Science.gov

Sample records for quantitative phosphoproteome analysis

  1. Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling

    PubMed Central

    Jacobs, Kris; Klammer, Martin; Jordan, Nicole; Elschenbroich, Sarah; Parade, Marc; Jacoby, Edgar; Linders, Joannes T. M.; Brehmer, Dirk; Cools, Jan; Daub, Henrik

    2016-01-01

    The four members of the epidermal growth factor receptor (EGFR/ERBB) family form homo- and heterodimers which mediate ligand-specific regulation of many key cellular processes in normal and cancer tissues. While signaling through the EGFR has been extensively studied on the molecular level, signal transduction through ERBB3/ERBB4 heterodimers is less well understood. Here, we generated isogenic mouse Ba/F3 cells that express full-length and functional membrane-integrated ERBB3 and ERBB4 or ERBB4 alone, to serve as a defined cellular model for biological and phosphoproteomics analysis of ERBB3/ERBB4 signaling. ERBB3 co-expression significantly enhanced Ba/F3 cell proliferation upon neuregulin-1 (NRG1) treatment. For comprehensive signaling studies we performed quantitative mass spectrometry (MS) experiments to compare the basal ERBB3/ERBB4 cell phosphoproteome to NRG1 treatment of ERBB3/ERBB4 and ERBB4 cells. We employed a workflow comprising differential isotope labeling with mTRAQ reagents followed by chromatographic peptide separation and final phosphopeptide enrichment prior to MS analysis. Overall, we identified 9686 phosphorylation sites which could be confidently localized to specific residues. Statistical analysis of three replicate experiments revealed 492 phosphorylation sites which were significantly changed in NRG1-treated ERBB3/ERBB4 cells. Bioinformatics data analysis recapitulated regulation of mitogen-activated protein kinase and Akt pathways, but also indicated signaling links to cytoskeletal functions and nuclear biology. Comparative assessment of NRG1-stimulated ERBB4 Ba/F3 cells revealed that ERBB3 did not trigger defined signaling pathways but more broadly enhanced phosphoproteome regulation in cells expressing both receptors. In conclusion, our data provide the first global picture of ERBB3/ERBB4 signaling and provide numerous potential starting points for further mechanistic studies. PMID:26745281

  2. Quantitative Phosphoproteomics Analysis of Nitric Oxide–Responsive Phosphoproteins in Cotton Leaf

    PubMed Central

    Song, Meizhen; Pang, Chaoyou; Wei, Hengling; Liu, Ji; Zhan, Xianjin; Lan, Jiayang; Feng, Changhui; Zhang, Shengxi; Yu, Shuxun

    2014-01-01

    Knowledge of phosphorylation events and their regulation is crucial to understanding the functional biology of plant proteins, but very little is currently known about nitric oxide–responsive phosphorylation in plants. Here, we report the first large-scale, quantitative phosphoproteome analysis of cotton (Gossypium hirsutum) treated with sodium nitroprusside (nitric oxide donor) by utilizing the isobaric tag for relative and absolute quantitation (iTRAQ) method. A total of 1315 unique phosphopeptides, spanning 1528 non-redundant phosphorylation sites, were detected from 1020 cotton phosphoproteins. Among them, 183 phosphopeptides corresponding to 167 phosphoproteins were found to be differentially phosphorylated in response to sodium nitroprusside. Several of the phosphorylation sites that we identified, including RQxS, DSxE, TxxxxSP and SPxT, have not, to our knowledge, been reported to be protein kinase sites in other species. The phosphoproteins identified are involved in a wide range of cellular processes, including signal transduction, RNA metabolism, intracellular transport and so on. This study reveals unique features of the cotton phosphoproteome and provides new insight into the biochemical pathways that are regulated by nitric oxide. PMID:24714030

  3. Systems-wide Analysis of a Phosphatase Knock-down by Quantitative Proteomics and Phosphoproteomics

    PubMed Central

    Hilger, Maximiliane; Bonaldi, Tiziana; Gnad, Florian; Mann, Matthias

    2009-01-01

    Signal transduction in metazoans regulates almost all aspects of biological function, and aberrant signaling is involved in many diseases. Perturbations in phosphorylation-based signaling networks are typically studied in a hypothesis-driven approach, using phospho-specific antibodies. Here we apply quantitative, high-resolution mass spectrometry to determine the systems response to the depletion of one signaling component. Drosophila cells were metabolically labeled using stable isotope labeling by amino acids in cell culture (SILAC) and the phosphatase Ptp61F, the ortholog of mammalian PTB1B, a drug target for diabetes, was knocked down by RNAi. In total we detected more than 10,000 phosphorylation sites in the phosphoproteome of Drosophila Schneider cells and trained a phosphorylation site predictor with this data. SILAC-based quantitation after phosphatase knock-down showed that apart from the phosphatase, the proteome was minimally affected whereas 288 of 6,478 high-confidence phosphorylation sites changed significantly. Responses at the phosphotyrosine level included the already described Ptp61F substrates Stat92E and Abi. Our analysis highlights a connection of Ptp61F to cytoskeletal regulation through GTPase regulating proteins and focal adhesion components. PMID:19429919

  4. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    PubMed

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development. PMID:26613898

  5. Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum

    SciTech Connect

    Nguyen, Tran H.; Brechenmacher, Laurent; Aldrich, Joshua T.; Clauss, Therese RW; Gritsenko, Marina A.; Hixson, Kim K.; Libault, Marc; Tanaka, Kiwamu; Yang, Feng; Yao, Qiuming; Pasa-Tolic, Ljiljana; Xu, Dong; Nguyen, Henry T.; Stacey, Gary

    2012-11-11

    Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e., roots from which root hairs were removed) during rhizobial colonization and infection to gain insight into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag 8-plex ITRAQ, enriched using Ni-NTA magnetic beads and subjected to nRPLC-MS/MS analysis using HCD and decision tree guided CID/ETD strategy. A total of 1,625 unique phosphopeptides, spanning 1,659 non-redundant phosphorylation sites, were detected from 1,126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5 fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.

  6. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid

    PubMed Central

    Wu, Liuji; Hu, Xiuli; Wang, Shunxi; Tian, Lei; Pang, Yanjie; Han, Zanping; Wu, Liancheng; Chen, Yanhui

    2015-01-01

    Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA. PMID:26659305

  7. Label-free quantitative phosphoproteomic analysis reveals differentially regulated proteins and pathway in PRRSV-infected pulmonary alveolar macrophages.

    PubMed

    Luo, Rui; Fang, Liurong; Jin, Hui; Wang, Dang; An, Kang; Xu, Ningzhi; Chen, Huanchun; Xiao, Shaobo

    2014-03-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen of swine worldwide and causes significant economic losses. Through regulating the host proteins phosphorylation, PRRSV was found to manipulate the activities of several signaling molecules to regulate innate immune responses. However, the role of protein phosphorylation during PRRSV infection and the signal pathways responsible for it are relatively unknown. Here liquid chromatography-tandem mass spectrometry for label-free quantitative phosphoproteomics was applied to systematically investigate the global phosphorylation events in PRRSV-infected pulmonary alveolar macrophages. In total, we identified 2125 unique phosphosites, of which the phosphorylation level of 292 phosphosites on 242 proteins and 373 phosphosites on 249 proteins was significantly altered at 12 and 36 h pi, respectively. The phosphoproteomics data were analyzed using ingenuity pathways analysis to identify defined canonical pathways and functional networks. Pathway analysis revealed that PRRSV-induced inflammatory cytokines production was probably due to the activation of mitogen-activated protein kinase and NF-κB signal pathway, which were regulated by several protein kinases during virus infection. Interacting network analysis indicated that altered phosphoproteins were involved in cellular assembly and organization, protein synthesis, molecular transport, and signal transduction in PRRSV infected cells. These pathways and functional networks analysis could provide direct insights into the biological significance of phosphorylation events modulated by PRRSV and may help us elucidate the pathogenic mechanisms of PRRSV infection. PMID:24533505

  8. Wide-scale quantitative phosphoproteomic analysis reveals that cold treatment of T cells closely mimics soluble antibody stimulation

    PubMed Central

    Ji, Qinqin; Salomon, Arthur R.

    2015-01-01

    The activation of T-lymphocytes through antigen-mediated T-cell receptor (TCR) clustering is vital in regulating the adaptive-immune response. Although T cell receptor signaling has been extensively studied, the fundamental mechanisms for signal initiation are not fully understood. Reduced temperature initiated some of the hallmarks of TCR signaling such as increased phosphorylation and activation on ERK and calcium release from the endoplasmic reticulum as well as coalesce T-cell membrane microdomains. The precise mechanism of TCR signaling initiation due to temperature change remains obscure. One critical question is whether signaling initiated by cold treatment of T cells differs from signaling initiated by crosslinking of the T cell receptor. To address this uncertainty, a wide-scale, quantitative mass spectrometry-based phosphoproteomic analysis was performed on T cells stimulated either by temperature shift or through crosslinking of the TCR. Careful statistical comparison between the two stimulations revealed a striking level of identity between the subset of 339 sites that changed significantly with both stimulations. This study demonstrates for the first time, at unprecedented detail, that T cell cold treatment was sufficient to initiate signaling patterns nearly identical to soluble antibody stimulation, shedding new light on the mechanism of activation of these critically important immune cells. PMID:25839225

  9. Quantitative phosphoproteomic analysis of the PI3K-regulated signaling network.

    PubMed

    Gnad, Florian; Wallin, Jeffrey; Edgar, Kyle; Doll, Sophia; Arnott, David; Robillard, Liliane; Kirkpatrick, Donald S; Stokes, Matthew P; Vijapurkar, Ulka; Hatzivassiliou, Georgia; Friedman, Lori S; Belvin, Marcia

    2016-07-01

    The PI3K pathway is commonly activated in cancer. Only a few studies have attempted to explore the spectrum of phosphorylation signaling downstream of the PI3K cascade. Such insight, however, is imperative to understand the mechanisms responsible for oncogenic phenotypes. By applying MS-based phosphoproteomics, we mapped 2509 phosphorylation sites on 1096 proteins, and quantified their responses to activation or inhibition of PIK3CA using isogenic knock-in derivatives and a series of targeted inhibitors. We uncovered phosphorylation changes in a wide variety of proteins involved in cell growth and proliferation, many of which have not been previously associated with PI3K signaling. A significant update of the posttranslational modification database PHOSIDA (http://www.phosida.com) allows efficient use of the data. All MS data have been deposited in the ProteomeXchange with identifier PXD003899 (http://proteomecentral.proteomexchange.org/dataset/PXD003899). PMID:27282143

  10. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways*

    PubMed Central

    Choudhary, Mani Kant; Nomura, Yuko; Wang, Lei; Nakagami, Hirofumi; Somers, David E.

    2015-01-01

    The circadian clock provides adaptive advantages to an organism, resulting in increased fitness and survival. The phosphorylation events that regulate circadian-dependent signaling and the processes which post-translationally respond to clock-gated signals are largely unknown. To better elucidate post-translational events tied to the circadian system we carried out a survey of circadian-regulated protein phosphorylation events in Arabidopsis seedlings. A large-scale mass spectrometry-based quantitative phosphoproteomics approach employing TiO2-based phosphopeptide enrichment techniques identified and quantified 1586 phosphopeptides on 1080 protein groups. A total of 102 phosphopeptides displayed significant changes in abundance, enabling the identification of specific patterns of response to circadian rhythms. Our approach was sensitive enough to quantitate oscillations in the phosphorylation of low abundance clock proteins (EARLY FLOWERING4; ELF4 and PSEUDORESPONSE REGULATOR3; PRR3) as well as other transcription factors and kinases. During constant light, extensive cyclic changes in phosphorylation status occurred in critical regulators, implicating direct or indirect regulation by the circadian system. These included proteins influencing transcriptional regulation, translation, metabolism, stress and phytohormones-mediated responses. We validated our analysis using the elf4–211 allele, in which an S45L transition removes the phosphorylation herein identified. We show that removal of this phosphorylatable site diminishes interaction with EARLY FLOWERING3 (ELF3), a key partner in a tripartite evening complex required for circadian cycling. elf4–211 lengthens period, which increases with increasing temperature, relative to the wild type, resulting in a more stable temperature compensation of circadian period over a wider temperature range. PMID:26091701

  11. Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties.

    PubMed

    Narushima, Yuta; Kozuka-Hata, Hiroko; Koyama-Nasu, Ryo; Tsumoto, Kouhei; Inoue, Jun-ichiro; Akiyama, Tetsu; Oyama, Masaaki

    2016-03-01

    Glioblastoma is one of the most malignant brain tumors with poor prognosis and their development and progression are known to be driven by glioblastoma stem cells. Although glioblastoma stem cells lose their cancer stem cell properties during cultivation in serum-containing medium, little is known about the molecular mechanisms regulating signaling alteration in relation to reduction of stem cell-like characteristics. To elucidate the global phosphorylation-related signaling events, we performed a SILAC-based quantitative phosphoproteome analysis of serum-induced dynamics in glioblastoma stem cells established from the tumor tissues of the patient. Among a total of 2876 phosphorylation sites on 1584 proteins identified in our analysis, 732 phosphorylation sites on 419 proteins were regulated through the alteration of stem cell-like characteristics. The integrative computational analyses based on the quantified phosphoproteome data revealed the relevant changes of phosphorylation levels regarding the proteins associated with cytoskeleton reorganization such as Rho family GTPase and Intermediate filament signaling, in addition to transforming growth factor-β receptor type-2 (TGFBR2) as a prominent upstream regulator involved in the serum-induced phosphoproteome regulation. The functional association of transforming growth factor-β receptor type-2 with stem cell-like properties was experimentally validated through signaling perturbation using the corresponding inhibitors, which indicated that transforming growth factor-β receptor type-2 could play an important role as a novel cell fate determinant in glioblastoma stem cell regulation. PMID:26670566

  12. Analysis of T4SS-induced signaling by H. pylori using quantitative phosphoproteomics

    PubMed Central

    Glowinski, Frithjof; Holland, Carsten; Thiede, Bernd; Jungblut, Peter R.; Meyer, Thomas F.

    2014-01-01

    Helicobacter pylori is a Gram-negative bacterial pathogen colonizing the human stomach. Infection with H. pylori causes chronic inflammation of the gastric mucosa and may lead to peptic ulceration and/or gastric cancer. A major virulence determinant of H. pylori is the type IV secretion system (T4SS), which is used to inject the virulence factor CagA into the host cell, triggering a wide range of cellular signaling events. Here, we used a phosphoproteomic approach to investigate tyrosine signaling in response to host-pathogen interaction, using stable isotope labeling in cell culture (SILAC) of AGS cells to obtain a differential picture between multiple infection conditions. Cells were infected with wild type H. pylori P12, a P12Δ CagA deletion mutant, and a P12Δ PAI deletion mutant to compare signaling changes over time and in the absence of CagA or the T4SS. Tryptic peptides were enriched for tyrosine (Tyr) phosphopeptides and analyzed by nano-LC-Orbitrap MS. In total, 85 different phosphosites were found to be regulated following infection. The majority of phosphosites identified were kinases of the MAPK family. CagA and the T4SS were found to be key regulators of Tyr phosphosites. Our findings indicate that CagA primarily induces activation of ERK1 and integrin-linked factors, whereas the T4SS primarily modulates JNK and p38 activation. PMID:25101063

  13. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    SciTech Connect

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  14. Quantitative Phosphoproteomic Analysis Reveals a Role for Serine and Threonine Kinases in the Cytoskeletal Reorganization in Early T Cell Receptor Activation in Human Primary T Cells*

    PubMed Central

    Ruperez, Patricia; Gago-Martinez, Ana; Burlingame, A. L.; Oses-Prieto, Juan A.

    2012-01-01

    Protein phosphorylation-dephosphorylation events play a primary role in regulation of almost all aspects of cell function including signal transduction, cell cycle, or apoptosis. Thus far, T cell phosphoproteomics have focused on analysis of phosphotyrosine residues, and little is known about the role of serine/threonine phosphorylation in early activation of the T cell receptor (TCR). Therefore, we performed a quantitative mass spectrometry-based analysis of the global phosphoproteome of human primary T cells in response to 5 min of TCR activation with anti-CD3 antibody. Combining immunoprecipitation with an antiphosphotyrosine antibody, titanium dioxide phosphopeptide enrichment, isobaric tag for the relative and absolute quantitation methodology, and strong cation exchange separation, we were able to identify 2814 phosphopeptides. These unique sites were employed to investigate the site-specific phosphorylation dynamics. Five hundred and seventeen phosphorylation sites showed TCR-responsive changes. We found that upon 5 min of stimulation of the TCR, specific serine and threonine kinase motifs are overrepresented in the set of responsive phosphorylation sites. These phosphorylation events targeted proteins with many different activities and are present in different subcellular locations. Many of these proteins are involved in intracellular signaling cascades related mainly to cytoskeletal reorganization and regulation of small GTPase-mediated signal transduction, probably involved in the formation of the immune synapse. PMID:22499768

  15. Sample Collection Method Bias Effects in Quantitative Phosphoproteomics.

    PubMed

    Kanshin, Evgeny; Tyers, Michael; Thibault, Pierre

    2015-07-01

    Current advances in selective enrichment, fractionation, and MS detection of phosphorylated peptides allowed identification and quantitation of tens of thousands phosphosites from minute amounts of biological material. One of the major challenges in the field is preserving the in vivo phosphorylation state of the proteins throughout the sample preparation workflow. This is typically achieved by using phosphatase inhibitors and denaturing conditions during cell lysis. Here we determine if the upstream cell collection techniques could introduce changes in protein phosphorylation. To evaluate the effect of sample collection protocols on the global phosphorylation status of the cell, we compared different sample workflows by metabolic labeling and quantitative mass spectrometry on Saccharomyces cerevisiae cell cultures. We identified highly similar phosphopeptides for cells harvested in ice cold isotonic phosphate buffer, cold ethanol, trichloroacetic acid, and liquid nitrogen. However, quantitative analyses revealed that the commonly used phosphate buffer unexpectedly activated signaling events. Such effects may introduce systematic bias in phosphoproteomics measurements and biochemical analysis. PMID:26040406

  16. Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate

    PubMed Central

    Krishnan, Ramesh K.; Nolte, Hendrik; Sun, Tianliang; Kaur, Harmandeep; Sreenivasan, Krishnamoorthy; Looso, Mario; Offermanns, Stefan; Krüger, Marcus; Swiercz, Jakub M.

    2015-01-01

    The inhibitor of the nuclear factor-κB (IκB) kinase (IKK) complex is a key regulator of the canonical NF-κB signalling cascade and is crucial for fundamental cellular functions, including stress and immune responses. The majority of IKK complex functions are attributed to NF-κB activation; however, there is increasing evidence for NF-κB pathway-independent signalling. Here we combine quantitative mass spectrometry with random forest bioinformatics to dissect the TNF-α-IKKβ-induced phosphoproteome in MCF-7 breast cancer cells. In total, we identify over 20,000 phosphorylation sites, of which ∼1% are regulated up on TNF-α stimulation. We identify various potential novel IKKβ substrates including kinases and regulators of cellular trafficking. Moreover, we show that one of the candidates, AEG-1/MTDH/LYRIC, is directly phosphorylated by IKKβ on serine 298. We provide evidence that IKKβ-mediated AEG-1 phosphorylation is essential for IκBα degradation as well as NF-κB-dependent gene expression and cell proliferation, which correlate with cancer patient survival in vivo. PMID:25849741

  17. Targeted Phosphoproteome Analysis Using Selected/Multiple Reaction Monitoring (SRM/MRM).

    PubMed

    Adachi, Jun; Narumi, Ryohei; Tomonaga, Takeshi

    2016-01-01

    Mass spectrometry-based phosphoproteomics has been rapidly spread based on the advancement of mass spectrometry and development of efficient enrichment techniques for phosphorylated proteins or peptides. Non-targeted approach has been employed in most of the studies for phosphoproteome analysis. However, targeted approach using selected/multiple reaction monitoring (SRM/MRM) is an indispensible technique used for the quantitation of known targets especially when we have many samples to quantitate phosphorylation events on proteins in biological or clinical samples. We herein describe the application of a large-scale phosphoproteome analysis and SRM-based quantitation for the systematic discovery and validation of biomarkers. PMID:26700043

  18. Quantitative Phosphoproteomics Analysis Reveals a Key Role of Insulin Growth Factor 1 Receptor (IGF1R) Tyrosine Kinase in Human Sperm Capacitation*

    PubMed Central

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-01-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. PMID:25693802

  19. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri.

    PubMed

    Le Bihan, Thierry; Hindle, Matthew; Martin, Sarah F; Barrios-Llerena, Martin E; Krahmer, Johanna; Kis, Katalin; Millar, Andrew J; van Ooijen, Gerben

    2015-12-01

    Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975). PMID:25930153

  20. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion.

    PubMed

    Li, Jiaming; Li, Qingrun; Tang, Jiashu; Xia, Fangying; Wu, Jiarui; Zeng, Rong

    2015-11-01

    As central tissue of glucose homeostasis, islet has been an important focus of diabetes research. Phosphorylation plays pivotal roles in islet function, especially in islet glucose-stimulated insulin secretion. A systematic view on how phosphorylation networks were coordinately regulated in this process remains lacking, partially due to the limited amount of islets from an individual for a phosphoproteomic analysis. Here we optimized the in-tip and best-ratio phosphopeptide enrichment strategy and a SILAC-based workflow for processing rat islet samples. With limited islet lysates from each individual rat (20-47 μg), we identified 8539 phosphosites on 2487 proteins. Subsequent quantitative analyses uncovered that short-term (30 min) high glucose stimulation induced coordinate responses of islet phosphoproteome on multiple biological levels, including insulin secretion related pathways, cytoskeleton dynamics, protein processing in ER and Golgi, transcription and translation, and so on. Furthermore, three glucose-responsive phosphosites (Prkar1a pT75pS77 and Tagln2 pS163) from the data set were proved to be correlated with insulin secretion. Overall, we initially gave an in-depth map of islet phosphoproteome regulated by glucose on individual rat level. This was a significant addition to our knowledge about how phosphorylation networks responded in insulin secretion. Also, the list of changed phosphosites was a valuable resource for molecular researchers in diabetes field. PMID:26437020

  1. Quantitative phosphoproteomic analysis reveals γ-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation.

    PubMed

    Jou, Yu-Jen; Chen, Chao-Jung; Liu, Yu-Ching; Way, Tzong-Der; Lai, Chih-Ho; Hua, Chun-Hung; Wang, Ching-Ying; Huang, Su-Hua; Kao, Jung-Yie; Lin, Cheng-Wen

    2015-10-01

    γ-Bisabolene, one of main components in cardamom, showed potent in vitro and in vivo anti-proliferative activities against human oral squamous cell carcinoma (OSCC). γ-Bisabolene activated caspases-3/9 and decreased mitochondrial memebrane potential, leading to apoptosis of OSCC cell lines (Ca9-22 and SAS), but not normal oral fibroblast cells. Phosphoproteome profiling of OSCC cells treated with γ-bisabolene was identified using TiO2-PDMS plate and LC-MS/MS, then confirmed using Western blotting and real-time RT-PCR assays. Phosphoproteome profiling revealed that γ-bisabolene increased the phosphorylation of ERK1/2, protein phosphatases 1 (PP1), and p53, as well as decreased the phosphorylation of histone deacetylase 2 (HDAC2) in the process of apoptosis induction. Protein-protein interaction network analysis proposed the involvement of PP1-HDAC2-p53 and ERK1/2-p53 pathways in γ-bisabolene-induced apoptosis. Subsequent assays indicated γ-bisabolene eliciting p53 acetylation that enhanced the expression of p53-regulated apoptotic genes. PP1 inhibitor-2 restored the status of HDAC2 phosphorylation, reducing p53 acetylation and PUMA mRNA expression in γ-bisabolene-treated Ca9-22 and SAS cells. Meanwhile, MEK and ERK inhibitors significantly decreased γ-bisabolene-induced PUMA expression in both cancer cell lines. Notably, the results ascertained the involvement of PP1-HDAC2-p53 and ERK1/2-p53 pathways in mitochondria-mediated apoptosis of γ-bisabolene-treated cells. This study demonstrated γ-bisabolene displaying potent anti-proliferative and apoptosis-inducing activities against OSCC in vitro and in vivo, elucidating molecular mechanisms of γ-bisabolene-induced apoptosis. The novel insight could be useful for developing anti-cancer drugs. PMID:26194454

  2. Quantitative phosphoproteomic analysis of signaling downstream of the prostaglandin e2/g-protein coupled receptor in human synovial fibroblasts: potential antifibrotic networks.

    PubMed

    Gerarduzzi, Casimiro; He, QingWen; Antoniou, John; Di Battista, John A

    2014-11-01

    The Prostaglandin E2 (PGE2) signaling mechanism within fibroblasts is of growing interest as it has been shown to prevent numerous fibrotic features of fibroblast activation with limited evidence of downstream pathways. To understand the mechanisms of fibroblasts producing tremendous amounts of PGE2 with autocrine effects, we apply a strategy of combining a wide-screening of PGE2-induced kinases with quantitative phosphoproteomics. Our large-scale proteomic approach identified a PKA signal transmitted through phosphorylation of its substrates harboring the R(R/X)X(S*/T*) motif. We documented 115 substrates, of which 72 had 89 sites with a 2.5-fold phosphorylation difference in PGE2-treated cells than in untreated cells, where approximately half of such sites were defined as being novel. They were compiled by networking software to focus on highlighted activities and to associate them with a functional readout of fibroblasts. The substrates were associated with a variety of cellular functions including cytoskeletal structures (migration/motility), regulators of G-protein coupled receptor function, protein kinases, and transcriptional/translational regulators. For the first time, we extended the PGE2 pathway into an elaborate network of interconnecting phosphoproteins, providing vital information to a once restricted signalosome. These data provide new insights into eicosanoid-initiated cell signaling with regards to the regulation of fibroblast activation and the identification of new targets for evidenced-based pharmacotherapy against fibrosis. PMID:25223752

  3. Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog

    PubMed Central

    Fortuin, Suereta; Tomazella, Gisele G.; Nagaraj, Nagarjuna; Sampson, Samantha L.; Gey van Pittius, Nicolaas C.; Soares, Nelson C.; Wiker, Harald G.; de Souza, Gustavo A.; Warren, Robin M.

    2015-01-01

    Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis. PMID:25713560

  4. KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis.

    PubMed

    Yang, Pengyi; Patrick, Ellis; Humphrey, Sean J; Ghazanfar, Shila; James, David E; Jothi, Raja; Yang, Jean Yee Hwa

    2016-07-01

    Mass spectrometry (MS)-based quantitative phosphoproteomics has become a key approach for proteome-wide profiling of phosphorylation in tissues and cells. Traditional experimental design often compares a single treatment with a control, whereas increasingly more experiments are designed to compare multiple treatments with respect to a control. To this end, the development of bioinformatic tools that can integrate multiple treatments and visualise kinases and substrates under combinatorial perturbations is vital for dissecting concordant and/or independent effects of each treatment. Here, we propose a hypothesis driven kinase perturbation analysis (KinasePA) to annotate and visualise kinases and their substrates that are perturbed by various combinatorial effects of treatments in phosphoproteomics experiments. We demonstrate the utility of KinasePA through its application to two large-scale phosphoproteomics datasets and show its effectiveness in dissecting kinases and substrates within signalling pathways driven by unique combinations of cellular stimuli and inhibitors. We implemented and incorporated KinasePA as part of the "directPA" R package available from the comprehensive R archive network (CRAN). Furthermore, KinasePA also has an interactive web interface that can be readily applied to annotate user provided phosphoproteomics data (http://kinasepa.pengyiyang.org). PMID:27145998

  5. Phosphoproteomics Analysis of Endometrium in Women with or without Endometriosis

    PubMed Central

    Xu, Hong-Mei; Deng, Hai-Teng; Liu, Chong-Dong; Chen, Yu-Ling; Zhang, Zhen-Yu

    2015-01-01

    Background: The molecular mechanisms underlying the endometriosis are still not completely understood. In order to test the hypothesis that the approaches in phosphoproteomics might contribute to the identification of key biomarkers to assess disease pathogenesis and drug targets, we carried out a phosphoproteomics analysis of human endometrium. Methods: A large-scale differential phosphoproteome analysis, using peptide enrichment of titanium dioxide purify and sequential elution from immobilized metal affinity chromatography with linear trap quadrupole-tandem mass spectrometry, was performed in endometrium tissues from 8 women with or without endometriosis. Results: The phosphorylation profiling of endometrium from endometriosis patients had been obtained, and found that identified 516 proteins were modified at phosphorylation level during endometriosis. Gene ontology annotation analysis showed that these proteins were enriched in cellular processes of binding and catalytic activity. Further pathway analysis showed that ribosome pathway and focal adhesion pathway were the top two pathways, which might be deregulated during the development of endometriosis. Conclusions: That large-scale phosphoproteome quantification has been successfully identified in endometrium tissues of women with or without endometriosis will provide new insights to understand the molecular mechanisms of the development of endometriosis. PMID:26415800

  6. Stable Isotope Metabolic Labeling-based Quantitative Phosphoproteomic Analysis of Arabidopsis Mutants Reveals Ethylene-regulated Time-dependent Phosphoproteins and Putative Substrates of Constitutive Triple Response 1 Kinase*

    PubMed Central

    Yang, Zhu; Guo, Guangyu; Zhang, Manyu; Liu, Claire Y.; Hu, Qin; Lam, Henry; Cheng, Han; Xue, Yu; Li, Jiayang; Li, Ning

    2013-01-01

    Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on 15N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethylene-regulated phosphosites using the group-based prediction system with a protein–protein interaction filter revealed a total of 14 kinase–substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethylene-regulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light

  7. Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome.

    PubMed

    Grosstessner-Hain, Karin; Hegemann, Björn; Novatchkova, Maria; Rameseder, Jonathan; Joughin, Brian A; Hudecz, Otto; Roitinger, Elisabeth; Pichler, Peter; Kraut, Norbert; Yaffe, Michael B; Peters, Jan-Michael; Mechtler, Karl

    2011-11-01

    Polo-like kinase 1 (PLK1) is a key regulator of mitotic progression and cell division, and small molecule inhibitors of PLK1 are undergoing clinical trials to evaluate their utility in cancer therapy. Despite this importance, current knowledge about the identity of PLK1 substrates is limited. Here we present the results of a proteome-wide analysis of PLK1-regulated phosphorylation sites in mitotic human cells. We compared phosphorylation sites in HeLa cells that were or were not treated with the PLK1-inhibitor BI 4834, by labeling peptides via methyl esterification, fractionation of peptides by strong cation exchange chromatography, and phosphopeptide enrichment via immobilized metal affinity chromatography. Analysis by quantitative mass spectrometry identified 4070 unique mitotic phosphorylation sites on 2069 proteins. Of these, 401 proteins contained one or multiple phosphorylation sites whose abundance was decreased by PLK1 inhibition. These include proteins implicated in PLK1-regulated processes such as DNA damage, mitotic spindle formation, spindle assembly checkpoint signaling, and chromosome segregation, but also numerous proteins that were not suspected to be regulated by PLK1. Analysis of amino acid sequence motifs among phosphorylation sites down-regulated under PLK1 inhibition in this data set identified two potential novel variants of the PLK1 consensus motif. PMID:21857030

  8. Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient.

    PubMed

    Dazert, Eva; Colombi, Marco; Boldanova, Tujana; Moes, Suzette; Adametz, David; Quagliata, Luca; Roth, Volker; Terracciano, Luigi; Heim, Markus H; Jenoe, Paul; Hall, Michael N

    2016-02-01

    Compensatory signaling pathways in tumors confer resistance to targeted therapy, but the pathways and their mechanisms of activation remain largely unknown. We describe a procedure for quantitative proteomics and phosphoproteomics on snap-frozen biopsies of hepatocellular carcinoma (HCC) and matched nontumor liver tissue. We applied this procedure to monitor signaling pathways in serial biopsies taken from an HCC patient before and during treatment with the multikinase inhibitor sorafenib. At diagnosis, the patient had an advanced HCC. At the time of the second biopsy, abdominal imaging revealed progressive disease despite sorafenib treatment. Sorafenib was confirmed to inhibit MAPK signaling in the tumor, as measured by reduced ribosomal protein S6 kinase phosphorylation. Hierarchical clustering and enrichment analysis revealed pathways broadly implicated in tumor progression and resistance, such as epithelial-to-mesenchymal transition and cell adhesion pathways. Thus, we describe a protocol for quantitative analysis of oncogenic pathways in HCC biopsies and obtained first insights into the effect of sorafenib in vivo. This protocol will allow elucidation of mechanisms of resistance and enable precision medicine. PMID:26787912

  9. Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient

    PubMed Central

    Dazert, Eva; Colombi, Marco; Boldanova, Tujana; Moes, Suzette; Adametz, David; Quagliata, Luca; Roth, Volker; Terracciano, Luigi; Heim, Markus H.; Jenoe, Paul; Hall, Michael N.

    2016-01-01

    Compensatory signaling pathways in tumors confer resistance to targeted therapy, but the pathways and their mechanisms of activation remain largely unknown. We describe a procedure for quantitative proteomics and phosphoproteomics on snap-frozen biopsies of hepatocellular carcinoma (HCC) and matched nontumor liver tissue. We applied this procedure to monitor signaling pathways in serial biopsies taken from an HCC patient before and during treatment with the multikinase inhibitor sorafenib. At diagnosis, the patient had an advanced HCC. At the time of the second biopsy, abdominal imaging revealed progressive disease despite sorafenib treatment. Sorafenib was confirmed to inhibit MAPK signaling in the tumor, as measured by reduced ribosomal protein S6 kinase phosphorylation. Hierarchical clustering and enrichment analysis revealed pathways broadly implicated in tumor progression and resistance, such as epithelial-to-mesenchymal transition and cell adhesion pathways. Thus, we describe a protocol for quantitative analysis of oncogenic pathways in HCC biopsies and obtained first insights into the effect of sorafenib in vivo. This protocol will allow elucidation of mechanisms of resistance and enable precision medicine. PMID:26787912

  10. Research Resource: Identification of Novel Growth Hormone-Regulated Phosphorylation Sites by Quantitative Phosphoproteomics

    PubMed Central

    Ray, Bridgette N.; Kweon, Hye Kyong; Argetsinger, Lawrence S.; Fingar, Diane C.; Andrews, Philip C.

    2012-01-01

    GH and GH receptors are expressed throughout life, and GH elicits a diverse range of responses, including growth and altered metabolism. It is therefore important to understand the full spectrum of GH signaling pathways and cellular responses. We applied mass spectrometry-based phosphoproteomics combined with stable isotope labeling with amino acids in cell culture to identify proteins rapidly phosphorylated in response to GH in 3T3-F442A preadipocytes. We identified 132 phosphosites in 95 proteins that exhibited rapid (5 or 15 min) GH-dependent statistically significant increases in phosphorylation by more than or equal to 50% and 96 phosphosites in 46 proteins that were down-regulated by GH by more than or equal to 30%. Several of the GH-stimulated phosphorylation sites were known (e.g. regulatory Thr/Tyr in Erks 1 and 2, Tyr in signal transducers and activators of transcription (Stat) 5a and 5b, Ser939 in tuberous sclerosis protein (TSC) 2 or tuberin). The remaining 126 GH-stimulated sites were not previously associated with GH. Kyoto Encyclopedia of Genes and Genomes pathway analysis of GH-stimulated sites indicated enrichment in proteins associated with the insulin and mammalian target of rapamycin (mTOR) pathways, regulation of the actin cytoskeleton, and focal adhesions. Akt/protein kinase A consensus sites (RXRXXS/T) were the most commonly phosphorylated consensus sites. Immunoblotting confirmed GH-stimulated phosphorylation of all seven novel GH-dependent sites tested [regulatory sites in proline-rich Akt substrate, 40 kDA (PRAS40), regulatory associated protein of mTOR, ATP-citrate lyase, Na+/H+ exchanger-1, N-myc downstream regulated gene 1, and Shc]). The immunoblot results suggest that many, if not most, of the GH-stimulated phosphosites identified in this large-scale quantitative phosphoproteomics analysis, including sites in multiple proteins in the Akt/ mTOR complex 1 pathway, are phosphorylated in response to GH. Their identification significantly

  11. Quantitative Proteomic and Phosphoproteomic Approaches for Deciphering the Signaling Pathway for Tension Wood Formation in Poplar.

    PubMed

    Mauriat, Mélanie; Leplé, Jean-Charles; Claverol, Stéphane; Bartholomé, Jérôme; Negroni, Luc; Richet, Nicolas; Lalanne, Céline; Bonneu, Marc; Coutand, Catherine; Plomion, Christophe

    2015-08-01

    Trees adjust their growth following forced changes in orientation to re-establish a vertical position. In angiosperms, this adjustment involves the differential regulation of vascular cambial activity between the lower (opposite wood) and upper (tension wood) sides of the leaning stem. We investigated the molecular mechanisms leading to the formation of differential wood types through a quantitative proteomic and phosphoproteomic analysis on poplar subjected to a gravitropic stimulus. We identified and quantified 675 phosphopeptides, corresponding to 468 phosphoproteins, and 3 763 nonphosphorylated peptides, corresponding to 1 155 proteins, in the differentiating xylem of straight-growing trees (control) and trees subjected to a gravitational stimulus during 8 weeks. About 1% of the peptides were specific to a wood type (straight, opposite, or tension wood). Proteins quantified in more than one type of wood were more numerous: a mixed linear model showed 389 phosphopeptides and 556 proteins to differ in abundance between tension wood and opposite wood. Twenty-one percent of the phosphoproteins identified here were described in their phosphorylated form for the first time. Our analyses revealed remarkable developmental molecular plasticity, with wood type-specific phosphorylation events, and highlighted the involvement of different proteins in the biosynthesis of cell wall components during the formation of the three types of wood. PMID:26112267

  12. Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response*

    PubMed Central

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response. PMID:24263382

  13. Quantitative Phosphoproteome Profiling of Iron-Deficient Arabidopsis Roots1[C][W

    PubMed Central

    Lan, Ping; Li, Wenfeng; Wen, Tuan-Nan; Schmidt, Wolfgang

    2012-01-01

    Iron (Fe) is an essential mineral nutrient for plants, but often it is not available in sufficient quantities to sustain optimal growth. To gain insights into adaptive processes to low Fe availability at the posttranslational level, we conducted a quantitative analysis of Fe deficiency-induced changes in the phosphoproteome profile of Arabidopsis (Arabidopsis thaliana) roots. Isobaric tags for relative and absolute quantitation-labeled phosphopeptides were analyzed by liquid chromatography-tandem mass spectrometry on an LTQ-Orbitrap with collision-induced dissociation and high-energy collision dissociation capabilities. Using a combination of titanium dioxide and immobilized metal affinity chromatography to enrich phosphopeptides, we extracted 849 uniquely identified phosphopeptides corresponding to 425 proteins and identified several not previously described phosphorylation motifs. A subset of 45 phosphoproteins was defined as being significantly changed in abundance upon Fe deficiency. Kinase motifs in Fe-responsive proteins matched to protein kinase A/calcium calmodulin-dependent kinase II, casein kinase II, and proline-directed kinase, indicating a possible critical function of these kinase classes in Fe homeostasis. To validate our analysis, we conducted site-directed mutagenesis on IAA-CONJUGATE-RESISTANT4 (IAR4), a protein putatively functioning in auxin homeostasis. iar4 mutants showed compromised root hair formation and developed shorter primary roots. Changing serine-296 in IAR4 to alanine resulted in a phenotype intermediate between mutant and wild type, whereas acidic substitution to aspartate to mimic phosphorylation was either lethal or caused an extreme dwarf phenotype, supporting the critical importance of this residue in Fe homeostasis. Our analyses further disclose substantial changes in the abundance of phosphoproteins involved in primary carbohydrate metabolism upon Fe deficiency, complementing the picture derived from previous proteomic and

  14. Systematic Analysis of Protein Phosphorylation Networks From Phosphoproteomic Data*

    PubMed Central

    Song, Chunxia; Ye, Mingliang; Liu, Zexian; Cheng, Han; Jiang, Xinning; Han, Guanghui; Songyang, Zhou; Tan, Yexiong; Wang, Hongyang; Ren, Jian; Xue, Yu; Zou, Hanfa

    2012-01-01

    In eukaryotes, hundreds of protein kinases (PKs) specifically and precisely modify thousands of substrates at specific amino acid residues to faithfully orchestrate numerous biological processes, and reversibly determine the cellular dynamics and plasticity. Although over 100,000 phosphorylation sites (p-sites) have been experimentally identified from phosphoproteomic studies, the regulatory PKs for most of these sites still remain to be characterized. Here, we present a novel software package of iGPS for the prediction of in vivo site-specific kinase-substrate relations mainly from the phosphoproteomic data. By critical evaluations and comparisons, the performance of iGPS is satisfying and better than other existed tools. Based on the prediction results, we modeled protein phosphorylation networks and observed that the eukaryotic phospho-regulation is poorly conserved at the site and substrate levels. With an integrative procedure, we conducted a large-scale phosphorylation analysis of human liver and experimentally identified 9719 p-sites in 2998 proteins. Using iGPS, we predicted a human liver protein phosphorylation networks containing 12,819 potential site-specific kinase-substrate relations among 350 PKs and 962 substrates for 2633 p-sites. Further statistical analysis and comparison revealed that 127 PKs significantly modify more or fewer p-sites in the liver protein phosphorylation networks against the whole human protein phosphorylation network. The largest data set of the human liver phosphoproteome together with computational analyses can be useful for further experimental consideration. This work contributes to the understanding of phosphorylation mechanisms at the systemic level, and provides a powerful methodology for the general analysis of in vivo post-translational modifications regulating sub-proteomes. PMID:22798277

  15. Identification of Candidate Cyclin-dependent kinase 1 (Cdk1) Substrates in Mitosis by Quantitative Phosphoproteomics.

    PubMed

    Petrone, Adam; Adamo, Mark E; Cheng, Chao; Kettenbach, Arminja N

    2016-07-01

    Cyclin-dependent kinase 1 (Cdk1) is an essential regulator of many mitotic processes including the reorganization of the cytoskeleton, chromosome segregation, and formation and separation of daughter cells. Deregulation of Cdk1 activity results in severe defects in these processes. Although the role of Cdk1 in mitosis is well established, only a limited number of Cdk1 substrates have been identified in mammalian cells. To increase our understanding of Cdk1-dependent phosphorylation pathways in mitosis, we conducted a quantitative phosphoproteomics analysis in mitotic HeLa cells using two small molecule inhibitors of Cdk1, Flavopiridol and RO-3306. In these analyses, we identified a total of 24,840 phosphopeptides on 4,273 proteins, of which 1,215 phosphopeptides on 551 proteins were significantly reduced by 2.5-fold or more upon Cdk1 inhibitor addition. Comparison of phosphopeptide quantification upon either inhibitor treatment revealed a high degree of correlation (R(2) value of 0.87) between the different datasets. Motif enrichment analysis of significantly regulated phosphopeptides revealed enrichment of canonical Cdk1 kinase motifs. Interestingly, the majority of proteins identified in this analysis contained two or more Cdk1 inhibitor-sensitive phosphorylation sites, were highly connected with other candidate Cdk1 substrates, were enriched at specific subcellular structures, or were part of protein complexes as identified by the CORUM database. Furthermore, candidate Cdk1 substrates were enriched in G2 and M phase-specific genes. Finally, we validated a subset of candidate Cdk1 substrates by in vitro kinase assays. Our findings provide a valuable resource for the cell signaling and mitosis research communities and greatly increase our knowledge of Cdk1 substrates and Cdk1-dependent signaling pathways. PMID:27134283

  16. Novel Host Proteins and Signaling Pathways in Enteropathogenic E. coli Pathogenesis Identified by Global Phosphoproteome Analysis.

    PubMed

    Scholz, Roland; Imami, Koshi; Scott, Nichollas E; Trimble, William S; Foster, Leonard J; Finlay, B Brett

    2015-07-01

    Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system (T3SS) to directly translocate effector proteins into host cells where they play a pivotal role in subverting host cell signaling needed for disease. However, our knowledge of how EPEC affects host protein phosphorylation is limited to a few individual protein studies. We employed a quantitative proteomics approach to globally map alterations in the host phosphoproteome during EPEC infection. By characterizing host phosphorylation events at various time points throughout infection, we examined how EPEC dynamically impacts the host phosphoproteome over time. This experimental setup also enabled identification of T3SS-dependent and -independent changes in host phosphorylation. Specifically, T3SS-regulated events affected various cellular processes that are known EPEC targets, including cytoskeletal organization, immune signaling, and intracellular trafficking. However, the involvement of phosphorylation in these events has thus far been poorly studied. We confirmed the MAPK family as an established key host player, showed its central role in signal transduction during EPEC infection, and extended the repertoire of known signaling hubs with previously unrecognized proteins, including TPD52, CIN85, EPHA2, and HSP27. We identified altered phosphorylation of known EPEC targets, such as cofilin, where the involvement of phosphorylation has so far been undefined, thus providing novel mechanistic insights into the roles of these proteins in EPEC infection. An overlap of regulated proteins, especially those that are cytoskeleton-associated, was observed when compared with the phosphoproteome of Shigella-infected cells. We determined the biological relevance of the phosphorylation of a novel protein in EPEC pathogenesis, septin-9 (SEPT9). Both siRNA knockdown and a phosphorylation-impaired SEPT9 mutant decreased bacterial adherence and EPEC-mediated cell death. In contrast, a phosphorylation

  17. Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress

    PubMed Central

    Hu, Xiuli; Wu, Liuji; Zhao, Feiyun; Zhang, Dayong; Li, Nana; Zhu, Guohui; Li, Chaohao; Wang, Wei

    2015-01-01

    Drought and heat stress, especially their combination, greatly affect crop production. Many studies have described transcriptome, proteome and phosphoproteome changes in response of plants to drought or heat stress. However, the study about the phosphoproteomic changes in response of crops to the combination stress is scare. To understand the mechanism of maize responses to the drought and heat combination stress, phosphoproteomic analysis was performed on maize leaves by using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. Five-leaf-stage maize was subjected to drought, heat or their combination, and the leaves were collected. Globally, heat, drought and the combined stress significantly changed the phosphorylation levels of 172, 149, and 144 phosphopeptides, respectively. These phosphopeptides corresponded to 282 proteins. Among them, 23 only responded to the combined stress and could not be predicted from their responses to single stressors; 30 and 75 only responded to drought and heat, respectively. Notably, 19 proteins were phosphorylated on different sites in response to the single and combination stresses. Of the seven significantly enriched phosphorylation motifs identified, two were common for all stresses, two were common for heat and the combined stress, and one was specific to the combined stress. The signaling pathways in which the phosphoproteins were involved clearly differed among the three stresses. Functional characterization of the phosphoproteins and the pathways identified here could lead to new targets for the enhancement of crop stress tolerance, which will be particularly important in the face of climate change and the increasing prevalence of abiotic stressors. PMID:25999967

  18. Phosphoproteomics in Cancer

    PubMed Central

    Harsha, H. C.; Pandey, Akhilesh

    2010-01-01

    Reversible protein phosphorylation serves as a basis for regulating a number of cellular processes. Aberrant activation of kinase signaling pathways is commonly associated with several cancers. Recent developments in phosphoprotein/phosphopeptide enrichment strategies and quantitative mass spectrometry have resulted in robust pipelines for high-throughput characterization of phosphorylation in a global fashion. Today, it is possible to profile site-specific phosphorylation events on thousands of proteins in a single experiment. The potential of this approach is already being realized to characterize signaling pathways that govern oncogenesis. In addition, chemical proteomic strategies have been used to unravel targets of kinase inhibitors, which are otherwise difficult to characterize. This review summarizes various approaches used for analysis of the phosphoproteome in general, and protein kinases in particular, highlighting key cancer phosphoproteomic studies. PMID:20937571

  19. Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells

    PubMed Central

    Bolger, Steven J.; Hurtado, Patricia A. Gonzales; Hoffert, Jason D.; Saeed, Fahad; Pisitkun, Trairak

    2012-01-01

    Vasopressin regulates transport across the collecting duct epithelium in part via effects on gene transcription. Transcriptional regulation occurs partially via changes in phosphorylation of transcription factors, transcriptional coactivators, and protein kinases in the nucleus. To test whether vasopressin alters the nuclear phosphoproteome of vasopressin-sensitive cultured mouse mpkCCD cells, we used stable isotope labeling and mass spectrometry to quantify thousands of phosphorylation sites in nuclear extracts and nuclear pellet fractions. Measurements were made in the presence and absence of the vasopressin analog dDAVP. Of the 1,251 sites quantified, 39 changed significantly in response to dDAVP. Network analysis of the regulated proteins revealed two major clusters (“cell-cell adhesion” and “transcriptional regulation”) that were connected to known elements of the vasopressin signaling pathway. The hub proteins for these two clusters were the transcriptional coactivator β-catenin and the transcription factor c-Jun. Phosphorylation of β-catenin at Ser552 was increased by dDAVP [log2(dDAVP/vehicle) = 1.79], and phosphorylation of c-Jun at Ser73 was decreased [log2(dDAVP/vehicle) = −0.53]. The β-catenin site is known to be targeted by either protein kinase A or Akt, both of which are activated in response to vasopressin. The c-Jun site is a canonical target for the MAP kinase Jnk2, which is downregulated in response to vasopressin in the collecting duct. The data support the idea that vasopressin-mediated control of transcription in collecting duct cells involves selective changes in the nuclear phosphoproteome. All data are available to users at http://helixweb.nih.gov/ESBL/Database/mNPPD/. PMID:22992673

  20. Effects of MEK inhibitors GSK1120212 and PD0325901 in vivo using 10-plex quantitative proteomics and phosphoproteomics

    PubMed Central

    Paulo, Joao A.; McAllister, Fiona E.; Everley, Robert A.; Beausoleil, Sean A.; Banks, Alexander S.; Gygi, Steven P.

    2015-01-01

    Multiplexed isobaric tag-based quantitative proteomics and phosphoproteomics strategies can comprehensively analyze drug treatments effects on biological systems. Given the role of MEK signaling in cancer and MAPK-dependent diseases, we sought to determine if this pathway could be inhibited safely by examining the downstream molecular consequences. We used a series of TMT10-plex experiments to analyze the effect of two MEK inhibitors (GSK1120212 and PD0325901) on three tissues (kidney, liver, and pancreas) from nine mice. We quantified ~6000 proteins in each tissue, but significant protein level alterations were minimal with inhibitor treatment. Of particular interest was kidney tissue, as edema is an adverse effect of these inhibitors. From kidney tissue, we enriched phosphopeptides using titanium dioxide (TiO2) and quantified 10,562 phosphorylation events. Further analysis by phosphotyrosine (pY) peptide immunoprecipitation quantified an additional 592 phosphorylation events. Phosphorylation motif analysis revealed that the inhibitors decreased phosphorylation levels of PxSP and SP sites, consistent with ERK inhibition. The MEK inhibitors had the greatest decrease on the phosphorylation of two proteins, Barttin and Slc12a3, which have roles in ion transport and fluid balance. Further studies will provide insight into the effect of these MEK inhibitors with respect to edema and other adverse events in mouse models and human patients. PMID:25195567

  1. Quantitative Phosphoproteomics Identifies Filaggrin and other Targets of Ionizing Radiation in a Human Skin Model

    SciTech Connect

    Yang, Feng; Waters, Katrina M.; Webb-Robertson, Bobbie-Jo M.; Sowa, Marianne B.; Freiin von Neubeck, Claere H.; Aldrich, Joshua T.; Markillie, Lye Meng; Wirgau, Rachel M.; Gristenko, Marina A.; Zhao, Rui; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2012-04-17

    Our objective here was to perform a quantitative phosphoproteomic study on a reconstituted human skin tissue to identify low and high dose ionizing radiation dependent signaling in a complex 3-dimensional setting. Application of an isobaric labeling strategy using sham and 3 radiation doses (3, 10, 200 cGy) resulted in the identification of 1113 unique phosphopeptides. Statistical analyses identified 151 phosphopeptides showing significant changes in response to radiation and radiation dose. Proteins responsible for maintaining skin structural integrity including keratins and desmosomal proteins (desmoglein, desmoplakin, plakophilin 1 and 2,) had altered phosphorylation levels following exposure to both low and high doses of radiation. A phosphorylation site present in multiple copies in the linker regions of human profilaggrin underwent the largest fold change. Increased phosphorylation of these sites coincided with altered profilaggrin processing suggesting a role for linker phosphorylation in human profilaggrin regulation. These studies demonstrate that the reconstituted human skin system undergoes a coordinated response to ionizing radiation involving multiple layers of the stratified epithelium that serve to maintain skin barrier functions and minimize the damaging consequences of radiation exposure.

  2. Quantitative Phosphoproteomic Profiling of Human Non-Small Cell Lung Cancer Tumors

    PubMed Central

    Schweppe, Devin K.; Rigas, James R.; Gerber, Scott A.

    2013-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Within the molecular scope of NCSLC, a complex landscape of dysregulated cellular signaling has emerged, defined largely by mutations in select mediators of signal transduction, including the epidermal growth factor receptor (EGFR) and anaplastic lymphoma (ALK) kinases. Consequently, these mutant kinases become constitutively activated and targets for chemotherapeutic intervention. Encouragingly, small molecule inhibitors of these pathways have shown promise in clinical trials or are approved for clinical use. However, many protein kinases are dysregulated in NSCLC without genetic mutations. To quantify differences in tumor cell signaling that are transparent to genomic methods, we established a super-SILAC internal standard derived from NSCLC cell lines grown in vitro and labeled with heavy lysine and arginine, and deployed them in a phosphoproteomics workflow. We identified 9019 and 8753 phosphorylation sites in two separate tumors. Relative quantification of phosphopeptide abundance between tumor samples allowed for the determination of specific hubs and pathways differing between each tumor. Sites downstream of Ras showed decreased inhibitory phosphorylation (Raf/Mek) and increased activating phosphorylation (Erk1/2) in one tumor versus another. In this way, we were able to quantitatively access oncogenic kinase signaling in primary human tumors. PMID:23911959

  3. Automated, Reproducible, Titania-Based Phosphopeptide Enrichment Strategy for Label-Free Quantitative Phosphoproteomics

    PubMed Central

    Richardson, Brenna McJury; Soderblom, Erik J.; Thompson, J. Will; Moseley, M. Arthur

    2013-01-01

    An automated phosphopeptide enrichment strategy is described using titanium dioxide (TiO2)-packed, fused silica capillaries for use with liquid chromatography (LC)-mass spectrometry (MS)/MS-based, label-free proteomics workflows. To correlate an optimum peptide:TiO2 loading ratio between different particle types, the ratio of phenyl phosphate-binding capacities was used. The optimum loading for the column was then verified through replicate enrichments of a range of quantities of digested rat brain tissue cell lysate. Fractions were taken during sample loading, multiple wash steps, and the elution steps and analyzed by LC-MS/MS to gauge the efficiency and reproducibility of the enrichment. Greater than 96% of the total phosphopeptides were detected in the elution fractions, indicating efficient trapping of the phosphopeptides on the first pass of enrichment. The quantitative reproducibility of the automated setup was also improved greatly with phosphopeptide intensities from replicate enrichments exhibiting a median coefficient of variation (CV) of 5.8%, and 80% of the identified phosphopeptides had CVs below 11.1%, while maintaining >85% specificity. By providing this high degree of analytical reproducibility, this method allows for label-free phosphoproteomics over large sample sets with complex experimental designs (multiple biological conditions, multiple biological replicates, multiple time-points, etc.), including large-scale clinical cohorts. PMID:23542237

  4. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes.

    PubMed

    Kwon, Oh Kwang; Sim, JuHee; Kim, Sun Ju; Sung, Eunji; Kim, Jin Young; Jeong, Tae Cheon; Lee, Sangkyu

    2015-12-01

    Protein phosphorylation at serine, threonine, and tyrosine residues are some of the most widespread reversible post-translational modifications. Microsomes are vesicle-like bodies, not ordinarily present within living cells, which form from pieces of the endoplasmic reticulum (ER), plasma membrane, mitochondria, or Golgi apparatus of broken eukaryotic cells. Here we investigated the total phosphoproteome of mouse liver microsomes (MLMs) using TiO2 enrichment of phosphopeptides coupled to on-line 2D-LC-MS/MS. In total, 699 phosphorylation sites in 527 proteins were identified in MLMs. When compared with the current phosphoSitePlus database, 155 novel phosphoproteins were identified in MLM. The distributions of phosphosites were 89.4, 8.0, and 2.6% for phosphoserine, phosphotheronine, and phosphotyrosine, respectively. By Motif-X analysis, eight Ser motifs and one Thr motif were found, and five acidic, two basophilic-, and two proline-directed motifs were assigned. The potential functions of phosphoproteins in MLM were assigned by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In GO annotation, phosphorylated microsomal proteins were involved in mRNA processing, mRNA metabolic processes, and RNA splicing. In the KEGG pathway analysis, phosphorylated microsomal proteins were highly enriched in ribosome protein processing in ER and ribosomes and in RNA transport. Furthermore, we determined that 52 and 23 phosphoproteins were potential substrates of cAMP-dependent protein kinase A and casein kinase II, respectively, many of which are 40S/60S ribosomal proteins. Overall, our results provide an overview of features of protein phosphorylation in MLMs that should be a valuable resource for the future understanding of protein synthesis or translation involving phosphorylation. PMID:26487105

  5. Quantitative phospho-proteomics reveals the Plasmodium merozoite triggers pre-invasion host kinase modification of the red cell cytoskeleton

    PubMed Central

    Zuccala, Elizabeth S.; Satchwell, Timothy J.; Angrisano, Fiona; Tan, Yan Hong; Wilson, Marieangela C.; Heesom, Kate J.; Baum, Jake

    2016-01-01

    The invasive blood-stage malaria parasite – the merozoite – induces rapid morphological changes to the target erythrocyte during entry. However, evidence for active molecular changes in the host cell that accompany merozoite invasion is lacking. Here, we use invasion inhibition assays, erythrocyte resealing and high-definition imaging to explore red cell responses during invasion. We show that although merozoite entry does not involve erythrocyte actin reorganisation, it does require ATP to complete the process. Towards dissecting the ATP requirement, we present an in depth quantitative phospho-proteomic analysis of the erythrocyte during each stage of invasion. Specifically, we demonstrate extensive increased phosphorylation of erythrocyte proteins on merozoite attachment, including modification of the cytoskeletal proteins beta-spectrin and PIEZO1. The association with merozoite contact but not active entry demonstrates that parasite-dependent phosphorylation is mediated by host-cell kinase activity. This provides the first evidence that the erythrocyte is stimulated to respond to early invasion events through molecular changes in its membrane architecture. PMID:26830761

  6. Quantitative phospho-proteomics reveals the Plasmodium merozoite triggers pre-invasion host kinase modification of the red cell cytoskeleton.

    PubMed

    Zuccala, Elizabeth S; Satchwell, Timothy J; Angrisano, Fiona; Tan, Yan Hong; Wilson, Marieangela C; Heesom, Kate J; Baum, Jake

    2016-01-01

    The invasive blood-stage malaria parasite - the merozoite - induces rapid morphological changes to the target erythrocyte during entry. However, evidence for active molecular changes in the host cell that accompany merozoite invasion is lacking. Here, we use invasion inhibition assays, erythrocyte resealing and high-definition imaging to explore red cell responses during invasion. We show that although merozoite entry does not involve erythrocyte actin reorganisation, it does require ATP to complete the process. Towards dissecting the ATP requirement, we present an in depth quantitative phospho-proteomic analysis of the erythrocyte during each stage of invasion. Specifically, we demonstrate extensive increased phosphorylation of erythrocyte proteins on merozoite attachment, including modification of the cytoskeletal proteins beta-spectrin and PIEZO1. The association with merozoite contact but not active entry demonstrates that parasite-dependent phosphorylation is mediated by host-cell kinase activity. This provides the first evidence that the erythrocyte is stimulated to respond to early invasion events through molecular changes in its membrane architecture. PMID:26830761

  7. In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling.

    PubMed

    Lundby, Alicia; Andersen, Martin N; Steffensen, Annette B; Horn, Heiko; Kelstrup, Christian D; Francavilla, Chiara; Jensen, Lars J; Schmitt, Nicole; Thomsen, Morten B; Olsen, Jesper V

    2013-06-01

    β-Blockers are widely used to prevent cardiac arrhythmias and to treat hypertension by inhibiting β-adrenergic receptors (βARs) and thus decreasing contractility and heart rate. βARs initiate phosphorylation-dependent signaling cascades, but only a small number of the target proteins are known. We used quantitative in vivo phosphoproteomics to identify 670 site-specific phosphorylation changes in murine hearts in response to acute treatment with specific βAR agonists. The residues adjacent to the regulated phosphorylation sites exhibited a sequence-specific preference (R-X-X-pS/T), and integrative analysis of sequence motifs and interaction networks suggested that the kinases AMPK (adenosine 5'-monophosphate-activated protein kinase), Akt, and mTOR (mammalian target of rapamycin) mediate βAR signaling, in addition to the well-established pathways mediated by PKA (cyclic adenosine monophosphate-dependent protein kinase) and CaMKII (calcium/calmodulin-dependent protein kinase type II). We found specific regulation of phosphorylation sites on six ion channels and transporters that mediate increased ion fluxes at higher heart rates, and we showed that phosphorylation of one of these, Ser(92) of the potassium channel KV7.1, increased current amplitude. Our data set represents a quantitative analysis of phosphorylated proteins regulated in vivo upon stimulation of seven-transmembrane receptors, and our findings reveal previously unknown phosphorylation sites that regulate myocardial contractility, suggesting new potential targets for the treatment of heart disease and hypertension. PMID:23737553

  8. Phosphoproteomic Analysis of Cell-Based Resistance to BRAF Inhibitor Therapy in Melanoma

    PubMed Central

    Parker, Robert; Vella, Laura J.; Xavier, Dylan; Amirkhani, Ardeshir; Parker, Jimmy; Cebon, Jonathan; Molloy, Mark P.

    2015-01-01

    The treatment of melanoma by targeted inhibition of the mutated kinase BRAF with small molecules only temporarily suppresses metastatic disease. In the face of chemical inhibition tumor plasticity, both innate and adaptive, promotes survival through the biochemical and genetic reconfiguration of cellular pathways that can engage proliferative and migratory systems. To investigate this process, high-resolution mass spectrometry was used to characterize the phosphoproteome of this transition in vitro. A simple and accurate, label-free quantitative method was used to localize and quantitate thousands of phosphorylation events. We also correlated changes in the phosphoproteome with the proteome to more accurately determine changes in the activity of regulatory kinases determined by kinase landscape profiling. The abundance of phosphopeptides with sites that function in cytoskeletal regulation, GTP/GDP exchange, protein kinase C, IGF signaling, and melanosome maturation were highly divergent after transition to a drug resistant phenotype. PMID:26029660

  9. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence.

    PubMed

    Cho, Hsing-Yi; Wen, Tuan-Nan; Wang, Ying-Tsui; Shih, Ming-Che

    2016-04-01

    SNF1 RELATED PROTEIN KINASE 1 (SnRK1) is proposed to be a central integrator of the plant stress and energy starvation signalling pathways. We observed that the Arabidopsis SnRK1.1 dominant negative mutant (SnRK1.1 (K48M) ) had lower tolerance to submergence than the wild type, suggesting that SnRK1.1-dependent phosphorylation of target proteins is important in signalling pathways triggered by submergence. We conducted quantitative phosphoproteomics and found that the phosphorylation levels of 57 proteins increased and the levels of 27 proteins decreased in Col-0 within 0.5-3h of submergence. Among the 57 proteins with increased phosphorylation in Col-0, 38 did not show increased phosphorylation levels in SnRK1.1 (K48M) under submergence. These proteins are involved mainly in sugar and protein synthesis. In particular, the phosphorylation of MPK6, which is involved in regulating ROS responses under abiotic stresses, was disrupted in the SnRK1.1 (K48M) mutant. In addition, PTP1, a negative regulator of MPK6 activity that directly dephosphorylates MPK6, was also regulated by SnRK1.1. We also showed that energy conservation was disrupted in SnRK1.1 (K48M) , mpk6, and PTP1 (S7AS8A) under submergence. These results reveal insights into the function of SnRK1 and the downstream signalling factors related to submergence. PMID:27029354

  10. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma.

    PubMed

    Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K; Sims, Peter A; Sarkaria, Jann N; Canoll, Peter; White, Forest M

    2016-06-01

    Glioblastoma (GBM) is the most common malignant primary brain cancer. With a median survival of about a year, new approaches to treating this disease are necessary. To identify signaling molecules regulating GBM progression in a genetically engineered murine model of proneural GBM, we quantified phosphotyrosine-mediated signaling using mass spectrometry. Oncogenic signals, including phosphorylated ERK MAPK, PI3K, and PDGFR, were found to be increased in the murine tumors relative to brain. Phosphorylation of CDK1 pY15, associated with the G2 arrest checkpoint, was identified as the most differentially phosphorylated site, with a 14-fold increase in phosphorylation in the tumors. To assess the role of this checkpoint as a potential therapeutic target, syngeneic primary cell lines derived from these tumors were treated with MK-1775, an inhibitor of Wee1, the kinase responsible for CDK1 Y15 phosphorylation. MK-1775 treatment led to mitotic catastrophe, as defined by increased DNA damage and cell death by apoptosis. To assess the extensibility of targeting Wee1/CDK1 in GBM, patient-derived xenograft (PDX) cell lines were also treated with MK-1775. Although the response was more heterogeneous, on-target Wee1 inhibition led to decreased CDK1 Y15 phosphorylation and increased DNA damage and apoptosis in each line. These results were also validated in vivo, where single-agent MK-1775 demonstrated an antitumor effect on a flank PDX tumor model, increasing mouse survival by 1.74-fold. This study highlights the ability of unbiased quantitative phosphoproteomics to reveal therapeutic targets in tumor models, and the potential for Wee1 inhibition as a treatment approach in preclinical models of GBM. Mol Cancer Ther; 15(6); 1332-43. ©2016 AACR. PMID:27196784

  11. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence

    PubMed Central

    Cho, Hsing-Yi; Wen, Tuan-Nan; Wang, Ying-Tsui; Shih, Ming-Che

    2016-01-01

    SNF1 RELATED PROTEIN KINASE 1 (SnRK1) is proposed to be a central integrator of the plant stress and energy starvation signalling pathways. We observed that the Arabidopsis SnRK1.1 dominant negative mutant (SnRK1.1 K48M) had lower tolerance to submergence than the wild type, suggesting that SnRK1.1-dependent phosphorylation of target proteins is important in signalling pathways triggered by submergence. We conducted quantitative phosphoproteomics and found that the phosphorylation levels of 57 proteins increased and the levels of 27 proteins decreased in Col-0 within 0.5–3h of submergence. Among the 57 proteins with increased phosphorylation in Col-0, 38 did not show increased phosphorylation levels in SnRK1.1 K48M under submergence. These proteins are involved mainly in sugar and protein synthesis. In particular, the phosphorylation of MPK6, which is involved in regulating ROS responses under abiotic stresses, was disrupted in the SnRK1.1 K48M mutant. In addition, PTP1, a negative regulator of MPK6 activity that directly dephosphorylates MPK6, was also regulated by SnRK1.1. We also showed that energy conservation was disrupted in SnRK1.1 K48M, mpk6, and PTP1 S7AS8A under submergence. These results reveal insights into the function of SnRK1 and the downstream signalling factors related to submergence. PMID:27029354

  12. Data set from a comprehensive phosphoproteomic analysis of rice variety IRBB5 in response to bacterial blight

    PubMed Central

    Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Qiu, Jiehua; Li, Zhiyong; Zhang, Wen; Huang, Shiwen; Zhang, Jian

    2015-01-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has become one of the most devastating diseases for rice, a major food source for over half of the world populations. To investigate the roles of protein phosphorylation in rice bacterial blight resistance, a quantitative phosphoproteomic study was conducted in rice variety IRBB5 at 0 h and 24 h after Xoo infection. 2367 and 2223 phosphosites on 1334 and 1297 representative proteins were identified in 0 h and 24 h after Xoo infection, respectively, out of which 762 proteins were found to be differentially phosphorylated. In associated with the published article “A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight” in BMC Plant Biology (Hou et al., 2015) [1], this dataset article provided the detailed information of experimental designing, methods, features as well as the raw data of mass spectrometry (MS) identification. The MS proteomics data could be fully accessed from the ProteomeXchange Consortium with the dataset identifier PXD002222. PMID:26862573

  13. Quantitative Phosphoproteomics Reveals Crosstalk Between Phosphorylation and O-GlcNAc in the DNA Damage Response Pathway

    PubMed Central

    Zhong, Jun; Martinez, Marissa; Sengupta, Srona; Lee, Albert; Wu, Xinyan; Chaerkady, Raghothama; Chatterjee, Aditi; O’Meally, Robert N.; Cole, Robert N.; Pandey, Akhilesh; Zachara, Natasha E.

    2015-01-01

    The modification of intracellular proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-translational modification of metazoans. The addition and removal of O-GlcNAc is catalyzed by the O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. One mechanism by which O-GlcNAc is thought to mediate proteins is by regulating phosphorylation. To provide insight into the pathways regulated by O-GlcNAc, we have utilized stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics to carry out comparisons of site-specific phosphorylation in OGT wild-type (WT) and Null cells. Quantitation of the phosphoproteome demonstrated that out of 5,529 phosphoserine, phosphothreonine and phosphotyrosine sites, 232 phosphosites were upregulated and 133 downregulated in the absence of O-GlcNAc. Collectively, these data suggest that deletion of OGT has a profound effect on the phosphorylation of cell cycle and DNA damage response proteins. Key events were confirmed by biochemical analyses and demonstrate a increase in the activating autophosphorylation event on ATM (Ser1987) and on ATM’s downstream targets p53, H2AX and Chk2. Together, these data support widespread changes in the phosphoproteome upon removal of O-GlcNAc, suggesting that O-GlcNAc regulates processes such as the cell cycle, genomic stability, and lysosomal biogenesis. PMID:25263469

  14. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    PubMed Central

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of

  15. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists.

    PubMed

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-05-01

    The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased

  16. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds.

    PubMed

    Lu, Tian-Cong; Meng, Ling-Bo; Yang, Chuan-Ping; Liu, Gui-Feng; Liu, Guan-Jun; Ma, Wei; Wang, Bai-Chen

    2008-11-01

    To better understand the role that reversible protein phosphorylation plays in seed germination, we initiated a phosphoproteomic investigation of embryos of germinated maize seeds. A total of 776 proteins including 39 kinases, 16 phosphatases, and 33 phosphoproteins containing 36 precise in vivo phosphorylation sites were identified. All the phosphorylation sites identified, with the exception of the phosphorylation site on HSP22, have not been reported previously (Lund et al. in J Biol Chem, 276, 29924-29929, 2001). Assayed with QRT-PCR, the transcripts of ten kinase genes were found to be dramatically up-regulated during seed germination and those of four phosphatase genes were up-regulated after germination, which indicated that reversible protein phosphorylation occurred and complex regulating networks were activated during this period. At least one-third of these phosphoproteins are key components involved in biological processes which relate to seed germination, such as DNA repair, gene transcription, RNA splicing and protein translation, suggesting that protein phosphorylation plays an important role in seed germination. As far as we know, this is the first phosphoproteomic study on a monocot and it will lay a solid foundation for further study of the molecular mechanisms of seed germination and seedling development. PMID:18726113

  17. Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation.

    PubMed

    Guo, Hongbo; Garcia-Vedrenne, Ana Elisa; Isserlin, Ruth; Lugowski, Andrew; Morada, Anthony; Sun, Alex; Miao, Yishen; Kuzmanov, Uros; Wan, Cuihong; Ma, Hongyue; Foltz, Kathy; Emili, Andrew

    2015-12-01

    Fertilization triggers a dynamic symphony of molecular transformations induced by a rapid rise in intracellular calcium. Most prominent are surface alterations, metabolic activation, cytoskeletal reorganization, and cell-cycle reentry. While the activation process appears to be broadly evolutionarily conserved, and protein phosphorylation is known to play a key role, the signaling networks mediating the response to fertilization are not well described. To address this gap, we performed a time course phosphoproteomic analysis of egg activation in the sea urchin Strongylocentrotus purpuratus, a system that offers biochemical tractability coupled with exquisite synchronicity. By coupling large-scale phosphopeptide enrichment with unbiased quantitative MS, we identified striking changes in global phosphoprotein patterns at 2- and 5-min postfertilization as compared to unfertilized eggs. Overall, we mapped 8796 distinct phosphosite modifications on 2833 phosphoproteins, of which 15% were differentially regulated in early egg activation. Activated kinases were identified by phosphosite mapping, while enrichment analyses revealed conserved signaling cascades not previously associated with egg activation. This work represents the most comprehensive study of signaling associated with egg activation to date, suggesting novel mechanisms that can be experimentally tested and providing a valuable resource for the broader research community. All MS data have been deposited in the ProteomeXchange with identifier PXD002239 (http://proteomecentral.proteomexchange.org/dataset/PXD002239). PMID:26227301

  18. Sample Preparation for Phosphoproteomic Analysis of Circadian Time Series in Arabidopsis thaliana

    PubMed Central

    Krahmer, Johanna; Hindle, Matthew M.; Martin, Sarah F.; Le Bihan, Thierry; Millar, Andrew J.

    2015-01-01

    Systems biological approaches to study the Arabidopsis thaliana circadian clock have mainly focused on transcriptomics while little is known about the proteome, and even less about posttranslational modifications. Evidence has emerged that posttranslational protein modifications, in particular phosphorylation, play an important role for the clock and its output. Phosphoproteomics is the method of choice for a large-scale approach to gain more knowledge about rhythmic protein phosphorylation. Recent plant phosphoproteomics publications have identified several thousand phosphopeptides. However, the methods used in these studies are very labor-intensive and therefore not suitable to apply to a well-replicated circadian time series. To address this issue, we present and compare different strategies for sample preparation for phosphoproteomics that are compatible with large numbers of samples. Methods are compared regarding number of identifications, variability of quantitation, and functional categorization. We focus on the type of detergent used for protein extraction as well as methods for its removal. We also test a simple two-fraction separation of the protein extract. PMID:25662467

  19. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine.

    PubMed

    Perazzolli, Michele; Palmieri, Maria Cristina; Matafora, Vittoria; Bachi, Angela; Pertot, Ilaria

    2016-05-20

    Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew. PMID:27010348

  20. Identification of novel protein functions and signaling mechanisms by genetics and quantitative phosphoproteomics in Caenorhabditis elegans.

    PubMed

    Fredens, Julius; Engholm-Keller, Kasper; Møller-Jensen, Jakob; Larsen, Martin Røssel; Færgeman, Nils J

    2014-01-01

    Stable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology for measuring relative changes in protein and phosphorylation levels at a global level. We have applied this method to the model organism Caenorhabditis elegans in combination with RNAi-mediated gene knockdown by feeding the nematode on pre-labeled lysine auxotroph Escherichia coli. In this chapter, we describe in details the generation of the E. coli strain, incorporation of heavy isotope-labeled lysine in C. elegans, and the procedure for a comprehensive global phosphoproteomic experiment. PMID:25059608

  1. Phosphoproteomic Analysis of Platelets Activated by Pro-Thrombotic Oxidized Phospholipids and Thrombin

    PubMed Central

    Zimman, Alejandro; Titz, Bjoern; Komisopoulou, Evangelia; Biswas, Sudipta; Graeber, Thomas G.; Podrez, Eugene A.

    2014-01-01

    Specific oxidized phospholipids (oxPCCD36) promote platelet hyper-reactivity and thrombosis in hyperlipidemia via the scavenger receptor CD36, however the signaling pathway(s) induced in platelets by oxPCCD36 are not well defined. We have employed mass spectrometry-based tyrosine, serine, and threonine phosphoproteomics for the unbiased analysis of platelet signaling pathways induced by oxPCCD36 as well as by the strong physiological agonist thrombin. oxPCCD36 and thrombin induced differential phosphorylation of 115 proteins (162 phosphorylation sites) and 181 proteins (334 phosphorylation sites) respectively. Most of the phosphoproteome changes induced by either agonist have never been reported in platelets; thus they provide candidates in the study of platelet signaling. Bioinformatic analyses of protein phosphorylation dependent responses were used to categorize preferential motifs for (de)phosphorylation, predict pathways and kinase activity, and construct a phosphoproteome network regulating integrin activation. A putative signaling pathway involving Src-family kinases, SYK, and PLCγ2 was identified in platelets activated by oxPCCD36. Subsequent ex vivo studies in human platelets demonstrated that this pathway is downstream of the scavenger receptor CD36 and is critical for platelet activation by oxPCCD36. Our results provide multiple insights into the mechanism of platelet activation and specifically in platelet regulation by oxPCCD36. PMID:24400094

  2. Discovery of Mouse Spleen Signaling Responses to Anthrax using Label-Free Quantitative Phosphoproteomics via Mass Spectrometry*

    PubMed Central

    Manes, Nathan P.; Dong, Li; Zhou, Weidong; Du, Xiuxia; Reghu, Nikitha; Kool, Arjan C.; Choi, Dahan; Bailey, Charles L.; Petricoin, Emanuel F.; Liotta, Lance A.; Popov, Serguei G.

    2011-01-01

    Inhalational anthrax is caused by spores of the bacterium Bacillus anthracis (B. anthracis), and is an extremely dangerous disease that can kill unvaccinated victims within 2 weeks. Modern antibiotic-based therapy can increase the survival rate to ∼50%, but only if administered presymptomatically (within 24–48 h of exposure). To discover host signaling responses to presymptomatic anthrax, label-free quantitative phosphoproteomics via liquid chromatography coupled to mass spectrometry was used to compare spleens from uninfected and spore-challenged mice over a 72 h time-course. Spleen proteins were denatured using urea, reduced using dithiothreitol, alkylated using iodoacetamide, and digested into peptides using trypsin, and the resulting phosphopeptides were enriched using titanium dioxide solid-phase extraction and analyzed by nano-liquid chromatography-Linear Trap Quadrupole-Orbitrap-MS(/MS). The fragment ion spectra were processed using DeconMSn and searched using both Mascot and SEQUEST resulting in 252,626 confident identifications of 6248 phosphopeptides (corresponding to 5782 phosphorylation sites). The precursor ion spectra were deisotoped using Decon2LS and aligned using MultiAlign resulting in the confident quantitation of 3265 of the identified phosphopeptides. ANOVAs were used to produce a q-value ranked list of host signaling responses. Late-stage (48–72 h postchallenge) Sterne strain (lethal) infections resulted in global alterations to the spleen phosphoproteome. In contrast, ΔSterne strain (asymptomatic; missing the anthrax toxin) infections resulted in 188 (5.8%) significantly altered (q<0.05) phosphopeptides. Twenty-six highly tentative phosphorylation responses to early-stage (24 h postchallenge) anthrax were discovered (q<0.5), and ten of these originated from eight proteins that have known roles in the host immune response. These tentative early-anthrax host response signaling events within mouse spleens may translate into presymptomatic

  3. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling

    PubMed Central

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y.

    2015-01-01

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays. PMID:26278961

  4. Quantitative Phosphoproteomics Reveals Signaling Mechanisms Associated with Rapid Cold Hardening in a Chill-Tolerant Fly.

    PubMed

    Teets, Nicholas M; Denlinger, David L

    2016-08-01

    Rapid cold hardening (RCH) is a physiological adaptation in which brief chilling (minutes to hours) significantly enhances the cold tolerance of insects. RCH allows insects to cope with sudden cold snaps and diurnal variation in temperature, but the mechanistic basis of this rapid stress response is poorly understood. Here, we used phosphoproteomics to identify phosphorylation-mediated signaling events that are regulated by chilling that induces RCH. Phosphoproteomic changes were measured in both brain and fat bodies, two tissues that are essential for sensing cold and coordinating RCH at the organismal level. Tissues were chilled ex vivo, and changes in phosphoprotein abundance were measured using 2D electrophoresis coupled with Pro-Q diamond labeling of phosphoproteins followed by protein identification via LC-MS/MS. In both tissues, we observed an abundance of protein phosphorylation events in response to chilling. Some of the proteins regulated by RCH-inducing chilling include proteins involved in cytoskeletal reorganization, heat shock proteins, and proteins involved in the degradation of damaged cellular components via the proteasome and autophagosome. Our results suggest that phosphorylation-mediated signaling cascades are major drivers of RCH and enhance our mechanistic understanding of this complex phenotype. PMID:27362561

  5. Identification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics

    PubMed Central

    Suhandynata, Raymond T.; Wan, Lihong; Zhou, Huilin; Hollingsworth, Nancy M.

    2016-01-01

    Meiotic recombination plays a key role in sexual reproduction as it generates crossovers that, in combination with sister chromatid cohesion, physically connect homologous chromosomes, thereby promoting their proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs) catalyzed by the evolutionarily conserved, topoisomerase-like protein Spo11. Repair of these DSBs is highly regulated to create crossovers between homologs that are distributed throughout the genome. This repair requires the presence of the mitotic recombinase, Rad51, as well as the strand exchange activity of the meiosis-specific recombinase, Dmc1. A key regulator of meiotic DSB repair in Saccharomyces cerevisiae is the meiosis-specific kinase Mek1, which promotes interhomolog strand invasion and is required for the meiotic recombination checkpoint and the crossover/noncrossover decision. Understanding how Mek1 regulates meiotic recombination requires the identification of its substrates. Towards that end, an unbiased phosphoproteomic approach utilizing Stable Isotope Labeling by Amino Acids in Cells (SILAC) was utilized to generate a list of potential Mek1 substrates, as well as proteins containing consensus phosphorylation sites for cyclin-dependent kinase, the checkpoint kinases, Mec1/Tel1, and the polo-like kinase, Cdc5. These experiments represent the first global phosphoproteomic dataset for proteins in meiotic budding yeast. PMID:27214570

  6. Identification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics.

    PubMed

    Suhandynata, Raymond T; Wan, Lihong; Zhou, Huilin; Hollingsworth, Nancy M

    2016-01-01

    Meiotic recombination plays a key role in sexual reproduction as it generates crossovers that, in combination with sister chromatid cohesion, physically connect homologous chromosomes, thereby promoting their proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs) catalyzed by the evolutionarily conserved, topoisomerase-like protein Spo11. Repair of these DSBs is highly regulated to create crossovers between homologs that are distributed throughout the genome. This repair requires the presence of the mitotic recombinase, Rad51, as well as the strand exchange activity of the meiosis-specific recombinase, Dmc1. A key regulator of meiotic DSB repair in Saccharomyces cerevisiae is the meiosis-specific kinase Mek1, which promotes interhomolog strand invasion and is required for the meiotic recombination checkpoint and the crossover/noncrossover decision. Understanding how Mek1 regulates meiotic recombination requires the identification of its substrates. Towards that end, an unbiased phosphoproteomic approach utilizing Stable Isotope Labeling by Amino Acids in Cells (SILAC) was utilized to generate a list of potential Mek1 substrates, as well as proteins containing consensus phosphorylation sites for cyclin-dependent kinase, the checkpoint kinases, Mec1/Tel1, and the polo-like kinase, Cdc5. These experiments represent the first global phosphoproteomic dataset for proteins in meiotic budding yeast. PMID:27214570

  7. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821): Phosphoproteomic Analysis

    PubMed Central

    Šalovská, Barbora; Fabrik, Ivo; Ďurišová, Kamila; Link, Marek; Vávrová, Jiřina; Řezáčová, Martina; Tichý, Aleš

    2014-01-01

    DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)—triggered by radiation-induced double strand breaks—is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells. PMID:25003641

  8. A pipeline for 15N metabolic labeling and phosphoproteome analysis in Arabidopsis thaliana.

    PubMed

    Minkoff, Benjamin B; Burch, Heather L; Sussman, Michael R

    2014-01-01

    Within the past two decades, the biological application of mass spectrometric technology has seen great advances in terms of innovations in hardware, software, and reagents. Concurrently, the burgeoning field of proteomics has followed closely (Yates et al., Annu Rev Biomed Eng 11:49-79, 2009)-and with it, importantly, the ability to globally assay altered levels of posttranslational modifications in response to a variety of stimuli. Though many posttranslational modifications have been described, a major focus of these efforts has been protein-level phosphorylation of serine, threonine, and tyrosine residues (Schreiber et al., Proteomics 8:4416-4432, 2008). The desire to examine changes across signal transduction cascades and networks in their entirety using a single mass spectrometric analysis accounts for this push-namely, preservation and enrichment of the transient yet informative phosphoryl side group. Analyzing global changes in phosphorylation allows inferences surrounding cascades/networks as a whole to be made. Towards this same end, much work has explored ways to permit quantitation and combine experimental samples such that more than one replicate or experimental condition can be identically processed and analyzed, cutting down on experimental and instrument variability, in addition to instrument run time. One such technique that has emerged is metabolic labeling (Gouw et al., Mol Cell Proteomics 9:11-24, 2010), wherein biological samples are labeled in living cells with nonradioactive heavy isotopes such as (15)N or (13)C. Since metabolic labeling in living organisms allows one to combine the material to be processed at the earliest possible step, before the tissue is homogenized, it provides a unique and excellent method for comparing experimental samples in a high-throughput, reproducible fashion with minimal technical variability. This chapter describes a pipeline used for labeling living Arabidopsis thaliana plants with nitrogen-15 ((15)N) and how

  9. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms

    PubMed Central

    Adams, Nancy E.; Maurelli, Anthony T.

    2015-01-01

    Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB–RB transitions. PMID:25998263

  10. Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study.

    PubMed

    Sarhan, Adil R; Patel, Trushar R; Creese, Andrew J; Tomlinson, Michael G; Hellberg, Carina; Heath, John K; Hotchin, Neil A; Cunningham, Debbie L

    2016-06-01

    Intracellular signaling pathways are reliant on protein phosphorylation events that are controlled by a balance of kinase and phosphatase activity. Although kinases have been extensively studied, the role of phosphatases in controlling specific cell signaling pathways has been less so. Leukocyte common antigen-related protein (LAR) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases (RPTPs). LAR is known to regulate the activity of a number of receptor tyrosine kinases, including platelet-derived growth factor receptor (PDGFR). To gain insight into the signaling pathways regulated by LAR, including those that are PDGF-dependent, we have carried out the first systematic analysis of LAR-regulated signal transduction using SILAC-based quantitative proteomic and phosphoproteomic techniques. We haveanalyzed differential phosphorylation between wild-type mouse embryo fibroblasts (MEFs) and MEFs in which the LAR cytoplasmic phosphatase domains had been deleted (LARΔP), and found a significant change in abundance of phosphorylation on 270 phosphosites from 205 proteins because of the absence of the phosphatase domains of LAR. Further investigation of specific LAR-dependent phosphorylation sites and enriched biological processes reveal that LAR phosphatase activity impacts on a variety of cellular processes, most notably regulation of the actin cytoskeleton. Analysis of putative upstream kinases that may play an intermediary role between LAR and the identified LAR-dependent phosphorylation events has revealed a role for LAR in regulating mTOR and JNK signaling. PMID:27074791

  11. Quantitative phosphoproteomics of murine Fmr1-KO cell lines provides new insights into FMRP-dependent signal transduction mechanisms.

    PubMed

    Matic, Katarina; Eninger, Timo; Bardoni, Barbara; Davidovic, Laetitia; Macek, Boris

    2014-10-01

    Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS. PMID:25168779

  12. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells.

    PubMed

    Gioia, Romain; Leroy, Cédric; Drullion, Claire; Lagarde, Valérie; Etienne, Gabriel; Dulucq, Stéphanie; Lippert, Eric; Roche, Serge; Mahon, François-Xavier; Pasquet, Jean-Max

    2011-08-25

    In this study, we have addressed how Lyn kinase signaling mediates nilotinib-resistance by quantitative phospho-proteomics using Stable Isotope Labeling with Amino acid in Cell culture. We have found an increased tyrosine phosphorylation of 2 additional tyrosine kinases in nilotinib-resistant cells: the spleen tyrosine kinase Syk and the UFO family receptor tyrosine kinase Axl. This increased tyrosine phosphorylation involved an interaction of these tyrosine kinases with Lyn. Inhibition of Syk by the inhibitors R406 or BAY 61-3606 or by RNA interference restored the capacity of nilotinib to inhibit cell proliferation. Conversely, coexpression of Lyn and Syk were required to fully induce resistance to nilotinib in drug-sensitive cells. Surprisingly, the knockdown of Syk also strongly decreased tyrosine phosphorylation of Lyn and Axl, thus uncovering interplay between Syk and Lyn. We have shown the involvement of the adaptor protein CDCP-1 in resistance to nilotinib. Interestingly, the expression of Axl and CDCP1 were found increased both in a nilotinib-resistant cell line and in nilotinib-resistant CML patients. We conclude that an oncogenic signaling mediated by Lyn and Syk can bypass the need of Bcr-Abl in CML cells. Thus, targeting these kinases may be of therapeutic value to override imatinib or nilotinib resistance in CML. PMID:21730355

  13. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana.

    PubMed

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity. PMID:27532006

  14. Phosphorylation-Specific MS/MS Scoring for Rapid and Accurate Phosphoproteome Analysis

    PubMed Central

    Payne, Samuel H.; Yau, Margaret; Smolka, Marcus B.; Tanner, Stephen; Zhou, Huilin; Bafna, Vineet

    2008-01-01

    The promise of mass spectrometry as a tool for probing signal-transduction is predicated on reliable identification of post-translational modifications. Phosphorylations are key mediators of cellular signaling, yet are hard to detect, partly because of unusual fragmentation patterns of phosphopeptides. In addition to being accurate, MS/MS identification software must be robust and efficient to deal with increasingly large spectral data sets. Here, we present a new scoring function for the Inspect software for phosphorylated peptide tandem mass spectra for ion-trap instruments, without the need for manual validation. The scoring function was modeled by learning fragmentation patterns from 7677 validated phosphopeptide spectra. We compare our algorithm against SEQUEST and X!Tandem on testing and training data sets. At a 1% false positive rate, Inspect identified the greatest total number of phosphorylated spectra, 13% more than SEQUEST and 39% more than X!Tandem. Spectra identified by Inspect tended to score better in several spectral quality measures. Furthermore, Inspect runs much faster than either SEQUEST or X!Tandem, making desktop phosphoproteomics feasible. Finally, we used our new models to reanalyze a corpus of 423 000 LTQ spectra acquired for a phosphoproteome analysis of Saccharomyces cerevisiae DNA damage and repair pathways and discovered 43% more phosphopeptides than the previous study. PMID:18563926

  15. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana

    PubMed Central

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity. PMID:27532006

  16. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells

    PubMed Central

    FANG, YI; ZHANG, QIAN; WANG, XIN; YANG, XUE; WANG, XIANGYU; HUANG, ZHEN; JIAO, YUCHEN; WANG, JING

    2016-01-01

    Around one sixth of breast cancer cases are classified as triple-negative breast cancer (TNBC), named after the absence of the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2); however, patients with TNBC suffer from poor clinical outcome and shortage of targeted therapy. Genistein, an estrogenic soy isoflavone, shows anticancer effects in TNBC cells such as inducing G2/M cell cycle arrest and apoptosis. However, the underlying mechanism of its anticancer effects is poorly understood and its elucidation can help the development of novel therapeutic strategies for TNBC. In this study, by combining isobaric tag-based TMT labeling with titanium dioxide-based phosphopeptide enrichment, we quantitated 5,445 phosphorylation sites on 2,008 phosphoproteins in the TNBC cell line MDA-MB-231, upon genistein treatment. Our analysis revealed 332 genistein-regulated phosphorylation sites on 226 proteins. Our data show that genistein can regulate several biological processes during the cell cycle, including DNA replication, cohesin complex cleavage, and kinetochore formation. Furthermore, genistein can also activate DNA damage response, including activation of ATR and BRCA1 complex. Overall, our study presents evidence at a phosphoproteomic level that genistein is able to inhibit TNBC cell growth by regulating the cell cycle and DNA damage response in a more complex manner. Our findings help elucidate the mechanisms through which genistein exerts its anticancer effects in TNBC cells. PMID:26783066

  17. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells.

    PubMed

    Fang, Yi; Zhang, Qian; Wang, Xin; Yang, Xue; Wang, Xiangyu; Huang, Zhen; Jiao, Yuchen; Wang, Jing

    2016-03-01

    Around one sixth of breast cancer cases are classified as triple-negative breast cancer (TNBC), named after the absence of the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2); however, patients with TNBC suffer from poor clinical outcome and shortage of targeted therapy. Genistein, an estrogenic soy isoflavone, shows anticancer effects in TNBC cells such as inducing G2/M cell cycle arrest and apoptosis. However, the underlying mechanism of its anticancer effects is poorly understood and its elucidation can help the development of novel therapeutic strategies for TNBC. In this study, by combining isobaric tag-based TMT labeling with titanium dioxide-based phosphopeptide enrichment, we quantitated 5,445 phosphorylation sites on 2,008 phosphoproteins in the TNBC cell line MDA-MB-231, upon genistein treatment. Our analysis revealed 332 genistein-regulated phosphorylation sites on 226 proteins. Our data show that genistein can regulate several biological processes during the cell cycle, including DNA replication, cohesin complex cleavage, and kinetochore formation. Furthermore, genistein can also activate DNA damage response, including activation of ATR and BRCA1 complex. Overall, our study presents evidence at a phosphoproteomic level that genistein is able to inhibit TNBC cell growth by regulating the cell cycle and DNA damage response in a more complex manner. Our findings help elucidate the mechanisms through which genistein exerts its anticancer effects in TNBC cells. PMID:26783066

  18. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis.

    PubMed

    Wang, Zhi-Gang; Lv, Nan; Bi, Wen-Zhi; Zhang, Ji-Lin; Ni, Jia-Zuan

    2015-04-29

    Reversible protein phosphorylation is a key event in numerous biological processes. Mass spectrometry (MS) is the most powerful analysis tool in modern phosphoproteomics. However, the direct MS analysis of phosphorylated proteins/peptides is still a big challenge because of the low abundance and insufficient ionization of phosphorylated proteins/peptides as well as the suppression effects of nontargets. Enrichment of phosphorylated proteins/peptides by affinity materials from complex biosamples is the most widely used strategy to enhance the MS detection. The demand of efficiently enriching phosphorylated proteins/peptides has spawned diverse affinity materials based on different enrichment principles (e.g., electronic attraction, chelating). In this review, we summarize the recent development of various affinity materials for phosphorylated proteins/peptides enrichment. We will highlight the design and fabrication of these affinity materials, discuss the enrichment mechanisms involved in different affinity materials, and suggest the future challenges and research directions in this field. PMID:25845677

  19. Quantitative Site-Specific Phosphoproteomics of Trichoderma reesei Signaling Pathways upon Induction of Hydrolytic Enzyme Production.

    PubMed

    Nguyen, Elizabeth V; Imanishi, Susumu Y; Haapaniemi, Pekka; Yadav, Avinash; Saloheimo, Markku; Corthals, Garry L; Pakula, Tiina M

    2016-02-01

    The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation system controlling hydrolase genes involves various signaling pathways. T. reesei was cultivated in the presence of sorbitol, a carbon source that does not induce the production of cellulases and hemicellulases, and then exposed to either sophorose or spent-grain extract, which are efficient inducers of the enzyme production. Specific changes at phosphorylation sites were investigated in relation to the production of cellulases and hemicellulases using an MS-based framework. Proteome-wide phosphorylation following carbon source exchange was investigated in the early stages of induction: 0, 2, 5, and 10 min. The workflow involved sequential trypsin digestion, TiO2 enrichment, and MS analysis using a Q Exactive mass spectrometer. We report on the identification and quantitation of 1721 phosphorylation sites. Investigation of the data revealed a complex signaling network activated upon induction involving components related to light-mediated cellulase induction, osmoregulation, and carbon sensing. Changes in protein phosphorylation were detected in the glycolytic pathway, suggesting an inhibition of glucose catabolism at 10 min after the addition of sophorose and as early as 2 min after the addition of spent-grain extract. Differential phosphorylation of factors related to carbon storage, intracellular trafficking, cytoskeleton, and cellulase gene regulation were also observed. PMID:26689635

  20. Quantitative phosphoproteome analysis of embryonic stem cell differentiation toward blood

    PubMed Central

    Piazzi, Manuela; Williamson, Andrew; Lee, Chia-Fang; Pearson, Stella; Lacaud, Georges; Kouskoff, Valerie; McCubrey, James A.; Cocco, Lucio; Whetton, Anthony D.

    2015-01-01

    Murine embryonic stem (ES) cells can differentiate in vitro into three germ layers (endodermic, mesodermic, ectodermic). Studies on the differentiation of these cells to specific early differentiation stages has been aided by an ES cell line carrying the Green Fluorescent Protein (GFP) targeted to the Brachyury (Bry) locus which marks mesoderm commitment. Furthermore, expression of the Vascular Endothelial Growth Factor receptor 2 (Flk1) along with Bry defines hemangioblast commitment. Isobaric-tag for relative and absolute quantification (iTRAQTM) and phosphopeptide enrichment coupled to liquid chromatography separation and mass spectrometry allow the study of phosphorylation changes occurring at different stages of ES cell development using Bry and Flk1 expression respectively. We identified and relatively quantified 37 phosphoentities which are modulated during mesoderm-induced ES cells differentiation, comparing epiblast-like, early mesoderm and hemangioblast-enriched cells. Among the proteins differentially phosphorylated toward mesoderm differentiation were: the epigenetic regulator Dnmt3b, the protein kinase GSK3b, the chromatin remodeling factor Smarcc1, the transcription factor Utf1; as well as protein specifically related to stem cell differentiation, as Eomes, Hmga2, Ints1 and Rif1. As most key factors regulating early hematopoietic development have also been implicated in various types of leukemia, understanding the post-translational modifications driving their regulation during normal development could result in a better comprehension of their roles during abnormal hematopoiesis in leukemia. PMID:25890499

  1. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM).

    PubMed

    Narumi, Ryohei; Tomonaga, Takeshi

    2016-01-01

    Mass spectrometry-based phosphoproteomics is an indispensible technique used in the discovery and quantification of phosphorylation events on proteins in biological samples. The application of this technique to tissue samples is especially useful for the discovery of biomarkers as well as biological studies. We herein describe the application of a large-scale phosphoproteome analysis and SRM/MRM-based quantitation to develop a strategy for the systematic discovery and validation of biomarkers using tissue samples. PMID:26584920

  2. Phosphoproteome analysis demonstrates the potential role of THRAP3 phosphorylation in androgen-independent prostate cancer cell growth.

    PubMed

    Ino, Yoko; Arakawa, Noriaki; Ishiguro, Hitoshi; Uemura, Hiroji; Kubota, Yoshinobu; Hirano, Hisashi; Toda, Tosifusa

    2016-04-01

    Elucidating the androgen-independent growth mechanism is critical for developing effective treatment strategies to combat androgen-independent prostate cancer. We performed a comparative phosphoproteome analysis using a prostate cancer cell line, LNCaP, and an LNCaP-derived androgen-independent cell line, LNCaP-AI, to identify phosphoproteins involved in this mechanism. We performed quantitative comparisons of the phosphopeptide levels in tryptic digests of protein extracts from these cell lines using MS. We found that the levels of 69 phosphopeptides in 66 proteins significantly differed between LNCaP and LNCaP-AI. In particular, we focused on thyroid hormone receptor associated protein 3 (THRAP3), which is a known transcriptional coactivator of the androgen receptor. The phosphorylation level of THRAP3 was significantly lower at S248 and S253 in LNCaP-AI cells. Furthermore, pull-down assays showed that 32 proteins uniquely bound to the nonphosphorylatable mutant form of THRAP3, whereas 31 other proteins uniquely bound to the phosphorylation-mimic form. Many of the differentially interacting proteins were identified as being involved with RNA splicing and processing. These results suggest that the phosphorylation state of THRAP3 at S248 and S253 might be involved in the mechanism of androgen-independent prostate cancer cell growth by changing the interaction partners. PMID:26841317

  3. Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier.

    PubMed

    Rinschen, Markus M; Wu, Xiongwu; König, Tim; Pisitkun, Trairak; Hagmann, Henning; Pahmeyer, Caroline; Lamkemeyer, Tobias; Kohli, Priyanka; Schnell, Nicole; Schermer, Bernhard; Dryer, Stuart; Brooks, Bernard R; Beltrao, Pedro; Krueger, Marcus; Brinkkoetter, Paul T; Benzing, Thomas

    2014-07-01

    Diseases of the kidney filtration barrier are a leading cause of ESRD. Most disorders affect the podocytes, polarized cells with a limited capacity for self-renewal that require tightly controlled signaling to maintain their integrity, viability, and function. Here, we provide an atlas of in vivo phosphorylated, glomerulus-expressed proteins, including podocyte-specific gene products, identified in an unbiased tandem mass spectrometry-based approach. We discovered 2449 phosphorylated proteins corresponding to 4079 identified high-confidence phosphorylated residues and performed a systematic bioinformatics analysis of this dataset. We discovered 146 phosphorylation sites on proteins abundantly expressed in podocytes. The prohibitin homology domain of the slit diaphragm protein podocin contained one such site, threonine 234 (T234), located within a phosphorylation motif that is mutated in human genetic forms of proteinuria. The T234 site resides at the interface of podocin dimers. Free energy calculation through molecular dynamic simulations revealed a role for T234 in regulating podocin dimerization. We show that phosphorylation critically regulates formation of high molecular weight complexes and that this may represent a general principle for the assembly of proteins containing prohibitin homology domains. PMID:24511133

  4. Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.)

    PubMed Central

    Horst, Walter Johannes

    2013-01-01

    Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure. PMID:24123251

  5. Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry.

    PubMed

    Lawrence, Robert T; Searle, Brian C; Llovet, Ariadna; Villén, Judit

    2016-05-01

    Systematic approaches to studying cellular signaling require phosphoproteomic techniques that reproducibly measure the same phosphopeptides across multiple replicates, conditions, and time points. Here we present a method to mine information from large-scale, heterogeneous phosphoproteomics data sets to rapidly generate robust targeted mass spectrometry (MS) assays. We demonstrate the performance of our method by interrogating the IGF-1/AKT signaling pathway, showing that even rarely observed phosphorylation events can be consistently detected and precisely quantified. PMID:27018578

  6. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics.

    PubMed

    Poss, Zachary C; Ebmeier, Christopher C; Odell, Aaron T; Tangpeerachaikul, Anupong; Lee, Thomas; Pelish, Henry E; Shair, Matthew D; Dowell, Robin D; Old, William M; Taatjes, Dylan J

    2016-04-12

    Cortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. Using CA, we now report a large-scale identification of Mediator kinase substrates in human cells (HCT116). We identified over 16,000 quantified phosphosites including 78 high-confidence Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-seq data correlated with Mediator kinase targets, the effects of CA on gene expression were limited and distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, tracking around 7,000 proteins across six time points (0-24 hr), revealed that CA selectively affected pathways implicated in inflammation, growth, and metabolic regulation. Contrary to expectations, increased turnover of Mediator kinase targets was not generally observed. Collectively, these data support Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest their roles extend beyond transcription to metabolism and DNA repair. PMID:27050516

  7. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics*

    PubMed Central

    Pan, Cuiping; Olsen, Jesper V.; Daub, Henrik; Mann, Matthias

    2009-01-01

    Aberrant signaling causes many diseases, and manipulating signaling pathways with kinase inhibitors has emerged as a promising area of drug research. Most kinase inhibitors target the conserved ATP-binding pocket; therefore specificity is a major concern. Proteomics has previously been used to identify the direct targets of kinase inhibitors upon affinity purification from cellular extracts. Here we introduce a complementary approach to evaluate the effects of kinase inhibitors on the entire cell signaling network. We used triple labeling SILAC (stable isotope labeling by amino acids in cell culture) to compare cellular phosphorylation levels for control, epidermal growth factor stimulus, and growth factor combined with kinase inhibitors. Of thousands of phosphopeptides, less than 10% had a response pattern indicative of targets of U0126 and SB202190, two widely used MAPK inhibitors. Interestingly, 83% of the growth factor-induced phosphorylation events were affected by either or both inhibitors, showing quantitatively that early signaling processes are predominantly transmitted through the MAPK cascades. In contrast to MAPK inhibitors, dasatinib, a clinical drug directed against BCR-ABL, which is the cause of chronic myelogenous leukemia, affected nearly 1,000 phosphopeptides. In addition to the proximal effects on ABL and its immediate targets, dasatinib broadly affected the downstream MAPK pathways. Pathway mapping of regulated sites implicated a variety of cellular functions, such as chromosome remodeling, RNA splicing, and cytoskeletal organization, some of which have been described in the literature before. Our assay is streamlined and generic and could become a useful tool in kinase drug development. PMID:19651622

  8. A solid phase extraction-based platform for rapid phosphoproteomic analysis

    PubMed Central

    Dephoure, Noah; Gygi, Steven P.

    2011-01-01

    Protein phosphorylation is among the most common and intensely studied post-translational protein modification. It plays crucial roles in virtually all cellular processes and has been implicated in numerous human diseases, including cancer. Traditional biochemical and genetic methods for identifying and monitoring sites of phosphorylation are laborious and slow and in recent years have largely been replaced by mass spectrometric analysis. Improved methods for phosphopeptide enrichment coupled with faster and more sensitive mass spectrometers have led to an explosion in the size of phosphoproteomic datasets. However, wider application of these methods is limited by equipment costs and the resultant high demand for instrument time as well as by a technology gap between biologists and mass spectrometrists. Here we describe a modified two-step enrichment strategy that employs lysC digestion and step elution from self-packed strong cation exchange (SCX) solid phase extraction (SPE) columns followed by immobilized metal ion affinity chromatography (IMAC) and LC-MS/MS analysis using a hybrid LTQ Orbitrap Velos mass spectrometer. The SCX procedure does not require an HPLC system, demands little expertise, and because multiple samples can be processed in parallel, can provide a large savings of time and labor. We demonstrate this method in conjunction with stable isotope labeling to quantify peptides harboring >8,000 unique phosphorylation sites in yeast in 12 hours of instrument analysis time and examine the impact of enzyme choice and instrument platform. PMID:21440633

  9. Challenges in plasma membrane phosphoproteomics

    PubMed Central

    Orsburn, Benjamin C; Stockwin, Luke H; Newton, Dianne L

    2011-01-01

    The response to extracellular stimuli often alters the phosphorylation state of plasma membrane-associated proteins. In this regard, generation of a comprehensive membrane phosphoproteome can significantly enhance signal transduction and drug mechanism studies. However, analysis of this subproteome is regarded as technically challenging, given the low abundance and insolubility of integral membrane proteins, combined with difficulties in isolating, ionizing and fragmenting phosphopeptides. In this article, we highlight recent advances in membrane and phosphoprotein enrichment techniques resulting in improved identification of these elusive peptides. We also describe the use of alternative fragmentation techniques, and assess their current and future value to the field of membrane phosphoproteomics. PMID:21819303

  10. Quantitative Phosphoproteomics of the Ataxia Telangiectasia-Mutated (ATM) and Ataxia Telangiectasia-Mutated and Rad3-related (ATR) Dependent DNA Damage Response in Arabidopsis thaliana*

    PubMed Central

    Roitinger, Elisabeth; Hofer, Manuel; Köcher, Thomas; Pichler, Peter; Novatchkova, Maria; Yang, Jianhua; Schlögelhofer, Peter; Mechtler, Karl

    2015-01-01

    The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is an important biological regulatory mechanism. In the context of genome integrity, signaling cascades driven by phosphorylation are crucial for the coordination and regulation of DNA repair. The two serine/threonine protein kinases ataxia telangiectasia-mutated (ATM) and Ataxia telangiectasia-mutated and Rad3-related (ATR) are key factors in this process, each specific for different kinds of DNA lesions. They are conserved across eukaryotes, mediating the activation of cell-cycle checkpoints, chromatin modifications, and regulation of DNA repair proteins. We designed a novel mass spectrometry-based phosphoproteomics approach to study DNA damage repair in Arabidopsis thaliana. The protocol combines filter aided sample preparation, immobilized metal affinity chromatography, metal oxide affinity chromatography, and strong cation exchange chromatography for phosphopeptide generation, enrichment, and separation. Isobaric labeling employing iTRAQ (isobaric tags for relative and absolute quantitation) was used for profiling the phosphoproteome of atm atr double mutants and wild type plants under either regular growth conditions or challenged by irradiation. A total of 10,831 proteins were identified and 15,445 unique phosphopeptides were quantified, containing 134 up- and 38 down-regulated ATM/ATR dependent phosphopeptides. We identified known and novel ATM/ATR targets such as LIG4 and MRE11 (needed for resistance against ionizing radiation), PIE1 and SDG26 (implicated in chromatin remodeling), PCNA1, WAPL, and PDS5 (implicated in DNA replication), and ASK1 and HTA10 (involved in meiosis). PMID:25561503

  11. Preparation of Polypropylene Spin Tips Filled with Immobilized Titanium(IV) Ion Monolithic Adsorbent for Robust Phosphoproteome Analysis.

    PubMed

    Liu, Fangjie; Wan, Hao; Liu, Zhongshan; Wang, Hongwei; Mao, Jiawei; Ye, Mingliang; Zou, Hanfa

    2016-05-17

    In this study, we developed a Ti(IV) monolithic spin tip for phosphoproteome analysis of a minute amount of biological sample for the first time. The surface of polypropylene pipet tip was activated by the photoinitiator benzophenone under UV light radiation followed by polymerization of ethylene glycol methacrylate phosphate and bis-acrylamide in the tip to form a porous monolith with reactive phosphate groups. The as-prepared tips grafted with monolithic adsorbent were then chelated with titanium(IV) ion for phosphopeptide enrichment. It was found that the tips enabled fast and efficient capture of phosphopeptides from microscale complex samples. The monolithic tip was demonstrated to have a detection limit as low as 5 fmol β-casein tryptic digest, along with an exceptionally high specificity to capture phosphopeptides from complex tryptic digest mixed with an unphosphorylated protein and a phosphorylated protein at a molar ratio up to 1000:1. When the tip was applied to enrich phosphopeptides from 5 μg of tryptic digest of complex HeLa cell proteins, 1185 high confidence of phosphorylated sites were successfully identified with the specificity as high as 92.5%. So far, this is the most sensitive phosphoproteomics analysis using a standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) system for proteome-wide phosphorylation analysis in mammalian cells. PMID:27101427

  12. Meta-Analysis of Arabidopsis thaliana Phospho-Proteomics Data Reveals Compartmentalization of Phosphorylation Motifs[C][W

    PubMed Central

    van Wijk, Klaas J.; Friso, Giulia; Walther, Dirk; Schulze, Waltraud X.

    2014-01-01

    Protein (de)phosphorylation plays an important role in plants. To provide a robust foundation for subcellular phosphorylation signaling network analysis and kinase-substrate relationships, we performed a meta-analysis of 27 published and unpublished in-house mass spectrometry–based phospho-proteome data sets for Arabidopsis thaliana covering a range of processes, (non)photosynthetic tissue types, and cell cultures. This resulted in an assembly of 60,366 phospho-peptides matching to 8141 nonredundant proteins. Filtering the data for quality and consistency generated a set of medium and a set of high confidence phospho-proteins and their assigned phospho-sites. The relation between single and multiphosphorylated peptides is discussed. The distribution of p-proteins across cellular functions and subcellular compartments was determined and showed overrepresentation of protein kinases. Extensive differences in frequency of pY were found between individual studies due to proteomics and mass spectrometry workflows. Interestingly, pY was underrepresented in peroxisomes but overrepresented in mitochondria. Using motif-finding algorithms motif-x and MMFPh at high stringency, we identified compartmentalization of phosphorylation motifs likely reflecting localized kinase activity. The filtering of the data assembly improved signal/noise ratio for such motifs. Identified motifs were linked to kinases through (bioinformatic) enrichment analysis. This study also provides insight into the challenges/pitfalls of using large-scale phospho-proteomic data sets to nonexperts. PMID:24894044

  13. Data set from the phosphoproteomic analysis of Magnaporthe oryzae-responsive proteins in susceptible and resistant rice cultivars

    PubMed Central

    Li, Yunfeng; Ye, Zhijian; Nie, Yanfang; Zhang, Jian; Wang, Guo-Liang; Wang, Zhenzhong

    2015-01-01

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is the most destructive disease of rice and causes tremendous losses of rice yield worldwide. To explore the molecular mechanisms involved in the rice–M. oryzae interaction, we conducted a time-course phosphoproteomic analysis of leaf samples from resistant and susceptible rice cultivars infected with M. oryzae. This data article contains additional results and analysis of M. oryzae-regulated phosphoproteins in rice leaves [1]. We report the analysis of M. oryzae-regulated phosphoproteins at all time points, including Venn diagram analysis, close-up views, relative intensities, and functional category, and the MS spectra of representative phosphoprotein and representative phosphorylated peptides. PMID:26217708

  14. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    PubMed

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. PMID:27097102

  15. Quantitative Hydrocarbon Surface Analysis

    NASA Technical Reports Server (NTRS)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  16. Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions.

    PubMed

    Zhang, Ming; Ma, Cao-Ying; Lv, Dong-Wen; Zhen, Shou-Min; Li, Xiao-Hui; Yan, Yue-Ming

    2014-10-01

    Wheat (Triticum aestivum), one of the most important cereal crops, is often threatened by drought. In this study, water deficit significantly reduced the height of plants and yield of grains. To explore further the effect of drought stress on the development and yield of grains, we first performed a large scale phosphoproteome analysis of developing grains in wheat. A total of 590 unique phosphopeptides, representing 471 phosphoproteins, were identified under well-watered conditions. Motif-X analysis showed that four motifs were enriched, including [sP], [Rxxs], [sDxE], and [sxD]. Through comparative phosphoproteome analysis between well-watered and water-deficit conditions, we found that 63 unique phosphopeptides, corresponding to 61 phosphoproteins, showed significant changes in phosphorylation level (≥2-fold intensities). Functional analysis suggested that some of these proteins may be involved in signal transduction, embryo and endosperm development of grains, and drought response and defense under water-deficit conditions. Moreover, we also found that some chaperones may play important roles in protein refolding or degradation when the plant is subjected to water stress. These results provide a detailed insight into the stress response and defense mechanisms of developmental grains at the phosphoproteome level. They also suggested some potential candidates for further study of transgenosis and drought stress as well as incorporation into molecular breeding for drought resistance. PMID:25145454

  17. Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3

    PubMed Central

    Galan, Jacob A.; Geraghty, Kathryn M.; Lavoie, Geneviève; Kanshin, Evgeny; Tcherkezian, Joseph; Calabrese, Viviane; Jeschke, Grace R.; Turk, Benjamin E.; Ballif, Bryan A.; Blenis, John; Thibault, Pierre; Roux, Philippe P.

    2014-01-01

    The Ras/MAPK signaling cascade regulates various biological functions, including cell growth and proliferation. As such, this pathway is frequently deregulated in several types of cancer, including most cases of melanoma. RSK (p90 ribosomal S6 kinase) is a MAPK-activated protein kinase required for melanoma growth and proliferation, but relatively little is known about its exact function and the nature of its substrates. Herein, we used a quantitative phosphoproteomics approach to define the signaling networks regulated by RSK in melanoma. To more accurately predict direct phosphorylation substrates, we defined the RSK consensus phosphorylation motif and found significant overlap with the binding consensus of 14-3-3 proteins. We thus characterized the phospho-dependent 14-3-3 interactome in melanoma cells and found that a large proportion of 14-3-3 binding proteins are also potential RSK substrates. Our results show that RSK phosphorylates the tumor suppressor PDCD4 (programmed cell death protein 4) on two serine residues (Ser76 and Ser457) that regulate its subcellular localization and interaction with 14-3-3 proteins. We found that 14-3-3 binding promotes PDCD4 degradation, suggesting an important role for RSK in the inactivation of PDCD4 in melanoma. In addition to this tumor suppressor, our results suggest the involvement of RSK in a vast array of unexplored biological functions with relevance in oncogenesis. PMID:25002506

  18. Phosphoproteomics and Lung Cancer Research

    PubMed Central

    López, Elena; Cho, William C. S.

    2012-01-01

    Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed. PMID:23202899

  19. Comparative Phosphoproteomics Analysis of VEGF and Angiopoietin-1 Signaling Reveals ZO-1 as a Critical Regulator of Endothelial Cell Proliferation.

    PubMed

    Chidiac, Rony; Zhang, Ying; Tessier, Sylvain; Faubert, Denis; Delisle, Chantal; Gratton, Jean-Philippe

    2016-05-01

    VEGF and angiopoietin-1 (Ang-1) are essential factors to promote angiogenesis through regulation of a plethora of signaling events in endothelial cells (ECs). Although pathways activated by VEGF and Ang-1 are being established, the unique signaling nodes conferring specific responses to each factor remain poorly defined. Thus, we conducted a large-scale comparative phosphoproteomic analysis of signaling pathways activated by VEGF and Ang-1 in ECs using mass spectrometry. Analysis of VEGF and Ang-1 networks of regulated phosphoproteins revealed that the junctional proteins ZO-1, ZO-2, JUP and p120-catenin are part of a cluster of proteins phosphorylated following VEGF stimulation that are linked to MAPK1 activation. Down-regulation of these junctional proteins led to MAPK1 activation and accordingly, increased proliferation of ECs stimulated specifically by VEGF, but not by Ang-1. We identified ZO-1 as the central regulator of this effect and showed that modulation of cellular ZO-1 levels is necessary for EC proliferation during vascular development of the mouse postnatal retina. In conclusion, we uncovered ZO-1 as part of a signaling node activated by VEGF, but not Ang-1, that specifically modulates EC proliferation during angiogenesis. PMID:26846344

  20. Phosphoproteomic analysis of basal and therapy-induced adaptive signaling networks in BRAF and NRAS mutant melanoma

    PubMed Central

    Fedorenko, Inna V.; Fang, Bin; Munko, A. Cecelia; Gibney, Geoffrey T.; Koomen, John M.; Smalley, Keiran S.M.

    2015-01-01

    Basal and kinase inhibitor-driven adaptive signaling has been examined in a panel of melanoma cell lines using phosphoproteomics in conjunction with pathway analysis. A considerable divergence in the spectrum of tyrosine-phosphorylated peptides was noted at the cell line level. The unification of genotype-specific cell line data revealed the enrichment for the tyrosine-phosphorylated cytoskeletal proteins to be associated with the presence of a BRAF mutation and oncogenic NRAS to be associated with increased receptor tyrosine kinase phosphorylation. A number of proteins including cell cycle regulators (CDK1, CDK2 and CDK3), MAPK pathway components (ERK1 and ERK2), interferon regulators (TYK2), GTPase regulators (RIN1) and controllers of protein tyrosine phosphorylation (DYR1A and PTPRA) were common to all genotypes. Treatment of a BRAF-mutant/PTEN-null melanoma cell line with vemurafenib led to decreased phosphorylation of ERK, phospholipase C1 and β-catenin with increases in RTK phosphorylation, STAT3 and GSK3α noted. In NRAS-mutant melanoma, MEK inhibition led to increased phosphorylation of EGFR signaling pathway components, Src family kinases and PKCδ with decreased phosphorylation seen in STAT3 and ERK1/2. Together these data present the first systems level view of adaptive and basal phosphotyrosine signaling in BRAF- and NRAS-mutant melanoma. PMID:25339196

  1. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates.

    PubMed

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima; Fisher-Wellman, Kelsey H; Kleinert, Maximilian; Humphrey, Sean J; Yang, Pengyi; Holliday, Mira; Trefely, Sophie; Fazakerley, Daniel J; Stöckli, Jacqueline; Burchfield, James G; Jensen, Thomas E; Jothi, Raja; Kiens, Bente; Wojtaszewski, Jørgen F P; Richter, Erik A; James, David E

    2015-11-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry. PMID:26437602

  2. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1(T) identified the role of protein phosphorylation in methanogenesis and osmoregulation.

    PubMed

    Wu, Wan-Ling; Lai, Shu-Jung; Yang, Jhih-Tian; Chern, Jeffy; Liang, Suh-Yuen; Chou, Chi-Chi; Kuo, Chih-Horng; Lai, Mei-Chin; Wu, Shih-Hsiung

    2016-01-01

    Methanogens have gained much attention for their metabolic product, methane, which could be an energy substitute but also contributes to the greenhouse effect. One factor that controls methane emission, reversible protein phosphorylation, is a crucial signaling switch, and phosphoproteomics has become a powerful tool for large-scale surveying. Here, we conducted the first phosphorylation-mediated regulation study in halophilic Methanohalophilus portucalensis FDF1(T), a model strain for studying stress response mechanisms in osmoadaptation. A shotgun approach and MS-based analysis identified 149 unique phosphoproteins. Among them, 26% participated in methanogenesis and osmolytes biosynthesis pathways. Of note, we uncovered that protein phosphorylation might be a crucial factor to modulate the pyrrolysine (Pyl) incorporation and Pyl-mediated methylotrophic methanogenesis. Furthermore, heterologous expression of glycine sarcosine N-methyltransferase (GSMT) mutant derivatives in the osmosensitive Escherichia coli MKH13 revealed that the nonphosphorylated T68A mutant resulted in increased salt tolerance. In contrast, mimic phosphorylated mutant T68D proved defective in both enzymatic activity and salinity tolerance for growth. Our study provides new insights into phosphorylation modification as a crucial role of both methanogenesis and osmoadaptation in methanoarchaea, promoting biogas production or reducing future methane emission in response to global warming and climate change. PMID:27357474

  3. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1T identified the role of protein phosphorylation in methanogenesis and osmoregulation

    PubMed Central

    Wu, Wan-Ling; Lai, Shu-Jung; Yang, Jhih-Tian; Chern, Jeffy; Liang, Suh-Yuen; Chou, Chi-Chi; Kuo, Chih-Horng; Lai, Mei-Chin; Wu, Shih-Hsiung

    2016-01-01

    Methanogens have gained much attention for their metabolic product, methane, which could be an energy substitute but also contributes to the greenhouse effect. One factor that controls methane emission, reversible protein phosphorylation, is a crucial signaling switch, and phosphoproteomics has become a powerful tool for large-scale surveying. Here, we conducted the first phosphorylation-mediated regulation study in halophilic Methanohalophilus portucalensis FDF1T, a model strain for studying stress response mechanisms in osmoadaptation. A shotgun approach and MS-based analysis identified 149 unique phosphoproteins. Among them, 26% participated in methanogenesis and osmolytes biosynthesis pathways. Of note, we uncovered that protein phosphorylation might be a crucial factor to modulate the pyrrolysine (Pyl) incorporation and Pyl-mediated methylotrophic methanogenesis. Furthermore, heterologous expression of glycine sarcosine N-methyltransferase (GSMT) mutant derivatives in the osmosensitive Escherichia coli MKH13 revealed that the nonphosphorylated T68A mutant resulted in increased salt tolerance. In contrast, mimic phosphorylated mutant T68D proved defective in both enzymatic activity and salinity tolerance for growth. Our study provides new insights into phosphorylation modification as a crucial role of both methanogenesis and osmoadaptation in methanoarchaea, promoting biogas production or reducing future methane emission in response to global warming and climate change. PMID:27357474

  4. Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis.

    PubMed

    Zarei, Mostafa; Sprenger, Adrian; Rackiewicz, Michal; Dengjel, Joern

    2016-01-01

    Mass spectrometry-based phosphoproteomic analysis is a powerful method for gaining a global, unbiased understanding of cellular signaling. Its accuracy and comprehensiveness stands or falls with the quality and choice of the applied phosphopeptide prefractionation strategy. This protocol covers a powerful but simple and rapid strategy for phosphopeptide prefractionation. The combinatorial use of two distinct chromatographic techniques that address the inverse physicochemical properties of peptides allows for superior fractionation efficiency of multiple phosphorylated peptides. In the first step, multiphosphorylated peptides are separated according to the number of negatively charged phosphosites by electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). A subsequent strong cation exchange (SCX) step separates mostly singly phosphorylated peptides in the ERLIC flow-through according to their positive charge. The presented strategy is inexpensive and adaptable to large and small amounts of starting material, and it allows highly multiplexed sample preparation. Because of its implementation as solid-phase extraction, the entire workflow takes only 2 h to complete. PMID:26633130

  5. Quantitative environmental risk analysis

    SciTech Connect

    Klovning, J.; Nilsen, E.F.

    1995-12-31

    According to regulations relating to implementation and rise of risk analysis in the petroleum activities issued by the Norwegian Petroleum Directorate, it is mandatory for an operator on the Norwegian Continental Shelf to establish acceptance criteria for environmental risk in the activities and carry out environmental risk analysis. This paper presents a {open_quotes}new{close_quotes} method for environmental risk analysis developed by the company. The objective has been to assist the company to meet rules and regulations and to assess and describe the environmental risk in a systematic manner. In the environmental risk analysis the most sensitive biological resource in the affected area is used to assess the environmental damage. The analytical method is based on the methodology for quantitative risk analysis related to loss of life. In addition it incorporates the effect of seasonal fluctuations in the environmental risk evaluations. The paper is describing the function of the main analytical sequences exemplified through an analysis of environmental risk related to exploration drilling in an environmental sensitive area on the Norwegian Continental Shelf.

  6. Technical phosphoproteomic and bioinformatic tools useful in cancer research.

    PubMed

    López, Elena; Wesselink, Jan-Jaap; López, Isabel; Mendieta, Jesús; Gómez-Puertas, Paulino; Muñoz, Sarbelio Rodríguez

    2011-01-01

    Reversible protein phosphorylation is one of the most important forms of cellular regulation. Thus, phosphoproteomic analysis of protein phosphorylation in cells is a powerful tool to evaluate cell functional status. The importance of protein kinase-regulated signal transduction pathways in human cancer has led to the development of drugs that inhibit protein kinases at the apex or intermediary levels of these pathways. Phosphoproteomic analysis of these signalling pathways will provide important insights for operation and connectivity of these pathways to facilitate identification of the best targets for cancer therapies. Enrichment of phosphorylated proteins or peptides from tissue or bodily fluid samples is required. The application of technologies such as phosphoenrichments, mass spectrometry (MS) coupled to bioinformatics tools is crucial for the identification and quantification of protein phosphorylation sites for advancing in such relevant clinical research. A combination of different phosphopeptide enrichments, quantitative techniques and bioinformatic tools is necessary to achieve good phospho-regulation data and good structural analysis of protein studies. The current and most useful proteomics and bioinformatics techniques will be explained with research examples. Our aim in this article is to be helpful for cancer research via detailing proteomics and bioinformatic tools. PMID:21967744

  7. Technical phosphoproteomic and bioinformatic tools useful in cancer research

    PubMed Central

    2011-01-01

    Reversible protein phosphorylation is one of the most important forms of cellular regulation. Thus, phosphoproteomic analysis of protein phosphorylation in cells is a powerful tool to evaluate cell functional status. The importance of protein kinase-regulated signal transduction pathways in human cancer has led to the development of drugs that inhibit protein kinases at the apex or intermediary levels of these pathways. Phosphoproteomic analysis of these signalling pathways will provide important insights for operation and connectivity of these pathways to facilitate identification of the best targets for cancer therapies. Enrichment of phosphorylated proteins or peptides from tissue or bodily fluid samples is required. The application of technologies such as phosphoenrichments, mass spectrometry (MS) coupled to bioinformatics tools is crucial for the identification and quantification of protein phosphorylation sites for advancing in such relevant clinical research. A combination of different phosphopeptide enrichments, quantitative techniques and bioinformatic tools is necessary to achieve good phospho-regulation data and good structural analysis of protein studies. The current and most useful proteomics and bioinformatics techniques will be explained with research examples. Our aim in this article is to be helpful for cancer research via detailing proteomics and bioinformatic tools. PMID:21967744

  8. Sperm phosphoproteomics: historical perspectives and current methodologies

    PubMed Central

    Porambo, James R; Salicioni, Ana M; Visconti, Pablo E; Platt, Mark D

    2013-01-01

    Mammalian sperm are differentiated germ cells that transfer genetic material from the male to the female. Owing to this essential role in the reproductive process, an understanding of the complex mechanisms that underlie sperm function has implications ranging from the development of novel contraceptives to the treatment of male infertility. While the importance of phosphorylation in sperm differentiation, maturation and fertilization has been well established, the ability to directly determine the sites of phosphorylation within sperm proteins and to quantitate the extent of phosphorylation at these sites is a recent development that has relied almost exclusively on advances in the field of proteomics. This review will summarize the work that has been carried out to date on sperm phosphoproteomics and discuss how the resulting qualitative and quantitative information has been used to provide insight into the manner in which protein phosphorylation events modulate sperm function. The authors also present the proteomics process as it is most often utilized for the elucidation of protein expression, with a particular emphasis on the way in which the process has been modified for the analysis of protein phosphorylation in sperm. PMID:23194270

  9. Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors

    PubMed Central

    2013-01-01

    Background Tumor classification based on their predicted responses to kinase inhibitors is a major goal for advancing targeted personalized therapies. Here, we used a phosphoproteomic approach to investigate biological heterogeneity across hematological cancer cell lines including acute myeloid leukemia, lymphoma, and multiple myeloma. Results Mass spectrometry was used to quantify 2,000 phosphorylation sites across three acute myeloid leukemia, three lymphoma, and three multiple myeloma cell lines in six biological replicates. The intensities of the phosphorylation sites grouped these cancer cell lines according to their tumor type. In addition, a phosphoproteomic analysis of seven acute myeloid leukemia cell lines revealed a battery of phosphorylation sites whose combined intensities correlated with the growth-inhibitory responses to three kinase inhibitors with remarkable correlation coefficients and fold changes (> 100 between the most resistant and sensitive cells). Modeling based on regression analysis indicated that a subset of phosphorylation sites could be used to predict response to the tested drugs. Quantitative analysis of phosphorylation motifs indicated that resistant and sensitive cells differed in their patterns of kinase activities, but, interestingly, phosphorylations correlating with responses were not on members of the pathway being targeted; instead, these mainly were on parallel kinase pathways. Conclusion This study reveals that the information on kinase activation encoded in phosphoproteomics data correlates remarkably well with the phenotypic responses of cancer cells to compounds that target kinase signaling and could be useful for the identification of novel markers of resistance or sensitivity to drugs that target the signaling network. PMID:23628362

  10. Toward defining the phosphoproteome of Xenopus laevis embryos

    PubMed Central

    McGivern, Jered V.; Swaney, Danielle L.; Coon, Joshua J.; Sheets, Michael D.

    2010-01-01

    Phosphorylation is universally used for controlling protein function, but knowledge of the phosphoproteome in vertebrate embryos has been limited. However, recent technical advances make it possible to define an organism's phosphoproteome at a more comprehensive level. Xenopus laevis offers established advantages for analyzing the regulation of protein function by phosphorylation. Functionally unbiased, comprehensive information about the Xenopus phosphoproteome would provide a powerful guide for future studies of phosphorylation in a developmental context. To this end, we performed a phosphoproteomic analysis of Xenopus oocytes, eggs, and embryos using recently developed mass spectrometry methods. We identified 1,441 phosphorylation sites present on 654 different Xenopus proteins, including hundreds of previously unknown phosphorylation sites. This approach identified several phosphorylation sites described in the literature and/or evolutionarily conserved in other organisms, validating the data's quality. These data will serve as a powerful resource for the exploration of phosphorylation and protein function within a developmental context. PMID:19384857

  11. Computational phosphoproteomics: From identification to localization

    PubMed Central

    Lee, Dave C H; Jones, Andrew R; Hubbard, Simon J

    2015-01-01

    Analysis of the phosphoproteome by MS has become a key technology for the characterization of dynamic regulatory processes in the cell, since kinase and phosphatase action underlie many major biological functions. However, the addition of a phosphate group to a suitable side chain often confounds informatic analysis by generating product ion spectra that are more difficult to interpret (and consequently identify) relative to unmodified peptides. Collectively, these challenges have motivated bioinformaticians to create novel software tools and pipelines to assist in the identification of phosphopeptides in proteomic mixtures, and help pinpoint or “localize” the most likely site of modification in cases where there is ambiguity. Here we review the challenges to be met and the informatics solutions available to address them for phosphoproteomic analysis, as well as highlighting the difficulties associated with using them and the implications for data standards. PMID:25475148

  12. Hydrophilic polydopamine-coated graphene for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis.

    PubMed

    Yan, Yinghua; Zheng, Zhifang; Deng, Chunhui; Li, Yan; Zhang, Xiangmin; Yang, Pengyuan

    2013-09-17

    To discover trace phosphorylated proteins or peptides with great biological significance for in-depth phosphoproteome analysis, it is urgent to develop a novel technique for highly selective and effective enrichment of phosphopeptides. In this work, an IMAC (immobilized metal ion affinity chromatography) material with polydopamine coated on the surface of graphene and functionalized with titanium ions (denoted as Ti(4+)-G@PD) was initially designed and synthesized. The newly prepared Ti(4+)-G@PD with enhanced hydrophilicity and biological compatibility was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and infrared (IR), and its performance for selective and effective enrichment of phosphopeptide was evaluated with both standard peptide mixtures and human serum. PMID:23941301

  13. Analysis of dynamic tyrosine phosphoproteome in LFA-1 triggered migrating T-cells.

    PubMed

    Verma, Navin K; Dempsey, Eugene; Freeley, Michael; Botting, Catherine H; Long, Aideen; Kelleher, Dermot; Volkov, Yuri

    2011-06-01

    The ordered, directional migration of T-lymphocytes is a key process during immune surveillance and response. This requires cell adhesion to the high endothelial venules or to the extracellular matrix by a series of surface receptor/ligand interactions involving adhesion molecules of the integrin family including lymphocyte function associated molecule-1 (LFA-1) and intercellular adhesion molecules (ICAMs). Reversible protein phosphorylation is emerging as a key player in the regulation of biological functions with tyrosine phosphorylation playing a crucial role in signal transduction. Thus, the study of this type of post-translational modification at the proteomic level has great biological significance. In this work, phospho-enriched cell lysates from LFA-1-triggered migrating human T-cells were subjected to immunoaffinity purification of tyrosine phosphorylated proteins, mass spectrometric, and bioinformatic analysis. In addition to the identification of several well-documented proteins, the analysis suggested involvement of a number of new and novel proteins in LFA-1 induced T-cell migration. This dataset expands the list of the signaling components of the LFA-1 induced phosphotyrosine protein complexes in migrating T-cells that will be extremely useful in the study of their specific roles within LFA-1 associated signaling pathways. Identification of proteins previously not reported in the context of LFA-1 stimulated signal transduction might provide new insights into understanding the LFA-1 signaling networks and aid in the search for new potential therapeutic targets. PMID:20945386

  14. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio).

    PubMed

    Kwon, Oh Kwang; Kim, Sun Ju; Lee, You-Mie; Lee, Young-Hoon; Bae, Young-Seuk; Kim, Jin Young; Peng, Xiaojun; Cheng, Zhongyi; Zhao, Yingming; Lee, Sangkyu

    2016-01-01

    The zebrafish (Danio rerio) is a popular animal model used for studies on vertebrate development and organogenesis. Recent research has shown a similarity of approximately 70% between the human and zebrafish genomes and about 84% of human disease-causing genes have common ancestry with that of the zebrafish genes. Zebrafish embryos have a number of desirable features, including transparency, a large size, and rapid embryogenesis. Protein phosphorylation is a well-known PTM, which can carry out various biological functions. Recent MS developments have enabled the study of global phosphorylation patterns by using MS-based proteomics coupled with titanium dioxide phosphopeptide enrichment. In the present study, we identified 3500 nonredundant phosphorylation sites on 2166 phosphoproteins and quantified 1564 phosphoproteins in developing embryos of zebrafish. The distribution of Ser/Thr/Tyr phosphorylation sites in zebrafish embryos was found to be 88.9, 10.2, and 0.9%, respectively. A potential kinase motif was predicted using Motif-X analysis, for 80% of the identified phosphorylation sites, with the proline-directed motif appearing most frequently, and 35 phosphorylation sites having the pSF motif. In addition, we created six phosphoprotein clusters based on their dynamic pattern during the development of zebrafish embryos. Here, we report the largest dataset of phosphoproteins in zebrafish embryos and our results can be used for further studies on phosphorylation sites or phosphoprotein dynamics in zebrafish embryos. PMID:26449285

  15. Phosphoproteome analysis during larval development and metamorphosis in the spionid polychaete Pseudopolydora vexillosa

    PubMed Central

    2011-01-01

    Background The metamorphosis of the spionid polychaete Pseudopolydora vexillosa includes spontaneous settlement onto soft-bottom habitats and morphogenesis that can be completed in a very short time. A previous study on the total changes to the proteome during the various developmental stages of P. vexillosa suggested that little or no de novo protein synthesis occurs during metamorphosis. In this study, we used multicolor fluorescence detection of proteins in 2-D gels for differential analysis of proteins and phosphoproteins to reveal the dynamics of post-translational modification proteins in this species. A combination of affinity chromatography, 2D-PAGE, and mass spectrometry was used to identify the phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles. Results We reproducibly detected 210, 492, and 172 phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles, respectively. The highest percentage of phosphorylation was observed during the competent larval stage. About 64 stage-specific phosphoprotein spots were detected in the competent stage, and 32 phosphoproteins were found to be significantly differentially expressed in the three stages. We identified 38 phosphoproteins, 10 of which were differentially expressed during metamorphosis. These phosphoproteins belonged to six categories of biological processes: (1) development, (2) cell differentiation and integrity, (3) transcription and translation, (4) metabolism, (5) protein-protein interaction and proteolysis, and (6) receptors and enzymes. Conclusion This is the first study to report changes in phosphoprotein expression patterns during the metamorphosis of the marine polychaete P. vexillosa. The higher degree of phosphorylation during the process of attaining competence to settle and metamorphose may be due to fast morphological transitions regulated by various mechanisms. Our data are consistent with previous studies showing a

  16. EBprot: Statistical analysis of labeling-based quantitative proteomics data.

    PubMed

    Koh, Hiromi W L; Swa, Hannah L F; Fermin, Damian; Ler, Siok Ghee; Gunaratne, Jayantha; Choi, Hyungwon

    2015-08-01

    Labeling-based proteomics is a powerful method for detection of differentially expressed proteins (DEPs). The current data analysis platform typically relies on protein-level ratios, which is obtained by summarizing peptide-level ratios for each protein. In shotgun proteomics, however, some proteins are quantified with more peptides than others, and this reproducibility information is not incorporated into the differential expression (DE) analysis. Here, we propose a novel probabilistic framework EBprot that directly models the peptide-protein hierarchy and rewards the proteins with reproducible evidence of DE over multiple peptides. To evaluate its performance with known DE states, we conducted a simulation study to show that the peptide-level analysis of EBprot provides better receiver-operating characteristic and more accurate estimation of the false discovery rates than the methods based on protein-level ratios. We also demonstrate superior classification performance of peptide-level EBprot analysis in a spike-in dataset. To illustrate the wide applicability of EBprot in different experimental designs, we applied EBprot to a dataset for lung cancer subtype analysis with biological replicates and another dataset for time course phosphoproteome analysis of EGF-stimulated HeLa cells with multiplexed labeling. Through these examples, we show that the peptide-level analysis of EBprot is a robust alternative to the existing statistical methods for the DE analysis of labeling-based quantitative datasets. The software suite is freely available on the Sourceforge website http://ebprot.sourceforge.net/. All MS data have been deposited in the ProteomeXchange with identifier PXD001426 (http://proteomecentral.proteomexchange.org/dataset/PXD001426/). PMID:25913743

  17. Characterization of the Phosphoproteome in SLE Patients

    PubMed Central

    Huang, Jianrong; Dai, Yong

    2012-01-01

    Protein phosphorylation is a complex regulatory event that is involved in the signaling networks that affect virtually every cellular process. The protein phosphorylation may be a novel source for discovering biomarkers and drug targets. However, a systematic analysis of the phosphoproteome in patients with SLE has not been performed. To clarify the pathogenesis of systemic lupus erythematosus (SLE), we compared phosphoprotein expression in PBMCs from SLE patients and normal subjects using proteomics analyses. Phosphopeptides were enriched using TiO2 from PBMCs isolated from 15 SLE patients and 15 healthy subjects and then analyzed by automated LC-MS/MS analysis. Phosphorylation sites were identified and quantitated by MASCOT and MaxQuant. A total of 1035 phosphorylation sites corresponding to 618 NCBI-annotated genes were identified in SLE patients compared with normal subjects. Differentially expressed proteins, peptides and phosphorylation sites were then subjected to bioinformatics analyses. Gene ontology(GO) and pathway analyses showed that nucleic acid metabolism, cellular component organization, transport and multicellular organismal development pathways made up the largest proportions of the differentially expressed genes. Pathway analyses showed that the mitogen-activated protein kinase (MAPK) signaling pathway and actin cytoskeleton regulators made up the largest proportions of the metabolic pathways. Network analysis showed that rous sarcoma oncogene (SRC), v-rel reticuloendotheliosis viral oncogene homolog A (RELA), histone deacetylase (HDA1C) and protein kinase C, delta (PRKCD) play important roles in the stability of the network. These data suggest that aberrant protein phosphorylation may contribute to SLE pathogenesis. PMID:23285258

  18. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation.

    PubMed

    Nukarinen, Ella; Nägele, Thomas; Pedrotti, Lorenzo; Wurzinger, Bernhard; Mair, Andrea; Landgraf, Ramona; Börnke, Frederik; Hanson, Johannes; Teige, Markus; Baena-Gonzalez, Elena; Dröge-Laser, Wolfgang; Weckwerth, Wolfram

    2016-01-01

    Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants. PMID:27545962

  19. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation

    PubMed Central

    Nukarinen, Ella; Nägele, Thomas; Pedrotti, Lorenzo; Wurzinger, Bernhard; Mair, Andrea; Landgraf, Ramona; Börnke, Frederik; Hanson, Johannes; Teige, Markus; Baena-Gonzalez, Elena; Dröge-Laser, Wolfgang; Weckwerth, Wolfram

    2016-01-01

    Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants. PMID:27545962

  20. Quantitative intracerebral brain hemorrhage analysis

    NASA Astrophysics Data System (ADS)

    Loncaric, Sven; Dhawan, Atam P.; Cosic, Dubravko; Kovacevic, Domagoj; Broderick, Joseph; Brott, Thomas

    1999-05-01

    In this paper a system for 3-D quantitative analysis of human spontaneous intracerebral brain hemorrhage (ICH) is described. The purpose of the developed system is to perform quantitative 3-D measurements of the parameters of ICH region and from computed tomography (CT) images. The measured parameter in this phase of the system development is volume of the hemorrhage region. The goal of the project is to measure parameters for a large number of patients having ICH and to correlate measured parameters to patient morbidity and mortality.

  1. Software for quantitative trait analysis

    PubMed Central

    2005-01-01

    This paper provides a brief overview of software currently available for the genetic analysis of quantitative traits in humans. Programs that implement variance components, Markov Chain Monte Carlo (MCMC), Haseman-Elston (H-E) and penetrance model-based linkage analyses are discussed, as are programs for measured genotype association analyses and quantitative trait transmission disequilibrium tests. The software compared includes LINKAGE, FASTLINK, PAP, SOLAR, SEGPATH, ACT, Mx, MERLIN, GENEHUNTER, Loki, Mendel, SAGE, QTDT and FBAT. Where possible, the paper provides URLs for acquiring these programs through the internet, details of the platforms for which the software is available and the types of analyses performed. PMID:16197737

  2. Image analysis and quantitative morphology.

    PubMed

    Mandarim-de-Lacerda, Carlos Alberto; Fernandes-Santos, Caroline; Aguila, Marcia Barbosa

    2010-01-01

    Quantitative studies are increasingly found in the literature, particularly in the fields of development/evolution, pathology, and neurosciences. Image digitalization converts tissue images into a numeric form by dividing them into very small regions termed picture elements or pixels. Image analysis allows automatic morphometry of digitalized images, and stereology aims to understand the structural inner three-dimensional arrangement based on the analysis of slices showing two-dimensional information. To quantify morphological structures in an unbiased and reproducible manner, appropriate isotropic and uniform random sampling of sections, and updated stereological tools are needed. Through the correct use of stereology, a quantitative study can be performed with little effort; efficiency in stereology means as little counting as possible (little work), low cost (section preparation), but still good accuracy. This short text provides a background guide for non-expert morphologists. PMID:19960334

  3. Breast Cancer Proteomic and Phosphoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  4. Enrichment Strategies in Phosphoproteomics.

    PubMed

    Leitner, Alexander

    2016-01-01

    The comprehensive study of the phosphoproteome is heavily dependent on appropriate enrichment strategies that are most often, but not exclusively, carried out on the peptide level. In this chapter, I give an overview of the most widely used techniques. In addition to dedicated antibodies, phosphopeptides are enriched by their selective interaction with metals in the form of chelated metal ions or metal oxides. The negative charge of the phosphate group is also exploited in a variety of chromatographic fractionation methods that include different types of ion exchange chromatography, hydrophilic interaction chromatography (HILIC), and electrostatic repulsion HILIC (ERLIC) chromatography. Selected examples from the literature will demonstrate how a combination of these techniques with current high-performance mass spectrometry enables the identification of thousands of phosphorylation sites from various sample types. PMID:26584921

  5. Multiplex staining of 2-DE gels for an initial phosphoproteome analysis of germinating seeds and early grown seedlings from a non-orthodox specie: Quercus ilex L. subsp. ballota [Desf.] Samp.

    PubMed Central

    Romero-Rodríguez, M. Cristina; Abril, Nieves; Sánchez-Lucas, Rosa; Jorrín-Novo, Jesús V.

    2015-01-01

    As a preliminary step in the phosphoproteome analysis of germinating seeds (0 and 24 h after seed imbibition) and early grown seedlings (216 h after seed imbibition) from a non-orthodox sp. Quercus ilex, a multiplex (SYPRO-Ruby and Pro-Q DPS) staining of high-resolution 2-DE gels was used. By using this protocol it was possible to detect changes in protein-abundance and/or phosphorylation status. This simple approach could be a good complementary alternative to the enrichment protocols used in the search for phosphoprotein candidates. While 482 spots were visualized with SYPRO-Ruby, 222 were with Pro-Q DPS. Statistically significant differences in spot intensity were observed among samples, these corresponding to 85 SYPRO-Ruby-, 20 Pro-Q-DPS-, and 35 SYPRO-Ruby and Pro-Q-DPS-stained spots. Fifty-five phosphoprotein candidates showing qualitative or quantitative differences between samples were subjected to MALDI-TOF-TOF MS analysis, with 20 of them being identified. Identified proteins belonged to five different functional categories, namely: carbohydrate and amino acid metabolism, defense, protein folding, and oxidation-reduction processes. With the exception of a putative cyclase, the other 19 proteins had at least one orthologous phosphoprotein in Arabidopsis thaliana, Medicago truncatula, N. tabacum, and Glycine max. Out of the 20 identified, seven showed differences in intensity in Pro-Q-DPS but not in SYPRO-Ruby-stained gels, including enzymes of the glycolysis and amino acid metabolism. This bears out that theory the regulation of these enzymes occurs at the post-translational level by phosphorylation with no changes at the transcriptional or translational level. This is different from the mechanism reported in orthodox seeds, in which concomitant changes in abundance and phosphorylation status have been observed for these enzymes. PMID:26322061

  6. Bioimaging for quantitative phenotype analysis.

    PubMed

    Chen, Weiyang; Xia, Xian; Huang, Yi; Chen, Xingwei; Han, Jing-Dong J

    2016-06-01

    With the development of bio-imaging techniques, an increasing number of studies apply these techniques to generate a myriad of image data. Its applications range from quantification of cellular, tissue, organismal and behavioral phenotypes of model organisms, to human facial phenotypes. The bio-imaging approaches to automatically detect, quantify, and profile phenotypic changes related to specific biological questions open new doors to studying phenotype-genotype associations and to precisely evaluating molecular changes associated with quantitative phenotypes. Here, we review major applications of bioimage-based quantitative phenotype analysis. Specifically, we describe the biological questions and experimental needs addressable by these analyses, computational techniques and tools that are available in these contexts, and the new perspectives on phenotype-genotype association uncovered by such analyses. PMID:26850283

  7. Phosphoproteomic Analysis Reveals the Effects of PilF Phosphorylation on Type IV Pilus and Biofilm Formation in Thermus thermophilus HB27*

    PubMed Central

    Wu, Wan-Ling; Liao, Jiahn-Haur; Lin, Guang-Huey; Lin, Miao-Hsia; Chang, Ying-Che; Liang, Suh-Yuen; Yang, Feng-Ling; Khoo, Kay-Hooi; Wu, Shih-Hsiung

    2013-01-01

    Thermus thermophilus HB27 is an extremely thermophilic eubacteria with a high frequency of natural competence. This organism is therefore often used as a thermophilic model to investigate the molecular basis of type IV pili–mediated functions, such as the uptake of free DNA, adhesion, twitching motility, and biofilm formation, in hot environments. In this study, the phosphoproteome of T. thermophilus HB27 was analyzed via a shotgun approach and high-accuracy mass spectrometry. Ninety-three unique phosphopeptides, including 67 in vivo phosphorylated sites on 53 phosphoproteins, were identified. The distribution of Ser/Thr/Tyr phosphorylation sites was 57%/36%/7%. The phosphoproteins were mostly involved in central metabolic pathways and protein/cell envelope biosynthesis. According to this analysis, the ATPase motor PilF, a type IV pili–related component, was first found to be phosphorylated on Thr-368 and Ser-372. Through the point mutation of PilF, mimic phosphorylated mutants T368D and S372E resulted in nonpiliated and nontwitching phenotypes, whereas nonphosphorylated mutants T368V and S372A displayed piliation and twitching motility. In addition, mimic phosphorylated mutants showed elevated biofilm-forming abilities with a higher initial attachment rate, caused by increasing exopolysaccharide production. In summary, the phosphorylation of PilF might regulate the pili and biofilm formation associated with exopolysaccharide production. PMID:23828892

  8. Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer

    PubMed Central

    2015-01-01

    As a driver for many biological processes, phosphorylation remains an area of intense research interest. Advances in multiplexed quantitation utilizing isobaric tags (e.g., TMT and iTRAQ) have the potential to create a new paradigm in quantitative proteomics. New instrumentation and software are propelling these multiplexed workflows forward, which results in more accurate, sensitive, and reproducible quantitation across tens of thousands of phosphopeptides. This study assesses the performance of multiplexed quantitative phosphoproteomics on the Orbitrap Fusion mass spectrometer. Utilizing a two-phosphoproteome model of precursor ion interference, we assessed the accuracy of phosphopeptide quantitation across a variety of experimental approaches. These methods included the use of synchronous precursor selection (SPS) to enhance TMT reporter ion intensity and accuracy. We found that (i) ratio distortion remained a problem for phosphopeptide analysis in multiplexed quantitative workflows, (ii) ratio distortion can be overcome by the use of an SPS-MS3 scan, (iii) interfering ions generally possessed a different charge state than the target precursor, and (iv) selecting only the phosphate neutral loss peak (single notch) for the MS3 scan still provided accurate ratio measurements. Remarkably, these data suggest that the underlying cause of interference may not be due to coeluting and cofragmented peptides but instead from consistent, low level background fragmentation. Finally, as a proof-of-concept 10-plex experiment, we compared phosphopeptide levels from five murine brains to five livers. In total, the SPS-MS3 method quantified 38 247 phosphopeptides, corresponding to 11 000 phosphorylation sites. With 10 measurements recorded for each phosphopeptide, this equates to more than 628 000 binary comparisons collected in less than 48 h. PMID:25521595

  9. Optimization of quantitative infrared analysis

    NASA Astrophysics Data System (ADS)

    Duerst, Richard W.; Breneman, W. E.; Dittmar, Rebecca M.; Drugge, Richard E.; Gagnon, Jim E.; Pranis, Robert A.; Spicer, Colleen K.; Stebbings, William L.; Westberg, J. W.; Duerst, Marilyn D.

    1994-01-01

    A number of industrial processes, especially quality assurance procedures, accept information on relative quantities of components in mixtures, whenever absolute values for the quantitative analysis are unavailable. These relative quantities may be determined from infrared intensity ratios even though known standards are unavailable. Repeatability [vs precisionhl in quantitative analysis is a critical parameter for meaningful results. In any given analysis, multiple runs provide "answers" with a certain standard deviation. Obviously, the lower the standard deviation, the better the precision. In attempting to minimize the standard deviation and thus improve precision, we need to delineate which contributing factors we have control over (such as sample preparation techniques, data analysis methodology) and which factors we have little control over (environmental and instrument noise, for example). For a given set of conditions, the best instrumental precision achievable on an IR instrument should be determinable. Traditionally, the term "signal-to-noise" (S/N) has been used for a single spectrum, realizing that S/N improves with an increase in number of scans coadded for generation of that single spectrum. However, the S/N ratio does not directly reflect the precision achievable for an absorbing band. We prefer to use the phrase "maximum achievable instrument precision" (MAIP), which is equivalent to the minimum relative standard deviation for a given peak (either height or area) in spectra. For a specific analysis, the analyst should have in mind the desired precision. Only if the desired precision is less than the MA1P will the analysis be feasible. Once the MAIP is established, other experimental procedures may be modified to improve the analytical precision, if it is below that which is expected (the MAIP).

  10. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication

    PubMed Central

    Avey, Denis; Tepper, Sarah; Li, Wenwei; Turpin, Zachary; Zhu, Fanxiu

    2015-01-01

    Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling) during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5’ UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45 manipulates

  11. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland

    PubMed Central

    2013-01-01

    Background Honeybee venom is a complicated defensive toxin that has a wide range of pharmacologically active compounds. Some of these compounds are useful for human therapeutics. There are two major forms of honeybee venom used in pharmacological applications: manually (or reservoir disrupting) extracted glandular venom (GV), and venom extracted through the use of electrical stimulation (ESV). A proteome comparison of these two venom forms and an understanding of the phosphorylation status of ESV, are still very limited. Here, the proteomes of GV and ESV were compared using both gel-based and gel-free proteomics approaches and the phosphoproteome of ESV was determined through the use of TiO2 enrichment. Results Of the 43 proteins identified in GV, < 40% were venom toxins, and > 60% of the proteins were non-toxic proteins resulting from contamination by gland tissue damage during extraction and bee death. Of the 17 proteins identified in ESV, 14 proteins (>80%) were venom toxic proteins and most of them were found in higher abundance than in GV. Moreover, two novel proteins (dehydrogenase/reductase SDR family member 11-like and histone H2B.3-like) and three novel phosphorylation sites (icarapin (S43), phospholipase A-2 (T145), and apamin (T23)) were identified. Conclusions Our data demonstrate that venom extracted manually is different from venom extracted using ESV, and these differences may be important in their use as pharmacological agents. ESV may be more efficient than GV as a potential pharmacological source because of its higher venom protein content, production efficiency, and without the need to kill honeybee. The three newly identified phosphorylated venom proteins in ESV may elicit a different immune response through the specific recognition of antigenic determinants. The two novel venom proteins extend our proteome coverage of honeybee venom. PMID:24199871

  12. Automated quantitative analysis for pneumoconiosis

    NASA Astrophysics Data System (ADS)

    Kondo, Hiroshi; Zhao, Bin; Mino, Masako

    1998-09-01

    Automated quantitative analysis for pneumoconiosis is presented. In this paper Japanese standard radiographs of pneumoconiosis are categorized by measuring the area density and the number density of small rounded opacities. And furthermore the classification of the size and shape of the opacities is made from the measuring of the equivalent radiuses of each opacity. The proposed method includes a bi- level unsharp masking filter with a 1D uniform impulse response in order to eliminate the undesired parts such as the images of blood vessels and ribs in the chest x-ray photo. The fuzzy contrast enhancement is also introduced in this method for easy and exact detection of small rounded opacities. Many simulation examples show that the proposed method is more reliable than the former method.

  13. A Quantitative Fitness Analysis Workflow

    PubMed Central

    Lydall, D.A.

    2012-01-01

    Quantitative Fitness Analysis (QFA) is an experimental and computational workflow for comparing fitnesses of microbial cultures grown in parallel1,2,3,4. QFA can be applied to focused observations of single cultures but is most useful for genome-wide genetic interaction or drug screens investigating up to thousands of independent cultures. The central experimental method is the inoculation of independent, dilute liquid microbial cultures onto solid agar plates which are incubated and regularly photographed. Photographs from each time-point are analyzed, producing quantitative cell density estimates, which are used to construct growth curves, allowing quantitative fitness measures to be derived. Culture fitnesses can be compared to quantify and rank genetic interaction strengths or drug sensitivities. The effect on culture fitness of any treatments added into substrate agar (e.g. small molecules, antibiotics or nutrients) or applied to plates externally (e.g. UV irradiation, temperature) can be quantified by QFA. The QFA workflow produces growth rate estimates analogous to those obtained by spectrophotometric measurement of parallel liquid cultures in 96-well or 200-well plate readers. Importantly, QFA has significantly higher throughput compared with such methods. QFA cultures grow on a solid agar surface and are therefore well aerated during growth without the need for stirring or shaking. QFA throughput is not as high as that of some Synthetic Genetic Array (SGA) screening methods5,6. However, since QFA cultures are heavily diluted before being inoculated onto agar, QFA can capture more complete growth curves, including exponential and saturation phases3. For example, growth curve observations allow culture doubling times to be estimated directly with high precision, as discussed previously1. Here we present a specific QFA protocol applied to thousands of S. cerevisiae cultures which are automatically handled by robots during inoculation, incubation and imaging

  14. A quantitative fitness analysis workflow.

    PubMed

    Banks, A P; Lawless, C; Lydall, D A

    2012-01-01

    Quantitative Fitness Analysis (QFA) is an experimental and computational workflow for comparing fitnesses of microbial cultures grown in parallel(1,2,3,4). QFA can be applied to focused observations of single cultures but is most useful for genome-wide genetic interaction or drug screens investigating up to thousands of independent cultures. The central experimental method is the inoculation of independent, dilute liquid microbial cultures onto solid agar plates which are incubated and regularly photographed. Photographs from each time-point are analyzed, producing quantitative cell density estimates, which are used to construct growth curves, allowing quantitative fitness measures to be derived. Culture fitnesses can be compared to quantify and rank genetic interaction strengths or drug sensitivities. The effect on culture fitness of any treatments added into substrate agar (e.g. small molecules, antibiotics or nutrients) or applied to plates externally (e.g. UV irradiation, temperature) can be quantified by QFA. The QFA workflow produces growth rate estimates analogous to those obtained by spectrophotometric measurement of parallel liquid cultures in 96-well or 200-well plate readers. Importantly, QFA has significantly higher throughput compared with such methods. QFA cultures grow on a solid agar surface and are therefore well aerated during growth without the need for stirring or shaking. QFA throughput is not as high as that of some Synthetic Genetic Array (SGA) screening methods(5,6). However, since QFA cultures are heavily diluted before being inoculated onto agar, QFA can capture more complete growth curves, including exponential and saturation phases(3). For example, growth curve observations allow culture doubling times to be estimated directly with high precision, as discussed previously(1). Here we present a specific QFA protocol applied to thousands of S. cerevisiae cultures which are automatically handled by robots during inoculation, incubation and

  15. Quantitative analysis of endogenous compounds.

    PubMed

    Thakare, Rhishikesh; Chhonker, Yashpal S; Gautam, Nagsen; Alamoudi, Jawaher Abdullah; Alnouti, Yazen

    2016-09-01

    Accurate quantitative analysis of endogenous analytes is essential for several clinical and non-clinical applications. LC-MS/MS is the technique of choice for quantitative analyses. Absolute quantification by LC/MS requires preparing standard curves in the same matrix as the study samples so that the matrix effect and the extraction efficiency for analytes are the same in both the standard and study samples. However, by definition, analyte-free biological matrices do not exist for endogenous compounds. To address the lack of blank matrices for the quantification of endogenous compounds by LC-MS/MS, four approaches are used including the standard addition, the background subtraction, the surrogate matrix, and the surrogate analyte methods. This review article presents an overview these approaches, cite and summarize their applications, and compare their advantages and disadvantages. In addition, we discuss in details, validation requirements and compatibility with FDA guidelines to ensure method reliability in quantifying endogenous compounds. The standard addition, background subtraction, and the surrogate analyte approaches allow the use of the same matrix for the calibration curve as the one to be analyzed in the test samples. However, in the surrogate matrix approach, various matrices such as artificial, stripped, and neat matrices are used as surrogate matrices for the actual matrix of study samples. For the surrogate analyte approach, it is required to demonstrate similarity in matrix effect and recovery between surrogate and authentic endogenous analytes. Similarly, for the surrogate matrix approach, it is required to demonstrate similar matrix effect and extraction recovery in both the surrogate and original matrices. All these methods represent indirect approaches to quantify endogenous compounds and regardless of what approach is followed, it has to be shown that none of the validation criteria have been compromised due to the indirect analyses. PMID

  16. Quantitative analysis of sandstone porosity

    SciTech Connect

    Ferrell, R.E. Jr.; Carpenter, P.K.

    1988-01-01

    A quantitative analysis of changes in porosity associated with sandstone diagenesis was accomplished with digital back-scattered electron image analysis techniques. The volume percent (vol. %) of macroporosity, quartz, clay minerals, feldspar, and other constituents combined with stereological parameters, such as the size and shape of the analyzed features, permitted the determination of cement volumes, the ratio of primary to secondary porosity, and the relative abundance of detrital and authigenic clay minerals. The analyses were produced with a JEOL 733 Superprobe and a TRACOR/NORTHERN 5700 Image Analyzer System. The results provided a numerical evaluation of sedimentological facies controls and diagenetic effects on the permeabilities of potential reservoirs. In a typical application, subtle differences in the diagnetic development of porosity were detected in Wilcox sandstones from central Louisiana. Mechanical compaction of these shoreface sandstones has reduced the porosity to approximately 20%. In most samples with permeabilities greater than 10 md, the measured ratio of macroporosity to microporosity associated with pore-filling kaolinite was 3:1. In other sandstones with lower permeabilities, the measured ratio was higher, but the volume of pore-filling clay was essentially the same. An analysis of the frequency distribution of pore diameters and shapes revealed that the latter samples contained 2-3 vol% of grain-dissolution or moldic porosity. Fluid entry to these large pores was restricted and the clays produced from the grain dissolution products reduced the observed permeability. The image analysis technique provided valuable data for the distinction of productive and nonproductive intervals in this reservoir.

  17. Quantitative Analysis of Glaciated Landscapes

    NASA Astrophysics Data System (ADS)

    Huerta, A. D.

    2005-12-01

    The evolution of glaciated mountains is at the heart of the debate over Late Cenozoic linkages between climate and tectonics. Traditionally, the development of high summit elevations is attributed to tectonic processes. However, much of the high elevation of the Transantarctic Mountains can be attributed solely to uplift in response to glacial erosion (Stern et al., 2005). The Transantarctic Mountains (TAM) provide an unparalleled opportunity to study glacial erosion. The mountain range has experienced glacial conditions since Oligocene time. In the higher and dryer regions of the TAM there is only a thin veneer of ice and snow draping the topography. In these regions landforms that were shaped during earlier climatic conditions are preserved. In fact, both glacial and fluvial landforms dating as far back as 18 Ma are preserved locally. In addition, the TAM are ideal for studying glacial erosion since the range has experienced minimal tectonic uplift since late Oligocene time, thus isolating the erosion signal from any tectonic signal. With the advent of digital data sets and GIS methodologies, quantitative analysis can identify key aspects of glaciated landscape morphology, and thus develop powerful analytical techniques for objective study of glaciation. Inspection of USGS topographic maps of the TAM reveals that mountain tops display an extreme range of glacial modification. For example, in the Mt. Rabot region (83°-84° S), mountain peaks are strongly affected by glaciation; cirque development is advanced with cirque diameters on the range of several kilometers, and cirque confluence has resulted in the formation of ``knife-edge'' arêtes up to 10 km long. In contrast, in the Mt. Murchison area (73°-74° S) cirque development is youthful, and there is minimal development of arêtes. Preliminary work indicates that analysis of DEM's and contour lines can be used to distinguish degree of glaciation. In particular, slope, curvature, and power spectrum analysis

  18. Quantitative analysis of retinal OCT.

    PubMed

    Sonka, Milan; Abràmoff, Michael D

    2016-10-01

    Clinical acceptance of 3-D OCT retinal imaging brought rapid development of quantitative 3-D analysis of retinal layers, vasculature, retinal lesions as well as facilitated new research in retinal diseases. One of the cornerstones of many such analyses is segmentation and thickness quantification of retinal layers and the choroid, with an inherently 3-D simultaneous multi-layer LOGISMOS (Layered Optimal Graph Image Segmentation for Multiple Objects and Surfaces) segmentation approach being extremely well suited for the task. Once retinal layers are segmented, regional thickness, brightness, or texture-based indices of individual layers can be easily determined and thus contribute to our understanding of retinal or optic nerve head (ONH) disease processes and can be employed for determination of disease status, treatment responses, visual function, etc. Out of many applications, examples provided in this paper focus on image-guided therapy and outcome prediction in age-related macular degeneration and on assessing visual function from retinal layer structure in glaucoma. PMID:27503080

  19. Integrating Phosphoproteome and Transcriptome Reveals New Determinants of Macrophage Multinucleation*

    PubMed Central

    Rotival, Maxime; Ko, Jeong-Hun; Srivastava, Prashant K.; Kerloc'h, Audrey; Montoya, Alex; Mauro, Claudio; Faull, Peter; Cutillas, Pedro R.; Petretto, Enrico; Behmoaras, Jacques

    2015-01-01

    Macrophage multinucleation (MM) is essential for various biological processes such as osteoclast-mediated bone resorption and multinucleated giant cell-associated inflammatory reactions. Here we study the molecular pathways underlying multinucleation in the rat through an integrative approach combining MS-based quantitative phosphoproteomics (LC-MS/MS) and transcriptome (high-throughput RNA-sequencing) to identify new regulators of MM. We show that a strong metabolic shift toward HIF1-mediated glycolysis occurs at transcriptomic level during MM, together with modifications in phosphorylation of over 50 proteins including several ARF GTPase activators and polyphosphate inositol phosphatases. We use shortest-path analysis to link differential phosphorylation with the transcriptomic reprogramming of macrophages and identify LRRFIP1, SMARCA4, and DNMT1 as novel regulators of MM. We experimentally validate these predictions by showing that knock-down of these latter reduce macrophage multinucleation. These results provide a new framework for the combined analysis of transcriptional and post-translational changes during macrophage multinucleation, prioritizing essential genes, and revealing the sequential events leading to the multinucleation of macrophages. PMID:25532521

  20. Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex

    PubMed Central

    McClatchy, Daniel B.; Savas, Jeffrey N.; Martínez-Bartolomé, Salvador; Park, Sung Kyu; Maher, Pamela; Powell, Susan B.; Yates, John R.

    2015-01-01

    Prepulse inhibition (PPI) is an example of sensorimotor gating and deficits in PPI have been demonstrated in schizophrenia patients. Phencyclidine (PCP) suppression of PPI in animals has been studied to elucidate the pathological elements of schizophrenia. However, the molecular mechanisms underlying PCP treatment or PPI in the brain are still poorly understood. In this study, quantitative phosphoproteomic analysis was performed on the prefrontal cortex from rats that were subjected to PPI after being systemically injected with PCP or saline. PCP down-regulated phosphorylation events were significantly enriched in proteins associated with long-term potentiation (LTP). Importantly, this dataset identifies functionally novel phosphorylation sites on known LTP-associated signaling molecules. In addition, mutagenesis of a significantly altered phosphorylation site on xCT (SLC7A11), the light chain of system xc-, the cystine/glutamate antiporter, suggests that PCP also regulates the activity of this protein. Finally, new insights were also derived on PPI signaling independent of PCP treatment. This is the first quantitative phosphorylation proteomic analysis providing new molecular insights into sensorimotor gating. PMID:25869802

  1. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.

    PubMed

    Bridon, Gaëlle; Bonneil, Eric; Muratore-Schroeder, Tara; Caron-Lizotte, Olivier; Thibault, Pierre

    2012-02-01

    This report examines the analytical benefits of high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to liquid chromatography mass spectrometry (LC-MS) for phosphoproteomics analyses. The ability of FAIMS to separate multiply charged peptide ions from chemical interferences confers a unique advantage in phosphoproteomics by enhancing the detection of low abundance phosphopeptides. LC-FAIMS-MS experiments performed on TiO(2)-enriched tryptic digests from Drosophila melanogaster provided a 50% increase in phosphopeptide identification compared to conventional LC-MS analysis. Also, FAIMS can be used to select different population of multiply charged phosphopeptide ions prior to their activation with either collision activated dissociation (CAD) or electron transfer dissociation (ETD). Importantly, FAIMS enabled the resolution of coeluting phosphoisomers of different abundances to facilitate their unambiguous identification using conventional database search engines. The benefits of FAIMS in large-scale phosphoproteomics of D. melanogaster are further investigated using label-free quantitation to identify differentially regulated phosphoproteins in response to insulin stimulation. PMID:22059388

  2. Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes

    PubMed Central

    2014-01-01

    Background Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. Results Here, we use an assay that allows to biochemically purify extending protrusions of cells migrating in response to three prototypical receptors: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. Conclusions The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration. PMID:24987309

  3. Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer.

    PubMed

    Drake, Justin M; Paull, Evan O; Graham, Nicholas A; Lee, John K; Smith, Bryan A; Titz, Bjoern; Stoyanova, Tanya; Faltermeier, Claire M; Uzunangelov, Vladislav; Carlin, Daniel E; Fleming, Daniel Teo; Wong, Christopher K; Newton, Yulia; Sudha, Sud; Vashisht, Ajay A; Huang, Jiaoti; Wohlschlegel, James A; Graeber, Thomas G; Witte, Owen N; Stuart, Joshua M

    2016-08-11

    We used clinical tissue from lethal metastatic castration-resistant prostate cancer (CRPC) patients obtained at rapid autopsy to evaluate diverse genomic, transcriptomic, and phosphoproteomic datasets for pathway analysis. Using Tied Diffusion through Interacting Events (TieDIE), we integrated differentially expressed master transcriptional regulators, functionally mutated genes, and differentially activated kinases in CRPC tissues to synthesize a robust signaling network consisting of druggable kinase pathways. Using MSigDB hallmark gene sets, six major signaling pathways with phosphorylation of several key residues were significantly enriched in CRPC tumors after incorporation of phosphoproteomic data. Individual autopsy profiles developed using these hallmarks revealed clinically relevant pathway information potentially suitable for patient stratification and targeted therapies in late stage prostate cancer. Here, we describe phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) that shed light on the diversity of activated signaling pathways in metastatic CRPC while providing an integrative, pathway-based reference for drug prioritization in individual patients. PMID:27499020

  4. Quantitative Analysis of Face Symmetry.

    PubMed

    Tamir, Abraham

    2015-06-01

    The major objective of this article was to report quantitatively the degree of human face symmetry for reported images taken from the Internet. From the original image of a certain person that appears in the center of each triplet, 2 symmetric combinations were constructed that are based on the left part of the image and its mirror image (left-left) and on the right part of the image and its mirror image (right-right). By applying a computer software that enables to determine length, surface area, and perimeter of any geometric shape, the following measurements were obtained for each triplet: face perimeter and area; distance between the pupils; mouth length; its perimeter and area; nose length and face length, usually below the ears; as well as the area and perimeter of the pupils. Then, for each of the above measurements, the value C, which characterizes the degree of symmetry of the real image with respect to the combinations right-right and left-left, was calculated. C appears on the right-hand side below each image. A high value of C indicates a low symmetry, and as the value is decreasing, the symmetry is increasing. The magnitude on the left relates to the pupils and compares the difference between the area and perimeter of the 2 pupils. The major conclusion arrived at here is that the human face is asymmetric to some degree; the degree of asymmetry is reported quantitatively under each portrait. PMID:26080172

  5. Quantitative analysis of digital microscope images.

    PubMed

    Wolf, David E; Samarasekera, Champika; Swedlow, Jason R

    2013-01-01

    This chapter discusses quantitative analysis of digital microscope images and presents several exercises to provide examples to explain the concept. This chapter also presents the basic concepts in quantitative analysis for imaging, but these concepts rest on a well-established foundation of signal theory and quantitative data analysis. This chapter presents several examples for understanding the imaging process as a transformation from sample to image and the limits and considerations of quantitative analysis. This chapter introduces to the concept of digitally correcting the images and also focuses on some of the more critical types of data transformation and some of the frequently encountered issues in quantization. Image processing represents a form of data processing. There are many examples of data processing such as fitting the data to a theoretical curve. In all these cases, it is critical that care is taken during all steps of transformation, processing, and quantization. PMID:23931513

  6. Quantitative analysis of qualitative images

    NASA Astrophysics Data System (ADS)

    Hockney, David; Falco, Charles M.

    2005-03-01

    We show optical evidence that demonstrates artists as early as Jan van Eyck and Robert Campin (c1425) used optical projections as aids for producing their paintings. We also have found optical evidence within works by later artists, including Bermejo (c1475), Lotto (c1525), Caravaggio (c1600), de la Tour (c1650), Chardin (c1750) and Ingres (c1825), demonstrating a continuum in the use of optical projections by artists, along with an evolution in the sophistication of that use. However, even for paintings where we have been able to extract unambiguous, quantitative evidence of the direct use of optical projections for producing certain of the features, this does not mean that paintings are effectively photographs. Because the hand and mind of the artist are intimately involved in the creation process, understanding these complex images requires more than can be obtained from only applying the equations of geometrical optics.

  7. Phosphoproteomics for the masses.

    PubMed

    Grimsrud, Paul A; Swaney, Danielle L; Wenger, Craig D; Beauchene, Nicole A; Coon, Joshua J

    2010-01-15

    Protein phosphorylation serves as a primary mechanism of signal transduction in the cells of biological organisms. Technical advancements over the last several years in mass spectrometry now allow for the large-scale identification and quantitation of in vivo phosphorylation at unprecedented levels. These developments have occurred in the areas of sample preparation, instrumentation, quantitative methodology, and informatics so that today, 10 000-20 000 phosphorylation sites can be identified and quantified within a few weeks. With the rapid development and widespread availability of such data, its translation into biological insight and knowledge is a current obstacle. Here we present an overview of how this technology came to be and is currently applied, as well as future challenges for the field. PMID:20047291

  8. Phosphoproteomics for the masses

    PubMed Central

    Grimsrud, Paul A.; Swaney, Danielle L.; Wenger, Craig D.; Beauchene, Nicole A.; Coon, Joshua J.

    2010-01-01

    Protein phosphorylation serves as a primary mechanism of signal transduction in the cells of biological organisms. Technical advancements over the last several years in mass spectrometry now allow for the large-scale identification and quantitation of in vivo phosphorylation at unprecedented levels. These developments have occurred in the areas of sample preparation, instrumentation, quantitative methodology, and informatics so that today, ten to twenty thousand phosphorylation sites can be identified and quantified within a few weeks. With the rapid development and widespread availability of such data, its translation into biological insight and knowledge is a current obstacle. Here we present an overview of how this technology came to be and is currently applied, as well as future challenges for the field. PMID:20047291

  9. Qualitative and Quantitative Analysis: Interpretation of Electropherograms

    NASA Astrophysics Data System (ADS)

    Szumski, Michał; Buszewski, Bogusław

    In this chapter the basic information on qualitative and quantitative analysis in CE is provided. Migration time and spectral data are described as the most important parameters used for identification of compounds. The parameters that negatively influence qualitative analysis are briefly mentioned. In the quantitative analysis section the external standard and internal standard calibration methods are described. Variables influencing peak height and peak area in capillary electrophoresis are briefly summarized. Also, a discussion on electrodisperssion and its influence on a observed peak shape is provided.

  10. Quantitative histogram analysis of images

    NASA Astrophysics Data System (ADS)

    Holub, Oliver; Ferreira, Sérgio T.

    2006-11-01

    A routine for histogram analysis of images has been written in the object-oriented, graphical development environment LabVIEW. The program converts an RGB bitmap image into an intensity-linear greyscale image according to selectable conversion coefficients. This greyscale image is subsequently analysed by plots of the intensity histogram and probability distribution of brightness, and by calculation of various parameters, including average brightness, standard deviation, variance, minimal and maximal brightness, mode, skewness and kurtosis of the histogram and the median of the probability distribution. The program allows interactive selection of specific regions of interest (ROI) in the image and definition of lower and upper threshold levels (e.g., to permit the removal of a constant background signal). The results of the analysis of multiple images can be conveniently saved and exported for plotting in other programs, which allows fast analysis of relatively large sets of image data. The program file accompanies this manuscript together with a detailed description of two application examples: The analysis of fluorescence microscopy images, specifically of tau-immunofluorescence in primary cultures of rat cortical and hippocampal neurons, and the quantification of protein bands by Western-blot. The possibilities and limitations of this kind of analysis are discussed. Program summaryTitle of program: HAWGC Catalogue identifier: ADXG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXG_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Mobile Intel Pentium III, AMD Duron Installations: No installation necessary—Executable file together with necessary files for LabVIEW Run-time engine Operating systems or monitors under which the program has been tested: WindowsME/2000/XP Programming language used: LabVIEW 7.0 Memory required to execute with typical data:˜16MB for starting and ˜160MB used for

  11. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics

    PubMed Central

    Yang, Chenxi; Zhong, Xuefei; Li, Lingjun

    2016-01-01

    Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enables comprehensive profiling of the phosphoproteome and facilitates deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009–2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis. PMID:24687451

  12. Mobile app-based quantitative scanometric analysis.

    PubMed

    Wong, Jessica X H; Liu, Frank S F; Yu, Hua-Zhong

    2014-12-16

    The feasibility of using smartphones and other mobile devices as the detection platform for quantitative scanometric assays is demonstrated. The different scanning modes (color, grayscale, black/white) and grayscale converting protocols (average, weighted average/luminosity, and software specific) have been compared in determining the optical darkness ratio (ODR) values, a conventional quantitation measure for scanometric assays. A mobile app was developed to image and analyze scanometric assays, as demonstrated by paper-printed tests and a biotin-streptavidin assay on a plastic substrate. Primarily for ODR analysis, the app has been shown to perform as well as a traditional desktop scanner, augmenting that smartphones (and other mobile devices) promise to be a practical platform for accurate, quantitative chemical analysis and medical diagnostics. PMID:25420202

  13. Phosphoproteomic Analyses Reveal Early Signaling Events in the Osmotic Stress Response1[W][OPEN

    PubMed Central

    E. Stecker, Kelly; Minkoff, Benjamin B.; Sussman, Michael R.

    2014-01-01

    Elucidating how plants sense and respond to water loss is important for identifying genetic and chemical interventions that may help sustain crop yields in water-limiting environments. Currently, the molecular mechanisms involved in the initial perception and response to dehydration are not well understood. Modern mass spectrometric methods for quantifying changes in the phosphoproteome provide an opportunity to identify key phosphorylation events involved in this process. Here, we have used both untargeted and targeted isotope-assisted mass spectrometric methods of phosphopeptide quantitation to characterize proteins in Arabidopsis (Arabidopsis thaliana) whose degree of phosphorylation is rapidly altered by hyperosmotic treatment. Thus, protein phosphorylation events responsive to 5 min of 0.3 m mannitol treatment were first identified using 15N metabolic labeling and untargeted mass spectrometry with a high-resolution ion-trap instrument. The results from these discovery experiments were then validated using targeted Selected Reaction Monitoring mass spectrometry with a triple quadrupole. Targeted Selected Reaction Monitoring experiments were conducted with plants treated under nine different environmental perturbations to determine whether the phosphorylation changes were specific for osmosignaling or involved cross talk with other signaling pathways. The results indicate that regulatory proteins such as members of the mitogen-activated protein kinase family are specifically phosphorylated in response to osmotic stress. Proteins involved in 5′ messenger RNA decapping and phosphatidylinositol 3,5-bisphosphate synthesis were also identified as targets of dehydration-induced phosphoregulation. The results of these experiments demonstrate the utility of targeted phosphoproteomic analysis in understanding protein regulation networks and provide new insight into cellular processes involved in the osmotic stress response. PMID:24808101

  14. Quantitative WDS analysis using electron probe microanalyzer

    SciTech Connect

    Ul-Hamid, Anwar . E-mail: anwar@kfupm.edu.sa; Tawancy, Hani M.; Mohammed, Abdul-Rashid I.; Al-Jaroudi, Said S.; Abbas, Nureddin M.

    2006-04-15

    In this paper, the procedure for conducting quantitative elemental analysis by ZAF correction method using wavelength dispersive X-ray spectroscopy (WDS) in an electron probe microanalyzer (EPMA) is elaborated. Analysis of a thermal barrier coating (TBC) system formed on a Ni-based single crystal superalloy is presented as an example to illustrate the analysis of samples consisting of a large number of major and minor elements. The analysis was performed by known standards and measured peak-to-background intensity ratios. The procedure for using separate set of acquisition conditions for major and minor element analysis is explained and its importance is stressed.

  15. Phosphoproteomic Analyses Reveal Signaling Pathways That Facilitate Lytic Gammaherpesvirus Replication

    PubMed Central

    Stahl, James A.; Chavan, Shweta S.; Sifford, Jeffrey M.; MacLeod, Veronica; Voth, Daniel E.; Edmondson, Ricky D.; Forrest, J. Craig

    2013-01-01

    Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides – a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication. PMID:24068923

  16. Seniors' Online Communities: A Quantitative Content Analysis

    ERIC Educational Resources Information Center

    Nimrod, Galit

    2010-01-01

    Purpose: To examine the contents and characteristics of seniors' online communities and to explore their potential benefits to older adults. Design and Methods: Quantitative content analysis of a full year's data from 14 leading online communities using a novel computerized system. The overall database included 686,283 messages. Results: There was…

  17. Method and apparatus for chromatographic quantitative analysis

    DOEpatents

    Fritz, James S.; Gjerde, Douglas T.; Schmuckler, Gabriella

    1981-06-09

    An improved apparatus and method for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single eluent and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.

  18. Quantitative Proteomics Analysis of Leukemia Cells.

    PubMed

    Halbach, Sebastian; Dengjel, Jörn; Brummer, Tilman

    2016-01-01

    Chronic myeloid leukemia (CML) is driven by the oncogenic fusion kinase Bcr-Abl, which organizes its own signaling network with various proteins. These proteins, their interactions, and their role in relevant signaling pathways can be analyzed by quantitative mass spectrometry (MS) approaches in various models systems, e.g., in cell culture models. In this chapter, we describe in detail immunoprecipitations and quantitative proteomics analysis using stable isotope labeling by amino acids in cell culture (SILAC) of components of the Bcr-Abl signaling pathway in the human CML cell line K562. PMID:27581145

  19. Quantitative analysis of blood vessel geometry

    NASA Astrophysics Data System (ADS)

    Fuhrman, Michael G.; Abdul-Karim, Othman; Shah, Sujal; Gilbert, Steven G.; Van Bibber, Richard

    2001-07-01

    Re-narrowing or restenosis of a human coronary artery occurs within six months in one third of balloon angioplasty procedures. Accurate and repeatable quantitative analysis of vessel shape is important to characterize the progression and type of restenosis, and to evaluate effects new therapies might have. A combination of complicated geometry and image variability, and the need for high resolution and large image size makes visual/manual analysis slow, difficult, and prone to error. The image processing and analysis described here was developed to automate feature extraction of the lumen, internal elastic lamina, neointima, external elastic lamina, and tunica adventitia and to enable an objective, quantitative definition of blood vessel geometry. The quantitative geometrical analysis enables the measurement of several features including perimeter, area, and other metrics of vessel damage. Automation of feature extraction creates a high throughput capability that enables analysis of serial sections for more accurate measurement of restenosis dimensions. Measurement results are input into a relational database where they can be statistically analyzed compared across studies. As part of the integrated process, results are also imprinted on the images themselves to facilitate auditing of the results. The analysis is fast, repeatable and accurate while allowing the pathologist to control the measurement process.

  20. Comprehensive quantitative analysis on privacy leak behavior.

    PubMed

    Fan, Lejun; Wang, Yuanzhuo; Jin, Xiaolong; Li, Jingyuan; Cheng, Xueqi; Jin, Shuyuan

    2013-01-01

    Privacy information is prone to be leaked by illegal software providers with various motivations. Privacy leak behavior has thus become an important research issue of cyber security. However, existing approaches can only qualitatively analyze privacy leak behavior of software applications. No quantitative approach, to the best of our knowledge, has been developed in the open literature. To fill this gap, in this paper we propose for the first time four quantitative metrics, namely, possibility, severity, crypticity, and manipulability, for privacy leak behavior analysis based on Privacy Petri Net (PPN). In order to compare the privacy leak behavior among different software, we further propose a comprehensive metric, namely, overall leak degree, based on these four metrics. Finally, we validate the effectiveness of the proposed approach using real-world software applications. The experimental results demonstrate that our approach can quantitatively analyze the privacy leak behaviors of various software types and reveal their characteristics from different aspects. PMID:24066046

  1. Comprehensive Quantitative Analysis on Privacy Leak Behavior

    PubMed Central

    Fan, Lejun; Wang, Yuanzhuo; Jin, Xiaolong; Li, Jingyuan; Cheng, Xueqi; Jin, Shuyuan

    2013-01-01

    Privacy information is prone to be leaked by illegal software providers with various motivations. Privacy leak behavior has thus become an important research issue of cyber security. However, existing approaches can only qualitatively analyze privacy leak behavior of software applications. No quantitative approach, to the best of our knowledge, has been developed in the open literature. To fill this gap, in this paper we propose for the first time four quantitative metrics, namely, possibility, severity, crypticity, and manipulability, for privacy leak behavior analysis based on Privacy Petri Net (PPN). In order to compare the privacy leak behavior among different software, we further propose a comprehensive metric, namely, overall leak degree, based on these four metrics. Finally, we validate the effectiveness of the proposed approach using real-world software applications. The experimental results demonstrate that our approach can quantitatively analyze the privacy leak behaviors of various software types and reveal their characteristics from different aspects. PMID:24066046

  2. Quantitative Proteomic Analysis of the Human Nucleolus.

    PubMed

    Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2016-01-01

    Recent years have witnessed spectacular progress in the field of mass spectrometry (MS)-based quantitative proteomics, including advances in instrumentation, chromatography, sample preparation methods, and experimental design for multidimensional analyses. It is now possible not only to identify most of the protein components of a cell proteome in a single experiment, but also to describe additional proteome dimensions, such as protein turnover rates, posttranslational modifications, and subcellular localization. Furthermore, by comparing the proteome at different time points, it is possible to create a "time-lapse" view of proteome dynamics. By combining high-throughput quantitative proteomics with detailed subcellular fractionation protocols and data analysis techniques it is also now possible to characterize in detail the proteomes of specific subcellular organelles, providing important insights into cell regulatory mechanisms and physiological responses. In this chapter we present a reliable workflow and protocol for MS-based analysis and quantitation of the proteome of nucleoli isolated from human cells. The protocol presented is based on a SILAC analysis of human MCF10A-Src-ER cells with analysis performed on a Q-Exactive Plus Orbitrap MS instrument (Thermo Fisher Scientific). The subsequent chapter describes how to process the resulting raw MS files from this experiment using MaxQuant software and data analysis procedures to evaluate the nucleolar proteome using customized R scripts. PMID:27576725

  3. Phosphoproteomics in translational research: a sarcoma perspective.

    PubMed

    Noujaim, J; Payne, L S; Judson, I; Jones, R L; Huang, P H

    2016-05-01

    Phosphoproteomics has been extensively used as a preclinical research tool to characterize the phosphorylated components of the cancer proteome. Advances in the field have yielded insights into new drug targets, mechanisms of disease progression and drug resistance, and biomarker discovery. However, application of this technology to clinical research has been challenging because of practical issues relating to specimen integrity and tumour heterogeneity. Beyond these limitations, phosphoproteomics has the potential to play a pivotal role in translational studies and contribute to advances in different tumour groups, including rare disease sites like sarcoma. In this review, we propose that deploying phosphoproteomic technologies in translational research may facilitate the identification of better defined predictive biomarkers for patient stratification, inform drug selection in umbrella trials and identify new combinations to overcome drug resistance. We provide an overview of current phosphoproteomic technologies, such as affinity-based assays and mass spectrometry-based approaches, and discuss their advantages and limitations. We use sarcoma as an example to illustrate the current challenges in evaluating targeted kinase therapies in clinical trials. We then highlight useful lessons from preclinical studies in sarcoma biology to demonstrate how phosphoproteomics may address some of these challenges. Finally, we conclude by offering a perspective and list the key measures required to translate and benchmark a largely preclinical technology into a useful tool for translational research. PMID:26802162

  4. Quantitative image analysis of celiac disease

    PubMed Central

    Ciaccio, Edward J; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H

    2015-01-01

    We outline the use of quantitative techniques that are currently used for analysis of celiac disease. Image processing techniques can be useful to statistically analyze the pixular data of endoscopic images that is acquired with standard or videocapsule endoscopy. It is shown how current techniques have evolved to become more useful for gastroenterologists who seek to understand celiac disease and to screen for it in suspected patients. New directions for focus in the development of methodology for diagnosis and treatment of this disease are suggested. It is evident that there are yet broad areas where there is potential to expand the use of quantitative techniques for improved analysis in suspected or known celiac disease patients. PMID:25759524

  5. Using Qualitative Hazard Analysis to Guide Quantitative Safety Analysis

    NASA Technical Reports Server (NTRS)

    Shortle, J. F.; Allocco, M.

    2005-01-01

    Quantitative methods can be beneficial in many types of safety investigations. However, there are many difficulties in using quantitative m ethods. Far example, there may be little relevant data available. This paper proposes a framework for using quantitative hazard analysis to prioritize hazard scenarios most suitable for quantitative mziysis. The framework first categorizes hazard scenarios by severity and likelihood. We then propose another metric "modeling difficulty" that desc ribes the complexity in modeling a given hazard scenario quantitatively. The combined metrics of severity, likelihood, and modeling difficu lty help to prioritize hazard scenarios for which quantitative analys is should be applied. We have applied this methodology to proposed concepts of operations for reduced wake separation for airplane operatio ns at closely spaced parallel runways.

  6. Quantitative resilience analysis through control design.

    SciTech Connect

    Sunderland, Daniel; Vugrin, Eric D.; Camphouse, Russell Chris

    2009-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. Few quantitative resilience methods exist, and those existing approaches tend to be rather simplistic and, hence, not capable of sufficiently assessing all aspects of critical infrastructure resilience. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the development of quantitative resilience through application of control design methods. Specifically, we conducted a survey of infrastructure models to assess what types of control design might be applicable for critical infrastructure resilience assessment. As a result of this survey, we developed a decision process that directs the resilience analyst to the control method that is most likely applicable to the system under consideration. Furthermore, we developed optimal control strategies for two sets of representative infrastructure systems to demonstrate how control methods could be used to assess the resilience of the systems to catastrophic disruptions. We present recommendations for future work to continue the development of quantitative resilience analysis methods.

  7. Quantitative Bias Analysis in Regulatory Settings.

    PubMed

    Lash, Timothy L; Fox, Matthew P; Cooney, Darryl; Lu, Yun; Forshee, Richard A

    2016-07-01

    Nonrandomized studies are essential in the postmarket activities of the US Food and Drug Administration, which, however, must often act on the basis of imperfect data. Systematic errors can lead to inaccurate inferences, so it is critical to develop analytic methods that quantify uncertainty and bias and ensure that these methods are implemented when needed. "Quantitative bias analysis" is an overarching term for methods that estimate quantitatively the direction, magnitude, and uncertainty associated with systematic errors influencing measures of associations. The Food and Drug Administration sponsored a collaborative project to develop tools to better quantify the uncertainties associated with postmarket surveillance studies used in regulatory decision making. We have described the rationale, progress, and future directions of this project. PMID:27196652

  8. Phosphoproteome Dynamics Upon Changes in Plant Water Status Reveal Early Events Associated With Rapid Growth Adjustment in Maize Leaves*

    PubMed Central

    Bonhomme, Ludovic; Valot, Benoît; Tardieu, François; Zivy, Michel

    2012-01-01

    Plant growth adjustment during water deficit is a crucial adaptive response. The rapid fine-tuned control achieved at the post-translational level is believed to be of considerable importance for regulating early changes in plant growth reprogramming. Aiming at a better understanding of early responses to contrasting plant water statuses, we carried out a survey of the protein phosphorylation events in the growing zone of maize leaves upon a range of water regimes. In this study, the impact of mild and severe water deficits were evaluated in comparison with constant optimal watering and with recovery periods lasting 5, 10, 20, 30, 45, and 60 min. Using four biological replicates per treatment and a robust quantitative phosphoproteomic methodology based on stable-isotope labeling, we identified 3664 unique phosphorylation sites on 2496 proteins. The abundance of nearly 1250 phosphorylated peptides was reproducibly quantified and profiled with high confidence among treatments. A total of 138 phosphopeptides displayed highly significant changes according to water regimes and enabled to identify specific patterns of response to changing plant water statuses. Further quantification of protein amounts emphasized that most phosphorylation changes did not reflect protein abundance variation. During water deficit and recovery, extensive changes in phosphorylation status occurred in critical regulators directly or indirectly involved in plant growth and development. These included proteins influencing epigenetic control, gene expression, cell cycle-dependent processes and phytohormone-mediated responses. Some of the changes depended on stress intensity whereas others depended on rehydration duration, including rapid recoveries that occurred as early as 5 or 10 mins after rewatering. By combining a physiological approach and a quantitative phosphoproteomic analysis, this work provides new insights into the in vivo early phosphorylation events triggered by rapid changes in

  9. Accuracy in Quantitative 3D Image Analysis

    PubMed Central

    Bassel, George W.

    2015-01-01

    Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539

  10. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.

    PubMed

    Yu, Li-Rong; Veenstra, Timothy

    2013-01-01

    Identification of phosphoproteins or phosphopeptides as cancer biomarkers is an emerging field in phosphoproteomics. Owing to the low stoichiometric nature of protein phosphorylation, phosphoproteins or phosphopeptides must be enriched prior to downstream mass spectrometry analysis. Titanium dioxide (TiO2) has been prevalently used to enrich phosphopeptides from complex proteome samples due to its high affinity for phosphopeptides, and the method is straightforward. In this protocol, an offline phosphopeptide enrichment procedure using TiO2 columns is described. Peptides from a proteome lysate are loaded onto a TiO2 column in an acidic environment, followed by column washing with aqueous, organic, and ammonium glutamate (NH4Glu) buffers at acidic conditions. Phosphopeptides are eluted using an ammonia solution at high pH. Use of NH4Glu significantly reduces nonspecific bindings while a high recovery rate (84 %) of phosphopeptides is retained. The method is optimized for large-scale phosphoproteomic analysis and phosphoprotein biomarker discovery starting from sub-milligram or milligrams of proteome samples. PMID:23625397

  11. Phosphoproteomic analysis of anaplastic lymphoma kinase (ALK) downstream signaling pathways identifies signal transducer and activator of transcription 3 as a functional target of activated ALK in neuroblastoma cells

    PubMed Central

    Sattu, Kamaraj; Hochgräfe, Falko; Wu, Jianmin; Umapathy, Ganesh; Schönherr, Christina; Ruuth, Kristina; Chand, Damini; Witek, Barbara; Fuchs, James; Li, Pui-Kai; Hugosson, Fredrik; Daly, Roger J; Palmer, Ruth H; Hallberg, Bengt

    2013-01-01

    Activation of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is a key oncogenic mechanism in a growing number of tumor types. In the majority of cases, ALK is activated by fusion with a dimerizing partner protein as a result of chromosomal translocation events, most studied in the case of the nucleophosmin–ALK and echinoderm microtubule-associated protein-like 4–ALK oncoproteins. It is now also appreciated that the full-length ALK receptor can be activated by point mutations and by deletions within the extracellular domain, such as those observed in neuroblastoma. Several studies have employed phosphoproteomics approaches to find substrates of ALK fusion proteins. In this study, we used MS-based phosphotyrosine profiling to characterize phosphotyrosine signaling events associated with the full-length ALK receptor. A number of previously identified and novel targets were identified. One of these, signal transducer and activator of transcription 3 (STAT3), has previously been observed to be activated in response to oncogenic ALK signaling, but the significance of this in signaling from the full-length ALK receptor has not been explored further. We show here that activated ALK robustly activates STAT3 on Tyr705 in a number of independent neuroblastoma cell lines. Furthermore, knockdown of STAT3 by RNA interference resulted in a reduction in myelocytomatosis neuroblastom (MYCN) protein levels downstream of ALK signaling. These observations, together with a decreased level of MYCN and inhibition of neuroblastoma cell growth in the presence of STAT3 inhibitors, suggest that activation of STAT3 is important for ALK signaling activity in neuroblastoma. PMID:23889739

  12. Quantitative architectural analysis of bronchial intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Guillaud, Martial; MacAulay, Calum E.; Le Riche, Jean C.; Dawe, Chris; Korbelik, Jagoda; Lam, Stephen

    2000-04-01

    Considerable variation exists among pathologist in the interpretation of intraepithelial neoplasia making it difficult to determine the natural history of these lesion and to establish management guidelines for chemoprevention. The aim of the study is to evaluate architectural features of pre-neoplastic progression in lung cancer, and to search for a correlation between architectural index and conventional pathology. Quantitative architectural analysis was performed on a series of normal lung biopsies and Carcinoma In Situ (CIS). Centers of gravity of the nuclei within a pre-defined region of interest were used as seeds to generate a Voronoi Diagram. About 30 features derived from the Voronoi diagram, its dual the Delaunay tessellation, and the Minimum Spanning Tree were extracted. A discriminant analysis was performed to separate between the two groups. The architectural Index was calculated for each of the bronchial biopsies that were interpreted as hyperplasia, metaplasia, mild, moderate or severe dysplasia by conventional histopathology criteria. As a group, lesions classified as CIS by conventional histopathology criteria could be distinguished from dysplasia using the architectural Index. Metaplasia was distinct from hyperplasia and hyperplasia from normal. There was overlap between severe and moderate dysplasia but mild dysplasia could be distinguished form moderate dysplasia. Bronchial intraepithelial neoplastic lesions can be degraded objectively by architectural features. Combination of architectural features and nuclear morphometric features may improve the quantitation of the changes occurring during the intra-epithelial neoplastic process.

  13. Quantitative interactome analysis reveals a chemoresistant edgotype

    PubMed Central

    Chavez, Juan D.; Schweppe, Devin K.; Eng, Jimmy K.; Zheng, Chunxiang; Taipale, Alex; Zhang, Yiyi; Takara, Kohji; Bruce, James E.

    2015-01-01

    Chemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes. The ability to understand how protein interaction networks adapt to yield new function or alter phenotype is limited by the inability to determine structural and protein interaction changes on a proteomic scale. Here, chemical crosslinking and mass spectrometry were employed to quantify changes in protein structures and interactions in multidrug-resistant human carcinoma cells. Quantitative analysis of the largest crosslinking-derived, protein interaction network comprising 1,391 crosslinked peptides allows for ‘edgotype' analysis in a cell model of chemoresistance. We detect consistent changes to protein interactions and structures, including those involving cytokeratins, topoisomerase-2-alpha, and post-translationally modified histones, which correlate with a chemoresistant phenotype. PMID:26235782

  14. Quantitative interactome analysis reveals a chemoresistant edgotype.

    PubMed

    Chavez, Juan D; Schweppe, Devin K; Eng, Jimmy K; Zheng, Chunxiang; Taipale, Alex; Zhang, Yiyi; Takara, Kohji; Bruce, James E

    2015-01-01

    Chemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes. The ability to understand how protein interaction networks adapt to yield new function or alter phenotype is limited by the inability to determine structural and protein interaction changes on a proteomic scale. Here, chemical crosslinking and mass spectrometry were employed to quantify changes in protein structures and interactions in multidrug-resistant human carcinoma cells. Quantitative analysis of the largest crosslinking-derived, protein interaction network comprising 1,391 crosslinked peptides allows for 'edgotype' analysis in a cell model of chemoresistance. We detect consistent changes to protein interactions and structures, including those involving cytokeratins, topoisomerase-2-alpha, and post-translationally modified histones, which correlate with a chemoresistant phenotype. PMID:26235782

  15. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  16. 15N labeled brain enables quantification of proteome and phosphoproteome in cultured primary neurons

    PubMed Central

    Liao, Lujian; Sando, Richard C.; Farnum, John B.; Vanderklish, Peter W.; Maximov, Anton; Yates, John R.

    2011-01-01

    Terminally differentiated primary cells represent a valuable in vitro model to study signaling events associated within a specific tissue. Quantitative proteomic methods using metabolic labeling in primary cells encounter labeling efficiency issues hindering the use of these cells. Here we developed a method to quantify the proteome and phosphoproteome of cultured neurons using 15N labeled brain tissue as an internal standard, and applied this method to determine how an inhibitor of an excitatory neural transmitter receptor, phencyclidine (PCP), affects the global phosphoproteome of cortical neurons. We identified over 10,000 phosphopeptides and made accurate quantitative measurements of the neuronal phosphoproteome after neuronal inhibition. We show that short PCP treatments lead to changes in phosphorylation for 7% of neuronal phosphopeptides and that prolonged PCP treatment alters the total levels of several proteins essential for synaptic transmission and plasticity and leads to a massive reduction in the synaptic strength of inhibitory synapses. The results provide valuable insights into the dynamics of molecular networks implicated in PCP-mediated NMDA receptor inhibition and sensorimotor deficits. PMID:22070516

  17. Materials characterization through quantitative digital image analysis

    SciTech Connect

    J. Philliber; B. Antoun; B. Somerday; N. Yang

    2000-07-01

    A digital image analysis system has been developed to allow advanced quantitative measurement of microstructural features. This capability is maintained as part of the microscopy facility at Sandia, Livermore. The system records images digitally, eliminating the use of film. Images obtained from other sources may also be imported into the system. Subsequent digital image processing enhances image appearance through the contrast and brightness adjustments. The system measures a variety of user-defined microstructural features--including area fraction, particle size and spatial distributions, grain sizes and orientations of elongated particles. These measurements are made in a semi-automatic mode through the use of macro programs and a computer controlled translation stage. A routine has been developed to create large montages of 50+ separate images. Individual image frames are matched to the nearest pixel to create seamless montages. Results from three different studies are presented to illustrate the capabilities of the system.

  18. Quantitative proteomic analysis of single pancreatic islets

    PubMed Central

    Waanders, Leonie F.; Chwalek, Karolina; Monetti, Mara; Kumar, Chanchal; Lammert, Eckhard; Mann, Matthias

    2009-01-01

    Technological developments make mass spectrometry (MS)-based proteomics a central pillar of biochemical research. MS has been very successful in cell culture systems, where sample amounts are not limiting. To extend its capabilities to extremely small, physiologically distinct cell types isolated from tissue, we developed a high sensitivity chromatographic system that measures nanogram protein mixtures for 8 h with very high resolution. This technology is based on splitting gradient effluents into a capture capillary and provides an inherent technical replicate. In a single analysis, this allowed us to characterize kidney glomeruli isolated by laser capture microdissection to a depth of more than 2,400 proteins. From pooled pancreatic islets of Langerhans, another type of “miniorgan,” we obtained an in-depth proteome of 6,873 proteins, many of them involved in diabetes. We quantitatively compared the proteome of single islets, containing 2,000–4,000 cells, treated with high or low glucose levels, and covered most of the characteristic functions of beta cells. Our ultrasensitive analysis recapitulated known hyperglycemic changes but we also find components up-regulated such as the mitochondrial stress regulator Park7. Direct proteomic analysis of functionally distinct cellular structures opens up perspectives in physiology and pathology. PMID:19846766

  19. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars.

    PubMed

    Pi, Erxu; Qu, Liqun; Hu, Jianwen; Huang, Yingying; Qiu, Lijuan; Lu, Hongfei; Jiang, Bo; Liu, Cong; Peng, Tingting; Zhao, Ying; Wang, Huizhong; Tsai, Sau-Na; Ngai, Saiming; Du, Liqun

    2016-01-01

    Understanding molecular mechanisms underlying plant salinity tolerance provides valuable knowledgebase for effective crop improvement through genetic engineering. Current proteomic technologies, which support reliable and high-throughput analyses, have been broadly used for exploring sophisticated molecular networks in plants. In the current study, we compared phosphoproteomic and proteomic changes in roots of different soybean seedlings of a salt-tolerant cultivar (Wenfeng07) and a salt-sensitive cultivar (Union85140) induced by salt stress. The root samples of Wenfeng07 and Union85140 at three-trifoliate stage were collected at 0 h, 0.5 h, 1 h, 4 h, 12 h, 24 h, and 48 h after been treated with 150 mm NaCl. LC-MS/MS based phosphoproteomic analysis of these samples identified a total of 2692 phosphoproteins and 5509 phosphorylation sites. Of these, 2344 phosphoproteins containing 3744 phosphorylation sites were quantitatively analyzed. Our results showed that 1163 phosphorylation sites were differentially phosphorylated in the two compared cultivars. Among them, 10 MYB/MYB transcription factor like proteins were identified with fluctuating phosphorylation modifications at different time points, indicating that their crucial roles in regulating flavonol accumulation might be mediated by phosphorylated modifications. In addition, the protein expression profiles of these two cultivars were compared using LC MS/MS based shotgun proteomic analysis, and expression pattern of all the 89 differentially expressed proteins were independently confirmed by qRT-PCR. Interestingly, the enzymes involved in chalcone metabolic pathway exhibited positive correlations with salt tolerance. We confirmed the functional relevance of chalcone synthase, chalcone isomerase, and cytochrome P450 monooxygenase genes using soybean composites and Arabidopsis thaliana mutants, and found that their salt tolerance were positively regulated by chalcone synthase, but was negatively regulated by

  20. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress

    PubMed Central

    Kanshin, Evgeny; Kubiniok, Peter; Thattikota, Yogitha; D'Amours, Damien; Thibault, Pierre

    2015-01-01

    The ability of cells and organisms to survive and function through changes in temperature evolved from their specific adaptations to nonoptimal growth conditions. Responses to elevated temperatures have been studied in yeast and other model organisms using transcriptome profiling and provided valuable biological insights on molecular mechanisms involved in stress tolerance and adaptation to adverse environment. In contrast, little is known about rapid signaling events associated with changes in temperature. To gain a better understanding of global changes in protein phosphorylation in response to heat and cold, we developed a high temporal resolution phosphoproteomics protocol to study cell signaling in Saccharomyces cerevisiae. The method allowed for quantitative analysis of phosphodynamics on 2,777 phosphosites from 1,228 proteins. The correlation of kinetic profiles between kinases and their substrates provided a predictive tool to identify new putative substrates for kinases such as Cdc28 and PKA. Cell cycle analyses revealed that the increased phosphorylation of Cdc28 at its inhibitory site Y19 during heat shock is an adaptive response that delays cell cycle progression under stress conditions. The cellular responses to heat and cold were associated with extensive changes in phosphorylation on proteins implicated in transcription, protein folding and degradation, cell cycle regulation and morphogenesis. PMID:26040289

  1. Integrative Phosphoproteomics Links IL-23R Signaling with Metabolic Adaptation in Lymphocytes.

    PubMed

    Lochmatter, Corinne; Fischer, Roman; Charles, Philip D; Yu, Zhanru; Powrie, Fiona; Kessler, Benedikt M

    2016-01-01

    Interleukin (IL)-23 mediated signal transduction represents a major molecular mechanism underlying the pathology of inflammatory bowel disease, Crohn's disease and ulcerative colitis. In addition, emerging evidence supports the role of IL-23-driven Th17 cells in inflammation. Components of the IL-23 signaling pathway, such as IL-23R, JAK2 and STAT3, have been characterized, but elements unique to this network as compared to other interleukins have not been readily explored. In this study, we have undertaken an integrative phosphoproteomics approach to better characterise downstream signaling events. To this end, we performed and compared phosphopeptide and phosphoprotein enrichment methodologies after activation of T lymphocytes by IL-23. We demonstrate the complementary nature of the two phosphoenrichment approaches by maximizing the capture of phosphorylation events. A total of 8202 unique phosphopeptides, and 4317 unique proteins were identified, amongst which STAT3, PKM2, CDK6 and LASP-1 showed induction of specific phosphorylation not readily observed after IL-2 stimulation. Interestingly, quantitative analysis revealed predominant phosphorylation of pre-existing STAT3 nuclear subsets in addition to translocation of phosphorylated STAT3 within 30 min after IL-23 stimulation. After IL-23R activation, a small subset of PKM2 also translocates to the nucleus and may contribute to STAT3 phosphorylation, suggesting multiple cellular responses including metabolic adaptation. PMID:27080861

  2. Integrative Phosphoproteomics Links IL-23R Signaling with Metabolic Adaptation in Lymphocytes

    PubMed Central

    Lochmatter, Corinne; Fischer, Roman; Charles, Philip D.; Yu, Zhanru; Powrie, Fiona; Kessler, Benedikt M.

    2016-01-01

    Interleukin (IL)-23 mediated signal transduction represents a major molecular mechanism underlying the pathology of inflammatory bowel disease, Crohn’s disease and ulcerative colitis. In addition, emerging evidence supports the role of IL-23-driven Th17 cells in inflammation. Components of the IL-23 signaling pathway, such as IL-23R, JAK2 and STAT3, have been characterized, but elements unique to this network as compared to other interleukins have not been readily explored. In this study, we have undertaken an integrative phosphoproteomics approach to better characterise downstream signaling events. To this end, we performed and compared phosphopeptide and phosphoprotein enrichment methodologies after activation of T lymphocytes by IL-23. We demonstrate the complementary nature of the two phosphoenrichment approaches by maximizing the capture of phosphorylation events. A total of 8202 unique phosphopeptides, and 4317 unique proteins were identified, amongst which STAT3, PKM2, CDK6 and LASP-1 showed induction of specific phosphorylation not readily observed after IL-2 stimulation. Interestingly, quantitative analysis revealed predominant phosphorylation of pre-existing STAT3 nuclear subsets in addition to translocation of phosphorylated STAT3 within 30 min after IL-23 stimulation. After IL-23R activation, a small subset of PKM2 also translocates to the nucleus and may contribute to STAT3 phosphorylation, suggesting multiple cellular responses including metabolic adaptation. PMID:27080861

  3. Applying Knowledge of Quantitative Design and Analysis

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    This study compared and contrasted two quantitative scholarly articles in relation to their research designs. Their designs were analyzed by the comparison of research references and research specific vocabulary to describe how various research methods were used. When researching and analyzing quantitative scholarly articles, it is imperative to…

  4. Error Propagation Analysis for Quantitative Intracellular Metabolomics

    PubMed Central

    Tillack, Jana; Paczia, Nicole; Nöh, Katharina; Wiechert, Wolfgang; Noack, Stephan

    2012-01-01

    Model-based analyses have become an integral part of modern metabolic engineering and systems biology in order to gain knowledge about complex and not directly observable cellular processes. For quantitative analyses, not only experimental data, but also measurement errors, play a crucial role. The total measurement error of any analytical protocol is the result of an accumulation of single errors introduced by several processing steps. Here, we present a framework for the quantification of intracellular metabolites, including error propagation during metabolome sample processing. Focusing on one specific protocol, we comprehensively investigate all currently known and accessible factors that ultimately impact the accuracy of intracellular metabolite concentration data. All intermediate steps are modeled, and their uncertainty with respect to the final concentration data is rigorously quantified. Finally, on the basis of a comprehensive metabolome dataset of Corynebacterium glutamicum, an integrated error propagation analysis for all parts of the model is conducted, and the most critical steps for intracellular metabolite quantification are detected. PMID:24957773

  5. Quantitative methods for ecological network analysis.

    PubMed

    Ulanowicz, Robert E

    2004-12-01

    The analysis of networks of ecological trophic transfers is a useful complement to simulation modeling in the quest for understanding whole-ecosystem dynamics. Trophic networks can be studied in quantitative and systematic fashion at several levels. Indirect relationships between any two individual taxa in an ecosystem, which often differ in either nature or magnitude from their direct influences, can be assayed using techniques from linear algebra. The same mathematics can also be employed to ascertain where along the trophic continuum any individual taxon is operating, or to map the web of connections into a virtual linear chain that summarizes trophodynamic performance by the system. Backtracking algorithms with pruning have been written which identify pathways for the recycle of materials and energy within the system. The pattern of such cycling often reveals modes of control or types of functions exhibited by various groups of taxa. The performance of the system as a whole at processing material and energy can be quantified using information theory. In particular, the complexity of process interactions can be parsed into separate terms that distinguish organized, efficient performance from the capacity for further development and recovery from disturbance. Finally, the sensitivities of the information-theoretic system indices appear to identify the dynamical bottlenecks in ecosystem functioning. PMID:15556474

  6. Identification of the PLK2-dependent phosphopeptidome by quantitative proteomics [corrected].

    PubMed

    Franchin, Cinzia; Cesaro, Luca; Pinna, Lorenzo A; Arrigoni, Giorgio; Salvi, Mauro

    2014-01-01

    Polo-like kinase 2 (PLK2) has been recently recognized as the major enzyme responsible for phosphorylation of α-synuclein at S129 in vitro and in vivo, suggesting that this kinase may play a key role in the pathogenesis of Parkinson's disease and other synucleinopathies. Moreover PLK2 seems to be implicated in cell division, oncogenesis, and synaptic regulation of the brain. However little is known about the phosphoproteome generated by PLK2 and, consequently the overall impact of PLK2 on cellular signaling. To fill this gap we exploited an approach based on in vitro kinase assay and quantitative phosphoproteomics. A proteome-derived peptide library obtained by digestion of undifferentiated human neuroblastoma cell line was exhaustively dephosphorylated by lambda phosphatase followed by incubation with or without PLK2 recombinant kinase. Stable isotope labeling based quantitative phosphoproteomics was applied to identify the phosphosites generated by PLK2. A total of 98 unique PLK2-dependent phosphosites from 89 proteins were identified by LC-MS/MS. Analysis of the primary structure of the identified phosphosites allowed the detailed definition of the kinase specificity and the compilation of a list of potential PLK2 targets among those retrieved in PhosphositePlus, a curated database of in cell/vivo phosphorylation sites. PMID:25338102

  7. SELPHI: correlation-based identification of kinase-associated networks from global phospho-proteomics data sets.

    PubMed

    Petsalaki, Evangelia; Helbig, Andreas O; Gopal, Anjali; Pasculescu, Adrian; Roth, Frederick P; Pawson, Tony

    2015-07-01

    While phospho-proteomics studies have shed light on the dynamics of cellular signaling, they mainly describe global effects and rarely explore mechanistic details, such as kinase/substrate relationships. Tools and databases, such as NetworKIN and PhosphoSitePlus, provide valuable regulatory details on signaling networks but rely on prior knowledge. They therefore provide limited information on less studied kinases and fewer unexpected relationships given that better studied signaling events can mask condition- or cell-specific 'network wiring'. SELPHI is a web-based tool providing in-depth analysis of phospho-proteomics data that is intuitive and accessible to non-bioinformatics experts. It uses correlation analysis of phospho-sites to extract kinase/phosphatase and phospho-peptide associations, and highlights the potential flow of signaling in the system under study. We illustrate SELPHI via analysis of phospho-proteomics data acquired in the presence of erlotinib-a tyrosine kinase inhibitor (TKI)-in cancer cells expressing TKI-resistant and -sensitive variants of the Epidermal Growth Factor Receptor. In this data set, SELPHI revealed information overlooked by the reporting study, including the known role of MET and EPHA2 kinases in conferring resistance to erlotinib in TKI sensitive strains. SELPHI can significantly enhance the analysis of phospho-proteomics data contributing to improved understanding of sample-specific signaling networks. SELPHI is freely available via http://llama.mshri.on.ca/SELPHI. PMID:25948583

  8. SELPHI: correlation-based identification of kinase-associated networks from global phospho-proteomics data sets

    PubMed Central

    Petsalaki, Evangelia; Helbig, Andreas O.; Gopal, Anjali; Pasculescu, Adrian; Roth, Frederick P.; Pawson, Tony

    2015-01-01

    While phospho-proteomics studies have shed light on the dynamics of cellular signaling, they mainly describe global effects and rarely explore mechanistic details, such as kinase/substrate relationships. Tools and databases, such as NetworKIN and PhosphoSitePlus, provide valuable regulatory details on signaling networks but rely on prior knowledge. They therefore provide limited information on less studied kinases and fewer unexpected relationships given that better studied signaling events can mask condition- or cell-specific ‘network wiring’. SELPHI is a web-based tool providing in-depth analysis of phospho-proteomics data that is intuitive and accessible to non-bioinformatics experts. It uses correlation analysis of phospho-sites to extract kinase/phosphatase and phospho-peptide associations, and highlights the potential flow of signaling in the system under study. We illustrate SELPHI via analysis of phospho-proteomics data acquired in the presence of erlotinib—a tyrosine kinase inhibitor (TKI)—in cancer cells expressing TKI-resistant and -sensitive variants of the Epidermal Growth Factor Receptor. In this data set, SELPHI revealed information overlooked by the reporting study, including the known role of MET and EPHA2 kinases in conferring resistance to erlotinib in TKI sensitive strains. SELPHI can significantly enhance the analysis of phospho-proteomics data contributing to improved understanding of sample-specific signaling networks. SELPHI is freely available via http://llama.mshri.on.ca/SELPHI. PMID:25948583

  9. Some Epistemological Considerations Concerning Quantitative Analysis

    ERIC Educational Resources Information Center

    Dobrescu, Emilian

    2008-01-01

    This article presents the author's address at the 2007 "Journal of Applied Quantitative Methods" ("JAQM") prize awarding festivity. The festivity was included in the opening of the 4th International Conference on Applied Statistics, November 22, 2008, Bucharest, Romania. In the address, the author reflects on three theses that question the…

  10. Quantitative Analysis of Radar Returns from Insects

    NASA Technical Reports Server (NTRS)

    Riley, J. R.

    1979-01-01

    When a number of flying insects is low enough to permit their resolution as individual radar targets, quantitative estimates of their aerial density are developed. Accurate measurements of heading distribution using a rotating polarization radar to enhance the wingbeat frequency method of identification are presented.

  11. Phosphoproteomics technologies and applications in plant biology research

    PubMed Central

    Li, Jinna; Silva-Sanchez, Cecilia; Zhang, Tong; Chen, Sixue; Li, Haiying

    2015-01-01

    Protein phosphorylation has long been recognized as an essential mechanism to regulate many important processes of plant life. However, studies on phosphorylation mediated signaling events in plants are challenged with low stoichiometry and dynamic nature of phosphorylated proteins. Significant advances in mass spectrometry based phosphoproteomics have taken place in recent decade, including phosphoprotein/phosphopeptide enrichment, detection and quantification, and phosphorylation site localization. This review describes a variety of separation and enrichment methods for phosphoproteins and phosphopeptides, the applications of technological innovations in plant phosphoproteomics, and highlights significant achievement of phosphoproteomics in the areas of plant signal transduction, growth and development. PMID:26136758

  12. Phosphoproteome of Human Glioblastoma Initiating Cells Reveals Novel Signaling Regulators Encoded by the Transcriptome

    PubMed Central

    Kozuka-Hata, Hiroko; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Ao-Kondo, Hiroko; Tsumoto, Kouhei; Akiyama, Tetsu; Oyama, Masaaki

    2012-01-01

    Background Glioblastoma is one of the most aggressive tumors with poor prognosis. Although various studies have been performed so far, there are not effective treatments for patients with glioblastoma. Methodology/Principal Findings In order to systematically elucidate the aberrant signaling machinery activated in this malignant brain tumor, we investigated phosphoproteome dynamics of glioblastoma initiating cells using high-resolution nanoflow LC-MS/MS system in combination with SILAC technology. Through phosphopeptide enrichment by titanium dioxide beads, a total of 6,073 phosphopeptides from 2,282 phosphorylated proteins were identified based on the two peptide fragmentation methodologies of collision induced dissociation and higher-energy C-trap dissociation. The SILAC-based quantification described 516 up-regulated and 275 down-regulated phosphorylation sites upon epidermal growth factor stimulation, including the comprehensive status of the phosphorylation sites on stem cell markers such as nestin. Very intriguingly, our in-depth phosphoproteome analysis led to identification of novel phosphorylated molecules encoded by the undefined sequence regions of the human transcripts, one of which was regulated upon external stimulation in human glioblastoma initiating cells. Conclusions/Significance Our result unveils an expanded diversity of the regulatory phosphoproteome defined by the human transcriptome. PMID:22912867

  13. Quantitative analysis of comparative genomic hybridization

    SciTech Connect

    Manoir, S. du; Bentz, M.; Joos, S. |

    1995-01-01

    Comparative genomic hybridization (CGH) is a new molecular cytogenetic method for the detection of chromosomal imbalances. Following cohybridization of DNA prepared from a sample to be studied and control DNA to normal metaphase spreads, probes are detected via different fluorochromes. The ratio of the test and control fluorescence intensities along a chromosome reflects the relative copy number of segments of a chromosome in the test genome. Quantitative evaluation of CGH experiments is required for the determination of low copy changes, e.g., monosomy or trisomy, and for the definition of the breakpoints involved in unbalanced rearrangements. In this study, a program for quantitation of CGH preparations is presented. This program is based on the extraction of the fluorescence ratio profile along each chromosome, followed by averaging of individual profiles from several metaphase spreads. Objective parameters critical for quantitative evaluations were tested, and the criteria for selection of suitable CGH preparations are described. The granularity of the chromosome painting and the regional inhomogeneity of fluorescence intensities in metaphase spreads proved to be crucial parameters. The coefficient of variation of the ratio value for chromosomes in balanced state (CVBS) provides a general quality criterion for CGH experiments. Different cutoff levels (thresholds) of average fluorescence ratio values were compared for their specificity and sensitivity with regard to the detection of chromosomal imbalances. 27 refs., 15 figs., 1 tab.

  14. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  15. Structural and quantitative analysis of Equisetum alkaloids.

    PubMed

    Cramer, Luise; Ernst, Ludger; Lubienski, Marcus; Papke, Uli; Schiebel, Hans-Martin; Jerz, Gerold; Beuerle, Till

    2015-08-01

    Equisetum palustre L. is known for its toxicity for livestock. Several studies in the past addressed the isolation and identification of the responsible alkaloids. So far, palustrine (1) and N(5)-formylpalustrine (2) are known alkaloids of E. palustre. A HPLC-ESI-MS/MS method in combination with simple sample work-up was developed to identify and quantitate Equisetum alkaloids. Besides the two known alkaloids six related alkaloids were detected in different Equisetum samples. The structure of the alkaloid palustridiene (3) was derived by comprehensive 1D and 2D NMR experiments. N(5)-Acetylpalustrine (4) was also thoroughly characterized by NMR for the first time. The structure of N(5)-formylpalustridiene (5) is proposed based on mass spectrometry results. Twenty-two E. palustre samples were screened by a HPLC-ESI-MS/MS method after development of a simple sample work-up and in most cases the set of all eight alkaloids were detected in all parts of the plant. A high variability of the alkaloid content and distribution was found depending on plant organ, plant origin and season ranging from 88 to 597mg/kg dried weight. However, palustrine (1) and the alkaloid palustridiene (3) always represented the main alkaloids. For the first time, a comprehensive identification, quantitation and distribution of Equisetum alkaloids was achieved. PMID:25823584

  16. Joint association analysis of bivariate quantitative and qualitative traits.

    PubMed

    Yuan, Mengdie; Diao, Guoqing

    2011-01-01

    Univariate genome-wide association analysis of quantitative and qualitative traits has been investigated extensively in the literature. In the presence of correlated phenotypes, it is more intuitive to analyze all phenotypes simultaneously. We describe an efficient likelihood-based approach for the joint association analysis of quantitative and qualitative traits in unrelated individuals. We assume a probit model for the qualitative trait, under which an unobserved latent variable and a prespecified threshold determine the value of the qualitative trait. To jointly model the quantitative and qualitative traits, we assume that the quantitative trait and the latent variable follow a bivariate normal distribution. The latent variable is allowed to be correlated with the quantitative phenotype. Simultaneous modeling of the quantitative and qualitative traits allows us to make more precise inference on the pleiotropic genetic effects. We derive likelihood ratio tests for the testing of genetic effects. An application to the Genetic Analysis Workshop 17 data is provided. The new method yields reasonable power and meaningful results for the joint association analysis of the quantitative trait Q1 and the qualitative trait disease status at SNPs with not too small MAF. PMID:22373162

  17. Quantitative data analysis of ESAR data

    NASA Astrophysics Data System (ADS)

    Phruksahiran, N.; Chandra, M.

    2013-07-01

    A synthetic aperture radar (SAR) data processing uses the backscattered electromagnetic wave to map radar reflectivity of the ground surface. The polarization property in radar remote sensing was used successfully in many applications, especially in target decomposition. This paper presents a case study to the experiments which are performed on ESAR L-Band full polarized data sets from German Aerospace Center (DLR) to demonstrate the potential of coherent target decomposition and the possibility of using the weather radar measurement parameter, such as the differential reflectivity and the linear depolarization ratio to obtain the quantitative information of the ground surface. The raw data of ESAR has been processed by the SAR simulator developed using MATLAB program code with Range-Doppler algorithm.

  18. Qualitative and quantitative analysis of endocytic recycling.

    PubMed

    Reineke, James B; Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    Endocytosis, which encompasses the internalization and sorting of plasma membrane (PM) lipids and proteins to distinct membrane-bound intracellular compartments, is a highly regulated and fundamental cellular process by which eukaryotic cells dynamically regulate their PM composition. Indeed, endocytosis is implicated in crucial cellular processes that include proliferation, migration, and cell division as well as maintenance of tissue homeostasis such as apical-basal polarity. Once PM constituents have been taken up into the cell, either via clathrin-dependent endocytosis (CDE) or clathrin-independent endocytosis (CIE), they typically have two fates: degradation through the late-endosomal/lysosomal pathway or returning to the PM via endocytic recycling pathways. In this review, we will detail experimental procedures that allow for both qualitative and quantitative assessment of endocytic recycling of transmembrane proteins internalized by CDE and CIE, using the HeLa cervical cancer cell line as a model system. PMID:26360033

  19. Towards a Quantitative OCT Image Analysis

    PubMed Central

    Garcia Garrido, Marina; Beck, Susanne C.; Mühlfriedel, Regine; Julien, Sylvie; Schraermeyer, Ulrich; Seeliger, Mathias W.

    2014-01-01

    Background Optical coherence tomography (OCT) is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study. Methods Spectral-Domain Optical Coherence Tomography (OCT), confocal Scanning-La­ser Ophthalmoscopy (SLO), and Fluorescein Angiography (FA) were performed in mice (Mus musculus), gerbils (Gerbillus perpadillus), and cynomolgus monkeys (Macaca fascicularis) using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer). Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/). Results Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates) with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP), the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated. Conclusions OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions

  20. Quantitative infrared analysis of hydrogen fluoride

    SciTech Connect

    Manuta, D.M.

    1997-04-01

    This work was performed at the Portsmouth Gaseous Diffusion Plant where hydrogen fluoride is produced upon the hydrolysis of UF{sub 6}. This poses a problem for in this setting and a method for determining the mole percent concentration was desired. HF has been considered to be a non-ideal gas for many years. D. F. Smith utilized complex equations in his HF studies in the 1950s. We have evaluated HF behavior as a function of pressure from three different perspectives. (1) Absorbance at 3877 cm{sup -1} as a function of pressure for 100% HF. (2) Absorbance at 3877 cm{sup -1} as a function of increasing partial pressure HF. Total pressure = 300 mm HgA maintained with nitrogen. (3) Absorbance at 3877 cm{sup -1} for constant partial pressure HF. Total pressure is increased to greater than 800 mm HgA with nitrogen. These experiments have shown that at partial pressures up to 35mm HgA, HIF follows the ideal gas law. The absorbance at 3877 cm{sup -1} can be quantitatively analyzed via infrared methods.

  1. Quantitative multi-modal NDT data analysis

    SciTech Connect

    Heideklang, René; Shokouhi, Parisa

    2014-02-18

    A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundant information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity.

  2. Multiple quantitative trait analysis using bayesian networks.

    PubMed

    Scutari, Marco; Howell, Phil; Balding, David J; Mackay, Ian

    2014-09-01

    Models for genome-wide prediction and association studies usually target a single phenotypic trait. However, in animal and plant genetics it is common to record information on multiple phenotypes for each individual that will be genotyped. Modeling traits individually disregards the fact that they are most likely associated due to pleiotropy and shared biological basis, thus providing only a partial, confounded view of genetic effects and phenotypic interactions. In this article we use data from a Multiparent Advanced Generation Inter-Cross (MAGIC) winter wheat population to explore Bayesian networks as a convenient and interpretable framework for the simultaneous modeling of multiple quantitative traits. We show that they are equivalent to multivariate genetic best linear unbiased prediction (GBLUP) and that they are competitive with single-trait elastic net and single-trait GBLUP in predictive performance. Finally, we discuss their relationship with other additive-effects models and their advantages in inference and interpretation. MAGIC populations provide an ideal setting for this kind of investigation because the very low population structure and large sample size result in predictive models with good power and limited confounding due to relatedness. PMID:25236454

  3. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    PubMed Central

    Jensen, Thomas; Holten-Rossing, Henrik; Svendsen, Ida M H; Jacobsen, Christina; Vainer, Ben

    2016-01-01

    Background: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including staining may benefit. Methods: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm are presented. Results: It is shown that the autofluorescence intensity of unstained microsections at two different wavelengths is a suitable starting point for automated digital analysis of myocytes, fibrous tissue, lipofuscin, and the extracellular compartment. The output of the method is absolute quantitation along with accurate outlines of above-mentioned components. The digital quantitations are verified by comparison to point grid quantitations performed on the microsections after Van Gieson staining. Conclusion: The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue. The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework. PMID:27141321

  4. The quantitative failure of human reliability analysis

    SciTech Connect

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  5. A Quantitative Analysis of Countries' Research Strengths

    ERIC Educational Resources Information Center

    Saxena, Anurag; Brazer, S. David; Gupta, B. M.

    2009-01-01

    This study employed a multidimensional analysis to evaluate transnational patterns of scientific research to determine relative research strengths among widely varying nations. Findings from this study may inform national policy with regard to the most efficient use of scarce national research resources, including government and private funding.…

  6. A Comparative Assessment of Greek Universities' Efficiency Using Quantitative Analysis

    ERIC Educational Resources Information Center

    Katharaki, Maria; Katharakis, George

    2010-01-01

    In part due to the increased demand for higher education, typical evaluation frameworks for universities often address the key issue of available resource utilisation. This study seeks to estimate the efficiency of 20 public universities in Greece through quantitative analysis (including performance indicators, data envelopment analysis (DEA) and…

  7. Influence of corrosion layers on quantitative analysis

    NASA Astrophysics Data System (ADS)

    Denker, A.; Bohne, W.; Opitz-Coutureau, J.; Rauschenberg, J.; Röhrich, J.; Strub, E.

    2005-09-01

    Art historians and restorers in charge of ancient metal objects are often reluctant to remove the corrosion layer evolved over time, as this would change the appearance of the artefact dramatically. Therefore, when an elemental analysis of the objects is required, this has to be done by penetrating the corrosion layer. In this work the influence of corrosion was studied on Chinese and Roman coins, where removal of oxidized material was possible. Measurements on spots with and without corrosion are presented and the results discussed.

  8. Functional phosphoproteomic analysis reveals cold-shock domain protein A to be a Bcr-Abl effector-regulating proliferation and transformation in chronic myeloid leukemia

    PubMed Central

    Sears, D; Luong, P; Yuan, M; Nteliopoulos, G; Man, Y K S; Melo, J V; Basu, S

    2010-01-01

    One proposed strategy to suppress the proliferation of imatinib-resistant cells in chronic myeloid leukemia (CML) is to inhibit key proteins downstream of Bcr-Abl. The PI3K/Akt pathway is activated by Bcr-Abl and is specifically required for the growth of CML cells. To identify targets of this pathway, we undertook a proteomic screen and identified several proteins that differentially bind 14-3-3, dependent on Bcr-Abl kinase activity. An siRNA screen of candidates selected by bioinformatics analysis reveals cold-shock domain protein A (CSDA), shown previously to regulate cell cycle progression in epithelial cells, to be a positive regulator of proliferation in a CML cell line. We show that Akt can phosphorylate the serine 134 residue of CSDA but, downstream of Bcr-Abl activity, this modification is mediated through the activation of MEK/p90 ribosomal S6 kinase (RSK) signaling. Inhibition of RSK, similarly to treatment with imatinib, blocked proliferation specifically in Bcr-Abl-positive leukemia cell lines, as well as cells from CML patients. Furthermore, these primary CML cells showed an increase in CSDA phosphorylation. Expression of a CSDA phospho-deficient mutant resulted in the decrease of Bcr-Abl-dependent transformation in Rat1 cells. Our results support a model whereby phosphorylation of CSDA downstream of Bcr-Abl enhances proliferation in CML cells to drive leukemogenesis. PMID:21368869

  9. Quantitative transcriptome analysis using RNA-seq.

    PubMed

    Külahoglu, Canan; Bräutigam, Andrea

    2014-01-01

    RNA-seq has emerged as the technology of choice to quantify gene expression. This technology is a convenient accurate tool to quantify diurnal changes in gene expression, gene discovery, differential use of promoters, and splice variants for all genes expressed in a single tissue. Thus, RNA-seq experiments provide sequence information and absolute expression values about transcripts in addition to relative quantification available with microarrays or qRT-PCR. The depth of information by sequencing requires careful assessment of RNA intactness and DNA contamination. Although the RNA-seq is comparatively recent, a standard analysis framework has emerged with the packages of Bowtie2, TopHat, and Cufflinks. With rising popularity of RNA-seq tools have become manageable for researchers without much bioinformatical knowledge or programming skills. Here, we present a workflow for a RNA-seq experiment from experimental planning to biological data extraction. PMID:24792045

  10. Quantitative surface spectroscopic analysis of multicomponent polymers

    NASA Astrophysics Data System (ADS)

    Zhuang, Hengzhong

    Angle-dependent electron spectroscopy for chemical analysis (ESCA) has been successfully used to examine the surface compositional gradient of a multicomponent polymer. However, photoelectron intensities detected at each take-off angle of ESCA measurements are convoluted signals. The convoluted nature of the signal distorts depth profiles for samples having compositional gradients. To recover the true concentration profiles for the samples, a deconvolution program has been described in Chapter 2. The compositional profiles of two classes of important multicomponent polymers, i.e., poly(dimethysiloxane urethane) (PU-DMS) segmented copolymers and fluorinated poly(amide urethane) block copolymers, are achieved using this program. The effects of the polymer molecular structure and the processing variation on its surface compositional profile have been studied. Besides surface composition, it is desirable to know whether the distribution of segment or block lengths at the surface is different than in the bulk, because this aspect of surface structure may lead to properties different than that predicted simply by knowledge of the surface composition and the bulk structure. In Chapter 3, we pioneered the direct determination of the distribution of polydimethylsiloxane (PDMS) segment lengths at the surface of PU-DMS using time-of-flight secondary ion mass spectrometry (SUMS). Exciting preliminary results are provided: for the thick film of PU-DMS with nominal MW of PDMS = 1000, the distribution of the PDMS segment lengths at the surface is nearly identical to that in the bulk, whereas in the case of the thick films of PU-DMS with nominal MW of PDMS = 2400, only those PDMS segments with MW of ca. 1000 preferentially segregated at the surface. As a potential minimal fouling coating or biocompatible cardio-vascular materials, PU-DMS copolymers eventually come into contact with water once in use. Could such an environmental change (from air to aqueous) induce any undesirable

  11. Uncertainty of quantitative microbiological methods of pharmaceutical analysis.

    PubMed

    Gunar, O V; Sakhno, N G

    2015-12-30

    The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods. PMID:26456251

  12. Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen.

    PubMed

    Kozlov, Sergei V; Waardenberg, Ashley J; Engholm-Keller, Kasper; Arthur, Jonathan W; Graham, Mark E; Lavin, Martin

    2016-03-01

    Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM

  13. [Qualitative and quantitative gamma-hydroxybutyrate analysis].

    PubMed

    Petek, Maja Jelena; Vrdoljak, Ana Lucić

    2006-12-01

    Gamma-hydroxybutyrate (GHB) is a naturally occurring compound present in the brain and peripheral tissues of mammals. It is a minor metabolite and precursor of gamma-aminobutyric acid (GABA). Just as GABA, GHB is believed to play a role in neurotransmission. GHB was first synthesized in vitro in 1960, when it revealed depressive and hypnotic effects on the central nervous system. In 1960s it was used as an anaesthetic and later as an alternative to anabolic steroids, in order to enhance muscle growth. However, after it was shown that it caused strong physical dependence and severe side effects, GHB was banned. For the last fifteen years, GHB has been abused for its intoxicating effects such as euphoria, reduced inhibitions and sedation. Illicitly it is available as white powder or as clear liquid. Paradoxically GHB can easily be manufactured from its precursor gamma-butyrolactone (GBL), which has not yet been banned. Because of many car accidents and criminal acts in which it is involved, GHB has become an important object of forensic laboratory analysis. This paper describes gas and liquid chromatography, infrared spectroscopy, microscopy, colourimetry and nuclear magnetic resonance as methods for detection and quantification of GHB in urine and illicit products. PMID:17265679

  14. Quantitative analysis of in vivo cell proliferation.

    PubMed

    Cameron, Heather A

    2006-11-01

    Injection and immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU) has become the standard method for studying the birth and survival of neurons, glia, and other cell types in the nervous system. BrdU, a thymidine analog, becomes stably incorporated into DNA during the S-phase of mitosis. Because DNA containing BrdU can be specifically recognized by antibodies, this method allows dividing cells to be marked at any given time and then identified at time points from a few minutes to several years later. BrdU immunohistochemistry is suitable for cell counting to examine the regulation of cell proliferation and cell fate. It can be combined with labeling by other antibodies, allowing confocal analysis of cell phenotype or expression of other proteins. The potential for nonspecific labeling and toxicity are discussed. Although BrdU immunohistochemistry has almost completely replaced tritiated thymidine autoradiography for labeling dividing cells, this method and situations in which it is still useful are also described. PMID:18428635

  15. Impact of TGF-b on breast cancer from a quantitative proteomic analysis.

    PubMed

    Ahn, Jaegyoon; Yoon, Youngmi; Yeu, Yunku; Lee, Hookuen; Park, Sanghyun

    2013-12-01

    There has been much active research in bioinformatics to support our understanding of oncogenesis and tumor progression. Most research relies on mRNA gene expression data to identify marker genes or cancer specific gene networks. However, considering that proteins are functional molecules that carry out the biological tasks of genes, they can be direct markers of biological functions. Protein abundance data on a genome scale have not been investigated in depth due to the limited availability of high throughput protein assays. This hindrance is chiefly caused by a lack of robust techniques such as RT-PCR (real-time polymerase chain reaction). In this study, we quantified phospho-proteomes of breast cancer cell lines treated with TGF-beta (transforming growth factor beta). To discover biomarkers and observe changes in the signaling pathways related to breast cancer, we applied a protein network-based approach to generate a classifier of subnet markers. The accuracy of that classifier outperformed other network-based classification algorithms, and current feature selection and classification algorithms. Moreover, many cancer-related proteins were identified in those sub-networks. Each sub-network provides functional insights and can serve as a potential marker for TGF-beta treatments. After interpreting the roles of proteins in sub-networks with various signaling pathways, we found strong candidate proteins and various related interactions that are expected to affect breast cancer outcomes. These results demonstrate the high quality of the quantified phospho-proteomes data and show that our network construction and classification method is appropriate for an analysis of this type of data. PMID:24290926

  16. Control of separation and quantitative analysis by GC-FTIR

    NASA Astrophysics Data System (ADS)

    Semmoud, A.; Huvenne, Jean P.; Legrand, P.

    1992-03-01

    Software for 3-D representations of the 'Absorbance-Wavenumber-Retention time' is used to control the quality of the GC separation. Spectral information given by the FTIR detection allows the user to be sure that a chromatographic peak is 'pure.' The analysis of peppermint essential oil is presented as an example. This assurance is absolutely required for quantitative applications. In these conditions, we have worked out a quantitative analysis of caffeine. Correlation coefficients between integrated absorbance measurements and concentration of caffeine are discussed at two steps of the data treatment.

  17. The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants

    PubMed Central

    He, Yikun

    2014-01-01

    The moss Physcomitrella patens is an ideal model plant to study plant developmental processes. To better understand the mechanism of protoplast regeneration, a phosphoproteome analysis was performed. Protoplasts were prepared from protonemata. By 4 d of protoplast regeneration, the first cell divisions had ensued. Through a highly selective titanium dioxide (TiO2)-based phosphopeptide enrichment method and mass spectrometric technology, more than 300 phosphoproteins were identified as protoplast regeneration responsive. Of these, 108 phosphoproteins were present on day 4 but not in fresh protoplasts or those cultured for 2 d. These proteins are catalogued here. They were involved in cell-wall metabolism, transcription, signal transduction, cell growth/division, and cell structure. These protein functions are related to cell morphogenesis, organogenesis, and development adjustment. This study presents a comprehensive analysis of phosphoproteome involved in protoplast regeneration and indicates that the mechanism of plant protoplast regeneration is similar to that of postembryonic development. PMID:24700621

  18. A quantitative analysis of the F18 flight control system

    NASA Technical Reports Server (NTRS)

    Doyle, Stacy A.; Dugan, Joanne B.; Patterson-Hine, Ann

    1993-01-01

    This paper presents an informal quantitative analysis of the F18 flight control system (FCS). The analysis technique combines a coverage model with a fault tree model. To demonstrate the method's extensive capabilities, we replace the fault tree with a digraph model of the F18 FCS, the only model available to us. The substitution shows that while digraphs have primarily been used for qualitative analysis, they can also be used for quantitative analysis. Based on our assumptions and the particular failure rates assigned to the F18 FCS components, we show that coverage does have a significant effect on the system's reliability and thus it is important to include coverage in the reliability analysis.

  19. Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2

    PubMed Central

    Humphrey, Sean J.; Yang, Guang; Yang, Pengyi; Fazakerley, Daniel J.; Stöckli, Jacqueline; Yang, Jean Y.; James, David E.

    2013-01-01

    Summary A major challenge of the post-genomics era is to define the connectivity of protein phosphorylation networks. Here, we quantitatively delineate the insulin signaling network in adipocytes by high-resolution mass spectrometry-based proteomics. These data reveal the complexity of intracellular protein phosphorylation. We identified 37,248 phosphorylation sites on 5,705 proteins in this single-cell type, with approximately 15% responding to insulin. We integrated these large-scale phosphoproteomics data using a machine learning approach to predict physiological substrates of several diverse insulin-regulated kinases. This led to the identification of an Akt substrate, SIN1, a core component of the mTORC2 complex. The phosphorylation of SIN1 by Akt was found to regulate mTORC2 activity in response to growth factors, revealing topological insights into the Akt/mTOR signaling network. The dynamic phosphoproteome described here contains numerous phosphorylation sites on proteins involved in diverse molecular functions and should serve as a useful functional resource for cell biologists. PMID:23684622

  20. The use of elemental mass spectrometry in phosphoproteomic applications.

    PubMed

    Maes, Evelyne; Tirez, Kristof; Baggerman, Geert; Valkenborg, Dirk; Schoofs, Liliane; Encinar, Jorge Ruiz; Mertens, Inge

    2016-01-01

    Reversible phosphorylation is one of the most important post-translational modifications in mammalian cells. Because this molecular switch is an important mechanism that diversifies and regulates proteins in cellular processes, knowledge about the extent and quantity of phosphorylation is very important to understand the complex cellular interplay. Although phosphoproteomics strategies are applied worldwide, they mainly include only molecular mass spectrometry (like MALDI or ESI)-based experiments. Although identification and relative quantification of phosphopeptides is straightforward with these techniques, absolute quantification is more complex and usually requires for specific isotopically phosphopeptide standards. However, the use of elemental mass spectrometry, and in particular inductively coupled plasma mass spectrometry (ICP-MS), in phosphoproteomics-based experiments, allow one to absolutely quantify phosphopeptides. Here, these phosphoproteomic applications with ICP-MS as elemental detector are reviewed. Pioneering work and recent developments in the field are both described. Additionally, the advantage of the parallel use of molecular and elemental mass spectrometry is stressed. PMID:25139451

  1. Quantitative transverse flow measurement using OCT speckle decorrelation analysis

    PubMed Central

    Liu, Xuan; Huang, Yong; Ramella-Roman, Jessica C.; Mathews, Scott A.; Kang, Jin U.

    2014-01-01

    We propose an inter-Ascan speckle decorrelation based method that can quantitatively assess blood flow normal to the direction of the OCT imaging beam. To validate this method, we performed a systematic study using both phantom and in vivo animal models. Results show that our speckle analysis method can accurately extract transverse flow speed with high spatial and temporal resolution. PMID:23455305

  2. Early Child Grammars: Qualitative and Quantitative Analysis of Morphosyntactic Production

    ERIC Educational Resources Information Center

    Legendre, Geraldine

    2006-01-01

    This article reports on a series of 5 analyses of spontaneous production of verbal inflection (tense and person-number agreement) by 2-year-olds acquiring French as a native language. A formal analysis of the qualitative and quantitative results is developed using the unique resources of Optimality Theory (OT; Prince & Smolensky, 2004). It is…

  3. Quantitating the subtleties of microglial morphology with fractal analysis

    PubMed Central

    Karperien, Audrey; Ahammer, Helmut; Jelinek, Herbert F.

    2013-01-01

    It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between “ramified resting” and “activated amoeboid” has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells). Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology. PMID:23386810

  4. Development of a quantitative autoradiography image analysis system

    SciTech Connect

    Hoffman, T.J.; Volkert, W.A.; Holmes R.A.

    1986-03-01

    A low cost image analysis system suitable for quantitative autoradiography (QAR) analysis has been developed. Autoradiographs can be digitized using a conventional Newvicon television camera interfaced to an IBM-XT microcomputer. Software routines for image digitization and capture permit the acquisition of thresholded or windowed images with graphic overlays that can be stored on storage devices. Image analysis software performs all background and non-linearity corrections prior to display as black/white or pseudocolor images. The relationship of pixel intensity to a standard radionuclide concentration allows the production of quantitative maps of tissue radiotracer concentrations. An easily modified subroutine is provided for adaptation to use appropriate operational equations when parameters such as regional cerebral blood flow or regional cerebral glucose metabolism are under investigation. This system could provide smaller research laboratories with the capability of QAR analysis at relatively low cost.

  5. Integrated approach using multistep enzyme digestion, TiO2 enrichment, and database search for in-depth phosphoproteomic profiling.

    PubMed

    Han, Dohyun; Jin, Jonghwa; Yu, Jiyoung; Kim, Kyunggon; Kim, Youngsoo

    2015-01-01

    Protein phosphorylation is a major PTM that regulates important cell signaling mechanisms. In-depth phosphoproteomic analysis provides a method of examining this complex interplay, yielding a mechanistic understanding of the cellular processes and pathogenesis of various diseases. However, the analysis of protein phosphorylation is challenging, due to the low concentration of phosphoproteins in highly complex mixtures and the high variability of phosphorylation sites. Thus, typical phosphoproteome studies that are based on MS require large amounts of starting material and extensive fractionation steps to reduce the sample complexity. To this end, we present a simple strategy (integrated multistep enzyme digestion, enrichment, database search-iMEED) to improve coverage of the phosphoproteome from lower sample amounts which is faster than other commonly used approaches. It is inexpensive and adaptable to low sample amounts and saves time and effort with regard to sample preparation and mass spectrometric analysis, allowing samples to be prepared without prefractionation or specific instruments, such as HPLC. All MS data have been deposited in the ProteomeXchange with identifier PXD001033 (http://proteomecentral.proteomexchange.org/dataset/PXD001033). PMID:25159016

  6. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics.

    PubMed

    Gladilovich, Vladimir; Greifenhagen, Uta; Sukhodolov, Nikolai; Selyutin, Artem; Singer, David; Thieme, Domenika; Majovsky, Petra; Shirkin, Alexey; Hoehenwarter, Wolfgang; Bonitenko, Evgeny; Podolskaya, Ekaterina; Frolov, Andrej

    2016-04-22

    Phosphorylation is the enzymatic reaction of site-specific phosphate transfer from energy-rich donors to the side chains of serine, threonine, tyrosine, and histidine residues in proteins. In living cells, reversible phosphorylation underlies a universal mechanism of intracellular signal transduction. In this context, analysis of the phosphoproteome is a prerequisite to better understand the cellular regulatory networks. Conventionally, due to the low contents of signaling proteins, selective enrichment of proteolytic phosphopeptides by immobilized metal affinity chromatography (IMAC) is performed prior to their LC-MS or -MS/MS analysis. Unfortunately, this technique still suffers from low selectivity and compromised analyte recoveries. To overcome these limitations, we propose IMAC systems comprising stationary phases based on collapsed Langmuir-Blodgett films of iron(III) stearate (FF) or iron(III) oxide nanoparticles (FO) and mobile phases relying on ammonia, piperidine and heptadecafluorooctanesulfonic acid (PFOS). Experiments with model phosphopeptides and phosphoprotein tryptic digests showed superior binding capacity, selectivity and recovery for both systems in comparison to the existing commercial analogs. As evidenced by LC-MS/MS analysis of the HeLa phosphoproteome, these features of the phases resulted in increased phosphoproteome coverage in comparison to the analogous commercially available phases, indicating that our IMAC protocol is a promising chromatographic tool for in-depth phosphoproteomic research. PMID:27016113

  7. Quantitative analysis of regional myocardial performance in coronary artery disease

    NASA Technical Reports Server (NTRS)

    Stewart, D. K.; Dodge, H. T.; Frimer, M.

    1975-01-01

    Findings from a group of subjects with significant coronary artery stenosis are given. A group of controls determined by use of a quantitative method for the study of regional myocardial performance based on the frame-by-frame analysis of biplane left ventricular angiograms are presented. Particular emphasis was placed upon the analysis of wall motion in terms of normalized segment dimensions, timing and velocity of contraction. The results were compared with the method of subjective assessment used clinically.

  8. Quantitative numerical analysis of transient IR-experiments on buildings

    NASA Astrophysics Data System (ADS)

    Maierhofer, Ch.; Wiggenhauser, H.; Brink, A.; Röllig, M.

    2004-12-01

    Impulse-thermography has been established as a fast and reliable tool in many areas of non-destructive testing. In recent years several investigations have been done to apply active thermography to civil engineering. For quantitative investigations in this area of application, finite difference calculations have been performed for systematic studies on the influence of environmental conditions, heating power and time, defect depth and size and thermal properties of the bulk material (concrete). The comparison of simulated and experimental data enables the quantitative analysis of defects.

  9. Scanning tunneling microscopy on rough surfaces-quantitative image analysis

    NASA Astrophysics Data System (ADS)

    Reiss, G.; Brückl, H.; Vancea, J.; Lecheler, R.; Hastreiter, E.

    1991-07-01

    In this communication, the application of scanning tunneling microscopy (STM) for a quantitative evaluation of roughnesses and mean island sizes of polycrystalline thin films is discussed. Provided strong conditions concerning the resolution are satisfied, the results are in good agreement with standard techniques as, for example, transmission electron microscopy. Owing to its high resolution, STM can supply a better characterization of surfaces than established methods, especially concerning the roughness. Microscopic interpretations of surface dependent physical properties thus can be considerably improved by a quantitative analysis of STM images.

  10. Quantitative analysis of culture using millions of digitized books

    PubMed Central

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva P.; Veres, Adrian; Gray, Matthew K.; Pickett, Joseph P.; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2011-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. ‘Culturomics’ extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities. PMID:21163965

  11. Improved method and apparatus for chromatographic quantitative analysis

    DOEpatents

    Fritz, J.S.; Gjerde, D.T.; Schmuckler, G.

    An improved apparatus and method are described for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single element and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.

  12. Quantitative analysis of culture using millions of digitized books.

    PubMed

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva Presser; Veres, Adrian; Gray, Matthew K; Pickett, Joseph P; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A; Aiden, Erez Lieberman

    2011-01-14

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of 'culturomics,' focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities. PMID:21163965

  13. An Initial Characterization of the Serum Phosphoproteome

    PubMed Central

    Zhou, Weidong; Ross, Mark M.; Tessitore, Alessandra; Ornstein, David; VanMeter, Amy; Liotta, Lance A.; Petricoin, Emanuel F.

    2009-01-01

    Phosphorylation is a dynamic post-translational protein modification that is the basis of a general mechanism for maintaining and regulating protein structure and function, and of course underpins key cellular processes through signal transduction. In the last several years, many studies of large-scale profiling of phosphoproteins and mapping phosphorylation sites from cultured human cells or tissues by mass spectrometry technique have been published; however, there is little information on general (or global) phosphoproteomic characterization and description of the content of phosphoprotein analytes within the circulation. Circulating phosphoproteins and phosphopeptides could represent important disease biomarkers because of their well-known importance in cellular function, and these analytes frequently are mutated and activated in human diseases such as cancer. Here we report an initial attempt to characterize the phosphoprotein content of serum. To accomplish this, we developed a method in which phosphopeptides are enriched from digested serum proteins and analyzed by LC-MS/MS using LTQ-Orbitrap (CID) and LTQ-ETD mass spectrometers. Using this approach we identified ~100 unique phosphopeptides with stringent filtering criteria and a lower than 1% false discovery rate. PMID:19824718

  14. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins.

    PubMed

    Chao, Qing; Gao, Zhi-Fang; Wang, Yue-Feng; Li, Zhe; Huang, Xia-He; Wang, Ying-Chun; Mei, Ying-Chang; Zhao, Biligen-Gaowa; Li, Liang; Jiang, Yu-Bo; Wang, Bai-Chen

    2016-06-01

    Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future. PMID:26969016

  15. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    PubMed

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. PMID:24889823

  16. Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice.

    PubMed

    Contreras-Vallejos, Erick; Utreras, Elías; Bórquez, Daniel A; Prochazkova, Michaela; Terse, Anita; Jaffe, Howard; Toledo, Andrea; Arruti, Cristina; Pant, Harish C; Kulkarni, Ashok B; González-Billault, Christian

    2014-01-01

    Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5-/- embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5-/- brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate. PMID:24658276

  17. Some selected quantitative methods of thermal image analysis in Matlab.

    PubMed

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. PMID:26556680

  18. An Analysis of Critical Factors for Quantitative Immunoblotting

    PubMed Central

    Janes, Kevin A.

    2015-01-01

    Immunoblotting (also known as Western blotting) combined with digital image analysis can be a reliable method for analyzing the abundance of proteins and protein modifications, but not every immunoblot-analysis combination produces an accurate result. Here, I illustrate how sample preparation, protocol implementation, detection scheme, and normalization approach profoundly affect the quantitative performance of immunoblotting. This study implemented diagnostic experiments that assess an immunoblot-analysis workflow for accuracy and precision. The results showed that ignoring such diagnostics can lead to pseudoquantitative immunoblot data that dramatically overestimate or underestimate true differences in protein abundance. PMID:25852189

  19. An Improved Quantitative Analysis Method for Plant Cortical Microtubules

    PubMed Central

    Lu, Yi; Huang, Chenyang; Wang, Jia; Shang, Peng

    2014-01-01

    The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition (BEMD) algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function 1 (IMF1) image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix (GLCM) algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to distinguish different images of Arabidopsis microtubules. The results showed that the effect of BEMD algorithm on edge preserving accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules. In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules in cell life activities but also supplies references for other similar studies. PMID:24744684

  20. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis. PMID:27358910

  1. Quantitative risk analysis of oil storage facilities in seismic areas.

    PubMed

    Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto

    2005-08-31

    Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference. PMID:15908107

  2. Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis.

    PubMed

    Gooding, J Justin; Gaus, Katharina

    2016-09-12

    Measurement science has been converging to smaller and smaller samples, such that it is now possible to detect single molecules. This Review focuses on the next generation of analytical tools that combine single-molecule detection with the ability to measure many single molecules simultaneously and/or process larger and more complex samples. Such single-molecule sensors constitute a new type of quantitative analytical tool, as they perform analysis by molecular counting and thus potentially capture the heterogeneity of the sample. This Review outlines the advantages and potential of these new, quantitative single-molecule sensors, the measurement challenges in making single-molecule devices suitable for analysis, the inspiration biology provides for overcoming these challenges, and some of the solutions currently being explored. PMID:27444661

  3. In-depth Analyses of Kinase-dependent Tyrosine Phosphoproteomes Based on Metal Ion-functionalized Soluble Nanopolymers*

    PubMed Central

    Iliuk, Anton B.; Martin, Victoria A.; Alicie, Bethany M.; Geahlen, Robert L.; Tao, W. Andy

    2010-01-01

    The ability to obtain in-depth understanding of signaling networks in cells is a key objective of systems biology research. Such ability depends largely on unbiased and reproducible analysis of phosphoproteomes. We present here a novel proteomics tool, polymer-based metal ion affinity capture (PolyMAC), for the highly efficient isolation of phosphopeptides to facilitate comprehensive phosphoproteome analyses. This approach uses polyamidoamine dendrimers multifunctionalized with titanium ions and aldehyde groups to allow the chelation and subsequent isolation of phosphopeptides in a homogeneous environment. Compared with current strategies based on solid phase micro- and nanoparticles, PolyMAC demonstrated outstanding reproducibility, exceptional selectivity, fast chelation times, and high phosphopeptide recovery from complex mixtures. Using the PolyMAC method combined with antibody enrichment, we identified 794 unique sites of tyrosine phosphorylation in malignant breast cancer cells, 514 of which are dependent on the expression of Syk, a protein-tyrosine kinase with unusual properties of a tumor suppressor. The superior sensitivity of PolyMAC allowed us to identify novel components in a variety of major signaling networks, including cell migration and apoptosis. PolyMAC offers a powerful and widely applicable tool for phosphoproteomics and molecular signaling. PMID:20562096

  4. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  5. Quantitative analysis of chaotic synchronization by means of coherence

    NASA Astrophysics Data System (ADS)

    Shabunin, A.; Astakhov, V.; Kurths, J.

    2005-07-01

    We use an index of chaotic synchronization based on the averaged coherence function for the quantitative analysis of the process of the complete synchronization loss in unidirectionally coupled oscillators and maps. We demonstrate that this value manifests different stages of the synchronization breaking. It is invariant to time delay and insensitive to small noise and distortions, which can influence the accessible signals at measurements. Peculiarities of the synchronization destruction in maps and oscillators are investigated.

  6. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    NASA Astrophysics Data System (ADS)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  7. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.

    PubMed

    Batth, Tanveer S; Francavilla, Chiara; Olsen, Jesper V

    2014-12-01

    Protein phosphorylation is an important post-translational modification (PTM) involved in embryonic development, adult homeostasis, and disease. Over the past decade, several advances have been made in liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based technologies to identify thousands of phosphorylation sites. However, in-depth phosphoproteomics often require off-line enrichment and fractionation techniques. In this study, we provide a detailed analysis of the physicochemical characteristics of phosphopeptides, which have been fractionated by off-line high-pH chromatography (HpH) before subsequent titanium dioxide (TiO2) enrichment and LC-MS/MS analysis. Our results demonstrate that HpH is superior to standard strong-cation exchange (SCX) fractionation in the total number of phosphopeptides detected when analyzing the same number of fractions by identical LC-MS/MS gradients. From 14 HpH fractions, we routinely identified over 30,000 unique phosphopeptide variants, which is more than twice the number of that obtained from SCX fractionation. HpH chromatography displayed an exceptional ability to fractionate singly phosphorylated peptides, with minor benefits for doubly phosphorylated peptides over that with SCX. Further optimizations in the pooling and concatenation strategy increased the total number of multiphosphorylated peptides detected after HpH fractionation. In conclusion, we provide a basic framework and resource for performing in-depth phosphoproteome studies utilizing off-line basic reversed-phased fractionation. Raw data is available at ProteomeXchange (PXD001404). PMID:25338131

  8. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    SciTech Connect

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Hu, Shijie; Huang, Hanlin; Ichihara, Gaku

    2015-01-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn{sup 2+})-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn{sup 2+}-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation

  9. Quantitation of glycerophosphorylcholine by flow injection analysis using immobilized enzymes.

    PubMed

    Mancini, A; Del Rosso, F; Roberti, R; Caligiana, P; Vecchini, A; Binaglia, L

    1996-09-20

    A method for quantitating glycerophosphorylcholine by flow injection analysis is reported in the present paper. Glycerophosphorylcholine phosphodiesterase and choline oxidase, immobilized on controlled porosity glass beads, are packed in a small reactor inserted in a flow injection manifold. When samples containing glycerophosphorylcholine are injected, glycerophosphorylcholine is hydrolyzed into choline and sn-glycerol-3-phosphate. The free choline produced in this reaction is oxidized to betain and hydrogen peroxide. Hydrogen peroxide is detected amperometrically. Quantitation of glycerophosphorylcholine in samples containing choline and phosphorylcholine is obtained inserting ahead of the reactor a small column packed with a mixed bed ion exchange resin. The time needed for each determination does not exceed one minute. The present method, applied to quantitate glycerophosphorylcholine in samples of seminal plasma, gave results comparable with those obtained using the standard enzymatic-spectrophotometric procedure. An alternative procedure, making use of co-immobilized glycerophosphorylcholine phosphodiesterase and glycerol-3-phosphate oxidase for quantitating glycerophosphorylcholine, glycerophosphorylethanolamine and glycerophosphorylserine is also described. PMID:8905629

  10. Quantitative Motion Analysis in Two and Three Dimensions.

    PubMed

    Wessels, Deborah J; Lusche, Daniel F; Kuhl, Spencer; Scherer, Amanda; Voss, Edward; Soll, David R

    2016-01-01

    This chapter describes 2D quantitative methods for motion analysis as well as 3D motion analysis and reconstruction methods. Emphasis is placed on the analysis of dynamic cell shape changes that occur through extension and retraction of force generating structures such as pseudopodia and lamellipodia. Quantitative analysis of these structures is an underutilized tool in the field of cell migration. Our intent, therefore, is to present methods that we developed in an effort to elucidate mechanisms of basic cell motility, directed cell motion during chemotaxis, and metastasis. We hope to demonstrate how application of these methods can more clearly define alterations in motility that arise due to specific mutations or disease and hence, suggest mechanisms or pathways involved in normal cell crawling and treatment strategies in the case of disease. In addition, we present a 4D tumorigenesis model for high-resolution analysis of cancer cells from cell lines and human cancer tissue in a 3D matrix. Use of this model led to the discovery of the coalescence of cancer cell aggregates and unique cell behaviors not seen in normal cells or normal tissue. Graphic illustrations to visually display and quantify cell shape are presented along with algorithms and formulae for calculating select 2D and 3D motion analysis parameters. PMID:26498790

  11. Brief Isoflurane Anesthesia Produces Prominent Phosphoproteomic Changes in the Adult Mouse Hippocampus.

    PubMed

    Kohtala, Samuel; Theilmann, Wiebke; Suomi, Tomi; Wigren, Henna-Kaisa; Porkka-Heiskanen, Tarja; Elo, Laura L; Rokka, Anne; Rantamäki, Tomi

    2016-06-15

    Anesthetics are widely used in medical practice and experimental research, yet the neurobiological basis governing their effects remains obscure. We have here used quantitative phosphoproteomics to investigate the protein phosphorylation changes produced by a 30 min isoflurane anesthesia in the adult mouse hippocampus. Altogether 318 phosphorylation alterations in total of 237 proteins between sham and isoflurane anesthesia were identified. Many of the hit proteins represent primary pharmacological targets of anesthetics. However, findings also enlighten the role of several other proteins-implicated in various biological processes including neuronal excitability, brain energy homeostasis, synaptic plasticity and transmission, and microtubule function-as putative (secondary) targets of anesthetics. In particular, isoflurane increases glycogen synthase kinase-3β (GSK3β) phosphorylation at the inhibitory Ser(9) residue and regulates the phosphorylation of multiple proteins downstream and upstream of this promiscuous kinase that regulate diverse biological functions. Along with confirmatory Western blot data for GSK3β and p44/42-MAPK (mitogen-activated protein kinase; reduced phosphorylation of the activation loop), we observed increased phosphorylation of microtubule-associated protein 2 (MAP2) on residues (Thr(1620,1623)) that have been shown to render its dissociation from microtubules and alterations in microtubule stability. We further demonstrate that diverse anesthetics (sevoflurane, urethane, ketamine) produce essentially similar phosphorylation changes on GSK3β, p44/p42-MAPK, and MAP2 as observed with isoflurane. Altogether our study demonstrates the potential of quantitative phosphoproteomics to study the mechanisms of anesthetics (and other drugs) in the mammalian brain and reveals how already a relatively brief anesthesia produces pronounced phosphorylation changes in multiple proteins in the central nervous system. PMID:27074656

  12. Quantitative multivariate analysis of dynamic multicellular morphogenic trajectories.

    PubMed

    White, Douglas E; Sylvester, Jonathan B; Levario, Thomas J; Lu, Hang; Streelman, J Todd; McDevitt, Todd C; Kemp, Melissa L

    2015-07-01

    Interrogating fundamental cell biology principles that govern tissue morphogenesis is critical to better understanding of developmental biology and engineering novel multicellular systems. Recently, functional micro-tissues derived from pluripotent embryonic stem cell (ESC) aggregates have provided novel platforms for experimental investigation; however elucidating the factors directing emergent spatial phenotypic patterns remains a significant challenge. Computational modelling techniques offer a unique complementary approach to probe mechanisms regulating morphogenic processes and provide a wealth of spatio-temporal data, but quantitative analysis of simulations and comparison to experimental data is extremely difficult. Quantitative descriptions of spatial phenomena across multiple systems and scales would enable unprecedented comparisons of computational simulations with experimental systems, thereby leveraging the inherent power of computational methods to interrogate the mechanisms governing emergent properties of multicellular biology. To address these challenges, we developed a portable pattern recognition pipeline consisting of: the conversion of cellular images into networks, extraction of novel features via network analysis, and generation of morphogenic trajectories. This novel methodology enabled the quantitative description of morphogenic pattern trajectories that could be compared across diverse systems: computational modelling of multicellular structures, differentiation of stem cell aggregates, and gastrulation of cichlid fish. Moreover, this method identified novel spatio-temporal features associated with different stages of embryo gastrulation, and elucidated a complex paracrine mechanism capable of explaining spatiotemporal pattern kinetic differences in ESC aggregates of different sizes. PMID:26095427

  13. Quantitative analysis of surface electromyography: Biomarkers for convulsive seizures.

    PubMed

    Beniczky, Sándor; Conradsen, Isa; Pressler, Ronit; Wolf, Peter

    2016-08-01

    Muscle activity during seizures is in electroencephalographical (EEG) praxis often considered an irritating artefact. This article discusses ways by surface electromyography (EMG) to turn it into a valuable tool of epileptology. Muscles are in direct synaptic contact with motor neurons. Therefore, EMG signals provide direct information about the electric activity in the motor cortex. Qualitative analysis of EMG has traditionally been a part of the long-term video-EEG recordings. Recent development in quantitative analysis of EMG signals yielded valuable information on the pathomechanisms of convulsive seizures, demonstrating that it was different from maximal voluntary contraction, and different from convulsive psychogenic non-epileptic seizures. Furthermore, the tonic phase of the generalised tonic-clonic seizures (GTCS) proved to have different quantitative features than tonic seizures. The high temporal resolution of EMG allowed detailed characterisation of temporal dynamics of the GTCS, suggesting that the same inhibitory mechanisms that try to prevent the build-up of the seizure activity, contribute to ending the seizure. These findings have clinical implications: the quantitative EMG features provided the pathophysiologic substrate for developing neurophysiologic biomarkers that accurately identify GTCS. This proved to be efficient both for seizure detection and for objective, automated distinction between convulsive and non-convulsive epileptic seizures. PMID:27212115

  14. Mini-Column Ion-Exchange Separation and Atomic Absorption Quantitation of Nickel, Cobalt, and Iron: An Undergraduate Quantitative Analysis Experiment.

    ERIC Educational Resources Information Center

    Anderson, James L.; And Others

    1980-01-01

    Presents an undergraduate quantitative analysis experiment, describing an atomic absorption quantitation scheme that is fast, sensitive and comparatively simple relative to other titration experiments. (CS)

  15. Quantitative Proteomics Reveals That Hsp90 Inhibition Preferentially Targets Kinases and the DNA Damage Response*

    PubMed Central

    Sharma, Kirti; Vabulas, R. Martin; Macek, Boris; Pinkert, Stefan; Cox, Jürgen; Mann, Matthias; Hartl, F. Ulrich

    2012-01-01

    Despite the increasing importance of heat shock protein 90 (Hsp90) inhibitors as chemotherapeutic agents in diseases such as cancer, their global effects on the proteome remain largely unknown. Here we use high resolution, quantitative mass spectrometry to map protein expression changes associated with the application of the Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG). In depth data obtained from five replicate SILAC experiments enabled accurate quantification of about 6,000 proteins in HeLa cells. As expected, we observed activation of a heat shock response with induced expression of molecular chaperones, which refold misfolded proteins, and proteases, which degrade irreparably damaged polypeptides. Despite the broad range of known Hsp90 substrates, bioinformatics analysis revealed that particular protein classes were preferentially affected. These prominently included proteins involved in the DNA damage response, as well as protein kinases and especially tyrosine kinases. We followed up on this observation with a quantitative phosphoproteomic analysis of about 4,000 sites, which revealed that Hsp90 inhibition leads to much more down- than up-regulation of the phosphoproteome (34% down versus 6% up). This study defines the cellular response to Hsp90 inhibition at the proteome level and sheds light on the mechanisms by which it can be used to target cancer cells. PMID:22167270

  16. Label-Free Technologies for Quantitative Multiparameter Biological Analysis

    PubMed Central

    Qavi, Abraham J.; Washburn, Adam L.; Byeon, Ji-Yeon; Bailey, Ryan C.

    2009-01-01

    In the post-genomic era, information is king and information-rich technologies are critically important drivers in both fundamental biology and medicine. It is now known that single-parameter measurements provide only limited detail and that quantitation of multiple biomolecular signatures can more fully illuminate complex biological function. Label-free technologies have recently attracted significant interest for sensitive and quantitative multiparameter analysis of biological systems. There are several different classes of label-free sensors that are currently being developed both in academia and in industry. In this critical review, we highlight, compare, and contrast some of the more promising approaches. We will describe the fundamental principles of these different methodologies and discuss advantages and disadvantages that might potentially help one in selecting the appropriate technology for a given bioanalytical application. PMID:19221722

  17. Biomechanical cell analysis using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wax, Adam; Park, Han Sang; Eldridge, William J.

    2016-03-01

    Quantitative phase imaging provides nanometer scale sensitivity and has been previously used to study spectral and temporal characteristics of individual cells in vitro, especially red blood cells. Here we extend this work to study the mechanical responses of individual cells due to the influence of external stimuli. Cell stiffness may be characterized by analyzing the inherent thermal fluctuations of cells but by applying external stimuli, additional information can be obtained. The time dependent response of cells due to external shear stress is examined with high speed quantitative phase imaging and found to exhibit characteristics that relate to their stiffness. However, analysis beyond the cellular scale also reveals internal organization of the cell and its modulation due to pathologic processes such as carcinogenesis. Further studies with microfluidic platforms point the way for using this approach in high throughput assays.

  18. Microcomputer-based digital image analysis system for quantitative autoradiography

    SciTech Connect

    Hoffman, T.J.; Volkert, W.A.; Holmes, R.A.

    1988-01-01

    A computerized image processing system utilizing an IBM-XT personal microcomputer with the capability of performing quantitative cerebral autoradiography is described. All of the system components are standard computer and optical hardware that can be easily assembled. The system has 512 horizontal by 512 vertical axis resolution with 8 bits per pixel (256 gray levels). Unlike other dedicated image processing systems, the IBM-XT permits the assembly of an efficient, low-cost image analysis system without sacrificing other capabilities of the IBM personal computer. The application of this system in both qualitative and quantitative autoradiography has been the principal factor in developing a new radiopharmaceutical to measure regional cerebral blood flow.

  19. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    PubMed

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells. PMID:26039484

  20. Wrangling Phosphoproteomic Data to Elucidate Cancer Signaling Pathways

    PubMed Central

    Grimes, Mark L.; Lee, Wan-Jui; van der Maaten, Laurens; Shannon, Paul

    2013-01-01

    The interpretation of biological data sets is essential for generating hypotheses that guide research, yet modern methods of global analysis challenge our ability to discern meaningful patterns and then convey results in a way that can be easily appreciated. Proteomic data is especially challenging because mass spectrometry detectors often miss peptides in complex samples, resulting in sparsely populated data sets. Using the R programming language and techniques from the field of pattern recognition, we have devised methods to resolve and evaluate clusters of proteins related by their pattern of expression in different samples in proteomic data sets. We examined tyrosine phosphoproteomic data from lung cancer samples. We calculated dissimilarities between the proteins based on Pearson or Spearman correlations and on Euclidean distances, whilst dealing with large amounts of missing data. The dissimilarities were then used as feature vectors in clustering and visualization algorithms. The quality of the clusterings and visualizations were evaluated internally based on the primary data and externally based on gene ontology and protein interaction networks. The results show that t-distributed stochastic neighbor embedding (t-SNE) followed by minimum spanning tree methods groups sparse proteomic data into meaningful clusters more effectively than other methods such as k-means and classical multidimensional scaling. Furthermore, our results show that using a combination of Spearman correlation and Euclidean distance as a dissimilarity representation increases the resolution of clusters. Our analyses show that many clusters contain one or more tyrosine kinases and include known effectors as well as proteins with no known interactions. Visualizing these clusters as networks elucidated previously unknown tyrosine kinase signal transduction pathways that drive cancer. Our approach can be applied to other data types, and can be easily adopted because open source software

  1. Quantitative analysis of astrogliosis in drug-dependent humans.

    PubMed

    Weber, Marco; Scherf, Nico; Kahl, Thomas; Braumann, Ulf-Dietrich; Scheibe, Patrick; Kuska, Jens-Peer; Bayer, Ronny; Büttner, Andreas; Franke, Heike

    2013-03-15

    Drug addiction is a chronic, relapsing disease caused by neurochemical and molecular changes in the brain. In this human autopsy study qualitative and quantitative changes of glial fibrillary acidic protein (GFAP)-positive astrocytes in the hippocampus of 26 lethally intoxicated drug addicts and 35 matched controls are described. The morphological characterization of these cells reflected alterations representative for astrogliosis. But, neither quantification of GFAP-positive cells nor the Western blot analysis indicated statistical significant differences between drug fatalities versus controls. However, by semi-quantitative scoring a significant shift towards higher numbers of activated astrocytes in the drug group was detected. To assess morphological changes quantitatively, graph-based representations of astrocyte morphology were obtained from single cell images captured by confocal laser scanning microscopy. Their underlying structures were used to quantify changes in astroglial fibers in an automated fashion. This morphometric analysis yielded significant differences between the investigated groups for four different measures of fiber characteristics (Euclidean distance, graph distance, number of graph elements, fiber skeleton distance), indicating that, e.g., astrocytes in drug addicts on average exhibit significant elongation of fiber structures as well as two-fold increase in GFAP-positive fibers as compared with those in controls. In conclusion, the present data show characteristic differences in morphology of hippocampal astrocytes in drug addicts versus controls and further supports the involvement of astrocytes in human pathophysiology of drug addiction. The automated quantification of astrocyte morphologies provides a novel, testable way to assess the fiber structures in a quantitative manner as opposed to standard, qualitative descriptions. PMID:23337617

  2. Bayesian Shrinkage Analysis of Quantitative Trait Loci for Dynamic Traits

    PubMed Central

    Yang, Runqing; Xu, Shizhong

    2007-01-01

    Many quantitative traits are measured repeatedly during the life of an organism. Such traits are called dynamic traits. The pattern of the changes of a dynamic trait is called the growth trajectory. Studying the growth trajectory may enhance our understanding of the genetic architecture of the growth trajectory. Recently, we developed an interval-mapping procedure to map QTL for dynamic traits under the maximum-likelihood framework. We fit the growth trajectory by Legendre polynomials. The method intended to map one QTL at a time and the entire QTL analysis involved scanning the entire genome by fitting multiple single-QTL models. In this study, we propose a Bayesian shrinkage analysis for estimating and mapping multiple QTL in a single model. The method is a combination between the shrinkage mapping for individual quantitative traits and the Legendre polynomial analysis for dynamic traits. The multiple-QTL model is implemented in two ways: (1) a fixed-interval approach where a QTL is placed in each marker interval and (2) a moving-interval approach where the position of a QTL can be searched in a range that covers many marker intervals. Simulation study shows that the Bayesian shrinkage method generates much better signals for QTL than the interval-mapping approach. We propose several alternative methods to present the results of the Bayesian shrinkage analysis. In particular, we found that the Wald test-statistic profile can serve as a mechanism to test the significance of a putative QTL. PMID:17435239

  3. Binary Imaging Analysis for Comprehensive Quantitative Assessment of Peripheral Nerve

    PubMed Central

    Hunter, Daniel A.; Moradzadeh, Arash; Whitlock, Elizabeth L.; Brenner, Michael J.; Myckatyn, Terence M.; Wei, Cindy H.; Tung, Thomas H.H.; Mackinnon, Susan E.

    2007-01-01

    Quantitative histomorphometry is the current gold standard for objective measurement of nerve architecture and its components. Many methods still in use rely heavily upon manual techniques that are prohibitively time consuming, predisposing to operator fatigue, sampling error, and overall limited reproducibility. More recently, investigators have attempted to combine the speed of automated morphometry with the accuracy of manual and semi-automated methods. Systematic refinements in binary imaging analysis techniques combined with an algorithmic approach allow for more exhaustive characterization of nerve parameters in the surgically relevant injury paradigms of regeneration following crush, transection, and nerve gap injuries. The binary imaging method introduced here uses multiple bitplanes to achieve reproducible, high throughput quantitative assessment of peripheral nerve. Number of myelinated axons, myelinated fiber diameter, myelin thickness, fiber distributions, myelinated fiber density, and neural debris can be quantitatively evaluated with stratification of raw data by nerve component. Results of this semi-automated method are validated by comparing values against those obtained with manual techniques. The use of this approach results in more rapid, accurate, and complete assessment of myelinated axons than manual techniques. PMID:17675163

  4. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  5. A quantitative analysis of IRAS maps of molecular clouds

    NASA Astrophysics Data System (ADS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-11-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  6. Quantitative option analysis for implementation and management of landfills.

    PubMed

    Kerestecioğlu, Merih

    2016-09-01

    The selection of the most feasible strategy for implementation of landfills is a challenging step. Potential implementation options of landfills cover a wide range, from conventional construction contracts to the concessions. Montenegro, seeking to improve the efficiency of the public services while maintaining affordability, was considering privatisation as a way to reduce public spending on service provision. In this study, to determine the most feasible model for construction and operation of a regional landfill, a quantitative risk analysis was implemented with four steps: (i) development of a global risk matrix; (ii) assignment of qualitative probabilities of occurrences and magnitude of impacts; (iii) determination of the risks to be mitigated, monitored, controlled or ignored; (iv) reduction of the main risk elements; and (v) incorporation of quantitative estimates of probability of occurrence and expected impact for each risk element in the reduced risk matrix. The evaluated scenarios were: (i) construction and operation of the regional landfill by the public sector; (ii) construction and operation of the landfill by private sector and transfer of the ownership to the public sector after a pre-defined period; and (iii) operation of the landfill by the private sector, without ownership. The quantitative risk assessment concluded that introduction of a public private partnership is not the most feasible option, unlike the common belief in several public institutions in developing countries. A management contract for the first years of operation was advised to be implemented, after which, a long term operating contract may follow. PMID:27354014

  7. Facegram - Objective quantitative analysis in facial reconstructive surgery.

    PubMed

    Gerós, Ana; Horta, Ricardo; Aguiar, Paulo

    2016-06-01

    Evaluation of effectiveness in reconstructive plastic surgery has become an increasingly important asset in comparing and choosing the most suitable medical procedure to handle facial disfigurement. Unfortunately, traditional methods to assess the results of surgical interventions are mostly qualitative and lack information about movement dynamics. Along with this, the few existing methodologies tailored to objectively quantify surgery results are not practical in the medical field due to constraints in terms of cost, complexity and poor suitability to clinical environment. These limitations enforce an urgent need for the creation of a new system to quantify facial movement and allow for an easy interpretation by medical experts. With this in mind, we present here a novel method capable of quantitatively and objectively assess complex facial movements, using a set of morphological, static and dynamic measurements. For this purpose, RGB-D cameras are used to acquire both color and depth images, and a modified block matching algorithm, combining depth and color information, was developed to track the position of anatomical landmarks of interest. The algorithms are integrated into a user-friendly graphical interface and the analysis outcomes are organized into an innovative medical tool, named facegram. This system was developed in close collaboration with plastic surgeons and the methods were validated using control subjects and patients with facial paralysis. The system was shown to provide useful and detailed quantitative information (static and dynamic) making it an appropriate solution for objective quantitative characterization of facial movement in a clinical environment. PMID:26994664

  8. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  9. Lipid biomarker analysis for the quantitative analysis of airborne microorganisms

    SciTech Connect

    Macnaughton, S.J.; Jenkins, T.L.; Cormier, M.R.

    1997-08-01

    There is an ever increasing concern regarding the presence of airborne microbial contaminants within indoor air environments. Exposure to such biocontaminants can give rise to large numbers of different health effects including infectious diseases, allergenic responses and respiratory problems, Biocontaminants typically round in indoor air environments include bacteria, fungi, algae, protozoa and dust mites. Mycotoxins, endotoxins, pollens and residues of organisms are also known to cause adverse health effects. A quantitative detection/identification technique independent of culturability that assays both culturable and non culturable biomass including endotoxin is critical in defining risks from indoor air biocontamination. Traditionally, methods employed for the monitoring of microorganism numbers in indoor air environments involve classical culture based techniques and/or direct microscopic counting. It has been repeatedly documented that viable microorganism counts only account for between 0.1-10% of the total community detectable by direct counting. The classic viable microbiologic approach doe`s not provide accurate estimates of microbial fragments or other indoor air components that can act as antigens and induce or potentiate allergic responses. Although bioaerosol samplers are designed to damage the microbes as little as possible, microbial stress has been shown to result from air sampling, aerosolization and microbial collection. Higher collection efficiency results in greater cell damage while less cell damage often results in lower collection efficiency. Filtration can collect particulates at almost 100% efficiency, but captured microorganisms may become dehydrated and damaged resulting in non-culturability, however, the lipid biomarker assays described herein do not rely on cell culture. Lipids are components that are universally distributed throughout cells providing a means to assess independent of culturability.

  10. Quantitative Northern Blot Analysis of Mammalian rRNA Processing.

    PubMed

    Wang, Minshi; Pestov, Dimitri G

    2016-01-01

    Assembly of eukaryotic ribosomes is an elaborate biosynthetic process that begins in the nucleolus and requires hundreds of cellular factors. Analysis of rRNA processing has been instrumental for studying the mechanisms of ribosome biogenesis and effects of stress conditions on the molecular milieu of the nucleolus. Here, we describe the quantitative analysis of the steady-state levels of rRNA precursors, applicable to studies in mammalian cells and other organisms. We include protocols for gel electrophoresis and northern blotting of rRNA precursors using procedures optimized for the large size of these RNAs. We also describe the ratio analysis of multiple precursors, a technique that facilitates the accurate assessment of changes in the efficiency of individual pre-rRNA processing steps. PMID:27576717

  11. QUANTITATIVE MASS SPECTROMETRIC ANALYSIS OF GLYCOPROTEINS COMBINED WITH ENRICHMENT METHODS

    PubMed Central

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:148–165, 2015. PMID:24889823

  12. Quantitative Analysis Of Cristobalite In The Presence Of Quartz

    NASA Astrophysics Data System (ADS)

    Totten, Gary A.

    1985-12-01

    The detection and quantitation of-cristobalite in quartz is necessary to calculate threshold value limits (TVL) for free crystalline silica (FCS) as proposed by the American Conference of Governmental Industrial Hygienists (ACGIH). The cristobalite standard used in this study was made by heating diatomaceous earth to the transition temperature for cristobalite. The potassium bromide (KBR) pellet method was used for the analysis. Potassium cyanide (KCN) was used as an internal standard. Samples ranged from 5% to 30% cris-tobalite in quartz. Precision for this method is within 2%.

  13. Quantitative proteomic analysis of drug-induced changes in mycobacteria.

    PubMed

    Hughes, Minerva A; Silva, Jeffrey C; Geromanos, Scott J; Townsend, Craig A

    2006-01-01

    A new approach for qualitative and quantitative proteomic analysis using capillary liquid chromatography and mass spectrometry to study the protein expression response in mycobacteria following isoniazid treatment is discussed. In keeping with known effects on the fatty acid synthase II pathway, proteins encoded by the kas operon (AcpM, KasA, KasB, Accd6) were significantly overexpressed, as were those involved in iron metabolism and cell division suggesting a complex interplay of metabolic events leading to cell death. PMID:16396495

  14. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits

    PubMed Central

    Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-01-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI’s Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes. PMID:27104857

  15. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes. PMID:27104857

  16. Multivariate calibration applied to the quantitative analysis of infrared spectra

    NASA Astrophysics Data System (ADS)

    Haaland, David M.

    1992-03-01

    Multivariate calibration methods are very useful for improving the precision, accuracy, and reliability of quantitative spectral analyses. Spectroscopists can more effectively use these sophisticated statistical tools if they have a qualitative understanding of the techniques involved. A qualitative picture of the factor analysis multivariate calibration methods of partial least squares (PLS) and principal component regression (PCR) is presented using infrared calibrations based upon spectra of phosphosilicate glass thin films on silicon wafers. Comparisons of the relative prediction abilities of four different multivariate calibration methods are given based on Monte Carlo simulations of spectral calibration and prediction data. The success of multivariate spectral calibrations is demonstrated for several quantitative infrared studies. The infrared absorption and emission spectra of thin-film dielectrics used in the manufacture of microelectronic devices demonstrate rapid, nondestructive at-line and in- situ analyses using PLS calibrations. Finally, the application of multivariate spectral calibrations to reagentless analysis of blood is presented. We have found that the determination of glucose in whole blood taken from diabetics can be precisely monitored from the PLS calibration of either mid- or near-infrared spectra of the blood. Progress toward the noninvasive determination of glucose levels in diabetics is an ultimate goal of this research.

  17. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    SciTech Connect

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; Mamakhel, Aref H.; Wang, Xiaoping; Hoffmann, Christina M.; Sugimoto, Kunihisa; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.

  18. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    DOE PAGESBeta

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; Mamakhel, Aref H.; Wang, Xiaoping; Hoffmann, Christina M.; Sugimoto, Kunihisa; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically,more » the presence of Cπ...Cπinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.« less

  19. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    PubMed Central

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; Mamakhel, Aref H.; Wang, Xiaoping; Hoffmann, Christina M.; Sugimoto, Kunihisa; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2015-01-01

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. PMID:26306198

  20. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  1. Multivariate calibration applied to the quantitative analysis of infrared spectra

    SciTech Connect

    Haaland, D.M.

    1991-01-01

    Multivariate calibration methods are very useful for improving the precision, accuracy, and reliability of quantitative spectral analyses. Spectroscopists can more effectively use these sophisticated statistical tools if they have a qualitative understanding of the techniques involved. A qualitative picture of the factor analysis multivariate calibration methods of partial least squares (PLS) and principal component regression (PCR) is presented using infrared calibrations based upon spectra of phosphosilicate glass thin films on silicon wafers. Comparisons of the relative prediction abilities of four different multivariate calibration methods are given based on Monte Carlo simulations of spectral calibration and prediction data. The success of multivariate spectral calibrations is demonstrated for several quantitative infrared studies. The infrared absorption and emission spectra of thin-film dielectrics used in the manufacture of microelectronic devices demonstrate rapid, nondestructive at-line and in-situ analyses using PLS calibrations. Finally, the application of multivariate spectral calibrations to reagentless analysis of blood is presented. We have found that the determination of glucose in whole blood taken from diabetics can be precisely monitored from the PLS calibration of either mind- or near-infrared spectra of the blood. Progress toward the non-invasive determination of glucose levels in diabetics is an ultimate goal of this research. 13 refs., 4 figs.

  2. Segmentation and quantitative analysis of individual cells in developmental tissues.

    PubMed

    Nandy, Kaustav; Kim, Jusub; McCullough, Dean P; McAuliffe, Matthew; Meaburn, Karen J; Yamaguchi, Terry P; Gudla, Prabhakar R; Lockett, Stephen J

    2014-01-01

    Image analysis is vital for extracting quantitative information from biological images and is used extensively, including investigations in developmental biology. The technique commences with the segmentation (delineation) of objects of interest from 2D images or 3D image stacks and is usually followed by the measurement and classification of the segmented objects. This chapter focuses on the segmentation task and here we explain the use of ImageJ, MIPAV (Medical Image Processing, Analysis, and Visualization), and VisSeg, three freely available software packages for this purpose. ImageJ and MIPAV are extremely versatile and can be used in diverse applications. VisSeg is a specialized tool for performing highly accurate and reliable 2D and 3D segmentation of objects such as cells and cell nuclei in images and stacks. PMID:24318825

  3. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  4. Quantitative Analysis of the Interdisciplinarity of Applied Mathematics

    PubMed Central

    Zhang, Pengyuan

    2015-01-01

    The increasing use of mathematical techniques in scientific research leads to the interdisciplinarity of applied mathematics. This viewpoint is validated quantitatively here by statistical and network analysis on the corpus PNAS 1999–2013. A network describing the interdisciplinary relationships between disciplines in a panoramic view is built based on the corpus. Specific network indicators show the hub role of applied mathematics in interdisciplinary research. The statistical analysis on the corpus content finds that algorithms, a primary topic of applied mathematics, positively correlates, increasingly co-occurs, and has an equilibrium relationship in the long-run with certain typical research paradigms and methodologies. The finding can be understood as an intrinsic cause of the interdisciplinarity of applied mathematics. PMID:26352604

  5. A method for quantitative wet chemical analysis of urinary calculi.

    PubMed

    Larsson, L; Sörbo, B; Tiselius, H G; Ohman, S

    1984-06-27

    We describe a simple method for quantitative chemical analysis of urinary calculi requiring no specialized equipment. Pulverized calculi are dried over silica gel at room temperature and dissolved in nitric acid, which was the only effective agent for complete dissolution. Calcium, magnesium, ammonium, and phosphate are then determined by conventional methods. Oxalate is determined by a method based on the quenching action of oxalate on the fluorescence of a zirconium-flavonol complex. Uric acid, when treated with nitric acid, is stoichiometrically converted to alloxan, which is determined fluorimetrically with 1,2-phenylenediamine. Similarly, cystine is oxidized by nitric acid to sulfate, which is determined turbidimetrically as barium sulfate. Protein is determined spectrophotometrically as xanthoprotein. The total mass recovery of authentic calculi was 92.2 +/- 6.7 (SD) per cent. The method permits analysis of calculi as small as 1.0 mg. Internal quality control is performed with specially designed control samples. PMID:6086179

  6. [Quantitative analysis of transformer oil dissolved gases using FTIR].

    PubMed

    Zhao, An-xin; Tang, Xiao-jun; Wang, Er-zhen; Zhang, Zhong-hua; Liu, Jun-hua

    2013-09-01

    For the defects of requiring carrier gas and regular calibration, and low safety using chromatography to on line monitor transformer dissolved gases, it was attempted to establish a dissolved gas analysis system based on Fourier transform infrared spectroscopy. Taking into account the small amount of characteristic gases, many components, detection limit and safety requirements and the difficulty of degasser to put an end to the presence of interference gas, the quantitative analysis model was established based on sparse partial least squares, piecewise section correction and feature variable extraction algorithm using improvement TR regularization. With the characteristic gas of CH4, C2H6, C2H6, and CO2, the results show that using FTIR meets DGA requirements with the spectrum wave number resolution of 1 cm(-1) and optical path of 10 cm. PMID:24369641

  7. Quantitative Analysis of the Interdisciplinarity of Applied Mathematics.

    PubMed

    Xie, Zheng; Duan, Xiaojun; Ouyang, Zhenzheng; Zhang, Pengyuan

    2015-01-01

    The increasing use of mathematical techniques in scientific research leads to the interdisciplinarity of applied mathematics. This viewpoint is validated quantitatively here by statistical and network analysis on the corpus PNAS 1999-2013. A network describing the interdisciplinary relationships between disciplines in a panoramic view is built based on the corpus. Specific network indicators show the hub role of applied mathematics in interdisciplinary research. The statistical analysis on the corpus content finds that algorithms, a primary topic of applied mathematics, positively correlates, increasingly co-occurs, and has an equilibrium relationship in the long-run with certain typical research paradigms and methodologies. The finding can be understood as an intrinsic cause of the interdisciplinarity of applied mathematics. PMID:26352604

  8. Quantitative morphometric analysis for the tectonic characterisation of northern Tunisia.

    NASA Astrophysics Data System (ADS)

    Camafort, Miquel; Pérez-Peña, José Vicente; Booth-Rea, Guillermo; Ranero, César R.; Gràcia, Eulàlia; Azañón, José Miguel; Melki, Fetheddine; Ouadday, Mohamed

    2016-04-01

    Northern Tunisia is characterized by low deformation rates and low to moderate seismicity. Although instrumental seismicity reaches maximum magnitudes of Mw 5.5, some historical earthquakes have occurred with catastrophic consequences in this region. Aiming to improve our knowledge of active tectonics in Tunisia, we carried out both a quantitative morphometric analysis and field study in the north-western region. We applied different morphometric tools, like river profiles, knickpoint analysis, hypsometric curves and integrals and drainage pattern anomalies in order to differentiate between zones with high or low recent tectonic activity. This analysis helps identifying uplift and subsidence zones, which we relate to fault activity. Several active faults in a sparse distribution were identified. A selected sector was studied with a field campaign to test the results obtained with the quantitative analysis. During the fieldwork we identified geological evidence of recent activity and a considerable seismogenic potential along El Alia-Teboursouk (ETF) and Dkhila (DF) faults. The ETF fault could be responsible of one of the most devastating historical earthquakes in northern Tunisia that destroyed Utique in 412 A.D. Geological evidence include fluvial terraces folded by faults, striated and cracked pebbles, clastic dikes, sand volcanoes, coseismic cracks, etc. Although not reflected in the instrumental seismicity, our results support an important seismic hazard, evidenced by the several active tectonic structures identified and the two seismogenic faults described. After obtaining the current active tectonic framework of Tunisia we discuss our results within the western Mediterranean trying to contribute to the understanding of the western Mediterranean tectonic context. With our results, we suggest that the main reason explaining the sparse and scarce seismicity of the area in contrast with the adjacent parts of the Nubia-Eurasia boundary is due to its extended

  9. Quantitative image analysis in sonograms of the thyroid gland

    NASA Astrophysics Data System (ADS)

    Catherine, Skouroliakou; Maria, Lyra; Aristides, Antoniou; Lambros, Vlahos

    2006-12-01

    High-resolution, real-time ultrasound is a routine examination for assessing the disorders of the thyroid gland. However, the current diagnosis practice is based mainly on qualitative evaluation of the resulting sonograms, therefore depending on the physician's experience. Computerized texture analysis is widely employed in sonographic images of various organs (liver, breast), and it has been proven to increase the sensitivity of diagnosis by providing a better tissue characterization. The present study attempts to characterize thyroid tissue by automatic texture analysis. The texture features that are calculated are based on co-occurrence matrices as they have been proposed by Haralick. The sample consists of 40 patients. For each patient two sonographic images (one for each lobe) are recorded in DICOM format. The lobe is manually delineated in each sonogram, and the co-occurrence matrices for 52 separation vectors are calculated. The texture features extracted from each one of these matrices are: contrast, correlation, energy and homogeneity. Primary component analysis is used to select the optimal set of features. The statistical analysis resulted in the extraction of 21 optimal descriptors. The optimal descriptors are all co-occurrence parameters as the first-order statistics did not prove to be representative of the images characteristics. The bigger number of components depends mainly on correlation for very close or very far distances. The results indicate that quantitative analysis of thyroid sonograms can provide an objective characterization of thyroid tissue.

  10. Recent findings and technological advances in phosphoproteomics for cells and tissues

    PubMed Central

    von Stechow, Louise; Francavilla, Chiara; Olsen, Jesper V

    2015-01-01

    Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins – termed phosphoproteomics – strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed. PMID:26400465

  11. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. PMID:24130119

  12. The Quantitative Analysis of Chennai Automotive Industry Cluster

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Ethirajan

    2016-07-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  13. The Quantitative Analysis of Chennai Automotive Industry Cluster

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Ethirajan

    2016-05-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  14. Quantitative analysis of the polarization characteristics of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Michail Y.; Dudenkova, Varvara V.; Kiseleva, Elena B.; Moiseev, Alexander A.; Gelikonov, Grigory V.; Timofeeva, Lidia B.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-04-01

    In this study we demonstrate the capability of cross-polarization optical coherence tomography (CP OCT) to assess collagen and elastin fibers condition in atherosclerotic plaques basing on ratio of the OCT signal levels in cross- and co- polarizations. We consider the depolarization factor (DF) and the effective birefringence (Δn) as quantitative characteristics of CP OCT images. We revealed that calculation of both DF and Δn in the region of interest (fibrous cap) yields a statistically significant difference between stable and unstable plaques (0.46+/-0.21 vs 0.09+/-0.04 for IDF; (4.7+/-1.0)•10-4 vs (2.5+/-0.7)•10-4 for Δn p<0.05). In parallel with CP OCT we used the nonlinear microscopy for analysis of thin cross-section of atherosclerotic plaque, revealing the different average isotropy index of collagen and elastin fibers for stable and unstable plaques (0.30 +/- 0.10 vs 0.70 +/- 0.08; p<0.001). The proposed approach for quantitative assessment of CP OCT images allows cross-scattering and birefringence characterization of stable and unstable atherosclerotic plaques.

  15. Bayesian robust analysis for genetic architecture of quantitative traits

    PubMed Central

    Yang, Runqing; Wang, Xin; Li, Jian; Deng, Hongwen

    2009-01-01

    Motivation: In most quantitative trait locus (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection and lead to detection of spurious QTLs. To improve the robustness of QTL mapping methods, we replaced the normal distribution for residuals in multiple interacting QTL models with the normal/independent distributions that are a class of symmetric and long-tailed distributions and are able to accommodate residual outliers. Subsequently, we developed a Bayesian robust analysis strategy for dissecting genetic architecture of quantitative traits and for mapping genome-wide interacting QTLs in line crosses. Results: Through computer simulations, we showed that our strategy had a similar power for QTL detection compared with traditional methods assuming normal-distributed traits, but had a substantially increased power for non-normal phenotypes. When this strategy was applied to a group of traits associated with physical/chemical characteristics and quality in rice, more main and epistatic QTLs were detected than traditional Bayesian model analyses under the normal assumption. Contact: runqingyang@sjtu.edu.cn; dengh@umkc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18974168

  16. Quantitative analysis of gene function in the Drosophila embryo.

    PubMed Central

    Tracey, W D; Ning, X; Klingler, M; Kramer, S G; Gergen, J P

    2000-01-01

    The specific functions of gene products frequently depend on the developmental context in which they are expressed. Thus, studies on gene function will benefit from systems that allow for manipulation of gene expression within model systems where the developmental context is well defined. Here we describe a system that allows for genetically controlled overexpression of any gene of interest under normal physiological conditions in the early Drosophila embryo. This regulated expression is achieved through the use of Drosophila lines that express a maternal mRNA for the yeast transcription factor GAL4. Embryos derived from females that express GAL4 maternally activate GAL4-dependent UAS transgenes at uniform levels throughout the embryo during the blastoderm stage of embryogenesis. The expression levels can be quantitatively manipulated through the use of lines that have different levels of maternal GAL4 activity. Specific phenotypes are produced by expression of a number of different developmental regulators with this system, including genes that normally do not function during Drosophila embryogenesis. Analysis of the response to overexpression of runt provides evidence that this pair-rule segmentation gene has a direct role in repressing transcription of the segment-polarity gene engrailed. The maternal GAL4 system will have applications both for the measurement of gene activity in reverse genetic experiments as well as for the identification of genetic factors that have quantitative effects on gene function in vivo. PMID:10628987

  17. Quantitative analysis of multiple sclerosis: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Lihong; Li, Xiang; Wei, Xinzhou; Sturm, Deborah; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    Multiple Sclerosis (MS) is an inflammatory and demyelinating disorder of the central nervous system with a presumed immune-mediated etiology. For treatment of MS, the measurements of white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) are often used in conjunction with clinical evaluation to provide a more objective measure of MS burden. In this paper, we apply a new unifying automatic mixture-based algorithm for segmentation of brain tissues to quantitatively analyze MS. The method takes into account the following effects that commonly appear in MR imaging: 1) The MR data is modeled as a stochastic process with an inherent inhomogeneity effect of smoothly varying intensity; 2) A new partial volume (PV) model is built in establishing the maximum a posterior (MAP) segmentation scheme; 3) Noise artifacts are minimized by a priori Markov random field (MRF) penalty indicating neighborhood correlation from tissue mixture. The volumes of brain tissues (WM, GM) and CSF are extracted from the mixture-based segmentation. Experimental results of feasibility studies on quantitative analysis of MS are presented.

  18. Quantitative PCR analysis of laryngeal muscle fiber types

    PubMed Central

    Van Daele, Douglas J.

    2013-01-01

    Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses have shown changes in laryngeal muscle fiber MyHC isoform with denervation. RNA analyses in this setting have not been performed, and understanding RNA levels will allow interventions better designed to reverse processes such as denervation in the future. Total RNA was extracted from bilateral rat thyroarytenoid (TA), posterior cricoarytenoid (PCA), and cricothyroid (CT) muscles in rats. Primers were designed using published MyHC isoform sequences. SYBR Green real time reverse transcription-polymerase chain reaction (SYBR-RT-PCR) was used for quantification. The electropherogram showed a clear separation of total RNA to 28S and 18S subunits. Melting curves illustrated single peaks for all type MyHC primers. All MyHC isoforms were identified in all muscles with various degrees of expression. Quantitative PCR is a sensitive method to detect MyHC isoforms in laryngeal muscle. Isoform expression using mRNA analysis was similar to previous analyses but showed some important differences. This technique can be used to quantitatively assess response to interventions targeted to maintain muscle bulk after denervation. PMID:20430402

  19. Quantitative analysis of incipient mineral loss in hard tissues

    NASA Astrophysics Data System (ADS)

    Matvienko, Anna; Mandelis, Andreas; Hellen, Adam; Jeon, Raymond; Abrams, Stephen; Amaechi, Bennett

    2009-02-01

    A coupled diffuse-photon-density-wave and thermal-wave theoretical model was developed to describe the biothermophotonic phenomena in multi-layered hard tissue structures. Photothermal Radiometry was applied as a safe, non-destructive, and highly sensitive tool for the detection of early tooth enamel demineralization to test the theory. Extracted human tooth was treated sequentially with an artificial demineralization gel to simulate controlled mineral loss in the enamel. The experimental setup included a semiconductor laser (659 nm, 120 mW) as the source of the photothermal signal. Modulated laser light generated infrared blackbody radiation from teeth upon absorption and nonradiative energy conversion. The infrared flux emitted by the treated region of the tooth surface and sub-surface was monitored with an infrared detector, both before and after treatment. Frequency scans with a laser beam size of 3 mm were performed in order to guarantee one-dimensionality of the photothermal field. TMR images showed clear differences between sound and demineralized enamel, however this technique is destructive. Dental radiographs did not indicate any changes. The photothermal signal showed clear change even after 1 min of gel treatment. As a result of the fittings, thermal and optical properties of sound and demineralized enamel were obtained, which allowed for quantitative differentiation of healthy and non-healthy regions. In conclusion, the developed model was shown to be a promising tool for non-invasive quantitative analysis of early demineralization of hard tissues.

  20. EDXRF quantitative analysis of chromophore chemical elements in corundum samples.

    PubMed

    Bonizzoni, L; Galli, A; Spinolo, G; Palanza, V

    2009-12-01

    Corundum is a crystalline form of aluminum oxide (Al(2)O(3)) and is one of the rock-forming minerals. When aluminum oxide is pure, the mineral is colorless, but the presence of trace amounts of other elements such as iron, titanium, and chromium in the crystal lattice gives the typical colors (including blue, red, violet, pink, green, yellow, orange, gray, white, colorless, and black) of gemstone varieties. The starting point for our work is the quantitative evaluation of the concentration of chromophore chemical elements with a precision as good as possible to match the data obtained by different techniques as such as optical absorption photoluminescence. The aim is to give an interpretation of the absorption bands present in the NIR and visible ranges which do not involve intervalence charge transfer transitions (Fe(2+) --> Fe(3+) and Fe(2+) --> Ti(4+)), commonly considered responsible of the important features of the blue sapphire absorption spectra. So, we developed a method to evaluate as accurately as possible the autoabsorption effects and the secondary excitation effects which frequently are sources of relevant errors in the quantitative EDXRF analysis. PMID:19821113

  1. Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks

    PubMed Central

    2013-01-01

    Background Translational and post-translational protein modifications play a key role in the response of plants to pathogen infection. Among the latter, phosphorylation is critical in modulating protein structure, localization and interaction with other partners. In this work, we used a multiplex staining approach with 2D gels to study quantitative changes in the proteome and phosphoproteome of Flavescence dorée-affected and recovered ‘Barbera’ grapevines, compared to healthy plants. Results We identified 48 proteins that differentially changed in abundance, phosphorylation, or both in response to Flavescence dorée phytoplasma infection. Most of them did not show any significant difference in recovered plants, which, by contrast, were characterized by changes in abundance, phosphorylation, or both for 17 proteins not detected in infected plants. Some enzymes involved in the antioxidant response that were up-regulated in infected plants, such as isocitrate dehydrogenase and glutathione S-transferase, returned to healthy-state levels in recovered plants. Others belonging to the same functional category were even down-regulated in recovered plants (oxidoreductase GLYR1 and ascorbate peroxidase). Our proteomic approach thus agreed with previously published biochemical and RT-qPCR data which reported down-regulation of scavenging enzymes and accumulation of H2O2 in recovered plants, possibly suggesting a role for this molecule in remission from infection. Fifteen differentially phosphorylated proteins (| ratio | > 2, p < 0.05) were identified in infected compared to healthy plants, including proteins involved in photosynthesis, response to stress and the antioxidant system. Many were not differentially phosphorylated in recovered compared to healthy plants, pointing to their specific role in responding to infection, followed by a return to a steady-state phosphorylation level after remission of symptoms. Gene ontology (GO) enrichment and statistical

  2. Analysis of generalized interictal discharges using quantitative EEG.

    PubMed

    da Silva Braga, Aline Marques; Fujisao, Elaine Keiko; Betting, Luiz Eduardo

    2014-12-01

    Experimental evidence from animal models of the absence seizures suggests a focal source for the initiation of generalized spike-and-wave (GSW) discharges. Furthermore, clinical studies indicate that patients diagnosed with idiopathic generalized epilepsy (IGE) exhibit focal electroencephalographic abnormalities, which involve the thalamo-cortical circuitry. This circuitry is a key network that has been implicated in the initiation of generalized discharges, and may contribute to the pathophysiology of GSW discharges. Quantitative electroencephalogram (qEEG) analysis may be able to detect abnormalities associated with the initiation of GSW discharges. The objective of this study was to determine whether interictal GSW discharges exhibit focal characteristics using qEEG analysis. In this study, 75 EEG recordings from 64 patients were analyzed. All EEG recordings analyzed contained at least one GSW discharge. EEG recordings were obtained by a 22-channel recorder with electrodes positioned according to the international 10-20 system of electrode placement. EEG activity was recorded for 20 min including photic stimulation and hyperventilation. The EEG recordings were visually inspected, and the first unequivocally confirmed generalized spike was marked for each discharge. Three methods of source imaging analysis were applied: dipole source imaging (DSI), classical LORETA analysis recursively applied (CLARA), and equivalent dipole of independent components with cluster analysis. A total of 753 GSW discharges were identified and spatiotemporally analyzed. Source evaluation analysis using all three techniques revealed that the frontal lobe was the principal source of GSW discharges (70%), followed by the parietal and occipital lobes (14%), and the basal ganglia (12%). The main anatomical sources of GSW discharges were the anterior cingulate cortex (36%) and the medial frontal gyrus (23%). Source analysis did not reveal a common focal source of GSW discharges. However

  3. Quantitative multi-image analysis for biomedical Raman spectroscopic imaging.

    PubMed

    Hedegaard, Martin A B; Bergholt, Mads S; Stevens, Molly M

    2016-05-01

    Imaging by Raman spectroscopy enables unparalleled label-free insights into cell and tissue composition at the molecular level. With established approaches limited to single image analysis, there are currently no general guidelines or consensus on how to quantify biochemical components across multiple Raman images. Here, we describe a broadly applicable methodology for the combination of multiple Raman images into a single image for analysis. This is achieved by removing image specific background interference, unfolding the series of Raman images into a single dataset, and normalisation of each Raman spectrum to render comparable Raman images. Multivariate image analysis is finally applied to derive the contributing 'pure' biochemical spectra for relative quantification. We present our methodology using four independently measured Raman images of control cells and four images of cells treated with strontium ions from substituted bioactive glass. We show that the relative biochemical distribution per area of the cells can be quantified. In addition, using k-means clustering, we are able to discriminate between the two cell types over multiple Raman images. This study shows a streamlined quantitative multi-image analysis tool for improving cell/tissue characterisation and opens new avenues in biomedical Raman spectroscopic imaging. PMID:26833935

  4. Quantitative analysis of the reconstruction performance of interpolants

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.; Park, Stephen K.

    1987-01-01

    The analysis presented provides a quantitative measure of the reconstruction or interpolation performance of linear, shift-invariant interpolants. The performance criterion is the mean square error of the difference between the sampled and reconstructed functions. The analysis is applicable to reconstruction algorithms used in image processing and to many types of splines used in numerical analysis and computer graphics. When formulated in the frequency domain, the mean square error clearly separates the contribution of the interpolation method from the contribution of the sampled data. The equations provide a rational basis for selecting an optimal interpolant; that is, one which minimizes the mean square error. The analysis has been applied to a selection of frequently used data splines and reconstruction algorithms: parametric cubic and quintic Hermite splines, exponential and nu splines (including the special case of the cubic spline), parametric cubic convolution, Keys' fourth-order cubic, and a cubic with a discontinuous first derivative. The emphasis in this paper is on the image-dependent case in which no a priori knowledge of the frequency spectrum of the sampled function is assumed.

  5. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy

    SciTech Connect

    Singh, Vivek K.; Singh, Vinita; Rai, Awadhesh K.; Thakur, Surya N.; Rai, Pradeep K.; Singh, Jagdish P

    2008-11-01

    The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

  6. Quantitative genetic analysis of injury liability in infants and toddlers

    SciTech Connect

    Phillips, K.; Matheny, A.P. Jr.

    1995-02-27

    A threshold model of latent liability was applied to infant and toddler twin data on total count of injuries sustained during the interval from birth to 36 months of age. A quantitative genetic analysis of estimated twin correlations in injury liability indicated strong genetic dominance effects, but no additive genetic variance was detected. Because interpretations involving overdominance have little research support, the results may be due to low order epistasis or other interaction effects. Boys had more injuries than girls, but this effect was found only for groups whose parents were prompted and questioned in detail about their children`s injuries. Activity and impulsivity are two behavioral predictors of childhood injury, and the results are discussed in relation to animal research on infant and adult activity levels, and impulsivity in adult humans. Genetic epidemiological approaches to childhood injury should aid in targeting higher risk children for preventive intervention. 30 refs., 4 figs., 3 tabs.

  7. Quantitative analysis of forest island pattern in selected Ohio landscapes

    SciTech Connect

    Bowen, G.W.; Burgess, R.L.

    1981-07-01

    The purpose of this study was to quantitatively describe the various aspects of regional distribution patterns of forest islands and relate those patterns to other landscape features. Several maps showing the forest cover of various counties in Ohio were selected as representative examples of forest patterns to be quantified. Ten thousand hectare study areas (landscapes) were delineated on each map. A total of 15 landscapes representing a wide variety of forest island patterns was chosen. Data were converted into a series of continuous variables which contained information pertinent to the sizes, shape, numbers, and spacing of woodlots within a landscape. The continuous variables were used in a factor analysis to describe the variation among landscapes in terms of forest island pattern. The results showed that forest island patterns are related to topography and other environmental features correlated with topography.

  8. Quantitative multielement analysis using high energy particle bombardment

    NASA Technical Reports Server (NTRS)

    Clark, P. J.; Neal, G. F.; Allen, R. O.

    1974-01-01

    Charged particles ranging in energy from 0.8 to 4.0 MeV are used to induce resonant nuclear reactions, Coulomb excitation (gamma X-rays), and X-ray emission in both thick and thin targets. Quantitative analysis is possible for elements from Li to Pb in complex environmental samples, although the matrix can severely reduce the sensitivity. It is necessary to use a comparator technique for the gamma-rays, while for X-rays an internal standard can be used. A USGS standard rock is analyzed for a total of 28 elements. Water samples can be analyzed either by nebulizing the sample doped with Cs or Y onto a thin formvar film or by extracting the sample (with or without an internal standard) onto ion exchange resin which is pressed into a pellet.

  9. Quantitative image analysis of WE43-T6 cracking behavior

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Yahya, Z.

    2013-06-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.

  10. [Accounting for Expected Linkage in Biometric Analysis of Quantitative Traits].

    PubMed

    Mikhailov, M E

    2015-08-01

    The problem of accounting for a genetic estimation of expected linkage in the disposition of random loci was solved for the additive-dominant model. The Comstock-Robinson estimations for the sum of squares of dominant effects, the sum of squares of additive effects, and the average degree of dominance were modified. Also, the Wright's estimation for the number of loci controlling the variation of a quantitative trait was modified and its application sphere was extended. Formulas that should eliminate linkage, on average, were derived for these estimations. Nonbiased estimations were applied to the analysis of maize data. Our result showed that the most likely cause of heterosis is dominance rather than overdominance and that the main part of the heterotic effect is provided by dozens of genes. PMID:26601496

  11. Automated quantitative cytological analysis using portable microfluidic microscopy.

    PubMed

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. PMID:25990413

  12. Large-Scale Quantitative Analysis of Painting Arts

    PubMed Central

    Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong

    2014-01-01

    Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images – the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances. PMID:25501877

  13. Sensitive LC MS quantitative analysis of carbohydrates by Cs+ attachment.

    PubMed

    Rogatsky, Eduard; Jayatillake, Harsha; Goswami, Gayotri; Tomuta, Vlad; Stein, Daniel

    2005-11-01

    The development of a sensitive assay for the quantitative analysis of carbohydrates from human plasma using LC/MS/MS is described in this paper. After sample preparation, carbohydrates were cationized by Cs(+) after their separation by normal phase liquid chromatography on an amino based column. Cesium is capable of forming a quasi-molecular ion [M + Cs](+) with neutral carbohydrate molecules in the positive ion mode of electrospray ionization mass spectrometry. The mass spectrometer was operated in multiple reaction monitoring mode, and transitions [M + 133] --> 133 were monitored (M, carbohydrate molecular weight). The new method is robust, highly sensitive, rapid, and does not require postcolumn addition or derivatization. It is useful in clinical research for measurement of carbohydrate molecules by isotope dilution assay. PMID:16182559

  14. Quantitative Image Analysis of HIV-1 Infection in Lymphoid Tissue

    NASA Astrophysics Data System (ADS)

    Haase, Ashley T.; Henry, Keith; Zupancic, Mary; Sedgewick, Gerald; Faust, Russell A.; Melroe, Holly; Cavert, Winston; Gebhard, Kristin; Staskus, Katherine; Zhang, Zhi-Qiang; Dailey, Peter J.; Balfour, Henry H., Jr.; Erice, Alejo; Perelson, Alan S.

    1996-11-01

    Tracking human immunodeficiency virus-type 1 (HIV-1) infection at the cellular level in tissue reservoirs provides opportunities to better understand the pathogenesis of infection and to rationally design and monitor therapy A quantitative technique was developed to determine viral burden in two important cellular compartments in lymphoid tissues. Image analysis and in situ hybridization were combined to show that in the presymptomatic stages of infection there is a large, relatively stable pool of virions on the surfaces of follicular dendritic cells and a smaller pool of productively infected cells Despite evidence of constraints on HIV-1 replication in the infected cell population in lymphoid tissues, estimates of the numbers of these cells and the virus they could produce are consistent with the quantities of virus that have been detected in the bloodstream. The cellular sources of virus production and storage in lymphoid tissues can now be studied with this approach over the course of infection and treatment.

  15. Large-Scale Quantitative Analysis of Painting Arts

    NASA Astrophysics Data System (ADS)

    Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong

    2014-12-01

    Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.

  16. A Novel Quantitative Approach to Concept Analysis: The Internomological Network

    PubMed Central

    Cook, Paul F.; Larsen, Kai R.; Sakraida, Teresa J.; Pedro, Leli

    2012-01-01

    Background When a construct such as patients’ transition to self-management of chronic illness is studied by researchers across multiple disciplines, the meaning of key terms can become confused. This results from inherent problems in language where a term can have multiple meanings (polysemy) and different words can mean the same thing (synonymy). Objectives To test a novel quantitative method for clarifying the meaning of constructs by examining the similarity of published contexts in which they are used. Method Published terms related to the concept transition to self-management of chronic illness were analyzed using the internomological network (INN), a type of latent semantic analysis to calculate the mathematical relationships between constructs based on the contexts in which researchers use each term. This novel approach was tested by comparing results to those from concept analysis, a best-practice qualitative approach to clarifying meanings of terms. By comparing results of the two methods, the best synonyms of transition to self-management, as well as key antecedent, attribute, and consequence terms, were identified. Results Results from INN analysis were consistent with those from concept analysis. The potential synonyms self-management, transition, and adaptation had the greatest utility. Adaptation was the clearest overall synonym, but had lower cross-disciplinary use. The terms coping and readiness had more circumscribed meanings. The INN analysis confirmed key features of transition to self-management, and suggested related concepts not found by the previous review. Discussion The INN analysis is a promising novel methodology that allows researchers to quantify the semantic relationships between constructs. The method works across disciplinary boundaries, and may help to integrate the diverse literature on self-management of chronic illness. PMID:22592387

  17. A quantitative histological analysis of the dilated ureter of childhood.

    PubMed

    Lee, B R; Partin, A W; Epstein, J I; Quinlan, D M; Gosling, J A; Gearhart, J P

    1992-11-01

    A quantitative histological study of the dilated ureter of childhood was performed on 26 ureters. The specimens were from 15 male and 11 female patients 10 days to 12 years old (mean age 2.0 years). A color image analysis system was used to examine and compare collagen and smooth muscle components of the muscularis layers to normal control ureters of similar age. In comparing primary obstructed (12) to primary refluxing (14) megaureters and control ureters (6), there was a statistically different collagen-to-smooth muscle ratio (p < 0.001) between the primary obstructed and primary refluxing megaureter groups. For patients with primary refluxing megaureter there was a 2-fold increase in the tissue matrix ratio of collagen-to-smooth muscle when compared to patients with primary obstructed megaureter. In the primary obstructed megaureters the amount of collagen and smooth muscle was not statistically different from controls (p > 0.01). The increased tissue matrix ratio of 2.0 +/- 0.35 (collagen-to-smooth muscle) in the refluxing megaureter group compared to 0.78 +/- 0.22 in the obstructed megaureter group and 0.52 +/- 0.12 in controls was found to be due not only to a marked increase in collagen but also a significant decrease in the smooth muscle component of the tissue. Primary obstructed and normal control ureters had similar quantitative amounts of smooth muscle with 60 +/- 5% and 61 +/- 6%, respectively, while refluxing megaureters had only 40 +/- 5% smooth muscle. The percentage collagen was 36 +/- 5 in the obstructed megaureter group and 30 +/- 5 in controls, with refluxing megaureters having 58 +/- 5% collagen on analysis. Our findings emphasize the significant differences in the structural components (collagen and smooth muscle) of the dilated ureter of childhood, and provide us with further insight into the pathological nature of these dilated ureters and their surgical repair. PMID:1433552

  18. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  19. Quantitative Medical Image Analysis for Clinical Development of Therapeutics

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa

    There has been significant progress in development of therapeutics for prevention and management of several disease areas in recent years, leading to increased average life expectancy, as well as of quality of life, globally. However, due to complexity of addressing a number of medical needs and financial burden of development of new class of therapeutics, there is a need for better tools for decision making and validation of efficacy and safety of new compounds. Numerous biological markers (biomarkers) have been proposed either as adjunct to current clinical endpoints or as surrogates. Imaging biomarkers are among rapidly increasing biomarkers, being examined to expedite effective and rational drug development. Clinical imaging often involves a complex set of multi-modality data sets that require rapid and objective analysis, independent of reviewer's bias and training. In this chapter, an overview of imaging biomarkers for drug development is offered, along with challenges that necessitate quantitative and objective image analysis. Examples of automated and semi-automated analysis approaches are provided, along with technical review of such methods. These examples include the use of 3D MRI for osteoarthritis, ultrasound vascular imaging, and dynamic contrast enhanced MRI for oncology. Additionally, a brief overview of regulatory requirements is discussed. In conclusion, this chapter highlights key challenges and future directions in this area.

  20. Automatic quantitative analysis of cardiac MR perfusion images

    NASA Astrophysics Data System (ADS)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  1. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  2. Characterization of the human plasma phosphoproteome using linear ion trap mass spectrometry and multiple search engines.

    PubMed

    Carrascal, Montserrat; Gay, Marina; Ovelleiro, David; Casas, Vanessa; Gelpí, Emilio; Abian, Joaquin

    2010-02-01

    Major plasma protein families play different roles in blood physiology and hemostasis and in immunodefense. Other proteins in plasma can be involved in signaling as chemical messengers or constitute biological markers of the status of distant tissues. In this respect, the plasma phosphoproteome holds potentially relevant information on the mechanisms modulating these processes through the regulation of protein activity. In this work we describe for the first time a collection of phosphopeptides identified in human plasma using immunoaffinity separation of the seven major serum protein families from other plasma proteins, SCX fractionation, and TiO(2) purification prior to LC-MS/MS analysis. One-hundred and twenty-seven phosphosites in 138 phosphopeptides mapping 70 phosphoproteins were identified with FDR < 1%. A high-confidence collection of phosphosites was obtained using a combined search with the OMSSA, SEQUEST, and Phenyx search engines. PMID:19941383

  3. Automated Immobilized Metal Affinity Chromatography System for Enrichment of Escherichia coli Phosphoproteome

    SciTech Connect

    Qu, Yi; Wu, Si; Zhao, Rui; Zink, Erika M.; Orton, Daniel J.; Moore, Ronald J.; Meng, Da; Clauss, Therese RW; Aldrich, Joshua T.; Lipton, Mary S.; Pasa-Tolic, Ljiljana

    2013-06-05

    Enrichment of bacterial phosphopeptides is an essential step prior to bottom-up mass spectrometry-based analysis of the phosphoproteome, which is fundamental to understanding the role of phosphoproteins in cell signaling and regulation of protein activity. We developed an automated IMAC system to enrich strong cation exchange-fractionated phosphopeptides from the soluble proteome of Escherichia coli MG1655 grown on minimal medium. Initial demonstration of the system resulted in identification of 75 phosphopeptides covering 52 phosphoproteins. Consistent with previous studies, many of these phosphoproteins are involved in the carbohydrate portion of central metabolism. The automated system utilizes a large capacity IMAC column that can effectively enrich phosphopeptides from a bacterial sample by increasing peptide loading and reducing the wash time. An additional benefit of the automated IMAC system is reduced labor and associated costs.

  4. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    PubMed

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  5. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    PubMed Central

    Siegel, Erin M.; Riggs, Bridget M.; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  6. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments

    NASA Astrophysics Data System (ADS)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 < Mw < -6.8, which is consistent with other laboratory AE results, and stress drops were within the range commonly observed for induced seismicity in the field (0.1 - 10 MPa). The second data set was AE collected during a true-triaxial deformation experiment, where the objectives were to characterize laboratory AE sources and identify issues related to moving the analysis from ideal in situ conditions to more complex laboratory conditions in terms of the ability to conduct quantitative AE analysis. We found AE magnitudes in the range -7.8 < Mw < -6.7 and as with the in situ data, stress release was within the expected range of 0.1 - 10 MPa. We identified four major challenges to quantitative analysis in the laboratory, which in- hibited our ability to study parameter scaling (M0 ∝ fc -3 scaling). These challenges were 0c (1) limited knowledge of attenuation which we proved was continuously evolving, (2

  7. Inside Single Cells: Quantitative Analysis with Advanced Optics and Nanomaterials

    PubMed Central

    Cui, Yi; Irudayaraj, Joseph

    2014-01-01

    Single cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single cell activity. In order to obtain quantitative information (e.g. molecular quantity, kinetics and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single cell studies both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live cell analysis. Although a considerable proportion of single cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single cell analysis. PMID:25430077

  8. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    SciTech Connect

    Xu, Zhe; Wu, Chaochao; Xie, Fang; Slysz, Gordon W.; Tolic, Nikola; Monroe, Matthew E.; Petyuk, Vladislav A.; Payne, Samuel H.; Fujimoto, Grant M.; Moore, Ronald J.; Fillmore, Thomas L.; Schepmoes, Athena A.; Levine, Douglas; Townsend, Reid; Davies, Sherri; Li, Shunqiang; Ellis, Matthew; Boja, Emily; Rivers, Robert; Rodriguez, Henry; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-01-02

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.

  9. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    SciTech Connect

    Xu, Zhe; Wu, Chaochao; Xie, Fang; Slysz, Gordon W.; Tolic, Nikola; Monroe, Matthew E.; Petyuk, Vladislav A.; Payne, Samuel H.; Fujimoto, Grant M.; Moore, Ronald J.; Fillmore, Thomas L.; Schepmoes, Athena A.; Levine, Douglas; Townsend, Reid; Davies, Sherri; Li, Shunqiang; Ellis, Matthew; Boja, Emily; Rivers, Robert; Rodriguez, Henry; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-01-01

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, and which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.

  10. Inside single cells: quantitative analysis with advanced optics and nanomaterials.

    PubMed

    Cui, Yi; Irudayaraj, Joseph

    2015-01-01

    Single-cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites, and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single-cell activity. To obtain quantitative information (e.g., molecular quantity, kinetics, and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single-cell studies, both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live-cell analysis. Although a considerable proportion of single-cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single-cell analysis. PMID:25430077

  11. Quantitative genetic analysis of the metabolic syndrome in Hispanic children.

    PubMed

    Butte, Nancy F; Comuzzie, Anthony G; Cole, Shelley A; Mehta, Nitesh R; Cai, Guowen; Tejero, Maria; Bastarrachea, Raul; Smith, E O'Brian

    2005-12-01

    Childhood obesity is associated with a constellation of metabolic derangements including glucose intolerance, hypertension, and dyslipidemia, referred to as metabolic syndrome. The purpose of this study was to investigate genetic and environmental factors contributing to the metabolic syndrome in Hispanic children. Metabolic syndrome, defined as having three or more metabolic risk components, was determined in 1030 Hispanic children, ages 4-19 y, from 319 families enrolled in the VIVA LA FAMILIA study. Anthropometry, body composition by dual energy x-ray absorptiometry, clinical signs, and serum biochemistries were measured using standard techniques. Risk factor analysis and quantitative genetic analysis were performed. Of the overweight children, 20%, or 28% if abnormal liver function is included in the definition, presented with the metabolic syndrome. Odds ratios for the metabolic syndrome were significantly increased by body mass index z-score and fasting serum insulin; independent effects of sex, age, puberty, and body composition were not seen. Heritabilities +/- SE for waist circumference, triglycerides (TG), HDL, systolic blood pressure (SBP), glucose, and alanine aminotransferase (ALT) were highly significant. Pleiotropy (a common set of genes affecting two traits) detected between SBP and waist circumference, SBP and glucose, HDL and waist circumference, ALT and waist circumference, and TG and ALT may underlie the clustering of the components of the metabolic syndrome. Significant heritabilities and pleiotropy seen for the components of the metabolic syndrome indicate a strong genetic contribution to the metabolic syndrome in overweight Hispanic children. PMID:16306201

  12. Optimal display conditions for quantitative analysis of stereoscopic cerebral angiograms

    SciTech Connect

    Charland, P.; Peters, T. |

    1996-10-01

    For several years the authors have been using a stereoscopic display as a tool in the planning of stereotactic neurosurgical techniques. This PC-based workstation allows the surgeon to interact with and view vascular images in three dimensions, as well as to perform quantitative analysis of the three-dimensional (3-D) space. Some of the perceptual issues relevant to the presentation of medical images on this stereoscopic display were addressed in five experiments. The authors show that a number of parameters--namely the shape, color, and depth cue, associated with a cursor--as well as the image filtering and observer position, have a role in improving the observer`s perception of a 3-D image and his ability to localize points within the stereoscopically presented 3-D image. However, an analysis of the results indicates that while varying these parameters can lead to an effect on the performance of individual observers, the effects are not consistent across observers, and the mean accuracy remains relatively constant under the different experimental conditions.

  13. Quantitative analysis of noninvasive diagnostic procedures for induction motor drives

    NASA Astrophysics Data System (ADS)

    Eltabach, Mario; Antoni, Jerome; Najjar, Micheline

    2007-10-01

    This paper reports quantitative analyses of spectral fault components in five noninvasive diagnostic procedures that use input electric signals to detect different types of abnormalities in induction motors. Besides the traditional one phase current spectrum analysis "SC", the diagnostic procedures based on spectrum analysis of the instantaneous partial powers " P ab", " P cb", total power " P abc", and the current space vector modulus " csvm" are considered. The aim of this comparison study is to improve the diagnosis tools for detection of electromechanical faults in electrical machines by using the best suitable diagnostic procedure knowing some motor and fault characteristics. Defining a severity factor as the increase in amplitude of the fault characteristic frequency, with respect to the healthy condition, enables us to study the sensitivity of the electrical diagnostic tools. As a result, it is shown that the relationship between the angular displacement of the current side-bands components at frequencies ( f± fosc) is directly related to the type of induction motor faults. It is also proved that the total instantaneous power diagnostic procedure was observed to exhibit the highest values of the detection criterion in case of mechanical faults while in case of electrical ones the most reliable diagnostic procedure is tightly related to the value of the motor power factor angle and the group motor-load inertia. Finally, simulation and experimental results show good agreement with the fault modeling theoretical results.

  14. Semiautomatic Software For Quantitative Analysis Of Cardiac Positron Tomography Studies

    NASA Astrophysics Data System (ADS)

    Ratib, Osman; Bidaut, Luc; Nienaber, Christoph; Krivokapich, Janine; Schelbert, Heinrich R.; Phelps, Michael E.

    1988-06-01

    In order to derive accurate values for true tissue radiotracers concentrations from gated positron emission tomography (PET) images of the heart, which are critical for quantifying noninvasively regional myocardial blood flow and metabolism, appropriate corrections for partial volume effect (PVE) and contamination from adjacent anatomical structures are required. We therefore developed an integrated software package for quantitative analysis of tomographic images which provides for such corrections. A semiautomatic edge detection technique outlines and partitions the myocardium into sectors. Myocardial wall thickness is measured on the images perpendicularly to the detected edges and used to correct for PVE. The programs automatically correct for radioactive decay, activity calibration and cross contaminations for both static and dynamic studies. Parameters derived with these programs include tracer concentrations and their changes over time. They are used for calculating regional metabolic rates and can be further displayed as color coded parametric images. The approach was validated for PET imaging in 11 dog experiments. 2D echocardiograms (Echo) were recorded simultaneously to validate the edge detection and wall thickness measurement techniques. After correction for PVE using automatic WT measurement, regional tissue tracer concentrations derived from PET images correlated well with true tissue concentrations as determined by well counting (r=0.98). These preliminary studies indicate that the developed automatic image analysis technique allows accurate and convenient evaluation of cardiac PET images for the measurement of both, regional tracer tissue concentrations as well as regional myocardial function.

  15. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation

    PubMed Central

    2014-01-01

    Background Comprehensive characterization of the phosphoproteome in living cells is critical in signal transduction research. But the low abundance of phosphopeptides among the total proteome in cells remains an obstacle in mass spectrometry-based proteomic analysis. To provide a solution, an alternative analytic strategy to confidently identify phosphorylated peptides by using the alkaline phosphatase (AP) treatment combined with high-resolution mass spectrometry was provided. While the process is applicable, the key integration along the pipeline was mostly done by tedious manual work. Results We developed a software toolkit, iPhos, to facilitate and streamline the work-flow of AP-assisted phosphoproteome characterization. The iPhos tookit includes one assister and three modules. The iPhos Peak Extraction Assister automates the batch mode peak extraction for multiple liquid chromatography mass spectrometry (LC-MS) runs. iPhos Module-1 can process the peak lists extracted from the LC-MS analyses derived from the original and dephosphorylated samples to mine out potential phosphorylated peptide signals based on mass shift caused by the loss of some multiples of phosphate groups. And iPhos Module-2 provides customized inclusion lists with peak retention time windows for subsequent targeted LC-MS/MS experiments. Finally, iPhos Module-3 facilitates to link the peptide identifications from protein search engines to the quantification results from pattern-based label-free quantification tools. We further demonstrated the utility of the iPhos toolkit on the data of human metastatic lung cancer cells (CL1-5). Conclusions In the comparison study of the control group of CL1-5 cell lysates and the treatment group of dasatinib-treated CL1-5 cell lysates, we demonstrated the applicability of the iPhos toolkit and reported the experimental results based on the iPhos-facilitated phosphoproteome investigation. And further, we also compared the strategy with pure DDA-based LC

  16. Applying Qualitative Hazard Analysis to Support Quantitative Safety Analysis for Proposed Reduced Wake Separation Conops

    NASA Technical Reports Server (NTRS)

    Shortle, John F.; Allocco, Michael

    2005-01-01

    This paper describes a scenario-driven hazard analysis process to identify, eliminate, and control safety-related risks. Within this process, we develop selective criteria to determine the applicability of applying engineering modeling to hypothesized hazard scenarios. This provides a basis for evaluating and prioritizing the scenarios as candidates for further quantitative analysis. We have applied this methodology to proposed concepts of operations for reduced wake separation for closely spaced parallel runways. For arrivals, the process identified 43 core hazard scenarios. Of these, we classified 12 as appropriate for further quantitative modeling, 24 that should be mitigated through controls, recommendations, and / or procedures (that is, scenarios not appropriate for quantitative modeling), and 7 that have the lowest priority for further analysis.

  17. Evaluating the Quantitative Capabilities of Metagenomic Analysis Software.

    PubMed

    Kerepesi, Csaba; Grolmusz, Vince

    2016-05-01

    DNA sequencing technologies are applied widely and frequently today to describe metagenomes, i.e., microbial communities in environmental or clinical samples, without the need for culturing them. These technologies usually return short (100-300 base-pairs long) DNA reads, and these reads are processed by metagenomic analysis software that assign phylogenetic composition-information to the dataset. Here we evaluate three metagenomic analysis software (AmphoraNet-a webserver implementation of AMPHORA2-, MG-RAST, and MEGAN5) for their capabilities of assigning quantitative phylogenetic information for the data, describing the frequency of appearance of the microorganisms of the same taxa in the sample. The difficulties of the task arise from the fact that longer genomes produce more reads from the same organism than shorter genomes, and some software assign higher frequencies to species with longer genomes than to those with shorter ones. This phenomenon is called the "genome length bias." Dozens of complex artificial metagenome benchmarks can be found in the literature. Because of the complexity of those benchmarks, it is usually difficult to judge the resistance of a metagenomic software to this "genome length bias." Therefore, we have made a simple benchmark for the evaluation of the "taxon-counting" in a metagenomic sample: we have taken the same number of copies of three full bacterial genomes of different lengths, break them up randomly to short reads of average length of 150 bp, and mixed the reads, creating our simple benchmark. Because of its simplicity, the benchmark is not supposed to serve as a mock metagenome, but if a software fails on that simple task, it will surely fail on most real metagenomes. We applied three software for the benchmark. The ideal quantitative solution would assign the same proportion to the three bacterial taxa. We have found that AMPHORA2/AmphoraNet gave the most accurate results and the other two software were under

  18. Rapid inorganic ion analysis using quantitative microchip capillary electrophoresis.

    PubMed

    Vrouwe, Elwin X; Luttge, Regina; Olthuis, Wouter; van den Berg, Albert

    2006-01-13

    Rapid quantitative microchip capillary electrophoresis (CE) for online monitoring of drinking water enabling inorganic ion separation in less than 15 s is presented. Comparing cationic and anionic standards at different concentrations the analysis of cationic species resulted in non-linear calibration curves. We interpret this effect as a variation in the volume of the injected sample plug caused by changes of the electroosmotic flow (EOF) due to the strong interaction of bivalent cations with the glass surface. This explanation is supported by the observation of severe peak tailing. Conducting microchip CE analysis in a glass microchannel, optimized conditions are received for the cationic species K+, Na+, Ca2+, Mg2+ using a background electrolyte consisting of 30 mmol/L histidine and 2-(N-morpholino)ethanesulfonic acid, containing 0.5 mmol/L potassium chloride to reduce surface interaction and 4 mmol/L tartaric acid as a complexing agent resulting in a pH-value of 5.8. Applying reversed EOF co-migration for the anionic species Cl-, SO42- and HCO3- optimized separation occurs in a background electrolyte consisting of 10 mmol/L 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 10 mmol/L HEPES sodium salt, containing 0.05 mmol/L CTAB (cetyltrimethylammonium bromide) resulting in a pH-value of 7.5. The detection limits are 20 micromol/L for the monovalent cationic and anionic species and 10 micromol/L for the divalent species. These values make the method very suitable for many applications including the analysis of abundant ions in tap water as demonstrated in this paper. PMID:16310794

  19. The Measles Vaccination Narrative in Twitter: A Quantitative Analysis

    PubMed Central

    Radzikowski, Jacek; Jacobsen, Kathryn H; Croitoru, Arie; Crooks, Andrew; Delamater, Paul L

    2016-01-01

    Background The emergence of social media is providing an alternative avenue for information exchange and opinion formation on health-related issues. Collective discourse in such media leads to the formation of a complex narrative, conveying public views and perceptions. Objective This paper presents a study of Twitter narrative regarding vaccination in the aftermath of the 2015 measles outbreak, both in terms of its cyber and physical characteristics. We aimed to contribute to the analysis of the data, as well as presenting a quantitative interdisciplinary approach to analyze such open-source data in the context of health narratives. Methods We collected 669,136 tweets referring to vaccination from February 1 to March 9, 2015. These tweets were analyzed to identify key terms, connections among such terms, retweet patterns, the structure of the narrative, and connections to the geographical space. Results The data analysis captures the anatomy of the themes and relations that make up the discussion about vaccination in Twitter. The results highlight the higher impact of stories contributed by news organizations compared to direct tweets by health organizations in communicating health-related information. They also capture the structure of the antivaccination narrative and its terms of reference. Analysis also revealed the relationship between community engagement in Twitter and state policies regarding child vaccination. Residents of Vermont and Oregon, the two states with the highest rates of non-medical exemption from school-entry vaccines nationwide, are leading the social media discussion in terms of participation. Conclusions The interdisciplinary study of health-related debates in social media across the cyber-physical debate nexus leads to a greater understanding of public concerns, views, and responses to health-related issues. Further coalescing such capabilities shows promise towards advancing health communication, thus supporting the design of more

  20. Nanotechnology patents in the automotive industry (a quantitative & qualitative analysis).

    PubMed

    Prasad, Raghavendra; Bandyopadhyay, Tapas K

    2014-01-01

    The aim of the article is to present a trend in patent filings for application of nanotechnology to the automobile sector across the world, using the keyword-based patent search. Overviews of the patents related to nano technology in the automobile industry have been provided. The current work has started from the worldwide patent search to find the patents on nanotechnology in the automobile industry and classify the patents according to the various parts of an automobile to which they are related and the solutions which they are providing. In the next step various graphs have been produced to get an insight into various trends. In next step, analysis of patents in various classifications, have been performed. The trends shown in graphs provide the quantitative analysis whereas; the qualitative analysis has been done in another section. The classifications of patents based on the solution they provide have been performed by reading the claims, titles, abstract and full texts separately. Patentability of nano technology inventions have been discussed in a view to give an idea of requirements and statutory bars to the patentability of nanotechnology inventions. Another objective of the current work is to suggest appropriate framework for the companies regarding use of nano technology in the automobile industry and a suggestive strategy for patenting of the inventions related to the same. For example, US Patent, with patent number US2008-019426A1 discusses the invention related to Lubricant composition. This patent has been studied and classified to fall under classification of automobile parts. After studying this patent, it is deduced that, the problem of friction in engine is being solved by this patent. One classification is the "automobile part" based while other is the basis of "problem being solved". Hence, two classifications, namely reduction in friction and engine were created. Similarly, after studying all the patents, a similar matrix has been created

  1. Identification of kinase inhibitor targets in the lung cancer microenvironment by chemical and phosphoproteomics

    PubMed Central

    Gridling, Manuela; Ficarro, Scott B.; Breitwieser, Florian P.; Song, Lanxi; Parapatics, Katja; Colinge, Jacques; Haura, Eric B.; Marto, Jarrod A.; Superti-Furga, Giulio; Bennett, Keiryn L.; Rix, Uwe

    2014-01-01

    A growing number of gene mutations, which are recognized as cancer drivers, can be successfully targeted with drugs. The redundant and dynamic nature of oncogenic signaling networks and complex interactions between cancer cells and the microenvironment, however, can cause drug resistance. Whereas these challenges can be addressed by developing drug combinations or polypharmacology drugs, this benefits greatly from a detailed understanding of the proteome-wide target profiles. Using mass spectrometry-based chemical proteomics, we report the comprehensive characterization of the drug-protein interaction networks for the multikinase inhibitors dasatinib and sunitinib in primary lung cancer tissue specimens derived from patients. We observed in excess of 100 protein kinase targets plus various protein complexes involving, for instance, AMPK, TBK1 (sunitinib) and ILK (dasatinib). Importantly, comparison with lung cancer cell lines and mouse xenografts thereof showed that most targets were shared between cell lines and tissues. Several targets, however, were only present in tumor tissues. In xenografts, most of these proteins were of mouse origin suggesting that they originate from the tumor microenvironment. Furthermore, intersection with subsequent global phosphoproteomic analysis identified several activated signaling pathways. These included MAPK, immune and integrin signaling, which were affected by these drugs in both cancer cells and the microenvironment. Thus, the combination of chemical and phosphoproteomics can generate a systems view of proteins, complexes and signaling pathways that are simultaneously engaged by multi-targeted drugs in cancer cells and the tumor microenvironment. This may allow for the design of novel anticancer therapies that concurrently target multiple tumor compartments. PMID:25189542

  2. Teaching Quantitative Literacy through a Regression Analysis of Exam Performance

    ERIC Educational Resources Information Center

    Lindner, Andrew M.

    2012-01-01

    Quantitative literacy is increasingly essential for both informed citizenship and a variety of careers. Though regression is one of the most common methods in quantitative sociology, it is rarely taught until late in students' college careers. In this article, the author describes a classroom-based activity introducing students to regression…

  3. Separation and quantitative analysis of alkyl sulfate ethoxymers by HPLC.

    PubMed

    Morvan, Julien; Hubert-Roux, Marie; Agasse, Valérie; Cardinael, Pascal; Barbot, Florence; Decock, Gautier; Bouillon, Jean-Philippe

    2008-01-01

    Separation of alkyl sulfate ethoxymers is investigated on various high-performance liquid chromatography (HPLC) stationary phases: Acclaim C18 Surfactant, Surfactant C8, and Hypercarb. For a fixed alkyl chain length, ethoxymers are eluted in the order of increasing number of ethoxylated units on Acclaim C18 Surfactant, whereas a reversed elution order is observed on Surfactant C8 and Hypercarb. Moreover, on an Acclaim C18 Surfactant column, non-ethoxylated compounds are eluted in their ethoxymers distribution and the use of sodium acetate additive in mobile phase leads to a co-elution of ethoxymers. HPLC stationary phases dedicated to surfactants analysis are evaluated by means of the Tanaka test. Surfactant C8 presents a great silanol activity whereas Acclaim C18 Surfactant shows a high steric selectivity. For alkyl sulfates, linearity of the calibration curve and limits of detection and quantitation are evaluated. The amount of sodium laureth sulfate raw material found in commercial body product is in agreement with the specification of the manufacturer. PMID:19007494

  4. Copulation patterns in captive hamadryas baboons: a quantitative analysis.

    PubMed

    Nitsch, Florian; Stueckle, Sabine; Stahl, Daniel; Zinner, Dietmar

    2011-10-01

    For primates, as for many other vertebrates, copulation which results in ejaculation is a prerequisite for reproduction. The probability of ejaculation is affected by various physiological and social factors, for example reproductive state of male and female and operational sex-ratio. In this paper, we present quantitative and qualitative data on patterns of sexual behaviour in a captive group of hamadryas baboons (Papio hamadryas), a species with a polygynous-monandric mating system. We observed more than 700 copulations and analysed factors that can affect the probability of ejaculation. Multilevel logistic regression analysis and Akaike's information criterion (AIC) model selection procedures revealed that the probability of successful copulation increased as the size of female sexual swellings increased, indicating increased probability of ovulation, and as the number of females per one-male unit (OMU) decreased. In contrast, occurrence of female copulation calls, sex of the copulation initiator, and previous male aggression toward females did not affect the probability of ejaculation. Synchrony of oestrus cycles also had no effect (most likely because the sample size was too small). We also observed 29 extra-group copulations by two non-adult males. Our results indicate that male hamadryas baboons copulated more successfully around the time of ovulation and that males in large OMUs with many females may be confronted by time or energy-allocation problems. PMID:21710159

  5. Quantitative analysis of protein dynamics during asymmetric cell division.

    PubMed

    Mayer, Bernd; Emery, Gregory; Berdnik, Daniela; Wirtz-Peitz, Frederik; Knoblich, Juergen A

    2005-10-25

    In dividing Drosophila sensory organ precursor (SOP) cells, the fate determinant Numb and its associated adaptor protein Pon localize asymmetrically and segregate into the anterior daughter cell, where Numb influences cell fate by repressing Notch signaling. Asymmetric localization of both proteins requires the protein kinase aPKC and its substrate Lethal (2) giant larvae (Lgl). Because both Numb and Pon localization require actin and myosin, lateral transport along the cell cortex has been proposed as a possible mechanism for their asymmetric distribution. Here, we use quantitative live analysis of GFP-Pon and Numb-GFP fluorescence and fluorescence recovery after photobleaching (FRAP) to characterize the dynamics of Numb and Pon localization during SOP division. We demonstrate that Numb and Pon rapidly exchange between a cytoplasmic pool and the cell cortex and that preferential recruitment from the cytoplasm is responsible for their asymmetric distribution during mitosis. Expression of a constitutively active form of aPKC impairs membrane recruitment of GFP-Pon. This defect can be rescued by coexpression of nonphosphorylatable Lgl, indicating that Lgl is the main target of aPKC. We propose that a high-affinity binding site is asymmetrically distributed by aPKC and Lgl and is responsible for asymmetric localization of cell-fate determinants during mitosis. PMID:16243032

  6. Hyperspectral imaging and quantitative analysis for prostate cancer detection

    PubMed Central

    Akbari, Hamed; Halig, Luma V.; Schuster, David M.; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T.; Chen, Georgia Z.

    2012-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology. PMID:22894488

  7. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  8. Hyperspectral imaging and quantitative analysis for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Halig, Luma V.; Schuster, David M.; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T.; Chen, Georgia Z.; Fei, Baowei

    2012-07-01

    Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology.

  9. Quantitative phase imaging applied to laser damage detection and analysis.

    PubMed

    Douti, Dam-Bé L; Chrayteh, Mhamad; Aknoun, Sherazade; Doualle, Thomas; Hecquet, Christophe; Monneret, Serge; Gallais, Laurent

    2015-10-01

    We investigate phase imaging as a measurement method for laser damage detection and analysis of laser-induced modification of optical materials. Experiments have been conducted with a wavefront sensor based on lateral shearing interferometry associated with a high-magnification optical microscope. The system has been used for the in-line observation of optical thin films and bulk samples, laser irradiated in two different conditions: 500 fs pulses at 343 and 1030 nm, and millisecond to second irradiation with a CO2 laser at 10.6 μm. We investigate the measurement of the laser-induced damage threshold of optical material by detection and phase changes and show that the technique realizes high sensitivity with different optical path measurements lower than 1 nm. Additionally, the quantitative information on the refractive index or surface modification of the samples under test that is provided by the system has been compared to classical metrology instruments used for laser damage or laser ablation characterization (an atomic force microscope, a differential interference contrast microscope, and an optical surface profiler). An accurate in-line measurement of the morphology of laser-ablated sites, from few nanometers to hundred microns in depth, is shown. PMID:26479612

  10. Quantitative SERS sensors for environmental analysis of naphthalene.

    PubMed

    Péron, O; Rinnert, E; Toury, T; Lamy de la Chapelle, M; Compère, C

    2011-03-01

    In the investigation of chemical pollutants, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, Surface-Enhanced Raman Scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film. The surface of quartz substrates was coated with a hydrophobic film obtained by silanization and subsequently reacted with polystyrene (PS) beads coated with gold nanoparticles. The hydrophobic surface of the SERS substrates pre-concentrates non-polar molecules such as naphthalene. Under laser excitation, the SERS-active substrates allow the detection and the identification of the target molecules localized close to the gold nanoparticles. The morphology of the SERS substrates based on polystyrene beads surrounded by gold nanoparticles was characterized by scanning electron microscopy (SEM). Furthermore, the Raman fingerprint of the polystyrene stands for an internal spectral reference. To this extent, an innovative method to detect and to quantify organic molecules, as naphthalene in the range of 1 to 20 ppm, in aqueous media was carried out. Such SERS-active substrates tend towards an application as quantitative SERS sensors for the environmental analysis of naphthalene. PMID:21165476

  11. Quantitative analysis of flagellar proteins in Drosophila sperm tails.

    PubMed

    Mendes Maia, Teresa; Paul-Gilloteaux, Perrine; Basto, Renata

    2015-01-01

    The cilium has a well-defined structure, which can still accommodate some morphological and molecular composition diversity to suit the functional requirements of different cell types. The sperm flagellum of the fruit fly Drosophila melanogaster appears as a good model to study the genetic regulation of axoneme assembly and motility, due to the wealth of genetic tools publically available for this organism. In addition, the fruit fly's sperm flagellum displays quite a long axoneme (∼1.8mm), which may facilitate both histological and biochemical analyses. Here, we present a protocol for imaging and quantitatively analyze proteins, which associate with the fly differentiating, and mature sperm flagella. We will use as an example the quantification of tubulin polyglycylation in wild-type testes and in Bug22 mutant testes, which present defects in the deposition of this posttranslational modification. During sperm biogenesis, flagella appear tightly bundled, which makes it more challenging to get accurate measurements of protein levels from immunostained specimens. The method we present is based on the use of a novel semiautomated, macro installed in the image processing software ImageJ. It allows to measure fluorescence levels in closely associated sperm tails, through an exact distinction between positive and background signals, and provides background-corrected pixel intensity values that can directly be used for data analysis. PMID:25837396

  12. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2008-08-03

    Rising energy prices and climate change are central issues in the debate about our nation's energy policy. Many are demanding increased energy efficiency as a way to help reduce greenhouse gas emissions and lower the total cost of electricity and energy services for consumers and businesses. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit-motivation, or even a financial disincentive, when compared to supply-side investments. With the recent introduction of Duke Energy's Save-a-Watt incentive mechanism and ongoing discussions about decoupling, regulators and policymakers are now faced with an expanded and diverse landscape of financial incentive mechanisms, Determining the 'right' way forward to promote deep and sustainable demand side resource programs is challenging. Due to the renaissance that energy efficiency is currently experiencing, many want to better understand the tradeoffs in stakeholder benefits between these alternative incentive structures before aggressively embarking on a path for which course corrections can be time-consuming and costly. Using a prototypical Southwest utility and a publicly available financial model, we show how various stakeholders (e.g. shareholders, ratepayers, etc.) are affected by these different types of shareholder incentive mechanisms under varying assumptions about program portfolios. This quantitative analysis compares the financial consequences associated with a wide range of alternative incentive structures. The results will help regulators and policymakers better understand the financial implications of DSR program incentive regulation.

  13. Quantitative analysis of biomedical samples using synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ektessabi, Ali; Shikine, Shunsuke; Yoshida, Sohei

    2001-07-01

    X-ray fluorescence (XRF) using a synchrotron radiation (SR) microbeam was applied to investigate distributions and concentrations of elements in single neurons of patients with neurodegenerative diseases. In this paper we introduce a computer code that has been developed to quantify the trace elements and matrix elements at the single cell level. This computer code has been used in studies of several important neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and parkinsonism-dementia complex (PDC), as well as in basic biological experiments to determine the elemental changes in cells due to incorporation of foreign metal elements. The substantial nigra (SN) tissue obtained from the autopsy specimens of patients with Guamanian parkinsonism-dementia complex (PDC) and control cases were examined. Quantitative XRF analysis showed that neuromelanin granules of Parkinsonian SN contained higher levels of Fe than those of the control. The concentrations were in the ranges of 2300-3100 ppm and 2000-2400 ppm respectively. On the contrary, Zn and Ni in neuromelanin granules of SN tissue from the PDC case were lower than those of the control. Especially Zn was less than 40 ppm in SN tissue from the PDC case while it was 560-810 ppm in the control. These changes are considered to be closely related to the neuro-degeneration and cell death.

  14. Hyperspectral imaging and quantitative analysis for prostate cancer detection.

    PubMed

    Akbari, Hamed; Halig, Luma V; Schuster, David M; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T; Chen, Georgia Z; Fei, Baowei

    2012-07-01

    Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology. PMID:22894488

  15. Quantitative image analysis of HIV-1 infection in lymphoid tissue

    SciTech Connect

    Haase, A.T.; Zupancic, M.; Cavert, W.

    1996-11-08

    Tracking human immunodeficiency virus-type 1 (HIV-1) infection at the cellular level in tissue reservoirs provides opportunities to better understand the pathogenesis of infection and to rationally design and monitor therapy. A quantitative technique was developed to determine viral burden in two important cellular compartments in lymphoid developed to determine viral burden in two important cellular compartments in lymphoid tissues. Image analysis and in situ hybridization were combined to show that in the presymptomatic stages of infection there is a large, relatively stable pool of virions on the surfaces of follicular dendritic cells and a smaller pool of productivity infected cells. Despite evidence of constraints on HIV-1 replication in the infected cell population in lymphoid tissues, estimates of the numbers of these cells and the virus they could produce are consistent with the quantities of virus that have been detected in the bloodstream. The cellular sources of virus production and storage in lymphoid tissues can now be studied with this approach over the course of infection and treatment. 22 refs., 2 figs., 2 tabs.

  16. Quantitative trait locus analysis for hemostasis and thrombosis

    PubMed Central

    Sa, Qila; Hart, Erika; Hill, Annie E.; Nadeau, Joseph H.

    2009-01-01

    Susceptibility to thrombosis varies in human populations as well as many in inbred mouse strains. The objective of this study was to characterize the genetic control of thrombotic risk on three chromosomes. Previously, utilizing a tail-bleeding/rebleeding assay as a surrogate of hemostasis and thrombosis function, three mouse chromosome substitution strains (CSS) (B6-Chr5A/J, Chr11A/J, Chr17A/J) were identified (Hmtb1, Hmtb2, Hmtb3). The tailbleeding/rebleeding assay is widely used and distinguishes mice with genetic defects in blood clot formation or dissolution. In the present study, quantitative trait locus (QTL) analysis revealed a significant locus for rebleeding (clot stability) time (time between cessation of initial bleeding and start of the second bleeding) on chromosome 5, suggestive loci for bleeding time (time between start of bleeding and cessation of bleeding) also on chromosomes 5, and two suggestive loci for clot stability on chromosome 17 and one on chromosome 11. The three CSS and the parent A/J had elevated clot stability time. There was no interaction of genes on chromosome 11 with genes on chromosome 5 or chromosome 17. On chromosome 17, twenty-three candidate genes were identified in synteny with previously identified loci for thrombotic risk on human chromosome 18. Thus, we have identified new QTLs and candidate genes not previously known to influence thrombotic risk. PMID:18787898

  17. Searching for Novel Cdk5 Substrates in Brain by Comparative Phosphoproteomics of Wild Type and Cdk5−/− Mice

    PubMed Central

    Contreras-Vallejos, Erick; Utreras, Elías; Bórquez, Daniel A.; Prochazkova, Michaela; Terse, Anita; Jaffe, Howard; Toledo, Andrea; Arruti, Cristina; Pant, Harish C.; Kulkarni, Ashok B.; González-Billault, Christian

    2014-01-01

    Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5−/− embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5−/− brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate. PMID:24658276

  18. Communication about vaccinations in Italian websites: a quantitative analysis.

    PubMed

    Tafuri, Silvio; Gallone, Maria S; Gallone, Maria F; Zorico, Ivan; Aiello, Valeria; Germinario, Cinzia

    2014-01-01

    Babies' parents and people who look for information about vaccination often visit anti-vaccine movement's websites, blogs by naturopathic physicians or natural and alternative medicine practitioners. The aim of this work is to provide a quantitative analysis on the type of information available to Italian people regarding vaccination and a quality analysis of websites retrieved through our searches. A quality score was created to evaluate the technical level of websites. A research was performed through Yahoo, Google, and MSN using the keywords "vaccine" and "vaccination," with the function "OR" in order to identify the most frequently used websites. The 2 keywords were input in Italian, and the first 15 pages retrieved by each search engine were analyzed. 149 websites were selected through this methodology. Fifty-three per cent of the websites belonged to associations, groups, or scientific companies, 32.2% (n = 48) consisted of a personal blog and 14.8% (n = 22) belonged to some of the National Health System offices. Among all analyzed websites, 15.4% (n = 23) came from anti-vaccine movement groups. 37.6% reported webmaster name, 67.8% webmaster e-mail, 28.6% indicated the date of the last update and 46.6% the author's name. The quality score for government sites was higher on average than anti-vaccine websites; although, government sites don't use Web 2.0 functions, as the forums.: National Health System institutions who have to promote vaccination cannot avoid investing in web communication because it cannot be managed by private efforts but must be the result of Public Health, private and scientific association, and social movement synergy. PMID:24607988

  19. Quantitative Analysis of Human Cancer Cell Extravasation Using Intravital Imaging.

    PubMed

    Willetts, Lian; Bond, David; Stoletov, Konstantin; Lewis, John D

    2016-01-01

    Metastasis, or the spread of cancer cells from a primary tumor to distant sites, is the leading cause of cancer-associated death. Metastasis is a complex multi-step process comprised of invasion, intravasation, survival in circulation, extravasation, and formation of metastatic colonies. Currently, in vitro assays are limited in their ability to investigate these intricate processes and do not faithfully reflect metastasis as it occurs in vivo. Traditional in vivo models of metastasis are limited by their ability to visualize the seemingly sporadic behavior of where and when cancer cells spread (Reymond et al., Nat Rev Cancer 13:858-870, 2013). The avian embryo model of metastasis is a powerful platform to study many of the critical steps in the metastatic cascade including the migration, extravasation, and invasion of human cancer cells in vivo (Sung et al., Nat Commun 6:7164, 2015; Leong et al., Cell Rep 8, 1558-1570, 2014; Kain et al., Dev Dyn 243:216-28, 2014; Leong et al., Nat Protoc 5:1406-17, 2010; Zijlstra et al., Cancer Cell 13:221-234, 2008; Palmer et al., J Vis Exp 51:2815, 2011). The chicken chorioallantoic membrane (CAM) is a readily accessible and well-vascularized tissue that surrounds the developing embryo. When the chicken embryo is grown in a shell-less, ex ovo environment, the nearly transparent CAM provides an ideal environment for high-resolution fluorescent microcopy approaches. In this model, the embryonic chicken vasculature and labeled cancer cells can be visualized simultaneously to investigate specific steps in the metastatic cascade including extravasation. When combined with the proper image analysis tools, the ex ovo chicken embryo model offers a cost-effective and high-throughput platform for the quantitative analysis of tumor cell metastasis in a physiologically relevant in vivo setting. Here we discuss detailed procedures to quantify cancer cell extravasation in the shell-less chicken embryo model with advanced fluorescence

  20. Comparative Ser/Thr/Tyr phosphoproteomics between two mycobacterial species: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG

    PubMed Central

    Nakedi, Kehilwe C.; Nel, Andrew J. M.; Garnett, Shaun; Blackburn, Jonathan M.; Soares, Nelson C.

    2015-01-01

    Ser/Thr/Tyr protein phosphorylation plays a critical role in regulating mycobacterial growth and development. Understanding the mechanistic link between protein phosphorylation signaling network and mycobacterial growth rate requires a global view of the phosphorylation events taking place at a given time under defined conditions. In the present study we employed a phosphopeptide enrichment and high throughput mass spectrometry-based strategy to investigate and qualitatively compare the phosphoproteome of two mycobacterial model organisms: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Cells were harvested during exponential phase and our analysis detected a total of 185 phospho-sites in M. smegmatis, of which 106 were confidently localized [localization probability (LP) = 0.75; PEP = 0.01]. By contrast, in M. bovis BCG the phosphoproteome comprised 442 phospho-sites, of which 289 were confidently localized. The percentage distribution of Ser/Thr/Tyr phosphorylation was 39.47, 57.02, and 3.51% for M. smegmatis and 35, 61.6, and 3.1% for M. bovis BCG. Moreover, our study identified a number of conserved Ser/Thr phosphorylated sites and conserved Tyr phosphorylated sites across different mycobacterial species. Overall a qualitative comparison of the fast and slow growing mycobacteria suggests that the phosphoproteome of M. smegmatis is a simpler version of that of M. bovis BCG. In particular, M. bovis BCG exponential cells exhibited a much more complex and sophisticated protein phosphorylation network regulating important cellular cycle events such as cell wall biosynthesis, elongation, cell division including immediately response to stress. The differences in the two phosphoproteomes are discussed in light of different mycobacterial growth rates. PMID:25904896

  1. Comparative Ser/Thr/Tyr phosphoproteomics between two mycobacterial species: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG.

    PubMed

    Nakedi, Kehilwe C; Nel, Andrew J M; Garnett, Shaun; Blackburn, Jonathan M; Soares, Nelson C

    2015-01-01

    Ser/Thr/Tyr protein phosphorylation plays a critical role in regulating mycobacterial growth and development. Understanding the mechanistic link between protein phosphorylation signaling network and mycobacterial growth rate requires a global view of the phosphorylation events taking place at a given time under defined conditions. In the present study we employed a phosphopeptide enrichment and high throughput mass spectrometry-based strategy to investigate and qualitatively compare the phosphoproteome of two mycobacterial model organisms: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Cells were harvested during exponential phase and our analysis detected a total of 185 phospho-sites in M. smegmatis, of which 106 were confidently localized [localization probability (LP) = 0.75; PEP = 0.01]. By contrast, in M. bovis BCG the phosphoproteome comprised 442 phospho-sites, of which 289 were confidently localized. The percentage distribution of Ser/Thr/Tyr phosphorylation was 39.47, 57.02, and 3.51% for M. smegmatis and 35, 61.6, and 3.1% for M. bovis BCG. Moreover, our study identified a number of conserved Ser/Thr phosphorylated sites and conserved Tyr phosphorylated sites across different mycobacterial species. Overall a qualitative comparison of the fast and slow growing mycobacteria suggests that the phosphoproteome of M. smegmatis is a simpler version of that of M. bovis BCG. In particular, M. bovis BCG exponential cells exhibited a much more complex and sophisticated protein phosphorylation network regulating important cellular cycle events such as cell wall biosynthesis, elongation, cell division including immediately response to stress. The differences in the two phosphoproteomes are discussed in light of different mycobacterial growth rates. PMID:25904896

  2. Quantitative analysis of LISA pathfinder test-mass noise

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Congedo, Giuseppe; Hueller, Mauro; Vitale, Stefano; Hewitson, Martin; Nofrarias, Miquel; Armano, Michele

    2011-12-01

    LISA Pathfinder (LPF) is a mission aiming to test the critical technology for the forthcoming space-based gravitational-wave detectors. The main scientific objective of the LPF mission is to demonstrate test masses free falling with residual accelerations below 3×10-14ms-2/Hz at 1 mHz. Reaching such an ambitious target will require a significant amount of system optimization and characterization, which will in turn require accurate and quantitative noise analysis procedures. In this paper, we discuss two main problems associated with the analysis of the data from LPF: i) excess noise detection and ii) noise parameter identification. The mission is focused on the low-frequency region ([0.1, 10] mHz) of the available signal spectrum. In such a region, the signal is dominated by the force noise acting on test masses. At the same time, the mission duration is limited to 90 days and typical data segments will be 24 hours in length. Considering those constraints, noise analysis is expected to deal with a limited amount of non-Gaussian data, since the spectrum statistics will be far from Gaussian and the lowest available frequency is limited by the data length. In this paper, we analyze the details of the expected statistics for spectral data and develop two suitable excess noise estimators. One is based on the statistical properties of the integrated spectrum, the other is based on the Kolmogorov-Smirnov test. The sensitivity of the estimators is discussed theoretically for independent data, then the algorithms are tested on LPF synthetic data. The test on realistic LPF data allows the effect of spectral data correlations on the efficiency of the different noise excess estimators to be highlighted. It also reveals the versatility of the Kolmogorov-Smirnov approach, which can be adapted to provide reasonable results on correlated data from a modified version of the standard equations for the inversion of the test statistic. Closely related to excess noise detection, the

  3. Quantitative Analysis of the Effective Functional Structure in Yeast Glycolysis

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.

    2012-01-01

    The understanding of the effective functionality that governs the enzymatic self-organized processes in cellular conditions is a crucial topic in the post-genomic era. In recent studies, Transfer Entropy has been proposed as a rigorous, robust and self-consistent method for the causal quantification of the functional information flow among nonlinear processes. Here, in order to quantify the functional connectivity for the glycolytic enzymes in dissipative conditions we have analyzed different catalytic patterns using the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model formed by three delay differential equations where the enzymatic rate equations of the irreversible stages have been explicitly considered. These enzymatic activity functions were previously modeled and tested experimentally by other different groups. The results show the emergence of a new kind of dynamical functional structure, characterized by changing connectivity flows and a metabolic invariant that constrains the activity of the irreversible enzymes. In addition to the classical topological structure characterized by the specific location of enzymes, substrates, products and feedback-regulatory metabolites, an effective functional structure emerges in the modeled glycolytic system, which is dynamical and characterized by notable variations of the functional interactions. The dynamical structure also exhibits a metabolic invariant which constrains the functional attributes of the enzymes. Finally, in accordance with the classical biochemical studies, our numerical analysis reveals in a quantitative manner that the enzyme phosphofructokinase is the key-core of the metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast glycolysis. PMID:22393350

  4. Hydrocarbons on Phoebe, Iapetus, and Hyperion: Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; MoreauDalleOre, Cristina; Pendleton, Yvonne J.; Clark, Roger Nelson

    2012-01-01

    We present a quantitative analysis of the hydrocarbon spectral bands measured on three of Saturn's satellites, Phoebe, Iaperus, and Hyperion. These bands, measured with the Cassini Visible-Infrared Mapping Spectrometer on close fly-by's of these satellites, are the C-H stretching modes of aromatic hydrocarbons at approximately 3.28 micrometers (approximately 3050 per centimeter), and the are four blended bands of aliphatic -CH2- and -CH3 in the range approximately 3.36-3.52 micrometers (approximately 2980- 2840 per centimeter) bably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, resulting in a unique signarure among Solar System bodies measured so far, and as such offers a means of comparison among the three satellites. The ratio of the C-H bands in aromatic molecules to those in aliphatic molecules in the surface materials of Phoebe, NAro:NAliph approximately 24; for Hyperion the value is approximately 12, while laperus shows an intermediate value. In view of the trend of the evolution (dehydrogenation by heat and radiation) of aliphatic complexes toward more compact molecules and eventually to aromatics, the relative abundances of aliphatic -CH2- and -CH3- is an indication of the lengths of the molecular chain structures, hence the degree of modification of the original material. We derive CH2:CH3 approximately 2.2 in the spectrum of low-albedo material on laperus; this value is the same within measurement errors to the ratio in the diffuse interstellar medium. The similarity in the spectral signatures of the three satellites, plus the apparent weak trend of aromatic/aliphatic abundance from Phoebe to Hyperion, is consistent with, and effectively confirms that the source of the hydrocarbon-bearing material is Phoebe, and that the appearance of that material on the other two satellites arises from the deposition of the inward-spiraling dust that populates the Phoebe ring.

  5. Quantitative analysis of harmonic convergence in mosquito auditory interactions

    PubMed Central

    Aldersley, Andrew; Champneys, Alan; Robert, Daniel

    2016-01-01

    This article analyses the hearing and behaviour of mosquitoes in the context of inter-individual acoustic interactions. The acoustic interactions of tethered live pairs of Aedes aegypti mosquitoes, from same and opposite sex mosquitoes of the species, are recorded on independent and unique audio channels, together with the response of tethered individual mosquitoes to playbacks of pre-recorded flight tones of lone or paired individuals. A time-dependent representation of each mosquito's non-stationary wing beat frequency signature is constructed, based on Hilbert spectral analysis. A range of algorithmic tools is developed to automatically analyse these data, and used to perform a robust quantitative identification of the ‘harmonic convergence’ phenomenon. The results suggest that harmonic convergence is an active phenomenon, which does not occur by chance. It occurs for live pairs, as well as for lone individuals responding to playback recordings, whether from the same or opposite sex. Male–female behaviour is dominated by frequency convergence at a wider range of harmonic combinations than previously reported, and requires participation from both partners in the duet. New evidence is found to show that male–male interactions are more varied than strict frequency avoidance. Rather, they can be divided into two groups: convergent pairs, typified by tightly bound wing beat frequencies, and divergent pairs, that remain widely spaced in the frequency domain. Overall, the results reveal that mosquito acoustic interaction is a delicate and intricate time-dependent active process that involves both individuals, takes place at many different frequencies, and which merits further enquiry. PMID:27053654

  6. Quantitative analysis of harmonic convergence in mosquito auditory interactions.

    PubMed

    Aldersley, Andrew; Champneys, Alan; Homer, Martin; Robert, Daniel

    2016-04-01

    This article analyses the hearing and behaviour of mosquitoes in the context of inter-individual acoustic interactions. The acoustic interactions of tethered live pairs of Aedes aegypti mosquitoes, from same and opposite sex mosquitoes of the species, are recorded on independent and unique audio channels, together with the response of tethered individual mosquitoes to playbacks of pre-recorded flight tones of lone or paired individuals. A time-dependent representation of each mosquito's non-stationary wing beat frequency signature is constructed, based on Hilbert spectral analysis. A range of algorithmic tools is developed to automatically analyse these data, and used to perform a robust quantitative identification of the 'harmonic convergence' phenomenon. The results suggest that harmonic convergence is an active phenomenon, which does not occur by chance. It occurs for live pairs, as well as for lone individuals responding to playback recordings, whether from the same or opposite sex. Male-female behaviour is dominated by frequency convergence at a wider range of harmonic combinations than previously reported, and requires participation from both partners in the duet. New evidence is found to show that male-male interactions are more varied than strict frequency avoidance. Rather, they can be divided into two groups: convergent pairs, typified by tightly bound wing beat frequencies, and divergent pairs, that remain widely spaced in the frequency domain. Overall, the results reveal that mosquito acoustic interaction is a delicate and intricate time-dependent active process that involves both individuals, takes place at many different frequencies, and which merits further enquiry. PMID:27053654

  7. Analysis of quantitative phase detection based on optical information processing

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Tu, Jiang-Chen; Chun, Kuang-Tao; Yu, Han-Wang; Xin, Du

    2009-07-01

    Phase object exists widely in nature, such as biological cells, optical components, atmospheric flow field and so on. The phase detection of objects has great significance in the basic research, nondestructive testing, aerospace, military weapons and other areas. The usual methods of phase object detection include interference method, grating method, schlieren method, and phase-contrast method etc. These methods have their own advantages, but they also have some disadvantages on detecting precision, environmental requirements, cost, detection rate, detection range, detection linearity in various applications, even the most sophisticated method-phase contrast method mainly used in microscopic structure, lacks quantitative analysis of the size of the phase of the object and the relationship between the image contrast and the optical system. In this paper, various phase detection means and the characteristics of different applications are analyzed based on the optical information processing, and a phase detection system based on optical filtering is formed. Firstly the frequency spectrum of the phase object is achieved by Fourier transform lens in the system, then the frequency spectrum is changed reasonably by the filter, at last the image which can represent the phase distribution through light intensity is achieved by the inverse Fourier transform. The advantages and disadvantages of the common used filters such as 1/4 wavelength phase filter, high-pass filter and edge filter are analyzed, and their phase resolution is analyzed in the same optical information processing system, and the factors impacting phase resolution are pointed out. The paper draws a conclusion that there exists an optimal filter which makes the detect accuracy best for any application. At last, we discussed how to design an optimal filter through which the ability of the phase testing of optical information processing system can be improved most.

  8. Descriptive Quantitative Analysis of Rearfoot Alignment Radiographic Parameters.

    PubMed

    Meyr, Andrew J; Wagoner, Matthew R

    2015-01-01

    Although the radiographic parameters of the transverse talocalcaneal angle (tTCA), calcaneocuboid angle (CCA), talar head uncovering (THU), calcaneal inclination angle (CIA), talar declination angle (TDA), lateral talar-first metatarsal angle (lTFA), and lateral talocalcaneal angle (lTCA) form the basis of the preoperative evaluation and procedure selection for pes planovalgus deformity, the so-called normal values of these measurements are not well-established. The objectives of the present study were to retrospectively evaluate the descriptive statistics of these radiographic parameters (tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA) in a large population, and, second, to determine an objective basis for defining "normal" versus "abnormal" measurements. As a secondary outcome, the relationship of these variables to the body mass index was assessed. Anteroposterior and lateral foot radiographs from 250 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated. The results revealed a mean measurement of 24.12°, 13.20°, 74.32%, 16.41°, 26.64°, 8.37°, and 43.41° for the tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA, respectively. These were generally in line with the reported historical normal values. Descriptive statistical analysis demonstrated that the tTCA, THU, and TDA met the standards to be considered normally distributed but that the CCA, CIA, lTFA, and lTCA demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, only the CIA (R = -0.2428) and lTCA (R = -0.2449) demonstrated substantial correlation with the body mass index. No differentiations in deformity progression were observed when the radiographic parameters were plotted against each other to lead to a quantitative basis for defining "normal" versus "abnormal" measurements. PMID:26002682

  9. Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants

    PubMed Central

    Iwai, Leo K.; Payne, Leo S.; Luczynski, Maciej T.; Chang, Francis; Xu, Huifang; Clinton, Ryan W.; Paul, Angela; Esposito, Edward A.; Gridley, Scott; Leitinger, Birgit; Naegle, Kristen M.; Huang, Paul H.

    2013-01-01

    Collagen is an important extracellular matrix component that directs many fundamental cellular processes including differentiation, proliferation and motility. The signalling networks driving these processes are propagated by collagen receptors such as the β1 integrins and the DDRs (discoidin domain receptors). To gain an insight into the molecular mechanisms of collagen receptor signalling, we have performed a quantitative analysis of the phosphorylation networks downstream of collagen activation of integrins and DDR2. Temporal analysis over seven time points identified 424 phosphorylated proteins. Distinct DDR2 tyrosine phosphorylation sites displayed unique temporal activation profiles in agreement with in vitro kinase data. Multiple clustering analysis of the phosphoproteomic data revealed several DDR2 candidate downstream signalling nodes, including SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2), NCK1 (non-catalytic region of tyrosine kinase adaptor protein 1), LYN, SHIP-2 [SH2 (Src homology 2)-domain-containing inositol phosphatase 2], PIK3C2A (phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2α) and PLCL2 (phospholipase C-like 2). Biochemical validation showed that SHP-2 tyrosine phosphorylation is dependent on DDR2 kinase activity. Targeted proteomic profiling of a panel of lung SCC (squamous cell carcinoma) DDR2 mutants demonstrated that SHP-2 is tyrosine-phosphorylated by the L63V and G505S mutants. In contrast, the I638F kinase domain mutant exhibited diminished DDR2 and SHP-2 tyrosine phosphorylation levels which have an inverse relationship with clonogenic potential. Taken together, the results of the present study indicate that SHP-2 is a key signalling node downstream of the DDR2 receptor which may have therapeutic implications in a subset of DDR2 mutations recently uncovered in genome-wide lung SCC sequencing screens. PMID:23822953

  10. Quantitative PCR analysis of salivary pathogen burden in periodontitis

    PubMed Central

    Salminen, Aino; Kopra, K. A. Elisa; Hyvärinen, Kati; Paju, Susanna; Mäntylä, Päivi; Buhlin, Kåre; Nieminen, Markku S.; Sinisalo, Juha; Pussinen, Pirkko J.

    2015-01-01

    Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9 ± 9.2 years) with coronary artery disease (CAD) diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR (qPCR). Median salivary concentrations of Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary Aggregatibacter actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4–5 mm periodontal pockets, ≥6 mm pockets, and alveolar bone loss (ABL). High level of T. forsythia was associated also with bleeding on probing (BOP). The combination of the four bacteria, i.e., the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR) of 2.40 (95% CI 1.39–4.13). When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51–4.52). The highest OR 3.59 (95% CI 1.94–6.63) was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and

  11. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    ERIC Educational Resources Information Center

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  12. Alterations in the Cerebellar (Phospho)Proteome of a Cyclic Guanosine Monophosphate (cGMP)-dependent Protein Kinase Knockout Mouse*

    PubMed Central

    Corradini, Eleonora; Vallur, Raghavan; Raaijmakers, Linsey M.; Feil, Susanne; Feil, Robert; Heck, Albert J. R.; Scholten, Arjen

    2014-01-01

    The cyclic nucleotide cyclic guanosine monophosphate (cGMP) plays an important role in learning and memory, but its signaling mechanisms in the mammalian brain are not fully understood. Using mass-spectrometry-based proteomics, we evaluated how the cerebellum adapts its (phospho)proteome in a knockout mouse model of cGMP-dependent protein kinase type I (cGKI). Our data reveal that a small subset of proteins in the cerebellum (∼3% of the quantified proteins) became substantially differentially expressed in the absence of cGKI. More changes were observed at the phosphoproteome level, with hundreds of sites being differentially phosphorylated between wild-type and knockout cerebellum. Most of these phosphorylated sites do not represent known cGKI substrates. An integrative computational network analysis of the data indicated that the differentially expressed proteins and proteins harboring differentially phosphorylated sites largely belong to a tight network in the Purkinje cells of the cerebellum involving important cGMP/cAMP signaling nodes (e.g. PDE5 and PKARIIβ) and Ca2+ signaling (e.g. SERCA3). In this way, removal of cGKI could be linked to impaired cerebellar long-term depression at Purkinje cell synapses. In addition, we were able to identify a set of novel putative (phospho)proteins to be considered in this network. Overall, our data improve our understanding of cerebellar cGKI signaling and suggest novel players in cGKI-regulated synaptic plasticity. PMID:24925903

  13. Biosynthesis and Regulation of Wheat Amylose and Amylopectin from Proteomic and Phosphoproteomic Characterization of Granule-binding Proteins

    PubMed Central

    Chen, Guan-Xing; Zhou, Jian-Wen; Liu, Yan-Lin; Lu, Xiao-Bing; Han, Cai-Xia; Zhang, Wen-Ying; Xu, Yan-Hao; Yan, Yue-Ming

    2016-01-01

    Waxy starch has an important influence on the qualities of breads. Generally, grain weight and yield in waxy wheat (Triticum aestivum L.) are significantly lower than in bread wheat. In this study, we performed the first proteomic and phosphoproteomic analyses of starch granule-binding proteins by comparing the waxy wheat cultivar Shannong 119 and the bread wheat cultivar Nongda 5181. These results indicate that reduced amylose content does not affect amylopectin synthesis, but it causes significant reduction of total starch biosynthesis, grain size, weight and grain yield. Two-dimensional differential in-gel electrophoresis identified 40 differentially expressed protein (DEP) spots in waxy and non-waxy wheats, which belonged mainly to starch synthase (SS) I, SS IIa and granule-bound SS I. Most DEPs involved in amylopectin synthesis showed a similar expression pattern during grain development, suggesting relatively independent amylose and amylopectin synthesis pathways. Phosphoproteome analysis of starch granule-binding proteins, using TiO2 microcolumns and LC-MS/MS, showed that the total number of phosphoproteins and their phosphorylation levels in ND5181 were significantly higher than in SN119, but proteins controlling amylopectin synthesis had similar phosphorylation levels. Our results revealed the lack of amylose did not affect the expression and phosphorylation of the starch granule-binding proteins involved in amylopectin biosynthesis. PMID:27604546

  14. Biosynthesis and Regulation of Wheat Amylose and Amylopectin from Proteomic and Phosphoproteomic Characterization of Granule-binding Proteins.

    PubMed

    Chen, Guan-Xing; Zhou, Jian-Wen; Liu, Yan-Lin; Lu, Xiao-Bing; Han, Cai-Xia; Zhang, Wen-Ying; Xu, Yan-Hao; Yan, Yue-Ming

    2016-01-01

    Waxy starch has an important influence on the qualities of breads. Generally, grain weight and yield in waxy wheat (Triticum aestivum L.) are significantly lower than in bread wheat. In this study, we performed the first proteomic and phosphoproteomic analyses of starch granule-binding proteins by comparing the waxy wheat cultivar Shannong 119 and the bread wheat cultivar Nongda 5181. These results indicate that reduced amylose content does not affect amylopectin synthesis, but it causes significant reduction of total starch biosynthesis, grain size, weight and grain yield. Two-dimensional differential in-gel electrophoresis identified 40 differentially expressed protein (DEP) spots in waxy and non-waxy wheats, which belonged mainly to starch synthase (SS) I, SS IIa and granule-bound SS I. Most DEPs involved in amylopectin synthesis showed a similar expression pattern during grain development, suggesting relatively independent amylose and amylopectin synthesis pathways. Phosphoproteome analysis of starch granule-binding proteins, using TiO2 microcolumns and LC-MS/MS, showed that the total number of phosphoproteins and their phosphorylation levels in ND5181 were significantly higher than in SN119, but proteins controlling amylopectin synthesis had similar phosphorylation levels. Our results revealed the lack of amylose did not affect the expression and phosphorylation of the starch granule-binding proteins involved in amylopectin biosynthesis. PMID:27604546

  15. Quantitative analysis of localized surface plasmons based on molecular probing.

    PubMed

    Deeb, Claire; Bachelot, Renaud; Plain, Jérôme; Baudrion, Anne-Laure; Jradi, Safi; Bouhelier, Alexandre; Soppera, Olivier; Jain, Prashant K; Huang, Libai; Ecoffet, Carole; Balan, Lavinia; Royer, Pascal

    2010-08-24

    We report on the quantitative characterization of the plasmonic optical near-field of a single silver nanoparticle. Our approach relies on nanoscale molecular molding of the confined electromagnetic field by photoactivated molecules. We were able to directly image the dipolar profile of the near-field distribution with a resolution better than 10 nm and to quantify the near-field depth and its enhancement factor. A single nanoparticle spectral signature was also assessed. This quantitative characterization constitutes a prerequisite for developing nanophotonic applications. PMID:20687536

  16. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-01-01

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  17. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion

    PubMed Central

    Alam, Mahmood M.; Solyakov, Lev; Bottrill, Andrew R.; Flueck, Christian; Siddiqui, Faiza A.; Singh, Shailja; Mistry, Sharad; Viskaduraki, Maria; Lee, Kate; Hopp, Christine S.; Chitnis, Chetan E.; Doerig, Christian; Moon, Robert W.; Green, Judith L.; Holder, Anthony A.; Baker, David A.; Tobin, Andrew B.

    2015-01-01

    Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion. PMID:26149123

  18. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion.

    PubMed

    Alam, Mahmood M; Solyakov, Lev; Bottrill, Andrew R; Flueck, Christian; Siddiqui, Faiza A; Singh, Shailja; Mistry, Sharad; Viskaduraki, Maria; Lee, Kate; Hopp, Christine S; Chitnis, Chetan E; Doerig, Christian; Moon, Robert W; Green, Judith L; Holder, Anthony A; Baker, David A; Tobin, Andrew B

    2015-01-01

    Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion. PMID:26149123

  19. Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro.

    PubMed

    Fíla, Jan; Radau, Sonja; Matros, Andrea; Hartmann, Anja; Scholz, Uwe; Feciková, Jana; Mock, Hans-Peter; Čapková, Věra; Zahedi, René Peiman; Honys, David

    2016-04-01

    Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved. PMID:26792808

  20. A new quantitative method for gunshot residue analysis by ion beam analysis.

    PubMed

    Christopher, Matthew E; Warmenhoeven, John-William; Romolo, Francesco S; Donghi, Matteo; Webb, Roger P; Jeynes, Christopher; Ward, Neil I; Kirkby, Karen J; Bailey, Melanie J

    2013-08-21

    Imaging and analyzing gunshot residue (GSR) particles using the scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDS) is a standard technique that can provide important forensic evidence, but the discrimination power of this technique is limited due to low sensitivity to trace elements and difficulties in obtaining quantitative results from small particles. A new, faster method using a scanning proton microbeam and Particle Induced X-ray Emission (μ-PIXE), together with Elastic Backscattering Spectrometry (EBS) is presented for the non-destructive, quantitative analysis of the elemental composition of single GSR particles. In this study, the GSR particles were all Pb, Ba, Sb. The precision of the method is assessed. The grouping behaviour of different makes of ammunition is determined using multivariate analysis. The protocol correctly groups the cartridges studied here, with a confidence >99%, irrespective of the firearm or population of particles selected. PMID:23775063

  1. Teaching Quantitative Reasoning for Nonscience Majors through Carbon Footprint Analysis

    ERIC Educational Resources Information Center

    Boose, David L.

    2014-01-01

    Quantitative reasoning is a key intellectual skill, applicable across disciplines and best taught in the context of authentic, relevant problems. Here, I describe and assess a laboratory exercise that has students calculate their "carbon footprint" and evaluate the impacts of various behavior choices on that footprint. Students gather…

  2. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  3. Features of the Quantitative Analysis in Moessbauer Spectroscopy

    SciTech Connect

    Semenov, V. G.; Panchuk, V. V.; Irkaev, S. M.

    2010-07-13

    The results describing the effect of different factors on errors in quantitative determination of the phase composition of studied substances by Moessbauer spectroscopy absorption are presented, and the ways of using them are suggested. The effectiveness of the suggested methods is verified by an example of analyzing standard and unknown compositions.

  4. Quantitative and Qualitative Analysis of Biomarkers in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a combination HPLC-DART-TOF-MS system was utilized to identify and quantitatively analyze carbohydrates in wild type and mutant strains of Fusarium verticillioides. Carbohydrate fractions were isolated from F. verticillioides cellular extracts by HPLC using a cation-exchange size-excl...

  5. Quantitative Analysis of Radionuclides in Process and Environmental Samples

    SciTech Connect

    Boni, A.L.

    2003-02-21

    An analytical method was developed for the radiochemical separation and quantitative recovery of ruthenium, zirconium, niobium, neptunium, cobalt, iron, zinc, strontium, rare earths, chromium and cesium from a wide variety of natural materials. This paper discusses this analytical method, based on the anion exchange properties of the various radionuclides, although both ion exchange and precipitation techniques are incorporated.

  6. Quantitative analysis of HSV gene expression during lytic infection

    PubMed Central

    Turner, Anne-Marie W.; Arbuckle, Jesse H.; Kristie, Thomas M.

    2014-01-01

    Herpes Simplex Virus (HSV) is a human pathogen that establishes latency and undergoes periodic reactivation, resulting in chronic recurrent lytic infection. HSV lytic infection is characterized by an organized cascade of three gene classes, however successful transcription and expression of the first, the immediate early class, is critical to the overall success of viral infection. This initial event of lytic infection is also highly dependent on host cell factors. This unit uses RNA interference and small molecule inhibitors to examine the role of host and viral proteins in HSV lytic infection. Methods detailing isolation of viral and host RNA and genomic DNA, followed by quantitative real-time PCR, allow characterization of impacts on viral transcription and replication respectively. Western blot can be used to confirm quantitative PCR results. This combination of protocols represents a starting point for researchers interested in virus-host interactions during HSV lytic infection. PMID:25367270

  7. Quantitative and qualitative HPLC analysis of thermogenic weight loss products.

    PubMed

    Schaneberg, B T; Khan, I A

    2004-11-01

    An HPLC qualitative and quantitative method of seven analytes (caffeine, ephedrine, forskolin, icariin, pseudoephedrine, synephrine, and yohimbine) in thermogenic weight loss preparations available on the market is described in this paper. After 45 min the seven analytes were separated and detected in the acetonitrile: water (80:20) extract. The method uses a Waters XTerra RP18 (5 microm particle size) column as the stationary phase, a gradient mobile phase of water (5.0 mM SDS) and acetonitrile, and a UV detection of 210 nm. The correlation coefficients for the calibration curves and the recovery rates ranged from 0.994 to 0.999 and from 97.45% to 101.05%, respectively. The qualitative and quantitative results are discussed. PMID:15587578

  8. Fluorescent microscopy approaches of quantitative soil microbial analysis

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin; Polyanskaya, Lubov

    2015-04-01

    Classical fluorescent microscopy method was used during the last decades in various microbiological studies of terrestrial ecosystems. The method provides representative results and simple application which is allow to use it both as routine part of amplitudinous research and in small-scaled laboratories. Furthermore, depending on research targets a lot of modifications of fluorescent microscopy method were established. Combination and comparison of several approaches is an opportunity of quantitative estimation of microbial community in soil. The first analytical part of the study was dedicated to soil bacterial density estimation by fluorescent microscopy in dynamic of several 30-days experiments. The purpose of research was estimation of changes in soil bacterial community on the different soil horizons under aerobic and anaerobic conditions with adding nutrients in two experimental sets: cellulose and chitin. Was modified the nalidixic acid method for inhibition of DNA division of gram-negative bacteria, and the method provides the quantification of this bacterial group by fluorescent microscopy. Established approach allowed to estimate 3-4 times more cells of gram-negative bacteria in soil. The functions of actinomyces in soil polymer destruction are traditionally considered as dominant in comparison to gram-negative bacterial group. However, quantification of gram-negative bacteria in chernozem and peatland provides underestimation of classical notion for this bacterial group. Chitin introduction had no positive effect to gram-negative bacterial population density changes in chernozem but concurrently this nutrient provided the fast growing dynamics at the first 3 days of experiment both under aerobic and anaerobic conditions. This is confirming chitinolytic activity of gram-negative bacteria in soil organic matter decomposition. At the next part of research modified method for soil gram-negative bacteria quantification was compared to fluorescent in situ

  9. Comprehensive objective maps of macromolecular conformations by quantitative SAXS analysis

    PubMed Central

    Hura, Greg L.; Budworth, Helen; Dyer, Kevin N.; Rambo, Robert P.; Hammel, Michal

    2013-01-01

    Comprehensive perspectives of macromolecular conformations are required to connect structure to biology. Here we present a small angle X-ray scattering (SAXS) Structural Similarity Map (SSM) and Volatility of Ratio (VR) metric providing comprehensive, quantitative and objective (superposition-independent) perspectives on solution state conformations. We validate VR and SSM utility on human MutSβ, a key ABC ATPase and chemotherapeutic target, by revealing MutSβ DNA sculpting and identifying multiple conformational states for biological activity. PMID:23624664

  10. Plasmodiumfalciparum infection induces dynamic changes in the erythrocyte phospho-proteome.

    PubMed

    Bouyer, Guillaume; Reininger, Luc; Ramdani, Ghania; D Phillips, Lee; Sharma, Vikram; Egee, Stephane; Langsley, Gordon; Lasonder, Edwin

    2016-05-01

    The phosphorylation status of red blood cell proteins is strongly altered during the infection by the malaria parasite Plasmodium falciparum. We identify the key phosphorylation events that occur in the erythrocyte membrane and cytoskeleton during infection, by a comparative analysis of global phospho-proteome screens between infected (obtained at schizont stage) and uninfected RBCs. The meta-analysis of reported mass spectrometry studies revealed a novel compendium of 495 phosphorylation sites in 182 human proteins with regulatory roles in red cell morphology and stability, with about 25% of these sites specific to infected cells. A phosphorylation motif analysis detected 7 unique motifs that were largely mapped to kinase consensus sequences of casein kinase II and of protein kinase A/protein kinase C. This analysis highlighted prominent roles for PKA/PKC involving 78 phosphorylation sites. We then compared the phosphorylation status of PKA (PKC) specific sites in adducin, dematin, Band 3 and GLUT-1 in uninfected RBC stimulated or not by cAMP to their phosphorylation status in iRBC. We showed cAMP-induced phosphorylation of adducin S59 by immunoblotting and we were able to demonstrate parasite-induced phosphorylation for adducin S726, Band 3 and GLUT-1, corroborating the protein phosphorylation status in our erythrocyte phosphorylation site compendium. PMID:27067487

  11. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis.

    PubMed

    Chen, Yanmei; Hoehenwarter, Wolfgang

    2015-12-01

    Salinity and oxidative stress are major factors affecting and limiting the productivity of agricultural crops. The molecular and biochemical processes governing the plant response to abiotic stress have often been researched in a reductionist manner. Here, we report a systemic approach combining metabolic labeling and phosphoproteomics to capture early signaling events with quantitative metabolome analysis and enzyme activity assays to determine the effects of salt and oxidative stress on plant physiology. K(+) and Na(+) transporters showed coordinated changes in their phosphorylation pattern, indicating the importance of dynamic ion homeostasis for adaptation to salt stress. Unique phosphorylation sites were found for Arabidopsis (Arabidopsis thaliana) SNF1 kinase homolog10 and 11, indicating their central roles in the stress-regulated responses. Seven Sucrose Non-fermenting1-Related Protein Kinase2 kinases showed varying levels of phosphorylation at multiple serine/threonine residues in their kinase domain upon stress, showing temporally distinct modulation of the various isoforms. Salinity and oxidative stress also lead to changes in protein phosphorylation of proteins central to photosynthesis, in particular the kinase State Transition Protein7 required for state transition and light-harvesting II complex proteins. Furthermore, stress-induced changes of the phosphorylation of enzymes of central metabolism were observed. The phosphorylation patterns of these proteins were concurrent with changes in enzyme activity. This was reflected by altered levels of metabolites, such as the sugars sucrose and fructose, glycolysis intermediates, and amino acids. Together, our study provides evidence for a link between early signaling in the salt and oxidative stress response that regulates the state transition of photosynthesis and the rearrangement of primary metabolism. PMID:26471895

  12. Identification of BCAP-{sub L} as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics

    SciTech Connect

    Matsumura, Takayuki; Oyama, Masaaki; Kozuka-Hata, Hiroko; Ishikawa, Kosuke; Inoue, Takafumi; Muta, Tatsushi; Semba, Kentaro; Inoue, Jun-ichiro

    2010-09-17

    Research highlights: {yields} Twenty five tyrosine-phosphorylated proteins in LPS-stimulated macrophages were determined. {yields} BCAP is a novel tyrosine-phosphorylated protein in LPS-stimulated macrophages. {yields} BCAP-{sub L} inhibits IL-6 and IL-10 production in LPS-stimulated macrophages. -- Abstract: Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-{sub L}) and an alternatively initiated or spliced (Bcap-{sub S}) mRNA, and little is known about the differential functions of the BCAP-{sub L} and BCAP-{sub S} proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-{sub L} enhanced IL-6 and IL-10 production but not TNF-{alpha} production in TLR ligand-stimulated macrophages. We propose that BCAP-{sub L} (but not BCAP-{sub S}) is a negative regulator of the TLR-mediated host defense system in macrophages.

  13. An Inexpensive Electrodeposition Device and Its Use in a Quantitative Analysis Laboratory Exercise

    ERIC Educational Resources Information Center

    Parker, Richard H.

    2011-01-01

    An experimental procedure, using an apparatus that is easy to construct, was developed to incorporate a quantitative electrogravimetric determination of the solution nickel content into an undergraduate or advanced high school quantitative analysis laboratory. This procedure produces results comparable to the procedure used for the gravimetric…

  14. Quantitative analysis of single amino acid variant peptides associated with pancreatic cancer in serum by an isobaric labeling quantitative method.

    PubMed

    Nie, Song; Yin, Haidi; Tan, Zhijing; Anderson, Michelle A; Ruffin, Mack T; Simeone, Diane M; Lubman, David M

    2014-12-01

    Single amino acid variations are highly associated with many human diseases. The direct detection of peptides containing single amino acid variants (SAAVs) derived from nonsynonymous single nucleotide polymorphisms (SNPs) in serum can provide unique opportunities for SAAV associated biomarker discovery. In the present study, an isobaric labeling quantitative strategy was applied to identify and quantify variant peptides in serum samples of pancreatic cancer patients and other benign controls. The largest number of SAAV peptides to date in serum including 96 unique variant peptides were quantified in this quantitative analysis, of which five variant peptides showed a statistically significant difference between pancreatic cancer and other controls (p-value < 0.05). Significant differences in the variant peptide SDNCEDTPEAGYFAVAVVK from serotransferrin were detected between pancreatic cancer and controls, which was further validated by selected reaction monitoring (SRM) analysis. The novel biomarker panel obtained by combining α-1-antichymotrypsin (AACT), Thrombospondin-1 (THBS1) and this variant peptide showed an excellent diagnostic performance in discriminating pancreatic cancer from healthy controls (AUC = 0.98) and chronic pancreatitis (AUC = 0.90). These results suggest that large-scale analysis of SAAV peptides in serum may provide a new direction for biomarker discovery research. PMID:25393578

  15. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants*

    PubMed Central

    Minkoff, Benjamin B.; Stecker, Kelly E.; Sussman, Michael R.

    2015-01-01

    Abscisic acid (ABA)1 is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs

  16. Quantitative analysis of a wind energy conversion model

    NASA Astrophysics Data System (ADS)

    Zucker, Florian; Gräbner, Anna; Strunz, Andreas; Meyn, Jan-Peter

    2015-03-01

    A rotor of 12 cm diameter is attached to a precision electric motor, used as a generator, to make a model wind turbine. Output power of the generator is measured in a wind tunnel with up to 15 m s-1 air velocity. The maximum power is 3.4 W, the power conversion factor from kinetic to electric energy is cp = 0.15. The v3 power law is confirmed. The model illustrates several technically important features of industrial wind turbines quantitatively.

  17. Software for quantitative analysis of radiotherapy: overview, requirement analysis and design solutions.

    PubMed

    Zhang, Lanlan; Hub, Martina; Mang, Sarah; Thieke, Christian; Nix, Oliver; Karger, Christian P; Floca, Ralf O

    2013-06-01

    Radiotherapy is a fast-developing discipline which plays a major role in cancer care. Quantitative analysis of radiotherapy data can improve the success of the treatment and support the prediction of outcome. In this paper, we first identify functional, conceptional and general requirements on a software system for quantitative analysis of radiotherapy. Further we present an overview of existing radiotherapy analysis software tools and check them against the stated requirements. As none of them could meet all of the demands presented herein, we analyzed possible conceptional problems and present software design solutions and recommendations to meet the stated requirements (e.g. algorithmic decoupling via dose iterator pattern; analysis database design). As a proof of concept we developed a software library "RTToolbox" following the presented design principles. The RTToolbox is available as open source library and has already been tested in a larger-scale software system for different use cases. These examples demonstrate the benefit of the presented design principles. PMID:23523366

  18. Qualitative and quantitative analysis of volatile constituents from latrines.

    PubMed

    Lin, Jianming; Aoll, Jackline; Niclass, Yvan; Velazco, Maria Inés; Wünsche, Laurent; Pika, Jana; Starkenmann, Christian

    2013-07-16

    More than 2.5 billion people defecate in the open. The increased commitment of private and public organizations to improving this situation is driving the research and development of new technologies for toilets and latrines. Although key technical aspects are considered by researchers when designing new technologies for developing countries, the basic aspect of offending malodors from human waste is often neglected. With the objective of contributing to technical solutions that are acceptable to global consumers, we investigated the chemical composition of latrine malodors sampled in Africa and India. Field latrines in four countries were evaluated olfactively and the odors qualitatively and quantitatively characterized with three analytical techniques. Sulfur compounds including H2S, methyl mercaptan, and dimethyl-mono-(di;tri) sulfide are important in sewage-like odors of pit latrines under anaerobic conditions. Under aerobic conditions, in Nairobi for example, paracresol and indole reached concentrations of 89 and 65 μg/g, respectively, which, along with short chain fatty acids such as butyric acid (13 mg/g) explained the strong rancid, manure and farm yard odor. This work represents the first qualitative and quantitative study of volatile compounds sampled from seven pit latrines in a variety of geographic, technical, and economic contexts in addition to three single stools from India and a pit latrine model system. PMID:23829328

  19. Quantitative analysis of radiation-induced changes in sperm morphology.

    PubMed

    Young, I T; Gledhill, B L; Lake, S; Wyrobek, A J

    1982-09-01

    When developing spermatogenic cells are exposed to radiation, chemical carcinogens or mutagens, the transformation in the morphology of the mature sperm can be used to determine the severity of the exposure. In this study five groups of mice with three mice per group received testicular doses of X irradiation at dosage levels ranging from 0 rad to 120 rad. A random sample of 100 mature sperm per mouse was analyzed five weeks later for the quantitative morphologic transformation as a function of dosage level. The cells were stained with gallocyanin chrome alum (GCA) so that only the DNA in the sperm head was visible. The ACUity quantitative microscopy system at Lawrence Livermore National Laboratory was used to scan the sperm at a sampling density of 16 points per linear micrometer and with 256 brightness levels per point. The contour of each cell was extracted using conventional thresholding techniques on the high-contrast images. For each contour a variety of shape features was then computed to characterize the morphology of that cell. Using the control group and the distribution of their shape features to establish the variability of a normal sperm population, the 95% limits on normal morphology were established. Using only four shape features, a doubling dose of approximately 39 rad was determined. That is, at 39 rad exposure the percentage of abnormal cells was twice that occurring in the control population. This compared to a doubling dose of approximately 70 rad obtained from a concurrent visual procedure. PMID:6184000

  20. Quantitative phenotypic analysis of multistress response in Zygosaccharomyces rouxii complex.

    PubMed

    Solieri, Lisa; Dakal, Tikam C; Bicciato, Silvio

    2014-06-01

    Zygosaccharomyces rouxii complex comprises three yeasts clusters sourced from sugar- and salt-rich environments: haploid Zygosaccharomyces rouxii, diploid Zygosaccharomyces sapae and allodiploid/aneuploid strains of uncertain taxonomic affiliations. These yeasts have been characterized with respect to gene copy number variation, karyotype variability and change in ploidy, but functional diversity in stress responses has not been explored yet. Here, we quantitatively analysed the stress response variation in seven strains of the Z. rouxii complex by modelling growth variables via model and model-free fitting methods. Based on the spline fit as most reliable modelling method, we resolved different interstrain responses to 15 environmental perturbations. Compared with Z. rouxii CBS 732(T) and Z. sapae strains ABT301(T) and ABT601, allodiploid strain ATCC 42981 and aneuploid strains CBS 4837 and CBS 4838 displayed higher multistress resistance and better performance in glycerol respiration even in the presence of copper. μ-based logarithmic phenotypic index highlighted that ABT601 is a slow-growing strain insensitive to stress, whereas ABT301(T) grows fast on rich medium and is sensitive to suboptimal conditions. Overall, the differences in stress response could imply different adaptation mechanisms to sugar- and salt-rich niches. The obtained phenotypic profiling contributes to provide quantitative insights for elucidating the adaptive mechanisms to stress in halo- and osmo-tolerant Zygosaccharomyces yeasts. PMID:24533625

  1. Quantitative analysis of laminin 5 gene expression in human keratinocytes.

    PubMed

    Akutsu, Nobuko; Amano, Satoshi; Nishiyama, Toshio

    2005-05-01

    To examine the expression of laminin 5 genes (LAMA3, LAMB3, and LAMC2) encoding the three polypeptide chains alpha3, beta3, and gamma2, respectively, in human keratinocytes, we developed novel quantitative polymerase chain reaction (PCR) methods utilizing Thermus aquaticus DNA polymerase, specific primers, and fluorescein-labeled probes with the ABI PRISM 7700 sequence detector system. Gene expression levels of LAMA3, LAMB3, and LAMC2 and glyceraldehyde-3-phosphate dehydrogenase were quantitated reproducibly and sensitively in the range from 1 x 10(2) to 1 x 10(8) gene copies. Basal gene expression level of LAMB3 was about one-tenth of that of LAMA3 or LAMC2 in human keratinocytes, although there was no clear difference among immunoprecipitated protein levels of alpha3, beta3, and gamma2 synthesized in radio-labeled keratinocytes. Human serum augmented gene expressions of LAMA3, LAMB3, and LAMC2 in human keratinocytes to almost the same extent, and this was associated with an increase of the laminin 5 protein content measured by a specific sandwich enzyme-linked immunosorbent assay. These results demonstrate that the absolute mRNA levels generated from the laminin 5 genes do not determine the translated protein levels of the laminin 5 chains in keratinocytes, and indicate that the expression of the laminin 5 genes may be controlled by common regulation mechanisms. PMID:15854126

  2. Quantitative Analysis of the Enhanced Permeation and Retention (EPR) Effect

    PubMed Central

    Ulmschneider, Martin B.; Searson, Peter C.

    2015-01-01

    Tumor vasculature is characterized by a variety of abnormalities including irregular architecture, poor lymphatic drainage, and the upregulation of factors that increase the paracellular permeability. The increased permeability is important in mediating the uptake of an intravenously administered drug in a solid tumor and is known as the enhanced permeation and retention (EPR) effect. Studies in animal models have demonstrated a cut-off size of 500 nm - 1 µm for molecules or nanoparticles to extravasate into a tumor, however, surprisingly little is known about the kinetics of the EPR effect. Here we present a pharmacokinetic model to quantitatively assess the influence of the EPR effect on the uptake of a drug into a solid tumor. We use pharmacokinetic data for Doxil and doxorubicin from human clinical trials to illustrate how the EPR effect influences tumor uptake. This model provides a quantitative framework to guide preclinical trials of new chemotherapies and ultimately to develop design rules that can increase targeting efficiency and decrease unwanted side effects in normal tissue. PMID:25938565

  3. Quantitative analysis of Babesia ovis infection in sheep and ticks.

    PubMed

    Erster, Oran; Roth, Asael; Wollkomirsky, Ricardo; Leibovich, Benjamin; Savitzky, Igor; Zamir, Shmuel; Molad, Thea; Shkap, Varda

    2016-05-15

    A quantitative PCR, based on the gene encoding Babesia ovis Surface Protein D (BoSPD) was developed and applied to investigate the presence of Babesia ovis (B. ovis) in its principal vector, the tick Rhipicephalus bursa (R. bursa), and in the ovine host. Quantification of B. ovis in experimentally-infected lambs showed a sharp increase in parasitemia 10-11days in blood-inoculated and adult tick-infested lambs, and 24days in a larvae-infested lamb. A gradual decrease of parasitemia was observed in the following months, with parasites detectable 6-12 months post-infection. Examination of the parasite load in adult R. bursa during the post-molting period using the quantitative PCR assay revealed a low parasite load during days 2-7 post-molting, followed by a sharp increase, until day 11, which corresponded to the completion of the pre-feeding period. The assay was then used to detect B. ovis in naturally-infected sheep and ticks. Examination of samples from 8 sheep and 2 goats from infected flocks detected B. ovis in both goats and in 7 out of the 8 sheep. Additionally, B. ovis was detected in 9 tick pools (5 ticks in each pool) and two individual ticks removed from sheep in infected flocks. PMID:27084469

  4. Quantitative analysis of thermal spray deposits using stereology

    SciTech Connect

    Leigh, S.H.; Sampath, S.; Herman, H.; Berndt, C.C.; Montavon, G.; Coddet, C.

    1995-12-31

    Stereology deals with protocols for describing a 3-D space, when only 2-D sections through solid bodies are available. This paper describes a stereological characterization of the microstructure of a thermal spray deposit. The aim of this work is to present results on the stereological characterization of a thermal spray deposit, using two approaches known as DeHoff`s and Cruz-Orive`s protocols. The individual splats are assumed to have an oblate spheroidal shape. The splat size distribution and elongation ratio distribution of splats are calculated using quantitative information from 2-D plane sections. The stereological methods are implemented to investigate the microstructure of a water stabilized plasma spray-formed Al{sub 2}O{sub 3}-13wt.%TiO{sub 2}. Results are obtained with both protocols. The splat sizes range from 0 to 60 {micro}m and shape factors from 0.4 to 1.0. The splats within the deposit seem to be much smaller and thicker (i.e., lower spreading) than those of the first layer deposited onto the substrate. The approach described in this work provides helpful quantitative information on the 3-D microstructure of thermal spray deposit.

  5. Bridging the gaps for global sustainable development: a quantitative analysis.

    PubMed

    Udo, Victor E; Jansson, Peter Mark

    2009-09-01

    Global human progress occurs in a complex web of interactions between society, technology and the environment as driven by governance and infrastructure management capacity among nations. In our globalizing world, this complex web of interactions over the last 200 years has resulted in the chronic widening of economic and political gaps between the haves and the have-nots with consequential global cultural and ecosystem challenges. At the bottom of these challenges is the issue of resource limitations on our finite planet with increasing population. The problem is further compounded by pleasure-driven and poverty-driven ecological depletion and pollution by the haves and the have-nots respectively. These challenges are explored in this paper as global sustainable development (SD) quantitatively; in order to assess the gaps that need to be bridged. Although there has been significant rhetoric on SD with very many qualitative definitions offered, very few quantitative definitions of SD exist. The few that do exist tend to measure SD in terms of social, energy, economic and environmental dimensions. In our research, we used several human survival, development, and progress variables to create an aggregate SD parameter that describes the capacity of nations in three dimensions: social sustainability, environmental sustainability and technological sustainability. Using our proposed quantitative definition of SD and data from relatively reputable secondary sources, 132 nations were ranked and compared. Our comparisons indicate a global hierarchy of needs among nations similar to Maslow's at the individual level. As in Maslow's hierarchy of needs, nations that are struggling to survive are less concerned with environmental sustainability than advanced and stable nations. Nations such as the United States, Canada, Finland, Norway and others have higher SD capacity, and thus, are higher on their hierarchy of needs than nations such as Nigeria, Vietnam, Mexico and other

  6. [Quantitative analysis of alloy steel based on laser induced breakdown spectroscopy with partial least squares method].

    PubMed

    Cong, Zhi-Bo; Sun, Lan-Xiang; Xin, Yong; Li, Yang; Qi, Li-Feng; Yang, Zhi-Jia

    2014-02-01

    In the present paper both the partial least squares (PLS) method and the calibration curve (CC) method are used to quantitatively analyze the laser induced breakdown spectroscopy data obtained from the standard alloy steel samples. Both the major and trace elements were quantitatively analyzed. By comparing the results of two different calibration methods some useful results were obtained: for major elements, the PLS method is better than the CC method in quantitative analysis; more importantly, for the trace elements, the CC method can not give the quantitative results due to the extremely weak characteristic spectral lines, but the PLS method still has a good ability of quantitative analysis. And the regression coefficient of PLS method is compared with the original spectral data with background interference to explain the advantage of the PLS method in the LIBS quantitative analysis. Results proved that the PLS method used in laser induced breakdown spectroscopy is suitable for quantitative analysis of trace elements such as C in the metallurgical industry. PMID:24822436

  7. Quantitative analysis on electric dipole energy in Rashba band splitting

    NASA Astrophysics Data System (ADS)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  8. Quantitative analysis of CT scans of ceramic candle filters

    SciTech Connect

    Ferer, M.V.; Smith, D.H.

    1996-12-31

    Candle filters are being developed to remove coal ash and other fine particles (<15{mu}m) from hot (ca. 1000 K) gas streams. In the present work, a color scanner was used to digitize hard-copy CT X-ray images of cylindrical SiC filters, and linear regressions converted the scanned (color) data to a filter density for each pixel. These data, with the aid of the density of SiC, gave a filter porosity for each pixel. Radial averages, density-density correlation functions, and other statistical analyses were performed on the density data. The CT images also detected the presence and depth of cracks that developed during usage of the filters. The quantitative data promise to be a very useful addition to the color images.

  9. Quantitative Analysis of Cancer Metastasis using an Avian Embryo Model

    PubMed Central

    Palmer, Trenis D.; Lewis, John; Zijlstra, Andries

    2011-01-01

    During metastasis cancer cells disseminate from the primary tumor, invade into surrounding tissues, and spread to distant organs. Metastasis is a complex process that can involve many tissue types, span variable time periods, and often occur deep within organs, making it difficult to investigate and quantify. In addition, the efficacy of the metastatic process is influenced by multiple steps in the metastatic cascade making it difficult to evaluate the contribution of a single aspect of tumor cell behavior. As a consequence, metastasis assays are frequently performed in experimental animals to provide a necessarily realistic context in which to study metastasis. Unfortunately, these models are further complicated by their complex physiology. The chick embryo is a unique in vivo model that overcomes many limitations to studying metastasis, due to the accessibility of the chorioallantoic membrane (CAM), a well-vascularized extra-embryonic tissue located underneath the eggshell that is receptive to the xenografting of tumor cells (figure 1). Moreover, since the chick embryo is naturally immunodeficient, the CAM readily supports the engraftment of both normal and tumor tissues. Most importantly, the avian CAM successfully supports most cancer cell characteristics including growth, invasion, angiogenesis, and remodeling of the microenvironment. This makes the model exceptionally useful for the investigation of the pathways that lead to cancer metastasis and to predict the response of metastatic cancer to new potential therapeutics. The detection of disseminated cells by species-specific Alu PCR makes it possible to quantitatively assess metastasis in organs that are colonized by as few as 25 cells. Using the Human Epidermoid Carcinoma cell line (HEp3) we use this model to analyze spontaneous metastasis of cancer cells to distant organs, including the chick liver and lung. Furthermore, using the Alu-PCR protocol we demonstrate the sensitivity and reproducibility of the

  10. Quantitative error analysis for computer assisted navigation: a feasibility study

    PubMed Central

    Güler, Ö.; Perwög, M.; Kral, F.; Schwarm, F.; Bárdosi, Z. R.; Göbel, G.; Freysinger, W.

    2013-01-01

    Purpose The benefit of computer-assisted navigation depends on the registration process, at which patient features are correlated to some preoperative imagery. The operator-induced uncertainty in localizing patient features – the User Localization Error (ULE) - is unknown and most likely dominating the application accuracy. This initial feasibility study aims at providing first data for ULE with a research navigation system. Methods Active optical navigation was done in CT-images of a plastic skull, an anatomic specimen (both with implanted fiducials) and a volunteer with anatomical landmarks exclusively. Each object was registered ten times with 3, 5, 7, and 9 registration points. Measurements were taken at 10 (anatomic specimen and volunteer) and 11 targets (plastic skull). The active NDI Polaris system was used under ideal working conditions (tracking accuracy 0.23 mm root mean square, RMS; probe tip calibration was 0.18 mm RMS. Variances of tracking along the principal directions were measured as 0.18 mm2, 0.32 mm2, and 0.42 mm2. ULE was calculated from predicted application accuracy with isotropic and anisotropic models and from experimental variances, respectively. Results The ULE was determined from the variances as 0.45 mm (plastic skull), 0.60 mm (anatomic specimen), and 4.96 mm (volunteer). The predicted application accuracy did not yield consistent values for the ULE. Conclusions Quantitative data of application accuracy could be tested against prediction models with iso- and anisotropic noise models and revealed some discrepancies. This could potentially be due to the facts that navigation and one prediction model wrongly assume isotropic noise (tracking is anisotropic), while the anisotropic noise prediction model assumes an anisotropic registration strategy (registration is isotropic in typical navigation systems). The ULE data are presumably the first quantitative values for the precision of localizing anatomical landmarks and implanted fiducials

  11. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines

    PubMed Central

    Carrier, Marilyn; Joint, Mathilde; Lutzing, Régis; Page, Adeline; Rochette-Egly, Cécile

    2016-01-01

    Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the “kinome”. Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression. PMID:27362937

  12. Response Neighborhoods in Online Learning Networks: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Aviv, Reuven; Erlich, Zippy; Ravid, Gilad

    2005-01-01

    Theoretical foundation of Response mechanisms in networks of online learners are revealed by Statistical Analysis of p* Markov Models for the Networks. Our comparative analysis of two networks shows that the minimal-effort hunt-for-social-capital mechanism controls a major behavior of both networks: negative tendency to respond. Differences in…

  13. [Research progress of quantitative analysis for respiratory sinus arrhythmia].

    PubMed

    Sun, Congcong; Zhang, Zhengbo; Wang, Buqing; Liu, Hongyun; Ang, Qing; Wang, Weidong

    2011-12-01

    Respiratory sinus arrhythmia (RSA) is known as fluctuations of heart rate associated with breathing. It has been increasingly used as a noninvasive index of cardiac vagal tone in psychophysiological research recently. Its analysis is often influenced or distorted by respiratory parameters, posture and action, etc. This paper reviews five methods of quantification, including the root mean square of successive differences (RMSSD), peak valley RSA (pvRSA), cosinor fitting, spectral analysis, and joint timing-frequency analysis (JTFA). Paced breathing, analysis of covariance, residua method and msRSA per liter tidal volume are adjustment strategies of measurement and analysis of RSA in this article as well. At last, some prospects of solutions of the problems of RSA research are given. PMID:22295719

  14. Quantitative analysis of numerical solvers for oscillatory biomolecular system models

    PubMed Central

    Quo, Chang F; Wang, May D

    2008-01-01

    Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible

  15. ImatraNMR: novel software for batch integration and analysis of quantitative NMR spectra.

    PubMed

    Mäkelä, A V; Heikkilä, O; Kilpeläinen, I; Heikkinen, S

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D (1)H and (13)C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request. PMID:21705250

  16. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    NASA Astrophysics Data System (ADS)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  17. Quantitative assessment of human motion using video motion analysis

    NASA Technical Reports Server (NTRS)

    Probe, John D.

    1990-01-01

    In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described.

  18. Space-to-Ground Communication for Columbus: A Quantitative Analysis

    PubMed Central

    Uhlig, Thomas; Mannel, Thurid; Fortunato, Antonio; Illmer, Norbert

    2015-01-01

    The astronauts on board the International Space Station (ISS) are only the most visible part of a much larger team engaged around the clock in the performance of science and technical activities in space. The bulk of such team is scattered around the globe in five major Mission Control Centers (MCCs), as well as in a number of smaller payload operations centres. Communication between the crew in space and the flight controllers at those locations is an essential element and one of the key drivers to efficient space operations. Such communication can be carried out in different forms, depending on available technical assets and the selected operational approach for the activity at hand. This paper focuses on operational voice communication and provides a quantitative overview of the balance achieved in the Columbus program between collaborative space/ground operations and autonomous on-board activity execution. An interpretation of the current situation is provided, together with a description of potential future approaches for deep space exploration missions. PMID:26290898

  19. Quantitative analysis on electric dipole energy in Rashba band splitting.

    PubMed

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-01-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493

  20. Quantitative analysis on electric dipole energy in Rashba band splitting

    PubMed Central

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-01-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493

  1. Quantitative analysis of electroluminescence images from polymer solar cells

    NASA Astrophysics Data System (ADS)

    Seeland, Marco; Rösch, Roland; Hoppe, Harald

    2012-01-01

    We introduce the micro-diode-model (MDM) based on a discrete network of interconnected diodes, which allows for quantitative description of lateral electroluminescence emission images obtained from organic bulk heterojunction solar cells. Besides the distributed solar cell description, the equivalent circuit, respectively, network model considers interface and bulk resistances as well as the sheet resistance of the semitransparent electrode. The application of this model allows direct calculation of the lateral current and voltage distribution within the solar cell and thus accounts well for effects known as current crowding. In addition, network parameters such as internal resistances and the sheet-resistance of the higher resistive electrode can be determined. Furthermore, upon introduction of current sources the micro-diode-model also is able to describe and predict current-voltage characteristics for solar cell devices under illumination. The local nature of this description yields important conclusions concerning the geometry dependent performance and the validity of classical models and equivalent circuits describing thin film solar cells.

  2. Quantitative analysis of ultrasound images for computer-aided diagnosis.

    PubMed

    Wu, Jie Ying; Tuomi, Adam; Beland, Michael D; Konrad, Joseph; Glidden, David; Grand, David; Merck, Derek

    2016-01-01

    We propose an adaptable framework for analyzing ultrasound (US) images quantitatively to provide computer-aided diagnosis using machine learning. Our preliminary clinical targets are hepatic steatosis, adenomyosis, and craniosynostosis. For steatosis and adenomyosis, we collected US studies from 288 and 88 patients, respectively, as well as their biopsy or magnetic resonanceconfirmed diagnosis. Radiologists identified a region of interest (ROI) on each image. We filtered the US images for various texture responses and use the pixel intensity distribution within each ROI as feature parameterizations. Our craniosynostosis dataset consisted of 22 CT-confirmed cases and 22 age-matched controls. One physician manually measured the vectors from the center of the skull to the outer cortex at every 10 deg for each image and we used the principal directions as shape features for parameterization. These parameters and the known diagnosis were used to train classifiers. Testing with cross-validation, we obtained 72.74% accuracy and 0.71 area under receiver operating characteristics curve for steatosis ([Formula: see text]), 77.27% and 0.77 for adenomyosis ([Formula: see text]), and 88.63% and 0.89 for craniosynostosis ([Formula: see text]). Our framework is able to detect a variety of diseases with high accuracy. We hope to include it as a routinely available support system in the clinic. PMID:26835502

  3. Quantitative proteomic analysis of the Salmonella-lettuce interaction

    PubMed Central

    Zhang, Yuping; Nandakumar, Renu; Bartelt-Hunt, Shannon L; Snow, Daniel D; Hodges, Laurie; Li, Xu

    2014-01-01

    Human pathogens can internalize food crops through root and surface uptake and persist inside crop plants. The goal of the study was to elucidate the global modulation of bacteria and plant protein expression after Salmonella internalizes lettuce. A quantitative proteomic approach was used to analyse the protein expression of Salmonella enterica serovar Infantis and lettuce cultivar Green Salad Bowl 24 h after infiltrating S. Infantis into lettuce leaves. Among the 50 differentially expressed proteins identified by comparing internalized S. Infantis against S. Infantis grown in Luria Broth, proteins involved in glycolysis were down-regulated, while one protein involved in ascorbate uptake was up-regulated. Stress response proteins, especially antioxidant proteins, were up-regulated. The modulation in protein expression suggested that internalized S. Infantis might utilize ascorbate as a carbon source and require multiple stress response proteins to cope with stresses encountered in plants. On the other hand, among the 20 differentially expressed lettuce proteins, proteins involved in defense response to bacteria were up-regulated. Moreover, the secreted effector PipB2 of S. Infantis and R proteins of lettuce were induced after bacterial internalization into lettuce leaves, indicating human pathogen S. Infantis triggered the defense mechanisms of lettuce, which normally responds to plant pathogens. PMID:24512637

  4. Quantitative analysis of pheromone-binding protein specificity

    PubMed Central

    Katti, S.; Lokhande, N.; González, D.; Cassill, A.; Renthal, R.

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-phenyl-1-naphthylamine (NPN) binding and Förster resonance energy transfer between LUSH tryptophan 123 (W123) and NPN. Binding of cVA was measured from quenching of W123 fluorescence as a function of cVA concentration. The equilibrium constant for transfer of cVA between β-cyclodextrin and LUSH was determined from a linked equilibria model. This constant, multiplied by the β-cyclodextrin-cVA dissociation constant, gives the LUSH-cVA dissociation constant: ~100 nM. It was also found that other ligands quench W123 fluorescence. The LUSH-ligand dissociation constants were determined to be ~200 nM for the silk moth pheromone bombykol and ~90 nM for methyl oleate. The results indicate that the ligand-binding cavity of LUSH can accommodate a variety ligands with strong binding interactions. Implications of this for the pheromone receptor model proposed by Laughlin et al. (Cell 133: 1255–65, 2008) are discussed. PMID:23121132

  5. Quantitative Dopant/Impurity Analysis for ICF Targets

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Nikroo, Abbas; Stephens, Richard; Eddinger, Samual; Xu, Hongwei; Chen, K. C.; Moreno, Kari

    2008-11-01

    We developed a number of new or improved metrology techniques to measure the spatial distributions of multiple elements in ICF ablator capsules to tight NIF specifications (0.5±0.1 at% Cu, 0.25±0.10 at% Ar, 0.4±0.4 at% O). The elements are either the graded dopants for shock timing, such as Cu in Be, or process-induced impurities, such as Ar and O. Their low concentration, high spatial variation and simultaneous presence make the measurement very difficult. We solved this metrology challenge by combining several techniques: Cu and Ar profiles can be nondestructively measured by operating Contact Radiography (CR) in a differential mode. The result, as well as the O profile, can be checked destructively by a quantitative Energy Dispersive Spectroscopy (EDS) method. Non-spatially resolved methods, such as absorption edge spectroscopy (and to a lesser accuracy, x-ray fluorescence) can calibrate the Ar and Cu measurement in EDS and CR. In addition, oxygen pick-up during mandrel removal can be validated by before-and-after CR and by density change. Use of all these methods gives multiple checks on the reported profiles.

  6. Analysis of alpha-synuclein-associated proteins by quantitative proteomics.

    PubMed

    Zhou, Yong; Gu, Guangyu; Goodlett, David R; Zhang, Terry; Pan, Catherine; Montine, Thomas J; Montine, Kathleen S; Aebersold, Ruedi H; Zhang, Jing

    2004-09-10

    To identify the proteins associated with soluble alpha-synuclein (AS) that might promote AS aggregation, a key event leading to neurodegeneration, we quantitatively compared protein profiles of AS-associated protein complexes in MES cells exposed to rotenone, a pesticide that produces parkinsonism in animals and induces Lewy body (LB)-like inclusions in the remaining dopaminergic neurons, and to vehicle. We identified more than 250 proteins associated with Nonidet P-40 soluble AS, and demonstrated that at least 51 of these proteins displayed significant differences in their relative abundance in AS complexes under conditions where rotenone was cytotoxic and induced formation of cytoplasmic inclusions immunoreactive to anti-AS. Overexpressing one of these proteins, heat shock protein (hsp) 70, not only protected cells from rotenone-mediated cytotoxicity but also decreased soluble AS aggregation. Furthermore, the protection afforded by hsp70 transfection appeared to be related to suppression of rotenone-induced oxidative stress as well as mitochondrial and proteasomal dysfunction. PMID:15234983

  7. Quantitative analysis of virus and plasmid trafficking in cells

    NASA Astrophysics Data System (ADS)

    Lagache, Thibault; Dauty, Emmanuel; Holcman, David

    2009-01-01

    Intracellular transport of DNA carriers is a fundamental step of gene delivery. By combining both theoretical and numerical approaches we study here single and several viruses and DNA particles trafficking in the cell cytoplasm to a small nuclear pore. We present a physical model to account for certain aspects of cellular organization, starting with the observation that a viral trajectory consists of epochs of pure diffusion and epochs of active transport along microtubules. We define a general degradation rate to describe the limitations of the delivery of plasmid or viral particles to a nuclear pore imposed by various types of direct and indirect hydrolysis activity inside the cytoplasm. By replacing the switching dynamics by a single steady state stochastic description, we obtain estimates for the probability and the mean time for the first one of many particles to go from the cell membrane to a small nuclear pore. Computational simulations confirm that our model can be used to analyze and interpret viral trajectories and estimate quantitatively the success of nuclear delivery.

  8. Analysis of copy number variation using quantitative interspecies competitive PCR.

    PubMed

    Williams, Nigel M; Williams, Hywel; Majounie, Elisa; Norton, Nadine; Glaser, Beate; Morris, Huw R; Owen, Michael J; O'Donovan, Michael C

    2008-10-01

    Over recent years small submicroscopic DNA copy-number variants (CNVs) have been highlighted as an important source of variation in the human genome, human phenotypic diversity and disease susceptibility. Consequently, there is a pressing need for the development of methods that allow the efficient, accurate and cheap measurement of genomic copy number polymorphisms in clinical cohorts. We have developed a simple competitive PCR based method to determine DNA copy number which uses the entire genome of a single chimpanzee as a competitor thus eliminating the requirement for competitive sequences to be synthesized for each assay. This results in the requirement for only a single reference sample for all assays and dramatically increases the potential for large numbers of loci to be analysed in multiplex. In this study we establish proof of concept by accurately detecting previously characterized mutations at the PARK2 locus and then demonstrating the potential of quantitative interspecies competitive PCR (qicPCR) to accurately genotype CNVs in association studies by analysing chromosome 22q11 deletions in a sample of previously characterized patients and normal controls. PMID:18697816

  9. Quantitative proteomic analysis of the Salmonella-lettuce interaction.

    PubMed

    Zhang, Yuping; Nandakumar, Renu; Bartelt-Hunt, Shannon L; Snow, Daniel D; Hodges, Laurie; Li, Xu

    2014-11-01

    Human pathogens can internalize food crops through root and surface uptake and persist inside crop plants. The goal of the study was to elucidate the global modulation of bacteria and plant protein expression after Salmonella internalizes lettuce. A quantitative proteomic approach was used to analyse the protein expression of Salmonella enterica serovar Infantis and lettuce cultivar Green Salad Bowl 24 h after infiltrating S. Infantis into lettuce leaves. Among the 50 differentially expressed proteins identified by comparing internalized S. Infantis against S. Infantis grown in Luria Broth, proteins involved in glycolysis were down-regulated, while one protein involved in ascorbate uptake was up-regulated. Stress response proteins, especially antioxidant proteins, were up-regulated. The modulation in protein expression suggested that internalized S. Infantis might utilize ascorbate as a carbon source and require multiple stress response proteins to cope with stresses encountered in plants. On the other hand, among the 20 differentially expressed lettuce proteins, proteins involved in defense response to bacteria were up-regulated. Moreover, the secreted effector PipB2 of S. Infantis and R proteins of lettuce were induced after bacterial internalization into lettuce leaves, indicating human pathogen S. Infantis triggered the defense mechanisms of lettuce, which normally responds to plant pathogens. PMID:24512637

  10. Quantitative Analysis of CME Deflections in the Corona

    NASA Astrophysics Data System (ADS)

    Gui, Bin; Shen, Chenglong; Wang, Yuming; Ye, Pinzhong; Liu, Jiajia; Wang, Shui; Zhao, Xuepu

    2011-07-01

    In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et al. ( Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.

  11. Analysis of quantitative trait loci for behavioral laterality in mice.

    PubMed Central

    Roubertoux, Pierre L; Le Roy, Isabelle; Tordjman, Sylvie; Cherfou, Améziane; Migliore-Samour, Danièle

    2003-01-01

    Laterality is believed to have genetic components, as has been deduced from family studies in humans and responses to artificial selection in mice, but these genetic components are unknown and the underlying physiological mechanisms are still a subject of dispute. We measured direction of laterality (preferential use of left or right paws) and degree of laterality (absolute difference between the use of left and right paws) in C57BL/6ByJ (B) and NZB/BlNJ (N) mice and in their F(1) and F(2) intercrosses. Measurements were taken of both forepaws and hind paws. Quantitative trait loci (QTL) did not emerge for direction but did for degree of laterality. One QTL for forepaw (LOD score = 5.6) and the second QTL for hind paw (LOD score = 7.2) were both located on chromosome 4 and their peaks were within the same confidence interval. A QTL for plasma luteinizing hormone concentration was also found in the confidence interval of these two QTL. These results suggest that the physiological mechanisms underlying degree of laterality react to gonadal steroids. PMID:12663540

  12. Quantitative Proteome Analysis of Leishmania donovani under Spermidine Starvation

    PubMed Central

    Singh, Shalini; Dubey, Vikash Kumar

    2016-01-01

    We have earlier reported antileishmanial activity of hypericin by spermidine starvation. In the current report, we have used label free proteome quantitation approach to identify differentially modulated proteins after hypericin treatment. A total of 141 proteins were found to be differentially regulated with ANOVA P value less than 0.05 in hypericin treated Leishmania promastigotes. Differentially modulated proteins have been broadly classified under nine major categories. Increase in ribosomal protein S7 protein suggests the repression of translation. Inhibition of proteins related to ubiquitin proteasome system, RNA binding protein and translation initiation factor also suggests altered translation. We have also observed increased expression of Hsp 90, Hsp 83–1 and stress inducible protein 1. Significant decreased level of cyclophilin was observed. These stress related protein could be cellular response of the parasite towards hypericin induced cellular stress. Also, defective metabolism, biosynthesis and replication of nucleic acids, flagellar movement and signalling of the parasite were observed as indicated by altered expression of proteins involved in these pathways. The data was analyzed rigorously to get further insight into hypericin induced parasitic death. PMID:27123864

  13. Quantitative dual-probe microdialysis: mathematical model and analysis.

    PubMed

    Chen, Kevin C; Höistad, Malin; Kehr, Jan; Fuxe, Kjell; Nicholson, Charles

    2002-04-01

    Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis. PMID:12067242

  14. Space-to-Ground Communication for Columbus: A Quantitative Analysis.

    PubMed

    Uhlig, Thomas; Mannel, Thurid; Fortunato, Antonio; Illmer, Norbert

    2015-01-01

    The astronauts on board the International Space Station (ISS) are only the most visible part of a much larger team engaged around the clock in the performance of science and technical activities in space. The bulk of such team is scattered around the globe in five major Mission Control Centers (MCCs), as well as in a number of smaller payload operations centres. Communication between the crew in space and the flight controllers at those locations is an essential element and one of the key drivers to efficient space operations. Such communication can be carried out in different forms, depending on available technical assets and the selected operational approach for the activity at hand. This paper focuses on operational voice communication and provides a quantitative overview of the balance achieved in the Columbus program between collaborative space/ground operations and autonomous on-board activity execution. An interpretation of the current situation is provided, together with a description of potential future approaches for deep space exploration missions. PMID:26290898

  15. Temporal kinetics and quantitative analysis of Cryptococcus neoformans nonlytic exocytosis.

    PubMed

    Stukes, Sabriya A; Cohen, Hillel W; Casadevall, Arturo

    2014-05-01

    Cryptococcus neoformans is a facultative intracellular pathogen and the causative agent of cryptococcosis, a disease that is often fatal to those with compromised immune systems. C. neoformans has the capacity to escape phagocytic cells through a process known as nonlytic exocytosis whereby the cryptococcal cell is released from the macrophage into the extracellular environment, leaving both the host and pathogen alive. Little is known about the mechanism behind nonlytic exocytosis, but there is evidence that both the fungal and host cells contribute to the process. In this study, we used time-lapse movies of C. neoformans-infected macrophages to delineate the kinetics and quantitative aspects of nonlytic exocytosis. We analyzed approximately 800 macrophages containing intracellular C. neoformans and identified 163 nonlytic exocytosis events that were further characterized into three subcategories: type I (complete emptying of macrophage), type II (partial emptying of macrophage), and type III (cell-to-cell transfer). The majority of type I and II events occurred after several hours of intracellular residence, whereas type III events occurred significantly (P < 0.001) earlier in the course of macrophage infection. Our results show that nonlytic exocytosis is a morphologically and temporally diverse process that occurs relatively rapidly in the course of macrophage infection. PMID:24595144

  16. Quantitative analysis of synaptic release at the photoreceptor synapse.

    PubMed

    Duncan, Gabriel; Rabl, Katalin; Gemp, Ian; Heidelberger, Ruth; Thoreson, Wallace B

    2010-05-19

    Exocytosis from the rod photoreceptor is stimulated by submicromolar Ca(2+) and exhibits an unusually shallow dependence on presynaptic Ca(2+). To provide a quantitative description of the photoreceptor Ca(2+) sensor for exocytosis, we tested a family of conventional and allosteric computational models describing the final Ca(2+)-binding steps leading to exocytosis. Simulations were fit to two measures of release, evoked by flash-photolysis of caged Ca(2+): exocytotic capacitance changes from individual rods and postsynaptic currents of second-order neurons. The best simulations supported the occupancy of only two Ca(2+) binding sites on the rod Ca(2+) sensor rather than the typical four or five. For most models, the on-rates for Ca(2+) binding and maximal fusion rate were comparable to those of other neurons. However, the off-rates for Ca(2+) unbinding were unexpectedly slow. In addition to contributing to the high-affinity of the photoreceptor Ca(2+) sensor, slow Ca(2+) unbinding may support the fusion of vesicles located at a distance from Ca(2+) channels. In addition, partial sensor occupancy due to slow unbinding may contribute to the linearization of the first synapse in vision. PMID:20483317

  17. Quantitative Analysis of Synaptic Release at the Photoreceptor Synapse

    PubMed Central

    Duncan, Gabriel; Rabl, Katalin; Gemp, Ian; Heidelberger, Ruth; Thoreson, Wallace B.

    2010-01-01

    Abstract Exocytosis from the rod photoreceptor is stimulated by submicromolar Ca2+ and exhibits an unusually shallow dependence on presynaptic Ca2+. To provide a quantitative description of the photoreceptor Ca2+ sensor for exocytosis, we tested a family of conventional and allosteric computational models describing the final Ca2+-binding steps leading to exocytosis. Simulations were fit to two measures of release, evoked by flash-photolysis of caged Ca2+: exocytotic capacitance changes from individual rods and postsynaptic currents of second-order neurons. The best simulations supported the occupancy of only two Ca2+ binding sites on the rod Ca2+ sensor rather than the typical four or five. For most models, the on-rates for Ca2+ binding and maximal fusion rate were comparable to those of other neurons. However, the off-rates for Ca2+ unbinding were unexpectedly slow. In addition to contributing to the high-affinity of the photoreceptor Ca2+ sensor, slow Ca2+ unbinding may support the fusion of vesicles located at a distance from Ca2+ channels. In addition, partial sensor occupancy due to slow unbinding may contribute to the linearization of the first synapse in vision. PMID:20483317

  18. Quantitative analysis of task selection for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Llera, Alberto; Gómez, Vicenç; Kappen, Hilbert J.

    2014-10-01

    Objective. To assess quantitatively the impact of task selection in the performance of brain-computer interfaces (BCI). Approach. We consider the task-pairs derived from multi-class BCI imagery movement tasks in three different datasets. We analyze for the first time the benefits of task selection on a large-scale basis (109 users) and evaluate the possibility of transferring task-pair information across days for a given subject. Main results. Selecting the subject-dependent optimal task-pair among three different imagery movement tasks results in approximately 20% potential increase in the number of users that can be expected to control a binary BCI. The improvement is observed with respect to the best task-pair fixed across subjects. The best task-pair selected for each subject individually during a first day of recordings is generally a good task-pair in subsequent days. In general, task learning from the user side has a positive influence in the generalization of the optimal task-pair, but special attention should be given to inexperienced subjects. Significance. These results add significant evidence to existing literature that advocates task selection as a necessary step towards usable BCIs. This contribution motivates further research focused on deriving adaptive methods for task selection on larger sets of mental tasks in practical online scenarios.

  19. Temporal Kinetics and Quantitative Analysis of Cryptococcus neoformans Nonlytic Exocytosis

    PubMed Central

    Stukes, Sabriya A.; Cohen, Hillel W.

    2014-01-01

    Cryptococcus neoformans is a facultative intracellular pathogen and the causative agent of cryptococcosis, a disease that is often fatal to those with compromised immune systems. C. neoformans has the capacity to escape phagocytic cells through a process known as nonlytic exocytosis whereby the cryptococcal cell is released from the macrophage into the extracellular environment, leaving both the host and pathogen alive. Little is known about the mechanism behind nonlytic exocytosis, but there is evidence that both the fungal and host cells contribute to the process. In this study, we used time-lapse movies of C. neoformans-infected macrophages to delineate the kinetics and quantitative aspects of nonlytic exocytosis. We analyzed approximately 800 macrophages containing intracellular C. neoformans and identified 163 nonlytic exocytosis events that were further characterized into three subcategories: type I (complete emptying of macrophage), type II (partial emptying of macrophage), and type III (cell-to-cell transfer). The majority of type I and II events occurred after several hours of intracellular residence, whereas type III events occurred significantly (P < 0.001) earlier in the course of macrophage infection. Our results show that nonlytic exocytosis is a morphologically and temporally diverse process that occurs relatively rapidly in the course of macrophage infection. PMID:24595144

  20. [Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].

    PubMed

    Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong

    2011-09-01

    Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line. PMID:22097853

  1. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli

    PubMed Central

    Hur, Kwang-Ho; Mueller, Joachim D.

    2015-01-01

    The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell. PMID:26099032

  2. [Quantitative Analysis of Immuno-fluorescence of Nuclear Factor-κB Activation].

    PubMed

    Xiu, Min; He, Feng; Lou, Yuanlei; Xu, Lu; Xiong Jieqi; Wang, Ping; Liu, Sisun; Guo, Fei

    2015-06-01

    Immuno-fluorescence technique can qualitatively determine certain nuclear translocation, of which NF-κB/ p65 implicates the activation of NF-κB signal pathways. Immuno-fluorescence analysis software with independent property rights is able to quantitatively analyze dynamic location of NF-κB/p65 by computing relative fluorescence units in nuclei and cytoplasm. We verified the quantitative analysis by Western Blot. When we applied the software to analysis of nuclear translocation in lipopolysaccharide (LPS) induced (0. 5 h, 1 h, 2 h, 4 h) primary human umbilical vein endothelial cells (HUVECs) , we found that nuclear translocation peak showed up at 2h as with calculated Western blot verification results, indicating that the inventive immuno-fluorescence analysis software can be applied to the quantitative analysis of immuno-fluorescence. PMID:26485997

  3. Quantitative assessment of human motion using video motion analysis

    NASA Technical Reports Server (NTRS)

    Probe, John D.

    1993-01-01

    In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software.

  4. Phosphoproteome profiling using a fluorescent phosphosensor dye in two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Otani, Mieko; Taniguchi, Taizo; Sakai, Akiko; Seta, Jouji; Kadoyama, Keiichi; Nakamura-Hirota, Tooru; Matsuyama, Shogo; Sano, Keiji; Takano, Masaoki

    2011-07-01

    We validated the novel PhosphoQUANTI SolidBlue Complex (PQSC) dye for the sensitive fluorescent detection of phosphorylated proteins in polyacrylamide- and two-dimensional gel electrophoresis (PAGE and 2DE, respectively). PQSC can detect as little as 15.6 ng of ß-casein, a pentaphosphorylated protein, and 61.3 ng of ovalbumin, a diphosphorylated protein. Fluorescence intensity correlates with the number of phosphorylated residues on the protein. To demonstrate the specificity of PQSC for phosphoproteins, enzymatically dephosphorylated lysates of Swiss 3T3 cells were separated in 2DE gels and stained by PQSC. The fluorescence signals in these gels were markedly reduced following dephosphorylation. When the phosphorylated proteins in Swiss 3T3 cell lysates were concentrated using a phosphoprotein enrichment column, the majority of phosphoproteins showed fluorescence signals in the pI 4-5 range. Finally, we performed phosphoproteome analysis to study differences in the protein phosphorylation profiles of proliferating and quiescent Swiss 3T3 cells. Over 135 discernible protein spots were detected, from which a selection of 15 spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS). The PQSC staining procedure for phosphoprotein detection is simple, reversible, and fully compatible with MALDI TOF-MS. PMID:21384102

  5. Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome

    PubMed Central

    Oberstein, Adam; Perlman, David H.; Shenk, Thomas; Terry, Laura J.

    2015-01-01

    Replication of human cytomegalovirus is regulated in part by cellular kinases and the single viral Ser/Thr kinase, pUL97. The virus-coded kinase augments the replication of human cytomegalovirus (HCMV) by enabling nuclear egress and altering cell cycle progression. These roles are accomplished through direct phosphorylation of nuclear lamins and the retinoblastoma protein, respectively. In an effort to identify additional pUL97 substrates, we analyzed the phosphoproteome of SILAC-labeled human fibroblasts during infection with either wild-type HCMV or a pUL97 kinase-dead mutant virus. Phosphopeptides were enriched over a titanium dioxide matrix and analyzed by high resolution mass spectrometry. We identified 157 unambiguous phosphosites from 106 cellular and 17 viral proteins whose phosphorylation required UL97. Analysis of peptides containing these sites allowed the identification of several candidate pUL97 phosphorylation motifs, including a completely novel phosphorylation motif, LxSP. Substrates harboring the LxSP motif were enriched in nucleocytoplasmic transport functions, including a number of components of the nuclear pore complex. These results extend the known functions of pUL97 and suggest that modulation of nuclear pore function may be important during HCMV replication. PMID:25867546

  6. Quantitative Analysis of 3′-Hydroxynorcotinine in Human Urine

    PubMed Central

    Upadhyaya, Pramod

    2015-01-01

    Introduction: Based on previous metabolism studies carried out in patas monkeys, we hypothesized that urinary 3′-hydroxynorcotinine could be a specific biomarker for uptake and metabolism of the carcinogen N′-nitrosonornicotine in people who use tobacco products. Methods: We developed a method for quantitation of 3′-hydroxynorcotinine in human urine. [Pyrrolidinone-13C4]3′-hydroxynorcotinine was added to urine as an internal standard, the samples were treated with β-glucuronidase, partially purified by solid supported liquid extraction and quantified by liquid chromatography–electrospray ionization–tandem mass spectrometry. Results: The method was accurate (average accuracy = 102%) and precise (coefficient of variation = 5.6%) in the range of measurement. 3′-Hydroxynorcotinine was detected in 48 urine samples from smokers (mean 393±287 pmol/ml urine) and 12 samples from individuals who had stopped smoking and were using the nicotine patch (mean 658±491 pmol/ml urine), but not in any of 10 samples from nonsmokers. Conclusions: Since the amounts of 3′-hydroxynorcotinine found in smokers’ urine were approximately 50 times greater than the anticipated daily dose of N′-nitrosonornicotine, we concluded that it is a metabolite of nicotine or one of its metabolites, comprising perhaps 1% of nicotine intake in smokers. Therefore, it would not be suitable as a specific biomarker for uptake and metabolism of N′-nitrosonornicotine. Since 3′-hydroxynorcotinine has never been previously reported as a constituent of human urine, further studies are required to determine its source and mode of formation. PMID:25324430

  7. Quantitative analysis of nailfold capillary morphology in patients with fibromyalgia

    PubMed Central

    Choi, Dug-Hyun

    2015-01-01

    Background/Aims Nailfold capillaroscopy (NFC) has been used to examine morphological and functional microcirculation changes in connective tissue diseases. It has been demonstrated that NFC patterns reflect abnormal microvascular dynamics, which may play a role in fibromyalgia (FM) syndrome. The aim of this study was to determine NFC patterns in FM, and their association with clinical features of FM. Methods A total of 67 patients with FM, and 30 age- and sex-matched healthy controls, were included. Nailfold capillary patterns were quantitatively analyzed using computerized NFC. The parameters of interest were as follows: number of capillaries within the central 3 mm, deletion score, apical limb width, capillary width, and capillary dimension. Capillary dimension was determined by calculating the number of capillaries using the Adobe Photoshop version 7.0. Results FM patients had a lower number of capillaries and higher deletion scores on NFC compared to healthy controls (17.3 ± 1.7 vs. 21.8 ± 2.9, p < 0.05; 2.2 ± 0.9 vs. 0.7 ± 0.6, p < 0.05, respectively). Both apical limb width (µm) and capillary width (µm) were significantly decreased in FM patients (1.1 ± 0.2 vs. 3.7 ± 0.6; 5.4 ± 0.5 vs. 7.5 ± 1.4, respectively), indicating that FM patients have abnormally decreased digital capillary diameter and density. Interestingly, there was no difference in capillary dimension between the two groups, suggesting that the length or tortuosity of capillaries in FM patients is increased to compensate for diminished microcirculation. Conclusions FM patients had altered capillary density and diameter in the digits. Diminished microcirculation on NFC may alter capillary density and increase tortuosity. PMID:26161020

  8. Quantitative analysis of wrist electrodermal activity during sleep.

    PubMed

    Sano, Akane; Picard, Rosalind W; Stickgold, Robert

    2014-12-01

    We present the first quantitative characterization of electrodermal activity (EDA) patterns on the wrists of healthy adults during sleep using dry electrodes. We compare the new results on the wrist to the prior findings on palmar or finger EDA by characterizing data measured from 80 nights of sleep consisting of 9 nights of wrist and palm EDA from 9 healthy adults sleeping at home, 56 nights of wrist and palm EDA from one healthy adult sleeping at home, and 15 nights of wrist EDA from 15 healthy adults in a sleep laboratory, with the latter compared to concurrent polysomnography. While high frequency patterns of EDA called "storms" were identified by eye in the 1960s, we systematically compare thresholds for automatically detecting EDA peaks and establish criteria for EDA storms. We found that more than 80% of the EDA peaks occurred in non-REM sleep, specifically during slow-wave sleep (SWS) and non-REM stage 2 sleep (NREM2). Also, EDA amplitude is higher in SWS than in other sleep stages. Longer EDA storms were more likely to occur in the first two quarters of sleep and during SWS and NREM2. We also found from the home studies (65 nights) that EDA levels were higher and the skin conductance peaks were larger and more frequent when measured on the wrist than when measured on the palm. These EDA high frequency peaks and high amplitude were sometimes associated with higher skin temperature, but more work is needed looking at neurological and other EDA elicitors in order to elucidate their complete behavior. PMID:25286449

  9. EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis.

    PubMed

    Pulido-Tamayo, Sergio; Duitama, Jorge; Marchal, Kathleen

    2016-07-01

    Identification of genomic regions associated with a phenotype of interest is a fundamental step toward solving questions in biology and improving industrial research. Bulk segregant analysis (BSA) combined with high-throughput sequencing is a technique to efficiently identify these genomic regions associated with a trait of interest. However, distinguishing true from spuriously linked genomic regions and accurately delineating the genomic positions of these truly linked regions requires the use of complex statistical models currently implemented in software tools that are generally difficult to operate for non-expert users. To facilitate the exploration and analysis of data generated by bulked segregant analysis, we present EXPLoRA-web, a web service wrapped around our previously published algorithm EXPLoRA, which exploits linkage disequilibrium to increase the power and accuracy of quantitative trait loci identification in BSA analysis. EXPLoRA-web provides a user friendly interface that enables easy data upload and parallel processing of different parameter configurations. Results are provided graphically and as BED file and/or text file and the input is expected in widely used formats, enabling straightforward BSA data analysis. The web server is available at http://bioinformatics.intec.ugent.be/explora-web/. PMID:27105844

  10. Quantitative analysis and purity evaluation of medroxyprogesterone acetate by HPLC.

    PubMed

    Cavina, G; Valvo, L; Alimenti, R

    1985-01-01

    A reversed-phase high-performance liquid chromatographic method was developed for the assay of medroxyprogesterone acetate and for the detection and determination of related steroids present as impurities in the drug. The method was compared with the normal-phase technique of the USP XX and was also applied to the analysis of tablets and injectable suspensions. PMID:16867645

  11. Quantitative modeling and analysis in environmental studies. Technical report

    SciTech Connect

    Gaver, D.P.

    1994-10-01

    This paper reviews some of the many mathematical modeling and statistical data analysis problems that arise in environmental studies. It makes no claim to be comprehensive nor truly up-to-date. It will appear as a chapter in a book on ecotoxicology to be published by CRC Press, probably in 1995. Workshops leading to the book creation were sponsored by The Conte Foundation.

  12. Procedures for Quantitative Analysis of Change Facilitator Interventions.

    ERIC Educational Resources Information Center

    Hord, Shirley M.; Hall, Gene E.

    The procedures and coding schema that have been developed by the Research on the Improvement Process (RIP) Program for analyzing the frequency of interventions and for examining their internal characteristics are described. In two in-depth ethnographic studies of implementation efforts, interventions were the focus of data collection and analysis.…

  13. Regression Commonality Analysis: A Technique for Quantitative Theory Building

    ERIC Educational Resources Information Center

    Nimon, Kim; Reio, Thomas G., Jr.

    2011-01-01

    When it comes to multiple linear regression analysis (MLR), it is common for social and behavioral science researchers to rely predominately on beta weights when evaluating how predictors contribute to a regression model. Presenting an underutilized statistical technique, this article describes how organizational researchers can use commonality…

  14. Concentration Analysis: A Quantitative Assessment of Student States.

    ERIC Educational Resources Information Center

    Bao, Lei; Redish, Edward F.

    2001-01-01

    Explains that multiple-choice tests such as the Force Concept Inventory (FCI) provide useful instruments to probe the distribution of student difficulties on a large scale. Introduces a new method, concentration analysis, to measure how students' responses on multiple-choice questions are distributed. (Contains 18 references.) (Author/YDS)

  15. Concentration Analysis: A Quantitative Assessment of Student States.

    ERIC Educational Resources Information Center

    Bao, Lei; Redish, Edward F.

    Multiple-choice tests such as the Force Concept Inventory (FCI) provide useful instruments to probe the distribution of student difficulties on a large scale. However, traditional analysis often relies solely on scores (number of students giving the correct answer). This ignores what can be significant and important information: the distribution…

  16. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  17. Quantitative histology analysis of the ovarian tumour microenvironment.

    PubMed

    Lan, Chunyan; Heindl, Andreas; Huang, Xin; Xi, Shaoyan; Banerjee, Susana; Liu, Jihong; Yuan, Yinyin

    2015-01-01

    Concerted efforts in genomic studies examining RNA transcription and DNA methylation patterns have revealed profound insights in prognostic ovarian cancer subtypes. On the other hand, abundant histology slides have been generated to date, yet their uses remain very limited and largely qualitative. Our goal is to develop automated histology analysis as an alternative subtyping technology for ovarian cancer that is cost-efficient and does not rely on DNA quality. We developed an automated system for scoring primary tumour sections of 91 late-stage ovarian cancer to identify single cells. We demonstrated high accuracy of our system based on expert pathologists' scores (cancer = 97.1%, stromal = 89.1%) as well as compared to immunohistochemistry scoring (correlation = 0.87). The percentage of stromal cells in all cells is significantly associated with poor overall survival after controlling for clinical parameters including debulking status and age (multivariate analysis p = 0.0021, HR = 2.54, CI = 1.40-4.60) and progression-free survival (multivariate analysis p = 0.022, HR = 1.75, CI = 1.09-2.82). We demonstrate how automated image analysis enables objective quantification of microenvironmental composition of ovarian tumours. Our analysis reveals a strong effect of the tumour microenvironment on ovarian cancer progression and highlights the potential of therapeutic interventions that target the stromal compartment or cancer-stroma signalling in the stroma-high, late-stage ovarian cancer subset. PMID:26573438

  18. Clinical value of quantitative analysis of ST slope during exercise.

    PubMed Central

    Ascoop, C A; Distelbrink, C A; De Lang, P A

    1977-01-01

    The diagnostic performance of automatic analysis of the exercise electrocardiogram in detecting ischaemic heart disease was studied in 147 patients with angiographically documented coronary disease. The results were compared with the results of visual analysis of the same recordings. Using a bicycle ergometer we tried to reach at least 90 per cent of the predicted maximal heart rate of the patient. Two bipolar thoracic leads (CM5, CC5) were used. In the visual analysis the criterion of the so-called ischaemic ST segment was applied. For the automatic analysis the population was divided into a learning group (N=87) and a testing group (N=60). In the learning group first critical values were computed for different ST measurements that provided optimal separation between patients with (CAG POS.) and without (CAG. NEG.) significant coronary stenoses as revealed by coronary arteriography. These critical values were kept unchanged when applied to the testing group. With respect to the visual method an increase of the sensitivity by 0-45 and 0-36 was obtained by the automatic analysis in the learning and testing group, respectively. The best separation between CAG. POS. and CAG. NEG. group was reached using a criterion consisting of a linear combination of the slope of the initial part of the ST segment and the ST depression; the sensitivity being 0-70 and 0-60, respectively, in the learning and testing group. Using a criterion based on the area between the baseline and the ST segment (the SX integral) these values were 0-42 and 0-49, respectively. All specificities were kept to at least 0-90. PMID:319813

  19. Quantitative analysis of acrylamide labeled serum proteins by LC-MS/MS.

    PubMed

    Faca, Vitor; Coram, Marc; Phanstiel, Doug; Glukhova, Veronika; Zhang, Qing; Fitzgibbon, Matthew; McIntosh, Martin; Hanash, Samir

    2006-08-01

    Isotopic labeling of cysteine residues with acrylamide was previously utilized for relative quantitation of proteins by MALDI-TOF. Here, we explored and compared the application of deuterated and (13)C isotopes of acrylamide for quantitative proteomic analysis using LC-MS/MS and high-resolution FTICR mass spectrometry. The method was applied to human serum samples that were immunodepleted of abundant proteins. Our results show reliable quantitation of proteins across an abundance range that spans 5 orders of magnitude based on ion intensities and known protein concentration in plasma. The use of (13)C isotope of acrylamide had a slightly greater advantage relative to deuterated acrylamide, because of shifts in elution of deuterated acrylamide relative to its corresponding nondeuterated compound by reversed-phase chromatography. Overall, the use of acrylamide for differentially labeling intact proteins in complex mixtures, in combination with LC-MS/MS provides a robust method for quantitative analysis of complex proteomes. PMID:16889424

  20. Proteome and Phosphoproteome Characterization Reveals New Response and Defense Mechanisms of Brachypodium distachyon Leaves under Salt Stress*

    PubMed Central

    Lv, Dong-Wen; Subburaj, Saminathan; Cao, Min; Yan, Xing; Li, Xiaohui; Appels, Rudi; Sun, Dong-Fa; Ma, Wujun; Yan, Yue-Ming

    2014-01-01

    Salinity is a major abiotic stress affecting plant growth and development. Understanding the molecular mechanisms of salt response and defense in plants will help in efforts to improve the salt tolerance of crops. Brachypodium distachyon is a new model plant for wheat, barley, and several potential biofuel grasses. In the current study, proteome and phosphoproteome changes induced by salt stress were the focus. The Bd21 leaves were initially treated with salt in concentrations ranging from 80 to 320 mm and then underwent a recovery process prior to proteome analysis. A total of 80 differentially expressed protein spots corresponding to 60 unique proteins were identified. The sample treated with a median salt level of 240 mm and the control were selected for phosphopeptide purification using TiO2 microcolumns and LC-MS/MS for phosphoproteome analysis to identify the phosphorylation sites and phosphoproteins. A total of 1509 phosphoproteins and 2839 phosphorylation sites were identified. Among them, 468 phosphoproteins containing 496 phosphorylation sites demonstrated significant changes at the phosphorylation level. Nine phosphorylation motifs were extracted from the 496 phosphorylation sites. Of the 60 unique differentially expressed proteins, 14 were also identified as phosphoproteins. Many proteins and phosphoproteins, as well as potential signal pathways associated with salt response and defense, were found, including three 14-3-3s (GF14A, GF14B, and 14-3-3A) for signal transduction and several ABA signal-associated proteins such as ABF2, TRAB1, and SAPK8. Finally, a schematic salt response and defense mechanism in B. distachyon was proposed. PMID:24335353

  1. Quantitative analysis of cell-free DNA in ovarian cancer

    PubMed Central

    SHAO, XUEFENG; He, YAN; JI, MIN; CHEN, XIAOFANG; QI, JING; SHI, WEI; HAO, TIANBO; JU, SHAOQING

    2015-01-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ovarian tumor cases, and 19 healthy, non-cancerous ovaries. bDNA techniques were used to detect serum cf-DNA concentrations. All data were analyzed using SPSS version 18.0. The cf-DNA levels were significantly increased in the ovarian cancer group compared with those of the benign ovarian tumor group and healthy ovarian group (P<0.01). Furthermore, cf-DNA levels were significantly increased in stage III and IV ovarian cancer compared with those of stages I and II (P<0.01). In addition, cf-DNA levels were significantly increased on the first day post-surgery (P<0.01), and subsequently demonstrated a gradual decrease. In the ovarian cancer group, the area under the receiver operating characteristic curve of cf-DNA and the sensitivity were 0.917 and 88.9%, respectively, which was higher than those of cancer antigen 125 (0.724, 75%) and human epididymis protein 4 (0.743, 80.6%). There was a correlation between the levels of serum cf-DNA and the occurrence and development of ovarian cancer in the patients evaluated. bDNA techniques possessed higher sensitivity and specificity than other methods for the detection of serum cf-DNA in patients exhibiting ovarian cancer, and bDNA techniques are more useful for detecting cf-DNA than other factors. Thus, the present study demonstrated the potential value for the use of bDNA as an adjuvant diagnostic method for ovarian cancer. PMID:26788153

  2. Quantitative analysis of night skyglow amplification under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio

    2014-10-01

    The radiance produced by artificial light is a major source of nighttime over-illumination. It can, however, be treated experimentally using ground-based and satellite data. These two types of data complement each other and together have a high information content. For instance, the satellite data enable upward light emissions to be normalized, and this in turn allows skyglow levels at the ground to be modelled under cloudy or overcast conditions. Excessive night lighting imposes an unacceptable burden on nature, humans and professional astronomy. For this reason, there is a pressing need to determine the total amount of downwelling diffuse radiation. Undoubtedly, cloudy periods can cause a significant increase in skyglow as a result of amplification owing to diffuse reflection from clouds. While it is recognized that the amplification factor (AF) varies with cloud cover, the effects of different types of clouds, of atmospheric turbidity and of the geometrical relationships between the positions of an individual observer, the cloud layer, and the light source are in general poorly known. In this paper the AF is quantitatively analysed considering different aerosol optical depths (AODs), urban layout sizes and cloud types with specific albedos and altitudes. The computational results show that the AF peaks near the edges of a city rather than at its centre. In addition, the AF appears to be a decreasing function of AOD, which is particularly important when modelling the skyglow in regions with apparent temporal or seasonal variability of atmospheric turbidity. The findings in this paper will be useful to those designing engineering applications or modelling light pollution, as well as to astronomers and environmental scientists who aim to predict the amplification of skyglow caused by clouds. In addition, the semi-analytical formulae can be used to estimate the AF levels, especially in densely populated metropolitan regions for which detailed computations may be CPU

  3. DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.

    PubMed

    Huang, Dongqing; Piening, Brian D; Kennedy, Jacob J; Lin, Chenwei; Jones-Weinert, Corey W; Yan, Ping; Paulovich, Amanda G

    2016-05-01

    In response to replication stress, a phospho-signaling cascade is activated and required for coordination of DNA repair and replication of damaged templates (intra-S-phase checkpoint) . How phospho-signaling coordinates the DNA replication stress response is largely unknown. We employed state-of-the-art liquid chromatography tandem-mass spectrometry (LC-MS/MS) approaches to generate high-coverage and quantitative proteomic and phospho-proteomic profiles during replication stress in yeast, induced by continuous exposure to the DNA alkylating agent methyl methanesulfonate (MMS) . We identified 32,057 unique peptides representing the products of 4296 genes and 22,061 unique phosphopeptides representing the products of 3183 genes. A total of 542 phosphopeptides (mapping to 339 genes) demonstrated an abundance change of greater than or equal to twofold in response to MMS. The screen enabled detection of nearly all of the proteins known to be involved in the DNA damage response, as well as many novel MMS-induced phosphorylations. We assessed the functional importance of a subset of key phosphosites by engineering a panel of phosphosite mutants in which an amino acid substitution prevents phosphorylation. In total, we successfully mutated 15 MMS-responsive phosphorylation sites in seven representative genes including APN1 (base excision repair); CTF4 and TOF1 (checkpoint and sister-chromatid cohesion); MPH1 (resolution of homologous recombination intermediates); RAD50 and XRS2 (MRX complex); and RAD18 (PRR). All of these phosphorylation site mutants exhibited MMS sensitivity, indicating an important role in protecting cells from DNA damage. In particular, we identified MMS-induced phosphorylation sites on Xrs2 that are required for MMS resistance in the absence of the MRX activator, Sae2, and that affect telomere maintenance. PMID:27017623

  4. Probabilistic reliability analysis, quantitative safety goals, and nuclear licensing in the United Kingdom.

    PubMed

    Cannell, W

    1987-09-01

    Although unpublicized, the use of quantitative safety goals and probabilistic reliability analysis for licensing nuclear reactors has become a reality in the United Kingdom. This conclusion results from an examination of the process leading to the licensing of the Sizewell B PWR in England. The licensing process for this reactor has substantial implications for nuclear safety standards in Britain, and is examined in the context of the growing trend towards quantitative safety goals in the United States. PMID:3685540

  5. Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.

    2014-05-01

    Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.

  6. Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin.

    PubMed

    Dillinger, Stefan; Németh, Attila

    2016-01-01

    The nuclear distribution of eu- and heterochromatin is nonrandom, heterogeneous, and dynamic, which is mirrored by specific spatiotemporal arrangements of histone posttranslational modifications (PTMs). Here we describe a semiautomated method for the analysis of histone PTM localization patterns within the mammalian nucleus using confocal laser scanning microscope images of fixed, immunofluorescence stained cells as data source. The ImageJ-based process includes the segmentation of the nucleus, furthermore measurements of total fluorescence intensities, the heterogeneity of the staining, and the frequency of the brightest pixels in the region of interest (ROI). In the presented image analysis pipeline, the perinucleolar chromatin is selected as primary ROI, and the nuclear periphery as secondary ROI. PMID:27576710

  7. Quantitative Analysis of PMLA Nanoconjugate Components after Backbone Cleavage

    PubMed Central

    Ding, Hui; Patil, Rameshwar; Portilla-Arias, Jose; Black, Keith L.; Ljubimova, Julia Y.; Holler, Eggehard

    2015-01-01

    Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles. PMID:25894227

  8. Quantitative Analysis of Calcium Spikes in Noisy Fluorescent Background

    PubMed Central

    Janicek, Radoslav; Hotka, Matej; Zahradníková, Alexandra; Zahradníková, Alexandra; Zahradník, Ivan

    2013-01-01

    Intracellular calcium signals are studied by laser-scanning confocal fluorescence microscopy. The required spatio-temporal resolution makes description of calcium signals difficult because of the low signal-to-noise ratio. We designed a new procedure of calcium spike analysis based on their fitting with a model. The accuracy and precision of calcium spike description were tested on synthetic datasets generated either with randomly varied spike parameters and Gaussian noise of constant amplitude, or with constant spike parameters and Gaussian noise of various amplitudes. Statistical analysis was used to evaluate the performance of spike fitting algorithms. The procedure was optimized for reliable estimation of calcium spike parameters and for dismissal of false events. A new algorithm was introduced that corrects the acquisition time of pixels in line-scan images that is in error due to sequential acquisition of individual pixels along the space coordinate. New software was developed in Matlab and provided for general use. It allows interactive dissection of temporal profiles of calcium spikes from x-t images, their fitting with predefined function(s) and acceptance of results on statistical grounds, thus allowing efficient analysis and reliable description of calcium signaling in cardiac myocytes down to the in situ function of ryanodine receptors. PMID:23741324

  9. Watershed Planning within a Quantitative Scenario Analysis Framework.

    PubMed

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-01-01

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation. PMID:27501287

  10. Phase analysis in duplex stainless steel: comparison of EBSD and quantitative metallography methods

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Chmiela, B.

    2014-03-01

    The purpose of the research was to work out the qualitative and quantitative analysis of phases in DSS in as-received state and after thermal aging. For quantitative purposes, SEM observations, EDS analyses and electron backscattered diffraction (EBSD) methods were employed. Qualitative analysis of phases was performed by two methods: EBSD and classical quantitative metallography. A juxtaposition of different etchants for the revealing of microstructure and brief review of sample preparation methods for EBSD studies were presented. Different ways of sample preparation were tested and based on these results a detailed methodology of DSS phase analysis was developed including: surface finishing, selective etching methods and image acquisition. The advantages and disadvantages of applied methods were pointed out and compared the accuracy of the analysis phase performed by both methods.

  11. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size

    SciTech Connect

    Zhang, Haizhen; Burnum, Kristin E.; Luna, Maria L.; Petritis, Brianne O.; Kim, Jong Seo; Qian, Weijun; Moore, Ronald J.; Heredia-Langner, Alejandro; Webb-Robertson, Bobbie-Jo M.; Thrall, Brian D.; Camp, David G.; Smith, Richard D.; Pounds, Joel G.; Liu, Tao

    2011-12-01

    In biofluids (e.g., blood plasma) nanoparticles are readily embedded in layers of proteins that can affect their biological activity and biocompatibility. Herein, we report a study on the interactions between human plasma proteins and nanoparticles with a controlled systematic variation of properties using stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS) based quantitative proteomics. Novel protocol has been developed to simplify the isolation of nanoparticle bound proteins and improve the reproducibility. Plasma proteins associated with polystyrene nanoparticles with three different surface chemistries and two sizes as well as for four different exposure times (for a total of 24 different samples) were identified and quantified by LC-MS analysis. Quantitative comparison of relative protein abundances were achieved by spiking an 18 O-labeled 'universal reference' into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantitation across the sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive pattern that classifies the nanoparticles based on their surface properties and size. In addition, data on the temporal study indicated that the stable protein 'corona' that was isolated for the quantitative analysis appeared to be formed in less than 5 minutes. The comprehensive results obtained herein using quantitative proteomics have potential implications towards predicting nanoparticle biocompatibility.

  12. Digitally Enhanced Thin-Layer Chromatography: An Inexpensive, New Technique for Qualitative and Quantitative Analysis

    ERIC Educational Resources Information Center

    Hess, Amber Victoria Irish

    2007-01-01

    A study conducted shows that if digital photography is combined with regular thin-layer chromatography (TLC), it could perform highly improved qualitative analysis as well as make accurate quantitative analysis possible for a much lower cost than commercial equipment. The findings suggest that digitally enhanced TLC (DE-TLC) is low-cost and easy…

  13. Kinetic Analysis of Amylase Using Quantitative Benedict's and Iodine Starch Reagents

    ERIC Educational Resources Information Center

    Cochran, Beverly; Lunday, Deborah; Miskevich, Frank

    2008-01-01

    Quantitative analysis of carbohydrates is a fundamental analytical tool used in many aspects of biology and chemistry. We have adapted a technique developed by Mathews et al. using an inexpensive scanner and open-source image analysis software to quantify amylase activity using both the breakdown of starch and the appearance of glucose. Breakdown…

  14. Integrating Data Analysis (IDA): Working with Sociology Departments to Address the Quantitative Literacy Gap

    ERIC Educational Resources Information Center

    Howery, Carla B.; Rodriguez, Havidan

    2006-01-01

    The NSF-funded Integrating Data Analysis (IDA) Project undertaken by the American Sociological Association (ASA) and the Social Science Data Analysis Network sought to close the quantitative literacy gap for sociology majors. Working with twelve departments, the project built on lessons learned from ASA's Minority Opportunities through School…

  15. A Quantitative Analysis of the Extrinsic and Intrinsic Turnover Factors of Relational Database Support Professionals

    ERIC Educational Resources Information Center

    Takusi, Gabriel Samuto

    2010-01-01

    This quantitative analysis explored the intrinsic and extrinsic turnover factors of relational database support specialists. Two hundred and nine relational database support specialists were surveyed for this research. The research was conducted based on Hackman and Oldham's (1980) Job Diagnostic Survey. Regression analysis and a univariate ANOVA…

  16. A Quantitative Content Analysis of Mercer University MEd, EdS, and Doctoral Theses

    ERIC Educational Resources Information Center

    Randolph, Justus J.; Gaiek, Lura S.; White, Torian A.; Slappey, Lisa A.; Chastain, Andrea; Harris, Rose Prejean

    2010-01-01

    Quantitative content analysis of a body of research not only helps budding researchers understand the culture, language, and expectations of scholarship, it helps identify deficiencies and inform policy and practice. Because of these benefits, an analysis of a census of 980 Mercer University MEd, EdS, and doctoral theses was conducted. Each thesis…

  17. Some remarks on the quantitative analysis of behavior

    PubMed Central

    Marr, M. Jackson

    1989-01-01

    This paper discusses similarities between the mathematization of operant behavior and the early history of the most mathematical of sciences—physics. Galileo explored the properties of motion without dealing with the causes of motion, focusing on changes in motion. Newton's dynamics were concerned with the action of forces as causes of change. Skinner's rationale for using rate to describe behavior derived from an interest in changes in rate. Reinforcement has played the role of force in the dynamics of behavior. Behavioral momentum and maximization have received mathematical formulations in behavior analysis. Yet to be worked out are the relations between molar and molecular formulations of behavioral theory. PMID:22478028

  18. Identifying severity of electroporation through quantitative image analysis

    NASA Astrophysics Data System (ADS)

    Morshed, Bashir I.; Shams, Maitham; Mussivand, Tofy

    2011-04-01

    Electroporation is the formation of reversible hydrophilic pores in the cell membrane under electric fields. Severity of electroporation is challenging to measure and quantify. An image analysis method is developed, and the initial results with a fabricated microfluidic device are reported. The microfluidic device contains integrated microchannels and coplanar interdigitated electrodes allowing low-voltage operation and low-power consumption. Noninvasive human buccal cell samples were specifically stained, and electroporation was induced. Captured image sequences were analyzed for pixel color ranges to quantify the severity of electroporation. The method can detect even a minor occurrence of electroporation and can perform comparative studies.

  19. Quantitative proteomic analysis of cold-responsive proteins in rice.

    PubMed

    Neilson, Karlie A; Mariani, Michael; Haynes, Paul A

    2011-05-01

    Rice is susceptible to cold stress and with a future of climatic instability we will be unable to produce enough rice to satisfy increasing demand. A thorough understanding of the molecular responses to thermal stress is imperative for engineering cultivars, which have greater resistance to low temperature stress. In this study we investigated the proteomic response of rice seedlings to 48, 72 and 96 h of cold stress at 12-14°C. The use of both label-free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics. The approaches yielded a similar biological response to cold stress despite a disparity in proteins identified. The label-free approach identified 236 cold-responsive proteins compared to 85 in iTRAQ results, with only 24 proteins in common. Functional analysis revealed differential expression of proteins involved in transport, photosynthesis, generation of precursor metabolites and energy; and, more specifically, histones and vitamin B biosynthetic proteins were observed to be affected by cold stress. PMID:21433000

  20. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment

    PubMed Central

    Edmunds, Kyle Joseph; Gíslason, Magnus K.; Arnadottir, Iris D.; Marcante, Andrea; Piccione, Francesco; Gargiulo, Paolo

    2016-01-01

    Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT) and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU) values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration. PMID:27478562

  1. Quantitative assessment of human body shape using Fourier analysis

    NASA Astrophysics Data System (ADS)

    Friess, Martin; Rohlf, F. J.; Hsiao, Hongwei

    2004-04-01

    Fall protection harnesses are commonly used to reduce the number and severity of injuries. Increasing the efficiency of harness design requires the size and shape variation of the user population to be assessed as detailed and as accurately as possible. In light of the unsatisfactory performance of traditional anthropometry with respect to such assessments, we propose the use of 3D laser surface scans of whole bodies and the statistical analysis of elliptic Fourier coefficients. Ninety-eight male and female adults were scanned. Key features of each torso were extracted as a 3D curve along front, back and the thighs. A 3D extension of Elliptic Fourier analysis4 was used to quantify their shape through multivariate statistics. Shape change as a function of size (allometry) was predicted by regressing the coefficients onto stature, weight and hip circumference. Upper and lower limits of torso shape variation were determined and can be used to redefine the design of the harness that will fit most individual body shapes. Observed allometric changes are used for adjustments to the harness shape in each size. Finally, the estimated outline data were used as templates for a free-form deformation of the complete torso surface using NURBS models (non-uniform rational B-splines).

  2. iTRAQ-Based Quantitative Proteomic Analysis of Nasopharyngeal Carcinoma.

    PubMed

    Cai, Xin-Zhang; Zeng, Wei-Qun; Xiang, Yi; Liu, Yi; Zhang, Hong-Min; Li, Hong; She, Sha; Yang, Min; Xia, Kun; Peng, Shi-Fang

    2015-07-01

    Nasopharyngeal carcinoma (NPC) is a common disease in the southern provinces of China with a poor prognosis. To better understand the pathogenesis of NPC and identify proteins involved in NPC carcinogenesis, we applied iTRAQ coupled with two-dimensional LC-MS/MS to compare the proteome profiles of NPC tissues and the adjacent non-tumor tissues. We identified 54 proteins with differential expression in NPC and the adjacent non-tumor tissues. The differentially expressed proteins were further determined by RT-PCR and Western blot analysis. In addition, the up-regulation of HSPB1, NPM1 and NCL were determined by immunohistochemistry using tissue microarray. Functionally, we found that siRNA mediated knockdown of NPM1 inhibited the migration and invasion of human NPC CNE1 cell line. In summary, this is the first study on proteome analysis of NPC tissues using an iTRAQ method, and we identified many new differentially expressed proteins which are potential targets for the diagnosis and therapy of NPC. PMID:25648846

  3. [Quantitative analysis of seven phenolic acids in eight Yinqiao Jiedu serial preparations by quantitative analysis of multi-components with single-marker].

    PubMed

    Wang, Jun-jun; Zhang, Li; Guo, Qing; Kou, Jun-ping; Yu, Bo-yang; Gu, Dan-hua

    2015-04-01

    The study aims to develop a unified method to determine seven phenolic acids (neochlorogenic acid, chlorogenic acid, 4-caffeoylquinic acid, caffeic acid, isochlorogenic acid B, isochlorogenic acid A and isochlorogenic acid C) contained in honeysuckle flower that is the monarch drug of all the eight Yinqiao Jiedu serial preparations using quantitative analysis of multi-components by single-marker (QAMS). Firstly, chlorogenic acid was used as a reference to get the average relative correction factors (RCFs) of the other phenolic acids in ratios to the reference; columns and instruments from different companies were used to validate the durability of the achieved RCFs in different levels of standard solutions; and honeysuckle flower extract was used as the reference substance to fix the positions of chromatographic peaks. Secondly, the contents of seven phenolic acids in eight different Yinqiao Jiedu serial preparations samples were calculated based on the RCFs durability. Finally, the quantitative results were compared between QAMS and the external standard (ES) method. The results have showed that the durability of the achieved RCFs is good (RSD during 0.80% - 2.56%), and there are no differences between the quantitative results of QAMS and ES (the relative average deviation < 0.93%). So it can be successfully used to the quantitative control of honeysuckle flower principally prescribed in Yinqiao Jiedu serial preparations. PMID:26223132

  4. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    SciTech Connect

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  5. Quantitative radiographic analysis of fiber reinforced polymer composites.

    PubMed

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites. PMID:11261603

  6. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila

    PubMed Central

    Itskov, Pavel M.; Moreira, José-Maria; Vinnik, Ekaterina; Lopes, Gonçalo; Safarik, Steve; Dickinson, Michael H.; Ribeiro, Carlos

    2014-01-01

    Food ingestion is one of the defining behaviours of all animals, but its quantification and analysis remain challenging. This is especially the case for feeding behaviour in small, genetically tractable animals such as Drosophila melanogaster. Here, we present a method based on capacitive measurements, which allows the detailed, automated and high-throughput quantification of feeding behaviour. Using this method, we were able to measure the volume ingested in single sips of an individual, and monitor the absorption of food with high temporal resolution. We demonstrate that flies ingest food by rhythmically extending their proboscis with a frequency that is not modulated by the internal state of the animal. Instead, hunger and satiety homeostatically modulate the microstructure of feeding. These results highlight similarities of food intake regulation between insects, rodents, and humans, pointing to a common strategy in how the nervous systems of different animals control food intake. PMID:25087594

  7. Digital photogrammetry for quantitative wear analysis of retrieved TKA components.

    PubMed

    Grochowsky, J C; Alaways, L W; Siskey, R; Most, E; Kurtz, S M

    2006-11-01

    The use of new materials in knee arthroplasty demands a way in which to accurately quantify wear in retrieved components. Methods such as damage scoring, coordinate measurement, and in vivo wear analysis have been used in the past. The limitations in these methods illustrate a need for a different methodology that can accurately quantify wear, which is relatively easy to perform and uses a minimal amount of expensive equipment. Off-the-shelf digital photogrammetry represents a potentially quick and easy alternative to what is readily available. Eighty tibial inserts were visually examined for front and backside wear and digitally photographed in the presence of two calibrated reference fields. All images were segmented (via manual and automated algorithms) using Adobe Photoshop and National Institute of Health ImageJ. Finally, wear was determined using ImageJ and Rhinoceros software. The absolute accuracy of the method and repeatability/reproducibility by different observers were measured in order to determine the uncertainty of wear measurements. To determine if variation in wear measurements was due to implant design, 35 implants of the three most prevalent designs were subjected to retrieval analysis. The overall accuracy of area measurements was 97.8%. The error in automated segmentation was found to be significantly lower than that of manual segmentation. The photogrammetry method was found to be reasonably accurate and repeatable in measuring 2-D areas and applicable to determining wear. There was no significant variation in uncertainty detected among different implant designs. Photogrammetry has a broad range of applicability since it is size- and design-independent. A minimal amount of off-the-shelf equipment is needed for the procedure and no proprietary knowledge of the implant is needed. PMID:16649169

  8. Quantitative analysis by mid-infrared spectrometry in food and agro-industrial fields

    NASA Astrophysics Data System (ADS)

    Dupuy, Nathalie; Huvenne, J. P.; Sombret, B.; Legrand, P.

    1993-03-01

    Thanks to what has been achieved by the Fourier transform, infrared spectroscopy can now become a state of the art device in the quality control laboratories if we consider its precision and the gain in time it ensures compared to traditional analysis methods such as HPLC chromatography. Moreover, the increasing number of new mathematical regression methods such as Partial Least Square ( PLS) regression allows the multicomponent quantitative analysis in mixtures. Nevertheless, the efficiency of infrared spectrometry as a quantitative analysis method often depends on the choice of an adequate presentation for the sample. In this document, we shall demonstrate several techniques such as diffuse reflectance and Attenuated Total Reflectance (ATR) which can be according to the various physical states of the mixtures. The quantitative analysis of real samples from the food industry enables us to estimate its precision. For instance, the analysis of the three main components (glucose, fructose and maltose) in the glucose syrups can be done (using ATR) with a precision in the region of 3% whereas the time required to obtain an analysis report is about 5 minutes. Finally multicomponent quantitative analysis is quite feasable by mid-IR spectroscopy.

  9. Phosphoproteomic Profiling of In Vivo Signaling in Liver by the Mammalian Target of Rapamycin Complex 1 (mTORC1)

    PubMed Central

    Demirkan, Gokhan; Yu, Kebing; Boylan, Joan M.; Salomon, Arthur R.; Gruppuso, Philip A.

    2011-01-01

    Background Our understanding of signal transduction networks in the physiological context of an organism remains limited, partly due to the technical challenge of identifying serine/threonine phosphorylated peptides from complex tissue samples. In the present study, we focused on signaling through the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which is at the center of a nutrient- and growth factor-responsive cell signaling network. Though studied extensively, the mechanisms involved in many mTORC1 biological functions remain poorly understood. Methodology/Principal Findings We developed a phosphoproteomic strategy to purify, enrich and identify phosphopeptides from rat liver homogenates. Using the anticancer drug rapamycin, the only known target of which is mTORC1, we characterized signaling in liver from rats in which the complex was maximally activated by refeeding following 48 hr of starvation. Using protein and peptide fractionation methods, TiO2 affinity purification of phosphopeptides and mass spectrometry, we reproducibly identified and quantified over four thousand phosphopeptides. Along with 5 known rapamycin-sensitive phosphorylation events, we identified 62 new rapamycin-responsive candidate phosphorylation sites. Among these were PRAS40, gephyrin, and AMP kinase 2. We observed similar proportions of increased and reduced phosphorylation in response to rapamycin. Gene ontology analysis revealed over-representation of mTOR pathway components among rapamycin-sensitive phosphopeptide candidates. Conclusions/Significance In addition to identifying potential new mTORC1-mediated phosphorylation events, and providing information relevant to the biology of this signaling network, our experimental and analytical approaches indicate the feasibility of large-scale phosphoproteomic profiling of tissue samples to study physiological signaling events in vivo. PMID:21738781

  10. High throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology

    SciTech Connect

    Liu, Tao; Qian, Weijun; Strittmatter, Eric F.; Camp, David G.; Anderson, Gordon A.; Thrall, Brian D.; Smith, Richard D.

    2004-09-15

    A new quantitative cysteinyl-peptide enrichment technology (QCET) was developed to achieve higher efficiency, greater dynamic range, and higher throughput in quantitative proteomics that use stable-isotope labeling techniques combined with high resolution liquid chromatography (LC)-mass spectrometry (MS). This approach involves {sup 18}O labeling of tryptic peptides, high efficiency enrichment of cysteine-containing peptides, and confident protein identification and quantification using the accurate mass and time tag strategy. P