reliable operations.

  5. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  6. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    SciTech Connect

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-18

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  7. A sparse digital signal model for ultrasonic nondestructive evaluation of layered materials.

    PubMed

    Bochud, N; Gomez, A M; Rus, G; Peinado, A M

    2015-09-01

    Signal modeling has been proven to be an useful tool to characterize damaged materials under ultrasonic nondestructive evaluation (NDE). In this paper, we introduce a novel digital signal model for ultrasonic NDE of multilayered materials. This model borrows concepts from lattice filter theory, and bridges them to the physics involved in the wave-material interactions. In particular, the proposed theoretical framework shows that any multilayered material can be characterized by a transfer function with sparse coefficients. The filter coefficients are linked to the physical properties of the material and are analytically obtained from them, whereas a sparse distribution naturally arises and does not rely on heuristic approaches. The developed model is first validated with experimental measurements obtained from multilayered media consisting of homogeneous solids. Then, the sparse structure of the obtained digital filter is exploited through a model-based inverse problem for damage identification in a carbon fiber-reinforced polymer (CFRP) plate. PMID:26092090

  8. The probability of flaw detection and the probability of false calls in nondestructive evaluation equipment

    NASA Technical Reports Server (NTRS)

    Temple, Enoch C.

    1994-01-01

    The space industry has developed many composite materials that have high durability in proportion to their weights. Many of these materials have a likelihood for flaws that is higher than in traditional metals. There are also coverings (such as paint) that develop flaws that may adversely affect the performance of the system in which they are used. Therefore there is a need to monitor the soundness of composite structures. To meet this monitoring need, many nondestructive evaluation (NDE) systems have been developed. An NDE system is designed to detect material flaws and make flaw measurements without destroying the inspected item. Also, the detection operation is expected to be performed in a rapid manner in a field or production environment. Some of the most recent video-based NDE methodologies are shearography, holography, thermography, and video image correlation.

  9. PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING

    SciTech Connect

    Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

    2011-10-03

    Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

  10. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  11. Research and Development Roadmaps for Nondestructive Evaluation of Cables, Concrete, Reactor Pressure Vessels, and Piping Fatique

    SciTech Connect

    Clayton, Dwight A; Bakhtiari, Sasan; Smith, Cyrus M; Simmons, Kevin; Ramuhalli, Pradeep; Coble, Jamie; Brenchley, David; Meyer, Ryan

    2013-01-01

    To address these research needs, the MAaD Pathway supported a series of workshops in the summer of 2012 for the purpose of developing R&D roadmaps for enhancing the use of Nondestructive Evaluation (NDE) technologies and methodologies for detecting aging and degradation of materials and predicting the remaining useful life. The workshops were conducted to assess requirements and technical gaps related to applications of NDE for cables, concrete, reactor pressure vessels (RPV), and piping fatigue for extended reactor life. An overview of the outcomes of the workshops is presented here. Details of the workshop outcomes and proposed R&D also are available in the R&D roadmap documents cited in the bibliography and are available on the LWRS Program website (http://www.inl.gov/lwrs).

  12. Nondestructive Evaluation Techniques for Development and Characterization of Carbon Nanotube Based Superstructures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2014-01-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-toweight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter, defect ratio, and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  13. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    SciTech Connect

    Dr. Shreekanth Mandayam; Dr. Robi Polikar; Dr. John C. Chen

    2003-06-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University fabricated test specimens with simulated defects for nondestructive evaluation (NDE); designed and developed two versions of a test platform for performing multi-sensor interrogation of test specimens under loaded conditions simulating pressurized gas pipelines; and performed acoustic emission (AE) NDE on the test specimens. The data resulting from this work will be employed for designing multi-sensor data fusion algorithms during the next reporting period.

  14. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    SciTech Connect

    Shreekanth Mandayam; Robi Polikar; John C. Chen

    2004-04-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University fabricated test specimens with simulated defects for nondestructive evaluation (NDE); designed and developed two versions of a test platform for performing multi-sensor interrogation of test specimens under loaded conditions simulating pressurized gas pipelines; and performed magnetic flux leakage (MFL), ultrasonic testing (UT), thermal imaging and acoustic emission (AE) NDE on the test specimens. The data resulting from this work will be employed for designing multi-sensor data fusion algorithms.

  15. Process for Nondestructive Evaluation of the Quality of a Crimped Wire Connector

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cramer, Karl E. (Inventor); Perey, Daniel F. (Inventor); Williams, Keith A. (Inventor)

    2014-01-01

    A process and apparatus for collecting data for nondestructive evaluation of the quality of a crimped wire connector are provided. The process involves providing a crimping tool having an anvil and opposing jaw for crimping a terminal onto a stranded wire, moving the jaw relative to the anvil to close the distance between the jaw and the anvil and thereby compress the terminal against the wire, while transmitting ultrasonic waves that are propagated through the terminal-wire combination and received at a receiving ultrasonic transducer as the jaw is moved relative to the anvil, and detecting and recording the position of the jaw relative to the anvil as a function of time and detecting and recording the amplitude of the ultrasonic wave that is received at the receiving ultrasonic transducer as a function of time as the jaw is moved relative to the anvil.

  16. The Evolution of Nondestructive Evaluation Methods for the Space Shuttle External Tank Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.

  17. Modeling of Resonant Ultrasound Spectroscopy Based Nondestructive Evaluation Using the "XYZ-Algorithm"

    SciTech Connect

    Ahmed, Salahuddin; Bond, Leonard J.

    2007-05-03

    Resonant ultrasound spectroscopy (RUS) is employed as a nondestructive evaluation (NDE) tool in a number of metal/ceramic forming industries [1]. The presence of volumetric defects in an otherwise flaw-free object affects the resonance characteristics of the object. The changes in resonance behavior depend on the number, locations, volume, and material properties of the defects. Since the normal modes of an object depend on its geometry and the position-dependent material properties, namely the density and the complex elastic stiffness tensor, by accurate measurement of a specimen’s resonance frequencies and amplitudes, one can detect and characterize flaws embedded within it. A correct forward mathematical model to predict resonance characteristics is vital to the required analyses. In this paper, we present several computational results depicting the influence of the presence of embedded flaws/defects in a test specimen having simple geometrical shape. The mathematical model is based on the computationally efficient “XYZ Algorithm” of Visscher et al.

  18. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  19. Nanomanipulation and Lithography for Carbon Nanotube Based Nondestructive Evaluation Sensor Development

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Smits, Jan; Namkung, Min; Ingram, JoAnne; Watkins, Neal; Jordan, Jeffrey D.; Louie, Richard

    2002-01-01

    Carbon nanotubes (CNTs) offer great potential for advanced sensor development due to the unique electronic transport properties of the material. However, a significant obstacle to the realization of practical CNT devices is the formation of reliable and reproducible CNT to metallic contacts. In this work, scanning probe techniques are explored for both fabrication of metallic junctions and positioning of singlewalled CNTs across these junctions. The use of a haptic force feedback interface to a scanning probe microscope is used to enable movement of nanotubes over micron length scales with nanometer precision. In this case, imaging of the surface is performed with light or intermittent contact to the surface. Increased tip-to-sample interaction forces are then applied to either create junctions or position CNTs. The effect of functionalization of substrate surfaces on the movement and tribology of the materials is also studied. The application of these techniques to the fabrication of CNT-based sensors for nondestructive evaluation applications is discussed.

  20. Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Walker, James L.

    2014-01-01

    This report summarizes the National Aeronautics and Space Administrations (NASA) state of the art of nondestructive evaluation (NDE) for additive manufacturing (AM), or "3-D printed", hardware. NASA's unique need for highly customized spacecraft and instrumentation is suited for AM, which offers a compelling alternative to traditional subtractive manufacturing approaches. The Agency has an opportunity to push the envelope on how this technology is used in zero gravity, an enable in-space manufacturing of flight spares and replacement hardware crucial for long-duration, manned missions to Mars. The Agency is leveraging AM technology developed internally and by industry, academia, and other government agencies for its unique needs. Recent technical interchange meetings and workshops attended by NASA have identified NDE as a universal need for all aspects of additive manufacturing. The impact of NDE on AM is cross cutting and spans materials, processing quality assurance, testing and modeling disciplines. Appropriate NDE methods are needed before, during, and after the AM production process.

  1. C/C composite brake disk nondestructive evaluation by IR thermography

    NASA Astrophysics Data System (ADS)

    Chu, Tsuchin P.; Poudel, Anish; Filip, Peter

    2012-06-01

    This paper discusses the non-destructive evaluation of thick Carbon/Carbon (C/C) composite aircraft brake disks by using transient infrared thermography (IRT) approach. Thermal diffusivity measurement technique was applied to identify the subsurface anomalies in thick C/C brake disks. In addition, finite element analysis (FEA) modeling tool was used to determine the transient thermal response of the C/C disks that were subjected to flash heating. For this, series of finite element models were built and thermal responses with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models by using custom built in-house IRT system and commercial turnkey system. The analysis and experimental results showed good correlation between thermal diffusivity value and anomalies within the disk. It was demonstrated that the step-heating transient thermal approach could be effectively applied to obtain the whole field thermal diffusivity value of C/C composites.

  2. High-resolution thermal imaging methodology for non-destructive evaluation of historic structures

    NASA Astrophysics Data System (ADS)

    Hess, Michael; Vanoni, David; Petrovic, Vid; Kuester, Falko

    2015-11-01

    This paper presents a methodology for automated, portable thermography, for the acquisition of high-resolution thermal image mosaics supporting the non-destructive evaluation of historic structures. The presented approach increases the spatial resolution of thermal surveys to a level of detail needed for building scale analysis. The integration of a robotic camera platform enables automated alignment of multiple images into a high-resolution thermal image mosaic giving a holistic view of the structure while maintaining a level of detail equaling or exceeding that of traditional spot surveys using existing cameras. Providing a digital workflow for automated data and metadata recording increases the consistency and accuracy of surveys regardless of the location or operator. An imaging workflow and instrumentation are shown for a case-study on buildings in Florence, Italy demonstrating the effectiveness of this methodology for structural diagnostics.

  3. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  4. Standard practice for digital imaging and communication nondestructive evaluation (DICONDE) for computed radiography (CR) test methods

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of computed radiography (CR) imaging and data acquisition equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This practice is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information objec...

  5. Evaluation of nondestructive testing techniques for the space shuttle nonmetallic thermal protection system

    NASA Technical Reports Server (NTRS)

    Tiede, D. A.

    1972-01-01

    A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.

  6. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hyeon; Jang, Jin-Wook; Kim, Hak-Sung

    2015-09-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages.

  7. The evaluation of physical dimension changes as non-destructive measurements for monitoring rigor mortis development in broiler muscles 

    E-print Network

    Cavitt, Leslie Cain

    2000-01-01

    Studies were conducted to develop a non-destructive method for monitoring the rate of rigor mortis development in poultry and to evaluate the effectiveness of electrical stimulation (ES). In the first study, 36 male broilers in each of two trials...

  8. American Institute of Aeronautics and Astronautics NONDESTRUCTIVE EVALUATION (NDE) OF COMPOSITE/METAL BOND INTERFACE OF A WIND

    E-print Network

    1 American Institute of Aeronautics and Astronautics NONDESTRUCTIVE EVALUATION (NDE) OF COMPOSITE scanning system provided an area mapping of the delamination or disbond due to fatigue testing, field, interface debonds and composite delaminations in laboratory prepared and tested samples. As an extension

  9. SAND96-2506C Nondestructive Evaluation (NDE) of Composite-to-Metal Bond Interface of a Wind

    E-print Network

    SAND96-2506C . . Nondestructive Evaluation (NDE) of Composite-to-Metal Bond Interface of a Wind scanning system provided an area mapping of the delamination or disbond due to fatigue testing and normal, interface debonds and composite delaminations in laboratory prepared and tested samples. As an extension

  10. Formulation and evaluation of a protein-loaded solid dispersions by non-destructive methods.

    PubMed

    Rahman, Ziyaur; Zidan, Ahmed S; Khan, Mansoor A

    2010-06-01

    The purpose of this investigation was to develop solid dispersion (SD) formulation of cyclosporine (CyA) using polyethylene glycol (PEG-6000) to enhance its dissolution rate followed by nondestructive method for the prediction of both drug and carrier. SD formulations were prepared by varying the ratio of CyA and PEG-6000 by solvent evaporation technique and characterized by dissolution, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD), near infrared (NIR) and near infrared chemical imaging (NIR-CI). Dissolution data revealed enhanced dissolution of CyA when compared with pure CyA. DSC results showed that the crystallinity of PEG-6000 has decreased as indicated by decrease in the enthalpy of fusion and melting peak in the formulations. FTIR data demonstrated no chemical interaction between drug and carrier. The surface morphology of SD formulations was similar to PEG-6000 particle. NIR-CI disclosed homogeneity of SD matrix as indicated by symmetrical histograms with smaller values of skewness. Similar to NIR, a multivariate peak evaluation with principal component analysis and partial least square (PLS) were carried out with PXRD spectral data. PLS models with both techniques showed good correlation coefficient and smaller value of root mean square of errors. The accuracy of model for predicting CyA and PEG-6000 in NIR and PXRD data were 5.22%, 5.35%, 5.27%, and 2.10%, respectively. In summary, chemometric applications of non-destructive method sensors provided a valuable means of characterization and estimation of drug and carrier in the novel formulations. PMID:20127529

  11. Automated Nondestructive Evaluation Method for Characterizing Ceramic and Metallic Hot Gas Filters

    SciTech Connect

    Ellingson, W.A.; Pastila, P.; Koehl, E.R.; Wheeler, B.; Deemer, C.; Forster, G.A.

    2002-09-19

    The objective of this work was to develop a nondestructive (NDE), cost-effective and reliable method to assess the condition of rigid ceramic hot gas filters. The work was intended to provide an end user, as well as filter producers, with a nondestructive method to assess the ''quality'' or status of the filters.

  12. Phenomenological and mechanics aspects of nondestructive evaluation and characterization by sound and ultrasound of material and fracture properties

    NASA Technical Reports Server (NTRS)

    Fu, L. S. W.

    1982-01-01

    Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).

  13. Dynamic laser speckle for non-destructive quality evaluation of bread

    NASA Astrophysics Data System (ADS)

    Stoykova, E.; Ivanov, B.; Shopova, M.; Lyubenova, T.; Panchev, I.; Sainov, V.

    2010-10-01

    Coherent illumination of a diffuse object yields a randomly varying interference pattern, which changes over time at any modification of the object. This phenomenon can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of laser speckle dynamics. The present report aims at non-destructive full-field evaluation of bread by spatial-temporal characterization of laser speckle. The main purpose of the conducted experiments was to prove the ability of the dynamic speckle method to indicate activity within the studied bread samples. In the set-up for acquisition and storage of dynamic speckle patterns an expanded beam from a DPSS laser (532 nm and 100mW) illuminated the sample through a ground glass diffuser. A CCD camera, adjusted to focus the sample, recorded regularly a sequence of images (8 bits and 780 x 582 squared pixels, sized 8.1 × 8.1 ?m) at sampling frequency 0.25 Hz. A temporal structure function was calculated to evaluate activity of the bread samples in time using the full images in the sequence. In total, 7 samples of two types of bread were monitored during a chemical and physical process of bread's staling. Segmentation of images into matrixes of isometric fragments was also utilized. The results proved the potential of dynamic speckle as effective means for monitoring the process of bread staling and ability of this approach to differentiate between different types of bread.

  14. Quantitative evaluation of gait ataxia by accelerometers.

    PubMed

    Shirai, Shinichi; Yabe, Ichiro; Matsushima, Masaaki; Ito, Yoichi M; Yoneyama, Mitsuru; Sasaki, Hidenao

    2015-11-15

    An appropriate biomarker for spinocerebellar degeneration (SCD) has not been identified. Here, we performed gait analysis on patients with pure cerebellar type SCD and assessed whether the obtained data could be used as a neurophysiological biomarker for cerebellar ataxia. We analyzed 25 SCD patients, 25 patients with Parkinson's disease as a disease control, and 25 healthy control individuals. Acceleration signals during 6min of walking and 1min of standing were measured by two sets of triaxial accelerometers that were secured with a fixation vest to the middle of the lower and upper back of each subject. We extracted two gait parameters, the average and the coefficient of variation of motion trajectory amplitude, from each acceleration component. Then, each component was analyzed by correlation with the Scale for the Assessment and Rating of Ataxia (SARA) and the Berg Balance Scale (BBS). Compared with the gait control of healthy subjects and concerning correlation with severity and disease specificity, our results suggest that the average amplitude of medial-lateral (upper back) of straight gait is a physiological biomarker for cerebellar ataxia. Our results suggest that gait analysis is a quantitative and concise evaluation scale for the severity of cerebellar ataxia. PMID:26362336

  15. Nondestructive Evaluation of Stiffness and Stresses of Ceramic Candle Filters at Elevated Temperature under Vibrational Environment

    SciTech Connect

    Chen, R.H.L.; Kiriakidia, A.

    2002-09-19

    In recent years a significant amount of effort has been devoted to develop damage-tolerant hot gas filter elements, which can withstand chemical, high pressure and extreme thermal cyclic loading in the coal-based environment (Alvin 1999, Spain and Starrett 1999). Ceramic candle filters have proven to be an effective filter for the ash laden gas streams, protecting the gas turbine components from exposure to particulate matter (Lippert et al. 1994). Ceramic candle filters need to sustain extreme thermal environment and vibration-induced stresses over a great period of time. Destructive tests have been used to describe physical, mechanical and thermal properties of the filters and to relate these properties and behaviors to in-service performance, and ultimately to predict the useful life of the filter materials (Pontius and Starrett 1994, Alvin et al. 1994). Nondestructive evaluation (NDE) techniques have been developed to determine the deterioration or the presence of damage and to estimate the remaining stiffness of ceramic candle filters (Chen and Kiriakidis 2001). This paper presents a study of parameters involved in the prediction of remaining life of ceramic candle filters under service conditions. About one hundred ceramic candle filters from previous studies (Chen and Kiriakidis 2000) and forty-six filters received during this project have been nondestructively evaluated. They are divided in Pall Vitropore, Schumacher and Coors filters. Forty-six of these filters were used having various in-service exposure times at the PSDF and the rest were unused filters. Dynamic characterization tests were employed to investigate the material properties of ceramic candle filters. The vibration frequency changes due to exposure hours, dust cake accumulation, candle's axisymmetry, boundary conditions and elevated temperatures are studied. Investigations on fatigue stresses of the filters due to vibration of the plenum and back pulse shaking are also studied. Finite element models (FEM) are built to calculate the filter's dynamic response with different boundary conditions at various temperatures. The experimental natural frequencies of the candle filters were also compared with an analysis of a general Timoshenko beam equation that includes various boundary restraints.

  16. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  17. Interrelationship of Nondestructive Evaluation Methodologies Applied to Testing of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Leifeste, Mark R.

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are commonly used in spacecraft for containment of pressurized gases and fluids, incorporating strength and weight savings. The energy stored is capable of extensive spacecraft damage and personal injury in the event of sudden failure. These apparently simple structures, composed of a metallic media impermeable liner and fiber/resin composite overwrap are really complex structures with numerous material and structural phenomena interacting during pressurized use which requires multiple, interrelated monitoring methodologies to monitor and understand subtle changes critical to safe use. Testing of COPVs at NASA Johnson Space Center White Sands T est Facility (WSTF) has employed multiple in-situ, real-time nondestructive evaluation (NDE) methodologies as well as pre- and post-test comparative techniques to monitor changes in material and structural parameters during advanced pressurized testing. The use of NDE methodologies and their relationship to monitoring changes is discussed based on testing of real-world spacecraft COPVs. Lessons learned are used to present recommendations for use in testing, as well as a discussion of potential applications to vessel health monitoring in future applications.

  18. Multi-frequency time-reversal-based imaging for ultrasonic nondestructive evaluation using full matrix capture.

    PubMed

    Fan, Chengguang; Pan, Mengchun; Luo, Feilu; Drinkwater, Bruce

    2014-12-01

    In this paper, two multi-frequency time-reversal (TR)-based imaging algorithms are explored for application to the nondestructive evaluation (NDE) imaging of defects in solids: time reversal with multiple signal classification (TRMUSIC) and a related phase-coherent form (PC-MUSIC). These algorithms are tested with simulated and experimental ultrasonic array data acquired using the full matrix capture (FMC) process. The performance of these algorithms is quantified in terms of their spatial resolution and robustness to noise. The effect of frequency bandwidth is investigated and the results are compared with the single-frequency versions of these algorithms. It is shown that both TR-MUSIC and PCMUSIC are capable of resolving lateral targets spaced closer than the Rayleigh limit, achieving super-resolution imaging. TR-MUSIC can locate the positions of scatterers correctly, whereas the results from PC-MUSIC are less clear because of the presence of multiple peaks in the vicinity of target. However, an advantage of PC-MUSIC is that it can overcome the elongated point spread function that appears in TR-MUSIC images, and hence provide enhanced axial resolution. For high noise levels, TR-MUSIC and PC-MUSIC are shown to provide stable images and suppress the presence of artifacts seen in their single-frequency equivalents. PMID:25474781

  19. Evaluation of scanners for C-scan imaging in nondestructive inspection of aircraft

    SciTech Connect

    Gieske, J.H.

    1994-04-01

    The goal of this project was to produce a document that contains information on the usability and performance of commercially available, fieldable, and portable scanner systems as they apply to aircraft NDI inspections. In particular, the scanners are used to generate images of eddy current, ultrasonic, or bond tester inspection data. The scanner designs include manual scanners, semiautomated scanners, and fully automated scanners. A brief description of the functionality of each scanner type, a sketch, and a fist of the companies that support the particular design are provided. Vendors of each scanner type provided hands-on demonstrations of their equipment on real aircraft samples in the FAA Aging Aircraft Nondestructive Inspection Validation Center (AANC) in Albuquerque, NM. From evaluations recorded during the demonstrations, a matrix of scanner features and factors and ranking of the capabilities and limitations of the design, portability, articulation, performance, usability, and computer hardware/software was constructed to provide a quick reference for comparing the different scanner types. Illustrations of C-scan images obtained during the demonstration are shown.

  20. An Analysis of Nondestructive Evaluation Techniques for Polymer Matrix Composite Sandwich Materials

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Roberts, Gary D.; Binienda, Wieslaw K.; Zheng, Diahua; Averbeck, Timothy; Roth, Donald J.; Jeanneau, Philippe

    2006-01-01

    Structural sandwich materials composed of triaxially braided polymer matrix composite material face sheets sandwiching a foam core are being utilized for applications including aerospace components and recreational equipment. Since full scale components are being made from these sandwich materials, it is necessary to develop proper inspection practices for their manufacture and in-field use. Specifically, nondestructive evaluation (NDE) techniques need to be investigated for analysis of components made from these materials. Hockey blades made from sandwich materials and a flat sandwich sample were examined with multiple NDE techniques including thermographic, radiographic, and shearographic methods to investigate damage induced in the blades and flat panel components. Hockey blades used during actual play and a flat polymer matrix composite sandwich sample with damage inserted into the foam core were investigated with each technique. NDE images from the samples were presented and discussed. Structural elements within each blade were observed with radiographic imaging. Damaged regions and some structural elements of the hockey blades were identified with thermographic imaging. Structural elements, damaged regions, and other material variations were detected in the hockey blades with shearography. Each technique s advantages and disadvantages were considered in making recommendations for inspection of components made from these types of materials.

  1. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon (RCC)

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  2. Modal Test Technology as Non-Destructive Evaluation of Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Grygler, Micheal S.

    1994-01-01

    Modal test and analysis Is being used for nondestructive evaluation of Space Shuttle structures. The purpose of modal testing is to measure the dynamic characteristics of a structure to extract its resonance frequencies, damping, and mode shapes. These characteristics are later compared to subsequently acquired characteristics. Changes in the modal characteristics indicate damage in the structure. Use of modal test technology as a damage detection tool was developed at JSC during the Shuttle acoustic certification program and subsequent test programs. The Shuttle Modal Inspection System was created in order to inspect areas that are impossible or impractical to inspect with conventional methods. Areas on which this technique has been applied include control surfaces, which are covered with thermal protection tiles, and the Forward Reaction Control Module, which is a frame structure that supports various tanks, thrusters, and fluid lines, which requires major disassembly to inspect. This paper traces the development of the technology, gives a status of its implementation on the Shuttle, explains challenges involved in implementing this type of inspection program, and suggests future improvements in data analysis and interpretation. Dual-use applications of the technology include inspections of bridges, oil-platforms, and aircraft.

  3. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    SciTech Connect

    Li, T.; Dewhurst, R. J.

    2010-02-22

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  4. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2010-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  5. Real-time nondestructive evaluation of fiber composite laminates using low-frequency Lamb waves.

    PubMed

    Díaz Valdés, Sergio H; Soutis, Costas

    2002-05-01

    Amid the nondestructive evaluation techniques available for the inspection of composite materials, only a few are suitable for implementation while the component is in service. The investigation examines the application of Lamb waves at low-frequency-thickness products for the detection of delaminations in thick composite laminates. Surface-mounted piezoelectric devices were excited with a tone burst to generate elastic waves in the structure. Experiments were carried out on composite beam specimens where wave propagation distances over 2 m were achieved and artificially induced delaminations as small as 1 cm2 were successfully identified. The feasibility of employing piezoelectric devices for the development of smart structures, where a small and lightweight transducer system design is required, has been demonstrated. The resonance spectrum method, which is based on the study of spectra obtained by forced mechanical resonance of samples using sine-sweep excitation, has been proposed as a technique for measuring the A0 Lamb mode phase velocity. The finite-element method was also used to investigate qualitatively the dynamic response of laminates to wave propagation. Several locations and spatial distribution of the actuators were examined showing the advantages of using transducers arrays for the inspection of large structures. PMID:12051422

  6. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  7. Development of Natural Flaw Samples for Evaluating Nondestructive Testing Methods for Foam Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Davis, Jason; Farrington, Seth; Walker, James

    2007-01-01

    Low density polyurethane foam has been an important insulation material for space launch vehicles for several decades. The potential for damage from foam breaking away from the NASA External Tank was not realized until the foam impacts on the Columbia Orbiter vehicle caused damage to its Leading Edge thermal protection systems (TPS). Development of improved inspection techniques on the foam TPS is necessary to prevent similar occurrences in the future. Foamed panels with drilled holes for volumetric flaws and Teflon inserts to simulate debonded conditions have been used to evaluate and calibrate nondestructive testing (NDT) methods. Unfortunately the symmetric edges and dissimilar materials used in the preparation of these simulated flaws provide an artificially large signal while very little signal is generated from the actual defects themselves. In other words, the same signal are not generated from the artificial defects in the foam test panels as produced when inspecting natural defect in the ET foam TPS. A project to create more realistic voids similar to what actually occurs during manufacturing operations was began in order to improve detection of critical voids during inspections. This presentation describes approaches taken to create more natural voids in foam TPS in order to provide a more realistic evaluation of what the NDT methods can detect. These flaw creation techniques were developed with both sprayed foam and poured foam used for insulation on the External Tank. Test panels with simulated defects have been used to evaluate NDT methods for the inspection of the External Tank. A comparison of images between natural flaws and machined flaws generated from backscatter x-ray radiography, x-ray laminography, terahertz imaging and millimeter wave imaging show significant differences in identifying defect regions.

  8. Emission and detection of terahertz radiation using two dimensional plasmons in semiconductor nano-heterostructures for nondestructive evaluations

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Watanabe, Takayuki; Boubanga Tombet, Stephane Albon; Satou, Akira; Ryzhii, Victor; Popov, Vyacheslav; Knap, Wojciech

    2013-05-01

    This paper reviews recent advances in emission and detection of terahertz radiation using two dimensional (2D) plasmons in semiconductor nano-heterostructures for nondestructive evaluations. The 2D plasmon resonance is introduced as the operation principle for broadband emission and detection of terahertz radiation. The device structure is based on a high-electron mobility transistor and incorporates the authors' original asymmetrically interdigitated dual grating gates. Excellent terahertz emission and detection performances are experimentally demonstrated by using InAlAs/InGaAs/InP and/or InGaP/InGaAs/GaAs heterostructure material systems. Their applications to nondestructive material evaluation based on terahertz imaging are also presented.

  9. Emission and detection of terahertz radiation using two-dimensional plasmons in semiconductor nanoheterostructures for nondestructive evaluations

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Watanabe, Takayuki; Tombet, Stephane Albon Boubanga; Satou, Akira; Ryzhii, Victor; Popov, Vyacheslav; Knap, Wojciech

    2014-03-01

    The recent advances in emission and detection of terahertz radiation using two-dimensional (2-D) plasmons in semiconductor nanoheterostructures for nondestructive evaluations are reviewed. The 2-D plasmon resonance is introduced as the operation principle for broadband emission and detection of terahertz radiation. The device structure is based on a high-electron-mobility transistor and incorporates the authors' original asymmetrically interdigitated dual-grating gates. Excellent THz emission and detection performances are experimentally demonstrated by using InAlAs/InGaAs/InP and/or InGaP/InGaAs/GaAs heterostructure material systems. Their applications to nondestructive material evaluation based on THz imaging are also presented.

  10. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1990-01-01

    The acousto-ultrasonic method has proven to be a most interesting technique for nondestructive evaluation of the mechanical properties of a variety of materials. Use of the technique or a modification thereof, has led to correlation of the associated stress wave factor with mechanical properties of both metals and composite materials. The method is applied to the nondestructive evaluation of selected fiber reinforced structural composites. For the first time, conventional piezoelectric transducers were replaced with laser beam ultrasonic generators and detectors. This modification permitted true non-contact acousto-ultrasonic measurements to be made, which yielded new information about the basic mechanisms involved as well as proved the feasibility of making such non-contact measurements on terrestrial and space structures and heat engine components. A state-of-the-art laser based acousto-ultrasonic system, incorporating a compact pulsed laser and a fiber-optic heterodyne interferometer, was delivered to the NASA Lewis Research Center.

  11. Non-destructive microwave evaluation of TBC delamination induced by acute angle laser drilling

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.; Li, Lin; Wu, Z.; Anderson, B.; Williams, P.

    2007-01-01

    Laser drilling has been applied to the production of cooling holes of various size and angles in the modern aerospace gas turbine components such as turbine blades, nozzle guide vanes, combustion chambers and afterburner. These parts are usually made of heat resistant nickel superalloys. The superalloy substrate is coated with yttria-stabilized zirconia thermal barrier coatings (TBCs) to protect them from reaching excessive temperatures in hot engine environments. Drilling the parts at acute angles to the surface is complicated because (i) multiple layers are being drilled through, (ii) the melt ejection and heat flow patterns around the hole are non-symmetrical and (iii) the drilling distance is greater than when drilling normal to the surface. In a previous investigation by the authors, delamination of TBC was addressed as a main problem of angled drilling and mechanisms involved were discussed. Characterization of delamination cracks was normally performed via metallographic techniques. It involves sectioning the samples using an abrasive cutting machine, grinding with successively finer silicon carbide paper up to the centre of the hole and polishing to allow optical microscopic analysis of the cracks. However, clamping and sectioning process of thermal-spray-coated workpieces can introduce cracks in brittle coatings due to the drag of the cut-off wheels. Hence, it is not possible to decide if the delamination is caused as a result of post-process sectioning or laser drilling. In this paper, a microwave non-destructive testing (NDT) technique is employed to evaluate the integrity of TBC after acute angle laser drilling. An Agilent 8510 XF network analyser operating over the frequency range of 45 MHz to 110 GHz was used to measure the amplitude and phase variations of scattered waves. The results significantly indicated the existence of delamination of 1-1.5 mm long at the TBC/substrate interface on the leading edge part of an acute-angled hole laser drilled using a 400 W Nd:YAG laser.

  12. Microwave and Millimeter Wave Nondestructive Evaluation of the Space Shuttle External Tank Insulating Foam

    NASA Technical Reports Server (NTRS)

    Shrestha, S.; Kharkovsky, S.; Zoughi, R.; Hepburn, F

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure has been attributed to a piece of external fuel tank insulating SOFI (Spray On Foam Insulation) foam striking the leading edge of the left wing of the orbiter causing significant damage to some of the protecting heat tiles. The accident emphasizes the growing need to develop effective, robust and life-cycle oriented methods of nondestructive testing and evaluation (NDT&E) of complex conductor-backed insulating foam and protective acreage heat tiles used in the space shuttle fleet and in future multi-launch space vehicles. The insulating SOFI foam is constructed from closed-cell foam. In the microwave regime this foam is in the family of low permittivity and low loss dielectric materials. Near-field microwave and millimeter wave NDT methods were one of the techniques chosen for this purpose. To this end several flat and thick SOFI foam panels, two structurally complex panels similar to the external fuel tank and a "blind" panel were used in this investigation. Several anomalies such as voids and disbonds were embedded in these panels at various locations. The location and properties of the embedded anomalies in the "blind" panel were not disclosed to the investigating team prior to the investigation. Three frequency bands were used in this investigation covering a frequency range of 8-75 GHz. Moreover, the influence of signal polarization was also investigated. Overall the results of this investigation were very promising for detecting the presence of anomalies in different panels covered with relatively thick insulating SOFI foam. Different types of anomalies were detected in foam up to 9 in thick. Many of the anomalies in the more complex panels were also detected. When investigating the blind panel no false positives were detected. Anomalies in between and underneath bolt heads were not easily detected. This paper presents the results of this investigation along with a discussion of the capabilities of the method used.

  13. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    NASA Astrophysics Data System (ADS)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  14. Low-Cost Quality Control and Nondestructive Evaluation Technologies for General Aviation Structures

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Gavinsky, Bob; Semanskee, Grant

    1998-01-01

    NASA's Advanced General Aviation Transport Experiments (AGATE) Program has as a goal to reduce the overall cost of producing private aviation aircraft while maintaining the safety of these aircraft. In order to successfully meet this goal, it is necessary to develop nondestructive inspection techniques which will facilitate the production of the materials used in these aircraft and assure the quality necessary to maintain airworthiness. This paper will discuss a particular class of general aviation materials and several nondestructive inspection techniques that have proven effective for making these inspections. Additionally, this paper will discuss the investigation and application of other commercially available quality control techniques applicable to these structures.

  15. An Evaluation of Leaf Biomass?:?Length Ratio as a Tool for Nondestructive Assessment in Eelgrass (Zostera marina L.)

    PubMed Central

    Echavarria-Heras, Hector; Solana-Arellano, Elena; Lee, Kun-Seop; Hosokawa, Shinya; Franco-Vizcaíno, Ernesto

    2012-01-01

    The characterization of biomass and its dynamics provides valuable information for the assessment of natural and transplanted eelgrass populations. The need for simple, nondestructive assessments has led to the use of the leaf biomass-to-length ratio for converting leaf-length measurements, which can be easily obtained, to leaf growth rates through the plastochrone method. Using data on leaf biomass and length collected in three natural eelgrass populations and a mesocosm, we evaluated the suitability of a leaf weight-to-length ratio for nondestructive assessments. For the data sets considered, the isometric scaling that sustains the weight-to-length proxy always produced inconsistent fittings, and for leaf-lengths greater than a threshold value, the conversion of leaf length to biomass generated biased estimations. In contrast, an allometric scaling of leaf biomass and length was highly consistent in all the cases considered. And these nondestructive assessments generated reliable levels of reproducibility in leaf biomass for all the ranges of variability in leaf lengths. We argue that the use of allometric scaling for the representation of leaf biomass in terms of length provides a more reliable approach for estimating eelgrass biomass. PMID:22645432

  16. Applying quantitative models to evaluate complexity in video game systems

    E-print Network

    Tanwanteng, Matthew (Matthew E.)

    2009-01-01

    This thesis proposes a games evaluation model that reports significant statistics about the complexity of a game's various systems. Quantitative complexity measurements allow designers to make accurate decisions about how ...

  17. Evaluation of electrode shape and nondestructive evaluation method for welded solar cell interconnects

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Klima, S. J.; Moore, T. J.; Frey, W. E.; Forestieri, A. F.

    1982-01-01

    Resistance welds of solar cell interconnect tabs were evaluated. Both copper-silver and silver-silver welds were made with various heat inputs and weld durations. Parallel gap and annular gap weld electrode designs were used. The welds were analyzed by light microscope, electron microprobe and scanning laser acoustic microscope. These analyses showed the size and shape of the weld, the relationship between the acoustic micrographs, the visible electrode footprint, and the effect of electrode misalignment. The effect of weld heat input on weld microstructure was also shown.

  18. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation table in the presence of various sources of laboratory noise is shown. The output of the neural network is called the degradable classification index. The curve was generated by a simultaneous comparison of means, and it shows a peak-to-peak sensitivity of about 100 nm. The following graph uses model generated data from a compressor blade to show that much higher sensitivities are possible when the environment can be controlled better. The peak-to-peak sensitivity here is about 20 nm. The training procedure was modified for the second graph, and the data were subjected to an intensity-dependent transformation called folding. All the measurements for this approach to calibration were optical. The peak-to-peak amplitudes of the vibration modes were measured using heterodyne interferometry, and the modes themselves were recorded using television (electronic) holography.

  19. Evaluating the effectiveness of correlation digital speckle photography method for non-destructive testing of rough surfaces

    NASA Astrophysics Data System (ADS)

    Gorjunov, A. E.; Pavlov, P. V.; Petrov, N. V.

    2014-09-01

    The work is devoted to the investigation of the process of reflection of laser beams from rough surfaces with different degrees of roughness. Based on the results of numerical experiments the applicability of the method of correlation analysis of speckle-structures for non-destructive inspection of surfaces with different parameters of roughness was evaluated. The optimal ratios between the parameters of the rough surfaces and parameters of the optical system, which provide the best efficiency of the method, were determined. It was established that in case of the increase of the number of topological charges the sensitivity of the optical system to changes of parameters of surface roughness increases.

  20. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography

    PubMed Central

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2014-01-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051

  1. Litchi freshness rapid non-destructive evaluating method using electronic nose and non-linear dynamics stochastic resonance model.

    PubMed

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua

    2015-01-01

    In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R(2) = 0 .99396. PMID:25920547

  2. Development of Standards for Nondestructive Evaluation of COPVs Used in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.

    2012-01-01

    Composite OverWrapped Pressure Vessels (COPVs) are currently accepted by NASA based on design and qualification requirements and generally not verified by NDE for the following reasons: (1) Manufactures and end users generally do not have experience and validated quantitative methods of detecting flaws and defects of concern (1-a) If detected, the flaws are not adequately quantified and it is unclear how they may contribute to degradation in mechanical response (1-b) Carbon-epoxy COPVs also extremely sensitive to impact damage and impacts may be below the visible detection threshold (2) If damage is detected, this generally results in rejection since the effect on mechanical response is generally not known (3) NDE response has not generally been fully characterized, probability of detection (POD) established, and processes validated for evaluation of vessel condition as manufactured and delivered.

  3. Nondestructive Evaluation on Hydrided LWR Fuel Cladding by Small Angle Incoherent Neutron Scattering of Hydrogen

    SciTech Connect

    Yan, Yong; Qian, Shuo; Littrell, Ken; Parish, Chad M; Bell, Gary L; Plummer, Lee K

    2013-01-01

    A non-destructive neutron scattering method was developed to precisely measure the uptake of total hydrogen in nuclear grade Ziraloy-4 cladding. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and H gas. By controlling the initial H gas pressure in the vessel and the temperature profile, target H concentrations from tens of ppm to a few thousands of wppm have been successfully achieved. Following H charging, the H content of the hydrided specimens was measured using the vacuum hot extraction method (VHE), by which the samples with desired H concentration were selected for the neutron study. Small angle neutron incoherent scattering (SANIS) were performed in the High Flux Isotope Reactor at Oak Ridge national Laboratory (ORNL). Our study indicates that a very small amount ( 20 ppm) H in commercial Zr cladding can be measured very accurately in minutes for a wide range of H concentration by a nondestructive method. The H distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor, which is determined by calibration process with direct chemical analysis method on the specimen. This scale factor can be used for future test with unknown H concentration, thus provide a nondestructive method for absolute H concentration determination.

  4. A Nondestructive Evaluation Method: Measuring the Fixed Strength of Spot-Welded Joint Points by Surface Electrical Resistivity.

    PubMed

    Shimamoto, Akira; Yamashita, Keitaro; Inoue, Hirofumi; Yang, Sung-Mo; Iwata, Masahiro; Ike, Natsuko

    2013-04-01

    Destructive tests are generally applied to evaluate the fixed strength of spot-welding nuggets of zinc-plated steel (which is a widely used primary structural material for automobiles). These destructive tests, however, are expensive and time-consuming. This paper proposes a nondestructive method for evaluating the fixed strength of the welded joints using surface electrical resistance. A direct current nugget-tester and probes have been developed by the authors for this purpose. The proposed nondestructive method uses the relative decrease in surface electrical resistance, ?. The proposed method also considers the effect of the corona bond. The nugget diameter is estimated by two factors: R Quota, which is calculated from variation of resistance, and a constant that represents the area of the corona bond. Since the maximum tensile strength is correlated with the nugget diameter, it can be inferred from the estimated nugget diameter. When appropriate measuring conditions for the surface electrical resistance are chosen, the proposed method can effectively evaluate the fixed strength of the spot-welded joints even if the steel sheet is zinc-plated. PMID:24891747

  5. Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy

    PubMed Central

    Li, Fengqiang; Song, Yu; Dryer, Alexandra; Cogguillo, William; Berdichevsky, Yevgeny; Zhou, Chao

    2014-01-01

    Abstract. Three-dimensional tissue cultures have been used as effective models for studying different diseases, including epilepsy. High-throughput, nondestructive techniques are essential for rapid assessment of disease-related processes, such as progressive cell death. An ultrahigh-resolution optical coherence microscopy (UHR-OCM) system with ?1.5???m axial resolution and ?2.3???m transverse resolution was developed to evaluate seizure-induced neuronal injury in organotypic rat hippocampal cultures. The capability of UHR-OCM to visualize cells in neural tissue was confirmed by comparison of UHR-OCM images with confocal immunostained images of the same cultures. In order to evaluate the progression of neuronal injury, UHR-OCM images were obtained from cultures on 7, 14, 21, and 28 days in vitro (DIVs). In comparison to DIV 7, statistically significant reductions in three-dimensional cell count and culture thickness from UHR-OCM images were observed on subsequent time points. In cultures treated with kynurenic acid, significantly less reduction in cell count and culture thickness was observed compared to the control specimens. These results demonstrate the capability of UHR-OCM to perform rapid, label-free, and nondestructive evaluation of neuronal death in organotypic hippocampal cultures. UHR-OCM, in combination with three-dimensional tissue cultures, can potentially prove to be a promising tool for high-throughput screening of drugs targeting various disorders. PMID:25750928

  6. Quantitative evaluation of ocean thermal energy conversion (OTEC): executive briefing

    SciTech Connect

    Gritton, E.C.; Pei, R.Y.; Hess, R.W.

    1980-08-01

    Documentation is provided of a briefing summarizing the results of an independent quantitative evaluation of Ocean Thermal Energy Conversion (OTEC) for central station applications. The study concentrated on a central station power plant located in the Gulf of Mexico and delivering power to the mainland United States. The evaluation of OTEC is based on three important issues: resource availability, technical feasibility, and cost.

  7. A Quantitative Method for Machine Translation Evaluation Jess Toms

    E-print Network

    by the various methods. 1 Introduction Research in automatic translation lacks an appropriate, consistent in the field of research as well as when a user has to choose between two or more translators. The evaluationA Quantitative Method for Machine Translation Evaluation Jesús Tomás Escola Politècnica Superior de

  8. A study of active thermography approaches for the non-destructive testing and evaluation of aerospace structures

    NASA Astrophysics Data System (ADS)

    Avdelidis, Nicolas P.; Ibarra-Castanedo, Clemente; Marioli-Riga, Zaira P.; Bendada, Abdelhakim; Maldague, Xavier P. V.

    2008-03-01

    The prerequisite for more competent and cost effective aircraft has led to the evolution of innovative testing and evaluation procedures. Non-destructive testing and evaluation (NDT & E) techniques for assessing the integrity of an aircraft structure are essential to both reduce manufacturing costs and out of service time of aircraft due to maintenance. Nowadays, active - transient thermal NDT & E (i.e. thermography) is commonly used for assessing aircraft composites. This research work evaluates the potential of pulsed thermography (PT) and/or pulsed phase thermography (PPT) for assessing defects (i.e. impact damage and inclusions for delaminations) on GLARE and GLARE type composites. Finally, in the case of the detection of inserts - delaminations C-Scan ultrasonic testing was also used with the intention of providing supplementary results.

  9. The RAMANITA © method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2005-08-01

    The "RAMANITA ©" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, by M. Pinet and D.C. Smith in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA ©, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA © method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. from gemstones or other crystalline artworks of the cultural heritage (especially by Mobile Raman Microscopy (MRM)) in situ in museums or at archaeological sites, including under water for subaquatic archaeometry; from scientifically precious mineral microinclusions (such as garnet or pyroxene within diamond); from minerals in rocks analysed in situ on planetary bodies by a rover (especially "at distance" by telescopy). Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is quite different.

  10. Quantitative non-destructive evaluation of porous composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Porosity in composite media using ultrasonic waves is characterized. The derivation of local approximations to the Kramers-Kronig relations are presented and it is shown that they may also be applicable to systems that could conceivably exhibit considerable dispersion such as composite laminates containing porosity.

  11. Pulse thermography for quantitative nondestructive evaluation of sound, de-mineralized and re-mineralized enamel

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Sharp, Nathan; Adams, Douglas

    2012-04-01

    Current limitations for diagnosing mineralization state of tooth enamel can lead to improper surgical treatments. A method is investigated by which the tooth health state is characterized according to its thermal response, which is hypothesized to be sensitive to increased porosity in enamel that is caused by demineralization. Several specimens consisting of previously extracted human teeth a re prepared by exposure to Streptococcus mutans A32-2 in trypticase-soy-borth supplemented with 5% sucrose at 37°C for 3 or 6 days to de-mineralize two 1×1mm2-windows on each tooth. One of these windows is then re-mineralized with 250 or 1,100ppm-F as NaF for 10 days by pH-cyclic-model. Pulse thermography is used to measure the thermal response of these sections as well as the sound (healthy) portions of the specimen. A spatial profile of the thermal parameters of the specimens is then extracted from the thermography data and are used to compare the sound, de-mineralized, and re-mineralized areas. Results show that the thermal parameters are sensitive to the mineralization state of the tooth and that this method has the potential to accurately and quickly characterize the mineralization state of teeth, thereby allowing future dentists to make informed decisions regarding the best treatment for teeth that have experienced demineralization.

  12. Evaluation (not validation) of quantitative models.

    PubMed Central

    Oreskes, N

    1998-01-01

    The present regulatory climate has led to increasing demands for scientists to attest to the predictive reliability of numerical simulation models used to help set public policy, a process frequently referred to as model validation. But while model validation may reveal useful information, this paper argues that it is not possible to demonstrate the predictive reliability of any model of a complex natural system in advance of its actual use. All models embed uncertainties, and these uncertainties can and frequently do undermine predictive reliability. In the case of lead in the environment, we may categorize model uncertainties as theoretical, empirical, parametrical, and temporal. Theoretical uncertainties are aspects of the system that are not fully understood, such as the biokinetic pathways of lead metabolism. Empirical uncertainties are aspects of the system that are difficult (or impossible) to measure, such as actual lead ingestion by an individual child. Parametrical uncertainties arise when complexities in the system are simplified to provide manageable model input, such as representing longitudinal lead exposure by cross-sectional measurements. Temporal uncertainties arise from the assumption that systems are stable in time. A model may also be conceptually flawed. The Ptolemaic system of astronomy is a historical example of a model that was empirically adequate but based on a wrong conceptualization. Yet had it been computerized--and had the word then existed--its users would have had every right to call it validated. Thus, rather than talking about strategies for validation, we should be talking about means of evaluation. That is not to say that language alone will solve our problems or that the problems of model evaluation are primarily linguistic. The uncertainties inherent in large, complex models will not go away simply because we change the way we talk about them. But this is precisely the point: calling a model validated does not make it valid. Modelers and policymakers must continue to work toward finding effective ways to evaluate and judge the quality of their models, and to develop appropriate terminology to communicate these judgments to the public whose health and safety may be at stake. PMID:9860904

  13. Evaluation (not validation) of quantitative models.

    PubMed

    Oreskes, N

    1998-12-01

    The present regulatory climate has led to increasing demands for scientists to attest to the predictive reliability of numerical simulation models used to help set public policy, a process frequently referred to as model validation. But while model validation may reveal useful information, this paper argues that it is not possible to demonstrate the predictive reliability of any model of a complex natural system in advance of its actual use. All models embed uncertainties, and these uncertainties can and frequently do undermine predictive reliability. In the case of lead in the environment, we may categorize model uncertainties as theoretical, empirical, parametrical, and temporal. Theoretical uncertainties are aspects of the system that are not fully understood, such as the biokinetic pathways of lead metabolism. Empirical uncertainties are aspects of the system that are difficult (or impossible) to measure, such as actual lead ingestion by an individual child. Parametrical uncertainties arise when complexities in the system are simplified to provide manageable model input, such as representing longitudinal lead exposure by cross-sectional measurements. Temporal uncertainties arise from the assumption that systems are stable in time. A model may also be conceptually flawed. The Ptolemaic system of astronomy is a historical example of a model that was empirically adequate but based on a wrong conceptualization. Yet had it been computerized--and had the word then existed--its users would have had every right to call it validated. Thus, rather than talking about strategies for validation, we should be talking about means of evaluation. That is not to say that language alone will solve our problems or that the problems of model evaluation are primarily linguistic. The uncertainties inherent in large, complex models will not go away simply because we change the way we talk about them. But this is precisely the point: calling a model validated does not make it valid. Modelers and policymakers must continue to work toward finding effective ways to evaluate and judge the quality of their models, and to develop appropriate terminology to communicate these judgments to the public whose health and safety may be at stake. PMID:9860904

  14. A Quantitative Evaluation of Dissolved Oxygen Instrumentation

    NASA Technical Reports Server (NTRS)

    Pijanowski, Barbara S.

    1971-01-01

    The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.

  15. Nondestructive Evaluation (NDE) Results on Sikorsky Aircraft Survivable Affordable Reparable Airframe Program (SARAP) Samples

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Anastasi, Robert F.; Madaras, Eric I.

    2004-01-01

    The Survivable, Affordable, Reparable Airframe Program (SARAP) will develop/produce new structural design concepts with lower structural weight, reduced manufacturing complexity and development time, increased readiness, and improved threat protection. These new structural concepts will require advanced field capable inspection technologies to help meet the SARAP structural objectives. In the area of repair, damage assessment using nondestructive inspection (NDI) is critical to identify repair location and size. The purpose of this work is to conduct an assessment of new and emerging NDI methods that can potentially satisfy the SARAP program goals.

  16. Application of Advanced Nondestructive Evaluation Techniques for Cylindrical Composite Test Samples

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Roth, Donald J.; Salem, Jonathan A.

    2013-01-01

    Two nondestructive methods were applied to composite cylinder samples pressurized to failure in order to determine manufacturing quality and monitor damage progression under load. A unique computed tomography (CT) image processing methodology developed at NASA Glenn Research was used to assess the condition of the as-received samples while acoustic emission (AE) monitoring was used to identify both the extent and location of damage within the samples up to failure. Results show the effectiveness of both of these methods in identifying potentially critical fabrication issues and their resulting impact on performance.

  17. Development of Non-destructive Evaluation System Using an HTS-SQUID Gradiometer with an External Pickup Coil

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Kawauchi, S.; Ishikawa, F.; Tanabe, K.

    We are developing a new eddy-current non-destructive evaluation (NDE) system using a high-temperature superconducting quantum interference device (HTS-SQUID) gradiometer with the aim of applying it to power plants. Electric power facilities such as ducts and vessels are generally untransportable because of their size, and thus it is difficult to apply a conventional SQUID NDE system. The new NDE system employs an external Cu pickup coil which is supposed to be driven flexibly by a robot arm at room temperature and an HTS-SQUID chip which is placed in a magnetically shielded vessel. In the present research, we investigated the performance of an HTS-SQUID sensor connected with external pickup coils before mounting them to a robot arm. By varying the Cu coil conditions such as their sizes, the number of turns, and the diameter of wire, we qualitatively evaluated the frequency dependence of the effective area and the cutoff frequency.

  18. Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast

    USGS Publications Warehouse

    Whitbeck, M.; Grace, J.B.

    2006-01-01

    The estimation of aboveground biomass is important in the management of natural resources. Direct measurements by clipping, drying, and weighing of herbaceous vegetation are time-consuming and costly. Therefore, non-destructive methods for efficiently and accurately estimating biomass are of interest. We compared two non-destructive methods, visual obstruction and light penetration, for estimating aboveground biomass in marshes of the upper Texas, USA coast. Visual obstruction was estimated using the Robel pole method, which primarily measures the density and height of the canopy. Light penetration through the canopy was measured using a Decagon light wand, with readings taken above the vegetation and at the ground surface. Clip plots were also taken to provide direct estimates of total aboveground biomass. Regression relationships between estimated and clipped biomass were significant using both methods. However, the light penetration method was much more strongly correlated with clipped biomass under these conditions (R2 value 0.65 compared to 0.35 for the visual obstruction approach). The primary difference between the two methods in this situation was the ability of the light-penetration method to account for variations in plant litter. These results indicate that light-penetration measurements may be better for estimating biomass in marshes when plant litter is an important component. We advise that, in all cases, investigators should calibrate their methods against clip plots to evaluate applicability to their situation. ?? 2006, The Society of Wetland Scientists.

  19. Quantitative Percussion Diagnostics For Evaluating Bond Integrity Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott Leonard

    Conventional nondestructive testing (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was utilized based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Experimental results indicate that this technology is capable of detecting 'kiss' bonds (very low adhesive shear strength), caused by the application of release agents on the bonding surfaces, between flat composite laminates bonded together with epoxy adhesive. Specifically, the local value of the loss coefficient determined from quantitative percussion testing was found to be significantly greater for a release coated panel compared to that for a well bonded sample. Also, the local value of the probe force or force returned to the probe after impact was observed to be lower for the release coated panels. The increase in loss coefficient and decrease in probe force are thought to be due to greater internal friction during the percussion event for poorly bonded specimens. NDT standards were also fabricated by varying the cure parameters of an epoxy film adhesive. Results from QPD for the variable cure NDT standards and lap shear strength measurements taken of mechanical test specimens were compared and analyzed. Finally, experimental results have been compared to a finite element analysis to understand the visco-elastic behavior of the laminates during percussion testing. This comparison shows how a lower quality bond leads to a reduction in the percussion force by biasing strain in the percussion tested side of the panel.

  20. Survey over image thresholding techniques and quantitative performance evaluation

    E-print Network

    Aksoy, Selim

    image modalities for nondestructive testing NDT applications, such as ultrasonic images in Ref. 10, eddy thresholding methods from various categories are compared in the context of nondestructive testing applications the thresholding algorithms that perform uniformly better over nonde- structive testing and document image

  1. Nondestructive evaluation of mechanical and fracture characteristics of ferritic steels using automated ball identation testing

    SciTech Connect

    Murty, K.L.; Mathew, M.D.; Miraglia, P.Q.

    1997-12-01

    Mechanical properties of various ferritic steels commonly used for pressure boundary applications in light water reactors are characterized using a novel portable stress-strain microprobe (SSM) system. The SSM system utilizes an automated ball indentation (ABI) technique to measure yield strength, stress-strain curve, strength coefficient, and strain-hardening-exponent (uniform ductility). The technique is essentially nondestructive, albeit small indentations are left following the tests. These, however, leave surface compressive stresses that could actually retard crack initiation characteristics. The ABI-derived mechanical properties agreed with those obtained using conventional destructive tensile tests. To minimize specimen-to-specimen scatter, the grip/shoulder sections were used for ABI testing. In addition, the fracture properties are characterized in terms of a new fracture parameter, indentation energy to fracture (IEF), derived from the temperature variation of the true stress compared with true strain using the critical-stress-to-fracture concept.

  2. Electromagnetic Nondestructive Evaluation of Wire Insulation and Models of Insulation Material Properties

    NASA Technical Reports Server (NTRS)

    Bowler, Nicola; Kessler, Michael R.; Li, Li; Hondred, Peter R.; Chen, Tianming

    2012-01-01

    Polymers have been widely used as wiring electrical insulation materials in space/air-craft. The dielectric properties of insulation polymers can change over time, however, due to various aging processes such as exposure to heat, humidity and mechanical stress. Therefore, the study of polymers used in electrical insulation of wiring is important to the aerospace industry due to potential loss of life and aircraft in the event of an electrical fire caused by breakdown of wiring insulation. Part of this research is focused on studying the mechanisms of various environmental aging process of the polymers used in electrical wiring insulation and the ways in which their dielectric properties change as the material is subject to the aging processes. The other part of the project is to determine the feasibility of a new capacitive nondestructive testing method to indicate degradation in the wiring insulation, by measuring its permittivity.

  3. Rapid, non-destructive evaluation of ultrathin WSe{sub 2} using spectroscopic ellipsometry

    SciTech Connect

    Eichfeld, Sarah M.; Lin, Yu-Chuan; Hossain, Lorraine; Eichfeld, Chad M.; Robinson, Joshua A.

    2014-09-01

    The utilization of tungsten diselenide (WSe{sub 2}) in electronic and optoelectronic devices depends on the ability to understand and control the process-property relationship during synthesis. We demonstrate that spectroscopic ellipsometry is an excellent technique for accurate, non-destructive determination of ultra-thin (<30 nm) WSe{sub 2} properties. The refractive index (n) and extinction coefficient (k) were found to be independent of thickness down to 1.3 nm, and were used to determine film thickness, which was confirmed to be within 9% of values found via atomic force microscopy. Finally, the optical bandgap was found to closely correlate with thickness, ranging from 1.2 to 1.55 eV as the WSe{sub 2} is thinned to the equivalent of 2 atomic layers.

  4. J.H. Gieske, M.A. Rumsey, "Nondestructive Evaluation (Nde) Of Composite/Metal Bond Interface Of A Wind Turbine Blade Using An Acousto-Ultrasonic Technique," 1997 ASME Wind Energy

    E-print Network

    J.H. Gieske, M.A. Rumsey, "Nondestructive Evaluation (Nde) Of Composite/Metal Bond Interface/ASME, 1997, pp. 249-254. NONDESTRUCTIVE EVALUATION (NDE) OF COMPOSITE/METAL BOND INTERFACE OF A WIND TURBINE system provided an area mapping of the delamination or disbond due to fatigue testing, field operation

  5. Non-destructive evaluation means and method of flaw reconstruction utilizing an ultrasonic multi-viewing transducer data acquistion system

    DOEpatents

    Thompson, Donald O. (Ames, IA); Wormley, Samuel J. (Ames, IA)

    1989-03-28

    A multi-viewing ultrasound transducer acquisition system for non-destructive evaluation, flaw detection and flaw reconstruction in materials. A multiple transducer assembly includes a central transducer surrounded by a plurality of perimeter transducers, each perimeter transducer having an axis of transmission which can be angularly oriented with respect to the axis of transmission of the central transducer to intersect the axis of transmission of the central transducer. A control apparatus automatically and remotely positions the transducer assembly with respect to the material by a positioning apparatus and adjusts the pe GRANT REFERENCE This invention was conceived and reduced to practice at least in part under a grant from the Department of Energy under Contract No. W-7407-ENG-82.

  6. Simulation of transducer-couplant effects on broadband ultrasonic signals. [in nondestructive flaw evaluation and materials tests

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation of flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interface conditions encountered in ultrasonic transducer systems operating in the 20to 80-MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection.

  7. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    SciTech Connect

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R.

    2014-02-18

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger’s complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  8. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  9. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    NASA Astrophysics Data System (ADS)

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R.

    2014-02-01

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger's complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  10. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  11. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for digital radiographic (DR) test methods

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of digital X-ray imaging equipment by specifying image data transfer and archival methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitions, information modules and a ...

  12. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for X-ray computed tomography (CT) test methods

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of X-ray computed tomography (CT) imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitio...

  13. The falling weight deflectometer (FWD) test is one of the most com-monly used tools for nondestructive evaluation of flexible pavements.

    E-print Network

    Guzina, Bojan

    for nondestructive evaluation of flexible pavements. Although the test is intrinsically dynamic, the stateThe falling weight deflectometer (FWD) test is one of the most com- monly used tools in estimation of the pavement's stiffness characteristics. Because of the decided dynamic nature of the FWD test

  14. Quantitative non-destructive testing

    NASA Technical Reports Server (NTRS)

    Welch, C. S.

    1985-01-01

    The work undertaken during this period included two primary efforts. The first is a continuation of theoretical development from the previous year of models and data analyses for NDE using the Optical Thermal Infra-Red Measurement System (OPTITHIRMS) system, which involves heat injection with a laser and observation of the resulting thermal pattern with an infrared imaging system. The second is an investigation into the use of the thermoelastic effect as an effective tool for NDE. As in the past, the effort is aimed towards NDE techniques applicable to composite materials in structural applications. The theoretical development described produced several models of temperature patterns over several geometries and material types. Agreement between model data and temperature observations was obtained. A model study with one of these models investigated some fundamental difficulties with the proposed method (the primitive equation method) for obtaining diffusivity values in plates of thickness and supplied guidelines for avoiding these difficulties. A wide range of computing speeds was found among the various models, with a one-dimensional model based on Laplace's integral solution being both very fast and very accurate.

  15. Nondestructive measurement of environmental radioactive strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Totsuka, Yumi; Murata, Jiro

    2014-03-01

    The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days), Cs-134 (2.1 years), Cs-137 (30 years), Sr-89 (51 days), and Sr-90 (29 years). We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  16. Simultaneous sum-frequency and vibro-acoustography imaging for nondestructive evaluation and testing applications

    SciTech Connect

    Mitri, F. G.; Silva, G. T.; Greenleaf, J. F.; Fatemi, M.

    2007-12-01

    High-resolution ultrasound imaging systems for inspection of defects and flaws in materials are of great demand in many industries. Among these systems, Vibro-acoustography (VA) has shown excellent capabilities as a noncontact method for nondestructive high-resolution imaging applications. This method consists of mixing two confocal ultrasound beams, slightly shifted in frequency, to produce a dynamic (oscillatory) radiation force in the region of their intersection. This force vibrates the object placed at the focus of the confocal transducer. As a result of the applied force, an acoustic emission field at the difference frequency of the primary incident ultrasound beams is produced. In addition to the difference frequency acoustic emission signal, there exists another signal at the sum frequency, formed in the intersection region of the two primary beams. The goal of this study is to investigate the formation of high-resolution images using the sum frequency of ultrasound waves in VA while concurrently forming the conventional difference-frequency VA image, thereby increasing the amount of information acquired during a single scan. A theoretical model describing the sum-frequency wave propagation, including beam forming and image formation in the confocal configuration, is developed and verified experimentally. Moreover, sample experiments are performed on a flawed fiber-reinforced ceramic composite plate. Images at both the difference and sum frequencies are compared and discussed. Results show that the sum-frequency image produces a high-resolution C scan of the plate by which the flaws and structural details of the plate can be detected.

  17. Evaluating the Radiation From Accidental Exposure During a Nondestructive Testing Event.

    PubMed

    Ting, Chien-Yi; Wang, Hsin-Ell; Lin, Jao-Perng; Lin, Chun-Chih

    2015-08-01

    Industrial radiography is a common nondestructive testing (NDT) method used in various industries. An investigation was conducted for a 1999 incident in Taiwan where two workers (Operators A and B) were accidently exposed to an unshielded Ir source while conducting industrial radiography. Operators A and B experienced acute close-range radiation exposure to a source of Ir for 3 h at a strength of 2.33 × 10 Bq. The health of mammary glands, bone marrow, thyroid glands, eyes, and genital organs of these two workers after radiation exposure was examined. Subsequently, Operator A experienced severe radiation injury, including tissue necrosis and keratinization in the fingers, chromosomal abnormalities, reduced blood cell count, diffuse hyperplasia of the thyroid gland, opaque spots in the crystalline lens, and related radiation effects. The results showed that the left index finger and thumb, eyes, and gonads of Operator A were exposed to a radiation dose of about 369-1,070, 23.1-67.4, 2.4-5.3, and 4.2-11.6 Gy, respectively. Effective dose for Operator A was estimated to range from 6.9 to 18.9 Sv. The left fingers, thumb, eyes, and gonads of Operator B were exposed to a radiation dose of 184.9-646.2, 11.8-40.7, 0.49-3.33, and 0.72-7.18 Gy, respectively, and his effective dose was between 2.5 and 11.5 Sv. This accident indicated a major flaw in the control and regulation of radiation safety for conducting NDT industrial radiography in 1999; however, similar problems still exist. Modifications of the Ionizing Radiation Protection Act in Taiwan are suggested in this study to regulate the management of NDT industries, continually educate the NDT workers in radiation safety, and enact notification provisions for medical care systems toward acute radiation exposure events. PMID:26107437

  18. Waterless Coupling of Ultrasound from Planar Contact Transducers to Curved and Irregular Surfaces during Non-destructive Ultrasonic Evaluations

    SciTech Connect

    Denslow, Kayte M.; Diaz, Aaron A.; Jones, Anthony M.; Meyer, Ryan M.; Cinson, Anthony D.; Wells, Mondell D.

    2012-04-30

    The Applied Physics group at the Pacific The Applied Physics group at the Pacific Northwest National Laboratory (PNNL) in Richland, WA has evaluated a method for waterless/liquidless coupling of ultrasonic energy from planar ultrasonic contact transducers to irregular test surfaces for ultrasonic non-destructive evaluation applications. Dry couplant material placed between a planar transducer face and a curved or uneven steel or plastic surface allows for effective sound energy coupling and preserves the integrity of the planar transducer sound field by serving as an acoustic impedance matching layer, providing good surface area contact between geometrically dissimilar surfaces and conforming to rough and unsmooth surfaces. Sound fields radiating from planar ultrasonic contact transducers coupled to curved and uneven surfaces using the dry coupling method were scanned and mapped using a Pinducer receiver connected to a raster scanner. Transducer sound field coverage at several ultrasonic frequencies and several distances from the transducer contact locations were found to be in good agreement with theoretical beam divergence and sound field coverage predictions for planar transducers coupled to simple, planar surfaces. This method is valuable for applications that do not allow for the use of traditional liquid-based ultrasonic couplants due to the sensitivity of the test materials to liquids and for applications that might otherwise require curved transducers or custom coupling wedges. The selection of dry coupling material is reported along with the results of theoretical sound field predictions, the laboratory testing apparatus and the empirical sound field data.

  19. A model-based method for the characterisation of stress in magnetic materials using eddy current non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Dahia, Abla; Berthelot, Eric; Le Bihan and, Yann; Daniel, Laurent

    2015-03-01

    A precise knowledge of the distribution of internal stresses in materials is key to the prediction of magnetic and mechanical performance and lifetime of many industrial devices. This is the reason why many efforts have been made to develop and enhance the techniques for the non-destructive evaluation of stress. In the case of magnetic materials, the use of eddy current (EC) techniques is a promising pathway to stress evaluation. The principle is based on the significant changes in magnetic permeability of magnetic materials subjected to mechanical stress. These modifications of magnetic permeability affect in turn the signal obtained from an EC probe inspecting the material. From this principle, a numerical tool is proposed in this paper to predict the EC signal obtained from a material subjected to stress. This numerical tool is a combination of a 3D finite element approach with a magneto-mechanical constitutive law describing the effect of stress on the magnetic permeability. The model provides the variations of impedance of an EC probe as a function of stress. An experimental setup in which a magnetic material subjected to a tension stress is inspected using EC techniques is tailored in order to validate the model. A very good agreement is found between experimental and modelling results. For the Iron-Cobalt alloy tested in this study, it is shown that a uniaxial tensile stress can be detected with an error lower than 3?MPa in the range from 0 to 100?MPa.

  20. Reference Specimen for Nondestructive Evaluation: Characterization of the Oxide Layer of a Cold Shot in Inconel 600

    NASA Astrophysics Data System (ADS)

    Saletes, I.; Filleter, T.; Goldbaum, D.; Chromik, R. R.; Sinclair, A. N.

    2015-02-01

    The presence of a cold shot in an aircraft turbine blade can lead to the catastrophic failure of the blade and ultimately to the failure of the power plant. Currently, no nondestructive evaluation (NDE) method exists to detect this kind of defect. This deficiency is primarily due to the fact that the only known cold shot defects in existence are those found in failed blades. Therefore, in order to develop effective NDE methods, reference specimens are needed which mimic the embedded oxide layer that is a primary distinguishing feature of a cold shot. Here, we present a procedure to synthetically reproduce the features of a real cold shot in Inconel 600 and the precise characterization of this oxide layer as a reference specimen suitable for NDE evaluation. As a first step to develop a suitable NDE technique, high-frequency ultrasound simulations are considered. A theoretical 1-D model is developed in order to quantify the multiple reflection-transmission trajectory of the acoustic wave in the reference specimen. This paper also presents an experimental determination of the density and the Young's modulus of the Inconel 600 oxide, which are required as inputs to calculate the acoustic impedance used in the theoretical model.

  1. Automatic quantitative evaluation of emotions in E-learning applications.

    PubMed

    Scotti, Stefano; Mauri, Maurizio; Barbieri, Riccardo; Jawad, Bassam; Cerutti, Sergio; Mainardi, Luca; Brown, Emery N; Villamira, Marco A

    2006-01-01

    The long term goal of our research is to develop a tool for recognizing human emotions during e-learning processes. This could be accomplished by combining quantitative indexes extracted from non-invasive recordings of four physiological signals: namely skin conductance, blood volume pulse, electrocardiogram and electroencephalogram. Wearable, non-invasive sensors, communicating with a PC, were applied to 30 students and data were collected during exposure to three different computer-mediated content stimuli designed to evoke specific emotional states: stress, relaxation and engagement. In this paper we describe both the general emotion evaluation algorithm, and present a preliminary results suggesting that some of the quantitative indexes may be successful in characterizing and distinguishing between the three different emotional states. PMID:17946457

  2. Nondestructive Evaluation of Strain Distribution and Fatigue Distribution from Austenitic Stainless Steel by Using Magnetic Sensors

    SciTech Connect

    Tsuchida, Y.; Enokizono, M.; Oka, M.; Yakushiji, T.

    2007-03-21

    Austenitic stainless steel transforms from austenitic crystal structure to martensitic crystal structure after applying strain or stress. Because martensitic crystal structures have magnetization, strain evaluation and fatigue evaluation can be performed by measuring magnetic properties. This paper describes the measurement of leakage magnetic flux density of remanent magnetization for the strain evaluation and the fatigue evaluation by a typical Hall element sensor for SUS 304 and SUS 304L and by a high-sensitivity thin-film flux-gate magnetic sensor for SUS 316 and SUS 316L.

  3. Nondestructive Evaluation of Strain Distribution and Fatigue Distribution from Austenitic Stainless Steel by Using Magnetic Sensors

    NASA Astrophysics Data System (ADS)

    Tsuchida, Y.; Oka, M.; Yakushiji, T.; Enokizono, M.

    2007-03-01

    Austenitic stainless steel transforms from austenitic crystal structure to martensitic crystal structure after applying strain or stress. Because martensitic crystal structures have magnetization, strain evaluation and fatigue evaluation can be performed by measuring magnetic properties. This paper describes the measurement of leakage magnetic flux density of remanent magnetization for the strain evaluation and the fatigue evaluation by a typical Hall element sensor for SUS 304 and SUS 304L and by a high-sensitivity thin-film flux-gate magnetic sensor for SUS 316 and SUS 316L.

  4. A quantitative method for evaluating numerical simulation accuracy of time-transient Lamb wave propagation with its applications to selecting appropriate element size and time step.

    PubMed

    Wan, Xiang; Xu, Guanghua; Zhang, Qing; Tse, Peter W; Tan, Haihui

    2016-01-01

    Lamb wave technique has been widely used in non-destructive evaluation (NDE) and structural health monitoring (SHM). However, due to the multi-mode characteristics and dispersive nature, Lamb wave propagation behavior is much more complex than that of bulk waves. Numerous numerical simulations on Lamb wave propagation have been conducted to study its physical principles. However, few quantitative studies on evaluating the accuracy of these numerical simulations were reported. In this paper, a method based on cross correlation analysis for quantitatively evaluating the simulation accuracy of time-transient Lamb waves propagation is proposed. Two kinds of error, affecting the position and shape accuracies are firstly identified. Consequently, two quantitative indices, i.e., the GVE (group velocity error) and MACCC (maximum absolute value of cross correlation coefficient) derived from cross correlation analysis between a simulated signal and a reference waveform, are proposed to assess the position and shape errors of the simulated signal. In this way, the simulation accuracy on the position and shape is quantitatively evaluated. In order to apply this proposed method to select appropriate element size and time step, a specialized 2D-FEM program combined with the proposed method is developed. Then, the proper element size considering different element types and time step considering different time integration schemes are selected. These results proved that the proposed method is feasible and effective, and can be used as an efficient tool for quantitatively evaluating and verifying the simulation accuracy of time-transient Lamb wave propagation. PMID:26315506

  5. Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Since the 1970's, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the microscopic level, NDE investigations interrogated composites at the submicron to micron level to understand a composite's microstructure. A novel microfocus CT system was developed as well as the science underlying applications of acoustic microscopy to a composite's component material properties. On the macroscopic scale NDE techniques were developed that advanced the capabilities to be faster and more quantitative. Techniques such as stiffness imaging, ultrasonic arrays, laser based ultrasound, advanced acoustic emission, thermography, and novel health monitoring systems were researched. Underlying these methods has been a strong modeling capability that has aided in method development.

  6. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm-1 to 68 cm-1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  7. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  8. Improved detection of rough defects for ultrasonic nondestructive evaluation inspections based on finite element modeling of elastic wave scattering.

    PubMed

    Pettit, James R; Walker, Anthony E; Lowe, Michael J S

    2015-10-01

    Defects which possess rough surfaces greatly affect ultrasonic wave scattering behavior, usually reducing the magnitude of reflected signals. Understanding and accurately predicting the influence of roughness on signal amplitudes is crucial, especially in nondestructive evaluation (NDE) for the inspection of safety-critical components. An extension of Kirchhoff theory has formed the basis for many practical applications; however, it is widely recognized that these predictions are pessimistic because of analytical approximations. A numerical full-field modeling approach does not fall victim to such limitations. Here, a finite element (FE) modeling approach is used to develop a realistic methodology for the prediction of expected backscattering from rough defects. The ultrasonic backscatter from multiple rough surfaces defined by the same statistical class is calculated for normal and oblique incidence. Results from FE models are compared with Kirchhoff theory predictions and experimental measurements to establish confidence in the new approach. At lower levels of roughness, excellent agreement is observed between Kirchhoff theory, FE, and experimental data, whereas at higher values, the pessimism of Kirchhoff theory is confirmed. An important distinction is made between the total, coherent, and diffuse signals and it is observed, significantly, that the total signal amplitude is representative of the information obtained during an inspection. This analysis provides a robust basis for a less sensitive, yet safe, threshold for inspection of rough defects. PMID:26470042

  9. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A; Matlack, Katie; Ramuhalli, Pradeep; Light, Glenn

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  10. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    SciTech Connect

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-25

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm{sup -1} to 68 cm{sup -1} to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100 Degree-Sign C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  11. Simulation Evaluation of Quantitative Myocardial Perfusion Assessment from Cardiac CT.

    PubMed

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R; La Riviere, Patrick J; Alessio, Adam M

    2014-03-19

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ?0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ?1.2 and ?1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial blood flow estimation. In conclusion, quantitative model-based dynamic cardiac CT perfusion assessment is capable of accurately estimating MBF across a range of cardiac outputs and tissue perfusion states, outperforms comparable static perfusion estimates, and is relatively robust to noise and temporal subsampling. PMID:25395812

  12. Paper submitted December 1986 In most nondestructive evaluation (NDE) applications, the

    E-print Network

    Saniie, Jafar

    (f) where 0 transducer,A is a weighing- cause the transducer transfer function H(/) has a bandpass spectmm as shown in Figure 1, the received Ultrasonic evaluation of metals is impaired by the presence of grains that inhoduce unwanted echoes

  13. Nondestructive evaluation of the parameters of silicon epitaxial structures by longwave spectroscopy

    SciTech Connect

    Kopylov, A.A.; Tel`pov, S.E.

    1995-11-01

    Results are presented from theoretical and experimental studies into the development of effective methods of evaluating the parameters of microelectronics materials on the basis of longwave infrared Fourier spectroscopy. Layer thickness are determined and estimates are made of the concentrations and mobilities of charge carriers in the substrate. The metrological characteristics of the method are substantiated in experimental studies of silicon structures.

  14. NONDESTRUCTIVE EVALUATION OF IN VITRO-STORED PLANTS: A COMPARISON OF VISUAL AND IMAGE ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro plants in slow-growth storage require routine evaluation for assessment of viability and timing of repropagation. Determination of plantlet health by visual assessment is subjective and varies by genus due to variations in growth pattern and plant structure. Developing a standardized syste...

  15. Instrumented objects for quantitative evaluation of hand grasp.

    PubMed

    Memberg, W D; Crago, P E

    1997-01-01

    Two instrumented objects have been developed for quantitative assessment of functional tasks performed with the hand. These objects are useful for assessing neuroprosthetic hand grasp systems, and may also be useful in evaluating a variety of other upper limb disabilities and rehabilitation techniques. One object monitors grasp forced and object orientation during palmar prehension, allowing simulation of a drinking task or of manipulating a book. The second object monitors grasp force during lateral prehension for simulating eating or writing tasks. The two objects provide tools to analyze how a subject uses a hand grasp neuroprosthesis to perform activities of daily living. The objects will also be useful in comparing different methods of controlling the neuroprosthesis and in evaluating future changes in the neuroprosthetic system. Assessment trials with these two instrumented objects were performed quickly in an outpatient clinic setting. PMID:9021628

  16. A System of Quantitative Evaluation of the Weld Bead

    NASA Astrophysics Data System (ADS)

    Terada, Kenji; Yamato, Kazuhiro; Miyahara, Hiroyuki; Ohta, Shohei

    The welding is the important basic technology of joining two materials together. The quality is influenced in the skill of the personwho carried out the welding. Therefore, the welding license examination and the welding skill contest are carried out in each prefecture. The judge checks the height and width of the welding bead by using caliper whether it has satisfied the standard value. In addition, the beauty is evaluated and the score is decided by the visual observation. Therefore if the judge is different, it is different in the decision for the same weld bead. In this paper, the authors propose a system of quantitative evaluation of the welding bead by using three-dimensional data obtained by the slit light projecting method.

  17. Risperidone solid dispersion for orally disintegrating tablet: its formulation design and non-destructive methods of evaluation.

    PubMed

    Rahman, Ziyaur; Zidan, Ahmed S; Khan, Mansoor A

    2010-11-15

    The focus of present investigation was to assess the utility of non-destructive techniques in the evaluation of risperidone solid dispersions (SD) with methyl-?-cyclodextrin (MBCD) and subsequent incorporation of the SD into orally disintegrating tablets (ODT) for a faster release of risperidone. The SD was prepared by a solvent evaporation method and evaluated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), near infrared spectroscopy (NIR), NIR-chemical imaging (NIR-CI), powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). DSC and XRD analysis indicated that crystallinity of SD has reduced significantly. FTIR showed no interaction between risperidone and MBCD. Partial least square (PLS) was applied to the NIR data for the construction of chemometric models to determine both components of the SD. Good correlations were obtained for calibration and prediction as indicated by correlation coefficients >0.9965. The model was more accurate and less biased in predicting the MBCD than risperidone as indicated by its lower mean accuracy and mean bias values. SD-3 (risperidone:MBCD, 1:3) was incorporated into ODT tablets containing diluent (D-mannitol, FlowLac(®) 100 or galenIQ™-721) and superdisintegrant (Kollidon(®) CL-SF, Ac-Di-Sol or sodium starch glycolate). Disintegration time, T(50) and T(90) were decreased in the formulations containing mannitol and Kollidon(®) CL-SF, but increased with galenIQ™-721 and sodium starch glycolate, respectively. NIR-CI images confirmed the homogeneity of SD and ODT formulations. PMID:20801200

  18. Relationship between non-destructive OCT evaluation of resins composites and bond strength in a cavity

    NASA Astrophysics Data System (ADS)

    Bakhsh, T. A.; Sadr, A.; Shimada, Y.; Khunkar, S.; Tagami, J.; Sumi, Y.

    2012-01-01

    Objectives: Formation of microgaps under the composite restorations due to polymerization stress and other causes compromise the adhesion to the dental substrate and restoration durability. However, the relationship between cavity adaptation and bond strength is not clear. In this paper, we introduce a new testing method to assess cavity adaptation by swept-source optical coherence tomography (SS-OCT) and microtensile bond strength (MTBS) in the same class-I cavity. Methods: Round class-I cavities 3 mm in diameter and 1.5 mm in depth were prepared on 10 human premolars. After application of Tokuyama Bond Force adhesive, the cavities were filled by one of the two techniques; incremental technique using Estelite Sigma Quick universal composite or flowable lining using Palfique Estelite LV with bulk filling using the universal composite. Ten serial B-scan images were obtained throughout each cavity by SS-OCT. Significant peaks in the signal intensity were detected at the bonded interface of the cavity floor and to compare the different filling techniques. The specimens were later cut into beams (0.7x0.7 mm) and tested to measure MTBS at the cavity floor. Results: Flowable lining followed by bulk filling was inferior in terms of cavity adaptation and MTBS compared to the incremental technique (p<0.05, t-test). The adaptation (gap free cavity floor) and MTBS followed similar trends in both groups. Conclusion: Quantitative assessment of dental restorations by OCT can provide additional information on the performance and effectiveness of dental composites and restoration techniques. This study was supported by Global Center of Excellence, Tokyo Medical and Dental University and King Abdulaziz University.

  19. Image correlation nondestructive evaluation of impact damage in a glass fiber composite

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.

    1990-01-01

    Presented in viewgraph format, digital image correlation, damage in fibrous composites, and damaged coupons (cross-ply scotchply GI-Ep laminate) are outlined. It was concluded that the image correlation accuracy was 0.03 percent; strains can be processed through Tsai-Hill failure criteria to qualify the damage; the statistical data base must be generated to evaluate certainty of the damage estimate; size effects need consideration; and better numerical techniques are needed.

  20. Monitoring of Reinforced Concrete Corrosion and Deterioration by Periodic Multi-Sensor Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Arndt, R. W.; Cui, J.; Huston, D. R.

    2011-06-01

    The paper showcases a collaborative benchmark project evaluating NDE methods for deterioration monitoring of laboratory bridge decks. The focus of this effort is to design and build concrete test specimens, artificially induce and monitor corrosion, periodically perform multi-sensor NDE inspections, followed by 3D imaging and destructive validations. NDE methods used include ultrasonic echo array, ground penetrating radar (GPR), active infrared thermography with induction heating, and time-resolved thermography with induction heating.

  1. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOEpatents

    Bible, Don W. (Clinton, TN); Crutcher, Richard I. (Knoxville, TN); Sohns, Carl W. (Oak Ridge, TN); Maddox, Stephen R. (Loudon, TN)

    1995-01-01

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.

  2. Geometrical optimization of sensors for eddy currents nondestructive testing and evaluation

    SciTech Connect

    Thollon, F.; Burais, N.

    1995-05-01

    Design of Non Destructive Testing (NDT) and Non Destructive Evaluation (NDE) sensors is possible by solving Maxwell`s relations with FEM or BIM. But the large number of geometrical and electrical parameters of sensor and tested material implies many results that don`t give necessarily a well adapted sensor. The authors have used a genetic algorithm for automatic optimization. After having tested this algorithm with analytical solution of Maxwell`s relations for cladding thickness measurement, the method has been implemented in finite element package.

  3. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOEpatents

    Bible, D.W.; Crutcher, R.I.; Sohns, C.W.; Maddox, S.R.

    1995-01-24

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member. 6 figures.

  4. Voluntary Consensus Organization Standards for Nondestructive Evaluation of Thin-Walled Metallic Liners and Composite Overwraps in Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing and Materials (ASTM) Committee E07 on Nondestructive Testing. Similarly, in 2006 the NASA Engineering and Safety Center (NESC) recommended that nondestructive evaluation methods that can predict composite failure in COPVs should be developed and verified, and integrated into the damage control plan for these vessels

  5. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled 'Instrumentation and Quantitative Methods of Evaluation.' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  6. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    SciTech Connect

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  7. A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation.

    PubMed

    Fan, Chengguang; Caleap, Mihai; Pan, Mengchun; Drinkwater, Bruce W

    2014-09-01

    In this paper the total focusing method, the so called gold standard in classical beamforming, is compared with the widely used time-reversal MUSIC super resolution technique in terms of its ability to resolve closely spaced scatterers in a solid. The algorithms are tested with simulated and experimental array data, each containing different noise levels. The performance of the algorithms is evaluated in terms of lateral resolution and sensitivity to noise. It is shown that for the weak noise situation (SNR>20 dB), time-reversal MUSIC provides significantly enhanced lateral resolution when compared to the total focusing method, breaking the diffraction limit. However, for higher noise levels, the total focusing method is shown to be robust, whilst the performance of time-reversal MUSIC is degraded. The influence of multiple scattering on the imaging algorithms is also investigated and shown to be small. PMID:24457032

  8. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-02-01

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  9. Prototype ultrasonic instrument for quantitative testing

    NASA Technical Reports Server (NTRS)

    Lynworth, L. C.; Dubois, J. L.; Kranz, P. R.

    1973-01-01

    Ultrasonic instrument has been developed for use in quantitative nondestructive evaluation of material defects such as cracks, voids, inclusions, and unbonds. Instrument is provided with standard pulse source and transducer for each frequency range selected and includes integral aids that allow calibration to prescribed standards.

  10. Nondestructive analysis and development

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  11. Nondestructive Evaluation of Submicron Delaminations at Polymer/Metal Interface in Flex Circuits

    NASA Astrophysics Data System (ADS)

    Nalladega, Vijayaraghava; Sathish, Shamachary; Brar, Amarjit S.

    2006-03-01

    The dimensions of the defects in micro-electronic components have reached the resolution limit of many traditional quality control instruments. As the sizes of the components are reaching a few hundred microns, the life of the components will be limited by defects of submicron dimensions. In this regard, there is a need for development of new NDE techniques to detect submicron defects. In this paper we examine the use of combined Atomic Force Microscopy (AFM) and Ultrasonic Force Microscopy (UFM) to evaluate submicron and nanometer size delaminations at the polymer-metal interface of a flex circuit. Surface topography images obtained using atomic force microscopy is compared with ultrasonic force microscopy images obtained on the same region of the flex circuits. The contrast in the UFM images show detailed features of delaminations present at the polymer/metal interface. It also reveals the microstructure of copper sandwiched between two polymer layers. Experiments were performed to image the growth and evolution of delaminations while a constant current is passed through the copper conductor. Results of microstructure of copper through a polymer layer and growth of delaminations are presented. The role of the two microscopes as a quality-control tool in micro-electronics and computer industries is discussed.

  12. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  13. 3D Ultrasonic Non-destructive Evaluation of Spot Welds Using an Enhanced Total Focusing Method

    NASA Astrophysics Data System (ADS)

    Jasiuniene, Elena; Samaitis, Vykintas; Mazeika, Liudas; Sanderson, Ruth

    2015-02-01

    Spot welds are used to join sheets of metals in the automotive industry. When spot weld quality is evaluated using conventional ultrasonic manual pulse-echo method, the reliability of the inspection is affected by selection of the probe diameter and the positioning of the probe in the weld center. The application of a 2D matrix array is a potential solution to the aforementioned problems. The objective of this work was to develop a signal processing algorithm to reconstruct the 3D spot weld volume showing the size of the nugget and the defects in it. In order to achieve this, the conventional total focusing method was enhanced by taking into account the directivities of the single elements of the array and the divergence of the ultrasonic beam due to the propagation distance. Enhancements enabled a reduction in the background noise and uniform sensitivity at different depths to be obtained. The proposed algorithm was verified using a finite element model of ultrasonic wave propagation simulating three common spot weld conditions: a good weld, an undersized weld, and a weld containing a pore. The investigations have demonstrated that proposed method enables the determination of the size of the nugget and detection of discontinuities.

  14. Comparison of methods for quantitative evaluation of endoscopic distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Castro, Kurt; Desai, Viraj N.; Cheng, Wei-Chung; Pfefer, Joshua

    2015-03-01

    Endoscopy is a well-established paradigm in medical imaging, and emerging endoscopic technologies such as high resolution, capsule and disposable endoscopes promise significant improvements in effectiveness, as well as patient safety and acceptance of endoscopy. However, the field lacks practical standardized test methods to evaluate key optical performance characteristics (OPCs), in particular the geometric distortion caused by fisheye lens effects in clinical endoscopic systems. As a result, it has been difficult to evaluate an endoscope's image quality or assess its changes over time. The goal of this work was to identify optimal techniques for objective, quantitative characterization of distortion that are effective and not burdensome. Specifically, distortion measurements from a commercially available distortion evaluation/correction software package were compared with a custom algorithm based on a local magnification (ML) approach. Measurements were performed using a clinical gastroscope to image square grid targets. Recorded images were analyzed with the ML approach and the commercial software where the results were used to obtain corrected images. Corrected images based on the ML approach and the software were compared. The study showed that the ML method could assess distortion patterns more accurately than the commercial software. Overall, the development of standardized test methods for characterizing distortion and other OPCs will facilitate development, clinical translation, manufacturing quality and assurance of performance during clinical use of endoscopic technologies.

  15. A quantitative evaluation of the public response to climate engineering

    NASA Astrophysics Data System (ADS)

    Wright, Malcolm J.; Teagle, Damon A. H.; Feetham, Pamela M.

    2014-02-01

    Atmospheric greenhouse gas concentrations continue to increase, with CO2 passing 400 parts per million in May 2013. To avoid severe climate change and the attendant economic and social dislocation, existing energy efficiency and emissions control initiatives may need support from some form of climate engineering. As climate engineering will be controversial, there is a pressing need to inform the public and understand their concerns before policy decisions are taken. So far, engagement has been exploratory, small-scale or technique-specific. We depart from past research to draw on the associative methods used by corporations to evaluate brands. A systematic, quantitative and comparative approach for evaluating public reaction to climate engineering is developed. Its application reveals that the overall public evaluation of climate engineering is negative. Where there are positive associations they favour carbon dioxide removal (CDR) over solar radiation management (SRM) techniques. Therefore, as SRM techniques become more widely known they are more likely to elicit negative reactions. Two climate engineering techniques, enhanced weathering and cloud brightening, have indistinct concept images and so are less likely to draw public attention than other CDR or SRM techniques.

  16. Instrumentation, Nondestructive Testing, and Finite-Element Model Updating for Bridge

    E-print Network

    Hines, Eric

    Instrumentation, Nondestructive Testing, and Finite-Element Model Updating for Bridge Evaluation was developed for bridge management and calibration using nondestructive test data. The model calibration: Bridges; Superstructures; Full-scale tests; Field tests; Nondestructive tests; Strain; Measurement; Finite

  17. Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru

    2014-06-01

    The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-K? radiation with the sin2? method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, ?1m, and perpendicular to the fiber direction, ?2m, and shear stress ?12m can be expressed as the functions of the applied (macro-) stresses, ?1A, ?2A , ?12A as follows: ?1m = ?11?1A +?12?2A, ?2m = ?21?1A + ?22?2A, ?12m = ?66?12A, where ?11 ,?12, ?21, ?22, ?66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.

  18. [Clinical evaluation of a novel HBsAg quantitative assay].

    PubMed

    Takagi, Kazumi; Tanaka, Yasuhito; Naganuma, Hatsue; Hiramatsu, Kumiko; Iida, Takayasu; Takasaka, Yoshimitsu; Mizokami, Masashi

    2007-07-01

    The clinical implication of the hepatitis B surface antigen (HBsAg) concentrations in HBV-infected individuals remains unclear. The aim of this study was to evaluate a novel fully automated Chemiluminescence Enzyme Immunoassay (Sysmex HBsAg quantitative assay) by comparative measurements of the reference serum samples versus two independent commercial assays (Lumipulse f or Architect HBsAg QT). Furthermore, clinical usefulness was assessed for monitoring of the serum HBsAg levels during antiviral therapy. A dilution test using 5 reference-serum samples showed linear correlation curve in range from 0.03 to 2,360 IU/ml. The HBsAg was measured in total of 400 serum samples and 99.8% had consistent results between Sysmex and Lumipulse f. Additionally, a positive linear correlation was observed between Sysmex and Architect. To compare the Architect and Sysmex, both methods were applied to quantify the HBsAg in serum samples with different HBV genotypes/subgenotypes, as well as in serum contained HBV vaccine escape mutants (126S, 145R). Correlation between the methods was observed in results for escape mutants and common genotypes (A, B, C) in Japan. Observed during lamivudine therapy, an increase in HBsAg and HBV DNA concentrations preceded the aminotransferase (ALT) elevation associated with drug-resistant HBV variant emergence (breakthrough hepatitis). In conclusion, reliability of the Sysmex HBsAg quantitative assay was confirmed for all HBV genetic variants common in Japan. Monitoring of serum HBsAg concentrations in addition to HBV DNA quantification, is helpful in evaluation of the response to lamivudine treatment and diagnosis of the breakthrough hepatitis. PMID:17718057

  19. Quantitative genetic activity graphical profiles for use in chemical evaluation

    SciTech Connect

    Waters, M.D.; Stack, H.F.; Garrett, N.E.; Jackson, M.A.

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  20. Evaluation of a virucidal quantitative carrier test for surface disinfectants.

    PubMed

    Rabenau, Holger F; Steinmann, Jochen; Rapp, Ingrid; Schwebke, Ingeborg; Eggers, Maren

    2014-01-01

    Surface disinfectants are part of broader preventive strategies preventing the transmission of bacteria, fungi and viruses in medical institutions. To evaluate their virucidal efficacy, these products must be tested with appropriate model viruses with different physico-chemical properties under conditions representing practical application in hospitals. The aim of this study was to evaluate a quantitative carrier assay. Furthermore, different putative model viruses like adenovirus type 5 (AdV-5) and different animal parvoviruses were evaluated with respect to their tenacity and practicability in laboratory handling. To evaluate the robustness of the method, some of the viruses were tested in parallel in different laboratories in a multi-center study. Different biocides, which are common active ingredients of surface disinfectants, were used in the test. After drying on stainless steel discs as the carrier, model viruses were exposed to different concentrations of three alcohols, peracetic acid (PAA) or glutaraldehyde (GDA), with a fixed exposure time of 5 minutes. Residual virus was determined after treatment by endpoint titration. All parvoviruses exhibited a similar stability with respect to GDA, while AdV-5 was more susceptible. For PAA, the porcine parvovirus was more sensitive than the other parvoviruses, and again, AdV-5 presented a higher susceptibility than the parvoviruses. All parvoviruses were resistant to alcohols, while AdV-5 was only stable when treated with 2-propanol. The analysis of the results of the multi-center study showed a high reproducibility of this test system. In conclusion, two viruses with different physico-chemical properties can be recommended as appropriate model viruses for the evaluation of the virucidal efficacy of surface disinfectants: AdV-5, which has a high clinical impact, and murine parvovirus (MVM) with the highest practicability among the parvoviruses tested. PMID:24475079

  1. Structural Anomalies Detected in Ceramic Matrix Composites Using Combined Nondestructive Evaluation and Finite Element Analysis (NDE and FEA)

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2003-01-01

    Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.

  2. The Assess-and-Fix Approach: Using Non-Destructive Evaluations to Help Select Pipe Renewal Methods

    EPA Science Inventory

    Nondestructive examinations (NDE) can be easily performed as part of a typical water main rehabilitation project. Once a bypass water system has been installed and the water main has been cleaned, pulling a scanning tool through the main is very straightforward. An engineer can t...

  3. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  4. Nondestructive quantitative mapping of impurities and point defects in thin films: Ga and V{sub Zn} in ZnO:Ga

    SciTech Connect

    Look, David C.; Leedy, Kevin D.; Agresta, Donald L.

    2014-06-16

    Ga-doped ZnO (GZO) films grown by pulsed-laser deposition on quartz and other lattice-mismatched substrates can routinely attain resistivities of 2?×?10{sup ?4} ?·cm and thus compete with Sn-doped In{sub 2}O{sub 3} (ITO) in large-area transparent-electrode applications. Nondestructive, high-resolution (1-mm) maps of thickness d, concentration n, and mobility ? on such films can be obtained automatically from commercial spectroscopic ellipsometers. From n and ?, degenerate-electron scattering theory yields donor N{sub D} and acceptor N{sub A} concentrations at each point. Finally, N{sub D} and N{sub A} can be identified as [Ga] and [V{sub Zn}], respectively, demonstrating high-density mapping of impurities and point defects in a semiconductor thin film.

  5. Quantitative Measures for Evaluation of Ultrasound Therapies of the Prostate

    NASA Astrophysics Data System (ADS)

    Kobelevskiy, Ilya; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2010-03-01

    Development of non-invasive techniques for prostate cancer treatment requires implementation of quantitative measures for evaluation of the treatment results. In this paper. we introduce measures that estimate spatial targeting accuracy and potential thermal damage to the structures surrounding the prostate. The measures were developed for the technique of treating prostate cancer with a transurethral ultrasound heating applicators guided by active MR temperature feedback. Variations of ultrasound element length and related MR imaging parameters such as MR slice thickness and update time were investigated by performing numerical simulations of the treatment on a database of ten patient prostate geometries segmented from clinical MR images. Susceptibility of each parameter configuration to uncertainty in MR temperature measurements was studied by adding noise to the temperature measurements. Gaussian noise with zero mean and standard deviation of 0, 1, 3 and 5° C was used to model different levels of uncertainty in MR temperature measurements. Results of simulations for each parameter configuration were averaged over the database of the ten prostate patient geometries studied. Results have shown that for update time of 5 seconds both 3- and 5-mm elements achieve appropriate performance for temperature uncertainty up to 3° C, while temperature uncertainty of 5° C leads to noticeable reduction in spatial accuracy and increased risk of damaging rectal wall. Ten-mm elements lacked spatial accuracy and had higher risk of damaging rectal wall compared to 3- and 5-mm elements, but were less sensitive to the level of temperature uncertainty. The effect of changing update time was studied for 5-mm elements. Simulations showed that update time had minor effects on all aspects of treatment for temperature uncertainty of 0° C and 1° C, while temperature uncertainties of 3° C and 5° C led to reduced spatial accuracy, increased potential damage to the rectal wall, and longer treatment times for update time above 5 seconds. Overall evaluation of results suggested that 5-mm elements showed best performance under physically reachable MR imaging parameters.

  6. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  7. Visualizing Industrial CT Volume Data for Nondestructive Testing Applications

    E-print Network

    Ma, Kwan-Liu

    Visualizing Industrial CT Volume Data for Nondestructive Testing Applications Runzhen Huang Kwan, interac- tive visualization, nondestructive testing and evaluation, sci- entific visualization, surface of a mechanical toy (512×512×2048 voxels). diagnosis and surgical planning, but also in nondestructive testing

  8. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    NASA Astrophysics Data System (ADS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  9. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    SciTech Connect

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Yokoyama, Masaaki; Seki, Shu

    2014-07-21

    The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{sup 12?}cm{sup ?2}, and the hole mobility was up to 6.5?cm{sup 2} V{sup ?1} s{sup ?1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  10. NON-DESTRUCTIVE TECHNIQUES FOR THE EVALUATION OF OVERLAY AND THERMAL BARRIER COATINGS ON GAS TURBINE COMPONENTS

    SciTech Connect

    Michael Cybulsky

    1998-03-10

    There is currently no satisfactory method for the non-destructive examination (NDE) of coatings on gas turbine parts and determination of coating thickness, for example, has to be carried out by sectioning of the component and subsequent metallographic analysis. This method, which is both time-consuming and expensive, has nevertheless been used extensively for aero-engine parts to monitor coating quality and to gather statistical information for process control. For large components from utility size gas turbines costs are high and compared with aero-engines, only a limited number of parts can be examined so that the destructive method becomes less attractive both as an inspection technique and for obtaining process control data to measure part to part variations in coating thickness, for example. During engine service protective coatings slowly degrade and this degradation process effectively controls the life of the part, particularly in situations where a thermal barrier coating (TBC) is used to protect against excessive metal temperatures. In this case growth of the oxide at the interface between the bond coat and the TBC leads to a build-up of stress in the TBC which can be relieved by a spalling of the ceramic layer and loss of the protection from the thermal barrier. In situations where the integrity of the TBC system is critical to the survival of the part, some non-destructive method of determining the degradation condition of the bond coat would clearly be advantageous. In this report the results are described of recent progress in a program to develop non-destructive methods to measure coating quality and to monitor the condition of coatings in service. The work which has formed part of the Advanced Turbine Systems (ATS) Project funded by DOE, has involved the use of eddy-current (ET) and ultrasonic (US) methods developed by SouthWest Research Institute (SwRI) who have been responsible for development of the technique.

  11. Current and future developments in civil aircraft non-destructive evaluation from an operator's point of view

    NASA Technical Reports Server (NTRS)

    Register, Jeff

    1992-01-01

    In June, 1988, the first International Conference on aging aircraft was held to address nondestructive tests (NDT) of aging aircraft and other issues. From this meeting, a research program was initiated and funded by the FAA. As a result of this program, a lot of work has been done to study current NDT practices in the aviation industry and secondly, to research and develop new NDT methods to improve the reliability and efficiency of in-service inspection of aircraft structures and powerplants. The following is an overview of the current and future developments in civil aircraft NDT, as viewed by an air carrier and the concerns for NDT in the future.

  12. Development of Nondestructive Measuring Technique of Environmental Radioactive Strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    The Fukushima first nuclear power plant accident was triggered by the Japanese big earthquake in 2011. The main radioactivity concerned after the accident are I-131 (half-life 8.0 days), Cs-134 (2.1 years) and 137 (30 years), Sr-89 (51 days) and 90 (29 years). We are aiming to establish a new detection technique which enables us to realize quantitative evaluation of the strontium radioactivity by means of nondestructive measurement without chemical separation processing, which is concerned to be included inside foods, environmental water and soil around us, in order to prevent us from undesired internal exposure to the radiation.

  13. QUANTITATIVE GENETIC ACTIVITY GRAPHICAL PROFILES FOR USE IN CHEMICAL EVALUATION

    EPA Science Inventory

    A graphic approach termed a Genetic Activity Profile (GAP) has been developed to display a matrix of data on the genetic and related effects of selected chemical agents. he profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each...

  14. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  15. Quantitative autoradiographic microimaging in the development and evaluation of radiopharmaceuticals

    SciTech Connect

    Som, P.; Oster, Z.H.

    1994-04-01

    Autoradiographic (ARG) microimaging is the method for depicting biodistribution of radiocompounds with highest spatial resolution. ARG is applicable to gamma, positron and negatron emitting radiotracers. Dual or multiple-isotope studies can be performed using half-lives and energies for discrimination of isotopes. Quantitation can be performed by digital videodensitometry and by newer filmless technologies. ARG`s obtained at different time intervals provide the time dimension for determination of kinetics.

  16. Quantitative evaluation of defect-models in superconducting phase qubits

    E-print Network

    J. H. Cole; C. Müller; P. Bushev; G. J. Grabovskij; J. Lisenfeld; A. Lukashenko; A. V. Ustinov; A. Shnirman

    2010-10-28

    We use high-precision spectroscopy and detailed theoretical modelling to determine the form of the coupling between a superconducting phase qubit and a two-level defect. Fitting the experimental data with our theoretical model allows us to determine all relevant system parameters. A strong qubit-defect coupling is observed, with a nearly vanishing longitudinal component. Using these estimates, we quantitatively compare several existing theoretical models for the microscopic origin of two-level defects.

  17. Quantitative evaluation of defect-models in superconducting phase qubits

    E-print Network

    Cole, J H; Bushev, P; Grabovskij, G J; Lisenfeld, J; Lukashenko, A; Ustinov, A V; Shnirman, A

    2010-01-01

    We use high-precision spectroscopy and detailed theoretical modelling to determine the form of the coupling between a superconducting phase qubit and a two-level defect. Fitting the experimental data with our theoretical model allows us to determine all relevant system parameters. A strong qubit-defect coupling is observed, with a nearly vanishing longitudinal component. Using these estimates, we quantitatively compare several existing theoretical models for the microscopic origin of two-level defects.

  18. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  19. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  20. A quantitative and objective evaluation approach for optimal selection of design concept in conceptual design stage 

    E-print Network

    Tiwari, Sanjay

    2002-01-01

    design stage. The guideline helps in establishing quantitative measures to compare design concepts and removes the subjective nature of the concept evaluation process. A superior design is one, which is best in both functional as well as geometrical...

  1. Quantitative performance-based evaluation of a procedure for flexible design concept generation

    E-print Network

    Cardin, Michel-Alexandre, 1979-

    2011-01-01

    This thesis presents an experimental methodology for objective and quantitative design procedure evaluation based on anticipated lifecycle performance of design concepts, and a procedure for flexible design concept generation. ...

  2. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.

    PubMed

    Riccardi, M; Mele, G; Pulvento, C; Lavini, A; d'Andria, R; Jacobsen, S-E

    2014-06-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expensive, laborious, and time consuming. Over the years alternative methods, rapid and non-destructive, have been explored. The aim of this work was to evaluate the applicability of a fast and non-invasive field method for estimation of chlorophyll content in quinoa and amaranth leaves based on RGB components analysis of digital images acquired with a standard SLR camera. Digital images of leaves from different genotypes of quinoa and amaranth were acquired directly in the field. Mean values of each RGB component were evaluated via image analysis software and correlated to leaf chlorophyll provided by standard laboratory procedure. Single and multiple regression models using RGB color components as independent variables have been tested and validated. The performance of the proposed method was compared to that of the widely used non-destructive SPAD method. Sensitivity of the best regression models for different genotypes of quinoa and amaranth was also checked. Color data acquisition of the leaves in the field with a digital camera was quick, more effective, and lower cost than SPAD. The proposed RGB models provided better correlation (highest R (2)) and prediction (lowest RMSEP) of the true value of foliar chlorophyll content and had a lower amount of noise in the whole range of chlorophyll studied compared with SPAD and other leaf image processing based models when applied to quinoa and amaranth. PMID:24442792

  3. A QUANTITATIVE STUDY OF EXPERIMENTAL NEURAL NETWORK LEARNING ALGORITHM EVALUATION PRACTICES

    E-print Network

    Prechelt, Lutz

    A QUANTITATIVE STUDY OF EXPERIMENTAL NEURAL NETWORK LEARNING ALGORITHM EVALUATION PRACTICES Lutz evaluation they contain. Every third of them does employ not even a single realistic or real learning problem presenting learning algorithms 1 In this report, I will use the term evaluation to mean experimental

  4. Online versus Paper Evaluations: Differences in Both Quantitative and Qualitative Data

    ERIC Educational Resources Information Center

    Burton, William B.; Civitano, Adele; Steiner-Grossman, Penny

    2012-01-01

    This study sought to determine if differences exist in the quantitative and qualitative data collected with paper and online versions of a medical school clerkship evaluation form. Data from six-and-a-half years of clerkship evaluations were used, some collected before and some after the conversion from a paper to an online evaluation system. The…

  5. Nondestructive biomarkers in ecotoxicology.

    PubMed Central

    Fossi, M C

    1994-01-01

    The aim of this article is to attempt a concise review of the state of the art of the nondestructive biomarkers approach in vertebrates, establishing a consensus on the most useful and sensitive nondestructive biomarker techniques, and proposing research priorities for the development and validation of this promising methodology. The following topics are discussed: the advantages of the use of nondestructive strategies in biomonitoring programs and the research fields in which nondestructive biomarkers can be applied; the biological materials suitable for nondestructive biomarkers and residue analysis in vertebrates; which biomarkers lend themselves to noninvasive techniques; and the validation and implementation strategy of the nondestructive biomarker approach. Examples of applications of this methodology in the hazard assessment of endangered species are also presented. Images Figure 1. C PMID:7713034

  6. A lighting metric for quantitative evaluation of accent lighting systems

    NASA Astrophysics Data System (ADS)

    Acholo, Cyril O.; Connor, Kenneth A.; Radke, Richard J.

    2014-09-01

    Accent lighting is critical for artwork and sculpture lighting in museums, and subject lighting for stage, Film and television. The research problem of designing effective lighting in such settings has been revived recently with the rise of light-emitting-diode-based solid state lighting. In this work, we propose an easy-to-apply quantitative measure of the scene's visual quality as perceived by human viewers. We consider a well-accent-lit scene as one which maximizes the information about the scene (in an information-theoretic sense) available to the user. We propose a metric based on the entropy of the distribution of colors, which are extracted from an image of the scene from the viewer's perspective. We demonstrate that optimizing the metric as a function of illumination configuration (i.e., position, orientation, and spectral composition) results in natural, pleasing accent lighting. We use a photorealistic simulation tool to validate the functionality of our proposed approach, showing its successful application to two- and three-dimensional scenes.

  7. A Quantitative Investigation of Stakeholder Variation in Training Program Evaluation.

    ERIC Educational Resources Information Center

    Michalski, Greg V.

    A survey was conducted to investigate variation in stakeholder perceptions of training results and evaluation within the context of a high-technology product development firm (the case organization). A scannable questionnaire survey booklet was developed and scanned data were exported and analyzed. Based on an achieved sample of 280 (70% response…

  8. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation). Progress report, January 15, 1992--January 14, 1993

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ``Instrumentation and Quantitative Methods of Evaluation.`` Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  9. ED-XRF analysis for Cultural Heritage: is quantitative evaluation always essential?

    NASA Astrophysics Data System (ADS)

    Bonizzoni, L.

    2015-07-01

    Energy Dispersive X-Ray Fluorescence (ED-XRF) is a very suitable tool for examination of Cultural Heritage materials because of its simplicity, with no requirement for any sample preparation and the possibility of operating with portable instruments, and it can probably be considered the most useful non-destructive analytical technique for ancient valuable objects of archaeological, historical or artistic interest. As regards the possibility of getting quantitative analysis in archaeometric applications, the problems arising from the limited sensitivity in detecting low Z elements, the irregular shape or the non-homogeneous composition of the sample have generated a widespread opinion that only semi-quantitative analyses are possible in XRF applications to archaeometry. In fact, this is always true for non-homogeneous samples as, typically, painting layers. On the contrary, the problems deriving from limited sensitivity in detecting matrix light elements as well as from irregular surface under analysis can be solved in most cases. Notwithstanding, working on unique and not standardized objects requires to pay attention on details and to know how to choose correct parameters and calculation algorithms to obtain reliable results. Indeed opportunities to deal with these objects are very limited and results have implication in other fields, so that each information about materials and production technique is of great interest. Two typical materials of archaeological interest showing particular features are considered - namely high corroded metallic artefacts and ceramics - revealing that, even if in cultural heritage field detailed quantitative analysis is the goal, it is not always necessary as also qualitative information by XRF spectra increase the knowledge of artefact.

  10. Quantitative vertebral compression fracture evaluation using a height compass

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Burns, Joseph E.; Wiese, Tatjana; Summers, Ronald M.

    2012-03-01

    Vertebral compression fractures can be caused by even minor trauma in patients with pathological conditions such as osteoporosis, varying greatly in vertebral body location and compression geometry. The location and morphology of the compression injury can guide decision making for treatment modality (vertebroplasty versus surgical fixation), and can be important for pre-surgical planning. We propose a height compass to evaluate the axial plane spatial distribution of compression injury (anterior, posterior, lateral, and central), and distinguish it from physiologic height variations of normal vertebrae. The method includes four steps: spine segmentation and partition, endplate detection, height compass computation and compression fracture evaluation. A height compass is computed for each vertebra, where the vertebral body is partitioned in the axial plane into 17 cells oriented about concentric rings. In the compass structure, a crown-like geometry is produced by three concentric rings which are divided into 8 equal length arcs by rays which are subtended by 8 common central angles. The radius of each ring increases multiplicatively, with resultant structure of a central node and two concentric surrounding bands of cells, each divided into octants. The height value for each octant is calculated and plotted against octants in neighboring vertebrae. The height compass shows intuitive display of the height distribution and can be used to easily identify the fracture regions. Our technique was evaluated on 8 thoraco-abdominal CT scans of patients with reported compression fractures and showed statistically significant differences in height value at the sites of the fractures.

  11. Quantitative evaluation of proximal contacts in posterior composite restorations. Part I. Methodology.

    PubMed

    Wang, J C; Hong, J M

    1989-07-01

    An in vivo method of quantitative measuring intertooth distance before and after placement of a Class 2 composite resin restoration has been developed. A Kaman Sciences KD-2611 non-contact displacement measuring system with a 1 U unshield sensor, based upon the variable resistance of eddy current, was used for the intraoral measurement. Quantitative evaluation of proximal wear, therefore, can be made preoperatively, postoperatively, and at subsequent recall interval for posterior composite resin restorations. PMID:2810447

  12. Quantitative evaluation of wrist posture and typing performance: A comparative study of 4 computer keyboards

    SciTech Connect

    Burastero, S.

    1994-05-01

    The present study focuses on an ergonomic evaluation of 4 computer keyboards, based on subjective analyses of operator comfort and on a quantitative analysis of typing performance and wrist posture during typing. The objectives of this study are (1) to quantify differences in the wrist posture and in typing performance when the four different keyboards are used, and (2) to analyze the subjective preferences of the subjects for alternative keyboards compared to the standard flat keyboard with respect to the quantitative measurements.

  13. Applying Quantitative Approaches to the Formative Evaluation of Antismoking Campaign Messages

    PubMed Central

    Parvanta, Sarah; Gibson, Laura; Forquer, Heather; Shapiro-Luft, Dina; Dean, Lorraine; Freres, Derek; Lerman, Caryn; Mallya, Giridhar; Moldovan-Johnson, Mihaela; Tan, Andy; Cappella, Joseph; Hornik, Robert

    2014-01-01

    This article shares an in-depth summary of a formative evaluation that used quantitative data to inform the development and selection of promotional ads for the antismoking communication component of a social marketing campaign. A foundational survey provided cross-sectional data to identify beliefs about quitting smoking that campaign messages should target, as well as beliefs to avoid. Pretesting draft ads against quantitative indicators of message effectiveness further facilitated the selection and rejection of final campaign ads. Finally, we consider lessons learned from the process of balancing quantitative methods and judgment to make formative decisions about more and less promising persuasive messages for campaigns. PMID:24817829

  14. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    NASA Astrophysics Data System (ADS)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer.

  15. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites.

    PubMed

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-03-21

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76?kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  16. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-01-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76?kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  17. A quantitative method for visual phantom image quality evaluation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dev P.; Liu, Xiong; O'Shea, Michael; Toto, Lawrence C.

    2000-04-01

    This work presents an image quality evaluation technique for uniform-background target-object phantom images. The Degradation-Comparison-Threshold (DCT) method involves degrading the image quality of a target-containing region with a blocking processing and comparing the resulting image to a similarly degraded target-free region. The threshold degradation needed for 92% correct detection of the target region is the image quality measure of the target. Images of American College of Radiology (ACR) mammography accreditation program phantom were acquired under varying x-ray conditions on a digital mammography machine. Five observers performed ACR and DCT evaluations of the images. A figure-of-merit (FOM) of an evaluation method was defined which takes into account measurement noise and the change of the measure as a function of x-ray exposure to the phantom. The FOM of the DCT method was 4.1 times that of the ACR method for the specks, 2.7 times better for the fibers and 1.4 times better for the masses. For the specks, inter-reader correlations on the same image set increased significantly from 87% for the ACR method to 97% for the DCT method. The viewing time per target for the DCT method was 3 - 5 minutes. The observed greater sensitivity of the DCT method could lead to more precise Quality Control (QC) testing of digital images, which should improve the sensitivity of the QC process to genuine image quality variations. Another benefit of the method is that it can measure the image quality of high detectability target objects, which is impractical by existing methods.

  18. A quantitative evaluation of two methods for preserving hair samples

    USGS Publications Warehouse

    Roon, D.A.; Waits, L.P.; Kendall, K.C.

    2003-01-01

    Hair samples are an increasingly important DNA source for wildlife studies, yet optimal storage methods and DNA degradation rates have not been rigorously evaluated. We tested amplification success rates over a one-year storage period for DNA extracted from brown bear (Ursus arctos) hair samples preserved using silica desiccation and -20C freezing. For three nuclear DNA microsatellites, success rates decreased significantly after a six-month time point, regardless of storage method. For a 1000 bp mitochondrial fragment, a similar decrease occurred after a two-week time point. Minimizing delays between collection and DNA extraction will maximize success rates for hair-based noninvasive genetic sampling projects.

  19. Computerized quantitative evaluation of mammographic accreditation phantom images

    SciTech Connect

    Lee, Yongbum; Tsai, Du-Yih; Shinohara, Norimitsu

    2010-12-15

    Purpose: The objective was to develop and investigate an automated scoring scheme of the American College of Radiology (ACR) mammographic accreditation phantom (RMI 156, Middleton, WI) images. Methods: The developed method consisted of background subtraction, determination of region of interest, classification of fiber and mass objects by Mahalanobis distance, detection of specks by template matching, and rule-based scoring. Fifty-one phantom images were collected from 51 facilities for this study (one facility provided one image). A medical physicist and two radiologic technologists also scored the images. The human and computerized scores were compared. Results: In terms of meeting the ACR's criteria, the accuracies of the developed method for computerized evaluation of fiber, mass, and speck were 90%, 80%, and 98%, respectively. Contingency table analysis revealed significant association between observer and computer scores for microcalcifications (p<5%) but not for masses and fibers. Conclusions: The developed method may achieve a stable assessment of visibility for test objects in mammographic accreditation phantom image in whether the phantom image meets the ACR's criteria in the evaluation test, although there is room left for improvement in the approach for fiber and mass objects.

  20. Quantitative Evaluation of the Reticuloendothelial System Function with Dynamic MRI

    PubMed Central

    Liu, Ting; Choi, Hoon; Zhou, Rong; Chen, I-Wei

    2014-01-01

    Purpose To evaluate the reticuloendothelial system (RES) function by real-time imaging blood clearance as well as hepatic uptake of superparamagnetic iron oxide nanoparticle (SPIO) using dynamic magnetic resonance imaging (MRI) with two-compartment pharmacokinetic modeling. Materials and Methods Kinetics of blood clearance and hepatic accumulation were recorded in young adult male 01b74 athymic nude mice by dynamic T2* weighted MRI after the injection of different doses of SPIO nanoparticles (0.5, 3 or 10 mg Fe/kg). Association parameter, Kin, dissociation parameter, Kout, and elimination constant, Ke, derived from dynamic data with two-compartment model, were used to describe active binding to Kupffer cells and extrahepatic clearance. The clodrosome and liposome were utilized to deplete macrophages and block the RES function to evaluate the capability of the kinetic parameters for investigation of macrophage function and density. Results The two-compartment model provided a good description for all data and showed a low sum squared residual for all mice (0.27±0.03). A lower Kin, a lower Kout and a lower Ke were found after clodrosome treatment, whereas a lower Kin, a higher Kout and a lower Ke were observed after liposome treatment in comparison to saline treatment (P<0.005). Conclusion Dynamic SPIO-enhanced MR imaging with two-compartment modeling can provide information on RES function on both a cell number and receptor function level. PMID:25090653

  1. Improved field experimental designs and quantitative evaluation of aquatic ecosystems

    SciTech Connect

    McKenzie, D.H.; Thomas, J.M.

    1984-05-01

    The paired-station concept and a log transformed analysis of variance were used as methods to evaluate zooplankton density data collected during five years at an electrical generation station on Lake Michigan. To discuss the example and the field design necessary for a valid statistical analysis, considerable background is provided on the questions of selecting (1) sampling station pairs, (2) experimentwise error rates for multi-species analyses, (3) levels of Type I and II error rates, (4) procedures for conducting the field monitoring program, and (5) a discussion of the consequences of violating statistical assumptions. Details for estimating sample sizes necessary to detect changes of a specified magnitude are included. Both statistical and biological problems with monitoring programs (as now conducted) are addressed; serial correlation of successive observations in the time series obtained was identified as one principal statistical difficulty. The procedure reduces this problem to a level where statistical methods can be used confidently. 27 references, 4 figures, 2 tables.

  2. Towards the quantitative evaluation of visual attention models.

    PubMed

    Bylinskii, Z; DeGennaro, E M; Rajalingham, R; Ruda, H; Zhang, J; Tsotsos, J K

    2015-11-01

    Scores of visual attention models have been developed over the past several decades of research. Differences in implementation, assumptions, and evaluations have made comparison of these models very difficult. Taxonomies have been constructed in an attempt at the organization and classification of models, but are not sufficient at quantifying which classes of models are most capable of explaining available data. At the same time, a multitude of physiological and behavioral findings have been published, measuring various aspects of human and non-human primate visual attention. All of these elements highlight the need to integrate the computational models with the data by (1) operationalizing the definitions of visual attention tasks and (2) designing benchmark datasets to measure success on specific tasks, under these definitions. In this paper, we provide some examples of operationalizing and benchmarking different visual attention tasks, along with the relevant design considerations. PMID:25951756

  3. High-speed terahertz reflection three-dimensional imaging for nondestructive

    E-print Network

    .4290) Nondestructive testing. References and links 1. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, IHigh-speed terahertz reflection three- dimensional imaging for nondestructive evaluation Kyong Hwan of the imaging system to nondestructive evaluation, a THz reflection 3D image of an artificially made sample

  4. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Song, Na; Caffo, Brian; Frey, Eric C.

    2015-03-01

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method pro- vided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  5. Non-destructive evaluation of an internal adaptation of resin composite restoration with swept-source optical coherence tomography and micro-CT.

    PubMed

    Han, Seung-Hoon; Sadr, Alireza; Tagami, Junji; Park, Sung-Ho

    2016-01-01

    Swept-source optical coherence tomography (SS-OCT) and micro-CT can be useful non-destructive methods for evaluating internal adaptation. There is no comparative study evaluating the two methods in the assessment of internal adaptation in composite restoration. The purpose of this study was to compare internal adaptation measurements of SS-OCT and micro-CT. Two cylindrical cavities were created on the labial surface of twelve bovine incisors. The 24 cavities were randomly assigned to four groups of dentin adhesives: (1) three-step etch-and-rinse adhesive, (2) two-step etch-and-rinse adhesive, (3) two-step self-etch adhesive, and (4) one-step self-etch adhesive. After application, the cavities were filled with resin composite. All restorations underwent a thermocycling challenge, and then, eight SS-OCT images were taken using a Santec OCT-2000™ (Santec Co., Komaki, Japan). The internal adaptation was also evaluated using micro-CT (Skyscan, Aartselaar, Belgium). The image analysis was used to calculate the percentage of defective spot (%DS) and compare the results. The groups were compared using one-way ANOVA with Duncan analysis at the 95% significance level. The SS-OCT and micro-CT measurements were compared with a paired t-test, and the relationship was analyzed using a Pearson correlation test at the 95% significance level. The %DS results showed that Group 3?Group 4

  6. Quantitative nondestructive testing using Infrared Thermography

    E-print Network

    Manohar, Arun

    2012-01-01

    In thermal phase images. The defect detection performance ofIn thermal phase images. The defect detection performance ofDefect detection in aircraft composites by using a neural approach in the analysis of thermo- graphic images.

  7. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    PubMed Central

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5?T and 3?T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  8. Destructive and non-destructive density determination: method comparison and evaluation from the Laguna Potrok Aike sedimentary record

    E-print Network

    St-Ong, Guillaume

    2012 Accepted 26 August 2012 Available online xxx Keywords: CT-Scan XRF MSCL Grape density Sediment Gamma Ray Attenuation Porosity Evaluator (MSCL Grape) and discrete measurements of dry bulk density, wet continuous measure of density variability of the sediment profile. The MSCL Grape density measurements

  9. Destructive and non-destructive density determination: method comparison and evaluation from the Laguna Potrok Aike sedimentary

    E-print Network

    2012 Accepted 26 August 2012 Available online 1 November 2012 Keywords: CT-Scan XRF MSCL Grape density Gamma Ray Attenuation Porosity Evaluator (MSCL Grape) and discrete measurements of dry bulk density, wet continuous measure of density vari- ability of the sediment profile. The MSCL Grape density measurements

  10. Mechanical Model Analysis for Quantitative Evaluation of Liver Fibrosis Based on Ultrasound Tissue Elasticity Imaging

    NASA Astrophysics Data System (ADS)

    Shiina, Tsuyoshi; Maki, Tomonori; Yamakawa, Makoto; Mitake, Tsuyoshi; Kudo, Masatoshi; Fujimoto, Kenji

    2012-07-01

    Precise evaluation of the stage of chronic hepatitis C with respect to fibrosis has become an important issue to prevent the occurrence of cirrhosis and to initiate appropriate therapeutic intervention such as viral eradication using interferon. Ultrasound tissue elasticity imaging, i.e., elastography can visualize tissue hardness/softness, and its clinical usefulness has been studied to detect and evaluate tumors. We have recently reported that the texture of elasticity image changes as fibrosis progresses. To evaluate fibrosis progression quantitatively on the basis of ultrasound tissue elasticity imaging, we introduced a mechanical model of fibrosis progression and simulated the process by which hepatic fibrosis affects elasticity images and compared the results with those clinical data analysis. As a result, it was confirmed that even in diffuse diseases like chronic hepatitis, the patterns of elasticity images are related to fibrous structural changes caused by hepatic disease and can be used to derive features for quantitative evaluation of fibrosis stage.

  11. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lolium temulentum is a valuable model grass species for the study of stress in forage and turf grasses. Gene expression analysis by quantitative real time RT-PCR relies on the use of proper internal standards. The aim of this study was to identify and evaluate reference genes for use in real-time q...

  12. Towards a Quantitative Evaluation of Geospatial Metadata Quality in the Context of Semantic

    E-print Network

    Towards a Quantitative Evaluation of Geospatial Metadata Quality in the Context of Semantic to facilitate the reuse of geospatial data in a distributed and heterogeneous environment. In this process, the provided geospatial metadata that are appropriate for the intended use may be incomplete or not appropriate

  13. Evaluation of classification strategies using quantitative ultrasound markers and a thyroid cancer

    E-print Network

    Illinois at Urbana-Champaign, University of

    Evaluation of classification strategies using quantitative ultrasound markers and a thyroid cancer. Abstract-- The incidence rate of diagnosed thyroid cancer has increased over the last decades. Although (QUS) parameters derived from a thyroid cancer rodent model between normal/benign and malignant tissues

  14. Quantitative Evaluation of Liver-Specific Promoters From Retroviral Vectors After In Vivo Transduction of Hepatocytes

    E-print Network

    Ponder, Katherine P.

    Quantitative Evaluation of Liver-Specific Promoters From Retroviral Vectors After In Vivo of inherited blood diseases such ashemophilia or thrombophi- lia. Although liver-directed retroviral its clinical application, We reasoned that the insertion of liver-specific promoters into retroviral

  15. An Elephant in the Room: Bias in Evaluating a Required Quantitative Methods Course

    ERIC Educational Resources Information Center

    Fletcher, Joseph F.; Painter-Main, Michael A.

    2014-01-01

    Undergraduate Political Science programs often require students to take a quantitative research methods course. Such courses are typically among the most poorly rated. This can be due, in part, to the way in which courses are evaluated. Students are generally asked to provide an overall rating, which, in turn, is widely used by students, faculty,…

  16. DEVELOPMENT AND EVALUATION OF A QUANTITATIVE ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) FOR POLYCHLORINATED BIPHENYLS

    EPA Science Inventory

    A 96-well, microplate-based enzyme linked immunosorbent assay (ELISA) for the quantitative determination of PCBs (as Aroclors) in soil has been developed and evaluated. he method detection limits are 8.95 ug/Kg and 10.5 ug/Kg for Aroclors 1248 and 1242, respectively. he ELISA was...

  17. Quantitative Study of the Value of Research Libraries: A Foundation for the Evaluation of Digital Libraries

    E-print Network

    Quantitative Study of the Value of Research Libraries: A Foundation for the Evaluation of Digital Libraries Paul B. Kantor and Tefko Saracevic LIS and Rutgers Distributed Laboratory for Digital Libraries, tefko}@diglib.rutgers.edu Abstract In anticipation of the explosive growth of digital libraries

  18. Poem Generator: A Comparative Quantitative Evaluation of a Microworlds-Based Learning Approach for Teaching English

    ERIC Educational Resources Information Center

    Jenkins, Craig

    2015-01-01

    This paper is a comparative quantitative evaluation of an approach to teaching poetry in the subject domain of English that employs a "guided discovery" pedagogy using computer-based microworlds. It uses a quasi-experimental design in order to measure performance gains in computational thinking and poetic thinking following a…

  19. 2005 Conference on Lasers & Electro-Optics (CLEO) Quantitative Evaluation of Nanoshells as a Contrast Agent

    E-print Network

    Barton, Jennifer K.

    imaging applications, or absorb light for photo-thermally induced therapies [5,6]. OCT enhancementCFA1 2005 Conference on Lasers & Electro-Optics (CLEO) Quantitative Evaluation of Nanoshells-filled microbubbles and engineered microspheres have been used to enhance the intensity ofbackscattered light from

  20. A Quantitative Evaluation of 3D Soft Tissue Prediction in Maxillofacial Surgery Planning

    E-print Network

    A Quantitative Evaluation of 3D Soft Tissue Prediction in Maxillofacial Surgery Planning S. Zachow1 , Th. Hierl2, and B. Erdmann1 1 Zuse-Institute Berlin (ZIB) 2 Department of Oral-Maxillofacial, Plastic & Reconstructive Surgery University Hospital Leipzig, Germany Abstract. The aim of our work is to provide

  1. Charlotte Danielson's Theory of Teacher Evaluations: A Quantitative Study of Teachers' Perceptions on the Four Domains

    ERIC Educational Resources Information Center

    Doerr, Scott E.

    2012-01-01

    This quantitative study determined teachers' perceptions on the four domains of Danielson's framework for teaching. The study surveyed teachers from five school districts regarding the components set forth in Danielson's model for evaluating teachers. The survey was created by Sweeley (2004) and her dissertation chair, Dr. Brogan. The survey…

  2. Colour Patterns Do Not Diagnose Species: Quantitative Evaluation of a DNA Barcoded Cryptic Bumblebee

    E-print Network

    Paxton, Robert

    Colour Patterns Do Not Diagnose Species: Quantitative Evaluation of a DNA Barcoded Cryptic of colour-pattern characters in species identification of DNA- barcoded queens from the B. lucorum complex determinations in previous studies and highlights the benefits of implementing DNA barcoding prior to ecological

  3. Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; Shtokolov, Alex; O'Donnell, Matthew

    2015-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for high speed non-destructive testing and evaluation (NDT&E) of aircraft composites. The performance of the LU system is demonstrated on a composite sample typically used in the aircraft industry. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed diode-pumped laser delivering nanosecond laser pulses at a 1 kHz repetition rate with a pulse energy of 2 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals in a 1-10 MHz frequency range at the same point (an 8 ?m focal spot) on the composite surface. A fast (up to 100 mm/s) 2D translation system is employed to move the sample during scanning and produce a complete B-scan consisting of one thousand A-scans in less than a second. The sensitivity of this system, in terms of the noise equivalent pressure, is found to be only 10 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a non-contact ultrasonic detector of this dimension.

  4. Non-destructive electromagnetic-acoustic evaluation methods of anisotropy and elastic properties in structural alloy steel rolled products

    NASA Astrophysics Data System (ADS)

    Muraviev, V. V.; Muravieva, O. V.; Gabbasova, M. A.

    2015-10-01

    Application opportunities of acoustic structural analysis methods for evaluation of elastic properties and anisotropy by the example of cold-rolled sheets and spring steel rods are presented. Methods are based on application of non-contact electromagnetic-acoustic transducers of encircling and laid-on types developed by the authors and measurements of volume, Rayleigh and Lamb waves parameters. The methods developed can be used as a research tool of material structural analysis, anisotropy of properties when choosing heat treatment techniques and conditions, under intensive plastic deformation and other external energy deposition, including non-conventional material production with hierarchy structure and development of new technologies and safe constructions.

  5. Nondestructive evaluation of crystallized-particle size in lactose-powder by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Satoshi; Hatakeyama, Sakura; Imai, Yoh; Tonouchi, Masayoshi

    2014-03-01

    Transmission-type terahertz time-domain spectroscopy is applied to evaluate crystallized lactose particle of size below 30 ?m, which is far too small compared to the wavelength of incident terahertz (THz)-wave. The THz-absorption spectrum of lactose is successfully deconvoluted by Lorentzian to two spectra with peaks at 17.1 cm-1 (0.53 THz) and 45.6 cm-1 (1.37 THz) derived from ?-lactose monohydrate, and a spectrum at 39.7 cm-1 (1.19 THz) from anhydrous ?-lactose after removal of the broad-band spectrum by polynomial cubic function. Lactose is mainly crystallized into ?-lactose monohydrate from the supersaturated solution at room temperature with a small amount of anhydrous ?-lactose below 4%. The absorption feature is dependent on the crystallized particle size and the integrated intensity ratio of the two absorptions due to ?-lactose monohydrate is correlated in linear for the size.

  6. Non-destructive prediction of thiobarbituricacid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging.

    PubMed

    Xiong, Zhenjie; Sun, Da-Wen; Pu, Hongbin; Xie, Anguo; Han, Zhong; Luo, Man

    2015-07-15

    This study examined the potential of hyperspectral imaging (HSI) for rapid prediction of 2-thiobarbituric acid reactive substances (TBARS) content in chicken meat during refrigerated storage. Using the spectral data and the reference values of TBARS, a partial least square regression (PLSR) model was established and yielded acceptable results with regression coefficients in prediction (Rp) of 0.944 and root mean squared errors estimated by prediction (RMSEP) of 0.081. To simplify the calibration model, ten optimal wavelengths were selected by successive projections algorithm (SPA). Then, a new SPA-PLSR model based on the selected wavelengths was built and showed good results with Rp of 0.801 and RMSEP of 0.157. Finally, an image algorithm was developed to achieve image visualization of TBARS values in some representative samples. The encouraging results of this study demonstrated that HSI is suitable for determination of TBARS values for freshness evaluation in chicken meat. PMID:25722152

  7. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters.

    PubMed

    Smith, David C

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible. PMID:12909148

  8. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  9. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-01-01

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400-700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400-700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600-700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting. PMID:24763251

  10. Visible and near-infrared light transmission: A hybrid imaging method for non-destructive meat quality evaluation

    NASA Astrophysics Data System (ADS)

    Ziadi, A.; Maldague, X.; Saucier, L.; Duchesne, C.; Gosselin, R.

    2012-09-01

    Visual inspection of the amount of external marbling (intramuscular fat) on the meat surface is the official method used to assign the quality grading level of meat. However, this method is based exclusively on the analysis of the meat surface without any information about the internal content of the meat sample. In this paper, a new method using visible (VIS) and near-infrared (NIR) light transmission is used to evaluate the quality of beef meat based on the marbling detection. It is demonstrated that using NIR light in transmission mode, it is possible to detect the fat not only on the surface, as in traditional methods, but also under the surface. Moreover, in combining the analysis of the two sides of the meat simple, it is possible to estimate the volumetric marbling which is not accessible by visual methods commonly proposed in computer vision. To the best of our knowledge, no similar work or method has been published or developed. The experimental results confirm the expected properties of the proposed method and illustrate the quality of the results obtained.

  11. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L.) Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    PubMed Central

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S.; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-01-01

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting. PMID:24763251

  12. 77 FR 41985 - Use of Influenza Disease Models To Quantitatively Evaluate the Benefits and Risks of Vaccines: A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...Quantitatively Evaluate the Benefits and Risks of Vaccines: A Technical Workshop; Public Workshop...Quantitatively Evaluate the Benefits and Risks of Vaccines: A Technical Workshop.'' The purpose...and risks of a hypothetical influenza vaccine, and to seek from a range of...

  13. Close infrared thermography using an intensified CCD camera: application in nondestructive high resolution evaluation of electrothermally actuated MEMS

    NASA Astrophysics Data System (ADS)

    Serio, B.; Hunsinger, J. J.; Conseil, F.; Derderian, P.; Collard, D.; Buchaillot, L.; Ravat, M. F.

    2005-06-01

    This communication proposes the description of an optical method for thermal characterization of MEMS devices. The method is based on the use of an intensified CCD camera to record the thermal radiation emitted by the studied device in the spectral domain from 600 nm to about 850 nm. The camera consists of an intensifier associated to a CCD sensor. The intensification allows for very low signal levels to be amplified and detected. We used a standard optical microscope to image the device with sub-micron resolution. Since, in close infrared, at very small scale and low temperature, typically 250°C for thermal MEMS (Micro-Electro-Mechanical Systems), the thermal radiation is very weak, we used image integration in order to increase the signal to noise ratio. Knowing the imaged materials emissivity, the temperature is given by using Planck"s law. In order to evaluate the system performances we have made micro-thermographies of a micro-relay thermal actuator. This device is an "U-shape" Al/SiO2 bimorph cantilever micro-relay with a gold-to-gold electrical contact, designed for secured harsh environment applications. The initial beam curvature resulting from residual stresses ensures a large gap between the contacts of the micro-relay. The current flow through the metallic layer heats the bimorph by Joule effect, and the differential expansion provides the vertical displacement for contact. The experimental results are confronted to FEM and analytical simulations. A good agreement was obtained between experimental results and simulations.

  14. THE AMERICAN SOCIETY FOR NONDESTRUCTIVE TESTING, INC. Date: 11 November 2015

    E-print Network

    Guo, Dongning

    THE AMERICAN SOCIETY FOR NONDESTRUCTIVE TESTING, INC. Date: 11 November 2015 To: Educational undergraduate students enrolled in an ABET accredited program and choosing nondestructive testing and evaluation Society for Nondestructive Testing, Inc. Jessica VanDervort, Program Coordinator 1711 Arlingate Lane, P

  15. Nondestructive examination development and demonstration plan

    SciTech Connect

    Weber, J.R.

    1991-08-21

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques.

  16. Nondestructive testing of brazed rocket engine components

    NASA Technical Reports Server (NTRS)

    Adams, C. J.; Hagemaier, D. J.; Meyer, J. A.

    1968-01-01

    Report details study made of nondestructive radiographic, ultrasonic, thermographic, and leak test methods used to inspect and evaluate the quality of the various brazed joints in liquid-propellant rocket engine components and assemblies. Descriptions of some of the unique equipment and methods developed are included.

  17. Evaluation of quantitative accuracy in CZT-based pre-clinical SPECT for various isotopes

    NASA Astrophysics Data System (ADS)

    Park, S.-J.; Yu, A. R.; Kim, Y.-s.; Kang, W.-S.; Jin, S. S.; Kim, J.-S.; Son, T. J.; Kim, H.-J.

    2015-05-01

    In vivo pre-clinical single-photon emission computed tomography (SPECT) is a valuable tool for functional small animal imaging, but several physical factors, such as scatter radiation, limit the quantitative accuracy of conventional scintillation crystal-based SPECT. Semiconductor detectors such as CZT overcome these deficiencies through superior energy resolution. To our knowledge, little scientific information exists regarding the accuracy of quantitative analysis in CZT-based pre-clinical SPECT systems for different isotopes. The aim of this study was to assess the quantitative accuracy of CZT-based pre-clinical SPECT for four isotopes: 201Tl, 99mTc, 123I, and 111In. The quantitative accuracy of the CZT-based Triumph X-SPECT (Gamma-Medica Ideas, Northridge, CA, U.S.A.) was compared with that of a conventional SPECT using GATE simulation. Quantitative errors due to the attenuation and scatter effects were evaluated for all four isotopes with energy windows of 5%, 10%, and 20%. A spherical source containing the isotope was placed at the center of the air-or-water-filled mouse-sized cylinder phantom. The CZT-based pre-clinical SPECT was more accurate than the conventional SPECT. For example, in the conventional SPECT with an energy window of 10%, scatter effects degraded quantitative accuracy by up to 11.52%, 5.10%, 2.88%, and 1.84% for 201Tl, 99mTc, 123I, and 111In, respectively. However, with the CZT-based pre-clinical SPECT, the degradations were only 9.67%, 5.45%, 2.36%, and 1.24% for 201Tl, 99mTc, 123I, and 111In, respectively. As the energy window was increased, the quantitative errors increased in both SPECT systems. Additionally, the isotopes with lower energy of photon emissions had greater quantitative error. Our results demonstrated that the CZT-based pre-clinical SPECT had lower overall quantitative errors due to reduced scatter and high detection efficiency. Furthermore, the results of this systematic assessment quantifying the accuracy of these SPECT for various isotopes will provide valuable reference information for the design of CZT-based pre-clinical SPECT system imaging protocols.

  18. The Assess-and-Fix Approach: Using Non-Destructive Evaluations to Help Select Pipe Renewal Methods (WaterRF Report 4473)

    EPA Science Inventory

    Nondestructive examinations (NDE) can be easily performed as part of a typical water main rehabilitation project. Once a bypass water system has been installed and the water main has been cleaned, pulling a scanning tool through the main is very straightforward. An engineer can t...

  19. Using qualitative and quantitative methods to evaluate small-scale disease management pilot programs.

    PubMed

    Esposito, Dominick; Taylor, Erin Fries; Gold, Marsha

    2009-02-01

    Interest in disease management programs continues to grow as managed care plans, the federal and state governments, and other organizations consider such efforts as a means to improve health care quality and reduce costs. These efforts vary in size, scope, and target population. While large-scale programs provide the means to measure impacts, evaluation of smaller interventions remains valuable as they often represent the early planning stages of larger initiatives. This paper describes a multi-method approach for evaluating small interventions that sought to improve the quality of care for Medicaid beneficiaries with multiple chronic conditions. Our approach relied on quantitative and qualitative methods to develop a complete understanding of each intervention. Quantitative data in the form of both process measures, such as case manager contacts, and outcome measures, such as hospital use, were reported and analyzed. Qualitative information was collected through interviews and the development of logic models to document the flow of intervention activities and how they were intended to affect outcomes. The logic models helped us to understand the underlying reasons for the success or lack thereof of each intervention. The analysis provides useful information on several fronts. First, qualitative data provided valuable information about implementation. Second, process measures helped determine whether implementation occurred as anticipated. Third, outcome measures indicated the potential for favorable results later, possibly suggesting further study. Finally, the evaluation of qualitative and quantitative data in combination helped us assess the potential promise of each intervention and identify common themes and challenges across all interventions. PMID:19216674

  20. Spectral nondestructive evaluation—SNDE

    NASA Astrophysics Data System (ADS)

    Di Marzio, D.; McLaughlin, J. S.; Chu, S.; Fonneland, N.; Weir, J.

    2001-04-01

    Programmed paint stripping and repainting for commercial and military aircraft inspection consumes a large amount time and money and generates considerable amounts of toxic waste. A technique is required that detects surface cracks and corrosion of metallic aerostructures while leaving the paint coating intact. We have investigated the use of infrared spectral reflectance techniques for seeing through paint coatings to the underlying substrate. Many commercial and milspec primers and topcoats exhibit an optically transparent window in the mid-IR range which permits the extraction of spectral reflectance signatures from as well as allowing imaging of the substrate. Both diffuse reflectance and multispectral IR focal plane imaging is used to successfully detect corrosion and surface morphology of painted metal surfaces.

  1. Evaluation of an image-based algorithm for quantitative spectral CT applications

    NASA Astrophysics Data System (ADS)

    Heismann, Björn J.; Balda, Michael

    2010-04-01

    In this paper we describe and evaluate an image-based spectral CT method. Its central formula expresses measured CT data as a spectral integration of the spectral attenuation coefficient multiplied by a LocalWeighting Function (LWF). The LWF represents the local energy weighting in the image domain, taking into account the system and reconstruction properties and the object self attenuation. A generalized image-based formulation of spectral CT algorithms is obtained, with no need for additional corrections of e.g. beam hardening. The iterative procedure called Local Spectral Reconstruction (LSR) yields both the mass attenuation coefficients of the object and a representation of the LWF. The quantitative accuracy and precision of the method is investigated in several applications, including beam hardening correction, attenuation correction for SPECT/CT and PET/CT and a direct identification of spectral attenuation functions using the LWF result is demonstrated. In all applications the ground truth of the objects is reproduced with a quantitative accuracy in the sub-percent to two percent range. An exponential convergence behavior of the iterative procedure is observed, with one to two iteration steps as a good compromise between quantitative accuracy and precision. We conclude that the method can be used to perform image-based spectral CT reconstructions with quantitative accuracy. Existing algorithms benefit from the intrinsic treatment of beam hardening and system properties. Novel algorithms are enabled to directly compare material model functions to spectral measurement data.

  2. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear interface binding force, a quantitative method was presented. Recently, a comparison between the experimental and simulated results based on a similar theoretical model was presented. A through-transmission setup for water immersion mode-converted shear waves was used to analyze the ultrasonic nonlinear parameter of an adhesive bond. In addition, ultrasonic guided waves have been used to analyze adhesive or diffusion bonded joints. In this paper, the ultrasonic nonlinear parameter is used to characterize the curing state of a polymer/aluminum adhesive joint. Ultrasonic through-transmission tests were conducted on samples cured under various conditions. The magnitude of the second order harmonic was measured and the corresponding ultrasonic nonlinear parameter was evaluated. A fairly good correlation between the curing condition and the nonlinear parameter is observed. The results show that the nonlinear parameter might be used as a good indicator of the cure state for adhesive joints.

  3. In-Situ Nondestructive Evaluation of Kevlar(Registered Trademark)and Carbon Fiber Reinforced Composite Micromechanics for Improved Composite Overwrapped Pressure Vessel Health Monitoring

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA has been faced with recertification and life extension issues for epoxy-impregnated Kevlar 49 (K/Ep) and carbon (C/Ep) composite overwrapped pressure vessels (COPVs) used in various systems on the Space Shuttle and International Space Station, respectively. Each COPV has varying criticality, damage and repair histories, time at pressure, and pressure cycles. COPVs are of particular concern due to the insidious and catastrophic burst-before-leak failure mode caused by stress rupture (SR) of the composite overwrap. SR life has been defined [1] as the minimum time during which the composite maintains structural integrity considering the combined effects of stress level(s), time at stress level(s), and associated environment. SR has none of the features of predictability associated with metal pressure vessels, such as crack geometry, growth rate and size, or other features that lend themselves to nondestructive evaluation (NDE). In essence, the variability or surprise factor associated with SR cannot be eliminated. C/Ep COPVs are also susceptible to impact damage that can lead to reduced burst pressure even when the amount of damage to the COPV is below the visual detection threshold [2], thus necessitating implementation of a mechanical damage control plan [1]. Last, COPVs can also fail prematurely due to material or design noncompliance. In each case (SR, impact or noncompliance), out-of-family behavior is expected leading to a higher probability of failure at a given stress, hence, greater uncertainty in performance. For these reasons, NASA has been actively engaged in research to develop NDE methods that can be used during post-manufacture qualification, in-service inspection, and in-situ structural health monitoring. Acoustic emission (AE) is one of the more promising NDE techniques for detecting and monitoring, in real-time, the strain energy release and corresponding stress-wave propagation produced by actively growing flaws and defects in composite materials [3,4,5,6,7,8]. To gain further insight into the mechanisms responsible for composite rupture, broadband modal acoustic emission analysis was used. Also, since AE data reduction proved to be very time consuming, specialized data reduction software was written to automate the process.

  4. Quantitative evaluation of atherosclerotic plaque phantom by near-infrared multispectral imaging with three wavelengths

    NASA Astrophysics Data System (ADS)

    Nagao, Ryo; Ishii, Katsunori; Awazu, Kunio

    2014-03-01

    Atherosclerosis is a primary cause of critical ischemic disease. The risk of critical event is involved the content of lipid in unstable plaque. Near-infrared (NIR) range is effective for diagnosis of atherosclerotic plaque because of the absorption peaks of lipid. NIR multispectral imaging (NIR-MSI) is suitable for the evaluation of plaque because it can provide spectroscopic information and spatial image quickly with a simple measurement system. The purpose of this study is to evaluate the lipid concentrations in plaque phantoms quantitatively with a NIR-MSI system. A NIR-MSI system was constructed with a supercontinuum light, a grating spectrometer and a MCT camera. Plaque phantoms with different concentrations of lipid were prepared by mixing bovine fat and a biological soft tissue model to mimic the different stages of unstable plaque. We evaluated the phantoms by the NIR-MSI system with three wavelengths in the band at 1200 nm. Multispectral images were processed by spectral angle mapper method. As a result, the lipid areas of phantoms were effectively highlighted by using three wavelengths. In addition, the concentrations of lipid areas were classified according to the similarity between measured spectra and a reference spectrum. These results suggested the possibility of image enhancement and quantitative evaluation of lipid in unstable plaque with a NIR-MSI.

  5. Importance of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay

    PubMed Central

    2015-01-01

    In any biomedical and chemical context, a truthful description of chemical constitution requires coverage of both structure and purity. This qualification affects all drug molecules, regardless of development stage (early discovery to approved drug) and source (natural product or synthetic). Purity assessment is particularly critical in discovery programs and whenever chemistry is linked with biological and/or therapeutic outcome. Compared with chromatography and elemental analysis, quantitative NMR (qNMR) uses nearly universal detection and provides a versatile and orthogonal means of purity evaluation. Absolute qNMR with flexible calibration captures analytes that frequently escape detection (water, sorbents). Widely accepted structural NMR workflows require minimal or no adjustments to become practical 1H qNMR (qHNMR) procedures with simultaneous qualitative and (absolute) quantitative capability. This study reviews underlying concepts, provides a framework for standard qHNMR purity assays, and shows how adequate accuracy and precision are achieved for the intended use of the material. PMID:25295852

  6. Quantitative evaluation of inhomogeneous device operation in thin film solar cells by luminescence imaging

    NASA Astrophysics Data System (ADS)

    Seeland, Marco; Kästner, Christian; Hoppe, Harald

    2015-08-01

    We present a method for quantitative evaluation of electroluminescence images from thin film solar cells. The method called "quantitative electroluminescence imaging" (QuELI) is based on decoupling local equivalent circuit parameters and allows calculation of the local current-density as well as the local series resistance and saturation current-density. By application of this method to electroluminescence images obtained from polymer-fullerene based solar cells, we show that QuELI allows efficient separation between: (a) properties of the electrodes and their associated interfaces by the local series resistance and (b) properties of the active layer by the saturation current-density. We furthermore reveal large scale lateral phase separation via the strong variation in the saturation current-density, which delivers information on the energetic difference of thermal activation of charge carriers across the effective active band gap.

  7. Application of Organosilane Monolayer Template to Quantitative Evaluation of Cancer Cell Adhesive Ability

    NASA Astrophysics Data System (ADS)

    Tanii, Takashi; Sasaki, Kosuke; Ichisawa, Kota; Demura, Takanori; Beppu, Yuichi; Vu, Hoan Anh; Thanh Chi, Hoan; Yamamoto, Hideaki; Sato, Yuko

    2011-06-01

    The adhesive ability of two human pancreatic cancer cell lines was evaluated using organosilane monolayer templates (OMTs). Using the OMT, the spreading area of adhered cells can be limited, and this enables us to focus on the initial attachment process of adhesion. Moreover, it becomes possible to arrange the cells in an array and to quantitatively evaluate the number of attached cells. The adhesive ability of the cancer cells cultured on the OMT was controlled by adding (-)-epigallocatechin-3-gallate (EGCG), which blocks a receptor that mediates cell adhesion and is overexpressed in cancer cells. Measurement of the relative ability of the cancer cells to attach to the OMT revealed that the ability for attachment decreased with increasing EGCG concentration. The results agreed well with the western blot analysis, indicating that the OMT can potentially be employed to evaluate the adhesive ability of various cancer cells.

  8. The quantitative evaluation of the correlation between the magnification and the visibility-contrast value

    NASA Astrophysics Data System (ADS)

    Okubo, Shohei; Shibata, Takayuki; Kodera, Yoshie

    2015-03-01

    Talbot-Lau interferometer, which consists of a conventional x-ray tube, an x-ray detector, and three gratings arranged between them, is a new x-ray imaging system using phase-contrast method for excellent visualization of soft tissue. So, it is expected to be applied to an imaging method for soft tissue in the medical field, such as mammograms. The visibility-contrast image, which is one of the reconstruction images using Talbot-Lau interferometer, is known that the visibility-contrast reflects reduction of coherence that is caused from the x-ray small-angle scattering and the x-ray refraction due to the object's structures. Both phenomena were not distinguished when we evaluated the visibility signal quantitatively before. However, we consider that we should distinguish both phenomena to evaluate it quantitatively. In this study, to evaluate how much the magnification affect the visibility signal, we investigated the variability rate of the visibility signal between the object-position in the height of 0 cm to 50 cm from the diffraction grating in each case of examining the scattering signal and the refraction signal. We measured the edge signal of glass sphere to examine the scattering signal and the internal signal of glass sphere and some kinds of sheet to examine the refraction signal. We can indicate the difference of the variability rate between the edge signal and the internal signal. We tried to propose the estimation method using magnification.

  9. [Drifts and pernicious effects of the quantitative evaluation of research: the misuse of bibliometrics].

    PubMed

    Gingras, Yves

    2015-06-01

    The quantitative evaluation of scientific research relies increasingly on bibliometric indicators of publications and citations. We present the issues raised by the simplistic use of these methods and recall the dangers of using poorly built indicators and technically defective rankings that do not measure the dimensions they are supposed to measure, for example the of publications, laboratories or universities. We show that francophone journals are particularly susceptible to suffer from the bad uses of too simplistic bibliometric rankings of scientific journals. PMID:26411244

  10. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior.

    PubMed

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed. PMID:26340954

  11. Quantitative imaging biomarkers for the evaluation of cardiovascular complications in type 2 diabetes mellitus.

    PubMed

    Lin, Kai; Lloyd-Jones, Donald M; Li, Debiao; Carr, James C

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is a prevalent condition in aged populations. Cardiovascular diseases are leading causes of death and disability in patients with T2DM. Traditional strategies for controlling the cardiovascular complications of diabetes primarily target a cluster of well-defined risk factors, such as hyperglycemia, lipid disorders and hypertension. However, there is controversy over some recent clinical trials aimed at evaluating efficacy of intensive treatments for T2DM. As a powerful tool for quantitative cardiovascular risk estimation, multi-disciplinary cardiovascular imaging have been applied to detect and quantify morphological and functional abnormalities in the cardiovascular system. Quantitative imaging biomarkers acquired with advanced imaging procedures are expected to provide new insights to stratify absolute cardiovascular risks and reduce the overall costs of health care for people with T2DM by facilitating the selection of optimal therapies. This review discusses principles of state-of-the-art cardiovascular imaging techniques and compares applications of those techniques in various clinical circumstances. Individuals measurements of cardiovascular disease burdens from multiple aspects, which are closely related to existing biomarkers and clinical outcomes, are recommended as promising candidates for quantitative imaging biomarkers to assess the responses of the cardiovascular system during diabetic regimens. PMID:24309215

  12. Evaluation of chemotherapy response in ovarian cancer treatment using quantitative CT image biomarkers: a preliminary study

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Tan, Maxine; McMeekin, Scott; Thai, Theresa; Moore, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2015-03-01

    The purpose of this study is to identify and apply quantitative image biomarkers for early prediction of the tumor response to the chemotherapy among the ovarian cancer patients participated in the clinical trials of testing new drugs. In the experiment, we retrospectively selected 30 cases from the patients who participated in Phase I clinical trials of new drug or drug agents for ovarian cancer treatment. Each case is composed of two sets of CT images acquired pre- and post-treatment (4-6 weeks after starting treatment). A computer-aided detection (CAD) scheme was developed to extract and analyze the quantitative image features of the metastatic tumors previously tracked by the radiologists using the standard Response Evaluation Criteria in Solid Tumors (RECIST) guideline. The CAD scheme first segmented 3-D tumor volumes from the background using a hybrid tumor segmentation scheme. Then, for each segmented tumor, CAD computed three quantitative image features including the change of tumor volume, tumor CT number (density) and density variance. The feature changes were calculated between the matched tumors tracked on the CT images acquired pre- and post-treatments. Finally, CAD predicted patient's 6-month progression-free survival (PFS) using a decision-tree based classifier. The performance of the CAD scheme was compared with the RECIST category. The result shows that the CAD scheme achieved a prediction accuracy of 76.7% (23/30 cases) with a Kappa coefficient of 0.493, which is significantly higher than the performance of RECIST prediction with a prediction accuracy and Kappa coefficient of 60% (17/30) and 0.062, respectively. This study demonstrated the feasibility of analyzing quantitative image features to improve the early predicting accuracy of the tumor response to the new testing drugs or therapeutic methods for the ovarian cancer patients.

  13. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon analysis; however, these also are invasive and destructive techniques. The INS approach permits quantification in a relatively large volume of soil without disrupting the measurement site. The technique is very fast and provides nearly instantaneous results thereby reducing the cost, and speeding up the rate of analysis. It also has the potential to cover large areas in a mobile scanning mode. These capabilities will significantly advance the tracking carbon sequestration and offer a tool for research in agronomy, forestry, soil ecology and biogeochemistry.

  14. Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kinetics-based Method.

    PubMed

    Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning

    2015-06-01

    A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine. PMID:25943076

  15. Assessing the Expected Impact of Global Health Treaties: Evidence From 90 Quantitative Evaluations

    PubMed Central

    Røttingen, John-Arne

    2015-01-01

    We assessed what impact can be expected from global health treaties on the basis of 90 quantitative evaluations of existing treaties on trade, finance, human rights, conflict, and the environment. It appears treaties consistently succeed in shaping economic matters and consistently fail in achieving social progress. There are at least 3 differences between these domains that point to design characteristics that new global health treaties can incorporate to achieve positive impact: (1) incentives for those with power to act on them; (2) institutions designed to bring edicts into effect; and (3) interests advocating their negotiation, adoption, ratification, and domestic implementation. Experimental and quasiexperimental evaluations of treaties would provide more information about what can be expected from this type of global intervention. PMID:25393196

  16. Assessing the Expected Impact of Global Health Treaties: Evidence From 90 Quantitative Evaluations.

    PubMed

    Hoffman, Steven J; Røttingen, John-Arne

    2015-01-01

    We assessed what impact can be expected from global health treaties on the basis of 90 quantitative evaluations of existing treaties on trade, finance, human rights, conflict, and the environment. It appears treaties consistently succeed in shaping economic matters and consistently fail in achieving social progress. There are at least 3 differences between these domains that point to design characteristics that new global health treaties can incorporate to achieve positive impact: (1) incentives for those with power to act on them; (2) institutions designed to bring edicts into effect; and (3) interests advocating their negotiation, adoption, ratification, and domestic implementation. Experimental and quasiexperimental evaluations of treaties would provide more information about what can be expected from this type of global intervention. PMID:25393196

  17. Quantitative evaluation of noise reduction and vesselness filters for liver vessel segmentation on abdominal CTA images

    NASA Astrophysics Data System (ADS)

    Luu, Ha Manh; Klink, Camiel; Moelker, Adriaan; Niessen, Wiro; van Walsum, Theo

    2015-05-01

    Liver vessel segmentation in CTA images is a challenging task, especially in the case of noisy images. This paper investigates whether pre-filtering improves liver vessel segmentation in 3D CTA images. We introduce a quantitative evaluation of several well-known filters based on a proposed liver vessel segmentation method on CTA images. We compare the effect of different diffusion techniques i.e. Regularized Perona-Malik, Hybrid Diffusion with Continuous Switch and Vessel Enhancing Diffusion as well as the vesselness approaches proposed by Sato, Frangi and Erdt. Liver vessel segmentation of the pre-processed images is performed using a histogram-based region grown with local maxima as seed points. Quantitative measurements (sensitivity, specificity and accuracy) are determined based on manual landmarks inside and outside the vessels, followed by T-tests for statistic comparisons on 51 clinical CTA images. The evaluation demonstrates that all the filters make liver vessel segmentation have a significantly higher accuracy than without using a filter (p??

  18. Quantitative evaluation of movement disorders in neurological diseases based on EMG signals.

    PubMed

    Lee, Jongho; Kagamihara, Yasuhiro; Kakei, Shinji

    2008-01-01

    In this paper, we propose a new method to make a quantitative evaluation for movement disorders. Based on the EMG signals, we analyzed the movement disorders for cerebellar patients at the motor command level. As an experimental task, we asked subjects to perform step-tracking wrist movements with a manipulandum, and simultaneously recorded wrist joint movements and muscle activities of four wrist prime movers with surface electrodes. In order to quantitatively evaluate the correspondence between the movement kinematics and the activities of the four muscles, we approximated the relationship between the wrist joint torque calculated from the kinematics and the four EMG signals using a dynamics model of wrist joint. Our surprising observation was that there was very high correlation between the wrist joint torque and the EMG signals. In fact, we identified causal abnormality of muscle activities for movement disorders of cerebellar patients, confirming effectiveness of our proposed method for analysis of movement disorders at the level of the motor command. PMID:19162623

  19. Segmentation and quantitative evaluation of brain MRI data with a multiphase 3D implicit deformable model

    NASA Astrophysics Data System (ADS)

    Angelini, Elsa D.; Song, Ting; Mensh, Brett D.; Laine, Andrew

    2004-05-01

    Segmentation of three-dimensional anatomical brain images into tissue classes has applications in both clinical and research settings. This paper presents the implementation and quantitative evaluation of a four-phase three-dimensional active contour implemented with a level set framework for automated segmentation of brain MRIs. The segmentation algorithm performs an optimal partitioning of three-dimensional data based on homogeneity measures that naturally evolves to the extraction of different tissue types in the brain. Random seed initialization was used to speed up numerical computation and avoid the need for a priori information. This random initialization ensures robustness of the method to variation of user expertise, biased a priori information and errors in input information that could be influenced by variations in image quality. Experimentation on three MRI brain data sets showed that an optimal partitioning successfully labeled regions that accurately identified white matter, gray matter and cerebrospinal fluid in the ventricles. Quantitative evaluation of the segmentation was performed with comparison to manually labeled data and computed false positive and false negative assignments of voxels for the three organs. We report high accuracy for the two comparison cases. These results demonstrate the efficiency and flexibility of this segmentation framework to perform the challenging task of automatically extracting brain tissue volume contours.

  20. Quantitative evaluation of peptide-extraction methods by HPLC-triple-quad MS-MS.

    PubMed

    Du, Yan; Wu, Dapeng; Wu, Qian; Guan, Yafeng

    2015-02-01

    In this study, the efficiency of five peptide-extraction methods—acetonitrile (ACN) precipitation, ultrafiltration, C18 solid-phase extraction (SPE), dispersed SPE with mesoporous carbon CMK-3, and mesoporous silica MCM-41—was quantitatively investigated. With 28 tryptic peptides as target analytes, these methods were evaluated on the basis of recovery and reproducibility by using high-performance liquid chromatography-triple-quad tandem mass spectrometry in selected-reaction-monitoring mode. Because of the distinct extraction mechanisms of the methods, their preferences for extracting peptides of different properties were revealed to be quite different, usually depending on the pI values or hydrophobicity of peptides. When target peptides were spiked in bovine serum albumin (BSA) solution, the extraction efficiency of all the methods except ACN precipitation changed significantly. The binding of BSA with target peptides and nonspecific adsorption on adsorbents were believed to be the ways through which BSA affected the extraction behavior. When spiked in plasma, the performance of all five methods deteriorated substantially, with the number of peptides having recoveries exceeding 70% being 15 for ACN precipitation, and none for the other methods. Finally, the methods were evaluated in terms of the number of identified peptides for extraction of endogenous plasma peptides. Only ultrafiltration and CMK-3 dispersed SPE performed differently from the quantitative results with target peptides, and the wider distribution of the properties of endogenous peptides was believed to be the main reason. PMID:25542575

  1. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR

    PubMed Central

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-01-01

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance. PMID:26015401

  2. Quantitative evaluation on internal seeing induced by heat-stop of solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui

    2015-07-27

    heat-stop is one of the essential thermal control devices of solar telescope. The internal seeing induced by its temperature rise will degrade the imaging quality significantly. For quantitative evaluation on internal seeing, an integrated analysis method based on computational fluid dynamics and geometric optics is proposed in this paper. Firstly, the temperature field of the heat-affected zone induced by heat-stop temperature rise is obtained by the method of computational fluid dynamics calculation. Secondly, the temperature field is transformed to refractive index field by corresponding equations. Thirdly, the wavefront aberration induced by internal seeing is calculated by geometric optics based on optical integration in the refractive index field. This integrated method is applied in the heat-stop of the Chinese Large Solar Telescope to quantitatively evaluate its internal seeing. The analytical results show that the maximum acceptable temperature rise of heat-stop is up to 5 Kelvins above the ambient air at any telescope pointing directions under the condition that the root-mean-square of wavefront aberration induced by internal seeing is less than 25nm. Furthermore, it is found that the magnitude of wavefront aberration gradually increases with the increase of heat-stop temperature rise for a certain telescope pointing direction. Meanwhile, with the variation of telescope pointing varying from the horizontal to the vertical direction, the magnitude of wavefront aberration decreases at first and then increases for the same heat-stop temperature rise. PMID:26367657

  3. Evaluation of PLS, LS-SVM, and LWR for quantitative spectroscopic analysis of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil testing requires the analysis of large numbers of samples in laboratory that are often time consuming and expensive. Mid-infrared spectroscopy (mid-IR) and near-infrared spectroscopy (NIRS) are fast, non-destructive, and inexpensive analytical methods that have been used for soil analysis, in l...

  4. Antiangiogenic effects of pazopanib in xenograft hepatocellular carcinoma models: evaluation by quantitative contrast-enhanced ultrasonography

    PubMed Central

    2011-01-01

    Background Antiangiogenesis is a promising therapy for advanced hepatocellular carcinoma (HCC), but the effects are difficult to be evaluated. Pazopanib (GW786034B) is a pan-vascular endothelial growth factor receptor inhibitor, the antitumor effects or antiangiogenic effects haven't been investigated in HCC. Methods In vitro direct effects of pazopanib on human HCC cell lines and endothelial cells were evaluated. In vivo antitumor effects were evaluated in three xenograft nude mice models. In the subcutaneous HCCLM3 model, intratumoral blood perfusion was detected by contrast-enhanced ultrasonography (CEUS), and serial quantitative parameters were profiled from the time-intensity curves of ultrasonograms. Results In vitro proliferation of various HCC cell lines were not inhibited by pazopanib. Pazopanib inhibited migration and invasion and induced apoptosis significantly in two HCC cell lines, HCCLM3 and PLC/PRF/5. Proliferation, migration, and tubule formation of human umbilical vein endothelial cells were inhibited by pazopanib in a dose-dependent manner. In vivo tumor growth was significantly inhibited by pazopanib in HCCLM3, HepG2, and PLC/PRF/5 xenograft models. Various intratumoral perfusion parameters changed over time, and the signal intensity was significantly impaired in the treated tumors before the treatment efficacy on tumor size could be observed. Mean transit time of the contrast media in hotspot areas of the tumors was reversely correlated with intratumoral microvessel density. Conclusions Antitumor effects of pazopanib in HCC xenografts may owe to its antiangiogenic effects, and the in vivo antiangiogenic effects could be evaluated by quantitative CEUS. PMID:21251271

  5. Nondestructive testing with thermography

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  6. Reprint of “Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging”?

    PubMed Central

    Oishi, Kenichi; Faria, Andreia V.; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2015-01-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a “growth percentile chart,” which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application. PMID:24295553

  7. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions.

    PubMed

    Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide

    2016-02-01

    Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. PMID:26678177

  8. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    PubMed

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes. PMID:16256662

  9. Utilizing Optical Coherence Tomography in the Nondestructive and Noncontact Measurement of Egg Shell Thickness

    PubMed Central

    2014-01-01

    The goal of this study was to measure the thickness of egg shells without any contact and by utilizing a nondestructive method that sends infrared light beam on the egg. We obtain measurement resolutions on the order of 7??m up to a penetration depth of 1.7?mm from the actual surface of the egg shell. The measurement results we obtained show that optical coherence tomography can be used to accurately determine the egg shell thickness. Scanning the light beam over the surface allows for measuring the egg profile and monitoring the variations of shell thickness. Since this information gives a quantitative value for the uniformity of the egg shell structure, we anticipate that optical coherence tomography may be used in the quantitative evaluation of egg quality in in-line automated inspection systems. PMID:25133208

  10. Quantitative Evaluation of Lightning Surge Range Voltage-time Characteristics in High Pressure SF6 Gas

    NASA Astrophysics Data System (ADS)

    Shinkai, Hiroyuki; Goshima, Hisashi; Yashima, Masafumi; Fujinami, Hideo

    Since gas-insulated switchgear (GIS) is subjected to very fast transient overvoltages such as lightning surges or disconnector switching surges. Therefore the sparkover voltage and time (V-t) characteristics of SF6 in a very short time range of less than 1?s are of great interest from the viewpoint of insulation design and coordination for a GIS. This paper describes the V-t characteristics of SF6 at a gas pressure of 0.5MPa using a steep-front square impulse voltage under a quasi-uniform field gap and presents a quantitative evaluation of the V-t characteristics for a nonstandard lightning impulse voltage. In the case of a square impulse, the V-t characteristics of positive polarity were observed to be almost flat over a long time range from 80ns to 10?s, and rose steeply over a short time range from 80ns down to 20ns. For negative polarity, the V-t characteristics exhibit a gentle rise from 200ns down to 40ns. In the estimation of V-t characteristics, the equal-area criterion parameters were quantitatively estimated using the square impulse. For a nonstandard lightning impulse, we found that the application of equal area criterion with these parameters for the non-oscillating impulse and oscillating impulse of up to 5.3MHz as a model of lightning surge and disconnector switching surge is possible.

  11. Proteus mirabilis biofilm - Qualitative and quantitative colorimetric methods-based evaluation

    PubMed Central

    Kwiecinska-Piróg, Joanna; Bogiel, Tomasz; Skowron, Krzysztof; Wieckowska, Ewa; Gospodarek, Eugenia

    2014-01-01

    Proteus mirabilis strains ability to form biofilm is a current topic of a number of research worldwide. In this study the biofilm formation of P. mirabilis strains derived from urine of the catheterized and non-catheterized patients has been investigated. A total number of 39 P. mirabilis strains isolated from the urine samples of the patients of dr Antoni Jurasz University Hospital No. 1 in Bydgoszcz clinics between 2011 and 2012 was used. Biofilm formation was evaluated using two independent quantitative and qualitative methods with TTC (2,3,5-triphenyl-tetrazolium chloride) and CV (crystal violet) application. The obtained results confirmed biofilm formation by all the examined strains, except quantitative method with TTC, in which 7.7% of the strains did not have this ability. It was shown that P. mirabilis rods have the ability to form biofilm on the surfaces of both biomaterials applied, polystyrene and polyvinyl chloride (Nelaton catheters). The differences in ability to form biofilm observed between P. mirabilis strains derived from the urine of the catheterized and non-catheterized patients were not statistically significant. PMID:25763050

  12. An evaluation of genetically encoded FRET-based biosensors for quantitative metabolite analyses in vivo.

    PubMed

    Moussa, Roland; Baierl, Anna; Steffen, Victoria; Kubitzki, Tina; Wiechert, Wolfgang; Pohl, Martina

    2014-12-10

    A broad range of genetically-encoded fluorescence biosensors has been developed, allowing the detection of signaling intermediates and metabolites in real time. Many of these biosensors are based on Foerster Resonance Energy Transfer (FRET). The two biosensors of the well-known "Venus-flytrap" type exemplarily studied in this work are composed of a central sugar binding protein flanked by two green fluorescent protein derivatives, namely ECFP as well as Citrine and EYFP, respectively. In order to evaluate FRET-based biosensors as an in vivo tool for quantitative metabolite analyses, we have thoroughly studied the effects of pH, buffer salts, ionic strength, temperature and several intracellular metabolites on the signal intensity of both biosensors and both fluorescence proteins. Almost all micro-environmental variations led to considerably different FRET signals, because either the fluorescent proteins or the metabolite binding domains were affected by the tested parameters. This resulted not only in altered FRET ratios between the apo state and the saturated state but also in significant shifts of the apparent binding constant. This underlines the necessity of careful controls in order to allow reliable quantitative measurements in vivo. PMID:25107505

  13. Quantitative evaluation of hidden defects in cast iron components using ultrasound activated lock-in vibrothermography

    SciTech Connect

    Montanini, R.; Freni, F.; Rossi, G. L.

    2012-09-15

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.

  14. Chairside quantitative immunochromatographic evaluation of salivary cotinine and its correlation with chronic periodontitis

    PubMed Central

    Surya, Chamarthi; Swamy, Devulapally Narasimha; Chakrapani, Swarna; Kumar, Surapaneni Sunil

    2012-01-01

    Background: Cigarette smoking is an established and modifiable risk factor for periodontitis. Periodontitis appears to be dose-dependent on smoking. The purpose of this study was to assess a reliable marker of tobacco smoke exposure (salivary cotinine) chairside and to confirm the quantitative association between smoking and chronic periodontitis. Materials and Methods: Saliva samples from 80 males, aged 30–60 years, with chronic periodontitis, were evaluated chairside using NicAlert™ cotinine test strips (NCTS). Patients were divided into two groups: A (cotinine negative) and B (cotinine positive). Plaque index (PI), Gingival index (GI), gingival bleeding index (GBI), probing pocket depth (PPD), clinical attachment level (CAL), and gingival recession (GR) were compared between the two groups and among the subjects of group B. Results: Comparison showed that the severity of PPD (P<0.001), CAL (P<0.001), and GR (P<0.001) was more in group B than in group A. Severity of all periodontal parameters increased with increased salivary cotinine among the subjects in group B. Conclusion: Quantitative direct association can be established between salivary cotinine and the severity of periodontitis. Immunochromatography-based cotinine test strips are a relatively easy method for quantification of salivary cotinine chairside. Immediate and personalized feedback from a chairside test can improve compliance, quit rates, and ease reinforcing smoking cessation. PMID:23492903

  15. Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model

    PubMed Central

    Yoshioka, S.; Matsuhana, B.; Tanaka, S.; Inouye, Y.; Oshima, N.; Kinoshita, S.

    2011-01-01

    The structural colour of the neon tetra is distinguishable from those of, e.g., butterfly wings and bird feathers, because it can change in response to the light intensity of the surrounding environment. This fact clearly indicates the variability of the colour-producing microstructures. It has been known that an iridophore of the neon tetra contains a few stacks of periodically arranged light-reflecting platelets, which can cause multilayer optical interference phenomena. As a mechanism of the colour variability, the Venetian blind model has been proposed, in which the light-reflecting platelets are assumed to be tilted during colour change, resulting in a variation in the spacing between the platelets. In order to quantitatively evaluate the validity of this model, we have performed a detailed optical study of a single stack of platelets inside an iridophore. In particular, we have prepared a new optical system that can simultaneously measure both the spectrum and direction of the reflected light, which are expected to be closely related to each other in the Venetian blind model. The experimental results and detailed analysis are found to quantitatively verify the model. PMID:20554565

  16. Anatomopathological staging of feline hypertrophic cardiomyopathy through quantitative evaluation based on morphometric and histopathological data.

    PubMed

    Biasato, I; Francescone, L; La Rosa, G; Tursi, M

    2015-10-01

    Diagnosis of feline hypertrophic cardiomyopathy (HCM) is both clinical and anatomopathological. Since standardized echocardiographic parameters have previously been established for its diagnosis and classification, the aim of the present study is to provide an original, complete and repeatable quantitative anatomopathological evaluation of this myocardial disease. Since ES-HCM is a clearly defined clinicopathological entity of feline HCM, the present study also aims to investigate its temporal evolution. The hearts of 21 cats with previous diagnosis or suspicion of HCM and 6 control animals were submitted for morphometric and histopathological investigations. The proposed quantitative assessment of gross and histopathological features of HCM appears to be original and repeatable. Correlations between morphometric data allow to establish that the progression to the end-stage phenotypes, primarily characterized by increase in left ventricular fibrous tissue deposition, is accompanied by dilation of left ventricular lumen (P=0.0004) and left atrium (P=0.0017) and increase in intramural coronary arteriosclerosis (P=0.0293). PMID:26412533

  17. Quantitative and Qualitative Evaluation of Iranian Researchers’ Scientific Production in Dentistry Subfields

    PubMed Central

    Yaminfirooz, Mousa; Motallebnejad, Mina; Gholinia, Hemmat; Esbakian, Somayeh

    2015-01-01

    Background: As in other fields of medicine, scientific production in the field of dentistry has significant placement. This study aimed at quantitatively and qualitatively evaluating Iranian researchers’ scientific output in the field of dentistry and determining their contribution in each of dentistry subfields and branches. Methods: This research was a scientometric study that applied quantitative and qualitative indices of Web of Science (WoS). Research population consisted of927indexed documents published under the name of Iran in the time span of 1993-2012 which were extracted from WoS on 10 March 2013. The Mann-Whitney test and Pearson correlation coefficient were used to data analyses in SPSS 19. Results: 777 (83. 73%) of indexed items of all scientific output in WoS were scientific articles. The highest growth rate of scientific productionwith90% belonged to endodontic sub field. The correlation coefficient test showed that there was a significant positive relationship between the number of documents and their publication age (P < 0. 0001). There was a significant difference between the mean number of published articles in the first ten- year (1993-2003) and that of the second one (2004-2013), in favor of the latter (P = 0. 001). Conclusions: The distribution frequencies of scientific production in various subfields of dentistry were very different. It needs to reinforce the infrastructure for more balanced scientific production in the field and its related subfields. PMID:26635439

  18. Evaluation of the quantitative performances of supercritical fluid chromatography: from method development to validation.

    PubMed

    Dispas, Amandine; Lebrun, Pierre; Ziemons, Eric; Marini, Roland; Rozet, Eric; Hubert, Philippe

    2014-08-01

    Recently, the number of papers about SFC increased drastically but scientists did not truly focus their work on quantitative performances of this technique. In order to prove the potential of UHPSFC, the present work discussed about the different steps of the analytical life cycle of a method: from development to validation and application. Moreover, the UHPSFC quantitative performances were evaluated in comparison with UHPLC, which is the main technique used for quality control in the pharmaceutical industry and then could be considered as a reference. The methods were developed using Design Space strategy, leading to the optimization of robust method. In this context, when the Design Space optimization shows guarantee of quality, no more robustness study is required prior to the validation. Then, the methods were geometrically transferred in order to reduce the analysis time. The UHPSFC and UHPLC methods were validated based on the total error approach using accuracy profile. Even if UHPLC showed better precision and sensitivity, UHPSFC method is able to give accurate results in a dosing range larger than the 80-120% range required by the European Medicines Agency. Consequently, UHPSFC results are valid and could be used for the control of active substance in a finished pharmaceutical product. Finally, UHPSFC validated method was used to analyse real samples and gave similar results than the reference method (UHPLC). PMID:24513349

  19. Evaluation of real-time PCR for quantitative detection of Escherichia coli in beach water.

    PubMed

    Lam, Jason Tszhin; Lui, Edwin; Chau, Simon; Kueh, Cathie Show Wu; Yung, Ying-Kit; Yam, Wing Cheong

    2014-03-01

    The current investigation evaluated the use of real-time polymerase chain reaction (PCR) for quantitative detection of Escherichia coli in marine beach water. Densities of E. coli in 263 beach water samples collected from 13 bathing beaches in Hong Kong between November 2008 and December 2009 were determined using both real-time PCR and culture-based methods. Regression analysis showed that these two methods had a significant positive linear relationship with a correlation coefficient (r) of 0.64. Serial dilution of spiked samples indicated that the real-time PCR had a limit of quantification of 25 E. coli colonies in 100 mL water sample. This study showed that the rapid real-time PCR has potential to complement the traditional culture method of assessing fecal pollution in marine beach water. PMID:24642432

  20. An experimental method for quantitatively evaluating the elemental processes of indoor radioactive aerosol behavior.

    PubMed

    Yamazawa, H; Yamada, S; Xu, Y; Hirao, S; Moriizumi, J

    2015-11-01

    An experimental method for quantitatively evaluating the elemental processes governing the indoor behaviour of naturally occurring radioactive aerosols was proposed. This method utilises transient response of aerosol concentrations to an artificial change in aerosol removal rate by turning on and off an air purifier. It was shown that the indoor-outdoor exchange rate and the indoor deposition rate could be estimated by a continuous measurement of outdoor and indoor aerosol number concentration measurements and by the method proposed in this study. Although the scatter of the estimated parameters is relatively large, both the methods gave consistent results. It was also found that the size distribution of radioactive aerosol particles and hence activity median aerodynamic diameter remained not largely affected by the operation of the air purifier, implying the predominance of the exchange and deposition processes over other processes causing change in the size distribution such as the size growth by coagulation and the size dependence of deposition. PMID:25935006

  1. Noninvasive Quantitative Evaluation of the Dentin Layer during Dental Procedures Using Optical Coherence Tomography

    PubMed Central

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Bradu, Adrian; Duma, Virgil-Florin; Podoleanu, Adrian Gh.

    2015-01-01

    A routine cavity preparation of a tooth may lead to opening the pulp chamber. The present study evaluates quantitatively, in real time, for the first time to the best of our knowledge, the drilled cavities during dental procedures. An established noninvasive imaging technique, Optical Coherence Tomography (OCT), is used. The main scope is to prevent accidental openings of the dental pulp chamber. Six teeth with dental cavities have been used in this ex vivo study. The real time assessment of the distances between the bottom of the drilled cavities and the top of the pulp chamber was performed using an own assembled OCT system. The evaluation of the remaining dentin thickness (RDT) allowed for the positioning of the drilling tools in the cavities in relation to the pulp horns. Estimations of the safe and of the critical RDT were made; for the latter, the opening of the pulp chamber becomes unavoidable. Also, by following the fractures that can occur when the extent of the decay is too large, the dentist can decide upon the right therapy to follow, endodontic or conventional filling. The study demonstrates the usefulness of OCT imaging in guiding such evaluations during dental procedures. PMID:26078779

  2. Quantitative evaluation of noise reduction algorithms for very low dose renal CT perfusion imaging

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Primak, Andrew N.; Yu, Lifeng; Li, Hua; Krier, James D.; Lerman, Lilach O.; McCollough, Cynthia H.

    2009-02-01

    In this paper, we demonstrate a methodology for quantitative evaluation of noise reduction algorithms for very low-dose (1/10th typical dose) renal CT perfusion imaging. Three types of noise reduction algorithms are evaluated, including the commonly used low pass filtering, edge-preserving algorithms, and spatial-temporal filtering algorithms, such as recently introduced local highly constrained back projection (HYPR-LR) technique and multi-band filtering (MBF). The performance of these noise reduction methods was evaluated in terms of background signal-to-noise ratio (SNR), spatial resolution, fidelity of the time-attenuation curves of renal cortex, and computational speed. The spatial resolution was quantified by an on-scene modulation transfer function (MTF) measurement method. The fidelity of time-attenuation curves was quantified by statistical analysis using a Chi-square test. The results indicate that algorithms employing spatial-temporal correlations of images, such as HYPR and MBF, can achieve spatial resolution similar to the images acquired using routine dose levels. Edge-preserving algorithms, such as anisotropic diffusion and bilateral filtering, also show good performance in terms of background SNR and spatial resolution, but they are rather slow compared to HYPR and MBF. However, edge-preserving algorithms can be applied in the situations where images do not have strong spatial-temporal correlation. Finally, all the noise reduction algorithms show a high fidelity of the time-attenuation curves, which can be explained by a strong iodine attenuation signal in the highly perfused kidney.

  3. Field evaluation of a quantitative polymerase chain reaction assay for Mycoplasma hyorhinis.

    PubMed

    Clavijo, Maria J; Oliveira, Simone; Zimmerman, Jeffrey; Rendahl, Aaron; Rovira, Albert

    2014-11-01

    Mycoplasma hyorhinis has emerged as an important cause of systemic disease in nursery pigs. However, this bacterium can also be found in the upper respiratory tract of healthy swine. The current study describes the development of a quantitative polymerase chain reaction assay for the detection of M. hyorhinis and the evaluation of the assay in both disease diagnosis and disease surveillance using a large number of field samples. The analytical sensitivity was estimated to be 12 genome equivalents/?l. The assay was highly specific, detecting all 25 M. hyorhinis isolates tested and none of the 19 nontarget species tested. Assay repeatability was evaluated by testing different matrices spiked with known amounts of M. hyorhinis. Overall, assessment of the repeatability of the assay showed suitable precision within and between runs for all matrices. The coefficient of variation ranged from 10% to 24%. Mycoplasma hyorhinis DNA was detected in 48% of samples (pericardium, pleura, joints, nasal cavity, and lungs) from pigs with systemic disease. Mycoplasma hyorhinis was detected in nasal (92%) and oropharyngeal swabs (66%), as well as in oral fluids (100%). Potential uses of this tool involve the characterization of the prevalence of this pathogen in swine herds as well as bacterial quantification to evaluate intervention efficacy. PMID:25319032

  4. Quantitative evaluation of software packages for single-molecule localization microscopy.

    PubMed

    Sage, Daniel; Kirshner, Hagai; Pengo, Thomas; Stuurman, Nico; Min, Junhong; Manley, Suliana; Unser, Michael

    2015-08-01

    The quality of super-resolution images obtained by single-molecule localization microscopy (SMLM) depends largely on the software used to detect and accurately localize point sources. In this work, we focus on the computational aspects of super-resolution microscopy and present a comprehensive evaluation of localization software packages. Our philosophy is to evaluate each package as a whole, thus maintaining the integrity of the software. We prepared synthetic data that represent three-dimensional structures modeled after biological components, taking excitation parameters, noise sources, point-spread functions and pixelation into account. We then asked developers to run their software on our data; most responded favorably, allowing us to present a broad picture of the methods available. We evaluated their results using quantitative and user-interpretable criteria: detection rate, accuracy, quality of image reconstruction, resolution, software usability and computational resources. These metrics reflect the various tradeoffs of SMLM software packages and help users to choose the software that fits their needs. PMID:26076424

  5. Technology Efficacy in Active Prosthetic Knees for Transfemoral Amputees: A Quantitative Evaluation

    PubMed Central

    El-Sayed, Amr M.; Abu Osman, Noor Azuan

    2014-01-01

    Several studies have presented technological ensembles of active knee systems for transfemoral prosthesis. Other studies have examined the amputees' gait performance while wearing a specific active prosthesis. This paper combined both insights, that is, a technical examination of the components used, with an evaluation of how these improved the gait of respective users. This study aims to offer a quantitative understanding of the potential enhancement derived from strategic integration of core elements in developing an effective device. The study systematically discussed the current technology in active transfemoral prosthesis with respect to its functional walking performance amongst above-knee amputee users, to evaluate the system's efficacy in producing close-to-normal user performance. The performances of its actuator, sensory system, and control technique that are incorporated in each reported system were evaluated separately and numerical comparisons were conducted based on the percentage of amputees' gait deviation from normal gait profile points. The results identified particular components that contributed closest to normal gait parameters. However, the conclusion is limitedly extendable due to the small number of studies. Thus, more clinical validation of the active prosthetic knee technology is needed to better understand the extent of contribution of each component to the most functional development. PMID:25110727

  6. Quantitative analysis of topoisomerase II{alpha} to rapidly evaluate cell proliferation in brain tumors

    SciTech Connect

    Oda, Masashi; Arakawa, Yoshiki; Kano, Hideyuki; Kawabata, Yasuhiro; Katsuki, Takahisa; Shirahata, Mitsuaki; Ono, Makoto; Yamana, Norikazu; Hashimoto, Nobuo; Takahashi, Jun A. . E-mail: jat@kuhp.kyoto-u.ac.jp

    2005-06-17

    Immunohistochemical cell proliferation analyses have come into wide use for evaluation of tumor malignancy. Topoisomerase II{alpha} (topo II{alpha}), an essential nuclear enzyme, has been known to have cell cycle coupled expression. We here show the usefulness of quantitative analysis of topo II{alpha} mRNA to rapidly evaluate cell proliferation in brain tumors. A protocol to quantify topo II{alpha} mRNA was developed with a real-time RT-PCR. It took only 3 h to quantify from a specimen. A total of 28 brain tumors were analyzed, and the level of topo II{alpha} mRNA was significantly correlated with its immuno-staining index (p < 0.0001, r = 0.9077). Furthermore, it sharply detected that topo II{alpha} mRNA decreased in growth-inhibited glioma cell. These results support that topo II{alpha} mRNA may be a good and rapid indicator to evaluate cell proliferate potential in brain tumors.

  7. Noninvasive Quantitative Evaluation of the Dentin Layer during Dental Procedures Using Optical Coherence Tomography.

    PubMed

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Bradu, Adrian; Duma, Virgil-Florin; Podoleanu, Adrian Gh

    2015-01-01

    A routine cavity preparation of a tooth may lead to opening the pulp chamber. The present study evaluates quantitatively, in real time, for the first time to the best of our knowledge, the drilled cavities during dental procedures. An established noninvasive imaging technique, Optical Coherence Tomography (OCT), is used. The main scope is to prevent accidental openings of the dental pulp chamber. Six teeth with dental cavities have been used in this ex vivo study. The real time assessment of the distances between the bottom of the drilled cavities and the top of the pulp chamber was performed using an own assembled OCT system. The evaluation of the remaining dentin thickness (RDT) allowed for the positioning of the drilling tools in the cavities in relation to the pulp horns. Estimations of the safe and of the critical RDT were made; for the latter, the opening of the pulp chamber becomes unavoidable. Also, by following the fractures that can occur when the extent of the decay is too large, the dentist can decide upon the right therapy to follow, endodontic or conventional filling. The study demonstrates the usefulness of OCT imaging in guiding such evaluations during dental procedures. PMID:26078779

  8. Infrared thermography and ultrasound C-scan for non-destructive evaluation of 3D carbon fiber materials: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Genest, Marc; Robitaille, Francois; Maldague, Xavier; West, Lucas; Joncas, Simon; Leduc, Catherine

    2015-05-01

    3D Carbon fiber polymer matrix composites (3D CF PMCs) are increasingly used for aircraft construction due to their exceptional stiffness and strength-to-mass ratios. However, defects are common in the 3D combining areas and are challenging to inspect. In this paper, Stitching is used to decrease these defects, but causes some new types of defects. Infrared NDT (non-destructive testing) and ultrasound NDT are used. In particular, a micro-laser line thermography technique (micro-LLT) and a micro-laser spot thermography (micro-LST) with locked-in technique are used to detect the micro-defects. In addition, a comparative study is conducted by using pulsed thermography (PT), vibrothermography (VT). In order to confirm the types of the defects, microscopic inspection is carried out before NDT work, after sectioning and polishing a small part of the sample..

  9. Thermal Nondestructive Evaluation Report: Inspection of the Refurbished Manipulator Arm System in the Manipulator Development Facility at Johnson Space Center 10-12 January 2001

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2002-01-01

    On 4 December 2002, a failure of the Refurbished Manipulator Arm System (RMAS) occurred in the Manipulator Development Facility (MDF) at Johnson Space Center. When the Test Director commanded a should pitch maneuver to lift the arm from its payload bay pedestal, the yaw controls failed. This, coupled with a gravitational forces (due to the angle of the shoulder joint with respect to vertical), resulted in uncontrolled arm motion. The shoulder yaw joint moved approximately 20 degrees, causing the extended arm to strike and severely damage the port side MDF catwalk handrails. The arm motion stopped after impact with the handrails. On 10-12 January 2001, inspections were performed on the port face of the lower and upper arms of the RMAS using a infrared thermography developed at Langley Research Center. This paper presents the results of those nondestructive inspections and provides a complete description of the anomalies found and their locations.

  10. Evaluation of reference gene suitability for quantitative expression analysis by quantitative polymerase chain reaction in the mandibular condyle of sheep

    PubMed Central

    JIANG, XIN; XUE, YANG; ZHOU, HONGZHI; LI, SHOUHONG; ZHANG, ZONGMIN; HOU, RUI; DING, YUXIANG; HU, KAIJIN

    2015-01-01

    Reference genes are commonly used as a reliable approach to normalize the results of quantitative polymerase chain reaction (qPCR), and to reduce errors in the relative quantification of gene expression. Suitable reference genes belonging to numerous functional classes have been identified for various types of species and tissue. However, little is currently known regarding the most suitable reference genes for bone, specifically for the sheep mandibular condyle. Sheep are important for the study of human bone diseases, particularly for temporomandibular diseases. The present study aimed to identify a set of reference genes suitable for the normalization of qPCR data from the mandibular condyle of sheep. A total of 12 reference genes belonging to various functional classes were selected, and the expression stability of the reference genes was determined in both the normal and fractured area of the sheep mandibular condyle. RefFinder, which integrates the following currently available computational algorithms: geNorm, NormFinder, BestKeeper, and the comparative ?Ct method, was used to compare and rank the candidate reference genes. The results obtained from the four methods demonstrated a similar trend: RPL19, ACTB, and PGK1 were the most stably expressed reference genes in the sheep mandibular condyle. As determined by RefFinder comprehensive analysis, the results of the present study suggested that RPL19 is the most suitable reference gene for studies associated with the sheep mandibular condyle. In addition, ACTB and PGK1 may be considered suitable alternatives. PMID:26238421

  11. Quantitative evaluation of 3D dosimetry for stereotactic volumetric-modulated arc delivery using COMPASS.

    PubMed

    Vikraman, Subramani; Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria

    2015-01-01

    The purpose of this study was to evaluate quantitatively the patient-specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric-modulated arc delivery. Twenty-five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric-modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5-20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)-calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS-calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose-volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9% ± 1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient-specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high-dose modulated stereotactic delivery with very high precision on patient CT images. PMID:25679152

  12. Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality.

    PubMed

    Gensberger, Eva Theres; Polt, Marlies; Konrad-Köszler, Marianne; Kinner, Paul; Sessitsch, Angela; Kosti?, Tanja

    2014-12-15

    Microbial water quality assessment currently relies on cultivation-based methods. Nucleic acid-based techniques such as quantitative PCR (qPCR) enable more rapid and specific detection of target organisms and propidium monoazide (PMA) treatment facilitates the exclusion of false positive results caused by DNA from dead cells. Established molecular assays (qPCR and PMA-qPCR) for legally defined microbial quality parameters (Escherichia coli, Enterococcus spp. and Pseudomonas aeruginosa) and indicator organism group of coliforms (implemented on the molecular detection of Enterobacteriaceae) were comparatively evaluated to conventional microbiological methods. The evaluation of an extended set of drinking and process water samples showed that PMA-qPCR for E. coli, Enterococcus spp. and P. aeruginosa resulted in higher specificity because substantial or complete reduction of false positive signals in comparison to qPCR were obtained. Complete compliance to reference method was achieved for E. coli PMA-qPCR and 100% specificity for Enterococcus spp. and P. aeruginosa in the evaluation of process water samples. A major challenge remained in sensitivity of the assays, exhibited through false negative results (7-23%), which is presumably due to insufficient sample preparation (i.e. concentration of bacteria and DNA extraction), rather than the qPCR limit of detection. For the detection of the indicator group of coliforms, the evaluation study revealed that the utilization of alternative molecular assays based on the taxonomic group of Enterobacteriaceae was not adequate. Given the careful optimization of the sensitivity, the highly specific PMA-qPCR could be a valuable tool for rapid detection of hygienic parameters such as E. coli, Enterococcus spp. and P. aeruginosa. PMID:25459225

  13. A quantitative health assessment index for rapid evaluation of fish condition in the field

    SciTech Connect

    Adams, S.M. ); Brown, A.M. ); Goede, R.W. )

    1993-01-01

    The health assessment index (HAI) is an extension and refinement of a previously published field necropsy system. The HAI is a quantitative index that allows statistical comparisons of fish health among data sets. Index variables are assigned numerical values based on the degree of severity or damage incurred by an organ or tissue from environmental stressors. This approach has been used to evaluate the general health status of fish populations in a wide range of reservoir types in the Tennessee River basin (North Carolina, Tennessee, Alabama, Kentucky), in Hartwell Reservoir (Georgia, South Carolina) that is contaminated by polychlorinated biphenyls, and in the Pigeon River (Tennessee, North Carolina) that receives effluents from a bleaches kraft mill. The ability of the HAI to accurately characterize the health of fish in these systems was evaluated by comparing this index to other types of fish health measures (contaminant, bioindicator, and reproductive analysis) made at the same time as the HAI. In all cases, the HAI demonstrated the same pattern of fish health status between sites as did each of the other more sophisticated health assessment methods. The HAI has proven to be a simple and inexpensive means of rapidly assessing general fish health in field situations. 29 refs., 5 tabs.

  14. Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds

    PubMed Central

    Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.

    2014-01-01

    Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145

  15. Exploring the utility of quantitative network design in evaluating Arctic sea ice thickness sampling strategies

    NASA Astrophysics Data System (ADS)

    Kaminski, T.; Kauker, F.; Eicken, H.; Karcher, M.

    2015-08-01

    We present a quantitative network design (QND) study of the Arctic sea ice-ocean system using a software tool that can evaluate hypothetical observational networks in a variational data assimilation system. For a demonstration, we evaluate two idealised flight transects derived from NASA's Operation IceBridge airborne ice surveys in terms of their potential to improve 10-day to 5-month sea ice forecasts. As target regions for the forecasts we select the Chukchi Sea, an area particularly relevant for maritime traffic and offshore resource exploration, as well as two areas related to the Barnett ice severity index (BSI), a standard measure of shipping conditions along the Alaskan coast that is routinely issued by ice services. Our analysis quantifies the benefits of sampling upstream of the target area and of reducing the sampling uncertainty. We demonstrate how observations of sea ice and snow thickness can constrain ice and snow variables in a target region and quantify the complementarity of combining two flight transects. We further quantify the benefit of improved atmospheric forecasts and a well-calibrated model.

  16. Safety evaluation of disposable baby diapers using principles of quantitative risk assessment.

    PubMed

    Rai, Prashant; Lee, Byung-Mu; Liu, Tsung-Yun; Yuhui, Qin; Krause, Edburga; Marsman, Daniel S; Felter, Susan

    2009-01-01

    Baby diapers are complex products consisting of multiple layers of materials, most of which are not in direct contact with the skin. The safety profile of a diaper is determined by the biological properties of individual components and the extent to which the baby is exposed to each component during use. Rigorous evaluation of the toxicological profile and realistic exposure conditions of each material is important to ensure the overall safety of the diaper under normal and foreseeable use conditions. Quantitative risk assessment (QRA) principles may be applied to the safety assessment of diapers and similar products. Exposure to component materials is determined by (1) considering the conditions of product use, (2) the degree to which individual layers of the product are in contact with the skin during use, and (3) the extent to which some components may be extracted by urine and delivered to skin. This assessment of potential exposure is then combined with data from standard safety assessments of components to determine the margin of safety (MOS). This study examined the application of QRA to the safety evaluation of baby diapers, including risk assessments for some diaper ingredient chemicals for which establishment of acceptable and safe exposure levels were demonstrated. PMID:20077195

  17. Quantitative Evaluation of the Environmental Impact Quotient (EIQ) for Comparing Herbicides

    PubMed Central

    Kniss, Andrew R.; Coburn, Carl W.

    2015-01-01

    Various indicators of pesticide environmental risk have been proposed, and one of the most widely known and used is the environmental impact quotient (EIQ). The EIQ has been criticized by others in the past, but it continues to be used regularly in the weed science literature. The EIQ is typically considered an improvement over simply comparing the amount of herbicides applied by weight. Herbicides are treated differently compared to other pesticide groups when calculating the EIQ, and therefore, it is important to understand how different risk factors affect the EIQ for herbicides. The purpose of this work was to evaluate the suitability of the EIQ as an environmental indicator for herbicides. Simulation analysis was conducted to quantify relative sensitivity of the EIQ to changes in risk factors, and actual herbicide EIQ values were used to quantify the impact of herbicide application rate on the EIQ Field Use Rating. Herbicide use rate was highly correlated with the EIQ Field Use Rating (Spearman’s rho >0.96, P-value <0.001) for two herbicide datasets. Two important risk factors for herbicides, leaching and surface runoff potential, are included in the EIQ calculation but explain less than 1% of total variation in the EIQ. Plant surface half-life was the risk factor with the greatest relative influence on herbicide EIQ, explaining 26 to 28% of the total variation in EIQ for actual and simulated EIQ values, respectively. For herbicides, the plant surface half-life risk factor is assigned values without any supporting quantitative data, and can result in EIQ estimates that are contrary to quantitative risk estimates for some herbicides. In its current form, the EIQ is a poor measure of herbicide environmental impact. PMID:26121252

  18. Evaluation of residual antibacterial potency in antibiotic production wastewater using a real-time quantitative method.

    PubMed

    Zhang, Hong; Zhang, Yu; Yang, Min; Liu, Miaomiao

    2015-11-01

    While antibiotic pollution has attracted considerable attention due to its potential in promoting the dissemination of antibiotic resistance genes in the environment, the antibiotic activity of their related substances has been neglected, which may underestimate the environmental impacts of antibiotic wastewater discharge. In this study, a real-time quantitative approach was established to evaluate the residual antibacterial potency of antibiotics and related substances in antibiotic production wastewater (APW) by comparing the growth of a standard bacterial strain (Staphylococcus aureus) in tested water samples with a standard reference substance (e.g. oxytetracycline). Antibiotic equivalent quantity (EQ) was used to express antibacterial potency, which made it possible to assess the contribution of each compound to the antibiotic activity in APW. The real-time quantitative method showed better repeatability (Relative Standard Deviation, RSD 1.08%) compared with the conventional fixed growth time method (RSD 5.62-11.29%). And its quantification limits ranged from 0.20 to 24.00 ?g L(-1), depending on the antibiotic. We applied the developed method to analyze the residual potency of water samples from four APW treatment systems, and confirmed a significant contribution from antibiotic transformation products to potent antibacterial activity. Specifically, neospiramycin, a major transformation product of spiramycin, was found to contribute 13.15-22.89% of residual potency in spiramycin production wastewater. In addition, some unknown related substances with antimicrobial activity were indicated in the effluent. This developed approach will be effective for the management of antibacterial potency discharge from antibiotic wastewater and other waste streams. PMID:26395288

  19. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies

    SciTech Connect

    Silva-Rodríguez, Jesús Aguiar, Pablo; Servicio de Medicina Nuclear, Complexo Hospitalario Universidade de Santiago de Compostela , 15782, Galicia; Grupo de Imaxe Molecular, Instituto de Investigación Sanitarias , Santiago de Compostela, 15706, Galicia ; Sánchez, Manuel; Mosquera, Javier; Luna-Vega, Víctor; Cortés, Julia; Garrido, Miguel; Pombar, Miguel; Ruibal, Álvaro; Grupo de Imaxe Molecular, Instituto de Investigación Sanitarias , Santiago de Compostela, 15706, Galicia; Fundación Tejerina, 28003, Madrid

    2014-05-15

    Purpose: Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. Methods: One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manual ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Results: Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. Conclusions: The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.

  20. Quantitative evaluation of iron transport processes in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Nishioka, Jun; Nakatsuka, Takeshi; Ono, Kazuya; Volkov, Yu. N.; Scherbinin, Alexey; Shiraiwa, Takayuki

    2014-08-01

    Comprehensive observations of the iron (Fe) distribution in the western Sea of Okhotsk were conducted and revealed the existence of two Fe transport processes in the sub-polar marginal sea. One transport process is Fe loading from the Amur River and transport by the East Sakhalin Current (ESC), and the other is Fe transport by the intermediate water (part of which was reported by Nishioka et al., 2007). Here, we report on quantitative evaluations of these two Fe transport processes. The surface dissolved Fe (Diss-Fe) and low salinity water distribution clearly indicate the influence of Fe discharge from the Amur River and the Fe that is transported by the East Sakhalin Current. The amounts of total dissolvable Fe (TD-Fe) and Diss-Fe that cross the surface of the northeast Sakhalin coastal area are estimated at 9.0 × 108 ? 1.3 × 109 g yr-1 and 1.0 × 108 ? 1.5 × 108 g yr-1, respectively. Although the ESC surface transport system along the Sakhalin coast is effective, the length-scale estimation of TD-Fe transport indicated that only 1.5% of the Fe at the mouth of the Amur River reached 52°N, which may be due to scavenging by biological particulates. High Fe anomalies were observed at the bottom of the continental shelf and the shelf break along the Sakhalin coast. The extremely low temperature and low N* water indicate that Fe resuspension due to the reducing properties of sediment occurred on the shelf and that the Fe was introduced to Dense Shelf Water (DSW) by tidal mixing. We estimate that the amounts of TD-Fe and Diss-Fe involved in the DSW on the continental shelf are 8.8 × 1010 ? 2.5 × 1011 g yr-1 and 2.3 × 109 ? 6.6 × 109 g yr-1, respectively. Length-scale estimates of TD-Fe transport indicate that 20% of the TD-Fe on the continental shelf remained in the Kuril Basin; thus, the TD-Fe in the intermediate water was efficiently transported to the Kuril Basin. These results indicate that two orders of magnitude more Fe is derived from the continental shelf by the intermediate water than by surface water and that Fe is transported a greater distance by intermediate water than by the surface layer. Additionally, the Fe that reached the Kuril Straits was mixed by intensive tidal mixing and influenced the vertical profiles of the water columns on both sides of the Kuril Straits in the Kuril Basin and the Oyashio region. Our quantitative evaluation also indicates other Fe inputs around the Kuril Strait.

  1. A Comprehensive Framework for Quantitative Evaluation of Downscaled Climate Predictions and Projections

    NASA Astrophysics Data System (ADS)

    Barsugli, J. J.; Guentchev, G.

    2012-12-01

    The variety of methods used for downscaling climate predictions and projections is large and growing larger. Comparative studies of downscaling techniques to date are often initiated in relation to specific projects, are focused on limited sets of downscaling techniques, and hence do not allow for easy comparison of outcomes. In addition, existing information about the quality of downscaled datasets is not available in digital form. There is a strong need for systematic evaluation of downscaling methods using standard protocols which will allow for a fair comparison of their advantages and disadvantages with respect to specific user needs. The National Climate Predictions and Projections platform, with the contributions of NCPP's Climate Science Advisory Team, is developing community-based standards and a prototype framework for the quantitative evaluation of downscaling techniques and datasets. Certain principles guide the development of this framework. We want the evaluation procedures to be reproducible and transparent, simple to understand, and straightforward to implement. To this end we propose a set of open standards that will include the use of specific data sets, time periods of analysis, evaluation protocols, evaluation tests and metrics. Secondly, we want the framework to be flexible and extensible to downscaling techniques which may be developed in the future, to high-resolution global models, and to evaluations that are meaningful for additional applications and sectors. Collaboration among practitioners who will be using the downscaled data and climate scientists who develop downscaling methods will therefore be essential to the development of this framework. The proposed framework consists of three analysis protocols, along with two tiers of specific metrics and indices that are to be calculated. The protocols describe the following types of evaluation that can be performed: 1) comparison to observations, 2) comparison to a "perfect model" simulation at high resolution, and 3) idealized comparisons where an analytic solution is known. Each of these protocols addresses different questions about the data, and defines different needs for evaluation datasets. For each protocol we identify individual pathways that may depend on the particular details of a given downscaling method or the goals of the validation. For example, whether the comparison is made to gridded observational data or to a set of station observations. Complementing the protocols are two tiers of metrics -- measures of performance of the methods in many dimensions. Tier 1 aims at a general statistical evaluation of the downscaled data. Tier 1 metrics will be primarily determined in collaboration with developers of downscaling methods, and can provide direct feedback into their further development. It is envisioned that Tier 2 consists of a flexible and extensible collection of metrics that will be developed in close collaboration with climate impacts modelers and those who use downscaled data for addressing real-world problems.

  2. Quantitative Evaluation of Experimental NMR Restraints Sander B. Nabuurs, Chris A. E. M. Spronk, Elmar Krieger, Hans Maassen,

    E-print Network

    Maassen, Hans

    Quantitative Evaluation of Experimental NMR Restraints Sander B. Nabuurs, Chris A. E. M. Spronk determination by NMR spectroscopy. The number and type of experimental restraints used in the structure calculation and the RMS deviation of the restraints are usually reported. We present a new method

  3. Quantitative Evaluation of Radiation Damage to Polyethylene Terephthalate by Soft X-rays and High-energy Electrons

    E-print Network

    Hitchcock, Adam P.

    Quantitative Evaluation of Radiation Damage to Polyethylene Terephthalate by Soft X-rays and High to polyethylene terephthalate (PET) caused by soft X-rays and energetic electrons have been measured using a scanning transmission X-ray microscope (STXM). Electron beam damage at two different dose rates and a range

  4. Establishment of Quantitative Severity Evaluation Model for Spinal Cord Injury by Metabolomic Fingerprinting

    PubMed Central

    Yang, Hao; Cohen, Mitchell Jay; Chen, Wei; Sun, Ming-Wei; Lu, Charles Damien

    2014-01-01

    Spinal cord injury (SCI) is a devastating event with a limited hope for recovery and represents an enormous public health issue. It is crucial to understand the disturbances in the metabolic network after SCI to identify injury mechanisms and opportunities for treatment intervention. Through plasma 1H-nuclear magnetic resonance (NMR) screening, we identified 15 metabolites that made up an “Eigen-metabolome” capable of distinguishing rats with severe SCI from healthy control rats. Forty enzymes regulated these 15 metabolites in the metabolic network. We also found that 16 metabolites regulated by 130 enzymes in the metabolic network impacted neurobehavioral recovery. Using the Eigen-metabolome, we established a linear discrimination model to cluster rats with severe and mild SCI and control rats into separate groups and identify the interactive relationships between metabolic biomarkers in the global metabolic network. We identified 10 clusters in the global metabolic network and defined them as distinct metabolic disturbance domains of SCI. Metabolic paths such as retinal, glycerophospholipid, arachidonic acid metabolism; NAD–NADPH conversion process, tyrosine metabolism, and cadaverine and putrescine metabolism were included. In summary, we presented a novel interdisciplinary method that integrates metabolomics and global metabolic network analysis to visualize metabolic network disturbances after SCI. Our study demonstrated the systems biological study paradigm that integration of 1H-NMR, metabolomics, and global metabolic network analysis is useful to visualize complex metabolic disturbances after severe SCI. Furthermore, our findings may provide a new quantitative injury severity evaluation model for clinical use. PMID:24727691

  5. Establishment of quantitative severity evaluation model for spinal cord injury by metabolomic fingerprinting.

    PubMed

    Peng, Jin; Zeng, Jun; Cai, Bin; Yang, Hao; Cohen, Mitchell Jay; Chen, Wei; Sun, Ming-Wei; Lu, Charles Damien; Jiang, Hua

    2014-01-01

    Spinal cord injury (SCI) is a devastating event with a limited hope for recovery and represents an enormous public health issue. It is crucial to understand the disturbances in the metabolic network after SCI to identify injury mechanisms and opportunities for treatment intervention. Through plasma 1H-nuclear magnetic resonance (NMR) screening, we identified 15 metabolites that made up an "Eigen-metabolome" capable of distinguishing rats with severe SCI from healthy control rats. Forty enzymes regulated these 15 metabolites in the metabolic network. We also found that 16 metabolites regulated by 130 enzymes in the metabolic network impacted neurobehavioral recovery. Using the Eigen-metabolome, we established a linear discrimination model to cluster rats with severe and mild SCI and control rats into separate groups and identify the interactive relationships between metabolic biomarkers in the global metabolic network. We identified 10 clusters in the global metabolic network and defined them as distinct metabolic disturbance domains of SCI. Metabolic paths such as retinal, glycerophospholipid, arachidonic acid metabolism; NAD-NADPH conversion process, tyrosine metabolism, and cadaverine and putrescine metabolism were included. In summary, we presented a novel interdisciplinary method that integrates metabolomics and global metabolic network analysis to visualize metabolic network disturbances after SCI. Our study demonstrated the systems biological study paradigm that integration of 1H-NMR, metabolomics, and global metabolic network analysis is useful to visualize complex metabolic disturbances after severe SCI. Furthermore, our findings may provide a new quantitative injury severity evaluation model for clinical use. PMID:24727691

  6. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass.

    PubMed

    Nielsen, Karsten H; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5-6?wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  7. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    PubMed Central

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6?wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  8. The Evaluation and Quantitation of Dihydrogen Metabolism Using Deuterium Isotope in Rats

    PubMed Central

    Hyspler, Radomir; Ticha, Alena; Schierbeek, Henk; Galkin, Alexander; Zadak, Zdenek

    2015-01-01

    Purpose Despite the significant interest in molecular hydrogen as an antioxidant in the last eight years, its quantitative metabolic parameters in vivo are still lacking, as is an appropriate method for determination of hydrogen effectivity in the mammalian organism under various conditions. Basic Procedures Intraperitoneally-applied deuterium gas was used as a metabolic tracer and deuterium enrichment was determined in the body water pool. Also, in vitro experiments were performed using bovine heart submitochondrial particles to evaluate superoxide formation in Complex I of the respiratory chain. Main Findings A significant oxidation of about 10% of the applied dose was found under physiological conditions in rats, proving its antioxidant properties. Hypoxia or endotoxin application did not exert any effect, whilst pure oxygen inhalation reduced deuterium oxidation. During in vitro experiments, a significant reduction of superoxide formation by Complex I of the respiratory chain was found under the influence of hydrogen. The possible molecular mechanisms of the beneficial effects of hydrogen are discussed, with an emphasis on the role of iron sulphur clusters in reactive oxygen species generation and on iron species-dihydrogen interaction. Principal Conclusions According to our findings, hydrogen may be an efficient, non-toxic, highly bioavailable and low-cost antioxidant supplement for patients with pathological conditions involving ROS-induced oxidative stress. PMID:26103048

  9. Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenzhong; Chen, Anping; Piao, Shilong; Rabin, Sam; Shen, Zehao

    2014-07-01

    The distributions of tropical ecosystems are rapidly being altered by climate change and anthropogenic activities. One possible trend—the loss of tropical forests and replacement by savannas—could result in significant shifts in ecosystem services and biodiversity loss. However, the influence and the relative importance of environmental factors in regulating the distribution of tropical forest and savanna biomes are still poorly understood, which makes it difficult to predict future tropical forest and savanna distributions in the context of climate change. Here we use boosted regression trees to quantitatively evaluate the importance of environmental predictors—mainly climatic, edaphic, and fire factors—for the tropical forest-savanna distribution at a mesoscale across the tropics (between 15°N and 35°S). Our results demonstrate that climate alone can explain most of the distribution of tropical forest and savanna at the scale considered; dry season average precipitation is the single most important determinant across tropical Asia-Australia, Africa, and South America. Given the strong tendency of increased seasonality and decreased dry season precipitation predicted by global climate models, we estimate that about 28% of what is now tropical forest would likely be lost to savanna by the late 21st century under the future scenario considered. This study highlights the importance of climate seasonality and interannual variability in predicting the distribution of tropical forest and savanna, supporting the climate as the primary driver in the savanna biogeography.

  10. Quantitative evaluation of parkinsonian rigidity during intra-operative deep brain stimulation.

    PubMed

    Kwon, Yuri; Park, Sang-Hoon; Kim, Ji-Won; Ho, Yeji; Jeon, Hyeong-Min; Bang, Min-Jung; Koh, Seong-Beom; Kim, Jong-Hyun; Eom, Gwang-Moon

    2014-01-01

    This study aims at the quantification of fine change in parkinsonian rigidity at the wrist during deep brain stimulation (DBS) using a portable measurement system and objective mechanical measures. The rigidity of fourteen limbs was evaluated during DBS surgery. The resistive torque to imposed movement was measured for every setting where a reduction in rigidity was perceived by a neurologist. Quantitative mechanical measures derived from experimental data included viscoelastic properties, work, impulse and mechanical impedance. Most mechanical measures could discriminate the optimal setting from baseline (electrode at stereotactic initial position without electrical stimulation) and the highest significance was achieved by viscous damping constant (p<0.001). Spearman correlation coefficients between mechanical measures and clinical score for multiple settings (averaged for 14 limbs) were 0.51-0.77 and the best correlation was shown for viscosity (?=0.77 ± 0.22). The results suggest that intraoperative quantification of rigidity during DBS surgery is possible with the suggested system and measures, which would be helpful for the adjustment of electrode position and stimulation parameters. PMID:25226927

  11. Quantitative evaluation of severity of behavioral and psychological symptoms of dementia in patients with vascular dementia

    PubMed Central

    2013-01-01

    To quantitatively evaluate severity of behavioral and psychological symptoms of dementia (BPSD) for vascular dementia (VD). Changes of 51 patients with VD in BPSD between the first and 24th week were assessed using the Neuropsychiatric Inventory (NPI) and the behavioral pathology in Alzheimer’s disease (BEHAVE-AD) rating scale, in detrended fluctuation analysis (DFA) represented by diurnal activity (DA), evening activity (EA), and nocturnal activity (NA), and the relationships were analyzed. The subscores of activity disturbances, diurnal rhythm disturbances, and anxieties and phobias in the BEHAVE-AD score, and that of agitation, irritability, and sleep disorder in the NPI score were significantly increased compared with the first week, as was for the changes for EA in the DFA value. A linear correlation was observed between the changes of activity disturbances plus anxieties and phobias, and those of DA, and between the development of diurnal rhythm and those of EA, the vehement and autism scores and those of DA, and the difference in sleep disorder scores and those of EA, respectively. Analysis of DA, NA, and EA may reflect the fluctuational degrees of VD-BPSD, can provide a useful assessment of VD-BPSD accompanied by clinical scores for VD. PMID:23607744

  12. Evaluation of Reference Genes for Gene Expression Analysis Using Quantitative RT-PCR in Azospirillum brasilense

    PubMed Central

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data. PMID:24841066

  13. Qualitative and quantitative evaluation of a pilot integrative coping and resiliency program for healthcare professionals.

    PubMed

    Tarantino, Bonnie; Earley, Michael; Audia, Donna; D'Adamo, Christopher; Berman, Brian

    2013-01-01

    Stress, fatigue, and burnout are common maladies among healthcare employees. To address this problem, a holistic integrative self-care program for healthcare practitioners was designed, implemented, and evaluated. A total of 84 participants, recruited via presentations, flyers, and word of mouth, completed the 8-week program. The experiential course, entitled Healing Pathways, combined training in Reiki, guided imagery, yoga, toning, meditation, intuitive scanning, creative expression, and mentorship to foster more empowered and resilient individuals. We measured the effectiveness of the program via mixed methods consisting of qualitative interviews providing in-depth feedback and quantitative analysis demonstrating statistically significant benefit. Participants reported significantly lower levels of stress and significantly increased confidence in their ability to cope at treatment conclusion (8 weeks) and long-term follow-up (12 months). These findings suggest that an integrative wellness and resiliency program, coupled with individual mentorship, may improve coping, decrease stress, and improve functioning and well-being for nurses and other health care providers. PMID:23294820

  14. Quantitative evaluation of radiation-induced changes in sperm morphology and chromatin distribution

    SciTech Connect

    Aubele, M.; Juetting, U.R.; Rodenacker, K.; Gais, P.; Burger, G.; Hacker-Klom, U. )

    1990-01-01

    Sperm head cytometry provides a useful assay for the detection of radiation-induced damage in mouse germ cells. Exposure of the gonads to radiation is known to lead to an increase of diploid and higher polyploid sperm and of sperm with head shape abnormalities. In the pilot studies reported here quantitative analysis of the total DNA content, the morphology, and the chromatin distribution of mouse sperm was performed. The goal was to evaluate the discriminative power of features derived by high resolution image cytometry in distinguishing sperm of control and irradiated mice. Our results suggest that besides the induction of the above mentioned variations in DNA content and shape of sperm head, changes of the nonhomogeneous chromatin distribution within the sperm may also be used to quantify the radiation effect on sperm cells. Whereas the chromatin distribution features show larger variations for sperm 21 days after exposure (dpr), the shape parameters seem to be more important to discriminate sperm 35 dpr. This may be explained by differentiation processes, which take place in different stages during mouse spermatogenesis.

  15. An Evaluation of Quantitative Methods of Determining the Degree of Melting Experienced by a Chondrule

    NASA Technical Reports Server (NTRS)

    Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.

    2004-01-01

    Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.

  16. Quantitative evaluation of bile diversion surgery utilizing /sup 99m/Tc HIDA scintigraphy

    SciTech Connect

    Wickremesinghe, P.C.; Dayrit, P.Q.; Manfredi, O.L.; Fazio, R.A.; Fagel, V.L.

    1983-02-01

    This is a report of 21 patients presenting with epigastric pain, bilious vomiting, upper gastrointestinal bleeding, iron-deficiency anemia, and weight loss, who had undergone Billroth II gastrectomy from 3 to 35 yr earlier. Eighteen of 21 patients were found to have significant enterogastric reflux indices varying from 60% to 95% demonstrated by /sup 99m/Tc HIDA scintigraphy. Thirteen patients had diversion antireflux surgery in the form of a Roux-en-Y procedure, and 1 patient had a Henley loop jejunal interposition. Postoperative /sup 99m/Tc HIDA scintigraphic studies showed the enterogastric reflux indices to have decreased significantly to a range of 2%-26% (p less than 0.00001). There was marked improvement of symptoms, including correction of anemia and weight gain in those patients who had been anemic or who had sustained earlier weight loss. The enterogastric reflux indices of 10 asymptomatic control patients after Billroth II gastrectomy ranged from 4% to 45%. /sup 99m/Tc HIDA scintigraphy is useful in evaluating patients before and after bile diversion surgery, and demonstrates the quantitative decrease in enterogastric reflux after such surgery.

  17. Quantitative evaluation of bile diversion surgery utilizing 99mTc HIDA scintigraphy.

    PubMed

    Wickremesinghe, P C; Dayrit, P Q; Manfredi, O L; Fazio, R A; Fagel, V L

    1983-02-01

    This is a report of 21 patients presenting with epigastric pain, bilious vomiting, upper gastrointestinal bleeding, iron-deficiency anemia, and weight loss, who had undergone Billroth II gastrectomy from 3 to 35 yr earlier. Eighteen of 21 patients were found to have significant enterogastric reflux indices varying from 60% to 95% demonstrated by 99mTc HIDA scintigraphy. Thirteen patients had diversion antireflux surgery in the form of a Roux-en-Y procedure, and 1 patient had a Henley loop jejunal interposition. Postoperative 99mTc HIDA scintigraphic studies showed the enterogastric reflux indices to have decreased significantly to a range of 2%-26% (p less than 0.00001). There was marked improvement of symptoms, including correction of anemia and weight gain in those patients who had been anemic or who had sustained earlier weight loss. The enterogastric reflux indices of 10 asymptomatic control patients after Billroth II gastrectomy ranged from 4% to 45%. 99mTc HIDA scintigraphy is useful in evaluating patients before and after bile diversion surgery, and demonstrates the quantitative decrease in enterogastric reflux after such surgery. PMID:6600225

  18. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate their implications for biomass burning emissions assessment.

  19. Evaluation of bone metabolism in newborn twins using quantitative ultrasound and biochemical parameters.

    PubMed

    Kara, Semra; Güzo?lu, Nilüfer; Göçer, Emine; Ar?kan, Fatma Inci; Dilmen, U?ur; Dallar Bilge, Y?ld?z

    2016-03-01

    Metabolic bone disease (MBD) is one of the important complications of prematurity. Early and adequate nutritional interventions may reduce the incidence and potential complications of MBD. The present study aimed to evaluate bone metabolism in twins via biochemical parameters and quantitative ultrasound (QUS) and to compare the results between twin pairs. Moreover, twin infants were evaluated in terms of potential risk factors likely to have impact on MBD. Forty-three pairs of twins were included in the study. Serum calcium, phosphorus, magnesium, and alkaline phosphatase concentrations were assessed and bone mineral density was measured using QUS (speed of sound, SOS) at postnatal 30?d. Co-twin with the higher birth weight was assigned to Group 1 (n?=?36) and the other twin was assigned to Group 2 (n?=?36). Birth weight and head circumference were significantly higher in the infants of Group 1 compared with Group 2. No significant difference was found among the groups in terms of gender, history of resuscitation, length of stay in intensive care unit (ICU) or in the incubator, duration of total parenteral nutrition (TPN), type of nutrition, vitamin D use, biochemical parameters, and the SOS value. The factors likely to affect SOS, including type of pregnancy, maternal drug use, gender of infant, birth weight, head circumference at birth, gestational week, length of stay at the ICU, duration of TPN, type of nutrition, resuscitation, vitamin D use, and levels of calcium, phosphorus, magnesium, and alkaline phosphatase were entered into the model. The phosphorus level and the maternal drug use were found to be the factors that significantly reduced SOS, whereas pregnancy after assisted reproductive techniques was found to be a significant enhancing factor. PMID:25777793

  20. Quantitative evaluation of minerals in lignites and intraseam sediments from the Achlada Basin, Northern Greece

    SciTech Connect

    Nikolaos Koukouzas; Colin R. Ward; Dimitra Papanikolaou; Zhongsheng Li

    2009-04-15

    Seven core samples (five lignite samples and two intraseam nonlignite rock samples) from the Achlada open-cut mine in northern Greece were characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Quantitative evaluation of the mineral phases in each sample was made from the powder X-ray diffractograms using Siroquant commercial interpretation software, which is based on Rietveld principles. The main minerals in the low-temperature ash (LTA) ash of the lignites are kaolinite and illite, with bassanite and quartz in minor proportions. The nonlignite rock samples mainly consist of illite, mica (2M1), and kaolinite (poorly ordered), along with quartz, chlorite (ferroan), feldspar (albite), rutile, and dolomite. Oriented-aggregate XRD study further shows the presence of smectite, and interstratified illite/smectite (I/S), in the clay fractions of the lignite and rock samples, with the mineral matter of the lignites being richer in kaolinite, smectite, and I/S than in mineral matter of the nonlignite materials. The differences in mineralogy between the lignite and the rock materials probably reflect selective concentration of minerals in the original peat during deposition, combined with authigenic precipitation of minerals such as kaolinite in the peat deposit. Inferred chemical analyses derived from the XRD data show reasonably good correlations with chemical data obtained by direct ash analysis, especially if the smectite and I/S are taken into account. This provides a link between mineralogical and chemical studies that may be valuable in evaluating the behavior of the lignite under different utilization conditions. 27 refs., 4 figs., 6 tabs.

  1. Quantitative Evaluation of CART-Containing Cells in Urinary Bladder of Rats with Renovascular Hypertension

    PubMed Central

    Janiuk, I.; Kasacka, I.

    2015-01-01

    Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary. PMID:26150151

  2. On the quantitative evaluation of edge detection schemes and their comparison with human performance. [image processing of satellite photographs

    NASA Technical Reports Server (NTRS)

    Fram, J. R.; Deutsch, E. S.

    1975-01-01

    A technique for the quantitative evaluation of edge detection schemes is presented. It is used to assess the performance of three such schemes using a specially-generated set of images containing noise. The ability of human subjects to distinguish the edges in the presence of noise is also measured and compared with that of the edge detection schemes. The edge detection schemes are used on a high-resolution satellite photograph with varying degrees of noise added in order to relate the quantitative comparison to real-life imagery.

  3. A rapid standardized quantitative microfluidic system approach for evaluating human tear proteins

    PubMed Central

    Bavelloni, Alberto; Blalock, William; Fresina, Michela; Campos, Emilio C.

    2012-01-01

    Purpose To explore the potential of a chip-based miniaturized capillary gel electrophoresis device in a quantitative evaluation of the human tear protein profile and to validate the method. Methods A total of 5 ?l of tears were collected from 25 patients diagnosed as having mild to moderate dry eye according to Dry Eye Workshop guidelines and from 20 matched normal volunteers. Protein analysis was performed with the 2100 Bioanalyzer; different protein kit assays were evaluated (Protein 80 kit, Protein 230 kit, High Sensitivity Protein 250 kit) for sizing and quantifying protein samples from 5 to 80 kDa, 14 to 230 kDa, and 5 to 250 kDa, respectively. A standard protein ladder was loaded on each chip to allow an estimation of the appropriate molecular weight of the separated proteins; a sample buffer containing a lower and an upper marker was used to check the correct alignment of each lane. Virtual bands generated by the Bioanalyzer were identified and validated as follows: tear samples were run in parallel and proteins separated by one-dimensional and two-dimensional sodium dodecyl sulfate–PAGE and characterized by immunoblotting, enzymatic digestion, and analysis with liquid chromatography-mass spectrometry followed by a search of the SProt human protein database. Results Analyses were successfully performed by using as small as a 2 ?l tear sample. The Protein 230 kit was selected as the best chip kit, able to differentiate all the proteins of interest. The measurement noise parameters were low, and reproducibility and repeatability exhibited high accuracy (0.998 and 0.995, respectively) and precision (0.974 and 0.977, respectively). The coefficient of variability was slightly higher than that declared by the manufacturer (6.2% versus 5.0%). Total protein content and the following proteins were recognized in all samples: lipophilin A lysozyme C, tear lipocalin-1, zinc-alpha-2-glycoprotein, serotransferrin, lactotransferrin, and exudated serum albumin. Conclusions Our data demonstrate that this chip-based tear protein analysis is a reliable method of instrumental diagnosis in daily clinical activity and may provide supporting evaluation parameters for diagnosing and managing tear-based disorders. PMID:23112568

  4. Quantitative analysis combined with chromatographic fingerprint for comprehensive evaluation of Xiaoer Chaigui Tuire granules by HPLC-DAD.

    PubMed

    Liu, Hong-Ming; Nie, Lei

    2015-01-01

    Quantitative analysis of eight major components combined with chromatographic fingerprint based on high performance liquid chromatography coupled with diode array detector (HPLC-DAD) was developed for the quality evaluation of Xiaoer Chaigui Tuire granules (XCTG), a traditional Chinese medicine (TCM) preparation. Each compound was analyzed by comparing its retention time and UV spectrum of each chromatographic peak with the corresponding retention time and UV spectrum of each standard compound. Baseline separation was achieved on an Agilent Zorbax SB-C18 column with gradient elution of acetonitrile and 0.1% (v/v) phosphoric acid. The developed method was validated by linearity, precision, repeatability, stability and recovery and was subsequently applied to quality evaluation of 12 batches of XCTG with similarity analysis, principal component analysis and cluster analysis. Quantitative analysis combined with HPLC fingerprint could offer an efficient, reliable and practical approach for quality evaluation of XCTG. PMID:25234384

  5. Assessing the effect of laser beam width on quantitative evaluation of optical properties of intraocular lens implants.

    PubMed

    Walker, Bennett N; James, Robert H; Chakravarty, Aurin; Calogero, Don; Ilev, Ilko K

    2014-05-01

    The design and manufacture of intraocular lenses (IOLs) depend upon the identification and quantitative preclinical evaluation of key optical properties and environmental parameters. The confocal laser method (CLM) is a new technique for measuring IOL optical properties, such as dioptric power, optical quality, refractive index, and geometrical parameters. In comparison to competing systems, the CLM utilizes a fiber-optic confocal laser design that significantly improves the resolution, accuracy, and repeatability of optical measurements. Here, we investigate the impact of changing the beam diameter on the CLM platform for the evaluation of IOL dioptric powers. Due to the Gaussian intensity profile of the CLM laser beam, the changes in focal length and dioptric power associated with changes in beam diameter are well within the tolerances specified in the ISO IOL standard. These results demonstrate some of the advanced potentials of the CLM toward more effectively and quantitatively evaluating IOL optical properties. PMID:24817618

  6. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  7. Nondestructive characterization of low-level transuranic waste

    SciTech Connect

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system.

  8. Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations

    NASA Astrophysics Data System (ADS)

    Righi, M.; Eyring, V.; Gottschaldt, K.-D.; Klinger, C.; Frank, F.; Jöckel, P.; Cionni, I.

    2014-10-01

    Four simulations with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model have been evaluated with the Earth System Model Validation Tool (ESMValTool) to identify differences in simulated ozone and selected climate parameters that resulted from (i) different setups of the EMAC model (nudged vs. free-running) and (ii) different boundary conditions (emissions, sea surface temperatures (SSTs) and sea-ice concentrations (SICs)). To assess the relative performance of the simulations, quantitative performance metrics are calculated consistently for the climate parameters and ozone. This is important for the interpretation of the evaluation results since biases in climate can impact on biases in chemistry and vice versa. The observational datasets used for the evaluation include ozonesonde and aircraft data, meteorological reanalyses and satellite measurements. The results from a previous EMAC evaluation of a model simulation with weak nudging towards realistic meteorology in the troposphere have been compared to new simulations with different model setups and updated emission datasets in free-running timeslice and nudged Quasi Chemistry-Transport Model (QCTM) mode. The latter two configurations are particularly important for chemistry-climate projections and for the quantification of individual sources (e.g. transport sector) that lead to small chemical perturbations of the climate system, respectively. With the exception of some specific features which are detailed in this study, no large differences that could be related to the different setups of the EMAC simulations (nudged vs. free-running) were found, which offers the possibility to evaluate and improve the overall model with the help of shorter nudged simulations. The main differences between the two setups is a better representation of the tropospheric and stratospheric temperature in the nudged simulations, which also better reproduce stratospheric water vapour concentrations, due to the improved simulation of the temperature in the tropical tropopause layer. Ozone and ozone precursor concentrations on the other hand are very similar in the different model setups, if similar boundary conditions are used. Different boundary conditions however lead to relevant differences in the four simulations. SSTs and SICs, which are prescribed in all simulations, play a key role in the representation of the ozone hole, which is significantly underestimated in some experiments. A bias that is present in all simulations is an overestimation of tropospheric column ozone, which is significantly reduced when lower lightning emissions of nitrogen oxides are used. To further investigate possible other reasons for such bias, two sensitivity simulations with an updated scavenging routine and the addition of a newly proposed HNO3-forming channel of the HO2+ NO reaction were performed. The update in the scavenging routine resulted in a slightly better representation of ozone compared to the reference simulation. The introduction of the new HNO3-forming channel significantly reduces this bias. Therefore, including the new reaction rate could potentially be important for a realistic simulation of tropospheric ozone, although laboratory experiments and other models studies need to confirm this hypothesis and some modifications to the rate, which has a strong dependence on water vapour, might also still be needed.

  9. Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations

    NASA Astrophysics Data System (ADS)

    Righi, M.; Eyring, V.; Gottschaldt, K.-D.; Klinger, C.; Frank, F.; Jöckel, P.; Cionni, I.

    2015-03-01

    Four simulations with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model have been evaluated with the Earth System Model Validation Tool (ESMValTool) to identify differences in simulated ozone and selected climate parameters that resulted from (i) different setups of the EMAC model (nudged vs. free-running) and (ii) different boundary conditions (emissions, sea surface temperatures (SSTs) and sea ice concentrations (SICs)). To assess the relative performance of the simulations, quantitative performance metrics are calculated consistently for the climate parameters and ozone. This is important for the interpretation of the evaluation results since biases in climate can impact on biases in chemistry and vice versa. The observational data sets used for the evaluation include ozonesonde and aircraft data, meteorological reanalyses and satellite measurements. The results from a previous EMAC evaluation of a model simulation with nudging towards realistic meteorology in the troposphere have been compared to new simulations with different model setups and updated emission data sets in free-running time slice and nudged quasi chemistry-transport model (QCTM) mode. The latter two configurations are particularly important for chemistry-climate projections and for the quantification of individual sources (e.g., the transport sector) that lead to small chemical perturbations of the climate system, respectively. With the exception of some specific features which are detailed in this study, no large differences that could be related to the different setups (nudged vs. free-running) of the EMAC simulations were found, which offers the possibility to evaluate and improve the overall model with the help of shorter nudged simulations. The main differences between the two setups is a better representation of the tropospheric and stratospheric temperature in the nudged simulations, which also better reproduce stratospheric water vapor concentrations, due to the improved simulation of the temperature in the tropical tropopause layer. Ozone and ozone precursor concentrations, on the other hand, are very similar in the different model setups, if similar boundary conditions are used. Different boundary conditions however lead to relevant differences in the four simulations. Biases which are common to all simulations are the underestimation of the ozone hole and the overestimation of tropospheric column ozone, the latter being significantly reduced when lower lightning emissions of nitrogen oxides are used. To further investigate possible other reasons for such bias, two sensitivity simulations with an updated scavenging routine and the addition of a newly proposed HNO3-forming channel of the HO2+NO reaction were performed. The update in the scavenging routine resulted in a slightly better representation of ozone compared to the reference simulation. The introduction of the new HNO3-forming channel significantly reduces the overestimation of tropospheric ozone. Therefore, including the new reaction rate could potentially be important for a realistic simulation of tropospheric ozone, although laboratory experiments and other model studies need to confirm this hypothesis and some modifications to the rate, which has a strong dependence on water vapor, might also still be needed.

  10. Nondestructive characterization of the elastic constants of fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Mal, Ajit K.; Lih, Shyh-Shiuh; Bar-Cohen, Yoseph

    1993-01-01

    Composite structural components may be subjected to a variety of defects resulting in a sharp reduction in their load carrying capacity or even catastrophic failure. Thus, it is extremely important to have the means to monitor the degradation suffered by critical components of a structure for safe operation during its service life. A nondestructive method based on ultrasonics has recently been developed for the quantitative evaluation of composite structural components during service. The experimental part of the technique uses a two-transducer, pitch-catch type arrangement to generate a variety of elastic waves within the specimen immersed in water. The recorded reflection data are then analyzed by means of a theoretical model to back out the relevant properties. In this paper the method is applied to determine the stiffness constants of unidirectional graphite/epoxy materials. The measurements are shown to be efficient and sufficiently accurate so that it can be used for early detection of material degradation in composite structural elements during service.

  11. Evaluation of Iron Content in Human Cerebral Cavernous Malformation using Quantitative Susceptibility Mapping

    PubMed Central

    Tan, Huan; Liu, Tian; Wu, Ying; Thacker, Jon; Shenkar, Robert; Mikati, Abdul Ghani; Shi, Changbin; Dykstra, Conner; Wang, Yi; Prasad, Pottumarthi V.; Edelman, Robert R.; Awad, Issam A.

    2014-01-01

    Objectives To investigate and validate quantitative susceptibility mapping (QSM) for lesional iron quantification in cerebral cavernous malformations (CCM). Materials and Methods Magnetic resonance imaging (MRI) studies were performed in phantoms and 16 patients on a 3T scanner. QSM, susceptibility weighted imaging (SWI), and R2* maps were reconstructed from in vivo data acquired with a three-dimensional, multi-echo, and T2*-weighted gradient echo sequence. Magnetic susceptibility measurements were correlated to SWI and R2* results. In addition, iron concentrations from surgically excised CCM lesion specimens were determined using inductively coupled plasma mass spectrometry and correlated with QSM measurements. Results The QSM images demonstrated excellent image quality for depicting CCM lesions in both sporadic and familial cases. Susceptibility measurements revealed a positive linear correlation with R2* values (R2 = 0.99 for total, R2 = 0.69 for mean; p < 0.01). QSM values of known iron-rich brain regions matched closely with previous studies and in interobserver consistency. A strong correlation was found between QSM and the concentration of iron phantoms (0.925, p < 0.01), as well as between QSM and mass spectroscopy estimation of iron deposition (0.999 for total iron, 0.86 for iron concentration; p < 0.01) in 18 fragments of 4 excised human CCM lesion specimens. Conclusions The ability of QSM to evaluate iron deposition in CCM lesions was illustrated via phantom, in vivo and ex vivo validation studies. QSM may be a potential biomarker for monitoring CCM disease activity and response to treatments. PMID:24619210

  12. Quantitative evaluation of geodiversity: development of methodological procedures with application to territorial management

    NASA Astrophysics Data System (ADS)

    Forte, J.; Brilha, J.; Pereira, D.; Nolasco, M.

    2012-04-01

    Although geodiversity is considered the setting for biodiversity, there is still a huge gap in the social recognition of these two concepts. The concept of geodiversity, less developed, is now making its own way as a robust and fundamental idea concerning the abiotic component of nature. From a conservationist point of view, the lack of a broader knowledge concerning the type and spatial variation of geodiversity, as well as its relationship with biodiversity, makes the protection and management of natural or semi-natural areas incomplete. There is a growing need to understand the patterns of geodiversity in different landscapes and to translate this knowledge for territorial management in a practical and effective point of view. This kind of management can also represent an important tool for the development of sustainable tourism, particularly geotourism, which can bring benefits not only for the environment, but also for social and economic purposes. The quantification of geodiversity is an important step in all this process but still few researchers are investing in the development of a proper methodology. The assessment methodologies that were published so far are mainly focused on the evaluation of geomorphological elements, sometimes complemented with information about lithology, soils, hidrology, morphometric variables, climatic surfaces and geosites. This results in very dissimilar areas at very different spatial scales, showing the complexity of the task and the need of further research. This current work aims the development of an effective methodology for the assessment of the maximum elements of geodiversity possible (rocks, minerals, fossils, landforms, soils), based on GIS routines. The main determinant factor for the quantitative assessment is scale, but other factors are also very important, such as the existence of suitable spatial data with sufficient degree of detail. It is expected to attain the proper procedures in order to assess geodiversity at different scales and to produce maps with the spatial representation of the geodiversity index, which could be an inestimable contribute for land-use management.

  13. Lymphoscintigraphic imaging study for quantitative evaluation of a small field of view (SFOV) gamma camera

    NASA Astrophysics Data System (ADS)

    Alqahtani, M. S.; Lees, J. E.; Bugby, S. L.; Jambi, L. K.; Perkins, A. C.

    2015-07-01

    The Hybrid Compact Gamma Camera (HCGC) is a portable optical-gamma hybrid imager designed for intraoperative medical imaging, particularly for sentinel lymph node biopsy procedures. To investigate the capability of the HCGC in lymphatic system imaging, two lymphoscintigraphic phantoms have been designed and constructed. These phantoms allowed quantitative assessment and evaluation of the HCGC for lymphatic vessel (LV) and sentinel lymph node (SLN) detection. Fused optical and gamma images showed good alignment of the two modalities allowing localisation of activity within the LV and the SLN. At an imaging distance of 10 cm, the spatial resolution of the HCGC during the detection process of the simulated LV was not degraded at a separation of more than 1.5 cm (variation <5%) from the injection site (IS). Even in the presence of the IS the targeted LV was detectable with an acquisition time of less than 2 minutes. The HCGC could detect SLNs containing different radioactivity concentrations (ranging between 1:20 to 1:100 SLN to IS activity ratios) and under various scattering thicknesses (ranging between 5 mm to 30 mm) with high contrast-to-noise ratio (CNR) values (ranging between 11.6 and 110.8). The HCGC can detect the simulated SLNs at various IS to SLN distances, different IS to SLN activity ratios and through varied scattering medium thicknesses. The HCGC provided an accurate physical localisation of radiopharmaceutical uptake in the simulated SLN. These characteristics of the HCGC reflect its suitability for utilisation in lymphatic vessel drainage imaging and SLN imaging in patients in different critical clinical situations such as interventional and surgical procedures.

  14. Evaluating interventions against Salmonella in broiler chickens: applying synthesis research in support of quantitative exposure assessment.

    PubMed

    Bucher, O; Fazil, A; Raji?, A; Farrar, A; Wills, R; McEwen, S A

    2012-05-01

    A scoping study and systematic review-meta-analyses (SR-MAs) were conducted to evaluate the effectiveness of various interventions for Salmonella in broiler chicken, from grow-out farm to secondary processing. The resulting information was used to inform a quantitative exposure assessment (QEA) comparing various control options within the context of broiler chicken production in Ontario, Canada. Multiple scenarios, including use of two separate on-farm interventions (CF3 competitive exclusion culture and a 2% lactose water additive), a package of processing interventions (a sodium hydroxide scald water disinfectant, a chlorinated post-evisceration spray, a trisodium phosphate pre-chill spray and chlorinated immersion chilling) a package consisting of these farm and processing interventions and a hypothetical scenario (reductions in between-flock prevalence and post-transport concentration), were simulated and compared to a baseline scenario. The package of on-farm and processing interventions was the most effective in achieving relative reductions (compared to baseline with no interventions) in the concentration and prevalence of Salmonella by the end of chilling ranging from 89·94% to 99·87% and 43·88% to 87·78%, respectively. Contaminated carcasses entering defeathering, reductions in concentration due to scalding and post-evisceration washing, and the potential for cross-contamination during chilling had the largest influence on the model outcomes under the current assumptions. Scoping study provided a transparent process for mapping out and selecting promising interventions, while SR-MA was useful for generating more precise and robust intervention effect estimates for QEA. Realization of the full potential of these methods was hampered by low methodological soundness and reporting of primary research in this area. PMID:21781371

  15. Development and Evaluation of a Quantitative PCR Assay Targeting Sandhill Crane (Grus canadensis) Fecal Pollution

    PubMed Central

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas

    2012-01-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  16. Quantitative evaluation of models for solvent-based, on-column focusing in liquid chromatography.

    PubMed

    Groskreutz, Stephen R; Weber, Stephen G

    2015-08-28

    On-column focusing or preconcentration is a well-known approach to increase concentration sensitivity by generating transient conditions during the injection that result in high solute retention. Preconcentration results from two phenomena: (1) solutes are retained as they enter the column. Their velocities are k'-dependent and lower than the mobile phase velocity and (2) zones are compressed due to the step-gradient resulting from the higher elution strength mobile phase passing through the solute zones. Several workers have derived the result that the ratio of the eluted zone width (in time) to the injected time width is the ratio k2/k1, where k1 is the retention factor of a solute in the sample solvent and k2 is the retention factor in the mobile phase (isocratic). Mills et al. proposed a different factor. To date, neither of the models has been adequately tested. The goal of this work was to evaluate quantitatively these two models. We used n-alkyl esters of p-hydroxybenzoic acid (parabens) as solutes. By making large injections to create obvious volume overload, we could measure accurately the ratio of widths (eluted/injected) over a range of values of k1 and k2. The Mills et al. model does not fit the data. The data are in general agreement with the factor k2/k1, but focusing is about 10% better than the prediction. We attribute the extra focusing to the fact that the second, compression, phenomenon provides a narrower zone than that expected for the passage of a step gradient through the zone. PMID:26210110

  17. Quantitative evaluation of lipid concentration in atherosclerotic plaque phantom by near-infrared multispectral angioscope at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2015-07-01

    Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.

  18. [Ideas of standardization evaluation on acupuncture skills: enlightened by quantitative appraisal of surgical skills in Europe and North America].

    PubMed

    Li, Jing; Wu, Mary X

    2011-12-01

    Acupuncture manipulation skills are the core of acupuncture therapy. Traditional acupuncture skills evaluation is based on experts' subjective assessment which is deficient in reliability and validity. Certain progresses on the quantitative research on acupuncture skills have been made in China, while there is still a long way to go before the formation of the consummate standardization evaluation system on acupuncture skills. Actually, quantitative appraisal on surgical skills has been developed for a long time in Europe and North America. Since acupuncture could be considered as a kind of skills of minimally invasive surgery because small wounds would be generated by needles, the theories and methods in surgical quantitative appraisal could be utilized. For instance, scales could be designed to evaluate the operation modes in acupuncture skills and precise instruments could be used in the measurement of acupuncture skills. Then standard databases on common acupuncture manipulations would be built. Moreover, in terms of the characteristics of acupuncture skills, high-fidelity simulators should be designed or standardized patients should be trained for the assessment of "Deqi" (arrival of qi)feelings. Thereby, an appropriate standardization evaluation system for acupuncture skills would be created gradually. PMID:22379793

  19. QUANTITATIVE EVALUATION OF AIR FILTRATION SYSTEMS IN USE AT ASBESTOS ABATEMENT SITES: RESEARCH IN PROGRESS

    EPA Science Inventory

    High Efficiency Particulate Air (HEPA) filtration systems serve as the principal engineering control to remove asbestos particulate from airstreams at abatement projects. owever, little quantitative information is available on the integrity of these air filtration systems in prev...

  20. Nondestructive Characterization of Aged Components

    SciTech Connect

    Panetta, Paul D.; Toloczko, Mychailo B.; Garner, Francis A.; Balachov, Iouri I.

    2003-10-21

    It is known that high energy radiation can have numerous effects on materials. In metals and alloys, the effects include, but may not be limited to, mechanical property changes, physical property changes, compositional changes, phase changes, and dimensional changes. Metals and alloys which undergo high energy self-irradiation are also susceptible to these changes. One of the greatest concerns with irradiation of materials is the phenomenon of void swelling which has been observed in a wide variety of metals and alloys. Irradiation causes the formation of a high concentration point defects and microclusters of vacancies and interstitials. With the assistance of an inert atom such as helium, the vacancy-type defects can coalesce to form a stable bubble. This bubble will continue to grow through the net absorption of more vacancy-type defects and helium atoms, and upon reaching a certain critical size, the bubble will begin to grow at an accelerated rate without the assistance of inert atom absorption. The bubble is then said to be an unstably growing void. Depending on the alloy system and environment, swelling values can reach in excess of 50% !V/Vo where Vo is the initial volume of the material. Along with dimensional changes resulting from the formation of bubbles and voids comes changes in the macroscopically observed speed of sound, moduli, electrical resistivity, yield strength, and other properties. These effects can be detrimental to the designed operation of the aged components. In situations where irradiation has sufficient time to cause degradation to materials used in critical applications such as nuclear reactor core structural materials, it is advisable to regularly survey the material properties. It is common practice to use surveillance specimens, but this is not always possible. When surveillance materials are not available, other means for surveying the material properties must be utilized. Sometimes it is possible to core out a small sample which may be used for material properties measurements. A more appealing solution is to use nondestructive evaluation (NDE) methods.