Note: This page contains sample records for the topic quantitative uv-visible spectroscopy from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

UV-Visible Spectroscopy  

NSDL National Science Digital Library

This webpage, part of a larger project "Understanding Chemistry", provides an introduction to UV-visible spectroscopy suitable for use in introductory chemistry and introductory analytical chemistry courses. The pages discuss UV-visible light, absorption, Beer's law, the double-beam spectrometer, and introduce some standard applications of UV-vis spectroscopy.

Clark, Jim

2012-09-20

2

Quantitative UV-Visible Diffuse Reflectance Spectroscopy of Solid Powders  

Microsoft Academic Search

In spite of difficulties in attaining high resolution, the determination of UV-VIS-NIR spectra via diffuse reflectance spectro-scopic measurements on solid powders; provides several advantages. Compounds which are difficult to obtain as suitable single crystals, or are found to be unstable or insoluble in liquid solution, can only be studied by diffuse reflectance spectroscopy. Also, since no solvents are required, any

T. H. Flint; E. A. Boudreaux

1982-01-01

3

Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer.  

PubMed

Methods of optical spectroscopy that provide quantitative, physically or physiologically meaningful measures of tissue properties are an attractive tool for the study, diagnosis, prognosis, and treatment of various cancers. Recent development of methodologies to convert measured reflectance and fluorescence spectra from tissue to cancer-relevant parameters such as vascular volume, oxygenation, extracellular matrix extent, metabolic redox states, and cellular proliferation have significantly advanced the field of tissue optical spectroscopy. The number of publications reporting quantitative tissue spectroscopy results in the UV-visible wavelength range has increased sharply in the past three years, and includes new and emerging studies that correlate optically measured parameters with independent measures such as immunohistochemistry, which should aid in increased clinical acceptance of these technologies. PMID:19268567

Brown, J Quincy; Vishwanath, Karthik; Palmer, Gregory M; Ramanujam, Nirmala

2009-02-01

4

Diffuse reflectance UV–Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica  

Microsoft Academic Search

Diffuse reflectance UV–Visible spectroscopy (DRUV) is used to study the adsorption and grafting of the pyrene derivative 1 on different types of silicas. For the adsorbed silicas, the formation of dimeric aggregates is evidenced both by DRUV and by fluorescence spectroscopy. The processing of the UV spectrophotometric data allows, as in solution, the determination of apparent equilibrium constants and of

S. Lacombe; H. Cardy; N. Soggiu; S. Blanc; J. L. Habib-Jiwan; J. Ph. Soumillion

2001-01-01

5

Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy.  

PubMed

The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification. PMID:19701801

Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C

2009-10-01

6

Quantitative analysis of surface amine groups on plasma-polymerized ethylenediamine films using UV–visible spectroscopy compared to chemical derivatization with FT-IR spectroscopy, XPS and TOF-SIMS  

Microsoft Academic Search

A quantitative analysis of the surface density of amine groups on a plasma-polymerized ethylenediamine thin film deposited on a platinum surface using inductively coupled plasma chemical vapor deposition method is described. UV–visible spectroscopy together with a chemical derivatization technique using Fourier transform infrared (FT-IR) spectroscopy was used to obtain the quantitative information. Chemical tags of pentafluorobenzaldehyde were hybridized with the

Jinmo Kim; Donggeun Jung; Yongki Kim; Dae Won Moon; Tae Geol Lee

2007-01-01

7

Quantitative analysis of surface amine groups on plasma-polymerized ethylenediamine films using UV visible spectroscopy compared to chemical derivatization with FT-IR spectroscopy, XPS and TOF-SIMS  

NASA Astrophysics Data System (ADS)

A quantitative analysis of the surface density of amine groups on a plasma-polymerized ethylenediamine thin film deposited on a platinum surface using inductively coupled plasma chemical vapor deposition method is described. UV-visible spectroscopy together with a chemical derivatization technique using Fourier transform infrared (FT-IR) spectroscopy was used to obtain the quantitative information. Chemical tags of pentafluorobenzaldehyde were hybridized with the surface amine groups and were easily detected due to the characteristic absorption bands of C-F stretching, aromatic ring and C dbnd N stretching vibrations in the reflection-absorption FT-IR spectra. The surface amine density was reproducibly controlled as a function of deposition plasma power and quantified using UV-visible spectroscopy. A good linear correlation was observed between the FT-IR intensities of the characteristic absorption bands and the surface amine densities, suggesting the possibility of using this chemical derivatization technique to quantify the surface densities of specific functional groups on an organic surface. Chemical derivatization was also used with X-ray photoelectron spectroscopy on the same samples, and the results were compared with those obtained from FT-IR and time-of-flight secondary ion mass spectrometry. Although each analysis technique has different probing depths from the surface, the three different data sets obtained from the chemical tags correlated well with each other since each analysis technique measured the chemical tags on the sample surface.

Kim, Jinmo; Jung, Donggeun; Park, Yongsup; Kim, Yongki; Moon, Dae Won; Lee, Tae Geol

2007-02-01

8

Using multiwavelength UV-visible spectroscopy for the characterization of red blood cells: An investigation of hypochromism  

Microsoft Academic Search

Particle analysis using multiwavelength UV-visible spectroscopy provides the potential for extracting quantitative red blood cell information, such as hemoglobin concentration, cell size, and cell count. However, if there is a significant presence of hypochromism as a result of the concentrated hemoglobin (physiological value of 33%), successful quantification of red cell values would require a correction. Hypochromism has been traditionally defined

Akihisa Nonoyama

2004-01-01

9

Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry.  

PubMed

The present paper review the drug-DNA interactions, their types and applications of experimental techniques used to study interactions between DNA and small ligand molecules that are potentially of pharmaceutical interest. DNA has been known to be the cellular target for many cytotoxic anticancer agents for several decades. Understanding how drug molecules interact with DNA has become an active research area at the interface between chemistry, molecular biology and medicine. In this review article, we attempt to bring together topics that cover the breadth of this large area of research. The interaction of drugs with DNA is a significant feature in pharmacology and plays a vital role in the determination of the mechanisms of drug action and designing of more efficient and specifically targeted drugs with lesser side effects. Several instrumental techniques are used to study such interactions. In the present review, we will discuss UV-Visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The applications of spectroscopic techniques are reviewed and we have discussed the type of information (qualitative or quantitative) that can be obtained from the use of each technique. Not only have novel techniques been applied to study drug-DNA interactions but such interactions may also be the basis for the development of new assays. The interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases. PMID:23648795

Sirajuddin, Muhammad; Ali, Saqib; Badshah, Amin

2013-07-01

10

Cure characterization of an unsaturated polyester resin using near-infrared, fluorescence and UV\\/visible reflection spectroscopies  

Microsoft Academic Search

This dissertation seeks to characterize the cure reaction of an unsaturated polyester resin using near-infrared, fluorescence and UV\\/Visible reflection spectroscopies. The results will provide a foundation for developing fiber-optic in-situ cure monitoring techniques based on near-infrared, fluorescence, and UV\\/Visible reflection spectroscopies for an unsaturated polyester resin system. Near-infrared spectra of the unsaturated polyester resin during cure showed a decrease in

Bradley Lyn Grunden

1999-01-01

11

The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality.  

PubMed

Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl's quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry. PMID:22851919

Agatonovic-Kustrin, Snezana; Morton, David W

2012-07-01

12

The Use of UV-Visible Reflectance Spectroscopy as an Objective Tool to Evaluate Pearl Quality  

PubMed Central

Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl’s quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry.

Agatonovic-Kustrin, Snezana; Morton, David W.

2012-01-01

13

Using multiwavelength UV-visible spectroscopy for the characterization of red blood cells: An investigation of hypochromism  

NASA Astrophysics Data System (ADS)

Particle analysis using multiwavelength UV-visible spectroscopy provides the potential for extracting quantitative red blood cell information, such as hemoglobin concentration, cell size, and cell count. However, if there is a significant presence of hypochromism as a result of the concentrated hemoglobin (physiological value of 33%), successful quantification of red cell values would require a correction. Hypochromism has been traditionally defined as a decrease in absorption relative to the values expected from the Beer-Lambert Law due to electronic interactions of chromophores residing in close proximity of one another. This phenomenon has been suggested to be present in macroscopic systems composed of strong chromophores such as nucleic acids, chlorophyll, and hemoglobin. The study presented in this dissertation examines the presence of hypochromism in red blood cells as a part of a larger goal to qualitatively and quantatively characterize red blood cells using multiwavelength UV-visible spectroscopy. The strategy of the study was three-fold: (1) to determine the instrumental configuration that would provide the most complete information in the acquired spectra, (2) to develop an experimental model system in which the hemoglobin content in red blood cells could be modified to various concentrations, and (3) to implement an interpretation model based on light scattering theory (which accounts for both the scattering and absorption components of the optical density spectrum) to provide quantitative information for the experimental system. By this process, hypochromicity was redefined into two categories with molecular hypochromicity representing the traditional definition and macroscopic hypochromicity being an attenuation of the absorption component due to a scattering-related effect. Successful simulations of experimental red cell spectra containing various amounts of hemoglobin were obtained using the theoretical model. Furthermore, successful quantitative interpretation of the red blood cell spectra was achieved in the context of corpuscular hemoglobin concentration, corpuscular volume, and cell count solely by accounting for the scattering and absorption effects of the particle, indicating that molecular hypochromicity was insignificant in this macroscopic system.

Nonoyama, Akihisa

14

Practical wavelength calibration considerations for UV-visible Fourier-transform spectroscopy  

NASA Astrophysics Data System (ADS)

The intrinsic wavelength scale in a modern reference laser-controlled Michelson interferometer-sometimes referred to as the Connes advantage-offers excellent wavelength accuracy with relative ease. Truly superb wavelength accuracy, with total relative uncertainty in line position of the order of several parts in 108, should be within reach with single-point, multiplicative calibration. The need for correction of the wavelength scale arises from two practical off-axis rays propagate through the interferometer, and imperfect geometric alignment of the sample beam with the reference beam and the optical axis of the moving mirror. Although an analytical correction can be made for the finite-aperture effect, calibration with a trusted wavelength standard is typically used to accomplish both corrections. Practical aspects of accurate calibration of an interferometer in the UV-visible region are discussed. Critical issues regarding accurate use of a standard external to the sample source and the evaluation and selection of an appropriate standard are addressed. Anomalous results for two different potential wavelength standards measured by Fabry-Perot interferometry (Ar II and 198 Hg I) are observed. Fourier-transform spectroscopy, wavelength accuracy, wavelength standards, inductively coupled-plasma spectroscopy, spectral interferences, spectral atlas.

Salit, Marc L.; Travis, John C.; Winchester, Michael R.

1996-06-01

15

High sensitivity transient infrared spectroscopy: a UV/Visible transient grating spectrometer with a heterodyne detected infrared probe.  

PubMed

We describe here a high sensitivity means of performing time resolved UV/Visible pump, infrared probe spectroscopy using optically Heterodyne Detected UV-IR Transient Gratings. The experiment design employed is simple, robust and includes a novel means of generating phase locked pulse pairs that relies on only mirrors and a beamsplitter. A signal to noise ratio increase of 24 compared with a conventional pump-probe arrangement is demonstrated. PMID:22714305

Donaldson, Paul M; Strzalka, Halina; Hamm, Peter

2012-06-01

16

Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy.  

PubMed

This work employs UV-visible extinction spectroscopy as a new spectral mapping technique to characterize self-assembled polystyrene microsphere samples produced by convective self-assembly (CSA). This spectroscopic technique was successfully used to analyze the periodic particle arrays produced by the polystyrene template, yielding a detailed characterization of each sample. The CSA-prepared samples proved to be more uniform across a sample as well as more reproducible than previous sample preparation techniques. For the first time, a detailed characterization and quantitative evaluation of the entire sample has been performed by spectroscopic mapping. PMID:15274605

Ormonde, Anjeanette D; Hicks, Erin C M; Castillo, Jimmy; Van Duyne, Richard P

2004-08-01

17

Cure characterization of an unsaturated polyester resin using near-infrared, fluorescence and UV/visible reflection spectroscopies  

NASA Astrophysics Data System (ADS)

This dissertation seeks to characterize the cure reaction of an unsaturated polyester resin using near-infrared, fluorescence and UV/Visible reflection spectroscopies. The results will provide a foundation for developing fiber-optic in-situ cure monitoring techniques based on near-infrared, fluorescence, and UV/Visible reflection spectroscopies for an unsaturated polyester resin system. Near-infrared spectra of the unsaturated polyester resin during cure showed a decrease in absorption at 1629, 2087, 2117, and 2227 nm. Model compounds representing the reactants and products of the cure reaction were characterized, and assignment of peaks in the NIR were made. Conversion of styrene and vinylene, determined from NIR measurements, were compared with values obtained using conventional FTIR measurements. Discrepancies between conversion values determined from NIR and FTIR measurements were attributed to a difference in sample sizes used for measurement. Using a microgel based reaction mechanism, the effects of temperature on the conversion of styrene and vinylene was discussed. A strong fluorescence emission was found during cure of the unsaturated polyester resin. As the reaction proceeded, the emission intensity at 306 nm increased. Model compound studies confirmed that the unsaturated polyester vinylene component exhibits negligible fluorescence when excited at 250 nm. The fluorescence emission at 306 nm was attributed to a reduced self-quenching effect of styrene monomer. In-situ fluorescence characterization of the cure reaction was also attempted. Fiber-optic fluorescence measurements taken in-situ at 75°C were found to be higher than those taken by fiber-optics at room temperature, indicating a temperature effect on the fluorescence emission. These results may be a consequence of the static quenching behavior of styrene monomer. UV/Visible reflection spectra of styrene showed a decrease in the % Reflectance at 255 nm with reaction time. This decrease was attributed to an overall reduction in the absorption index as styrene reacts to form polystyrene. Conversion of styrene calculated from UV/Visible reflection and FTIR measurements were in close agreement. A preliminary investigation into the use of UV/Visible reflection spectroscopy to cure monitor a styrene containing unsaturated polyester resin was also performed. A similar decrease in the % Reflectance at 255 nm with cure time was reported for the unsaturated polyester resin.

Grunden, Bradley Lyn

18

Determination of pKa of felodipine using UV-Visible spectroscopy  

NASA Astrophysics Data System (ADS)

In the present study, for the first time, experimental pKa value of felodipine is reported. Dissociation constant, pKa, is one of the very important physicochemical properties of drugs. It is of paramount significance from the perspective of pharmaceutical analysis and dosage form design. The method used for the pKa determination of felodipine was essentially a UV-Visible spectrophotometric method. The spectrophotometric method for the pKa determination was opted by acknowledging the established fact that spectrophotometric determination of pKa produces most precise values. The pKa of felodipine was found to be 5.07. Furthermore, the ruggedness of the determined value is also validated in this study in order to produce exact pKa of the felodipine.

Pandey, M. M.; Jaipal, A.; Kumar, A.; Malik, R.; Charde, S. Y.

2013-11-01

19

Determination of pK(a) of felodipine using UV-Visible spectroscopy.  

PubMed

In the present study, for the first time, experimental pKa value of felodipine is reported. Dissociation constant, pKa, is one of the very important physicochemical properties of drugs. It is of paramount significance from the perspective of pharmaceutical analysis and dosage form design. The method used for the pKa determination of felodipine was essentially a UV-Visible spectrophotometric method. The spectrophotometric method for the pKa determination was opted by acknowledging the established fact that spectrophotometric determination of pKa produces most precise values. The pKa of felodipine was found to be 5.07. Furthermore, the ruggedness of the determined value is also validated in this study in order to produce exact pKa of the felodipine. PMID:23906645

Pandey, M M; Jaipal, A; Kumar, A; Malik, R; Charde, S Y

2013-11-01

20

Quantitation of cutaneous inflammation induced by reactive species generated by UV-visible irradiation of rose bengal  

SciTech Connect

The present studies were undertaken to quantitate the initial inflammatory response produced by the photo-generated reactive species in rabbit skin. Rose bengal (RB), a photosensitizer dye, was injected into the skin sites at various concentrations and exposed to UV-visible light for 30-120 min. The increase in vascular permeability and the accumulation of PMNs were investigated using 125I-labeled albumin and 51Cr-labeled PMNs. RB at a concentration of 1 nmol with 120-min exposure to light enhanced vascular permeability by 3.7 times and accumulation of PMNs by 3.3 times. As low as 0.01 nmol of RB produced discernible effects. beta-Carotene (0.1 nmole) inhibited the inflammatory response by 75-100%, suggesting that the reactive species involved in this response was predominantly singlet oxygen. The increase in vascular permeability was inhibited by 48-70% by 25 micrograms of chlorpheniramine maleate. It is therefore suggested that histamine plays a major role in the initial vascular response. The studies demonstrate that this rabbit model is suitable for the quantitation of photoinduced inflammatory response which is not observable by gross anatomic procedures.

Ranadive, N.S.; Menon, I.A.; Shirwadkar, S.; Persad, S.D. (Univ. of Toronto, Ontario (Canada))

1989-10-01

21

A kinetic study on the formation of poly(4 aminodiphenylamine)/copper nanocomposite using UV-visible spectroscopy  

NASA Astrophysics Data System (ADS)

The course of the reaction between copper sulfate (CuSO4) and 4-aminodiphenylamine (4ADPA) was monitored by UV-visible spectroscopy in p-toluene sulfonic acid (p-TSA). Formation of poly(4-aminodiphenylamine)/copper nanoparticle composite (P4ADPA/CuNC) was witnessed through the steady increase in absorbance at 410, 580 and >700 nm. The absorbance at 410 nm as well as >700 nm are correlated to the amount of P4ADPA/CuNC formation and was subsequently used to determine the rate of formation of P4ADPA/CuNC (RP4ADPA/CuNC) at any time during the course of the reaction. RP4ADPA/CuNC shows a first-order dependence on [4ADPA] and a half-order dependence on [CuSO4]. A kinetic rate expression was established between RP4ADPA/CuNC and experimental parameters such as [4ADPA] and [CuSO4]. The rate constant for the formation of P4ADPA/CuNC was 8.98 × 10-3 mol-0.5 l0.5 s-1. Field emission scanning electron and transmission electron micrographs revealed that the morphology of the P4ADPA/CuNC was influenced by the reaction conditions.

Starlet Thanjam, I.; Francklin Philips, M.; Manisankar, P.; Lee, Kwang-Pill; Gopalan, A.

2013-12-01

22

Sensitive determination of trace mercury by UV-visible diffuse reflectance spectroscopy after complexation and membrane filtration-enrichment.  

PubMed

A simple, sensitive and selective solid phase reflectometry method is proposed for the determination of trace mercury in aqueous samples. The complexation reagent dithizone was firstly injected into the properly buffered solution with vigorous stirring, which started a simultaneous formation of nanoparticles suspension of dithizone and its complexation reaction with the mercury(II) ions to make Hg-dithizone nanoparticles. After a definite time, the mixture was filtered with membrane, and then quantified directly on the surface of the membrane by using integrating sphere accessory of the UV-visible spectrophotometer. The quantitative analysis was carried out at a wavelength of 485 nm since it yielded the largest difference in diffuse reflectance spectra before and after reaction with mercury(II).A good linear correlation in the range of 0.2-4.0 ?g/L with a squared correlation coefficient (R(2)) of 0.9944 and a detection limit of 0.12 ?g/L were obtained. The accuracy of the method was evaluated by the analysis of spiked mercury(II) concentrations determined using this method along with those determined by the atomic fluorescence mercury vapourmeter and the results obtained were in good agreement. The proposed method was applied to the determination of mercury in tap water and river water samples with the recovery in an acceptable range (95.7-105.3%). PMID:22831998

Yin, Changhai; Iqbal, Jibran; Hu, Huilian; Liu, Bingxiang; Zhang, Lei; Zhu, Bilin; Du, Yiping

2012-09-30

23

Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation.  

PubMed

The laccase-catalysed transformation of indigo carmine (IC) with and without a redox active mediator was studied using online UV-visible spectroscopy. Deconvolution of the mixture spectra obtained during the reaction was performed on a model-free basis using multivariate curve resolution (MCR). Thereby, the time courses of educts, products, and reaction intermediates involved in the transformation were reconstructed without prior mechanistic assumptions. Furthermore, the spectral signature of a reactive intermediate which could not have been detected by a classical hard-modelling approach was extracted from the chemometric analysis. The findings suggest that the combined use of UV-visible spectroscopy and MCR may lead to unexpectedly deep mechanistic evidence otherwise buried in the experimental data. Thus, although rather an unspecific method, UV-visible spectroscopy can prove useful in the monitoring of chemical reactions when combined with MCR. This offers a wide range of chemists a cheap and readily available, highly sensitive tool for chemical reaction online monitoring. PMID:18157664

Kandelbauer, A; Kessler, W; Kessler, R W

2008-03-01

24

Application of multi-way analysis to UV-visible spectroscopy, gas chromatography and electronic nose data for wine ageing evaluation.  

PubMed

In this study, a multi-way method (Tucker3) was applied to evaluate the performance of an electronic nose for following the ageing of red wines. The odour evaluation carried out with the electronic nose was combined with the quantitative analysis of volatile composition performed by GC-MS, and colour characterisation by UV-visible spectroscopy. Thanks to Tucker3, it was possible to understand connections among data obtained from these three different systems and to estimate the effect of different sources of variability on wine evaluation. In particular, the application of Tucker3 supplied a global visualisation of data structure, which was very informative to understand relationships between sensors responses and chemical composition of wines. The results obtained indicate that the analytical methods employed are useful tools to follow the wine ageing process, to differentiate wine samples according to ageing type (either in barrel or in stainless steel tanks with the addition of small oak wood pieces) and to the origin (French or American) of the oak wood. Finally, it was possible to designate the volatile compounds which play a major role in such a characterisation. PMID:22340529

Prieto, N; Rodriguez-Méndez, M L; Leardi, R; Oliveri, P; Hernando-Esquisabel, D; Iñiguez-Crespo, M; de Saja, J A

2012-03-16

25

Photophysics of Genistein isoflavone: Solvent and concentration effects studied by UV-visible spectroscopy and theoretical simulation  

NASA Astrophysics Data System (ADS)

Genistein isoflavone is shown to exist in two different conformations which are the 90° completely twisted geometry and the 50° less twisted one. Specific interactions with the solvent cage as well as self-association processes seem shifting the isoflavone from the perpendicular conformation towards the less twisted one. The theoretical simulation, using analytical atom-atom pair potential, predicts a self-dimer in a slipped non-sandwich, face to river, perpendicular structure. From the UV-visible photophysics investigations it is revealed that monomeric species cannot exist alone even at very low solute concentration (˜10 -6 M), the self-association process occurs already in this concentration range.

Benthami, K.; Lyazidi, S. Ait; Haddad, M.; Choukrad, M.; Bennetau, B.; Shinkaruk, S.

2009-10-01

26

UV-visible and infrared spectroscopy of gamma-irradiated lithium diborate glasses containing SeO 2  

NASA Astrophysics Data System (ADS)

UV-visible spectroscopic studies of a base lithium diborate glass together with samples containing SeO 2 substituting B 2O 3 have been measured before and after successive gamma irradiation. The optical absorption spectra of the base and SeO 2-containing samples show charge transfer UV absorption bands which are related to the unavoidable contamination with trace iron impurities [mainly Fe 3+ ions] within the raw materials used for the preparation of such glasses. The progressive introduction of SeO 2 causes some changes in the intensity of the two UV bands which are identified at 235 and 285 nm instead of the three peaks already observed in the base glass at 235, 275, 310 nm. Gamma irradiation produces induced bands which are assumed to be generated from the intrinsic defects in the lithium diborate base glass together with the sharing of trace iron impurities through suggested photochemical reactions. The UV induced bands are observed to be highly intensified showing continuous growth with progressive irradiation and are identified at about 230, 285 and 310 nm together with a further induced broad visible band centered at about 550 nm. Infrared absorption measurements of the base lithium diborate glass reveal characteristic bands due to stretching and bending vibrations of both BO 3 and BO 4 units together with the far-infrared bands due to the modifier Li + ions. The introduction of SeO 2 causes some changes in the IR spectra due either to the sharing of SeO 3 units and/or the polymerization of the borate network.

ElBatal, F. H.; Marzouk, S. Y.; Ezz-ElDin, F. M.

2011-02-01

27

An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV–visible and NMR spectroscopies  

NASA Astrophysics Data System (ADS)

An experimental and theoretical investigation of cnicin is presented, combining the use of infrared, Raman, NMR and UV–visible spectroscopies with density functional theory (DFT) that employs hybrid B3LYP exchange correlation functional and a 6-31G? basis set. The molecular electrostatic potentials, atomic charges, bond orders, stabilization energies, topological properties and energy gap are presented by performing NBO, AIM and HOMO–LUMO calculations at the same level of theory as cnicin. A complete vibrational compound assignment was performed by employing internal coordinate analysis and a scaled quantum mechanical force field (SQMFF) methodology. Comparisons between the theoretical and experimental vibrational and ultraviolet–visible spectra show a strong concordance. The geometrical parameters and NBO studies suggest a probable negative Cotton effect for cnicin, which can be attributed to the ? ? ?? transition for an ?,?-unsaturated ?-lactone, as reported in the literature.

Chain, Fernando; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César Atilio Nazareno; Fortuna, Mario Antonio; Brandán, Silvia Antonia

2014-05-01

28

Interaction of flavonoids, the naturally occurring antioxidants with different media: A UV–visible spectroscopic study  

Microsoft Academic Search

Quantitative parameters for interaction of flavonoids—the naturally occurring antioxidants, with solvents and surfactants are determined using UV–visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, Kc. Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is

Bushra Naseem; S. W. H. Shah; Aurangzeb Hasan; S. Sakhawat Shah

2010-01-01

29

Analytical Characterization of Fermentation Inhibitors in Biomass Pretreatment Samples Using Liquid Chromatography, UV-Visible Spectroscopy, and Tandem Mass Spectrometry  

Microsoft Academic Search

A variety of chemicals are produced upon pretreatment of lignocellulosic biomass. Aliphatic acids, aromatic acids, aldehydes, and phenolic compounds are of particular interest due to their presumed inhibitory influence on downstream enzymatic or microbial steps in biomass-to-ethanol conversion. Herein, we describe a series of analytical protocols that collectively enable quantitative monitoring of 40 potential fermentation inhibitors in biomass pretreatment samples.

Lekh N. Sharma; Christopher Becker; C. Kevin Chambliss

2009-01-01

30

Analytical Characterization of Fermentation Inhibitors in Biomass Pretreatment Samples Using Liquid Chromatography, UV-Visible Spectroscopy, and Tandem Mass Spectrometry  

NASA Astrophysics Data System (ADS)

A variety of chemicals are produced upon pretreatment of lignocellulosic biomass. Aliphatic acids, aromatic acids, aldehydes, and phenolic compounds are of particular interest due to their presumed inhibitory influence on downstream enzymatic or microbial steps in biomass-to-ethanol conversion. Herein, we describe a series of analytical protocols that collectively enable quantitative monitoring of 40 potential fermentation inhibitors in biomass pretreatment samples. Solid samples are accommodated by first employing pressurized fluid extraction to generate an aqueous “wash stream.” Sample preparation for liquids involves an initial precipitation-filtration step, followed by liquid-liquid extraction and reconstitution of extracts in water. Samples are analyzed using high-performance liquid chromatography (HPLC) in combination with ultraviolet (UV) absorbance and tandem mass spectrometry (MS/MS) detection. A standard addition approach is utilized for quantitation to alleviate complications arising from co-extracted sample matrix.

Sharma, Lekh N.; Becker, Christopher; Chambliss, C. Kevin

31

Analytical characterization of fermentation inhibitors in biomass pretreatment samples using liquid chromatography, UV-visible spectroscopy, and tandem mass spectrometry.  

PubMed

A variety of chemicals are produced upon pretreatment of lignocellulosic biomass. Aliphatic acids, aromatic acids, aldehydes, and phenolic compounds are of particular interest due to their presumed inhibitory influence on downstream enzymatic or microbial steps in biomass-to-ethanol conversion. Herein, we describe a series of analytical protocols that collectively enable quantitative monitoring of 40 potential fermentation inhibitors in biomass pretreatment samples. Solid samples are accommodated by first employing pressurized fluid extraction to generate an aqueous "wash stream." Sample preparation for liquids involves an initial precipitation-filtration step, followed by liquid-liquid extraction and reconstitution of extracts in water. Samples are analyzed using high-performance liquid chromatography (HPLC) in combination with ultraviolet (UV) absorbance and tandem mass spectrometry (MS/MS) detection. A standard addition approach is utilized for quantitation to alleviate complications arising from co-extracted sample matrix. PMID:19768621

Sharma, Lekh N; Becker, Christopher; Chambliss, C Kevin

2009-01-01

32

In-vivo diagnosis of chemically induced melanoma in an animal model using UV-visible and NIR elastic-scattering spectroscopy: preliminary testing  

NASA Astrophysics Data System (ADS)

Elastic light scattering spectroscopy (ESS) has the potential to provide spectra that contain both morphological and chromophore information from tissue. We report on a preliminary study of this technique, with the hope of developing a method for diagnosis of highly-pigmented skin lesions, commonly associated with skin cancer. Four opossums were treated with dimethylbenz(a)anthracene to induce both malignant melanoma and benign pigmented lesions. Skin lesions were examined in vivo using both UV-visible and near infrared ESS, with wavelength ranges of 330 - 900 nm and 900 - 1700 nm, respectively. Both portable systems used identical fiber-optic probe geometry throughout all of the measurements. The core diameters for illuminating and collecting fibers were 400 and 200 micrometers , respectively, with center-to-center separation of 350 micrometers . The probe was placed in optical contact with the tissue under investigation. Biopsies from lesions were analyzed spectral correlation for 11/13 lesions. The NIR-ESS correlated well with 12/13 lesions correctly.

A'Amar, Ousama M.; Ley, Ronald D.; Ripley, Paul M.; Bigio, Irving J.

2001-06-01

33

Quantitative evaluation of the post-Mount Pinatubo NO2 reduction and recovery, based on 10 years of Fourier transform infrared and UV-visible spectroscopic measurements at Jungfraujoch  

NASA Astrophysics Data System (ADS)

The colocation of two technically different instruments for ground-based remote sensing of NO2 total column amounts at the primary Network for the Detection of Stratospheric Change Alpine station of the Jungfraujoch (46.5°N, 8.0°E) has been exploited for mutual validation of the long-term NO2 time series from both instruments and for a quantitative evaluation of the impact of the Mount Pinatubo eruption on the NO2 abundance above this northern midlatitude observatory. The two techniques are high-resolution Fourier transform infrared solar absorption spectrometry and zenith-sky differential optical absorption spectroscopy in the UV visible. The diurnal variation of NO2 has been simulated by a simple photochemical model that allows a comparison between the data from the two techniques. This model is shown to reproduce the observed morning to evening ratios to 2.3%, on average, which is fully adequate for the needs of this study. From the 1985-1996 combined time series of NO2 morning and evening abundances, it has been concluded that the enhanced aerosol load injected into the stratosphere by Mount Pinatubo caused a maximum NO2 reduction above the Jungfraujoch by 45% in early January 1992 that died out quasi-exponentially to zero by the beginning of 1995.

de MazièRe, Martine; van Roozendael, Michel; Hermans, Christian; Simon, Paul C.; Demoulin, Philippe; Roland, Ginette; Zander, Rodolphe

1998-05-01

34

Multiwavelength UV\\/visible spectroscopy for the quantitative investigation of platelet quality  

Microsoft Academic Search

The quality of platelets transfused is vital to the effectiveness of the transfusion. Freshly prepared, discoid platelets are the most effective treatment for preventing spontaneous hemorrhage or for stopping an abnormal bleeding event. Current methodology for the routine testing of platelet quality involves random pH testing of platelet rich plasma and visual inspection of platelet rich plasma for a swirling

Yvette D. Mattley; German F. Leparc; Robert L. Potter; Luis H. Garcia-Rubio

1998-01-01

35

Ionization constants and thermal stabilities of uracil and adenine under hydrothermal conditions as measured by in situ UV-visible spectroscopy  

NASA Astrophysics Data System (ADS)

UV-visible spectra for aqueous uracil and adenine were measured in a high-pressure platinum flow cell with sapphire windows at temperatures up to 250 °C at a constant pressure of 7.2 MPa. Ionization constants were determined from pH-dependent spectra in the buffer solutions NH3/NH4Cl, NaHCO3/Na2CO3, HCOOH/NaHCOO and NaH2PO4/Na2HPO4. Variations in the spectra with pH and temperature at constant flow rate were used to determine the first ionization constant of uracil, K1a (uracil), and the first and second acid ionization constants of adenine, K1a (adenine) and K2a (adenine), at ionic strength I = 0.2 mol kg-1 and temperatures up to 200 °C. Time-dependent spectra, obtained by operating the cell as a stopped flow reactor, were used to examine the rate of thermal decomposition as a function of temperature and pH from 200 to 250 °C. Reaction pathways and rate constants were determined by singular value decomposition methods. Uracil and adenine decomposition occurred by one-step and two-step processes, respectively. The kinetic results in the NaH2PO4/Na2HPO4 buffer solution are in quantitative agreement with the less-extensive pioneering study by White (Nature 310, 430-432 (1984)), but differ from results in buffers that do not contain phosphate, suggesting that phosphate enhances the thermal stability of nucleic acid bases.

Balodis, Erik; Madekufamba, Melerin; Trevani, Liliana N.; Tremaine, Peter R.

2012-09-01

36

Quantitative analysis and evaluation of the solubility of hydrophobic proteins recovered from brain, heart and urine using UV-visible spectrophotometry.  

PubMed

There is a need for a simple method that can directly quantify hydrophobic proteins. UV-visible spectrophotometry was applied in the present study for this purpose. Absorbance at lambda = 280 nm (A280) was detected for both Escherichia coli membrane proteins and bovine serum albumin, whereas absorbance at lambda = 620 nm (A620) was only detected for E. coli membrane proteins. The A620 values of the brain samples were greater than those of heart samples when equal concentrations were used, regardless of the type of solubilizing agent employed. Because hydrophobic proteins tend to form colloidal microparticles in solution, we also applied UV-visible spectrophotometry to evaluate the efficacies of different extraction protocols for solubilizing hydrophobic proteins. For brain protein extraction, the highest A620 was observed in samples recovered using Tris, whereas the lowest was from samples recovered using SDS. Solubilizing brain tissue with 0.25% SDS (above the CMC) gave a lower A620 than extraction with 0.025% SDS (below the CMC). Addition of 0.25% SDS to samples recovered with Triton caused A620 to drop. A620 could also be used to distinguish between the hydrophobic fractions (pellets) of brain and urine proteins and their hydrophilic fractions (supernatants) prefractionated using high-speed centrifugation. Additionally, an A620/A280 ratio exceeding 0.12 appears to denote highly hydrophobic samples. Our data suggest that direct UV-visible spectrophotometry can be used as a simple method to quantify and evaluate the solubilities of hydrophobic proteins. PMID:16402178

Thongboonkerd, Visith; Songtawee, Napat; Kanlaya, Rattiyaporn; Chutipongtanate, Somchai

2006-02-01

37

In-situ spectroelectrochemical evidences for the copolymerization of o-toluidine with diphenylamine-4-sulphonic acid by UV-visible spectroscopy  

NASA Astrophysics Data System (ADS)

In-situ spectroelectrochemical studies on the copolymerization of o-toluidine (OT) with diphenylamine-4-sulfonic acid (DPASA) were carried out on ITO electrode in 0.5 M H 2SO 4 for different feed ratios of OT and DPASA. The early stages of copolymerization of OT with DPASA have been identified through spectroelectrochemical techniques. The results revealed the formation of a head-to-tail dimer type of intermediate at the initial stages of copolymerization. This N-phenyl-paraphenylene diamine (PPD) type of intermediate was assigned to have a peak at 550 nm in UV-visible spectra and confirmed via derivative cyclic voltabsorptogram (DCVA). Constant potential electropolymerization results also supported the formation of intermediate with an absorption maximum at 550 nm.

Wen, Ten-Chin; Sivakumar, C.; Gopalan, A.

2002-01-01

38

Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer.  

PubMed

The sorption of Cr(VI) from aqueous solutions with macroporous resins which contain quarternary amine groups (Lewatit MP 64 and Lewatit MP 500) was studied at varying Cr(VI) concentration, adsorbent dose, pH, contact time and temperature. Batch shaking sorption experiments were carried out to evaluate the performance of Lewatit MP 64 and Lewatit MP 500 anion exchange resins in the removal of Cr(VI) from aqueous solutions. The concentration of Cr(VI) in aqueous solution was determined by UV-visible spectrophotometer. The ion exchange process, which is dependent on pH, showed maximum removal of Cr(VI) in the pH range 3-7 for an initial Cr(VI) concentration of 1x10(-3) M. The optimum pH for Cr(VI) adsorption was found as 5.0 for Lewatit MP 64 and 6.0 for Lewatit MP 500. The maximum Cr(VI) adsorption at pH 5.0 is 0.40 and 0.41 mmol/g resin for Lewatit MP 64 and Lewatit MP 500 anion exchangers, respectively. The maximum chromium sorption occurred at approximately 60 min for Lewatit MP 64 and 75 min for Lewatit MP 500. The suitability of the Freundlich and Langmuir adsorption models was also investigated for each chromium-sorbent system. The uptake of Cr(VI) by the anion exchange resins was reversible and so it has good potential for the removal of Cr(VI) from aqueous solutions. Both ion exchangers had high bonding constants but Lewatit MP 500 showed stronger binding. The rise in the temperature caused a slight decrease in the value of the equilibrium constant (K(c)) for the sorption of Cr(VI) ion. PMID:18692308

Pehlivan, E; Cetin, S

2009-04-15

39

Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV-visible spectroscopy and multivariate classification techniques.  

PubMed

We propose a very simple and fast method for detecting Sudan dyes (I, II, III and IV) in commercial spices, based on characterizing samples through their UV-visible spectra and using multivariate classification techniques to establish classification rules. We applied three classification techniques: K-Nearest Neighbour (KNN), Soft Independent Modelling of Class Analogy (SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA). A total of 27 commercial spice samples (turmeric, curry, hot paprika and mild paprika) were analysed by chromatography (HPLC-DAD) to check that they were free of Sudan dyes. These samples were then spiked with Sudan dyes (I, II, III and IV) up to a concentration of 5 mg L(-1). Our final data set consisted of 135 samples distributed in five classes: samples without Sudan dyes, samples spiked with Sudan I, samples spiked with Sudan II, samples spiked with Sudan III and samples spiked with Sudan IV. Classification results were good and satisfactory using the classification techniques mentioned above: 99.3%, 96.3% and 90.4% of correct classification with PLS-DA, KNN and SIMCA, respectively. It should be pointed out that with SIMCA, there are no real classification errors as no samples were assigned to the wrong class: they were just not assigned to any of the pre-defined classes. PMID:19576460

Di Anibal, Carolina V; Odena, Marta; Ruisánchez, Itziar; Callao, M Pilar

2009-08-15

40

Interaction of flavonoids, the naturally occurring antioxidants with different media: A UV-visible spectroscopic study  

NASA Astrophysics Data System (ADS)

Quantitative parameters for interaction of flavonoids—the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, Kc. Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities.

Naseem, Bushra; Shah, S. W. H.; Hasan, Aurangzeb; Sakhawat Shah, S.

2010-04-01

41

UV-visible absorption cross sections of nitrous acid  

NASA Astrophysics Data System (ADS)

Nitrous acid, HONO, is a source of OH radicals in the polluted atmosphere. Although the atmospheric chemistry of HONO is qualitatively understood, not much quantitative information exists. The magnitude of the OH production by HONO photolysis depends on the spectrum of its absorption cross sections; therefore the knowledge of ?'HONO(?) is essential. The spectrum of the differential cross sections ?'HONO(?) is needed to detect HONO in the atmosphere by differential optical absorption spectroscopy (DOAS). Here we present measurements of the HONO UV-visible absorption cross sections with a spectral resolution better than 0.1 nm and a high signal-to-noise ratio. The maximum value of the absorption cross sections is ?HONO (354 nm) = (5.19±0.26) × 10-19 cm2 and agrees well with literature data. Nevertheless, calculations based on data from this work and on literature data reveal that an uncertainty of ˜15% remains for the HONO photolysis rates. The new ?HONO(?) has been employed in DOAS measurements in Milan, Italy.

Stutz, J.; Kim, E. S.; Platt, U.; Bruno, P.; Perrino, C.; Febo, A.

2000-06-01

42

UV-Visible Spectroscopy of Bacteriorhodopsin Mutants: Substitution of Arg 82, Asp85, Tyr185, and Asp212 Results in Abnormal Light-Dark Adaptation  

Microsoft Academic Search

The light-dark adaptation reactions of a set of bacteriorhodopsin (bR) mutants that affect function and color of the chromophore were examined by using visible absorption spectroscopy. The absorbance spectra of the mutants Arg-82 -> Ala (Gln), Asp-85 -> Ala (Asn, Glu), Tyr-185 -> Phe, and Asp-212 -> Ala (Asn, Glu) were measured at different pH values during and after illumination.

Mireia Dunach; Thomas Marti; H. Gobind Khorana; Kenneth J. Rothschild

1990-01-01

43

First atmospheric profile measurements of UV\\/visible O4 absorption band intensities: Implications for the spectroscopy, and the formation enthalpy of the O2-O2 dimer  

Microsoft Academic Search

The first atmospheric profiles of the ultraviolet\\/visible (UV\\/vis) absorption bands of the collision complex O2-O2, or O4 in brief, are reported. The O4 absorption profiles are inferred from direct Sun spectra observed from the LPMA\\/DOAS (Laboratoire Physique Moléculaire et Application\\/Differential Optical Absorption Spectroscopy) balloon gondola. Seven O4 absorption bands - centered at ?360.7, 380.2, 446.7, 477.1, 532.2, 577.2, and 630.0

K. Pfeilsticker; H. Bösch; C. Camy-Peyret; R. Fitzenberger; H. Harder; H. Osterkamp

2001-01-01

44

UV-visible-DAD and 1H-NMR spectroscopy data fusion for studying the photodegradation process of azo-dyes using MCR-ALS.  

PubMed

The photodegradation process of three azo-dyes - Acid Orange 61, Acid Red 97 and Acid Brown 425 - was monitored simultaneously by ultraviolet-visible spectroscopy with diode array detector (UV-vis-DAD) and (1)H-nuclear magnetic resonance ((1)H-NMR). Multivariate curve resolution-alternating least squares (MCR-ALS) was applied to obtain the concentration and spectral profile of the chemical compounds involved in the process. The analysis of the H-NMR data suggests there are more intermediate compounds than those obtained with the UV-vis-DAD data. The fusion of UV-vis-DAD and the (1)H-NMR signal before the multivariate analysis provides better results than when only one of the two detector signals was used. It was concluded that three degradation products were present in the medium when the three azo-dyes had practically degraded. This study is the first application of UV-vis-DAD and (1)H-NMR spectroscopy data fusion in this field and illustrates its potential as a quick method for evaluating the evolution of the azo-dye photodegradation process. PMID:24209313

Fernández, Cristina; Pilar Callao, M; Larrechi, M Soledad

2013-12-15

45

Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy  

Microsoft Academic Search

The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state\\u000a monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated\\u000a with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools\\u000a for bioprocess monitoring and control. Once implemented

Mafalda C. Sarraguça; Ana Paulo; Madalena M. Alves; Ana M. A. Dias; João A. Lopes; Eugénio C. Ferreira

2009-01-01

46

A screening method based on UV-Visible spectroscopy and multivariate analysis to assess addition of filler juices and water to pomegranate juices.  

PubMed

Consumer demand for pomegranate juice has considerably grown, during the last years, for its potential health benefits. Since it is an expensive functional food, cheaper fruit juices addition (i.e., grape and apple juices) or its simple dilution, or polyphenols subtraction are deceptively used. At present, time-consuming analyses are used to control the quality of this product. Furthermore these analyses are expensive and require well-trained analysts. Thus, the purpose of this study was to propose a high-speed and easy-to-use shortcut. Based on UV-VIS spectroscopy and chemometrics, a screening method is proposed to quickly screening some common fillers of pomegranate juice that could decrease the antiradical scavenging capacity of pure products. The analytical method was applied to laboratory prepared juices, to commercial juices and to representative experimental mixtures at different levels of water and filler juices. The outcomes were evaluated by means of multivariate exploratory analysis. The results indicate that the proposed strategy can be a useful screening tool to assess addition of filler juices and water to pomegranate juices. PMID:23692760

Boggia, Raffaella; Casolino, Maria Chiara; Hysenaj, Vilma; Oliveri, Paolo; Zunin, Paola

2013-10-15

47

Ionization constants of aqueous amino acids at temperatures up to 250°C using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, ?-alanine, and proline  

NASA Astrophysics Data System (ADS)

Ionization constants for several simple amino acids have been measured for the first time under hydrothermal conditions, using visible spectroscopy with a high-temperature, high-pressure flow cell and thermally stable colorimetric pH indicators. This method minimizes amino acid decomposition at high temperatures because the data can be collected rapidly with short equilibration times. The first ionization constant for proline and ?-alanine, K a,COOH, and the first and second ionization constants for glycine, K a,COOH and K a,NH4+, have been determined at temperatures as high as 250°C. Values for the standard partial molar heat capacity of ionization, ? rC po, COOH and ? rC po, NH4+, have been determined from the temperature dependence of ln (K a,COOH) and ln (K a,NH4+). The methodology has been validated by measuring the ionization constant of acetic acid up to 250°C, with results that agree with literature values obtained by potentiometric measurements to within the combined experimental uncertainty. We dedicate this paper to the memory of Dr. Donald Irish (1932-2002) of the University of Waterloo—friend and former supervisor of two of the authors (R.J.B. and P.R.T.).

Clarke, Rodney G. F.; Collins, Christopher M.; Roberts, Jenene C.; Trevani, Liliana N.; Bartholomew, Richard J.; Tremaine, Peter R.

2005-06-01

48

Portable UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers at air-water interfaces.  

NASA Astrophysics Data System (ADS)

An UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers under in situ conditions is described. The spectrometer utilizes a stand-alone multipass sensor, which is placed in a Langmuir trough and coupled with light source and spectrometer head via fiber optics. Implementation of the multipass scheme in the absorbance sensor makes it possible to obtain reliable quantitative spectroscopic data of the Langmuir monolayers with absorbance as low as 1 mOD. Such high sensitivity makes the developed sensor very useful for UV-visible spectral studies of a wide variety of chromophores. The new technique was applied to several model systems: fatty acid monolayers containing amphiphilic dyes DiI or BODIPY and also a monolayer of a synthetic amphiphilic porphyrin-binding peptide BBC16. Implementation of UV-visible absorbance spectroscopy measurements in situ together with x-ray scattering technique was used to confirm the bound state of the chromophore, and determine the exact position of the latter in the peptide matrix. Fiber optics design of the spectrometer provides portability and compatibility with other experimental techniques making it possible to study samples with a geometry unsuitable for conventional spectroscopic measurements and located in experimental environments with spatial limitations, such as synchrotron x-ray scattering stations.

Tronin, Andrey; Strzalka, Joseph; Krishnan, Venkata; Kuzmenko, Ivan; Fry, H. Christopher; Therien, Michael; Blasie, J. Kent

2009-03-01

49

Portable UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers at air-water interfaces.  

PubMed

An UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers under in situ conditions is described. The spectrometer utilizes a stand-alone multipass sensor, which is placed in a Langmuir trough and coupled with light source and spectrometer head via fiber optics. Implementation of the multipass scheme in the absorbance sensor makes it possible to obtain reliable quantitative spectroscopic data of the Langmuir monolayers with absorbance as low as 1 mOD. Such high sensitivity makes the developed sensor very useful for UV-visible spectral studies of a wide variety of chromophores. The new technique was applied to several model systems: fatty acid monolayers containing amphiphilic dyes DiI or BODIPY and also a monolayer of a synthetic amphiphilic porphyrin-binding peptide BBC16. Implementation of UV-visible absorbance spectroscopy measurements in situ together with x-ray scattering technique was used to confirm the bound state of the chromophore, and determine the exact position of the latter in the peptide matrix. Fiber optics design of the spectrometer provides portability and compatibility with other experimental techniques making it possible to study samples with a geometry unsuitable for conventional spectroscopic measurements and located in experimental environments with spatial limitations, such as synchrotron x-ray scattering stations. PMID:19334902

Tronin, Andrey; Strzalka, Joseph; Krishnan, Venkata; Kuzmenko, Ivan; Fry, H Christopher; Therien, Michael; Blasie, J Kent

2009-03-01

50

Spectrophotometer, Scanning UV-Visible (ChemPages Lab)  

NSDL National Science Digital Library

Spectrophotometer, Scanning UV/Visible: this is a resource in the collection "ChemPages Laboratory Resources". A scanning ultraviolet/visible (UV/Vis) spectrophotometer operates on the same principles as a Spectronic 20?. They both can be used for qualitative and quantitative analysis. The ChemPages Laboratory Resources are a set of web pages that include text, images, video, and self check questions. The topics included are those that are commonly encountered in the first-year chemistry laboratory. They have been put together for use as both a pre-laboratory preparation tool and an in-laboratory reference source.

51

Interaction of flavonoids, the naturally occurring antioxidants with different media: a UV-visible spectroscopic study.  

PubMed

Quantitative parameters for interaction of flavonoids-the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, K(c). Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities. PMID:20163982

Naseem, Bushra; Shah, S W H; Hasan, Aurangzeb; Sakhawat Shah, S

2010-04-01

52

UV/Visible Telescope with Hubble Disposal  

NASA Technical Reports Server (NTRS)

Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

Benford, Dominic J.

2013-01-01

53

Quantitative analysis of manganese, chromium and molybdenum by ion-pair reversed-phase high-performance liquid chromatography with pre-column derivatization and UV-visible detection.  

PubMed

An ion-pair reversed-phase high-performance liquid chromatographic method with UV-visible spectrophotometric detection is proposed for the simultaneous determination of manganese, chromium and molybdenum. By using a C18-bonded silica column, 4-(2-pyridylazo)resorcinol (PAR) chelates of Mn(II), Cr(VI) and Mo(VI) were successfully separated and accurately determined at 480 nm. Tetrabutylammonium bromide (TBAB) was used as the ion-pair reagent. Effects of pH, the buffer system, the concentration of buffer, the color developing time, the concentration of chelating reagent and the ion-pair reagent on the resolution were investigated. PAR chelates were eluted within 20 min at a flow-rate of 1.0 ml min(-1) with a methanol aqueous mobile phase, CH3OH-water (20:80, v/v), containing 1.0 x 10(-3) mol l(-1) acetate buffer (pH 6.5), 1.8 x 10(-2) mol l(-1) TBAB and 2.0 x 10(-4) mol l(-1) PAR. The feasibility of the proposed method was verified with the standard reference materials of nickel-based alloys. The nickel-based alloys were analyzed chromatographically after ammonium pretreatment. Under the optimum conditions, the detection limits for the chelates of Mn(II), Cr(VI) and Mo(VI) were 0.31, 4.2 and 4.6 ng with 100 microl injection, respectively. The accuracy of the proposed chromatographic method was verified by good agreement between the values obtained by this method and certified values. PMID:10536856

Sun, H L; Liu, H M; Tsai, S J

1999-10-01

54

Measurements of the rate constant of HOsub2 + NOsub2 + Nsub2 --> HOsub2NOsub2 + Nsub2 using near-infrared wavelength-modulation spectroscopy and UV-visible absorption spectroscopy  

NASA Technical Reports Server (NTRS)

Rate coefficients for the reaction HO(sub 2)+ NO(sub 2) + N(sub 2) --> HO(sub 2)NO(sub 2) + N(sub 2) (reaction 1) were measured using simultaneous near-IR and UV spectroscopy from 220 to 298 K and from 45 to 200 Torr.

Christensen, L. E.; Okumura, M.; Sander, S. P.; Friedl, R. R.; Miller, C. E.; Sloan, J. J.

2004-01-01

55

Quantitative Spectroscopy and Atmospheric Measurements  

Microsoft Academic Search

Optical measurements of atmospheric minor constituents are performed using spectrometers working in the UV-visible, infrared\\u000a and microwave spectral ranges. In particular recently the satellite ENVISAT has been launched with three spectrometers on\\u000a board, SCIAMACHY and GOMOS working in the UV-visible spectral region and MIPAS working in the thermal infrared. The analysis\\u000a and interpretation of the atmospheric spectra require good knowledge

J.-M. FLAUD; A. Perrin; B. Picquet-Varrault; A. Gratien; J. Orphal; J. Doussin

56

The retrieval of profile and chemical information from ground-based UV-visible spectroscopic measurements  

Microsoft Academic Search

An algorithm has been developed to retrieve altitude information at different diurnal stages for trace gas species by combining direct-sun and zenith-sky UV-visible differential slant column density (DSCD) measurements. DSCDs are derived here using differential optical absorption spectroscopy. Combining the complementary zenith-sky measurements (sensitive to the stratosphere) with direct-sun measurements (sensitive to the troposphere) allows this vertical distinction. Trace gas

R. Schofield; B. J. Connor; K. Kreher; P. V. Johnston; C. D. Rodgers

2004-01-01

57

Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor  

NASA Technical Reports Server (NTRS)

Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

Kurtz, Joe; Huffman, Donald R.

1989-01-01

58

In situ UV-visible spectroelectrochemical studies on the copolymerization of diphenylamine with ortho-methoxy aniline  

NASA Astrophysics Data System (ADS)

UV-visible spectroelectrochemical studies on copolymerization of diphenylamine (DPA) with ortho-methoxy aniline (OMA) were carried out for different feed ratios of DPA and OMA using indium tin oxide (ITO)-coated glass as working electrode. The UV-visible spectra show clear dependencies on the molar feed composition of DPA or OMA used in electropolymerization. Derivative cyclic voltabsorptogram (DCVA) was deduced at the wavelengths corresponding to the absorption by the intermediate species and used to confirm the intermediates generated during the electropolymerization. The composition of DPA and OMA in the copolymer for the copolymers synthesized with different molar feed ratios of DPA and OMA was determined by UV-visible spectroscopy. Reactivity ratios of DPA and OMA were deduced by using Fineman-Ross and Kelen-Tudos methods and correlated with spectroelectrochemical results.

Santhosh, P.; Gopalan, A.; Vasudevan, T.

2003-05-01

59

UV/visible camera for the Clementine mission.  

National Technical Information Service (NTIS)

This article describes the Clementine UV/Visible (UV/Vis) multispectral camera, discusses design goals and preliminary estimates of on-orbit performance, and summarizes lessons learned in building and using the sensor. While the primary objective of the C...

J. F. Kordas I. T. Lewis R. E. Priest

1995-01-01

60

Portable UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers at air-water interfaces  

Microsoft Academic Search

An UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers under in situ conditions is described. The spectrometer utilizes a stand-alone multipass sensor, which is placed in a Langmuir trough and coupled with light source and spectrometer head via fiber optics. Implementation of the multipass scheme in the absorbance sensor makes it possible to obtain reliable quantitative spectroscopic data

Andrey Tronin; Joseph Strzalka; Venkata Krishnan; Ivan Kuzmenko; H. Christopher Fry; Michael Therien; J. Kent Blasie

2009-01-01

61

Quantitative spectroscopy of Deneb  

NASA Astrophysics Data System (ADS)

Context: Quantitative spectroscopy of luminous BA-type supergiants offers a high potential for modern astrophysics. Detailed studies allow the evolution of massive stars, galactochemical evolution, and the cosmic distance scale to be constrained observationally. Aims: A detailed and comprehensive understanding of the atmospheres of BA-type supergiants is required in order to use this potential properly. The degree to which we can rely on quantitative studies of this class of stars as a whole depends on the quality of the analyses for benchmark objects. We constrain the basic atmospheric parameters and fundamental stellar parameters, as well as chemical abundances of the prototype A-type supergiant Deneb to unprecedented accuracy by applying a sophisticated analysis methodology, which has recently been developed and tested. Methods: The analysis is based on high-S/N and high-resolution spectra in the visual and near-IR. Stellar parameters and abundances for numerous astrophysically interesting elements are derived from synthesis of the photospheric spectrum using a hybrid non-LTE technique, i.e. line-blanketed LTE model atmospheres and non-LTE line formation. Multiple metal ionisation equilibria and numerous hydrogen lines from the Balmer, Paschen, Brackett, and Pfund series are utilised simultaneously for the stellar parameter determination. The stellar wind properties are derived from H? line-profile fitting using line-blanketed hydrodynamic non-LTE models. Further constraints come from matching the photospheric spectral energy distribution from the UV to the near-IR L band. Results: The atmospheric parameters of Deneb are tightly constrained: effective temperature T_eff = 8525±75 K, surface gravity log g = 1.10±0.05, microturbulence ? = 8±1 km s-1, macroturbulence, and projected rotational velocity v sin i are both 20 ± 2 km s-1. The abundance analysis gives helium enrichment by 0.10 dex relative to solar and an N/C ratio of 4.44 ± 0.84 (mass fraction), implying strong mixing with CN-processed matter. The heavier elements are consistently underabundant by 0.20 dex compared to solar. Peculiar abundance patterns, which were suggested in previous analyses cannot be confirmed. Accounting for non-LTE effects is essential for removing systematic trends in the abundance determination, for minimising statistical 1?-uncertainties to ?10-20% and for establishing all ionisation equilibria at the same time. Conclusions: A luminosity of (1.96 ± 0.32)×105 L?, a radius of 203 ± 17 R_?, and a current mass of 19 ± 4 M? are derived. Comparison with stellar evolution predictions suggests that Deneb started as a fast-rotating late O-type star with M^ZAMS? 23 M_? on the main sequence and is currently evolving to the red supergiant stage. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofisica de Andalucia (CSIC). Appendix A is only available in electronic form at http://www.aanda.org

Schiller, F.; Przybilla, N.

2008-03-01

62

Quantitative analysis of palm carotene using fourier transform infrared and near infrared spectroscopy  

Microsoft Academic Search

?-Carotene content is usually determined by using ultraviolet (UV)-visible spectrophotometry at 446 nm. In this study, two\\u000a spectroscopic techniques, namely, Fourier transform infrared (FTIR) and near infrared (NIR) spectroscopy, have been investigated\\u000a and compared to UV-visible spectrophotometry to measure the ?-carotene content of crude palm oil (CPO). Calibration curves\\u000a ranging from 200 to 800 ppm were prepared by extracting ?-carotene

M. H. Moh; Y. B. Che Man; B. S. Badlishah; S. Jinap; M. S. Saad; W. J. W. Abdullah

1999-01-01

63

Development and Quantification of UV-Visible and Laser Spectroscopic Techniques for Materials Accountability and Process Control  

SciTech Connect

Ultraviolet-Visible Spectroscopy (UV-Visible) and Time Resolved Laser Fluorescence Spectroscopy (TRLFS) optical techniques can permit on-line, real-time analysis of the actinide elements in a solvent extraction process. UV-Visible and TRLFS techniques have been used for measuring the speciation and concentration of the actinides under laboratory conditions. These methods are easily adaptable to multiple sampling geometries, such as dip probes, fiber-optic sample cells, and flow-through cell geometries. To fully exploit these techniques for GNEP applications, the fundamental speciation of the target actinides and the resulting influence on 3 spectroscopic properties must be determined. Through this effort detection limits, process conditions, and speciation of key actinide components can be establish and utilized in a range of areas of interest to GNEP, especially in areas related to materials accountability and process control.

Ken Czerwinski; Phil Weck; Frederic Poineau

2010-12-29

64

A Quantitative Infrared Spectroscopy Experiment.  

ERIC Educational Resources Information Center

Although infrared spectroscopy is used primarily for qualitative identifications, it is possible to use it as a quantitative tool as well. The use of a standard curve to determine percent methanol in a 2,2,2-trifluoroethanol sample is described. Background information, experimental procedures, and results obtained are provided. (JN)

Krahling, Mark D.; Eliason, Robert

1985-01-01

65

UV/visible camera for the Clementine mission  

SciTech Connect

This article describes the Clementine UV/Visible (UV/Vis) multispectral camera, discusses design goals and preliminary estimates of on-orbit performance, and summarizes lessons learned in building and using the sensor. While the primary objective of the Clementine Program was to qualify a suite of 6 light-weight, low power imagers for future Department of Defense flights, the mission also has provided the first systematic mapping of the complete lunar surface in the visible and near-infrared spectral regions. The 410 g, 4.65 W UV/Vis camera uses a 384 x 288 frame-transfer silicon CCD FPA and operates at 6 user-selectable wavelength bands between 0.4 and 1.1 {micro}m. It has yielded lunar imagery and mineralogy data with up to 120 in spatial resolution (band dependent) at 400 km periselene along a 39 km cross-track swath.

Kordas, J.F.; Lewis, I.T.; Priest, R.E. [and others

1995-04-01

66

Cloud identification in the Canadian High Arctic using the UV-visible colour index  

NASA Astrophysics Data System (ADS)

In UV-visible spectroscopy, Rayleigh and Mie scattering contribute to the broadband extinction seen in spectra of scattered sunlight. The relative intensity of these two components of scattering is highly dependent on the cloud condition of the sky. The colour index, defined as the ratio of light intensities at different wavelengths, typically 350 nm and 550 nm, provides a means of determining the cloud conditions. A UV-visible triple-grating spectrometer, the UT-GBS (University of Toronto Ground-Based Spectrometer), was installed at the Polar Environment Atmospheric Research Laboratory (PEARL), at Eureka in the Canadian High Arctic (86.4°W, 80.1°N) in 1999. Since then, the instrument has made daily measurements during spring from 1999-2009, and year-round, with the exception of polar night, from 2010-2013. The UT-GBS measures vertical column densities of ozone, NO2, and BrO, as well as slant column densities of enhanced OClO, by using the Differential Optical Absorption Spectroscopy (DOAS) technique. We use the colour index data from the UT-GBS to distinguish polar stratospheric clouds and tropospheric clouds. The UV-visible measurements are supplemented by vertically resolved lidar and radar cloud data products. The CANDAC (Canadian Network for the Detection of Atmospheric Change) Rayleigh-Mie-Raman Lidar (CRL) and the Millimetre Cloud Radar (MMCR) are located at the Zero Altitude PEARL Auxiliary Laboratory (0PAL), which is about 15 km away from PEARL. The CRL uses ultra-short pulses of light from two lasers, operating at ultraviolet (355 nm) and visible (532 nm) wavelengths. The CRL measures the vertical distribution of aerosols, temperature, and water vapour in the troposphere and lower stratosphere. The zenith-pointing MMCR measures equivalent radar reflectivity, Doppler velocity, spectral width, and Doppler spectra, from which information about cloud heights, thicknesses, internal structure and vertical motions can be determined. Polar stratospheric cloud (PSC) events have been observed during spring by the UT-GBS and the CRL; these will be discussed in the context of the location of the polar vortex relative to Eureka, stratospheric temperatures, and stratospheric ozone loss events. In addition to detecting PSCs, the colour index can be used for the detection of tropospheric clouds. The UT-GBS cloud index results are in good agreement with data from the MMCR. Thus the cloud index can be useful for assessing the quality of DOAS retrievals, which can be greatly affected by tropospheric clouds.

Zhao, Xiaoyi; Adams, Cristen; Strong, Kimberly; Duck, Thomas; Perro, Chris; Hudak, David; Rodriguez, Peter

2014-05-01

67

Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline  

PubMed Central

Measurement of the UV–visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV–visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury–xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280?nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400?nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

Shimizu, Nobutaka; Shimizu, Tetsuya; Baba, Seiki; Hasegawa, Kazuya; Yamamoto, Masaki; Kumasaka, Takashi

2013-01-01

68

Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.  

PubMed

Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography. PMID:24121346

Shimizu, Nobutaka; Shimizu, Tetsuya; Baba, Seiki; Hasegawa, Kazuya; Yamamoto, Masaki; Kumasaka, Takashi

2013-11-01

69

Combined micro-Raman/UV-visible/fluorescence spectrometer for high-throughput analysis of microsamples.  

PubMed

Combined micro-Raman/UV-visible (vis)/fluorescence spectroscopy system, which can evaluate an integrated array of more than 10,000 microsamples with a minimuma size of 5 microm within a few hours, has been developed for the first time. The array of microsamples is positioned on a computer-controlled XY translation microstage with a spatial resolution of 1 mum so that the spectra can be mapped with micron precision. Micro-Raman spectrometers have a high spectral resolution of about 2 cm(-1) over the wave number range of 150-3900 cm(-1), while UV-vis and fluorescence spectrometers have high spectral resolutions of 0.4 and 0.1 nm over the wavelength range of 190-900 nm, respectively. In particular, the signal-to-noise ratio of the micro-Raman spectroscopy has been improved by using a holographic Raman grating and a liquid-nitrogen-cooled charge-coupled device detector. The performance of the combined spectroscopy system has been demonstrated by the high-throughput screening of a combinatorial ferroelectric (i.e., BaTi(x)Zr(1-x)O(3)) library. This system makes possible the structure analysis of various materials including ferroelectrics, catalysts, phosphors, polymers, alloys, and so on for the development of novel materials and the ultrasensitive detection of trace amounts of pharmaceuticals and diagnostic agents. PMID:17672736

Noh, Jermim; Suh, Yung Doug; Park, Yong Ki; Jin, Seung Min; Kim, Soo Ho; Woo, Seong Ihl

2007-07-01

70

Monitoring of Laser Material Welding Process Using UV-Visible Spectrometer  

SciTech Connect

UV-Visible spectrometer is used to record emission from magnesium and titanium metal plates during laser welding processing. Geometrically corrected Czerny-Turner configurations nearly eliminate defocusing problem. The Optikwerks software is used to find the optimum Czerny-Turner configuration and to choose optical elements such as grating types, mirrors focal length and diameter, and slit width. The design parameters of the uv-visible spectrometer in the wavelength range 200-1100 nm for monitoring laser material welding processing.

Genc, B.; Kacar, E.; Akman, E.; Demir, A. [University of Kocaeli, Laser Technologies Research and Application Center, Kocaeli (Turkey)

2007-04-23

71

Monitoring of slaughterhouse wastewater biodegradation in a SBR using fluorescence and UV-Visible absorbance.  

PubMed

The aim of this study was to demonstrate that the effectiveness of slaughterhouse wastewater treatment by activated sludge could be enhanced through the use of optical techniques, such as UV-Visible absorbance and fluorescence spectroscopy, to estimate the hydraulic retention time necessary to remove the biodegradable chemical oxygen demand (COD). Two experiments were conducted. First, a batch aerobic degradation was performed on four wastewater samples collected from four different cattle processing sites in order to study the changes in the spectroscopic properties of wastewater during biodegradation. Second, a sequencing batch reactor was used in order to confirm that the wastewater fluorescence could be successfully used to monitor wastewater biodegradation in a pilot-scale experiment. Residual blood was the main source of organic matter in the wastewater samples. The absorbance at 416 nm, related to porphyrins, was correlated to the COD during wastewater biodegradation. The tryptophan-like/fulvic-like fluorescence intensity ratio was related to the extent of biodegradation. The COD removal efficiency ranged from 74% to 94% with an hydraulic retention time (HRT) of 23 h. A ratio of tryptophan-like/fulvic-like fluorescence intensities higher than 1.2 indicated incomplete biodegradation of the wastewater and the need to increase the HRT. PMID:23402921

Louvet, J N; Homeky, B; Casellas, M; Pons, M N; Dagot, C

2013-04-01

72

UV-Visible Spectroscopic Measurement of Solubilities in Supercritical CO(2) Using High-Pressure Fiber-Optic Cells.  

PubMed

The design and construction of a microscale, fiber-optics-based system for the measurement of solubilities in supercritical CO(2) by UV-visible spectroscopy is described. This system consists of three high-pressure fiber-optic cells, with path lengths ranging from 38 ?m to 1 cm, constructed from standard (1)/(16)-in. stainless steel fittings and silica fibers. It is capable of withstanding pressures in excess of 300 atm, and spectra over the entire UV-visible range (200-900 nm) can be obtained. Use of three cells with different path lengths enables compounds of high or low solubility to be measured over a concentration range of several orders of magnitude. The solubility of a uranium complex, UO(2)(tta)(2)·TBP, in supercritical CO(2) at 40 °C and over the pressure range 100-325 atm was determined, and it was found to be possible to attain solubilities in excess of 10(-)(2) M for metal species in unmodified supercritical CO(2). Also, the small volume of this system allows solubilities to be measured with relatively small amounts of compounds. PMID:21644648

Carrott, M J; Wai, C M

1998-06-01

73

QUANTITATIVE 15N NMR SPECTROSCOPY  

EPA Science Inventory

Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

74

Substituent effects on the electronic structure of metalloporphyrins: a quantitative analysis of terms of four-orbital-model parameters  

Microsoft Academic Search

The effects of substituents at the periphery of the porphyrin ring on its * absorption spectrum are determined in a quantitative fashion by using a new approach based on the four-orbital model. To accomplish this systematic investigation with UV-visible absorption spectroscopy the Mg (Sn), Zn, Cu, Ni, and Pt series of metals incorporated into porphyrins with different substituents at the

J. A. Shelnutt; V. Ortiz

1985-01-01

75

The Next Generation UV-Visible-IR Space Telescope  

NASA Astrophysics Data System (ADS)

A large 10-16 m passively-cooled, diffraction-limited, filled-aperture space telescope would have unprecedented power for tackling a wide range of the most fundamental astrophysical problems, from the detection of earth-like planets to the structure of galaxies and protogalaxies at redshifts z > 1. The telescope would have a lightweight, segmented primary with active wavefront sensing and control for diffraction-limited performance into the UV. The structure and optics would be passively-cooled to 100 K, lowering the background in the 3-4 micron zodiacal "window" to less than 10-6 of that from the ground. State-of-the-art mosaics of detectors would give diffraction-limited imaging and spectroscopy over a field of > 2 arcmin from 0.3 microns to beyond 10 microns, and nearly 1 arcmin in the UV. The observatory would combine remarkable imaging performance, with resolutions ranging from a few mas in the UV to some 40-60 mas in the zodiacal "window" at 3 microns, and with even greater capability for spectrographic observations of faint and/or low surface brightness objects at the highest spatial resolution. The rationale for such an observatory is discussed in the light of HST and the other Great Observatories, and of expected gains in ground-based telescopes and computing capability. The importance of moving into concept development, and to technology development and evaluation programs, is highlighted within the context of the very long lead times for such missions to come to fruition. The importance of the new optics and structures technologies in breaking away from our current cost curve for large missions, and the potential gains from an enhanced national commitment to space are noted.

Illingworth, Garth D.

1990-01-01

76

A UV-visible spectroelectrochemical study of the electropolymerisation of N -benzylaniline  

Microsoft Academic Search

The electropolymerisation of N-benzylaniline (NBA) at transparent ITO glass electrodes was investigated with in?situ UV-visible spectroelectrochemistry.\\u000a An intermediate was found to be generated during electrolysis as the precursor of poly(N-benzylaniline) (PNBA). The intermediate, which shows an absorbance band at ??=?460?nm, is able to react spontaneously with\\u000a NBA, forming a polymeric end product, which is deposited on the electrode surface. UV-Vis

Albertas Malinauskas; Rudolf Holze

1999-01-01

77

Intercalation and groove binding of an acridine spermine conjugate on DNA sequences: an FT Raman and UV visible absorption study  

NASA Astrophysics Data System (ADS)

Acridine and acridine derivatives are known as powerful DNA intercalators. Interactions of the acridine-spermine conjugate N1-(Acridin-9-yl)-1,5,9,14,18-pentaazaoctadecane on two 16-mer oligonucleotides containing either alternating guanine-cytosine or adenine-thymine sequences were studied by optical spectroscopies. UV-visible absorption spectra of oligonucleotide/conjugate solutions at different molar ratios were recorded. The conjugate bands in the 350-500 nm region showed strong hypochromism and slight red shift in the presence of the oligonucleotides, thus indicating that the acridine moieties intercalate into adjacent base pairs of the oligonucleotides. These effects stopped near the 1:1 molar ratio, indicating that each oligonucleotide chain can only host one conjugate molecule. Raman spectra of solutions 60 mM (in phosphate) of the oligonucleotides and 3 mM of the conjugate were also recorded. Upon intercalation, the spectra showed relevant wavenumber shifts for skeletal and base vibrations, which have been largely attributed to the interactions of the positively charged side chain groups with the reactive sites of the base residues. Raman data suggested the existence of sequence selectivity induced by the spermine tail. Intercalation together to spermine interaction by the major groove was favoured for the guanine-cytosine sequence, while no groove preference was achieved for the adenine-thymine sequence.

Pérez-Flores, L.; Ruiz-Chica, A. J.; Delcros, J. G.; Sánchez-Jiménez, F.; Ramírez, F. J.

2005-06-01

78

The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: Results of UV-Visible spectroscopic experiments  

NASA Astrophysics Data System (ADS)

Knowledge of the thermodynamic properties of aqueous nickel chloride complexes is important for understanding and quantitatively evaluating nickel transport in hydrothermal systems. In this paper, UV-Visible spectroscopic measurements are reported for dissolved nickel in perchlorate, triflic acid and sodium chloride solutions at temperatures up to 250 °C and 100 bar. The observed molar absorbance of Ni2+ in both perchlorate and triflic acid solutions is similar, and the absorbance peak migrates toward lower energy (red-shift) with increasing temperature. The spectra of nickel chloride solutions show a systematic red-shift with increasing temperature and/or chloride concentration. This allowed identification of the nickel chloride species as NiCl+, NiCl2(aq) and NiCl3-, and determination of their formation constants. Based on the experimental data reported in this paper and those of previous experimental studies, formation constants for these nickel chloride complexes have been calculated for temperatures up to 700 °C and pressures up to 2000 bar. The solubility of millerite (NiS) and pentlandite (Ni4.5Fe4.5S8) calculated using these constants shows that nickel dissolves in significantly higher concentrations in hydrothermal solutions than previously estimated. However, the solubility is considerably lower than for corresponding cobalt sulphide minerals. This may explain why hydrothermal nickel deposits are encountered so much less frequently than hydrothermal deposits of cobalt.

Liu, Weihua; Migdisov, Artas; Williams-Jones, Anthony

2012-10-01

79

Aprotic solvents effect on the UV-visible absorption spectra of bixin.  

PubMed

We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on ?max according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0?S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. PMID:24840486

Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

2014-10-15

80

Remote measurements of vertical profiles of atmospheric constituents with a UV-visible ranging spectrometer  

NASA Astrophysics Data System (ADS)

A study of the feasibility of retrieving vertical profiles of atmospheric constituents with a new UV-visible ranging spectrometer recently described by R. L. Jones [Optical Methods in Atmospheric Chemistry, U. Platt and H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1715, 393 (1992)] is presented. This instrument resembles a lidar, in that pulses of UV-visible radiation are transmitted vertically upward and backscattered to receiving optics. However, the pulse is a broadband source, and the receiving optics includes a two-dimensional CCD array that allows a series of absorption spectra to be recorded, each corresponding to a different altitude. This allows the simultaneous measurement of the vertical profiles of such atmospheric constituents as O3, H2O, and NO2 in the troposphere and lower stratosphere. Formal retrieval theory has been used to model the retrieval of vertical profiles with this instrument, demonstrating that it should be possible to obtain profiles at accuracies better than 30% and resolution better

Strong, K.; Jones, R. L.

1995-09-01

81

Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.  

PubMed

The UV-Visible and Surface Enhanced Raman Spectroscopy (SERS) behavior of silver sol (a typical SERS agent) were studied in the presence of different bifunctional thiols such as p-aminothiophenol, p-mercaptobenzoic acid, p-nitrothiophenol, p-aminothiophenol hydrochloride, and 2-mercaptoethylamine hydrochloride in diluted aqueous solution. Our results confirm that the p-aminothiophenol induced aggregation of citrate stabilized silver colloid originates from its electrostatic nature, as well as the azo-bridge formation cannot be the reason of the observed time dependent UV-Visible spectra. Based on our parallel SERS and electrospray ionization mass spectrometry measurements, we have concluded that certain amount of oxidized form of the probe molecule has to be present for the so-called b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Our findings seem to support the idea that the azo-bridge formation is responsible for the b2-mode enhancement in the SERS spectrum of p-aminothiophenol. PMID:24034220

Firkala, Tamás; Tálas, Emília; Mihály, Judith; Imre, Tímea; Kristyán, Sándor

2013-11-15

82

Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy  

ERIC Educational Resources Information Center

Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

Smith, Rachel; Cantrell, Kevin

2007-01-01

83

IR-induced UV-visible fluorescence in matrix-isolated CO  

NASA Astrophysics Data System (ADS)

UV-visible fluorescence from solid argon containing 1% of 13C 18O is observed upon irradiation by a color-center laser whose frequency is coincident with the first overtone absorption band of CO. This emission consists of an intense complex system between 650 and 800 nm and a weaker single progression extending from 320 to 640 nm. Both systems are assigned to electronic transitions of molecular oxygen. Infrared emission spectra indicate that high-lying vibrational levels of CO (up to ? = 30) are populated by anharmonic V-V pumping. Subsequent emission from C 3? lozf and b 1? g+ states of O 2 suggests that vibrational-to-electronic energy transfer occurs. Vibrationally unrelaxed emission from the singlet state of oxygen indicates that the vibrational relaxation of O 2(b 1? g+) in Ar is slow.

Galaup, J. P.; Harbec, J. Y.; Charneau, R.; Dubost, H.

1985-10-01

84

1H NMR and UV-visible data fusion for determining Sudan dyes in culinary spices.  

PubMed

Two data fusion strategies (variable and decision level) combined with a multivariate classification approach (Partial Least Squares-Discriminant Analysis, PLS-DA) have been applied to get benefits from the synergistic effect of the information obtained from two spectroscopic techniques: UV-visible and (1)H NMR. Variable level data fusion consists of merging the spectra obtained from each spectroscopic technique in what is called "meta-spectrum" and then applying the classification technique. Decision level data fusion combines the results of individually applying the classification technique in each spectroscopic technique. Among the possible ways of combinations, we have used the fuzzy aggregation connective operators. This procedure has been applied to determine banned dyes (Sudan III and IV) in culinary spices. The results show that data fusion is an effective strategy since the classification results are better than the individual ones: between 80 and 100% for the individual techniques and between 97 and 100% with the two fusion strategies. PMID:21482289

Di Anibal, Carolina V; Callao, M Pilar; Ruisánchez, Itziar

2011-05-15

85

Temperature-controlled release of catechol dye in thermosensitive phenylboronate-containing copolymers: A quantitative study  

Microsoft Academic Search

The reversible complex formation between two phenylboronic acid bearing copolymers and the catechol dye Alizarin Red S (ARS) was studied by dialysis experiments coupled with UV–visible spectroscopy. The first copolymer based on N-isopropylacrylamide (NIPAM) is thermosensitive, whereas the second one based on N,N-dimethylacrylamide (DMAM) is not. The investigation resulted in the quantitative determination of the host–guest binding constants at two

Gaëlle Carré de Lusançay; Sophie Norvez; Ilias Iliopoulos

2010-01-01

86

Spectroscopic identification and quantitative analysis of binary mixtures using artificial neural networks.  

PubMed

This work deals with the application of artificial neural networks to two common problems in spectroscopy: the identification of distorted UV-visible spectra of a specific class of organic compounds, and the quantitative determination of single components in binary mixtures of these compounds. The examined species were six organic indicators, whose spectra are very similar to each other; the trained networks have proven to be very powerful in both applications. PMID:18966932

Ganadu, M L; Lubinu, G; Tilocca, A; Amendolia, S R

1997-10-01

87

INTERACTIONS OF METHYL ORANGE WITH CYCLODEXTRIN/SODIUM-MONTMORILLONITE SYSTEMS PROBED BY UV-VISIBLE SPECTROSCOPY  

EPA Science Inventory

Clay mineral colloids play important roles in the adsorption of polar organic contaminants in the environment. Similarly, cyclodextrins (CD) can entrap poorly water-soluble organic compounds. A combination of CDs and clay minerals affords great opportunities to investigate simult...

88

Spectroscopy of Fullerenes, Fulleranes and PAHs in the UV, Visible and Near Infrared Spectral Range  

NASA Astrophysics Data System (ADS)

The spectra of fullerenes C60 and C70, higher fullerenes C76, C78 and C84 and hydrogenated fullerenes (fulleranes) were studied in laboratory in the UV and in the visible spectral range and could be used for searching and recognizing these molecules in space. Furthermore, the radical cation spectra of all the mentioned fullerene series and also of a series of large and very large polycyclic aromatic hydrocarbons (PAHs) were generated in the laboratory and studied in the near infrared spectral range.

Cataldo, F.; García-Hernández, D. A.; Manchado, A.; Iglesias-Groth, S.

2014-02-01

89

Surveying an Activated Sludge Reactor using Online UV-Visible and NIR Spectroscopy and Chemometrics  

Microsoft Academic Search

The performance of activated sludge reactors can be enhanced by the ability to monitor the status of the process without the need for chemicals addition or complex calibration procedures. Nowadays automation is still limited by poor sensor performance and high maintenance costs. Spectroscopic methods associated with chemometrics are being presented as a powerful tool for process monitoring and control. Once

A. Paulo; A. M. A. Dias; M. C. Sarraguça; J. A. Lopes; M. M. Alves; E. C. Ferreira

90

Quantitative atomic spectroscopy for primary thermometry  

SciTech Connect

Quantitative spectroscopy has been used to measure accurately the Doppler broadening of atomic transitions in {sup 85}Rb vapor. By using a conventional platinum resistance thermometer and the Doppler thermometry technique, we were able to determine k{sub B} with a relative uncertainty of 4.1x10{sup -4} and with a deviation of 2.7x10{sup -4} from the expected value. Our experiment, using an effusive vapor, departs significantly from other Doppler-broadened thermometry (DBT) techniques, which rely on weakly absorbing molecules in a diffusive regime. In these circumstances, very different systematic effects such as magnetic sensitivity and optical pumping are dominant. Using the model developed recently by Stace and Luiten, we estimate the perturbation due to optical pumping of the measured k{sub B} value was less than 4x10{sup -6}. The effects of optical pumping on atomic and molecular DBT experiments is mapped over a wide range of beam size and saturation intensity, indicating possible avenues for improvement. We also compare the line-broadening mechanisms, windows of operation and detection limits of some recent DBT experiments.

Truong, Gar-Wing; Luiten, Andre N. [Frequency Standards and Metrology Research Group, School of Physics, University of Western Australia, Perth, Western Australia 6009 (Australia); May, Eric F. [Centre for Energy, School of Mechanical and Chemical Engineering, University of Western Australia, Perth, Western Australia 6009 (Australia); Stace, Thomas M. [School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072 (Australia)

2011-03-15

91

UV—visible spectral characterization and density functional theory simulation analysis on laser-induced crystallization of amorphous silicon thin films  

NASA Astrophysics Data System (ADS)

The effect of laser energy density on the crystallization of hydrogenated intrinsic amorphous silicon (a-Si:H) thin films was studied both theoretically and experimentally. The thin films were irritated by a frequency-doubled (? = 532 nm) Nd:YAG pulsed nanosecond laser. An effective density functional theory model was built to reveal the variation of bandgap energy influenced by thermal stress after laser irradiation. Experimental results establish correlation between the thermal stress and the shift of transverse optical peak in Raman spectroscopy and suggest that the relatively greater shift of the transverse optical (TO) peak can produce higher stress. The highest crystalline fraction (84.5%) is obtained in the optimized laser energy density (1000 mJ/cm2) with a considerable stress release. The absorption edge energy measured by the UV-visible spectra is in fairly good agreement with the bandgap energy in the density functional theory (DFT) simulation.

Huang, Lu; Jin, Jing; Shi, Wei-Min; Yuan, Zhi-Jun; Yang, Wei-Guang; Cao, Ze-Chun; Wang, Lin-Jun; Zhou, Jun; Lou, Qi-Hong

2014-03-01

92

Absorption spectroscopy.  

PubMed

Absorption spectroscopy is one of the most widely used techniques employed for determining the concentrations of absorbing species (chromophores) in solutions. It is a nondestructive technique which biologists and biochemists and now systems biologists use to quantify the cellular components and characteristic parameters of functional molecules. This quantification is most relevant in the context of systems biology. For creating a quantitative depiction of a metabolic pathway, a number of parameters and variables are important and these need to be determined experimentally. This chapter describes the UV-visible absorption spectroscopy used to produce experimental data for bottom-up modeling approaches of systems biology which uses concentrations and kinetic parameters (K(m) and V(max)) of enzymes of metabolic/signaling pathways, intracellular concentrations of metabolites and fluxes. It also briefly describes the application of this technique for quantification of biomolecules and investigating biomolecular interactions. PMID:21943892

Nilapwar, Sanjay M; Nardelli, Maria; Westerhoff, Hans V; Verma, Malkhey

2011-01-01

93

Stratospheric and lower mesospheric structure sounding using UV-visible band spectral imagery  

NASA Astrophysics Data System (ADS)

Atmospheric mesoscale (100's of meters to a few kilometers) temperature structure and the structure associated with thin cirrus and aerosol layers in the upper stratosphere and lower mesosphere are difficult to measure by ground and satellite based techniques. We show in this paper that the altitude range between about 10 and 80 km is amenable to satellite sounding techniques in the UV-visible-near infrared bands (approximately 200 to 900 nm). The rapid change in optical depth vs. line-of-sight (LOS) end point along a downward-viewing LOS in the 200 - 350 nm spectral range allows separation of atmospheric regions according to the LOS optical weighting functions. The UV imager weighting functions (200 - 300 nm) in combination with the satellite- sensor zenith angle effect allows sounding in the approximately 40 to 80 km region, while the visible band imagery allows detection and separation of high altitude cloud structure leakage from the UV images of clear-air density structure. The instrument requirements necessary to detect such structure and to discriminate aerosol-induced Mie scatter from Rayleigh scatter components consists of UV to visible band spectral imagers having sufficient spatial, temporal and spectral resolutions. Only moderate spectral resolution imagery in the 200 to 900 nm region over a range of sensor line of sight nadir angles is required to detect clouds and infer cloud types. However, high signal to noise ratios and high spatial resolution are required to characterize the structure power spectral density of clouds and clear-air scatter components. Middle atmosphere structure sounding capability on the mesoscale level allows connection between turbulent-like small scale atmospheric phenomenology and larger scale cloud-related and weather- driven atmospheric variability. We demonstrate the stratosphere-mesosphere sounding concept by applying a low altitude mesoscale stochastic structure (LAMSS) model. This model was derived from the NSS (non-stationary stochastic structure) model which utilizes multi-dimensional Fourier- space descriptions of wavelike, turbulent-like, and deterministic, large scale structure to simulate the effects of atmospheric earthlimb structure. LAMSS specifically address tropospheric background clutter processes such as clear-air wind shears, turbulence, temperature inversions, and cirrus cloud structure. The empirical models are applied to synthesis of visible, UV, and IR clutter backgrounds as measured by passive spectral imaging sensors such as the UVISI (UV, Visible Imagers and Spectral Imagers) sensors on the Mid-course Space Experiment (MSX). This paper analyzes images from MSX-UVISI to obtain cloud and atmospheric density structure characteristics in the 200 - 230 nm UV and 300 - 900 nm visible bands. These data illustrates the feasibility of the UV structure sounding concept by comparison to the synthesized structured backgrounds.

Sears, Robert D.; Romick, Gerald J.; Morrison, Daniel; Murphy, Patricia K.

1996-11-01

94

Infrared quantitative spectroscopy and planetary atmospheres  

NASA Astrophysics Data System (ADS)

Optical measurements of atmospheric minor constituents are carried out using spectrometers working in the UV-visible, infrared and microwave spectral ranges. In all cases the quality of the analysis and of the interpretation of the atmospheric spectra requires the best possible knowledge of the molecular parameters of the species of interest. To illustrate this point we will concentrate on recent laboratory studies of nitric acid, chlorine nitrate and formaldehyde. Nitric acid is one of the important minor constituent of the terrestrial atmosphere. Using new and accurate experimental results concerning the spectroscopic properties of the H14NO3 and H15NO3 molecules, as well as improved theoretical methods (Perrin et al., 2004), it has been possible to generate an improved set of line parameters for these molecules in the 11.2 ?m spectral region. These line parameters were used to detect for the first time the H15NO3 molecule in the atmosphere analyzing atmospheric spectra recorded by the MIPAS experiment. The retrievals of chlorine nitrate profiles are usually performed using absorption cross sections (Birk and Wagner, 2003). Following a high resolution analysis of the ?3 and ?4bands of this species in the 12.8 ?m region wepropose, as a possibility, to use line by line calculation simulating its ?4Q-branch for the atmospheric temperature and pressure ranges. For the measurement of atmospheric formaldehyde concentrations, mid-infrared and ultraviolet absorptions are both used by ground, air or satellite instruments. It is then of the utmost importance to have consistent spectral parameters in these various spectral domains. Consequently the aim of the study performed at LISA (Gratien et al., 2007) was to intercalibrate formaldehyde spectra in the infrared and ultraviolet regions acquiring simultaneously UV and IR spectra using a common optical cell. The results of the work will be presented. Also high resolution infrared data derived from Perrin et al., 2003 have been used to determine vertical distributions from the upper troposphere to the stratopause using the high spectral resolution measurements of MIPAS (Steck et al., 2008). References: M. Birk, G. Wagner, J. Quant. Spectros. Radiat.Transfer, 82, 443, 2003. G. Brizzi, M. Carlotti, J.-M. Flaud, A. Perrin and M. Ridolfi, Geophys. Res. Lett., 34, L03802, 2006. A. Gratien, B. Picquet-Varrault, J. Orphal, E. Perraudin, J.-F. Doussin and J.-M. Flaud, J. Geophys. Res., 112, D05305, 2007. A. Perrin, F. Keller and J.-M. Flaud, J. Mol. Spectrosc., 221, 192, 2003. A. Perrin, J. Orphal, J.-M. Flaud, S. Klee, G. Mellau, H. Mader, D. Walbrodt and M. Winnewisser, J. Mol. Spectrosc, 228, 375, 2004. T. Steck, N. Glatthor, T. von Clarmann, H. Fischer, J. M. Flaud, B. Funke, U. Grabowski, M. Hopfner, S. Kellmann, A. Linden, A. Perrin, and G. P. Stiller, Atm. Chem. Phys., 8, 463, 2008.

Flaud, J.-M.

2009-04-01

95

Quantitative spectroscopy of BA-type supergiants  

NASA Astrophysics Data System (ADS)

Luminous BA-type supergiants have enormous potential for modern astrophysics. They allow topics ranging from non-LTE physics and the evolution of massive stars to the chemical evolution of galaxies and cosmology to be addressed. A hybrid non-LTE technique for the quantitative spectroscopy of these stars is discussed. Thorough tests and first applications of the spectrum synthesis method are presented for the bright Galactic objects ? Leo (A0 Ib), HD 111613 (A2 Iabe), HD 92207 (A0 Iae) and ? Ori (B8 Iae), based on high-resolution and high-S/N Echelle spectra. Stellar parameters are derived from spectroscopic indicators, consistently from multiple non-LTE ionization equilibria and Stark-broadened hydrogen line profiles, and they are verified by spectrophotometry. The internal accuracy of the method allows the 1?-uncertainties to be reduced to ?1-2% in T_eff and to 0.05-0.10 dex in log g. Elemental abundances are determined for over 20 chemical species, with many of the astrophysically most interesting in non-LTE (H, He, C, N, O, Mg, S, Ti, Fe). The non-LTE computations reduce random errors and remove systematic trends in the analysis. Inappropriate LTE analyses tend to systematically underestimate iron group abundances and overestimate the light and ?-process element abundances by up to factors of two to three on the mean. This is because of the different responses of these species to radiative and collisional processes in the microscopic picture, which is explained by fundamental differences of their detailed atomic structure, and not taken into account in LTE. Contrary to common assumptions, significant non-LTE abundance corrections of ~0.3 dex can be found even for the weakest lines (W?? 10 mÅ). Non-LTE abundance uncertainties amount to typically 0.05-0.10 dex (random) and ~0.10 dex (systematic 1?-errors). Near-solar abundances are derived for the heavier elements in the sample stars, and patterns indicative of mixing with nuclear-processed matter for the light elements. These imply a blue-loop scenario for ? Leo because of first dredge-up abundance ratios, while the other three objects appear to have evolved directly from the main sequence. In the most ambitious computations several ten-thousand spectral lines are accounted for in the spectrum synthesis, permitting the accurate reproduction of the entire observed spectra from the visual to near-IR. This prerequisite for the quantitative interpretation of intermediate-resolution spectra opens up BA-type supergiants as versatile tools for extragalactic stellar astronomy beyond the Local Group. The technique presented here is also well suited to improve quantitative analyses of less extreme stars of similar spectral types.

Przybilla, N.; Butler, K.; Becker, S. R.; Kudritzki, R. P.

2006-01-01

96

UV visible spectral study on the stability of lead phthalocyanine complexes  

NASA Astrophysics Data System (ADS)

UV visible electronic spectral study has been done on lead phthalocyanine (PbPc), lead tetranitro phthalocyanine (PbTNP) and lead tetraamino phthalocyanine (PbTAP) in dimethyl sulphoxide (DMSO) and H2SO4 media. Metal free phthalocyanine (H2Pc) is insoluble in DMSO and soluble in conc. H2SO4. The study has been extended to H2Pc to compare the stability of phthalocyanine structure with the PbPc complexes in H2SO4 medium. PbPc complexes are stable in DMSO, and all the complexes are more stable in 36 N H2SO4 than in 30 N and 28 N H2SO4 media. Further, complete demetallation and degradation of the phthalocyanine structure have been observed for all the PbPc complexes in 36 N H2SO4 medium within a week's time. The stability of these complexes is compared with H2Pc in H2SO4 medium. The decomposition reactions in H2SO4 media for H2Pc, PbPc, PbTNP and PbTAP are followed spectrophotometrically and rate constants were calculated. The decomposition reactions were found to follow the first-order kinetics with respect to the concentration of their respective phthalocyanine derivatives.

Mohan Kumar, T. M.; Achar, B. N.

2006-11-01

97

Raman and UV-visible absorption spectra of ion-paired aggregates of copper porphyrins  

NASA Astrophysics Data System (ADS)

Raman and UV-visible absorption spectra of ion-paired aggregate constructed from two copper porphyrins, copper tetrakis(4- N-methylpyridyl)porphyrin (CuTMPyP) and copper tetrakis(4-sulfonatophenyl)pophyrin (CuTSPP), are reported in this paper. The absorption bands of the aggregate was found exhibiting obvious shift and broadening, which are attributed to the excitonic coupling between the two paired porphyrin rings. The excitonic coupling in the aggregates also induces evident alteration for Raman intensities compared with monomer spectrum. Aggregation results in only small shifts (2-3 cm -1) for Raman lines connecting with the vibrations of porphyrin rings, manifesting only slight structural change of porphyrin skeletons. On the other hand, evident downshift (5 cm -1) was observed for the C m?pyridyl stretch mode (1254 cm -1) of CuTMPyP, suggesting weakening of the C m?pyridyl bonds by aggregation. Raman depolarization ratios of the aggregates are different from those of the monomers, implying a lowering of effective symmetry due to the molecular packing in the aggregates.

Chen, Dong-Ming; Zhang, Ying-Hui; He, Tian-Jing; Liu, Fan-Chen

2002-08-01

98

CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY  

EPA Science Inventory

Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy. Robert M. Zucker 1 and Jeremy M. Lerner 2, 1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...

99

Quantitative applications of photoacoustic spectroscopy in the infrared  

Microsoft Academic Search

Quantitative photoacoustic and transmission infrared spectroscopy have been compared for a highly overlapped three component mixture with concentrations varying from 0 to 60%. A partial leastsquares model has been employed for the quantitative analysis. High correlation coefficients were obtained for both the transmission and photoacoustic model.

Robert J. Rosenthal; Richard T. Carl; John P. Beauchaine; Michael P. Fuller

1988-01-01

100

Quantitative NMR spectroscopy--applications in drug analysis.  

PubMed

NMR spectroscopy being a primary ratio method of measurement is highly suitable to evaluate the quality of drugs. NMR spectroscopy can be used for the identification of a drug substance, the identification and quantification of impurities arising from the synthesis pathway and degradation, or residual solvents as well as the determination of the content in the assay. This review gives an overview of the application of quantitative NMR spectroscopy in International Pharmacopoeias and for licensing purposes. PMID:15893899

Holzgrabe, U; Deubner, R; Schollmayer, C; Waibel, B

2005-08-10

101

UV-Visible Spectrooelectrochemistry of the Reduction Products of Anthraquinone in Dimethylformamide Solutions: An Advanced Undergraduate Experiment  

NASA Astrophysics Data System (ADS)

The redox properties of anthraquinone (AQ) may be used to model the behaviour of quinones in biological systems. AQ undergoes two successive one-electron reductions in aprotic solvents to form a stable radical anion (AQ.-) and a stable dianion (AQ2-) but this behaviour is altered in the presence of a proton donor. This advanced undergraduate experiment shows how cyclic voltammetry, digital simulations of cyclic voltammograms, and UV-visible spectroelectrochemistry may be used to examine the reduction behaviour of AQ in dimethylformamide (DMF), both in the absence and presence of benzoic acid. The cyclic voltammetry of AQ in DMF shows two reversible one-electron reductions. This allows the UV-visible spectra of AQ.- and of AQ2- to be determined using an optically transparent thin layer electrode (OTTLE) cell. AQH- may also be detected in the spectra if there are proton impurities. When benzoic acid is added to the DMF, the cyclic voltammograms are markedly altered with almost all the reduction occurring near the AQ/AQ.- potential and the corresponding oxidation at rather more positive potentials. The UV-visible spectroelectrochemistry shows AQH2 as the stable reduction product under these conditions while digital simulations of the cyclic voltammograms support a mechanism involving protonation of AQ.- followed by AQH. disproportionation.

Babaei, Ali; Connor, Paul A.; McQuillan, A. James; Umapathy, Siva

1997-10-01

102

Quantitative diffusive wave spectroscopy in tissues  

Microsoft Academic Search

High frequency, intensity-modulated light waves are attenuated and phase-shifted by the absorption and scattering properties of highly scattering media, such as tissue. The simultaneous measurement of the average light intensity, modulation amplitude, and phase- shift at a fixed distance from a sinusoidally modulated light source, permits a quantitative determination of the absolute values of the absorption and scattering coefficients from

William W. Mantulin; Joshua B. Fishkin; Peter T. So; Enrico Gratton; John S. Maier

1993-01-01

103

Quantitative Optical Spectroscopy for Tissue Diagnosis  

Microsoft Academic Search

The interaction of light within tissue has been used to recognize disease since the mid-1800s. The recent developments of small light sources, detectors, and fiber optic probes provide opportunities to quantitatively measure these interactions, which yield information for diagnosis at the biochemical, structural, or (patho)physiological level within intact tissues. However, because of the strong scattering properties of tissues, the reemitted

Rebecca Richards-Kortum; Eva Sevick-Muraca

1996-01-01

104

[UV, visible and infrared light. Which wavelengths produce oxidative stress in human skin?].  

PubMed

Experimental evidence suggests that the creation of free radicals--mainly reactive oxygen species (ROS)--is the common photobiological answer to the skin-sunlight interaction. The free radical action spectrum (wavelength dependency) for ultraviolet and visible light (280-700 nm) has been determined by quantitative ESR spectroscopy. Visible light produces around 50% of the total oxidative stress caused by sunlight. Reactive species like *O(-)(2), *OH and *CHR are generated by visible light. The amount of ROS correlates with the visible light intensity (illuminance). We demonstrated the creation of excess free radicals by near-infrared light (NIR, 700-1600 nm). Free radical generation does not depend exclusively on the NIR irradiance, but also on the NIR initiated skin temperature increase. The temperature dependence follows the physiological fever curve. Our results indicate that the complex biological system skin creates the same type of free radicals over the entire active solar spectrum. This general response will make it possible to define the beneficial or deleterious action of sunlight on human skin by introduction of a free radical threshold value. PMID:19319493

Zastrow, L; Groth, N; Klein, F; Kockott, D; Lademann, J; Ferrero, L

2009-04-01

105

Quantitative ATR spectroscopy: some basic considerations.  

PubMed

A comprehensive treatment of ATR spectra on the basis of the Lorentz-Lorenz law and Fresnel equations is given. The standard equation for the effective thickness is redefined showing how the lossy case deviates from the lossless case. A matrix effect due to the influence of the real part of the refractive index within an absorption band is demonstrated theoretically as well as experimentally. The concentration of a nonab-sorbing solute sample, i.e., glucose, is determined by ATR spectroscopy near the critical angle. PMID:20309283

Müller, G; Abraham, K; Schaldach, M

1981-04-01

106

Characterizing human pancreatic cancer precursor using quantitative tissue optical spectroscopy  

PubMed Central

In a pilot study, multimodal optical spectroscopy coupled with quantitative tissue-optics models distinguished intraductal papillary mucinous neoplasm (IPMN), a common precursor to pancreatic cancer, from normal tissues in freshly excised human pancreas. A photon-tissue interaction (PTI) model extracted parameters associated with cellular nuclear size and refractive index (from reflectance spectra) and extracellular collagen content (from fluorescence spectra). The results suggest that tissue optical spectroscopy has the potential to characterize pre-cancerous neoplasms in human pancreatic tissues.

Lee, Seung Yup; Lloyd, William R.; Chandra, Malavika; Wilson, Robert H.; McKenna, Barbara; Simeone, Diane; Scheiman, James; Mycek, Mary-Ann

2013-01-01

107

Quantitative Determination of Dielectric Thin-Film Properties Using Infrared Emission Spectroscopy;Applied Spectroscopy.  

National Technical Information Service (NTIS)

We have completed an experimental study to investigate the use of infrared emission spectroscopy (IRES) for the quantitative analysis of borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Experimental parameters investigated included t...

J. E. Franke D. M. Haaland T. M. Niemczyk S. Zhang

1998-01-01

108

Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS)  

Microsoft Academic Search

A measurement system for quantitative, remote materials analysis has been realised. It is based on the method of laser-induced breakdown spectroscopy (LIBS), utilising an optical fibre system, both to deliver the laser radiation to the sample specimen and to collect the light emission from the luminous plasma plume. Distances of up to 100 m between the remote location and the

C. M. Davies; H. H. Telle; D. J. Montgomery; R. E. Corbett

1995-01-01

109

UV/visible/near-infrared reflectance spectroscopic determination of cotton fiber and trash content in lint cotton waste  

NASA Astrophysics Data System (ADS)

Lint cleaning at cotton processing facilities is performed in order to remove the non-lint materials with minimal fiber damage. The resultant waste contains some degree of cotton fiber having good equal qualities, and hence is of great concern for operating cost. Traditional methods for measuring non-lint trash are labor intensive and time consuming. UV / visible / NIR technique was examined for its feasibility in determining the portions of cotton fiber and trash. Overall result indicated that NIR prediction was limited to screening purpose for probable reasons as heterogeneous trash distribution, relatively small sampling, and gravimetric reference method.

Liu, Yongliang; Gamble, Gary R.; Thibodeaux, Devron

2010-04-01

110

Data acquisition and processing modes for quantitative Auger electron spectroscopy  

SciTech Connect

Auger electron spectroscopy has been applied to the quantitative surface analysis of a series of metals (Ag, Cd, In, Sn), indium-tin alloys, indium and tin oxides, and indium-tin oxide (ITO) films. Spectra were obtained by two methods: the conventional modulation technique, which results in the derivative spectrum, and a direct current measurement, which gives an undifferentiated spectrum. For data collected in the latter mode, an instrumental approach and secondary electron background correction are discussed. Quantitative results obtained by using this approach are shown to be more accurate than the traditional measurement method. 7 figures, 3 tables.

Burrell, M.C.; Kaller, R.S.; Armstrong, N.R.

1982-12-01

111

Quantitative Stellar Classification with Low-Resolution Spectroscopy  

NASA Astrophysics Data System (ADS)

Low-resolution spectroscopy (R ~ 1000) is used to efficiently characterize faint stars suspected to host planets. Stellar parameters, i.e. effective temperature, surface gravity, and metallicity can be assessed from these spectra by methods of quantitative classification. For this purpose, more than 130 template stars have been observed with the faint object spectrograph at the Tautenburg 2m telescope, Germany. A large number of lines are measured and the dependence of line depths on stellar parameters is studied.

Eiff, Matthias Ammler-von; Sebastian, Daniel; Guenther, Eike W.

2014-04-01

112

Quantitative and Rapid DNA Detection by Laser Transmission Spectroscopy  

PubMed Central

Laser transmission spectroscopy (LTS) is a quantitative and rapid in vitro technique for measuring the size, shape, and number of nanoparticles in suspension. Here we report on the application of LTS as a novel detection method for species-specific DNA where the presence of one invasive species was differentiated from a closely related invasive sister species. The method employs carboxylated polystyrene nanoparticles functionalized with short DNA fragments that are complimentary to a specific target DNA sequence. In solution, the DNA strands containing targets bind to the tags resulting in a sizable increase in the nanoparticle diameter, which is rapidly and quantitatively measured using LTS. DNA strands that do not contain the target sequence do not bind and produce no size change of the carboxylated beads. The results show that LTS has the potential to become a quantitative and rapid DNA detection method suitable for many real-world applications.

Li, Frank; Mahon, Andrew R.; Barnes, Matthew A.; Feder, Jeffery; Lodge, David M.; Hwang, Ching-Ting; Schafer, Robert; Ruggiero, Steven T.; Tanner, Carol E.

2011-01-01

113

Quantitative spot-test analysis of metformin in pharmaceutical preparations using ultraviolet-visible diffuse reflectance spectroscopy.  

PubMed

A quantitative spot-test for the determination of metformin in pharmaceutical preparations using diffuse UV-visible reflectance is reported. The procedure is quite simple, involving in the formation of a metformin-nickel(II) complex on a glass filter membrane with a later measurement of the reflectance in the spectrophotometer using an integration sphere. The analytical results obtained with commercial products were statistically compared with those resulting from a method recommended by JP and by USP, where complete agreement was observed. The average RSD is 2.5% and the detection (0.009 mol L(-1)) and the quantitation (0.03 mol L(-1)) limits are quite adequate for pharmaceutical analysis. PMID:20065599

Tubino, Matthieu; Bianchessi, Luís Francisco; Vila, Marta M D C

2010-01-01

114

A review of remote sensing techniques and related spectroscopy problems  

NASA Astrophysics Data System (ADS)

Remote sensing based on quantitative spectroscopy is a powerful tool for precise measurements of atmospheric trace species concentrations, through the use of characteristic spectral signatures of the different molecular species and their associated vibration-rotation and electronic bands in the microwave, infrared, and UV-visible domains. A reliable retrieval of the concentration profiles requires a good characterisation of measurement and spectral fitting errors. This includes an accurate knowledge of spectroscopic parameters of all transition lines or absorption cross sections of interest since uncertainties lead to systematic retrieval errors. To cite this article: S. Payan et al., C. R. Physique 6 (2005).

Payan, Sébastien; de La Noë, Jérôme; Hauchecorne, Alain; Camy-Peyret, Claude

2005-10-01

115

Quantitative polarized Raman spectroscopy in highly turbid bone tissue  

PubMed Central

Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim?oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim?oim bones (28±3 deg) compared to wild-type bones (22±3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76±2 deg and in oim?oim mice, it is 72±4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

2010-01-01

116

Quantitative analysis of gallstones using laser-induced breakdown spectroscopy  

SciTech Connect

The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

Singh, Vivek K.; Singh, Vinita; Rai, Awadhesh K.; Thakur, Surya N.; Rai, Pradeep K.; Singh, Jagdish P

2008-11-01

117

Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements  

NASA Astrophysics Data System (ADS)

Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

2014-03-01

118

Laser bandwidth effects in quantitative cavity ring-down spectroscopy  

NASA Astrophysics Data System (ADS)

We have investigated the effects of laser bandwidth on quantitative cavity ring-down spectroscopy using the rR transitions of the b(v = 0) left arrow X(v = 0) band of molecular oxygen. It is found that failure to account properly for the laser bandwidth leads to systematic errors in the number densities determined from measured ring-down signals. When the frequency-integrated expression for the ring-down signal is fitted and measured laser line shapes are used, excellent agreement between measured and predicted number densities is found.

Hodges, Joseph T.; Looney, J. Patrick; van Zee, Roger D.

1996-07-01

119

Probing the Si-Si Dimer Breaking of Si(100)2×1 Surfaces upon Molecule Adsorption by Optical Spectroscopy  

NASA Astrophysics Data System (ADS)

The adsorption of atoms and molecules of several gases of the Si(100)2×1 silicon reconstructed surface is investigated by surface differential reflectance spectroscopy. This UV-visible optical spectroscopy makes possible the discrimination between two adsorption modes, depending on whether or not the adsorption leads to breaking the Si-Si dimers. The observation of two different optical features is assigned to the bonding on dangling bonds or to the breaking of dimers, and gives access to the adsorption mode of hydrogen, water, oxygen, and pyridine. Moreover, the technique being quantitative, we can determine the total amount of dimers involved in the adsorption and monitor the adsorption kinetics.

Borensztein, Y.; Pluchery, O.; Witkowski, N.

2005-09-01

120

Aerosol Height Retrieval using UV-Visible Hyperspectral Satellite over East Asia  

NASA Astrophysics Data System (ADS)

From Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument, one of ground-based measurement, the vertical distribution of aerosol are estimated by the observed oxygen-dimer (O4) slant column densities (SCD) for several geometries (e.g., Hoenninger et al., 2004; Irie et al., 2009; Lee et al., 2011). Because the spatial and temporal variation of O4 distribution is little, the O4 SCD difference can be converted to the difference of optical path length. However, there have been very limited studies to date to retrieve aerosol height information by using satellite observation in UV wavelength range. This study investigates the sensitivities of aerosol height from the O4 SCDs using its absorption bands at 340, 360, 380, and 477 nm, where O4 SCD is calculated by the DOAS method using simulated spectra. From the experiment, robust relationship is obtained between the difference of O4 SCD and the aerosol height at 477 nm. Finally, the O4 SCD is converted to aerosol height by using the OMI observation for aerosol loaded cases, which is compared with ground-based lidar.

Park, Sang Seo; Kim, Jhoon; Lee, Hanlim

2013-04-01

121

Slant Column Measurements of O3 and NO2 During the NDSC Intercomparison of Zenith-Sky UV-Visible Spectrometers in June 1996  

Microsoft Academic Search

Abstract. In June 1996, 16 UV-visible sensors from 11 institutes measured spectra of the zenith sky for more than 10 days. Spectra were analysed in real-time to determine slant column,amounts,of O3 and NO2. Spectra of Hg lamps and lasers were measured, and the amount of NO2 in a cell was

H. K. ROSCOE; P. V. JOHNSTON; M. VAN ROOZENDAEL; A. RICHTER; A. SARKISSIAN; J. ROSCOE; K. E. PRESTON; J. C. LAMBERT; C. HERMANS; W. DECUYPER; S. DZIENUS; T. WINTERRATH; J. BURROWS; F. GOUTAIL; E. D'ALMEIDA; J. HOTTIER; C. COUREUL; R. DIDIER; I. PUNDT; L. M. BARTLETT; J. E. KERR; A. ELOKHOV; G. GIOVANELLI; F. RAVEGNANI; M. PREMUDA; I. KOSTADINOV; F. ERLE; T. WAGNER; K. PFEILSTICKER; M. KENNTNER; L. C. MARQUARD; M. GIL; O. PUENTEDURA; M. YELA; D. W. ARLANDER

1999-01-01

122

The program complex for computation of spectroscopic characteristics of atomic and molecular gases in UV, visible and IR spectral ranges for a wide range of temperatures and pressures  

Microsoft Academic Search

The program complex intended for calculations, on the personal computer, of spectroscopic properties of separate gases and their mixes in UV, visible and IR ranges is submitted in this work. It consists of algorithms describing spectroscopic characteristics of the neutral and ionized atoms and molecules; banks of initial data, physical, thermodynamic and spectroscopic constants, parameters and package of applied programs.The

Andrew S. Abaturov; Eugeny A. Gavrilin; Natalia N. Naumova; Stanislav B. Petrov; Alexander P. Smirnov; M. B. Kiselev

2004-01-01

123

The UV-visible absorption and fluorescence spectroscopy indicators for monitoring the evolution of green waste composts.  

NASA Astrophysics Data System (ADS)

The maturity process of compost goes through several phases that have to be monitored in order to optimize the production process which in turn assure a good quality product and less time consumption. In order to estimate rapidly the phase where the compost is present and to measure the cellulose, the ratio C:N and the Stability Index Organic Matter (ISMO) a crucial parameter that needs to be monitored and controlled is the temperature. However, the temperature is not really a good indicator for the maturity of the compost because it is not constant and it depends on the mixing and environmental processes. The final measurements are performed at the end of the production process after certain time period that is subjectively determined by the producer. The work presented here is based on the optical properties of the organic matter that are observed each month for a period of six months. The organic matter of 5 composts was extracted by water and analyzed by UV-VIS spectroscopic technique [1] and 3D fluorescence emission technique [2]. The usual indexes were calculated (E2/E3, E4/E6, EBZ/EET, SUVA254), but also the PARAFAC decomposition of the 3D fluorescence response by Milori [3] and the Hx indexes [4]. The comparison of these results and the cellulose composition with the corresponding ISMO index indicates that the maturity process occurs more rapidly then the expectation of the producers. Further, the combination of the indicators gives useful information about different processes that take place during the maturity of the compost such as aromatization, the condensation and the stabilization of the parameters.

Mounier, Stéphane; Abaker, Madi; Domeizel, Mariane; Rapetti, Nicola

2014-05-01

124

In situ UV-visible spectroelectrochemical evidences for conducting copolymer formation between diphenylamine and m-methoxyaniline  

NASA Astrophysics Data System (ADS)

Electrochemical copolymerization of diphenylamine (DPA) with m-methoxy aniline (MA) was carried out in 4 M H 2SO 4 by cyclic voltammetry (CV). Cyclic voltammograms (CVs) of the copolymer films were recorded in monomer-free background electrolyte. In situ sepectroelectrochemical studies were carried out on an optically transparent electrode (Indium tin oxide (ITO) coated glass) in 4 M H 2SO 4 for different feed ratios of the comonomers. Constant potential and potential sweep methods were employed for performing polymerization. UV-visible absorption spectra were collected continuously and concurrently during the copolymerization in both the cases. The results from constant potential electropolymerisation indicated the formation of an intermediate with an absorption peak at 576 nm. Derivative cyclic voltabsorptogram (DCVA) was deduced from the results of cyclic spectrovoltammetry. The DCVA derived at 576 nm confirms the intermediates formed during the electrochemical copolymerization. The compositional changes of the two monomers in the copolymers with changes in feed composition of two monomers as predicted from in situ spectro electrochemical studies are evident from elemental analysis. A plausible copolymerization mechanism is suggested.

Thanneermalai, M.; Jeyaraman, T.; Sivakumar, C.; Gopalan, A.; Vasudevan, T.; Wen, T. C.

2003-07-01

125

THE INFRARED AND UV-VISIBLE SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS CONTAINING (5, 7)-MEMBER RING DEFECTS: A THEORETICAL STUDY  

SciTech Connect

We report a theoretical investigation of the infrared (IR) spectra of polycyclic aromatic hydrocarbons (PAHs) containing (5, 7)-member ring defects based on a C{sub 48}H{sub 18} model. Calculations are mostly performed using the hybrid B3LYP density functional theory (DFT) with a 6-31G(d) or 4-31G basis set. The results show that the Stone-Wales defect in PAHs can yield a strong IR band at 1448 cm{sup -1} and a weak band at 611 cm{sup -1}, which may contribute to the UIR (unidentified infrared) bands at 6.9 {mu}m and 16.4 {mu}m observed in the interstellar medium. The charge effect on the IR spectra is discussed. The stability of the ring defected PAHs is also addressed by exploring the minimum energy pathway on the potential energy surface and through their UV-visible spectra, which are computed using a TDDFT method.

Yu Huagen; Nyman, Gunnar, E-mail: hgy@bnl.gov, E-mail: nyman@chem.gu.se [Department of Chemistry and Molecular Biology, Physical Chemistry, University of Gothenburg, SE-412 96 Gothenburg (Sweden)

2012-05-20

126

Infrared and UV–visible spectroscopic studies of gamma-irradiated Sb2O3–B2O3 glasses  

NASA Astrophysics Data System (ADS)

Glasses from the binary Sb2O3-B2O3 system were prepared in the compositional range 90-30 Sb2O3 mol%. UV-visible spectroscopic measurements were carried out in the range 190-1100 nm before and after successive gamma rays irradiation (1, 3, 4 Mrad). Infrared absorption of the samples was measured by the KBr technique in the range 4000-400 cm-1 and the same measurements were repeated after gamma irradiation with 4 kGy. Experimental results indicate that antimony borate glasses reveal quite shielding behavior towards gamma rays irradiation as observed with heavy metal cations bearing glasses such as Bi3+ and Pb2+. Infrared absorption spectra reveal characteristic absorption bands specific for the glass-forming borate units and Sb-O units. Glasses containing high antimony oxide content can thus be recommended as promising radiation-shielding material because they show resistant to gamma irradiation due to the presence of high percent of heavy metal oxide (Sb2O3).

Marzouk, Samir Y.; Elbatal, Fatma H.

2014-04-01

127

Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment  

PubMed Central

Measurements of Cherenkov emission in tissue during radiation therapy are shown to enable estimation of hemoglobin oxygen saturation non-invasively, through spectral fitting of the spontaneous emissions from the treated tissue. Tissue oxygenation plays a critical role in the efficacy of radiation therapy to kill tumor tissue. Yet in-vivo measurement of this has remained elusive in routine use because of the complexity of oxygen measurement techniques. There is a spectrally broad emission of Cherenkov light that is induced during the time of irradiation, and as this travels through tissue from the point of the radiation deposition, the tissue absorption and scatter impart spectral changes. These changes can be quantified by diffuse spectral fitting of the signal. Thus Cherenkov emission spectroscopy is demonstrated for the first time quantitatively in vitro and qualitatively in vivo, and has potential for real-time online tracking of tissue oxygen during radiation therapy when fully characterized and developed.

Axelsson, Johan; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

2012-01-01

128

Quantitative In Vivo Magnetic Resonance Spectroscopy Using Synthetic Signal Injection  

PubMed Central

Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment.

Marro, Kenneth I.; Lee, Donghoon; Shankland, Eric G.; Mathis, C. Mark; Hayes, Cecil E.; Friedman, Seth D.; Kushmerick, Martin J.

2010-01-01

129

Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy  

NASA Astrophysics Data System (ADS)

The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

2007-09-01

130

Laser Remote Measurements of atmospheric pollutants (Las-R-Map): UV-Visible Laser system description and data processing  

NASA Astrophysics Data System (ADS)

Laser radar more popularly known as LIDAR LIght Detection And Ranging is becoming one of the most powerful techniques for active remote sensing of the earth s atmosphere Around the globe several new lidar systems have been developed based on the scientific interest Particularly the DIfferential Absorption Lidar DIAL technique is only one which can provide the better accuracy of measuring atmospheric pollutants Using modern advanced techniques and instrumentation a mobile DIAL system called laser remote measurements of atmospheric pollutants hear after referred as Las-R-Map is designed at National Laser Centre NLC --Pretoria 25 r 45 prime S 28 r 17 prime E Las-R-Map is basically used for measuring atmospheric pollutants applying the principle of absorption by constituents The system designed primarily to focus on the following pollutant measurements such as SO 2 CH 4 CO 2 NO 2 and O 3 In future the system could be used to measure few particulate matter between 2 5 mu m and 10 mu m Benzene Hg 1 3-butadiene H 2 S HF and Volatile Organic Compounds VOC Las-R-map comprises of two different laser sources Alexandrite and CO 2 optical receiver data acquisition and signal processor It uses alexandrite laser in the UV-Visible region from 200 nm to 800 nm and CO 2 laser in the Far-IR region from 9 2 mu m to 10 8 mu m Such two different laser sources make feasibility for studying the wide range of atmospheric pollutants The present paper is focused on technical details

Sivakumar, V.; Wyk, H. V.

131

Cloud point extraction of aluminum (III) in water samples and determination by electrothermal atomic absorption spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometry  

Microsoft Academic Search

Cloud point extraction was applied as a preconcentration step for the determination of trace level of Al(III) in water samples with electrothermal atomic absorption spectrometry (ETAAS), flame atomic absorption spectrometry (FAAS) and UV-visible spectrophotometry. The aluminum was extracted as aluminum-Eriochrome Cyanine R (ECR) complex, at pH 6 by micelles of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114). The investigations showed that

Nuray ?at?ro?lu; ?lknur Tokgöz

2010-01-01

132

Slant Column Measurements of O3 and NO2 During the NDSC Intercomparison of Zenith-Sky UV-Visible Spectrometers in June 1996  

Microsoft Academic Search

In June 1996, 16 UV-visible sensors from 11 institutes measured spectra of the zenith sky for more than 10 days. Spectra were analysed in real-time to determine slant column amounts of O3 and NO2. Spectra of Hg lamps and lasers were measured, and the amount of NO2 in a cell was determined by each spectrometer. Some spectra were re-analysed after

H. K. Roscoe; P. V. Johnston; M. Van Roozendael; A. Richter; A. Sarkissian; J. Roscoe; K. E. Preston; J. C. Lambert; C. Hermans; W. DeCuyper; S. Dzienus; T. Winterrath; J. Burrows; F. Goutail; J. P. Pommereau; E. D'Almeida; J. Hottier; C. Coureul; R. Didier; I. Pundt; L. M. Bartlett; C. T. McElroy; J. E. Kerr; A. Elokhov; G. Giovanelli; F. Ravegnani; M. Premuda; I. Kostadinov; F. Erle; T. Wagner; K. Pfeilsticker; M. Kenntner; L. C. Marquard; M. Gil; O. Puentedura; M. Yela; D. W. Arlander; B. A. Kastad Hoiskar; C. W. Tellefsen; K. Karlsen Tornkvist; B. Heese; R. L. Jones; S. R. Aliwell; R. A. Freshwater

1999-01-01

133

Ozone and NO2 variations measured during the 1 August 2008 solar eclipse above Eureka, Canada with a UV-visible spectrometer  

Microsoft Academic Search

On 1 August 2008, a solar eclipse of 98% totality passed over the Polar Environment Atmospheric Research Laboratory at Eureka, Canada (80.05°N, 86.42°W), which is run by the Canadian Network for the Detection of Atmospheric Change. During the eclipse, a zenith-sky UV-visible spectrometer measured slant column densities (SCDs) and vertical column densities (VCDs) of ozone up to 82% occultation and

Cristen Adams; Chris A. McLinden; Kimberly Strong; Vasil Umlenski

2010-01-01

134

The Polar Environment Atmospheric Research Laboratory UV–visible Ground-Based Spectrometer: First measurements of O 3 , NO 2 , BrO, and OClO columns  

Microsoft Academic Search

The PEARL-GBS (Polar Environment Atmospheric Research Laboratory-Ground-Based Spectrometer) was permanently installed at Eureka, Nunavut (80.05?N, 86.42?W) in August 2006 as part of the establishment of PEARL by CANDAC (Canadian Network for the Detection of Atmospheric Change). The instrument is a ground-based, UV–visible, triple-grating spectrometer and is very similar to the UT-GBS (University of Toronto-GBS), which has an 11-year heritage of

Annemarie Fraser; Cristen Adams; James R. Drummond; Florence Goutail; Gloria Manney; Kimberly Strong

2009-01-01

135

A new tridentate Schiff base Cu(II) complex: Synthesis, experimental and theoretical studies on its crystal structure, FT-IR and UV-Visible spectra  

NASA Astrophysics Data System (ADS)

A new Cu(II) complex [Cu(L)(NCS)] has been synthesized, using 1-(N-salicylideneimino)-2-(N,N-methyl)-aminoethane as tridentate ONN donor Schiff base ligand (HL). The dark green crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FT-IR) and UV-Visible spectra. Electronic structure calculations at the B3LYP and MP2 levels of theory are performed to optimize the molecular geometry and to calculate the UV-Visible and FT-IR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TD-DFT) method is used to calculate the electronic transitions of the complex. A scaling factor of 1.015 is obtained for vibrational frequencies computed at the B3LYP level using basis sets 6-311G(d,p). It is found that solvent has a profound effect on the electronic absorption spectrum. The UV-Visible spectrum of the complex recorded in DMSO and DMF solution can be correctly predicted by a model in which DMSO and DMF molecules are coordinated to the central Cu atom via their oxygen atoms.

Saheb, Vahid; Sheikhshoaie, Iran; Setoodeh, Nasim; Rudbari, Hadi Amiri; Bruno, Giuseppe

2013-06-01

136

Quantitative Prediction of Synthetic Food Colors by Fluorescence Spectroscopy and Radial Basis Function Neural Networks  

Microsoft Academic Search

In this paper, quantitative prediction of synthetic food colors by fluorescence spectroscopy and radial basis function neural networks is introduced. Taking Amaranth as an example, for sample solution of Amaranth with different concentrations, the fluorescence spectroscopy excited by the light with the wavelength of 400 nm is measured. The peak wavelength of Amaranth solution fluorescence spectroscopy is about 640 nm,

Chen Guo-qing; Su Zhou-ping; Wu Ya-min; Wang Jun; Wei Bai-lin; Zhu Tuo

2009-01-01

137

Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.  

ERIC Educational Resources Information Center

Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

Hill, Devon W.; And Others

1988-01-01

138

Quantitative Determination of DNA-Ligand Binding Using Fluorescence Spectroscopy  

ERIC Educational Resources Information Center

The effective use of fluorescence spectroscopy for determining the binding of the intercalcating agent crhidium bromide to DNA is being described. The analysis used simple measurement techniques and hence can be easily adopted by the students for a better understanding.

Healy, Eamonn F.

2007-01-01

139

Determination of total chromium in tannery waste water by inductively coupled plasma-atomic emission spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometric methods.  

PubMed

The determination of total chromium in different streams of tannery effluents were carried out by the digestion of samples in a HNO(3)/H(2)SO(4) mixture followed by KMnO(4) oxidation, which resulted in the complete conversion of Cr(III) to Cr(VI). The Cr(VI) (Cr(2)O(7)(2-)) species present in these samples were estimated by inductively coupled plasma-atomic emission spectrometry (ICP-AES), flame atomic absorption spectrometry (FAAS) and UV-visible spectrophotometry (1,5-diphenyl carbazide method). The results obtained from these methods were critically evaluated. UV-visible spectrophotometry was found to be better suited for this analysis when compared with the other two methods. Since these solutions contain relatively high concentrations of chromium (200-2400 mg/l), the need for preconcentration did not arise. The higher values obtained in the case of ICP-AES and FAAS methods can be attributed to the matrix effect arising out of high concentration of mineral acids and electrolytes. In addition, the values obtained in the latter methods (ICP-AES and FAAS) are comparable with each other, indicating that the interferences influence the results almost equally in both techniques. The statistical treatment of data indicates that the differences between the methods are within the acceptable range. PMID:18967736

Balasubramanian, S; Pugalenthi, V

1999-10-01

140

Quantitative Measurement of Trans-Fats by Infrared Spectroscopy  

ERIC Educational Resources Information Center

Trans-fat is a general term, which is mainly used to describe the various trans geometric isomers present in unsaturated fatty acids. Various techniques are now used for a quantitative measurement of the amount of trans-fats present in foods and cooking oil.

Walker, Edward B.; Davies, Don R.; Campbell, Mike

2007-01-01

141

Direct and quantitative photothermal absorption spectroscopy of individual particulates  

NASA Astrophysics Data System (ADS)

Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Zheng, Ruiting; Shen, Sheng; Chen, Gang

2013-12-01

142

Power-scalable tunable UV, visible, and NIR generation from an ultrafast fiber OPA based on four wave mixing in PCF  

NASA Astrophysics Data System (ADS)

An ultrafast fiber MOPA was developed which delivered high average power and rapid and continuous tunability over the range 1035 - 1070 nm. Through FWM in a single PCF, this source generated greater than 30% conversion efficiency to a narrow linewidth signal with tunability from 720 to 880 nm and a corresponding idler tunable from 1370 to 1880 nm. Generation of tunable signal SHG, signal-pump SFG, pump SHG and pump-idler SFG were demonstrated in a single angle tuned BBO crystal. The combined system enabled tunability over large portions of the UV, visible and NIR spectral range from 370 - 1900 nm with a very simple setup. There is scope for power scaling of the source and extending the wavelength coverage.

Yarrow, Michael J.; Wadsworth, William J.; Lavoute, Laure; Clowes, John R.; Grudinin, Anatoly B.

2012-02-01

143

Quantitating metabolites in protein precipitated serum using NMR spectroscopy.  

PubMed

Quantitative NMR-based metabolite profiling is challenged by the deleterious effects of abundant proteins in the intact blood plasma/serum, which underscores the need for alternative approaches. Protein removal by ultrafiltration using low molecular weight cutoff filters thus represents an important step. However, protein precipitation, an alternative and simple approach for protein removal, lacks detailed quantitative assessment for use in NMR based metabolomics. In this study, we have comprehensively evaluated the performance of protein precipitation using methanol, acetonitrile, perchloric acid, and trichloroacetic acid and ultrafiltration approaches using 1D and 2D NMR, based on the identification and absolute quantitation of 44 human blood metabolites, including a few identified for the first time in the NMR spectra of human serum. We also investigated the use of a "smart isotope tag," (15)N-cholamine for further resolution enhancement, which resulted in the detection of a number of additional metabolites. (1)H NMR of both protein precipitated and ultrafiltered serum detected all 44 metabolites with comparable reproducibility (average CV, 3.7% for precipitation; 3.6% for filtration). However, nearly half of the quantified metabolites in ultrafiltered serum exhibited 10-74% lower concentrations; specifically, tryptophan, benzoate, and 2-oxoisocaproate showed much lower concentrations compared to protein precipitated serum. These results indicate that protein precipitation using methanol offers a reliable approach for routine NMR-based metabolomics of human blood serum/plasma and should be considered as an alternative to ultrafiltration. Importantly, protein precipitation, which is commonly used by mass spectrometry (MS), promises avenues for direct comparison and correlation of metabolite data obtained from the two analytical platforms to exploit their combined strength in the metabolomics of blood. PMID:24796490

Nagana Gowda, G A; Raftery, Daniel

2014-06-01

144

Quantitative Remote Laser-Induced Breakdown Spectroscopy by Multivariate Analysis  

NASA Astrophysics Data System (ADS)

The ChemCam instrument selected for the Mars Science Laboratory (MSL) rover includes a remote Laser- Induced Breakdown Spectrometer (LIBS) that will quantitatively probe samples up to 9m from the rover mast. LIBS is fundamentally an elemental analysis technique. LIBS involves focusing a Nd:YAG laser operating at 1064 nm onto the surface of the sample. The laser ablates material from the surface, generating an expanding plasma containing electronically excited ions, atoms, and small molecules. As these electronically excited species relax back to the ground state, they emit light at wavelengths characteristic of the species present in the sample. Some of this emission is directed into one of three dispersive spectrometers. In this paper, we studied a suite of 18 igneous and highly-metamorphosed samples from a wide variety of parageneses for which chemical analyses by XRF were already available. Rocks were chosen to represent a range of chemical composition from basalt to rhyolite, thus providing significant variations in all of the major element contents (Si, Fe, Al, Ca, Na, K, O, Ti, Mg, and Mn). These samples were probed at a 9m standoff distance under experimental conditions that are similar to ChemCam. Extracting quantitative elemental concentrations from LIBS spectra is complicated by the chemical matrix effects. Conventional methods for obtaining quantitative chemical data from LIBS analyses are compared with new multivariate analysis (MVA) techniques that appear to compensate for these chemical matrix effects. The traditional analyses use specific elemental peak heights or areas, which compared with calibration curves for each element at one or more emission lines for a series of standard samples. Because of matrix effects, the calibration standards generally must have similar chemistries to the unknown samples, and thus this conventional approach imposes severe limitations on application of the technique to remote analyses. In this suite of samples, the use of traditional methods results in chemical analyses with significant uncertainties. Alternatively, greatly-improved quantitative elemental analysis was accomplished by using a Partial Least Squares (PLS) calibration model for all of the major elements of interest. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are then employed to predict the rock-type of the sample. These MVA techniques appear to compensate for these matrix effects because the analysis finds correlations between the spectra (independent variables), the individual elements of interest (dependent variables such as Si) as well as the other elements in the matrix.

Clegg, S. M.; Sklute, E. C.; Dyar, M. D.; Barefield, J. E.; Wiens, R. C.

2007-12-01

145

Machine learning methods for quantitative analysis of Raman spectroscopy data  

NASA Astrophysics Data System (ADS)

The automated identification and quantification of illicit materials using Raman spectroscopy is of significant importance for law enforcement agencies. This paper explores the use of Machine Learning (ML) methods in comparison with standard statistical regression techniques for developing automated identification methods. In this work, the ML task is broken into two sub-tasks, data reduction and prediction. In well-conditioned data, the number of samples should be much larger than the number of attributes per sample, to limit the degrees of freedom in predictive models. In this spectroscopy data, the opposite is normally true. Predictive models based on such data have a high number of degrees of freedom, which increases the risk of models over-fitting to the sample data and having poor predictive power. In the work described here, an approach to data reduction based on Genetic Algorithms is described. For the prediction sub-task, the objective is to estimate the concentration of a component in a mixture, based on its Raman spectrum and the known concentrations of previously seen mixtures. Here, Neural Networks and k-Nearest Neighbours are used for prediction. Preliminary results are presented for the problem of estimating the concentration of cocaine in solid mixtures, and compared with previously published results in which statistical analysis of the same dataset was performed. Finally, this paper demonstrates how more accurate results may be achieved by using an ensemble of prediction techniques.

Madden, Michael G.; Ryder, Alan G.

2003-03-01

146

Quantitative monitoring of yeast fermentation using Raman spectroscopy.  

PubMed

Compared to traditional IR methods, Raman spectroscopy has the advantage of only minimal interference from water when measuring aqueous samples, which makes this method potentially useful for in situ monitoring of important industrial bioprocesses. This study demonstrates real-time monitoring of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe. A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly measurement of yeast cell concentrations. Extinction of Raman intensities to more than 50 % during fermentation was normalized with approximated extinction expressions using Raman signal of water around 1,627 cm(-1) as internal standard to correct for the effect of scattering. Complicated standard multi-variant chemometric techniques, such as PLS, were avoided in the quantification model, as an attempt to keep the monitoring method as simple as possible and still get satisfactory estimations. Instead, estimations were made with a two-step approach, where initial scattering correction of attenuated signals was followed by linear regression. In situ quantification measurements of the fermentation resulted in root mean square errors of prediction (RMSEP) of 2.357, 1.611, and 0.633 g/L for glucose, ethanol, and yeast concentrations, respectively. PMID:24996999

Iversen, Jens A; Berg, Rolf W; Ahring, Birgitte K

2014-08-01

147

Characterization of CdTe Detectors for Quantitative X-ray Spectroscopy  

Microsoft Academic Search

Silicon diodes have traditionally been the detectors of choice for quantitative X-ray spectroscopy. Their response has been very well characterized and existing software algorithms process the spectra for accurate, quantitative analysis. But Si diodes have limited sensitivity at energies above 30 keV, while recent regulations require measurement of heavy metals such as lead and mercury, with K X-ray emissions well

Robert H. Redus; John A. Pantazis; Thanos J. Pantazis; Alan C. Huber; Brian J. Cross

2009-01-01

148

Quantitative analysis of hydrogen peroxide by 1H NMR spectroscopy.  

PubMed

A technique utilizing 1H NMR spectroscopy has been developed to measure the concentration of hydrogen peroxide from 10(-3) to 10 M. Hydrogen peroxide produces a peak at around 10-11 ppm, depending upon the interaction between solvent molecules and hydrogen peroxide molecules. The intensity of this peak can be monitored once every 30 s, enabling the measurement of changes in hydrogen peroxide concentration as a function of time. 1H NMR has several advantages over other techniques: (1) applicability to a broad range of solvents, (2) ability to quantify hydrogen peroxide rapidly, and (3) ability to follow reactions forming and/or consuming hydrogen peroxide as a function of time. As an example, this analytical technique has been used to measure the concentration of hydrogen peroxide as a function of time in a study of hydrogen peroxide decomposition catalyzed by iron(III) tetrakispentafluorophenyl porphyrin. PMID:15756600

Stephenson, Ned A; Bell, Alexis T

2005-03-01

149

Quantitative Surface Atomic Structure Analysis by Low-Energy Ion Scattering Spectroscopy (ISS)  

NASA Astrophysics Data System (ADS)

Surface atomic structure analysis by low-energy ion scattering spectroscopy (ISS) is reviewed, with particular emphasis on quantitative surface atomic structure analysis by ISS. The important differences between ISS and Rutherford backscattering spectroscopy (RBS), some basic characteristics of ISS, a special type of ISS called impact-collision ion scattering spectroscopy (ICISS), and the general features of the shadow cone in the energy range of ISS are discussed as a basis for the description of particular examples of ISS studies which follow. The examples are mainly concerned with the analysis of the atomic arrangement, defect structure, thermal vibration, and electron spatial distribution of the (001) and (111) surfaces of TiC.

Aono, Masakazu; Souda, Ryutaro

1985-10-01

150

Application of correlation constrained multivariate curve resolution alternating least-squares methods for determination of compounds of interest in biodiesel blends using NIR and UV-visible spectroscopic data.  

PubMed

This study describes two applications of a variant of the multivariate curve resolution alternating least squares (MCR-ALS) method with a correlation constraint. The first application describes the use of MCR-ALS for the determination of biodiesel concentrations in biodiesel blends using near infrared (NIR) spectroscopic data. In the second application, the proposed method allowed the determination of the synthetic antioxidant N,N'-Di-sec-butyl-p-phenylenediamine (PDA) present in biodiesel mixtures from different vegetable sources using UV-visible spectroscopy. Well established multivariate regression algorithm, partial least squares (PLS), were calculated for comparison of the quantification performance in the models developed in both applications. The correlation constraint has been adapted to handle the presence of batch-to-batch matrix effects due to ageing effects, which might occur when different groups of samples were used to build a calibration model in the first application. Different data set configurations and diverse modes of application of the correlation constraint are explored and guidelines are given to cope with different type of analytical problems, such as the correction of matrix effects among biodiesel samples, where MCR-ALS outperformed PLS reducing the relative error of prediction RE (%) from 9.82% to 4.85% in the first application, or the determination of minor compound with overlapped weak spectroscopic signals, where MCR-ALS gave higher (RE (%)=3.16%) for prediction of PDA compared to PLS (RE (%)=1.99%), but with the advantage of recovering the related pure spectral profile of analytes and interferences. The obtained results show the potential of the MCR-ALS method with correlation constraint to be adapted to diverse data set configurations and analytical problems related to the determination of biodiesel mixtures and added compounds therein. PMID:24840439

de Oliveira, Rodrigo Rocha; de Lima, Kássio Michell Gomes; Tauler, Romà; de Juan, Anna

2014-07-01

151

Quantitative Analysis of Panax ginseng by FT-NIR Spectroscopy  

PubMed Central

Near-infrared spectroscopy (NIRS), a rapid and efficient tool, was used to determine the total amount of nine ginsenosides in Panax ginseng. In the study, the regression models were established using multivariate regression methods with the results from conventional chemical analytical methods as reference values. The multivariate regression methods, partial least squares regression (PLSR) and principal component regression (PCR), were discussed and the PLSR was more suitable. Multiplicative scatter correction (MSC), second derivative, and Savitzky-Golay smoothing were utilized together for the spectral preprocessing. When evaluating the final model, factors such as correlation coefficient (R2) and the root mean square error of prediction (RMSEP) were considered. The final optimal results of PLSR model showed that root mean square error of prediction (RMSEP) and correlation coefficients (R2) in the calibration set were 0.159 and 0.963, respectively. The results demonstrated that the NIRS as a new method can be applied to the quality control of Ginseng Radix et Rhizoma.

Xu, Xin-fang; Nie, Li-xing; Pan, Li-li; Hao, Bian; Yuan, Shao-xiong; Lin, Rui-chao; Bu, Hai-bo; Wang, Dan; Dong, Ling; Li, Xiang-ri

2014-01-01

152

Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves  

NASA Astrophysics Data System (ADS)

Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

2010-03-01

153

Gas-Phase Database for Quantitative Infrared Spectroscopy  

SciTech Connect

The National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) are each creating quantitative databases containing the vapor-phase infrared spectra of pure chemicals. The digital databases have been created with both laboratory and remote-sensing applications in mind. A spectral resolution of {approx} 0.1 cm{sup -1} was selected to avoid degrading sharp spectral features, while also realizing that atmospheric broadening typically limits line widths to 0.1 cm{sup -1}. Calculated positional (wave number, cm{sup -1}) uncertainty is {le} 0.005 cm{sup -1}, while the 1{sigma} statistical uncertainty in absorbance values is <2% for most compounds. The latter was achieved by measuring multiple (typically {ge} 9) path length-concentration burdens and fitting a weighted Beer's law plot to each wave number channel. The two databases include different classes of compounds and were compared using 12 samples. Though these 12 samples span a range of polarities, absorption strengths, and vapor pressures, the data agree to within experimental uncertainties with only one exception.

Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.; Chu, Pamela M.; Rhoderick, G C.; Johnson, P A.

2004-12-10

154

A comprehensive approach for quantitative lignin characterization by NMR spectroscopy.  

PubMed

A detailed approach for the quantification of different lignin structures in milled wood lignin (MWL) has been suggested using a combination of NMR techniques. 1H-13C heteronuclear multiple quantum coherence and quantitative 13C NMR of nonacetylated and acetylated spruce MWL have been found to have a synergetic effect, resulting in significant progress in the characterization of lignin moieties by NMR. About 80% of side chain moieties, such as different beta-O-4, dibenzodioxocin, phenylcoumaran, pinoresinol, and others, have been identified on the structural level. The presence of appreciable amounts of alpha-O-alkyl and gamma-O-alkyl ethers has been suggested. Although the quantification of various condensed moieties was less precise than for side chain structures, reliable information can be obtained. Comparison of the calculated results with known databases on spruce MWL structure shows that the suggested approach is rather informative and comparable with the information obtained from the combination of various wet chemistry methods. Discrepancies between the results obtained in this study and those previously published are discussed. PMID:15053520

Capanema, Ewellyn A; Balakshin, Mikhail Y; Kadla, John F

2004-04-01

155

Photoemission spectroscopy of size selected zinc sulfide nanocrystallites  

NASA Astrophysics Data System (ADS)

We report photoemission spectroscopic studies of zinc sulfide nanocrystallites in the quantum size regime. The nanocrystallites studied have average sizes of 1.8, 2.5, and 3.5 nm and narrow size distributions as determined from UV-visible absorption spectroscopy, as well as x-ray diffraction and high-resolution transmission electron microscopy. Analysis of sulfur core levels from the nanocrystallites show the presence of the three types of sulfur species corresponding to the core, the surface, and the capping layer of the nanocrystallites. We show that a quantitative analysis of these different sulfur components can be used to estimate the sizes of the nanocrystallites; thus, the obtained sizes are in good agreement with the sizes determined independently from small angle x-ray diffraction and high-resolution electron microscopy.

Nanda, J.; Sarma, D. D.

2001-09-01

156

Quantitative analysis of potential adulterants of extra virgin olive oil using infrared spectroscopy  

Microsoft Academic Search

The determination of food authenticity and the detection of adulteration are problems of increasing importance in the food industry. This is especially so for ‘value-added’ products, where the potential financial rewards for substitution with a cheaper ingredient are high. In this paper, the potential of infrared spectroscopy as a rapid analytical technique for the quantitative determination of adulterants in extra

Y. W. Lai; E. K. Kemsley; R. H. Wilson

1995-01-01

157

Real-time Quantitative X-Ray Spectroscopy with a von Hamos Spectrometer  

NASA Astrophysics Data System (ADS)

The real-time quantitative spectroscopy of laser-produced plasmas is explored using a compact von Hamos spectrometer and linear CCD array. This system provides excellent spectral resolution and high dynamic range for compact x-ray sources. Possible uses of this spectrometer include applications in x-ray lithography and laser produced plasma diagnostics.

Weeks, Tyler; Johnson, Michael; Raymond, Scott; Johnson, Jon Paul; Knight, Larry; Shevelko, Alexander

2004-10-01

158

Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited  

ERIC Educational Resources Information Center

Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

2008-01-01

159

Quantitative Characterization of DNA Films by X-ray Photoelectron Spectroscopy.  

National Technical Information Service (NTIS)

We describe the use of self-assembled films of thiolated (dT)25 single-stranded DNA (ssDNA) on gold as a model system for quantitative characterization of DNA films by X-ray photoelectron spectroscopy (XPS). We evaluate the applicability of a uniform and ...

D. Y. Petrovykh H. Kimura-Suda L. J. Whitman M. J. Tarlov

2003-01-01

160

Instrument independent diffuse reflectance spectroscopy  

NASA Astrophysics Data System (ADS)

Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post/premeasurement calibration, thus saving up to an hour of precious clinical time.

Yu, Bing; Fu, Henry L.; Ramanujam, Nirmala

2011-01-01

161

Instrument independent diffuse reflectance spectroscopy.  

PubMed

Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post?premeasurement calibration, thus saving up to an hour of precious clinical time. PMID:21280897

Yu, Bing; Fu, Henry L; Ramanujam, Nirmala

2011-01-01

162

Instrument independent diffuse reflectance spectroscopy  

PubMed Central

Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post?premeasurement calibration, thus saving up to an hour of precious clinical time.

Yu, Bing; Fu, Henry L.; Ramanujam, Nirmala

2011-01-01

163

Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies  

NASA Astrophysics Data System (ADS)

Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such monitoring methods can therefore be interesting for designing monitoring strategy of environmental observatory and provide dense time series likely to highlight patterns or trends using appropriate approaches such as spectral analysis [2]. 1. Wade, A.J. et al., HESS Discuss., 2012. 9(5), p.6458- 6506. 2. Aubert, A. et al., submitted to EGU 2013-4745 vol. 15.

Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

2013-04-01

164

[Quantitative analysis model of multi-component complex oil spill source based on near infrared spectroscopy].  

PubMed

Near infrared spectroscopy technology was used for quantitative analysis of the simulation of complex oil spill source. Three light petroleum products, i. e. gasoline, diesel fuel and kerosene oil, were selected and configured as simulated mixture of oil spill samples in accordance with different concentrations proportion, and their near infrared spectroscopy in the range of 8 000 -12 000 cm(-1) was collected by Fourier transform near infrared spectrometer. After processing the NIR spectra with different pretreatment methods, partial least squares method was used to establish quantitative analysis model for the mixture of oil spill samples. For gasoline, diesel fuel and kerosene oil, the second derivative method is the optimal pretreatment method, and for these three oil components in the ranges of 8 501.3-7 999.8 and 6 102.1-4 597.8 cm(-1); 6 549.5-4 597.8; 7 999.8-7 498.4 and 102.1-4 597.8 cm(-1), the correlation coefficients R2 of the prediction model are 0.998 2, 0.990 2 and 0.993 6 respectively, while the forecast RMSEP indicators are 0.474 7, 0.936 1 and 1.013 1 respectively; The experimental results show that using near infrared spectroscopy can quantitatively determine the content of each component in the simulated mixed oil spill samples, thus this method can provide effective means for the quantitative detection and analysis of complex marine oil spill source. PMID:23427535

Tan, Ai-Ling; Bi, Wei-Hong

2012-12-01

165

Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application.  

PubMed Central

Measurement of receptor distributions on cell surfaces is one important aspect of understanding the mechanism whereby receptors function. In recent years, scanning fluorescence correlation spectroscopy has emerged as an excellent tool for making quantitative measurements of cluster sizes and densities. However, the measurements are slow and usually require fixed preparations. Moreover, while the precision is good, the accuracy is limited by the relatively small amount of information in each measurement, such that many are required. Here we present a novel extension of the scanning correlation spectroscopy that solves a number of the present problems. The new technique, which we call image correlation spectroscopy, is based on quantitative analysis of confocal scanning laser microscopy images. Since these can be generated in a matter of a second or so, the measurements become more rapid. The image is collected over a large cell area so that more sampling is done, improving the accuracy. The sacrifice is a lower resolution in the sampling, which leads to a lower precision. This compromise of precision in favor of speed and accuracy still provides an enormous advantage for image correlation spectroscopy over scanning correlation spectroscopy. The present work demonstrates the underlying theory, showing how the principles can be applied to measurements on standard fluorescent beads and changes in distribution of receptors for platelet-derived growth factor on human foreskin fibroblasts. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 6 FIGURE 7

Petersen, N O; Hoddelius, P L; Wiseman, P W; Seger, O; Magnusson, K E

1993-01-01

166

Screening hypochromism (sieve effect) in red blood cells: a quantitative analysis  

PubMed Central

Multiwavelength UV-visible spectroscopy, Kramers-Kronig analysis, and several other experimental and theoretical tools have been applied over the last several decades to fathom absorption and scattering of light by suspensions of micron-sized pigmented particles, including red blood cells, but a satisfactory quantitative analysis of the difference between the absorption spectra of suspension of intact and lysed red blood cells is still lacking. It is stressed that such a comparison is meaningful only if the pertinent spectra are free from, or have been corrected for, scattering losses, and it is shown that Duysens’ theory can, whereas that of Vekshin cannot, account satisfactorily for the observed hypochromism of suspensions of red blood cells.

Razi Naqvi, K.

2014-01-01

167

Screening hypochromism (sieve effect) in red blood cells: a quantitative analysis.  

PubMed

Multiwavelength UV-visible spectroscopy, Kramers-Kronig analysis, and several other experimental and theoretical tools have been applied over the last several decades to fathom absorption and scattering of light by suspensions of micron-sized pigmented particles, including red blood cells, but a satisfactory quantitative analysis of the difference between the absorption spectra of suspension of intact and lysed red blood cells is still lacking. It is stressed that such a comparison is meaningful only if the pertinent spectra are free from, or have been corrected for, scattering losses, and it is shown that Duysens' theory can, whereas that of Vekshin cannot, account satisfactorily for the observed hypochromism of suspensions of red blood cells. PMID:24761307

Razi Naqvi, K

2014-04-01

168

Evaluation of Hydrodynamic Chromatography Coupled with UV-Visible, Fluorescence and Inductively Coupled Plasma Mass Spectrometry Detectors for Sizing and Quantifying Colloids in Environmental Media  

PubMed Central

In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO2 and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.

Philippe, Allan; Schaumann, Gabriele E.

2014-01-01

169

Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations.  

PubMed

In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C. PMID:24184584

Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M

2014-01-24

170

[Determination of distribution and effective distribution coefficient of Cr3+ in LiNbO3 single crystals using UV/Visible absorption spectra and ICP].  

PubMed

The LiNbO3 crystals doped with Cr3+ ion (Cr:LN) and co-doped with Cr3+ and Zn ions (Zn:Cr:LN) were grown by the Bridgman method. The absorption coefficient and concentration of Cr3+ in crystals were measured by UV/Visible spectra and inductively coupled plasma (ICP) spectrometry, respectively. The effective distribution coefficients (k) of Cr3+ in the crystals were calculated. The results indicated that the k for Cr:LN crystal decreased from 3.75 to 2.49 as the incorporating concentration of Cr3+ increased from 0.1 to 0.5 mol%; the introduction of ZnO in Cr:LN induced the reduction of k value effectively. However, the k value increased from 1.85 to 2.25 as the incorporating concentration of ZnO increased from 3 to 6 mol%. The variation of the k value was explained by the suppressing effect of ZnO on the incorporation of Cr3+ ions and the distribution of Cr3+ in LN. PMID:16201383

Xia, Hai-ping; Wang, Jin-hao; Zeng, Xian-lin; Zhang, Jian-li; Zhang, Xin-min; Nie, Qiu-hua

2005-06-01

171

Identification and quantitation of gamma-hydroxybutyrate (NaGHB) by nuclear magnetic resonance spectroscopy.  

PubMed

The most common means of identification of gamma-hydroxybutyrate (NaGHB) involves using Fourier transform infrared spectroscopy (FTIR) or gas chromatography-mass spectrometry (GC-MS) of a suitable derivative. However, these methods may be complicated by possible shifts in chemical equilibrium between gamma-hydroxybutyric acid (GHB), GHB salts and the precursor lactone, gamma-butyrolactone (GBL). This paper addresses the technique of proton and carbon nuclear magnetic resonance spectroscopy (1H and 13C NMR) for the direct and accurate identification of GHB and GBL. The application of 1H NMR for GHB quantitation is also discussed. PMID:12664985

Chew, Shirley L; Meyers, John A

2003-03-01

172

Fluorescence Fluctuation Spectroscopy Enables Quantitative Imaging of Single mRNAs in Living Cells  

PubMed Central

Imaging mRNA with single-molecule sensitivity in live cells has become an indispensable tool for quantitatively studying RNA biology. The MS2 system has been extensively used due to its unique simplicity and sensitivity. However, the levels of the coat protein needed for consistent labeling of mRNAs limits the sensitivity and quantitation of this technology. Here, we applied fluorescence fluctuation spectroscopy to quantitatively characterize and enhance the MS2 system. Surprisingly, we found that a high fluorescence background resulted from inefficient dimerization of fluorescent protein (FP)-labeled MS2 coat protein (MCP). To mitigate this problem, we used a single-chain tandem dimer of MCP (tdMCP) that significantly increased the uniformity and sensitivity of mRNA labeling. Furthermore, we characterized the PP7 coat protein and the binding to its respective RNA stem loop. We conclude that the PP7 system performs better for RNA labeling. Finally, we used these improvements to study endogenous ?-actin mRNA, which has 24xMS2 binding sites inserted into the 3? untranslated region. The tdMCP-FP allowed uniform RNA labeling and provided quantitative measurements of endogenous mRNA concentration and diffusion. This work provides a foundation for quantitative spectroscopy and imaging of single mRNAs directly in live cells.

Wu, Bin; Chao, Jeffrey A.; Singer, Robert H.

2012-01-01

173

Quantitative analysis of the mixtures of illicit drugs using terahertz time-domain spectroscopy  

NASA Astrophysics Data System (ADS)

A method was proposed to quantitatively inspect the mixtures of illicit drugs with terahertz time-domain spectroscopy technique. The mass percentages of all components in a mixture can be obtained by linear regression analysis, on the assumption that all components in the mixture and their absorption features be known. For illicit drugs were scarce and expensive, firstly we used common chemicals, Benzophenone, Anthraquinone, Pyridoxine hydrochloride and L-Ascorbic acid in the experiment. Then illicit drugs and a common adulterant, methamphetamine and flour, were selected for our experiment. Experimental results were in significant agreement with actual content, which suggested that it could be an effective method for quantitative identification of illicit drugs.

Jiang, Dejun; Zhao, Shusen; Shen, Jingling

2008-03-01

174

Quantitative influence of cholesterol on non-invasive blood glucose sensing studied with NIR spectroscopy  

NASA Astrophysics Data System (ADS)

Previous study results indicated that there is a certain influence of cholesterol on non-invasive blood glucose sensing studied with NIR spectroscopy. So, this talk aims to investigate quantitative influence of cholesterol through Partial Least Squares (PLS) modeling and Unary Linear Regression (ULR) analysis respectively. PLS modeling results indicate that glucose concentration increase with the increase of cholesterol concentration. ULR analysis results indicate that there is a positive correlation between the increment of glucose and the cholesterol concentration. And the quantitative relationship has been obtained.

Jiang, Jingying; Zhang, Lingling; Zhang, Kai; Xu, Kexin

2012-02-01

175

Quantitative Elemental Mapping at Atomic Resolution Using X-Ray Spectroscopy  

NASA Astrophysics Data System (ADS)

Elemental mapping using energy-dispersive x-ray spectroscopy in scanning transmission electron microscopy, a well-established technique for precision elemental concentration analysis at submicron resolution, was first demonstrated at atomic resolution in 2010. However, to date atomic resolution elemental maps have only been interpreted qualitatively because the elastic and thermal scattering of the electron probe confounds quantitative analysis. Accounting for this scattering, we present absolute scale quantitative comparisons between experiment and quantum mechanical calculations for both energy dispersive x-ray and electron energy-loss spectroscopy using off-axis reference measurements. The relative merits of removing the scattering effects from the experimental data against comparison with direct simulations are explored.

Kothleitner, G.; Neish, M. J.; Lugg, N. R.; Findlay, S. D.; Grogger, W.; Hofer, F.; Allen, L. J.

2014-02-01

176

Optimized external IR reflection spectroscopy for quantitative determination of borophosphosilicate glass parameters  

Microsoft Academic Search

Infrared (IR) external reflection spectroscopy has been optimized for the quantitative determination of composition and film thickness of borophosphosilicate glass (BPSG) deposited on silicon wafer substrates. The precision of the partial least-squares calibrations for boron and phosphorus contents and thin-film thickness were measured as the cross-validated standard error of prediction statistic. The results showed that BPSG IR reflection spectra collected

Lizhong Zhang; James E. Franke; Thomas M. Niemczyk; David M. Haaland

1997-01-01

177

Quantitative scanning capacitance spectroscopy on GaAs and InAs quantum dots  

NASA Astrophysics Data System (ADS)

In this work, quantitative scanning capacitance spectroscopy studies on bulk GaAs samples and InAs quantum dots are carried out in an ambient atmosphere. The experimental results are described by a simple spherical capacitor model, and the corresponding barrier heights and sample dopings are determined. We further find a strong dependence of the C(V) data on the applied tip force. The barrier height decreases significantly with increasing pressure.

Brezna, W.; Roch, T.; Strasser, G.; Smoliner, J.

2005-09-01

178

Quantitative estimation of polysaccharides in molasses using Near Infra Red spectroscopy  

Microsoft Academic Search

Non-invasive near infrared spectroscopy (NIR) in transmittance mode between 1100–2500 nm was employed for the quantitative\\u000a estimation of dextran, starch, gum and pectin in final molasses one at a time. Partial least square regression analyses was\\u000a used to develop a calibration model with 40 samples each in 0th, 1st and 2nd derivatives which gave low SEC values. This method was

Satindar Kaur; R. S. S. Kaler

2008-01-01

179

Quantitative analysis of water distribution in human articular cartilage using terahertz time-domain spectroscopy  

PubMed Central

The water distribution in human osteoarthritic articular cartilage has been quantitatively characterized using terahertz time-domain spectroscopy (THz TDS). We measured the refractive index and absorption coefficient of cartilage tissue in the THz frequency range. Based on our measurements, the estimated water content was observed to decrease with increasing depth cartilage tissue, showing good agreement with a previous report based on destructive biochemical methods.

Jung, Euna; Choi, Hyuck Jae; Lim, Meehyun; Kang, Hyeona; Park, Hongkyu; Han, Haewook; Min, Byung-hyun; Kim, Sangin; Park, Ikmo; Lim, Hanjo

2012-01-01

180

Quantitative analysis of malic and citric acids in fruit juices using proton nuclear magnetic resonance spectroscopy  

Microsoft Academic Search

1H NMR spectroscopy was applied to the quantitative determination of malic and citric acids in apple, apricot, pear, kiwi, orange, strawberry and pineapple juices. Aspartic acid was studied as a potential interference. The effect of the sample pH on the chemical shifts of signals from malic, citric and aspartic acids was examined and a value of 1.0 was selected to

Gloria del Campo; Iñaki Berregi; Raúl Caracena; J. Ignacio Santos

2006-01-01

181

Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy  

Microsoft Academic Search

The determination and quantification of glyphosate in serum using 1H NMR spectroscopy is reported. This method permitted serum samples to be analysed without derivatization or any other sample pre-treatment, using 3-trimethylsilyl 2,2?,3,3?-tetradeuteropropionic acid (TSP-d4) as a qualitative and quantitative standard. Characterization of the herbicide N-(phosphonomethyl)glycine was performed by analysing chemical shifts and coupling constant patterns. Quantification was performed by relative

Bernard Cartigny; Nathalie Azaroual; Michel Imbenotte; Daniel Mathieu; Erika Parmentier; Gaston Vermeersch; Michel Lhermitte

2008-01-01

182

Quantitative Determination of Carthamin in Carthamus Red by 1H-NMR Spectroscopy.  

PubMed

Carthamus Red is a food colorant prepared from the petals of Carthamus tinctorius (Asteraceae) whose major pigment is carthamin. Since an authentic carthamin standard is difficult to obtain commercially for the preparation of calibration curves in HPLC assays, we applied (1)H-NMR spectroscopy to the quantitative determination of carthamin in commercial preparations of Carthamus Red. Carthamus Red was repeatedly extracted in methanol and the extract was dissolved in pyridine-d(5) containing hexamethyldisilane (HMD) prior to (1)H-NMR spectroscopic analysis. The carthamin contents were calculated from the ratios of singlet signal intensities at approximately ?: 9.3 derived from H-16 of carthamin to those of the HMD signal at ?: 0. The integral ratios exhibited good repeatability among NMR spectroscopic analyses. Both the intra-day and inter-day assay variations had coefficients of variation of <5%. Based on the coefficient of absorption, the carthamin contents of commercial preparations determined by (1)H-NMR spectroscopy correlated well with those determined by colorimetry, although the latter were always approximately 1.3-fold higher than the former, irrespective of the Carthamus Red preparations. In conclusion, the quantitative (1)H-NMR spectroscopy used in the present study is simple and rapid, requiring no carthamin standard for calibration. After HMD concentration has been corrected using certified reference materials, the carthamin contents determined by (1)H-NMR spectroscopy are System of Units (SI)-traceable. PMID:24436958

Yoshida, Takamitsu; Terasaka, Kazuyoshi; Kato, Setsuko; Bai, Fan; Sugimoto, Naoki; Akiyama, Hiroshi; Yamazaki, Takeshi; Mizukami, Hajime

2013-01-01

183

Multiangle-multiwavelength UV\\/visible spectroscopy for the characterization of the joint property distribution of whole blood and its components  

Microsoft Academic Search

The characterization of biological fluids for diagnostic purposes implies the estimation of the particle size distribution, the chemical composition, the shape distribution and the charge of the particles suspended in the fluid. These particle properties are defined as the joint particle property distribution. The shape distribution is especially important for the identification of healthy cells, sickle cells, viruses and bacteria.

Christina P. Bacon; Luis H. Garcia-Rubio

1998-01-01

184

Part I. Application of the radio-frequency furnace technique to environmental trace analysis. Part II. The applicability of Hadamard transform techniques to uv-visible spectroscopy  

Microsoft Academic Search

A radio frequency furnace is described. The application of this atomization source to the analysis of trace environmental samples by atomic absorption is demonstrated. Accuracy on the order of 8 percent at the low ppM level was obtained with such samples. Absolute sensitivities of 10¹° to 10¹² g were obtained for zinc, lead, and copper. The instrument is capable of

Crosmun

1974-01-01

185

Part I. Application of the Radio-Frequency Furnace Technique to Environmental Trace Analysis. Part II. The Applicability of Hadamard Transform Techniques to UV-Visible Spectroscopy.  

National Technical Information Service (NTIS)

A radio frequency furnace is described. The application of this atomization source to the analysis of trace environmental samples by atomic absorption is demonstrated. Accuracy on the order of 8 percent at the low ppM level was obtained with such samples....

R. Crosmun

1974-01-01

186

Ozone and NO2 variations measured during the 1 August 2008 solar eclipse above Eureka, Canada with a UV-visible spectrometer  

NASA Astrophysics Data System (ADS)

On 1 August 2008, a solar eclipse of 98% totality passed over the Polar Environment Atmospheric Research Laboratory at Eureka, Canada (80.05°N, 86.42°W), which is run by the Canadian Network for the Detection of Atmospheric Change. During the eclipse, a zenith-sky UV-visible spectrometer measured slant column densities (SCDs) and vertical column densities (VCDs) of ozone up to 82% occultation and NO2 up to 96% occultation, beyond which low light intensities and changes in the solar spectrum due to limb darkening compromised data quality. Ozone VCDs during the eclipse remained within natural variability, and this study is inconclusive regarding ozone oscillations due to limited temporal resolution and measurement errors toward eclipse maximum. Measured NO2 SCDs increased and decreased symmetrically around the eclipse maximum. NO2 SCDs were also calculated using a photochemical box model and a one-dimensional radiative transfer model. The modeled ratio of eclipse day SCDs to the previous day's SCDs was compared to the measurements. They agreed within error bars leading up to maximum occultation, but the model ratio was systematically larger than the measured ratio for the second half of the eclipse, perhaps due to changing cloud conditions throughout the eclipse. The measured NO2 SCD ratio of 1.84-0.43+0.12 at 96% totality is larger than observed in past studies and agrees with modeled ratio of 1.91. Therefore our current understanding of stratospheric photochemistry is sufficient to predict the evolution of NOx chemistry through a solar eclipse.

Adams, Cristen; McLinden, Chris A.; Strong, Kimberly; Umlenski, Vasil

2010-10-01

187

Characterization of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV-Visible diode array and excitation emission matrix fluorescence.  

PubMed

Flow field-flow fractionation (FlFFF) with on-line UV/Visible diode array detector (DAD) and excitation emission matrix (EEM) fluorescence detector has been developed for the characterization of optical properties of aquatic dissolved organic matter (DOM) collected in the Otonabee River (Ontario, Canada) and Athabasca River (Alberta, Canada). The molecular weight (MW) distribution of DOM was estimated using a series of organic macromolecules ranging from 479 to 66,000 Da. Both the number-average (M(n)) and weight-average (M(w)) molecular weights of Suwannee River fulvic acid (SRFA) and Suwannee River humic acid (SRHA) determined using these macromolecular standards were comparable to those obtained using polystyrenesulfonate (PSS) standards, suggesting that organic macromolecules can be used to estimate MW of natural organic colloids. The MW of eight river DOM samples determined by this method was found to have an M(n) range of 0.8-1.1 kDa, which agrees with available literature estimates. The FlFFF-DAD-EEM system provided insight into the MW components of river DOM including the optical properties by on-line absorbance and fluorescence measurement. A red-shift in emission and excitation wavelength maxima associated with lower spectral slope ratios (S(R)=S???????:S???????) was related to higher MW DOM. However, DOM of different origins at similar MW also showed significant difference in optical properties. A difference of 47 and 40 nm in excitation and emission peak C maxima was found. This supports the hypothesis that river DOM is not uniform in size and optical composition. PMID:21227433

Guéguen, Céline; Cuss, Chad W

2011-07-01

188

Quantitative Analysis of the Detection Limits for Heavy-Metal-Contaminated Soils by Laser-Induced Breakdown Spectroscopy.  

National Technical Information Service (NTIS)

Laser-induced breakdown spectroscopy (LIBS) is a rapid remote measurement method for detection of metals in the environment. A major factor in the quantitative use of this technique involves the minimum detection limits under laboratory and field operatio...

D. R. Alexander D. E. Poulain

1996-01-01

189

Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media  

NASA Astrophysics Data System (ADS)

In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of ethidium bromide increases by an order of magnitude upon binding to DNA. In this thesis, I demonstrated that the fluorescence photon migration model is capable of accurately determining the somatic cell count (SCC) in a milk sample. Although meant as a demonstration of fluorescence tissue spectroscopy, this specific problem has important implications for the dairy industry's warfare against subclinical mastitis (i.e., mammary gland inflammation), since the SCC is often used as an indication of bovine infection.

Cerussi, Albert Edward

1999-09-01

190

Stopped-flow rapid-scan Fourier transform infrared spectroscopy  

SciTech Connect

A stopped-flow rapid-mixing device interfaced with a rapid-scan FT-IR spectrometer and a diode-array UV-visible spectrophotometer permits the observation of reaction transient intermediates over a broad range of wavelengths at minimal cost. The system has been evaluated for both spectral regions with the use of two different chemical reaction systems. The presence of a transient intermediate is clearly indicated in one case. Unexpected reactivity was observed in the other case. This approach will allow the study of chemical reactions even when no spectral changes occur in the UV-visible region. {copyright} {ital 1999} {ital Society for Applied Spectroscopy}

Dunn, B.C.; Eyring, E.M. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States)] [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States)

1999-03-01

191

Probing the Si-Si dimer breaking of Si(100)2x1 surfaces upon molecule adsorption by optical spectroscopy.  

PubMed

The adsorption of atoms and molecules of several gases of the Si(100)2x1 silicon reconstructed surface is investigated by surface differential reflectance spectroscopy. This UV-visible optical spectroscopy makes possible the discrimination between two adsorption modes, depending on whether or not the adsorption leads to breaking the Si-Si dimers. The observation of two different optical features is assigned to the bonding on dangling bonds or to the breaking of dimers, and gives access to the adsorption mode of hydrogen, water, oxygen, and pyridine. Moreover, the technique being quantitative, we can determine the total amount of dimers involved in the adsorption and monitor the adsorption kinetics. PMID:16197046

Borensztein, Y; Pluchery, O; Witkowski, N

2005-09-01

192

Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course  

ERIC Educational Resources Information Center

An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

2004-01-01

193

Quantitative drop spectroscopy using the drop analyser: theoretical and experimental approach for microvolume applications of non-turbid solutions  

Microsoft Academic Search

The drop analyser, also termed the tensiograph, is an optical fibre-based instrument system for monitoring liquids. A comprehensive assessment of the drop analyser used as a UV–visible spectrophotometer has been undertaken employing both experimental and theoretical studies. A model of the tensiograph signal (tensiotrace) has been developed using a ray-tracing approach to accurately predict the form of the tensiotrace as

N D McMillan; S R P Smith; A C Bertho; D Morrin; M O'Neill; K Tiernan; J Hammond; N Barnett; P Pringuet; E O'Mongain; B O'Rourke; S Riedel; M Neill; A Augousti; N Wüstneck; R Wüstneck; D D G McMillan; F Colin; P Hennerbert; G Pottecher; D Kennedy

2008-01-01

194

Probing the sulfur content in gasoline quantitatively with terahertz time-domain spectroscopy  

NASA Astrophysics Data System (ADS)

Terahertz time-domain spectroscopy (THz-TDS) was used for the quantitative detection of sulfur content in gasoline. Models of chemo metrics methods and partial least squares (PLS) were built to measure THz-TDS and the sulfur content. All of the samples were divided into two parts. One part was used for calibration and the other one for validation. In order to evaluate the quality of the models, the correlation coefficient ( R) and root-mean-square errors (RMSE) of calibration and validation models were calculated. The value of R and RMSE were close to 1 and 0 within acceptable levels, respectively, indicating that the combination of THz-TDS and PLS is a potential method for further quantitative detection.

Qin, FangLi; Li, Qian; Zhan, HongLei; Jin, WuJun; Liu, HongLan; Zhao, Kun

2014-07-01

195

Probing the sulfur content in gasoline quantitatively with terahertz time-domain spectroscopy  

NASA Astrophysics Data System (ADS)

Terahertz time-domain spectroscopy (THz-TDS) was used for the quantitative detection of sulfur content in gasoline. Models of chemo metrics methods and partial least squares (PLS) were built to measure THz-TDS and the sulfur content. All of the samples were divided into two parts. One part was used for calibration and the other one for validation. In order to evaluate the quality of the models, the correlation coefficient (R) and root-mean-square errors (RMSE) of calibration and validation models were calculated. The value of R and RMSE were close to 1 and 0 within acceptable levels, respectively, indicating that the combination of THz-TDS and PLS is a potential method for further quantitative detection.

Qin, FangLi; Li, Qian; Zhan, HongLei; Jin, WuJun; Liu, HongLan; Zhao, Kun

2014-04-01

196

Quantitative Analysis for Monitoring Formulation of Lubricating Oil Using Terahertz Time-Domain Transmission Spectroscopy  

NASA Astrophysics Data System (ADS)

The quantitative analysis of zinc isopropyl-isooctyl-dithiophosphate (T204) mixed with lube base oil from Korea with viscosity index 70 (T204-Korea70) is presented by using terahertz time-domain spectroscopy (THz-TDS). Compared with the middle-infrared spectra of zinc n-butyl-isooctyl-dithiophosphate (T202) and T204, THz spectra of T202 and T204 show the weak broad absorption bands. Then, the absorption coefficients of the T204-Korea70 system follow Beer's law at the concentration from 0.124 to 4.024%. The experimental absorption spectra of T204-Korea70 agree with the calculated ones based on the standard absorption coefficients of T204 and Korea70. The quantitative analysis enables a strategy to monitor the formulation of lubricating oil in real time.

Tian, Lu; Zhao, Kun; Zhou, Qing-Li; Shi, Yu-Lei; Zhang, Cun-Lin

2012-04-01

197

Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform.  

PubMed

A modified algorithm of background removal based on wavelet transform was developed for spectrum correction in laser-induced breakdown spectroscopy (LIBS). The optimal type of wavelet function, decomposition level and scaling factor ? were determined by the root-mean-square error of calibration (RMSEC) of the univariate regression model of the analysis element, which is considered as the optimization criteria. After background removal by this modified algorithm with RMSEC, the root-mean-square error of cross-validation (RMSECV) and the average relative error (ARE) criteria, the accuracy of quantitative analysis on chromium (Cr), vanadium (V), cuprum (Cu), and manganese (Mn) in the low alloy steel was all improved significantly. The results demonstrated that the algorithm developed is an effective pretreatment method in LIBS to significantly improve the accuracy in the quantitative analysis. PMID:24921726

Zou, X H; Guo, L B; Shen, M; Li, X Y; Hao, Z Q; Zeng, Q D; Lu, Y F; Wang, Z M; Zeng, X Y

2014-05-01

198

13C NMR spectroscopy for the quantitative determination of compound ratios and polymer end groups.  

PubMed

(13)C NMR spectroscopic integration employing short relaxation delays was evaluated as a quantitative tool to obtain ratios of diastereomers, regioisomers, constitutional isomers, mixtures of unrelated compounds, peptoids, and sugars. The results were compared to established quantitative methods such as (1)H NMR spectroscopic integration, gas chromatography, and high-performance liquid chromatography and were found to be within <3.4% of (1)H NMR spectroscopic values (most examples give results within <2%). Acquisition of the spectra took 2-30 min on as little as 10 mg of sample, proving the general utility of the technique. The simple protocol was extended to include end group analysis of low molecular weight polymers, which afforded results in accordance with (1)H NMR spectroscopy and matrix-assisted laser desorption-ionization time-of-flight spectrometry. PMID:24601654

Otte, Douglas A L; Borchmann, Dorothee E; Lin, Chin; Weck, Marcus; Woerpel, K A

2014-03-21

199

Chemometrics applied to quantitative analysis of ternary mixtures by terahertz spectroscopy.  

PubMed

Chemometrics was applied to qualitative and quantitative analyses of terahertz spectra obtained in transmission mode. A series of mixtures of three pure analytes, namely, citric acid, d-(-)fructose, and ?-lactose monohydrate under various concentrations, was prepared as pressed pellets with polyethylene as binder. Then, terahertz absorbance spectra were recorded by terahertz time domain spectroscopy and analyzed. First, principal component analysis allowed one to correctly locate the samples into a ternary diagram. Second, quantitative analysis was achieved by partial least-squares (PLS) regression and artificial neural networks (ANN). The concentrations were predicted with values of relative mean square error lower than 0.9% for the three constituents. As a conclusion, chemometrics was demonstrated to be very efficient for the analysis of the ternary mixtures prepared for this study. PMID:24738647

El Haddad, Josette; de Miollis, Frederick; Bou Sleiman, Joyce; Canioni, Lionel; Mounaix, Patrick; Bousquet, Bruno

2014-05-20

200

Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils.

El Haddad, J.; Villot-Kadri, M.; Ismaël, A.; Gallou, G.; Michel, K.; Bruyère, D.; Laperche, V.; Canioni, L.; Bousquet, B.

2013-01-01

201

Quantitative analysis of annealed scanning probe tips using energy dispersive x-ray spectroscopy  

NASA Astrophysics Data System (ADS)

A quantitative method to measure the reduction in oxide species on the surface of electrochemically etched tungsten tips during direct current annealing is developed using energy dispersive x-ray spectroscopy. Oxide species are found to decrease with annealing current, with the trend repeatable over many tips and along the length of the tip apex. A linear resistivity approximation finds significant oxide sublimation occurs at 1714 K, but surface melting and tip broadening at 2215 K. This method can be applied to calibrate any similar annealing stage, and to identify the tradeoff regime between required morphological and chemical properties.

Cobley, R. J.; Brown, R. A.; Barnett, C. J.; Maffeis, T. G. G.; Penny, M. W.

2013-01-01

202

Quantitative analysis of iobitridol in an injectable preparation by 1H NMR spectroscopy.  

PubMed

Nuclear magnetic resonance spectroscopy was used for direct quantitative determination of iobitridol in an injectable formulation. The method was developed on a medium field strength magnet (400MHz) and validation was performed by assessing specificity, accuracy, precision, linearity, stability of samples and robustness. Validation data confirm that the method is highly appropriate for direct quantification of iobitridol in the final formulation. Moreover the method has a good potential for rapid screening analyses due to straightforward experimental setup and lack of any sample pretreatment. PMID:24531005

Borioni, Anna; Gostoli, Gianluca; Bossù, Elena; Sestili, Isabella

2014-06-01

203

Laser-induced breakdown spectroscopy for quantitative analysis of copper in algae  

NASA Astrophysics Data System (ADS)

Laser-induced breakdown spectroscopy (LIBS) has been applied for quantitative analysis of Cu in algae plants, an issue of paramount importance for environmental monitoring. For the analysis with LIBS, algae were compacted into solid pellets with powdered calcium hydroxide addition as binder and a pulsed Nd:YAG laser was employed to produce the plasmas in air at atmospheric pressure. In this approach, atomic lines from traces of Cu were detected, as well as other major and minor elements. The plasma was characterized and a calibration curve was constructed with reference samples prepared with calcium hydroxide. The results obtained demonstrated the usefulness of the method for Cu monitoring in algae plants.

Garcimuño, M.; Díaz Pace, D. M.; Bertuccelli, G.

2013-04-01

204

Quantitative analysis of urinary stone composition with micro-Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Urolithiasis is a common, disturbing disease with high recurrent rate (60% in five years). Accurate identification of urinary stone composition is important for treatment and prevention purpose. Our previous studies have demonstrated that micro-Raman spectroscopy (MRS)-based approach successfully detects the composition of tiny stone powders after minimal invasive urological surgery. But quantitative analysis of urinary stones was not established yet. In this study, human urinary stone mixed with two compositions of COM, HAP, COD, and uric acid, were analyzed quantitatively by using a 632.98 nm Raman spectrometric system. This quantitative analysis was based on the construction of calibration curves of known mixtures of synthetically prepared pure COM, HAP, COD and uric acid. First, the various concentration (mole fraction) ratio of binary mixtures including COM and HAP, COM and COD, or COM and uric acid, were produced. Second, the intensities of the characteristic bands at 1462cm -1(IRCOM), 1477cm-1(IRCOD), 961cm-1(IRHAP) and 1402cm-1(IRuric acid), for COD, COM, HAP and uric acid were used respectively for intensity calculation. Various binary mixtures of known concentration ratio were recorded as the basis for the quantitative analysis. The ratios of the relative intensities of the Raman bands corresponding to binary mixtures of known composition on the inverse of the COM concentration yielded a linear dependence. Third, urinary stone fragments collected from patients after management were analyzed with the use of the calibration curve and the quantitative analysis of unknown samples was made by the interpolation analysis. We successfully developed a MRS-based quantitative analytical method for measuring two composition.

Huang, Yi-Yu; Chiu, Yi-Chun; Chiang, Huihua Kenny; Chou, Y. H. Jet; Lu, Shing-Hwa; Chiu, Allen W.

2010-02-01

205

[Quantitative analysis of Mn, Cr in steel based on laser-induced breakdown spectroscopy].  

PubMed

Quantitative analysis of trace elements such as manganese and chromium in steel was performed employing laser-induced breakdown spectroscopy (LIBS) technique in the present paper. The experimental measurements indicate that the optimal delay, focal plane and detecting position from the sample surface are 2 micros, -3.5 mm and 1.5 mm,respectively. Mn I: 403.07 nm and Cr I : 427.48 nm were selected as the analytical lines and their contents in the target steel sample were analyzed with traditional quantitative analysis and internal standard methods. Comparison of the results with two kinds of quantitatively analytical methods show that the coefficients of determination gained by internal standard method are 0.998 and 0.979 which are much better than the results obtained by traditional quantitative analysis method. According to the established calibration curve by internal standard method the detection limits of manganese and chromium calculated are 0.005% and 0.040 6%, respectively. PMID:22097868

Wang, Qi; Chen, Xing-Long; Yu, Rong-Hua; Xu, Ming-Ming; Yang, Yang; Wu, Bian; Ni, Zhi-Bo; Dong, Feng-Zhong

2011-09-01

206

NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations  

NASA Astrophysics Data System (ADS)

Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change) UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measuring total ozone twice daily with limited sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS spectral parameters and the calculation of air mass factors (AMF) needed for the conversion of O3 slant column densities into vertical column amounts. The most important improvement is the use of O3 AMF look-up tables calculated using the TOMS V8 (TV8) O3 profile climatology, that allows accounting for the dependence of the O3 AMF on the seasonal and latitudinal variations of the O3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Système d'Analyse par Observation Zénithale) network. The revised SAOZ ozone data from eight stations deployed at all latitudes have been compared to TOMS, GOME-GDP4, SCIAMACHY-TOSOMI, SCIAMACHY-OL3, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments at Observatoire de Haute Provence (44° N, 5.5° E) and Sodankyla (67° N, 27° E), respectively. A significantly better agreement is obtained between SAOZ and correlative reference ground-based measurements after applying the new O3 AMFs. However, systematic seasonal differences between SAOZ and satellite instruments remain. These are shown to mainly originate from (i) a possible problem in the satellite retrieval algorithms in dealing with the temperature dependence of the ozone cross-sections in the UV and the solar zenith angle (SZA) dependence, (ii) zonal modulations and seasonal variations of tropospheric ozone columns not accounted for in the TV8 profile climatology, and (iii) uncertainty on the stratospheric ozone profiles at high latitude in the winter in the TV8 climatology. For those measurements mostly sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, or to SZA like SCIAMACHY-TOSOMI, the application of temperature and SZA corrections results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.

Hendrick, F.; Pommereau, J.-P.; Goutail, F.; Evans, R. D.; Ionov, D.; Pazmino, A.; Kyrö, E.; Held, G.; Eriksen, P.; Dorokhov, V.; Gil, M.; van Roozendael, M.

2011-06-01

207

Introduction to Spectroscopy  

NSDL National Science Digital Library

This site covers introductory material related to the analysis of small organic molecules by mass spectrometry, UV-visible, IR, and NMR spectroscopy. A concise explanation of each approach is presented with illustrations. This would be useful for those teaching organic chemistry and for others who need a review of the topic. The section on Spectroscopy Resources at the end of the site contains a list of links to additional information plus a several links to compilations of problems (and their solutions) that challenge the student to interpret NMR or IR spectra.

Reusch, William

2007-08-10

208

Quantitative analyses of tartaric acid based on terahertz time domain spectroscopy  

NASA Astrophysics Data System (ADS)

Terahertz wave is the electromagnetic spectrum situated between microwave and infrared wave. Quantitative analysis based on terahertz spectroscopy is very important for the application of terahertz techniques. But how to realize it is still under study. L-tartaric acid is widely used as acidulant in beverage, and other food, such as soft drinks, wine, candy, bread and some colloidal sweetmeats. In this paper, terahertz time-domain spectroscopy is applied to quantify the tartaric acid. Two methods are employed to process the terahertz spectra of different samples with different content of tartaric acid. The first one is linear regression combining correlation analysis. The second is partial least square (PLS), in which the absorption spectra in the 0.8-1.4THz region are used to quantify the tartaric acid. To compare the performance of these two principles, the relative error of the two methods is analyzed. For this experiment, the first method does better than the second one. But the first method is suitable for the quantitative analysis of materials which has obvious terahertz absorption peaks, while for material which has no obvious terahertz absorption peaks, the second one is more appropriate.

Cao, Binghua; Fan, Mengbao

2010-05-01

209

Quantitative analysis of nanoparticle growth through plasmonics.  

PubMed

Plasmon excitation appears to be a powerful and flexible tool for probing in situ and in real time the growth of supported conducting metal nanoparticles. However, although models exist for analysing optical profiles, limitations arise in the realistic modelling of particle shape from the lack of knowledge of temperature effects and of broadening sources. This paper reports on the growth of silver on alumina at 190-675 K monitored by surface differential reflectivity spectroscopy in the UV-visible range. In the framework of plasmonic response analysis, particles are modelled by truncated spheres. Their polarizabilities are computed within the quasi-static approximation and used as an input to the interface susceptibilities model in order to determine the Fresnel reflection coefficient. The pivotal importance of the thermal variation of the metal dielectric constant is demonstrated. Finite-size effects are accounted for. As size distribution fluctuations contribute marginally to the lineshape compared to the aspect ratio (diameter/height) distribution, a convolution method for representing the experimental broadening is introduced. Effects of disorder on the lineshape are discussed. It is highlighted that beside the quality of the fit (not a proof by itself!), physical meaning of the parameters related to the sticking probability, growth and wetting is crucially required for validating models. The proposed modelling opens interesting perspectives for the quantitative study of growth via plasmonics, in particular in the case of noble metals. PMID:21975584

Lazzari, Rémi; Jupille, Jacques

2011-11-01

210

Quantitative analysis of nanoparticle growth through plasmonics  

NASA Astrophysics Data System (ADS)

Plasmon excitation appears to be a powerful and flexible tool for probing in situ and in real time the growth of supported conducting metal nanoparticles. However, although models exist for analysing optical profiles, limitations arise in the realistic modelling of particle shape from the lack of knowledge of temperature effects and of broadening sources. This paper reports on the growth of silver on alumina at 190-675 K monitored by surface differential reflectivity spectroscopy in the UV-visible range. In the framework of plasmonic response analysis, particles are modelled by truncated spheres. Their polarizabilities are computed within the quasi-static approximation and used as an input to the interface susceptibilities model in order to determine the Fresnel reflection coefficient. The pivotal importance of the thermal variation of the metal dielectric constant is demonstrated. Finite-size effects are accounted for. As size distribution fluctuations contribute marginally to the lineshape compared to the aspect ratio (diameter/height) distribution, a convolution method for representing the experimental broadening is introduced. Effects of disorder on the lineshape are discussed. It is highlighted that beside the quality of the fit (not a proof by itself!), physical meaning of the parameters related to the sticking probability, growth and wetting is crucially required for validating models. The proposed modelling opens interesting perspectives for the quantitative study of growth via plasmonics, in particular in the case of noble metals.

Lazzari, Rémi; Jupille, Jacques

2011-11-01

211

Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy.  

PubMed

To improve the accuracy of quantitative analysis in laser-induced breakdown spectroscopy, the plasma produced by a Nd:YAG laser from steel targets was confined by a cavity. A number of elements with low concentrations, such as vanadium (V), chromium (Cr), and manganese (Mn), in the steel samples were investigated. After the optimization of the cavity dimension and laser fluence, significant enhancement factors of 4.2, 3.1, and 2.87 in the emission intensity of V, Cr, and Mn lines, respectively, were achieved at a laser fluence of 42.9 J/cm(2) using a hemispherical cavity (diameter: 5 mm). More importantly, the correlation coefficient of the V I 440.85/Fe I 438.35 nm was increased from 0.946 (without the cavity) to 0.981 (with the cavity); and similar results for Cr I 425.43/Fe I 425.08 nm and Mn I 476.64/Fe I 492.05 nm were also obtained. Therefore, it was demonstrated that the accuracy of quantitative analysis with low concentration elements in steel samples was improved, because the plasma became uniform with spatial confinement. The results of this study provide a new pathway for improving the accuracy of quantitative analysis of LIBS. PMID:23938689

Guo, L B; Hao, Z Q; Shen, M; Xiong, W; He, X N; Xie, Z Q; Gao, M; Li, X Y; Zeng, X Y; Lu, Y F

2013-07-29

212

Attenuated Total Internal Reflectance Infrared Spectroscopy (ATR-FTIR): A Quantitative Approach for Kidney Stone Analysis  

PubMed Central

The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflectance infrared spectroscopy (ATR-FTIR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 ± 0.02% COM/HAP where COM is the analyte and HAP the matrix to 0.26 ± 0.07% HAP/COM where HAP is the analyte and COM the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size.

Gulley-Stahl, Heather J.; Haas, Jennifer A.; Schmidt, Katherine A.; Evan, Andrew P.; Sommer, Andre J.

2011-01-01

213

A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.  

PubMed

The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. PMID:21763188

Saheb, Vahid; Sheikhshoaie, Iran

2011-10-15

214

A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): Synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra  

NASA Astrophysics Data System (ADS)

The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, 1H NMR and 13C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, 1H NMR and 13C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The 1H NMR and 13C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental 1H NMR and 13C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data.

Saheb, Vahid; Sheikhshoaie, Iran

2011-10-01

215

Detection and quantitative analysis of ferrocyanide and ferricyanide: FY 93 Florida State University Raman spectroscopy report  

SciTech Connect

This report provides a summary of work to develop and investigate the feasibility of using Raman spectroscopy with tank waste materials. It contains Raman spectra from organics, such as ethylenediaminetetraacetic acid (EDTA), hydroxyethylenediaminetetraacteic acid (HEDTA), imino diacetic acid (IDA), kerosene, tributyl phosphate (TBP), acetone and butanol, anticipated to be present in tank wastes and spectra from T-107 real and BY-104 simulant materials. The results of investigating Raman for determining moisture content in tank materials are also presented. A description of software algorithms developed to process Raman spectra from a dispersive grating spectrometer system and an in initial design for a data base to support qualitative and quantitative application of remote Raman sensing with tank wastes.

Mann, C.K.; Vickers, T.J. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry

1994-10-11

216

Monitoring iron carbide production from iron ore by quantitative Mössbauer spectroscopy  

NASA Astrophysics Data System (ADS)

The process of converting iron ore (principally Fe 2O 3 or Fe 3O 4) into iron carbide (Fe 3C) to be used as feedstock for steel-making yields complex mixtures of several iron containing compounds as a function of processing conditions. In addition to the above compounds (hematite, magnetite and cementite), the mixtures typically contain wustite (FeO) and metallic iron (Fe). Mössbauer spectroscopy has been developed into a quantitative analytical method for monitoring the degree of conversion to carbide from samples periodically extracted from a fluidized bed reactor type of pilot plant. Emphasis has been placed on standardizing and simplifying the analysis procedure for routine use in an industrial environment.

Stephens, Frank A.; Williamson, D. L.; Hager, John P.

1993-04-01

217

Quantitative laser-induced breakdown spectroscopy of standard reference materials of various categories  

NASA Astrophysics Data System (ADS)

The quantitative laser-induced breakdown spectroscopy analysis was carried out with standard reference materials (SRM). In order to minimize errors due to the matrix effect, we used 21 SRM samples that belong to different categories of food, clay, sludge, steelmaking alloy, and geochemical and agricultural materials. The principal component analysis was used for rapid identification and discrimination of the samples. Nine elements (Al, Ca, Mg, Ti, Si, Fe, K, Na, and Mn) in each sample were analyzed. While each category of samples shows a specific tendency in the calibration curves of Na, Ti, Si, Al, Fe, and Mn, other elements (K, Ca, and Mg) do not pose any noticeable similarity. The present results establish benchmark calibration curves for characterizing various SRMs.

Choi, Soo-Jin; Lee, Kang-Jae; Yoh, Jack J.

2013-12-01

218

Sample thickness and quantitative concentration measurements in Br K-edge XANES spectroscopy of organic materials.  

PubMed

While XANES spectroscopy is an established tool for quantitative information on chemical structure and speciation, elemental concentrations are generally quantified by other methods. The edge step in XANES spectra represents the absolute amount of the measured element in the sample, but matrix effects and sample thickness complicate the extraction of accurate concentrations from XANES measurements, particularly at hard X-ray energies where the X-ray beam penetrates deeply into the sample. The present study demonstrates a method of quantifying concentration with a detection limit approaching 1 mg kg(-1) using information routinely collected in the course of a hard X-ray XANES experiment. The XANES normalization procedure unambiguously separates the signal of the absorber from any source of background. The effects of sample thickness on edge steps at the bromine K-edge were assessed and an empirical correction factor for use with samples of variable mass developed. PMID:24763653

Leri, Alessandra C; Ravel, Bruce

2014-05-01

219

Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy.  

PubMed

The determination and quantification of glyphosate in serum using (1)H NMR spectroscopy is reported. This method permitted serum samples to be analysed without derivatization or any other sample pre-treatment, using 3-trimethylsilyl 2,2',3,3'-tetradeuteropropionic acid (TSP-d(4)) as a qualitative and quantitative standard. Characterization of the herbicide N-(phosphonomethyl)glycine was performed by analysing chemical shifts and coupling constant patterns. Quantification was performed by relative integration of CH(2)-P protons to the TSP-d(4) resonance peak. The method was tested for repeatability (n=5) and yielded coefficients of variation of 1% and 3%, respectively: detection and quantification limits were also determined and were 0.03 and 0.1mmol/L, respectively. The method was applied to the quantification of glyphosate in a case of acute poisoning. PMID:18371753

Cartigny, Bernard; Azaroual, Nathalie; Imbenotte, Michel; Mathieu, Daniel; Parmentier, Erika; Vermeersch, Gaston; Lhermitte, Michel

2008-01-15

220

Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy.  

PubMed

In the field of composite materials, natural fibres appear to be a viable replacement for glass fibres. However, in humid conditions, strong hydrophilic behaviour of such materials can lead to their structural modification. Then, understanding moisture sorption mechanisms in these materials is an important issue for their efficient use. In this work, the water sorption on three natural fibres (flax, hemp and sisal) was studied using Fourier transformed infrared spectroscopy. The spectral information allowed both qualitative and quantitative analyses of the moisture absorption mechanisms. The main chemical functions involved in the water sorption phenomenon were identified. The absolute water content of the fibres was also determined by using a partial least square regression (PLS-R) approach. Moreover, typical sorption isotherm curves described by Park model were fitted as well as water diffusion kinetics. These last applications confirmed the validity of the FTIR spectra based predictive models. PMID:24299761

Célino, Amandine; Gonçalves, Olivier; Jacquemin, Frédéric; Fréour, Sylvain

2014-01-30

221

AFM probes with integrated electrostatic actuators for fast, quantitative imaging and force spectroscopy  

NASA Astrophysics Data System (ADS)

In this talk, we summarize our efforts in developing novel AFM probes (FIRAT) with integrated sensing and actuation. These probes exploit recent advances in microscale sensor technology and open up the design space for AFM applications including fast imaging, quantitative material characterization and single molecular mechanics measurements. For fast imaging applications in air, probes with aluminum force sensing structures are surface micromachined on quartz substrates. Using 0.7-0.8?m thick, 40?mx60?m clamped-clamped beams over 2.8?m of air gap, probes with resonance frequencies in the order of 1MHz and Q in the 5-15 range are obtained. These probes are actuated directly by electrostatic forces applied to the mechanical structure by rigid electrodes on the substrate shaped as optical diffraction gratings, enabling imaging bandwidths in the order of 100kHz. The integrated grating interferometer provides 10fm/Hz level displacement sensitivity down to 3Hz. The surface micromachining approach used for probe fabrication lets one to precisely control the probe dynamics and overcome the difficulties associated with regular AFM cantilevers for applications such as time resolved interaction force (TRIF) measurements. Using FIRAT probes with over damped dynamics, clean TRIF signals are obtained while imaging the surface at regular speeds. This enables us to use a simple model to invert quantitative mechanical properties of a variety of polymers. For measurements on single molecules, membrane type FIRAT probes suitable for in liquid operation have been developed. These probes are made of dielectric materials with embedded actuation electrodes. Used only as actuators or both actuators and force sensors, these devices are shown to enable parallel force spectroscopy measurements. We also show that the spring constant of these probes can be electrically reduced to achieve higher force sensitivity while not affecting its noise performance and discuss the effect of hydrodynamic forces in these membrane type probes as compared to cantilever type probes for fast force spectroscopy measurements.

Degertekin, Levent

2008-03-01

222

Optimized external IR reflection spectroscopy for quantitative determination of borophosphosilicate glass parameters  

SciTech Connect

Infrared (IR) external reflection spectroscopy has been optimized for the quantitative determination of composition and film thickness of borophosphosilicate glass (BPSG) deposited on silicon wafer substrates. The precision of the partial least-squares calibrations for boron and phosphorus contents and thin-film thickness were measured as the cross-validated standard error of prediction statistic. The results showed that BPSG IR reflection spectra collected over a wide range of incident IR radiation angles (15{degree}, 25{degree}, 45{degree}, and 60{degree}) can be used for the simultaneous quantification of these three BPSG parameters. When high angles of incidence were employed, the measurement was found to be more sensitive to small errors in the angle of incidence. The polarization state of the incident IR radiation did not noticeably affect the prediction of the three calibrated BPSG parameters. The results achieved in this study provide guidelines for at-line process monitoring and quality control of BPSG thin films used in the fabrication of microelectronic devices. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

Zhang, L.; Franke, J.E.; Niemczyk, T.M. [Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Haaland, D.M. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0342 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-0342 (United States)

1997-02-01

223

Quantitative analysis of boron oxide in borosilicate glasses by infrared spectroscopy  

SciTech Connect

Classical multivariate least-squares methods have been applied to the quantitative analysis of boron oxide in bulk borosilicate glasses using transmission infrared spectroscopy. However, molecular interactions in the glass result in deviation from Beer's law and cause the analytical B-O overtone band at --2680 cm/sup -1/ to shift to higher energy with increased boron concentration. Therefore, in order to account for the molecular interactions and achieve higher quantitative accuracy, one must use a nonlinear model relating absorbance and concentration. It has been found that if a quadratic correction term is added to the Beer's-law equation, the observed 15 to 25 cm/sup -1/ shift in frequency of the B-O overtone band can be modeled to within the spectral noise. With the use of a model quadratic in boron oxide concentration, the least-squares analysis of boron in glass was determined with an average relative error of 3.3% for glasses with boron oxide concentrations ranging from 0.88 to 2.58%. This compares favorably with the 3% accuracy claimed for ion chromatography exculsion used for calibration. The methods described in this paper are general, and a variety of nonlinear models can be applied whenever Beer's-law deviations are present.

Haaland, D.M.

1986-11-01

224

Quantitative determination of element concentrations in industrial oxide materials by laser-induced breakdown spectroscopy.  

PubMed

Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method is employed for quantitative determination of oxide concentrations in multi-component materials. Industrial oxide materials from steel industry are laser ablated in air, and the optical plasma emission is collected by spectrometers and gated detectors. The temperature and electron number density of laser-induced plasma are determined from measured LIBS spectra. Emission lines of aluminium (Al), calcium (Ca), iron (Fe), manganese (Mn), magnesium (Mg), silicon (Si), titanium (Ti), and chromium (Cr) of low self-absorption are selected, and the concentration of oxides CaO, Al(2)O(3), MgO, SiO(2), FeO, MnO, TiO(2), and Cr(2)O(3) is calculated by CF-LIBS analysis. For all sample materials investigated, we find good match of calculated concentration values (C(CF)) with nominal concentration values (C(N)). The relative error in oxide concentration, e(r)?=?|C(CF)?-?C(N)|/C(N), decreases with increasing concentration and it is e(r)???100% for concentration C(N)???1 wt.%. The CF-LIBS results are stable against fluctuations of experimental parameters. The variation of laser pulse energy over a large range changes the error by less than 10% for major oxides (C(N)???10 wt.%). The results indicate that CF-LIBS method can be employed for fast and stable quantitative compositional analysis of multi-component materials. PMID:21523330

Praher, B; Rössler, R; Arenholz, E; Heitz, J; Pedarnig, J D

2011-07-01

225

Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy.  

PubMed

The structure of Eucalyptus grandis milled wood lignin (MWL) was investigated by 2D 1H-13C HSQC, HMQC, and 1H-1H TOCSY correlation NMR techniques and by quantitative 13C NMR as well as by the permanganate oxidation degradation technique. The combination of 2D NMR and quantitative 13C NMR spectroscopy of nonacetylated and acetylated lignin preparations allowed reliable identification and calculation of the amount of different lignin structures. About 85% of side-chain moieties were estimated on the structural level. This information was substantiated by data on the quantity of various functional groups and interunit linkages as a whole. A modified method for calculation of the h:g:s ratio has been suggested and compared with previously suggested approaches. E. grandis MWL has been determined to have an h:g:s ratio of 2:36:62. The amounts of various phenolic/etherified noncondensed/condensed guaiacyl and syringyl moieties were approximately estimated. E. grandis MWL contained approximately 0.60/Ar of beta-O-4 moieties along with small amounts of other structural units such as pino/syringyresinol (0.03/Ar), phenylcoumaran (0.03/Ar), and spirodienone (0.05/Ar). The degree of condensation was estimated at approximately 21%; the main condensed structures are 4-O-5 moieties (approximately 0.09/Ar). The structure of E. grandis MWL was compared with those of other lignin preparations isolated from various hardwoods. PMID:16332110

Capanema, Ewellyn A; Balakshin, Mikhail Yu; Kadla, John F

2005-12-14

226

[Simultaneous quantitative analysis of multielements in Al alloy samples by laser-induced breakdown spectroscopy].  

PubMed

The multielement components of some aluminium alloy samples were quantified by using laser-induced breakdown spectroscopy (LIBS). The Nd : YAG pulsed laser was used to produce plasma in ambient air. The spectral range of 200-980 nm was simultaneously obtained through a multichannel grating spectrometer and CCD detectors. The authors studied the influences of time delays, energy of the laser, and depth profile of elements in samples on spectral intensity, and optimized the experimental parameters based on the influence analysis. With the optimal experimental parameters, the authors made the calibration curves by four certified aluminum alloy samples for eight elements, Si, Fe, Cu, Mn, Mg, Zn, Sn, and Ni, and quantified the composition of an aluminum sample. The obtained maximum relative standard deviation (RSD) was 5.89%, and relative errors were--20.99%-15%. Experimental results show that LIBS is an effective technique for quantitative analysis of aluminum alloy samples, though the improved accuracy of the quantitative analysis is necessary. PMID:20210173

Sun, Lan-Xiang; Yu, Hai-Bin

2009-12-01

227

A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique  

NASA Astrophysics Data System (ADS)

Laser-induced breakdown spectroscopy (LIBS) was applied to the quantitative analysis of elemental composition of soil. The experiment was performed in air at atmospheric pressure and at room temperature. A Nd:YAG laser with the fundamental wavelength of 1064 nm was employed to generate the soil plasma. The emission spectra from the plasma were collected by the Cerny-Turner type of spectrometer, which was equipped with an intensified charge-coupled device (ICCD). The plasma temperature and electron density were evaluated by the Boltzmann plot method and the Saha-Boltzmann equation respectively. Then the concentrations of elements in soil were further obtained by the internal standard of iron element and some selected atomic/ionic lines. In order to prove the credibility and reliability of the present LIBS results, a comparison between the LIBS results and the nominal concentrations was performed. It was found that the LIBS results agree with the nominal concentrations. Therefore the LIBS technique promises to fast and in simultaneous multi-element quantitative analysis of soil.

He, G.-C.; Sun, D.-X.; Su, M.-G.; Dong, C.-Z.

2011-09-01

228

Quantitative high-resolution photoacoustic spectroscopy by combining photoacoustic imaging with diffuse optical tomography  

NASA Astrophysics Data System (ADS)

The specificity of both molecular and functional photoacoustic (PA) images depends on the accuracy of the photoacoustic absorption spectroscopy. Because the PA signal is a product of both the optical absorption coefficient and the local light fluence, quantitative PA measurements of absorption require an accurate estimate of the optical fluence. Lightmodeling aided by diffuse optical tomography (DOT) methods can be used to provide the required fluence map and to reduce errors in traditional PA spectroscopic analysis. As a proof-ofconcept, we designed a phantom to demonstrate artifacts commonly found in photoacoustic tomography (PAT) and how fluence-related artifacts in PAT images can lead to misrepresentations of tissue properties. Specifically, we show that without accounting for fluence-related inhomogeneities in our phantom, errors in estimates of the absorption coefficient from a PAT image were as much as 33%. To correct for this problem, DOT was used to reconstruct spatial distributions of the absorption coefficients of the phantom, and along with the surface fluence distribution from the PAT system, we calculated the fluence everywhere in the phantom. This fluence map was used to correct PAT images of the phantom, reducing the error in the estimated absorption coefficient from the PAT image to less than 5%. Thus, we demonstrate experimentally that combining DOT with PAT can significantly reduce fluence-related errors in PAT images, as well as produce quantitatively accurate, highresolution images of the optical absorption coefficient.

Bauer, Adam Q.; Nothdurft, Ralph E.; Erpelding, Todd N.; Wang, Lihong V.; Culver, Joseph P.

2011-02-01

229

A Quantitative Near-Infrared Spectroscopy Study: A Decrease in Cerebral Hemoglobin Oxygenation in Alzheimer's Disease and Mild Cognitive Impairment  

ERIC Educational Resources Information Center

A newly developed quantitative near-infrared spectroscopy (NIRS) system was used to measure changes in cortical hemoglobin oxygenation during the Verbal Fluency Task in 32 healthy controls, 15 subjects with mild cognitive impairment (MCI), and 15 patients with Alzheimer's disease (AD). The amplitude of changes in the waveform, which was…

Arai, Heii; Takano, Maki; Miyakawa, Koichi; Ota, Tsuneyoshi; Takahashi, Tadashi; Asaka, Hirokazu; Kawaguchi, Tsuneaki

2006-01-01

230

Quantitative laser-induced breakdown spectroscopy for aerosols via internal calibration: Application to the oxidative coating of aluminum nanoparticles  

Microsoft Academic Search

We present a methodology for the quantitative use of laser-induced breakdown spectroscopy (LIBS) for the compositional characterization of nanoaerosols, using an internal standard. The approach involves finding the optimal laser delay time to collect spectra for each of the elemental species of interest, and measuring the plasma temperature, and background gas density under the same conditions. This enabled us to

D. Mukherjee; A. Rai; M. R. Zachariah

2006-01-01

231

An uncertainty budget for the determination of the purity of glyphosate by quantitative nuclear magnetic resonance (QNMR) spectroscopy  

Microsoft Academic Search

An uncertainty budget is presented for the results of measurements of purity of the agrochemical glyphosate using 1H and 31P quantitative nuclear magnetic resonance (QNMR) spectroscopy. The budget combines intralaboratory precision from repeated independent measurements of a batch, and other Type A and Type B effects. Consideration of correlation of uncertainties in ratios of mass determinations has been included. Expanded

TareqSaed Al-Deen; D. Brynn Hibbert; James M. Hook; Robert J. Wells

2004-01-01

232

Quantitative determination of the cubic-to-monoclinic phase transformation in fully stabilized zirconias by Raman spectroscopy  

Microsoft Academic Search

Vibrational Raman spectroscopy was used successfully for the quantitative determination of the cubic and monoclinic phases of zirconia. Pressed pellets with known composition were prepared using monoclinic and cubic powders from different manufacturers and were used as standard mixtures. An intensity ratio plot of the 617-cm[sup [minus]1] band, which is attributed to the presence of both phases, to either the

Christos G. Kontoyannis; George Carountzos

1994-01-01

233

Lower frequency region mid-infrared spectroscopy by chirped pulse upconversion  

NASA Astrophysics Data System (ADS)

UV/visible pump, mid-IR probe spectroscopy measurements based on the chirped upconversion method were expanded to the frequency region below 1800cm-1 with the nonlinear optical crystal AgGaGeS4. Pump-probe experiments were demonstrated with GaAs and the photoreceptor protein Slr1694.

Zhu, Jingyi; Mathes, Tilo; Stahl, Andreas D.; Kennis, John T. M.; Groot*, Marie Louise

2013-03-01

234

Quantitative determination of borophosphosilicate glass thin-film properties using infrared emission spectroscopy  

SciTech Connect

We have completed an experimental study to investigate the use of infrared emission spectroscopy (IRES) for the quantitative analysis of borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Experimental parameters investigated included temperatures within the range used in the microelectronics industry to produce these films so that the potential for using the IRES technique for real-time monitoring of the film deposition process could be evaluated. The film properties that were investigated included boron content, phosphorus content, film thickness, and film temperature. The studies were conducted over two temperature ranges, 125 to 225&hthinsp;{degree}C and 300 to 400&hthinsp;{degree}C. The latter temperature range includes realistic processing temperatures for the chemical vapor deposition (CVD) of the BPSG films. Partial least-squares (PLS) multivariate calibration methods were applied to spectral and film property calibration data. The cross-validated standard errors of prediction (CVSEP) from the PLS analysis of the IRES spectra of 21 calibration samples each measured at six temperatures in the 300 to 400&hthinsp;{degree}C range were found to be 0.09 wt {percent} for B, 0.08 wt {percent} for P, 3.6 nm for film thickness, and 1.9&hthinsp;{degree}C for temperature. Upon lowering the spectral resolution from 4 to 32 cm{sup {minus}1} and decreasing the number of spectral scans from 128 to 1, we were able to determine that all the film properties could be measured in less than one second to the precision required for the manufacture and quality control of integrated circuits. Thus, real-time {ital in situ} monitoring of BPSG thin films formed by CVD deposition on Si monitor wafers is possible with the methods reported here. {copyright} {ital 1999} {ital Society for Applied Spectroscopy}

Niemczyk, T.M.; Zhang, S.; Franke, J.E. [Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] Haaland, D.M. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0342 (United States)

1999-07-01

235

Quantitative measurement of AMS and orange mixtures by terahertz time-domain spectroscopy  

NASA Astrophysics Data System (ADS)

Terahertz time domain spectroscopy (THz-TDS) is a new kind of nondestructive detection method, frequency of terahertz wave spans from a few tens of GHz to several THz, which is used to detect material because of its strong identification, it can supply rich vibration information caused by intermolecular and large intra-molecular. Ammonium sulfamate (AMS) is a kind of herbicide, it has special value for many woody plants, which can prevent annual weeds. The excess use of pesticide is a huge threaten for human health in recent years, thus the research on detection of pesticide has absolutely important meaning, in this paper, pure AMS and mixture samples of AMS and orange are measured using THz-TDS, and their absorption coefficient are calculated by the model, which is put forward based on Fresnel equation. We qualitatively analyze the absorption coefficient spectra of pure AMS, which is useful for us to identify the pesticide in agriculture products. Meanwhile, we measured 14 mixture samples of AMS and orange, the weight ratio of mixtures are from 0% to 59.9%. Nine samples are considered as calibration set and the other five samples are regarded as prediction set, to quantitatively analyze the concentration of AMS by the partial least squares (PLS), the result shows that the prediction error is less then 4.5%, in addition, the relationship of the average absorption and weight ratio are absolutely linear. The experiment demonstrates that THz-TDS is promising and efficient to quantitatively detect the component of mixtures, and it has important reference value for the detection of pesticide in agriculture food.

Wang, Qiang; Ma, Yehao; Wang, Xiaowei

2012-05-01

236

Characterization and quantitation of aprepitant drug substance polymorphs by attenuated total reflectance fourier transform infrared spectroscopy.  

PubMed

In this study, we report the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) for the identification and quantitation of two polymorphs of Aprepitant, a substance P antagonist for chemotherapy-induced emesis. Mixtures of the polymorph pair were prepared by weight and ATR-FT-IR spectra of the powdered samples were obtained over the wavelength range of 700-1500 cm(-1). Significant spectral differences between the two polymorphs at 1140 cm(-1) show that ATR-FT-IR can provide definitive identification of the polymorphs. To investigate the feasibility of ATR-FT-IR for quantitation of polymorphic forms of Aprepitant, a calibration plot was constructed with known mixtures of the two polymorphs by plotting the peak ratio of the second derivative of absorbance spectra against the weight percent of form II in the polymorphic mixture. Using this novel approach, 3 wt % of one crystal form could be detected in mixtures of the two polymorphs. The accuracy of ATR-FT-IR in determining polymorph purity of the drug substance was tested by comparing the results with those obtained by X-ray powder diffractometry (XRPD). Indeed, polymorphic purity results obtained by ATR-FT-IR were found to be in good agreement with the predictions made by XRPD and compared favorably with actual values in the known mixtures. The present study clearly demonstrates the potential of ATR-FT-IR as a quick, easy, and inexpensive alternative to XRPD for the determination of polymorphic identity and purity of solid drug substances. The technique is ideally suited for polymorph analysis, because it is precise, accurate, and requires minimal sample preparation. PMID:12585491

Helmy, Roy; Zhou, George X; Chen, Yadan W; Crocker, Louis; Wang, Tao; Wenslow, Robert M; Vailaya, Anant

2003-02-01

237

In Vivo Quantitative Studies of Dynamic Intracellular Processes Using Fluorescence Correlation Spectroscopy  

PubMed Central

It has been a significant challenge to quantitatively study the dynamic intracellular processes in live cells. These studies are essential for a thorough understanding of the underlying mechanisms regulating the signaling pathways and the transitions between cell cycle stages. Our studies of Cdc20, an important mitotic checkpoint protein, throughout the cell cycle demonstrate that fluorescence correlation spectroscopy is a powerful tool for in vivo quantitative studies of dynamic intracellular processes. In this study, Cdc20 is found to be present primarily in a large complex (>1 Mda) during interphase with a diffusion constant of 1.8 ± 0.1 ?m2/s and a concentration of 76 ± 24 nM, consistent with its association with the APC/C. During mitosis, however, a proportion of Cdc20 dissociates from APC/C at a rate of 12 pM/s into a soluble pool with a diffusion constant of 19.5 ± 5.0 ?m2/s, whose size is most consistent with free Cdc20. This free pool accumulates to 50% of total Cdc20 (?40 nM) during chronic activation of the mitotic checkpoint but disappears during mitotic exit at a rate of 31 pM/s. The observed changes in the biochemical assembly states of Cdc20 closely correlate to the known temporal pattern of the activity of APC/CCdc20 in mitosis. Photon counting histograms reveal that both complexes contain only a single molecule of Cdc20. The underlying mechanisms of the activities of APC/CCdc20 throughout the cell cycle are discussed in light of our experimental observations.

Wang, Zifu; Shah, Jagesh V.; Berns, Michael W.; Cleveland, Don W.

2006-01-01

238

Quantitative FT-IR spectroscopy of gypsum raw material for industry  

NASA Astrophysics Data System (ADS)

Today quality control (QC) is a big issue for being competitive in the gypsum industry. Knowledge and understanding of the raw material help to enhance the quality and permanence of products. Therefore a rapid, precise and user-friendly FT-IR spectroscopic method for quantitative analysis of gypsum, anhydrite, magnesite and dolomite from the gypsum deposit of Puchberg, Austria is being developed. There are decisive advantages of FT-IR spectroscopy compared to thermogravimetric methods (TG, DTA, DSC) or XRD, which are commonly used for QC, e.g. it is frequently available in industry labs and a spectrum can be obtained in a few minutes, with a minimum of sample preparation. The effects of particle size and ratio of dilution with KBr were investigated in transmission mode, using KBr pellets, as well as in diffuse reflexion mode. Little differences in particle size lead to enormous differences in peak height in transmission mode, but show only little effects in diffuse reflexion. The small amounts of sample used in KBr pellets (e.g. 2 mg sample : 500 mg KBr) also turned out to be disadvantageous, just like the time consuming sample preparation. Measurements in diffuse reflexion with a sample to KBr ratio of 1:10 show promising results for use in standardization, whereas higher dilutions hardly improve the quality, and ratios of 1:5 still show components of specular reflection. The calibration model for quantitative analysis is being constructed measuring various defined mixtures of >98% pure natural minerals (gypsum, magnesite, dolomite), and synthetic materials (anhydrite). The latter was obtained by heating gypsum at 350^oC for 10 h. The synthetic material was chosen, because natural material was not available in sufficient amounts with high purity. The IR method is compared with results achieved with XRD-Rietveld and thermogravimetric methods. Advantages of chemometrical software based on multivariate statistical techniques will be investigated and compared with standard techniques using simple peak fitting methods.

Schwendtner, K.; Libowitzky, E.; Götzinger, M. A.; Koss, S.

2003-04-01

239

Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

In order to simulate coal combustion and develop optimal and stable boiler control systems in real power plants, it is imperative to obtain the detailed information in coal combustion processes as well as to measure species contents in fly ash, which should be controlled and analyzed for enhancing boiler efficiency and reducing environmental pollution. The fly ash consists of oxides (SiO2, Al2O3, Fe2O3, CaO, and so on), unburned carbon, and other minor elements. Recently laser-induced breakdown spectroscopy (LIBS) technique has been applied to coal combustion and other industrial fields because of the fast response, high sensitivity, real-time and non-contact features. In these applications it is important to measure controlling factors without any sample preparation to maintain the real-time measurement feature. The relation between particle content and particle diameter is also one of the vital researches, because compositions of particles are dependent on their diameter. In this study, we have detected the contents of size-segregated particles using LIBS. Particles were classified by an Anderson cascade impactor and their contents were measured using the output of 1064 nm YAG laser, a spectrograph and an ICCD camera. The plasma conditions such as plasma temperature are dependent on the size of particles and these effects must be corrected to obtain quantitative information. The plasma temperature was corrected by the emission intensity ratio from the same atom. Using this correction method, the contents of particles can be measured quantitatively in fixed experimental parameters. This method was applied to coal and fly ash from a coal-fired burner to measure unburned carbon and other contents according to the particle diameter. The acquired results demonstrate that the LIBS technique is applicable to measure size-segregated particle contents in real time and this method is useful for the analysis of coal combustion and its control because of its sensitive and fast analysis features.

Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Taira, Takuya; Zhang, Xiao Bo; Yan, Jun Jie; Liu, Ji Ping; Watanabe, Hiroaki; Kurose, Ryoichi

2013-09-01

240

Fluorescence spectroscopy of complex aromatic mixtures.  

PubMed

The contribution of two- to seven-ring polycyclic aromatic hydrocarbons (PAH) and of larger aromatic structures contained in complex PAH-laden mixtures collected in flames was evaluated by fluorescence spectroscopy. A composition procedure of the fluorescence spectra of individual PAHs, analyzed by gas chromatography/mass spectrometry (GC/MS) was applied for the evaluation of their contribution to the fluorescence spectra of PAH-laden mixtures. In this way, it was possible to put in evidence the contribution to the total fluorescence spectrum of high molecular weight aromatic species present in the PAH-laden mixtures and not detectable by GC/MS. Qualitative and quantitative interpretation of synchronous and conventional fluorescence spectra of PAH-laden mixtures formed in combustion processes was proposed. The composition procedure was showed to be reliable in the UV-visible region for samples dissolved in cyclohexane solutions, but failed in the UV region when the solvent contained heavy atoms, as in the case of dichloromethane. However, the heavy-atom solvent effect was not sufficient to explain the depression of the UV fluorescence signal. Energy transfer interaction between fluorene and other fluorescing PAHs was suggested to be also responsible for this effect on the basis of fluorescence studies performed on single PAHs and their mixtures in cyclohexane, methanol, and dichloromethane. PMID:15053681

Apicella, Barbara; Ciajolo, Anna; Tregrossi, Antonio

2004-04-01

241

ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials.  

PubMed

The applicability of ATR-FTIR spectroscopy with partial least squares (PLS) data analysis was evaluated for quantifying the components of mixtures of paint binding media and pigments, and alkyd resins. PLS methods were created using a number of standard mixtures. Validation and measurement uncertainty estimation was carried out. Binary, ternary and quaternary mixtures of several common binding media and pigments were quantified, with standard measurement uncertainties in most cases below 3g/100g. Classes of components - aromatic anhydrides and alcohols - used in alkyd resin synthesis were also successfully quantified, with standard uncertainties in the range of 2-3g/100g. This is a more demanding application because in alkyd resins aromatic anhydrides and alcohols have reacted to form a polyester, and are not present in their original forms. Once a PLS method has been calibrated, analysis time and cost are significantly reduced from typical quantitative methods such as GC/MS. This is beneficial in the case of routine analysis where the components are known. PMID:24945861

Hayes, Philippa Alice; Vahur, Signe; Leito, Ivo

2014-12-10

242

Reliable and fast quantitative analysis of active ingredient in pharmaceutical suspension using Raman spectroscopy.  

PubMed

The concentration of acetaminophen in a turbid pharmaceutical suspension has been measured successfully using Raman spectroscopy. The spectrometer was equipped with a large spot probe which enabled the coverage of a representative area during sampling. This wide area illumination (WAI) scheme (coverage area 28.3 mm2) for Raman data collection proved to be more reliable for the compositional determination of these pharmaceutical suspensions, especially when the samples were turbid. The reproducibility of measurement using the WAI scheme was compared to that of using a conventional small-spot scheme which employed a much smaller illumination area (about 100 microm spot size). A layer of isobutyric anhydride was placed in front of the sample vials to correct the variation in the Raman intensity due to the fluctuation of laser power. Corrections were accomplished using the isolated carbonyl band of isobutyric anhydride. The acetaminophen concentrations of prediction samples were accurately estimated using a partial least squares (PLS) calibration model. The prediction accuracy was maintained even with changes in laser power. It was noted that the prediction performance was somewhat degraded for turbid suspensions with high acetaminophen contents. When comparing the results of reproducibility obtained with the WAI scheme and those obtained using the conventional scheme, it was concluded that the quantitative determination of the active pharmaceutical ingredient (API) in turbid suspensions is much improved when employing a larger laser coverage area. This is presumably due to the improvement in representative sampling. PMID:17531823

Park, Seok Chan; Kim, Minjung; Noh, Jaegeun; Chung, Hoeil; Woo, Youngah; Lee, Jonghwa; Kemper, Mark S

2007-06-12

243

Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Laser-induced breakdown spectroscopy has been employed for the investigation of the sulfur content of concrete. Sulfur compounds are a natural but minor component in building materials. The ingress of sulfates or sulfuric acid constitutes a major risk of chemical aggression for concrete. There is a need for a fast method, which can be used on-site and is able to investigate a wide range of different measuring points, so that damages can be characterized. For quantitative determination the sulfur spectral line at 921.3 nm is used. The optimum ambient atmosphere has been determined by comparison of measurements accomplished under air, argon and helium atmosphere. Reference samples have been produced and calibration curves have been determined, the results of LIBS measurements are compared with results from chemical analysis. Defining a limit for the intensity ratio of a calcium and a oxygen spectral line can reduce the influence of the heterogeneity of the material, so that only spectra with a high amount of cementitious material are evaluated. Depth profiles and spatial resolved sulfur distributions are presented measured on concrete cores originating from a highly sulfate contaminated clarifier.

Weritz, F.; Ryahi, S.; Schaurich, D.; Taffe, A.; Wilsch, G.

2005-08-01

244

Fused glass sample preparation for quantitative laser-induced breakdown spectroscopy of geologic materials  

NASA Astrophysics Data System (ADS)

Laser-induced breakdown spectroscopy is a powerful analytical method, but LIBS is subject to a matrix effect which can limit its ability to produce quantitative results in complex materials such as geologic samples. Various methods of sample preparation, calibration, and data processing have been attempted to compensate for the matrix effect and improve LIBS precision. This study focuses on sample preparation by comparing fused glass as a preparation for powdered material to the more commonly used method of pressing powder into pellets for LIBS analysis of major elements in complex geologic materials. Pelletizing powdered material is a common and convenient method for preparing samples but problems with the physical matrix brought on by inconsistencies in the homogeneity, density, and laser absorption, coupled with the chemical matrix problem lead to spectral peak responses that are not always consistent with the absolute concentration of representative elements. Twenty-two mineral and rock samples were analyzed for eight major oxide elements. Samples were prepared under both glass and pellet methods and compared for internal precision and overall accuracy. Fused glass provided a more consistent physical matrix and yielded more reliable peak responses in the LIBS analysis than did the pressed pellet preparation. Statistical comparisons demonstrated that the glass samples expressed stronger separability between different mineral species based on the eight elements than for the pressed pellets and showed better spot-to-spot repeatability. Regression models showed substantially better correlations and predictive ability among the elements for the glass preparation than did those for the pressed pellets.

Pease, Patrick

2013-05-01

245

Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy.  

PubMed

Fourier Transform Infrared Spectroscopy (FT-IR) was used successfully for the simultaneous quantitative analysis of calcium carbonate phases (calcite, aragonite, vaterite) in ternary mixtures. From the FT-IR spectra of pure calcite, aragonite and vaterite powders with KBr, the absorptivities, alpha, of the absorption bands at 713 cm(-1) for calcite, 745 cm(-1) for vaterite, 713 and 700 cm(-1) for aragonite, were determined. In order to overcome the absorption band overlapping a set of equations based on Beer's law was developed. The detection limits were also established and found to be 1.1 x 10(-4) mg calcite per mm(2) of pellet at 713 cm(-1), 3.6 x 10(-4) mg aragonite per mm(2) of pellet at 700 cm(-1), 1.8 x 10(-4) mg aragonite per mm(2) of pellet at 713 cm(-1) and 3.1 x 10(-4) mg vaterite per mm(2) of pellet at 745 cm(-1). Analysis of a known ternary mixture of calcium carbonate polymorphs tested the validity of the method. PMID:18968970

Vagenas, N V; Gatsouli, A; Kontoyannis, C G

2003-03-10

246

Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy.  

PubMed Central

Quantitative orientation measurements by attenuated total reflectance (ATR) infrared spectroscopy require the accurate knowledge of the dichroic ratio and of the mean-square electric fields along the three axes of the ATR crystal. In this paper, polarized ATR spectra of single supported bilayers of the phospholipid dimyristoylphosphatidic acid covered by either air or water have been recorded and the dichroic ratio of the bands due to the methylene stretching vibrations has been calculated. The mean-square electric field amplitudes were calculated using three formalisms, namely the Harrick thin film approximation, the two-phase approximation, and the thickness- and absorption-dependent one. The results show that for dry bilayers, the acyl chain tilt angle varies with the formalism used, while no significant variations are observed for the hydrated bilayers. To test the validity of the different formalisms, s- and p-polarized ATR spectra of a 40-A lipid layer were simulated for different acyl chain tilt angles. The results show that the thickness- and absorption-dependent formalism using the mean values of the electric fields over the film thickness gives the most accurate values of acyl chain tilt angle in dry lipid films. However, for lipid monolayers or bilayers, the tilt angle can be determined with an acceptable accuracy using the Harrick thin film approximation. Finally, this study shows clearly that the uncertainty on the determination of the tilt angle comes mostly from the experimental error on the dichroic ratio and from the knowledge of the refractive index.

Picard, F; Buffeteau, T; Desbat, B; Auger, M; Pezolet, M

1999-01-01

247

Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water  

PubMed Central

We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R = 0.96) with a difference of 1.1 ± 0.91 °C over a range of 28–48 °C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

Chung, SH; Cerussi, AE; Merritt, SI; Ruth, J; Tromberg, BJ

2012-01-01

248

Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements.  

PubMed

Near infrared spectroscopy (NIRS) is a functional imaging technique allowing measurement of local cerebral oxygenation. This modality is particularly adapted to critically ill neonates, as it can be used at the bedside and is a suitable and noninvasive tool for carrying out longitudinal studies. However, NIRS is sensitive to the imaged medium and consequently to the optical properties of biological tissues in which photons propagate. In this study, the effect of the neonatal fontanel was investigated by predicting photon propagation using a probabilistic Monte Carlo approach. Two anatomical newborn head models were created from computed tomography and magnetic resonance images: (1) a realistic model including the fontanel tissue and (2) a model in which the fontanel was replaced by skull tissue. Quantitative change in absorption due to simulated activation was compared for the two models for specific regions of activation and optical arrays simulated in the temporal area. A correction factor was computed to quantify the effect of the fontanel and defined by the ratio between the true and recovered change. The results show that recovered changes in absorption were more precise when determined with the anatomical model including the fontanel. The results suggest that the fontanel should be taken into account in quantification of NIRS responses to avoid misinterpretation in experiments involving temporal areas, such as language or auditory studies. PMID:22109808

Dehaes, Mathieu; Kazemi, Kamran; Pélégrini-Issac, Mélanie; Grebe, Reinhard; Benali, Habib; Wallois, Fabrice

2013-04-01

249

Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water  

NASA Astrophysics Data System (ADS)

We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R = 0.96) with a difference of 1.1 ± 0.91 °C over a range of 28-48 °C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

Chung, S. H.; Cerussi, A. E.; Merritt, S. I.; Ruth, J.; Tromberg, B. J.

2010-07-01

250

A calculation of backscattering factor database for quantitative analysis by Auger electron spectroscopy  

NASA Astrophysics Data System (ADS)

A systematic calculation of the backscattering factor in quantitative analysis by Auger electron spectroscopy has been performed for the primary electron beam of energy from the threshold energy of inner-shell ionization to 30 keV at the incident angle of 0°-89° and for principal Auger transition and Auger electrons emitted from over 28 pure elements at an emission angle of 0°-89° by using a Monte Carlo simulation method. The calculation employs a general definition of backscattering factor, Casnati's ionization cross section, up-to-date Monte Carlo model of electron scattering, and a large number of electron trajectories to ensure less statistical error. Both the configuration geometry of concentric hemispherical analyzer and the cylindrical mirror analyzer for Auger electron detection are considered in the calculation. The calculated backscattering factors are found to describe very well an experimental dependence of Auger electron intensity on primary energy and on incident angle for Si, Cu, Ag, and W in literature. The calculated numerical values of backscattering factor are stored in an open and online database at http://micro.ustc.edu.cn/BSFDataBase/BFAES.htm.

Zeng, R. G.; Ding, Z. J.; Li, Y. G.; Mao, S. F.

2008-12-01

251

A calculation of backscattering factor database for quantitative analysis by Auger electron spectroscopy  

SciTech Connect

A systematic calculation of the backscattering factor in quantitative analysis by Auger electron spectroscopy has been performed for the primary electron beam of energy from the threshold energy of inner-shell ionization to 30 keV at the incident angle of 0 deg. - 89 deg. and for principal Auger transition and Auger electrons emitted from over 28 pure elements at an emission angle of 0 deg. - 89 deg. by using a Monte Carlo simulation method. The calculation employs a general definition of backscattering factor, Casnati's ionization cross section, up-to-date Monte Carlo model of electron scattering, and a large number of electron trajectories to ensure less statistical error. Both the configuration geometry of concentric hemispherical analyzer and the cylindrical mirror analyzer for Auger electron detection are considered in the calculation. The calculated backscattering factors are found to describe very well an experimental dependence of Auger electron intensity on primary energy and on incident angle for Si, Cu, Ag, and W in literature. The calculated numerical values of backscattering factor are stored in an open and online database at http://micro.ustc.edu.cn/BSFDataBase/BFAES.htm.

Zeng, R. G.; Ding, Z. J.; Li, Y. G.; Mao, S. F. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2008-12-01

252

Improved calculation of the backscattering factor for quantitative analysis by Auger electron spectroscopy  

SciTech Connect

Based on a Monte Carlo simulation method, an improved calculation of the backscattering factor in quantitative analysis by Auger electron spectroscopy has been performed by integrating several aspects of recent progresses in the related fields. The calculation used a general definition of backscattering factor, more accurate ionization cross section, up-to-date Monte Carlo model of electron inelastic scattering, and a large number of electron trajectories to ensure less statistical error. The results reveal several noticeable properties of backscattering factor, i.e., its slow variation with primary energy at higher overvoltage ratios, and dependence on the geometrical configuration of a detector. However, only for large emission angles of Auger signals a considerable angular dependence of backscattering factor is found. Specifically a calculation is carried out for detection in the solid angles of a cylindrical mirror analyzer. This backscattering factor can be less than unity for very low primary energies closing to ionization energy and/or for large incident angles. The physical cause has been detailed and analyzed.

Ding, Z. J.; Tan, W. S.; Li, Y. G. [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026 Anhui (China) and Department of Physics, University of Science and Technology of China, Hefei, 230026 Anhui (China)

2006-04-15

253

Quantitative analysis and detection of adulteration in crab meat using visible and near-infrared spectroscopy.  

PubMed

Visible and near-infrared spectroscopy (VIS/NIR) has been used to detect economic adulteration of crab meat samples. Atlantic blue and blue swimmer crab meat samples were adulterated with surimi-based imitation crab meat in 10% increments. Waveform evaluation revealed that the main features seen in the spectral data arise from water absorptions with a decrease in sample absorbance with increasing adulteration level. Prediction and quantitative analysis was done using raw data, a 15-point smoothing average, a first derivative, a second derivative, and 150 wavelength spectral data gathered from a correlogram. Regression analysis included partial least squares (PLS) and principal component analysis (PCR). Both models were able to perform similarly in predicting crab meat adulteration. The best model for both PLS and PCR used the first derivative spectral data gathered from the correlogram, with a standard error of prediction (SEP) of 0.252 and 0.244, respectively. The results suggest that VIS/NIR technology can be successfully used to detect adulteration in crab meat samples adulterated with surimi-based imitation crab meat. PMID:16478227

Gayo, Javier; Hale, Scott A; Blanchard, Susan M

2006-02-22

254

Quantitative estimation of concentrations of dissolved rare earth elements using reflectance spectroscopy  

NASA Astrophysics Data System (ADS)

Characteristic spectral parameters such as the wavelength and depth of absorption bands are widely used to quantitatively estimate the composition of samples from hyperspectral reflectance data in soil science, mineralogy as well as vegetation study. However, little research has been conducted on the spectral characteristic of rare earth elements (REE) and their relationship with chemical composition of aqueous solutions. Reflectance spectra of ore leachate solutions and contaminated stream water from a few REE mines in the Jiangxi Province, China, are studied for the first time in this work. The results demonstrate that the six diagnostic absorption features of the rare earths are recognized in visible and near-infrared wavelengths at 574, 790, 736, 520, 861, and 443 nm. The intensity of each of these six absorption bands is linearly correlated with the abundance of total REE, with the r2 value >0.95 and the detection limit at ?75,000 ?g/L. It is suggested that reflectance spectroscopy provides an ideal routine analytical tool for characterizing leachate samples. The outcome of this study also has implications for monitoring the environmental effect of REE mining, in particular in stream water systems by hyperspectral remote sensing.

Dai, Jingjing; Wang, Denghong; Wang, Runsheng; Chen, Zhenghui

2013-01-01

255

Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach.  

PubMed

Characterisation of coffee quality based on bean quality assessment is associated with the relative amount of defective beans among non-defective beans. It is therefore important to develop a methodology capable of identifying the presence of defective beans that enables a fast assessment of coffee grade and that can become an analytical tool to standardise coffee quality. In this work, a methodology for quality assessment of green coffee based on near infrared spectroscopy (NIRS) is proposed. NIRS is a green chemistry, low cost, fast response technique without the need of sample processing. The applicability of NIRS was evaluated for Arabica and Robusta varieties from different geographical locations. Partial least squares regression was used to relate the NIR spectrum to the mass fraction of defective and non-defective beans. Relative errors around 5% show that NIRS can be a valuable analytical tool to be used by coffee roasters, enabling a simple and quantitative evaluation of green coffee quality in a fast way. PMID:22953929

Santos, João Rodrigo; Sarraguça, Mafalda C; Rangel, António O S S; Lopes, João A

2012-12-01

256

Quantitative hydrogen analysis of zircaloy-4 in laser-induced breakdown spectroscopy with ambient helium gas  

SciTech Connect

This experiment was carried out to address the need for overcoming the difficulties encountered in hydrogen analysis by means of plasma emission spectroscopy in atmospheric ambient gas. The result of this study on zircaloy-4 samples from a nuclear power plant demonstrates the possibility of attaining a very sharp emission line from impure hydrogen with a very low background and practical elimination of spectral contamination of hydrogen emission arising from surface water and water vapor in atmospheric ambient gas. This was achieved by employing ultrapure ambient helium gas as well as the proper defocusing of the laser irradiation and a large number of repeated precleaning laser shots at the same spot of the sample surface. Further adjustment of the gating time has led to significant reduction of spectral width and improvement of detection sensitivity to {approx}50 ppm. Finally, a linear calibration curve was also obtained for the zircaloy-4 samples with zero intercept. These results demonstrate the feasibility of this technique for practical in situ and quantitative analysis of hydrogen impurity in zircaloy-4 tubes used in a light water nuclear power plant.

Ramli, Muliadi; Fukumoto, Ken-ichi; Niki, Hideaki; Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Maruyama, Tadashi; Kagawa, Kiichiro; Tjia, May On; Pardede, Marincan; Kurniawan, Koo Hendrik; Hedwig, Rinda; Lie, Zener Sukra; Lie, Tjung Jie; Kurniawan, Davy Putra

2007-12-01

257

The chemometric analysis of UV–visible spectra as a new approach to the study of the NaCl influence on aggregation of cysteine-capped gold nanoparticles  

Microsoft Academic Search

Gold nanoparticles synthesized using citrate reduction method were modified by cysteine at various concentrations. The cysteine-capped nanoparticles were analyzed by UV–vis absorption spectroscopy in the presence of various concentrations of sodium chloride. At higher concentration of sodium chloride the aggregation occurred. Measured spectra were analyzed by statistical methods, namely two-step cluster analysis and partial least square regression, to obtain quantitative

Pavel ?ezanka; Hana ?ezanková; Pavel Mat?jka; Vladimír Král

2010-01-01

258

Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

We investigated five clustering and training set selection methods to improve the accuracy of quantitative chemical analysis of geologic samples by laser induced breakdown spectroscopy (LIBS) using partial least squares (PLS) regression. The LIBS spectra were previously acquired for 195 rock slabs and 31 pressed powder geostandards under 7 Torr CO2 at a stand-off distance of 7 m at 17 mJ per pulse to simulate the operational conditions of the ChemCam LIBS instrument on the Mars Science Laboratory Curiosity rover. The clustering and training set selection methods, which do not require prior knowledge of the chemical composition of the test-set samples, are based on grouping similar spectra and selecting appropriate training spectra for the partial least squares (PLS2) model. These methods were: (1) hierarchical clustering of the full set of training spectra and selection of a subset for use in training; (2) k-means clustering of all spectra and generation of PLS2 models based on the training samples within each cluster; (3) iterative use of PLS2 to predict sample composition and k-means clustering of the predicted compositions to subdivide the groups of spectra; (4) soft independent modeling of class analogy (SIMCA) classification of spectra, and generation of PLS2 models based on the training samples within each class; (5) use of Bayesian information criteria (BIC) to determine an optimal number of clusters and generation of PLS2 models based on the training samples within each cluster. The iterative method and the k-means method using 5 clusters showed the best performance, improving the absolute quadrature root mean squared error (RMSE) by ~ 3 wt.%. The statistical significance of these improvements was ~ 85%. Our results show that although clustering methods can modestly improve results, a large and diverse training set is the most reliable way to improve the accuracy of quantitative LIBS. In particular, additional sulfate standards and specifically fabricated analog samples with Mars-like compositions may improve the accuracy of ChemCam measurements on Mars. Refinement of the iterative method, modifications of the basic k-means clustering algorithm, and classification based on specifically selected S, C and Si emission lines may also prove beneficial and merit further study.

Anderson, Ryan B.; Bell, James F., III; Wiens, Roger C.; Morris, Richard V.; Clegg, Samuel M.

2012-04-01

259

Final Report: Investigation of Polarization Spectroscopy and Degenerate Four-Wave Mixing for Quantitative Concentration Measurements  

SciTech Connect

Laser-induced polarization spectroscopy (LIPS), degenerate four-wave mixing (DFWM), and electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) are techniques that shows great promise for sensitive measurements of transient gas-phase species, and diagnostic applications of these techniques are being pursued actively at laboratories throughout the world. However, significant questions remain regarding strategies for quantitative concentration measurements using these techniques. The primary objective of this research program is to develop and test strategies for quantitative concentration measurements in flames and plasmas using these nonlinear optical techniques. Theoretically, we are investigating the physics of these processes by direct numerical integration (DNI) of the time-dependent density matrix equations that describe the wave-mixing interaction. Significantly fewer restrictive assumptions are required when the density matrix equations are solved using this DNI approach compared with the assumptions required to obtain analytical solutions. For example, for LIPS calculations, the Zeeman state structure and hyperfine structure of the resonance and effects such as Doppler broadening can be included. There is no restriction on the intensity of the pump and probe beams in these nonperturbative calculations, and both the pump and probe beam intensities can be high enough to saturate the resonance. As computer processing speeds have increased, we have incorporated more complicated physical models into our DNI codes. During the last project period we developed numerical methods for nonperturbative calculations of the two-photon absorption process. Experimentally, diagnostic techniques are developed and demonstrated in gas cells and/or well-characterized flames for ease of comparison with model results. The techniques of two-photon, two-color H-atom LIPS and three-laser ERE CARS for NO and C{sub 2}H{sub 2} were demonstrated during the project period, and nonperturbative numerical models of both of these techniques were developed. In addition, we developed new single-mode, injection-seeded optical parametric laser sources (OPLSs) that will be used to replace multi-mode commercial dye lasers in our experimental measurements. The use of single-mode laser radiation in our experiments will increase significantly the rigor with which theory and experiment are compared.

Robert P. Lucht

2005-03-09

260

Assessment of breast tumor margins via quantitative diffuse reflectance imaging  

NASA Astrophysics Data System (ADS)

A particular application of interest for tissue reflectance spectroscopy in the UV-Visible is intraoperative detection of residual cancer at the margins of excised breast tumors, which could prevent costly and unnecessary repeat surgeries. Our multi-disciplinary group has developed an optical imaging device, which is capable of surveying the entire specimen surface down to a depth of 1-2mm, all within a short time as required for intraoperative use. In an IRB-approved study, reflectance spectral images were acquired from 54 margins in 48 patients. Conversion of the spectral images to quantitative tissue parameter maps was facilitated by a fast scalable inverse Monte-Carlo model. Data from margin parameter images were reduced to image-descriptive scalar values and compared to gold-standard margin pathology. The utility of the device for classification of margins was determined via the use of a conditional inference tree modeling approach, and was assessed both as a function of type of disease present at the margin, as well as a function of distance of disease from the issue surface. Additionally, the influence of breast density on the diagnostic parameters, as well as the accuracy of the device, was evaluated.

Brown, J. Quincy; Bydlon, Torre M.; Kennedy, Stephanie A.; Geradts, Joseph; Wilke, Lee G.; Barry, William; Richards, Lisa M.; Junker, Marlee K.; Gallagher, Jennifer; Ramanujam, Nimmi

2010-02-01

261

Springtime Atmospheric Ozone, NO2 and BrO at 80N from 2007-2009, Measured by Ground-Based UV-Visible Spectrometers and Compared with ACE, OMI, and OSIRIS Satellite Data  

NASA Astrophysics Data System (ADS)

In mid-February, the sun above the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada (80N, 86W) rises for the first time since mid-October, ending the long polar night. The sunlight triggers photochemical reactions, which cause concentrations of stratospheric trace gases to change rapidly. These reactions are governed by temperatures in the stratosphere, which depend on the dynamics, and can lead to chemical ozone depletion. In order to understand these reactions and make predictions about ozone depletion in a changing climate, measurements of the atmospheric composition in the Arctic are essential. The Canadian Arctic Validation Campaigns for the Atmospheric Chemistry Experiment (ACE) satellite have brought scientists to Eureka every spring since 2004. During these campaigns, two ground-based UV-visible spectrometers measured ozone and NO2 columns. We will discuss the diurnal and seasonal variations of stratospheric ozone and NO2 above Eureka during spring 2007-2009 measured by the ground-based spectrometers and by the ACE and OSIRIS satellite missions, and will relate these measurements to dynamical conditions above Eureka. The UV-visible spectrometers can also measure BrO. The concentration of stratospheric bromine is a large uncertainty in chemical ozone depletion: although bromine-containing species are low in concentration, they are very reactive with ozone and cause up to half of spring-time chemical ozone depletion. There are few bromine measurements, specifically at the high latitudes, so most current understanding of bromine chemistry comes from model calculations. We will discuss the challenges in measuring BrO, show spring-time BrO vertical column densities, and compare these results with OMI and OSIRIS satellite measurements.

Strong, K.; Adams, C.; Park, J.; Fraser, A. C.; Walker, K. A.; Degenstein, D. A.; McLinden, C.; Kurosu, T. P.; Chance, K.; Manney, G. L.; Daffer, W.

2009-12-01

262

UV-visible spectroscopic study of the reaction kinetics of methylpiperazine-modified poly(vinyl chloride)s for use as fixed-state proton carrier membranes  

Microsoft Academic Search

Aminated poly(vinyl chloride)s (AmPVCs) were synthesized for use as fixed-site proton carrier membranes. Reactions between PVC and methylpiperazine (MePIP) in dimethylformamide (DMF) were studied using UV-VIS spectroscopy over time, temperature, and in the presence of the catalyst, potassium fluoride (KF). Based on the spectra of AmPVCs in THF, the peak attributions were assigned and the extinction coefficients were calculated to

Anna R. Roudman; Robert P. Kusy

1998-01-01

263

205 T1NMR and UV-Visible spectroscopic determination of the formation constants of aqueous thallium(I) hydroxo-complexes  

Microsoft Academic Search

The hydrolysis of T1(I) has been studied at 25°C using205T1-NMR spectroscopy and UV-Vis spectrophotometry in aqueous solutions with ionic strengths maintained by NaC104 at 2, 4, 6, and 8M. The formation constant and the spectral characteristics for the hydroxo complex, T10H? have been determined.\\u000a At high hydroxide ion concentrations there is clear evidence from the UV-Vis data for the formation

P. Sipos; S. G. Capewell; P. M. May; G. T. Hefter; G. Laurenczy; F. Lukacs; R. Roulet

1997-01-01

264

Cancer therapy prognosis using quantitative ultrasound spectroscopy and a kernel-based metric  

NASA Astrophysics Data System (ADS)

In this study, a kernel-based metric based on the Hilbert-Schmidt independence criterion (HSIC) is proposed in a computer-aided-prognosis system to monitor cancer therapy effects. In order to induce tumour cell death, sarcoma xenograft tumour-bearing mice were injected with microbubbles followed by ultrasound and X-ray radiation therapy successively as a new anti-vascular treatment. High frequency (central frequency 30 MHz) ultrasound imaging was performed before and at different times after treatment and using spectroscopy, quantitative ultrasound (QUS) parametric maps were derived from the radiofrequency (RF) signals. The intensity histogram of midband fit parametric maps was computed to represent the pre- and post-treatment images. Subsequently, the HSIC-based metric between preand post-treatment samples were computed for each animal as a measure of distance between the two distributions. The HSIC-based metrics computes the distance between two distributions in a reproducing kernel Hilbert space (RKHS), meaning that by using a kernel, the input vectors are non-linearly mapped into a different, possibly high dimensional feature space. Computing the population means in this new space, enhanced group separability (compared to, e.g., Euclidean distance in the original feature space) is ideally obtained. The pre- and post-treatment parametric maps for each animal were thus represented by a dissimilarity measure, in which a high value of this metric indicated more treatment effect on the animal. It was shown in this research that this metric has a high correlation with cell death and if it was used in supervised learning, a high accuracy classification was obtained using a k-nearest-neighbor (k-NN) classifier.

Gangeh, Mehrdad J.; Hashim, Amr; Giles, Anoja; Czarnota, Gregory J.

2014-03-01

265

Quantitative treatment of coarsely binned low-resolution recordings in molecular absorption spectroscopy  

NASA Astrophysics Data System (ADS)

Optical multichannel detectors like photodiode arrays or CCD cameras combined with grating spectrometers are commonly used as detection systems in quantitative absorption spectroscopy. As a trade-off to broad spectral coverage, banded spectral features are sometimes recorded with insufficient spectral resolution and/or insufficiently fine detector binning. This renders the true physical spectrum of recorded intensities changed by instrumental and spectrum specific artefacts thus impeding comparability between results from different set-ups. In this work, it is demonstrated that in the case of a "well-behaved" - i.e. free of ro-vibronic structure - absorption band like the iodine monoxide IO(4 ? 0) transition, these effects can easily change the apparent peak absorption by up to 50%. Also deviations from the strict linearity (Beer-Lambert's law) between absorber concentration and apparent, i.e. pixelwise optical density occur. This can be critical in studies of chemical kinetics. It is shown that the observed non-linearity can cause errors of up to 50% in the determination of a second order rate coefficient for the IO self reaction. To overcome the problem, a consistent and rigorous integral approach for the treatment of intensity recordings is developed. Linearity between optical density and absorber concentration thereby is re-established. The method is validated using artificial test data as well as experimental data of the IO(4 ? 0) absorption transition, obtained in the context of I 2/O 3 photochemistry studies. The agreement is accurate to within ±2% (test data) and ±3% (experimental data) supporting the validity of the approach. Possible consequences for other spectroscopic work are indicated.

Spietz, Peter; Martín, Juan Carlos Gómez; Burrows, John P.

2006-06-01

266

Quantitative Determination of Dielectric Thin-Film Properties Using Infrared Emission Spectroscopy  

SciTech Connect

We have completed an experimental study to investigate the use of infrared emission spectroscopy (IRES) for the quantitative analysis of borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Experimental parameters investigated included temperatures within the range used in the microelectronics industry to produce these films; hence the potential for using the IRES technique for real-time monitoring of the film deposition process has been evaluated. The film properties that were investigated included boron content, phosphorus content, film thickness, and film temperature. The studies were conducted over two temperature ranges, 125 to 225 *C and 300 to 400 *C. The later temperature range includes realistic processing temperatures for the chemical vapor deposition (CVD) of the BPSG films. Partial least squares (PLS) multivariate calibration methods were applied to spectral and film property calibration data. The cross-validated standard errors of prediction (CVSEP) fi-om the PLS analysis of the IRES spectraof21 calibration samples each measured at 6 temperatures in the 300 to 400 "C range were found to be 0.09 wt. `?40 for B, 0.08 wt. `%0 for P, 3.6 ~m for film thickness, and 1.9 *C for temperature. By lowering the spectral resolution fi-om 4 to 32 cm-l and decreasing the number of spectral scans fi-om 128 to 1, we were able to determine that all the film properties could be measured in less than one second to the precision required for the manufacture and quality control of integrated circuits. Thus, real-time in-situ monitoring of BPSG thin films formed by CVD deposition on Si monitor wafers is possible with the methods reported here.

Franke, J.E.; Haaland, D.M.; Niemczyk, T.M.; Zhang, S.

1998-10-14

267

Development and usage of a NIST standard reference material for real time PCR quantitation of human DNA  

Microsoft Academic Search

National Institute of Standards and Technology SRM 2372 human DNA quantitation standard has been produced to support the need for a human-specific DNA quantitation standard in forensic casework and calibration of new quantitative polymerase chain reaction (qPCR) assays. The conventional DNA concentration has been assigned with one of the U.S. National Reference UV\\/Visible Spectrophotometers, assuming an absorbance of 1.0 at

P. M. Vallone; M. C. Kline; D. L. Duewer; A. E. Decker; J. W. Redman; J. C. Travis; M. V. Smith; J. M. Butler

2008-01-01

268

Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels.  

PubMed

Dark field resonant light scattering by gold and silver nanoparticles enables the detection and spectroscopy of such particles with high sensitivity, down to the single-particle level, and can be used to implement miniaturised optical detection schemes for chemical and biological analysis. Here, we present a straightforward optical spectroscopic methodology for the quantitative spectrometric study of resonant light scattering (RLS) by nanoparticles. RLS spectroscopy is complementary to UV-visible absorbance measurements, and we apply it to the characterisation and comparison of different types of gold, silver and gold-silver alloy nanoparticles. The potential of gold and silver particles as alternatives for fluorescent probes in certain applications is discussed. RLS spectroscopy is shown to be useful for studying analyte-induced gold nanoparticle assembly and nanoparticle chemistry, which can induce radical changes in the plasmonic resonances responsible for the strong light scattering. Furthermore, the feasibility of dark field RLS detection and quantitation of metal nanoparticles in microfluidic volumes is demonstrated, opening interesting possibilities for the further development of microfluidic detection schemes. PMID:23172138

Navarro, Julien R G; Werts, Martinus H V

2013-01-21

269

Multivariate processing strategies for enhancing qualitative and quantitative analysis based on infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Airborne passive Fourier transform infrared spectrometry is gaining increased attention in environmental applications because of its great flexibility. Usually, pattern recognition techniques are used for automatic analysis of large amount of collected data. However, challenging problems are the constantly changing background and high calibration cost. As aircraft is flying, background is always changing. Also, considering the great variety of backgrounds and high expense of data collection from aircraft, cost of collecting representative training data is formidable. Instead of using airborne data, data generated from simulation strategies can be used for training purposes. Training data collected under controlled conditions on the ground or synthesized from real backgrounds can be both options. With both strategies, classifiers may be developed with much lower cost. For both strategies, signal processing techniques need to be used to extract analyte features. In this dissertation, signal processing methods are applied either in interferogram or spectral domain for features extraction. Then, pattern recognition methods are applied to develop binary classifiers for automated detection of air-collected methanol and ethanol vapors. The results demonstrate, with optimized signal processing methods and training set composition, classifiers trained from ground-collected or synthetic data can give good classification on real air-collected data. Near-infrared (NIR) spectrometry is emerging as a promising tool for noninvasive blood glucose detection. In combination with multivariate calibration techniques, NIR spectroscopy can give quick quantitative determinations of many species with minimal sample preparation. However, one main problem with NIR calibrations is degradation of calibration model over time. The varying background information will worsen the prediction precision and complicate the multivariate models. To mitigate the needs for frequent recalibration and improve robustness of calibration models, signal processing methods can be used to decrease the influence of such non-constant background variation. In this dissertation, signal processing methods are also applied to NIR single-beam spectra collected during short-term and long-term studies. The prediction performance of the calibration models demonstrates, with suppression of non-constant background information by optimal wavelet processing procedures, robustness of calibration models with time can be significantly improved.

Wan, Boyong

270

Impact of pellet thickness on quantitative terahertz spectroscopy of solid samples in a polyethylene matrix.  

PubMed

Pellets composed of different weight-percent (wt-%) of lactose within a polyethylene (PE) matrix are used to examine how the physical thickness of solid samples impact analytical measurements performed over terahertz (THz) frequencies when using time-domain THz spectroscopy. Results indicate that the thickness of each pellet depends on the mass and physical properties of the individual components that comprise the pellet. Thickness of mixture pellets depends on the porosity of the individual pellet components. Porosity measurements presented here for PE and lactose give values of 25.6 ± 0.3 and 14.5 ± 0.1, respectively, which indicate that more air is trapped within the compressed PE matrix compared to that for lactose. This difference in porosity creates different pellet thicknesses for pellets of the same nominal mass but with different relative amounts of PE and lactose. For this binary matrix, the thickness of each pellet is found to be a linear combination of the compressed densities of the individual components. Analysis of the time-domain THz spectra reveals that thinner samples are confounded by a fringe pattern observed in the frequency-domain spectra. This fringe pattern is created by an etalon corresponding to the air/pellet interfaces for the sample in the optical path. Spectra collected from thicker pellets are confounded by a sloping baseline caused by scattering effects within the pellet matrix. The quantitative impact of pellet thickness is determined by comparing the mean standard error of calibration (MSEC) and mean standard error of prediction (MSEP) for a set of leave-three-out cross validation multivariate calibration models based on the partial least-squares (PLS) algorithm. Results indicate that PLS models are capable of analytical measurements with MSEC and MSEP values between 0.04 and 0.20 wt-%. Analysis of spectral variance captured within the corresponding spectral loadings for each model indicates that spectral variance is lowest for the 300 mg samples where the impact of scattering is minimal under conditions when the sample etalon is nonexistent. PMID:23438763

Namkung, Hankyu; Kim, Jaejin; Chung, Hoeil; Arnold, Mark A

2013-04-01

271

Primary photochemical process in films of dichromated gelatin: a quantitative approach  

NASA Astrophysics Data System (ADS)

The photochemical behavior of dichromated gelatin films is investigated on irradiation at 365 nm and 491.6 nm. Fourier transform infrared (FTIR) spectroscopy confirms the two-step reduction of chromium (VI) into chromium (III). Prior to the irradiation, the molar extinction coefficient (epsilon) of chromium (VI) in the film is measured as a function of the pH of the starting solution with the result that (epsilon) appears to be pH independent in the range 2 to 10 contrary to what is observed in solution. Chromium (V) resulting from a charge transfer between the polymeric matrix and chromium (VI) species in the excited state appears to be surprisingly stable in the gelatin matrix. Accordingly, the subsequent slow reduction of chromium (V) into the final chromium (III) does not interfere in a significant way in chromium (VI) reduction. As a result, it is possible to determine the UV- visible spectrum of chromium (V) and to quantify its formation. So far no quantitative results were reported in the literature concerning the chromium (V) spectrum and its formation in a film of dichromated gelatin. FTIR spectroscopy confirms the two-step reduction of chromium (VI) into chromium (III).

Lafond, Christophe; Pizzocaro, Christine; Lessard, Roger A.; Bolte, Michele

2000-03-01

272

Determination of a Quantitative Algorithm for the Measurement of Muscle Oxygenation Using CW Near-Infrared Spectroscopy Mean Optical Pathlength Without the Influence of Adipose Tissue.  

National Technical Information Service (NTIS)

Near-infrared spectroscopy (NIRS) is a useful technique for noninvasive measurement of oxygenation of the brain and muscle. However, no accurate, quantitative algorithms for continuous wave NIRS (CW-NIRS) have yet been presented dute to the following two ...

J. Shao K. Yamamoto L. Lin M. Niwayama N. Kudo

2000-01-01

273

Development and validation of UV-Visible spectrophotometric baseline manipulation methodology for simultaneous analysis of drotraverine and etoricoxib in pharmaceutical dosage forms  

PubMed Central

Introduction: A simple, economical, precise, and accurate new UV spectrophotometric baseline manipulation methodology for simultaneous determination of drotaverine (DRT) and etoricoxib (ETR) in a combined tablet dosage form has been developed. Materials and Methods: The method is based on baseline manipulation (difference) spectroscopy where the amplitudes at 274 and 351 nm were selected to determine ETR and DRT, respectively, in combined formulation and methanol was used as solvent. Both the drugs obey Beer's law in the concentration ranges of 4–20 ?g/mL for DRT and 4.5–22.5 ?g/mL for ETR. Results: The results of analysis have been validated statistically and recovery studies confirmed the accuracy and reproducibility of the proposed method which were carried out by following the ICH guidelines. Conclusion: It has been concluded that a new simple and accurate UV spectrophotometric baseline manipulation method was developed for simultaneous do not declare DRT and ETR in a combined tablet dosage form has been developed.

Choudhari, Vishnu P.; Parekar, Sanket R.; Chate, Subhash G.; Bharande, Pradeep D.; Kuchekar, Bhanudas S.

2011-01-01

274

Quasi-simultaneous observations of the BL Lac object MK 501 in X-ray, UV, visible, IR and radio frequencies  

NASA Technical Reports Server (NTRS)

Quasi-simultaneous observations of the BL Lacertae (Lac) objects MK 501 were performed for the first time at X-ray, ultraviolet, visible, infrared, and radio frequencies. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical radio emission can not be accounted for by a single power law. Several theoretical models were considered for the emission mechanism. A quantitative comparison was performed with the synchrotron-self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object is underestimated by a factor of about three or four.

Kondo, D. M.; Worrall, D. M.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. H.; Oke, J. B.; Yee, H.; Neugebauer, G.; Matthews, K.; Feldman, P. A.

1980-01-01

275

Photoemission spectroscopy of size selected zinc sulfide nanocrystallites  

Microsoft Academic Search

We report photoemission spectroscopic studies of zinc sulfide nanocrystallites in the quantum size regime. The nanocrystallites studied have average sizes of 1.8, 2.5, and 3.5 nm and narrow size distributions as determined from UV-visible absorption spectroscopy, as well as x-ray diffraction and high-resolution transmission electron microscopy. Analysis of sulfur core levels from the nanocrystallites show the presence of the three

J. Nanda; D. D. Sarma

2001-01-01

276

Quantitative Infrared Spectroscopy of Glucose in Blood Using Partial Least-Squares Analyses.  

National Technical Information Service (NTIS)

The concentration of glucose in drawn samples of human blood has been determined using attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy and partial least-squares (PLS) multivariate calibration. A twelve sample calibration...

K. J. Ward D. M. Haaland M. R. Robinson R. P. Eaton

1989-01-01

277

Detection and quantitative analysis of ferrocyanide and ferricyanide: FY 93 Florida State University Raman spectroscopy report.  

National Technical Information Service (NTIS)

This report provides a summary of work to develop and investigate the feasibility of using Raman spectroscopy with tank waste materials. It contains Raman spectra from organics, such as ethylenediaminetetraacetic acid (EDTA), hydroxyethylenediaminetetraac...

C. K. Mann T. J. Vickers

1994-01-01

278

Raman spectroscopy: A tool for the quantitative analysis of mineral components of solid mixtures. The case of calcium oxalate monohydrate and hydroxyapatite  

Microsoft Academic Search

A quantitative analytical methodology based on Raman spectroscopy (RS) was developed for the compositional analysis of binary solid mixtures consisting of calcium oxalate monohydrate (COM) and hydroxyapatite (HAP). The ratios of the relative intensities of the Raman bands corresponding to HAP and COM were used for the construction of calibration curves used for the quantitative analysis. The intensities at 960

Christos G. Kontoyannis; Nikolaos C. Bouropoulos; Petros G. Koutsoukos

1997-01-01

279

Quantitative Raman Spectroscopy to monitor microbial metabolism in situ under pressure  

NASA Astrophysics Data System (ADS)

Although high hydrostatic pressure (HHP) biotopes are ubiquitous on Earth, little is known about the metabolism of piezophile organisms. Cell culture under HHP can be technically challenging, and equipment- dependent. In addition, the depressurization step required for analysis can lead to erroneous data. Therefore, to understand how piezophile organisms react to pressure, it is crucial to be able to monitor their activity in situ under HHP. We developed the use of Quantitative Raman Spectroscopy (QRS, 1) to monitor in situ the metabolism of organic molecules. This technique is based on the specific spectral signature of an analyte from which its concentration can be deduced. An application of this technique to the monitoring of alcoholic fermentation by the piezotolerant micro-eucaryote Saccharomyces cerevisiae is presented. Ethanol fermentation from glucose was monitored during 24h from ambient P up to 100 MPa in the low- pressure Diamond Anvil Cell (lpDAC, 2). The experimental compression chamber consisted in a 300 ?m-thick Ni gasket in which a 500 ?m-diameter hole was drilled. Early-stationnary yeast cells were inoculated into fresh low-fluorescence medium containing 0.15 M of glucose. Ethanol concentration was determined in situ by QRS using the symmetric C-C stretching mode of ethanol at 878 cm-1 normalizing the data to the intensity of the sulfate S-O stretching mode at 980 cm-1. In our setup, the detection limit of ethanol is lower than 0.05 mM with a precision below 1%. At ambient P, ethanol production in the lpDAC and in control experiments proceeds with the same kinetics. Thus, yeast is not affected by its confinement. This is further confirmed by its ability to bud with a generation time similar to control experiments performed in glass tubes at ambient pressure inside the lpDAC. Ethanol production by yeast occurs to at least 65 MPa (3). At 10 MPa, fermentation proceeds 3 times faster than at ambient P. Fermentation rates decrease linearly from 20 to at least 65 MPa. No ethanol was detected at 100 MPa. From these data, the pressure at which ethanol fermentation stops in yeast was calculated to be 87±7 MPa. These results indicate that the activity of one or several enzymes of the glycolytic pathway is enhanced at low pressure. At higher pressure, they become progressively repressed, and are completely inhibited above 87 MPa. Our in situ monitoring constitutes a direct demonstration of yeast metabolism in situ under pressure up to 100 MPa. Our data agree with previous ex-situ data by Abe and Horikoshi (4). However, we observed that ethanol production is not completely inhibited around 50 MPa as predicted, but could be detected at significantly higher pressures (up to 87 MPa). QSR is a powerful method to monitor microbial activities, since almost any organic molecule with a carbon chain ranging from 1 to 6 carbon can be detected and quantified. The only limitation of QSR is that the Raman spectrum of the molecule exhibits at least one peak not masked by the spectrum of the growth medium. 1 Pelletier M J Appl Spectr 57:20A-42A, 2003 2 Daniel I, Oger P, Picard A, Cardon H and Chervin J-C (submitted to Rev Sci Instr) 3 Picard A, Daniel I, Montagnac G and Oger P (submitted to Extremophiles) 4 Abe F and Horikoshi K Extremophiles 1: 89-93, 1997

Picard, A.; Daniel, I.; Oger, P.

2006-12-01

280

Quantitative assessment of the ion-beam irradiation induced direct damage of nucleic acid bases through FTIR spectroscopy  

NASA Astrophysics Data System (ADS)

Energetic particles exist ubiquitously in nature, and when they hit DNA molecules in organisms, they may induce critical biological effects such as mutation. It is however still a challenge to measure directly and quantitatively the damage imposed by the energetic ions on target DNA molecules. In this work we attempted to employ Fourier transformation infrared (FTIR) spectroscopy to assess the ion-induced direct damage of four nucleic acid bases, namely, thymine (T), cytosine (C), guanine (G), and adenine (A), which are the building blocks of DNA molecules. The samples were prepared as thin films, irradiated by argon ion-beams at raised ion fluences, and in the meantime measured by FTIR spectroscopy for the damage in a quasi-in-situ manner. It was found that the low-energy ion-beam induced radiosensitivity of the four bases shows the sequence G > T > C > A, wherein the possible mechanism was also discussed.

Huang, Qing; Su, Xi; Yao, Guohua; Lu, Yilin; Ke, Zhigang; Liu, Jinghua; Wu, Yuejin; Yu, Zengliang

2014-07-01

281

Quantitative Low-Energy X-Ray Spectroscopy (50-100-A Region).  

National Technical Information Service (NTIS)

The quantitative analysis of emission spectra in the 10-100-A region has become of considerable importance for high-temperature plasma diagnostics (region) and for molecular orbital and solid-state-band analysis. Because measurement intensities are typica...

B. L. Henke K. Taniguchi

1975-01-01

282

[Research on the analytical line auto-selection for quantitative analysis of materials with laser-induced breakdown spectroscopy].  

PubMed

To realize auto-selection of analytical lines for quantitative analysis of materials with laser-induced breakdown spectroscopy, two parameters, i. e. the relative detected-to-theory intensity ratio (RDTIR) and wavelength difference of detected and theory (WDDT) were defined. The spectral lines seriously disturbed by self-absorption and spectral interference were excluded automatically by setting reasonable thresholds of RDTIR and WDDT. By analyzing the experimental data of high-alloy steel (GBW01605), the analytical lines of iron (Fe), chromium (Cr), nickel (Ni), manganese (Mn) and copper (Cu) were selected, and the results were in line with the principle of lines selection. PMID:22715743

Du, Zhen-hui; Meng, Fan-li; Li, Jin-yi; Ma, Yi-wen; Sun, Lan-xiang; Cong, Zhi-bo; Xin, Yong

2012-04-01

283

A Semi-Quantitative Analysis of Essential Micronutrient in Folium Lycii Using Laser-Induced Breakdown Spectroscopy Technique  

NASA Astrophysics Data System (ADS)

In this paper, the capabilities of laser-induced breakdown spectroscopy (LIBS) for rapid analysis to multi-component plant are illustrated using a 1064 nm laser focused onto the surface of folium lycii. Based on homogeneous plasma assumption, nine of essential micronutrients in folium lycii are identified. Using Saha equation and Boltzmann plot method electron density and plasma temperature are obtained, and their relative concentration (Ca, Mg, Al, Si, Ti, Na, K, Li, and Sr) are obtained employing a semi-quantitative method.

Sun, Duixiong; Su, Maogen; Dong, Chenzhong; Zhang, Dacheng; Ma, Xinwen

2010-08-01

284

Semi-quantitative surface analysis of Mt. St. Helens Ash by X-ray photoelectron spectroscopy (XPS)  

NASA Astrophysics Data System (ADS)

A sample of Mt. St. Helens tephra and USGS andesite rock standard (AGV-1) were analyzed by X-ray photoelectron spectroscopy (XPS). The results indicate major element surface analysis on powdered multicomponent samples (such as geological specimens) can be performed semi-quantitatively using an equation that relates XPS peak intensity with atomic surface density. The surface compositions found by XPS are in good agreement with bulk X-ray fluorescence analysis (XRF). It is interesting to note that XPS analysis of this volcanic ash did not reveal a surface enrichment of chlorine or sulphur and only trace fluorine although these volatile elements are normally abundant in volcanic gases.

Brown, J. R.; Fyfe, W. S.; Bancroft, G. M.

285

Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS)  

NASA Astrophysics Data System (ADS)

Laser induced breakdown spectroscopy has been used in order to obtain quantitative local equivalence ratio measurements in laminar premixed methane-air Bunsen flames. The total emission intensities of the 656.3 nm H ? and the 777 nm O(I) atomic spectral lines were simultaneously measured and a linear relation of the H/O intensity ratio with the flame equivalence ratio ? was established. Axial and radial profiles of local equivalence ratio were thus obtained for both lean and rich flames and were used to provide information regarding flame structure and dynamics.

Stavropoulos, P.; Michalakou, A.; Skevis, G.; Couris, S.

2005-03-01

286

Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine  

NASA Astrophysics Data System (ADS)

It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with ? = 1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

Zhang, Yong; Cong, Qian; Xie, Yunfei; Yang, Jingxiu; Zhao, Bing

2008-12-01

287

Vibrational spectroscopy as a routine tool for the quantitative analysis of serum?  

NASA Astrophysics Data System (ADS)

Mid-infrared and Raman spectroscopy together with multivariate data analysis offers the potential to be applied to clinical laboratory analysis due to their reagent-free nature, the speed of analysis and the possibility of obtaining a variety of information from a single measurement. In what we believe to be among the largest studies on mid-infrared and Raman spectroscopy for the analysis of multiple analytes in serum, samples from 247 donors have been analyzed with the emphasis on reproducibility. In an independent validation, root-mean-square errors of prediction (RMSEP) ranged from 328 mg/dL for the quantification of protein (mean concentration: 7008 mg/dL) using mid-infrared spectroscopy to 1.1 mg/dL for uric acid (mean concentration: 5.3 mg/dL) in the case of Raman spectroscopy. Both techniques deliver similar performances. We also performed first steps towards determining system precision and accuracy. In a fivefold measurement of 5 randomly chosen samples from this study, precision and accuracy range from 4% to 16% and from 4% to 29%, respectively. However, when considering the physiological and pathological range of concentrations of analytes, vibrational spectroscopy might open the path towards less expensive and more rapid multiparameter analysis of small sample volumes in those cases, in which moderate accuracy is permissible.

Rohleder, D.; Kocherscheidt, G.; Gerber, K.; Kiefer, W.; Köhler, W.; Möcks, J.; Petrich, W.

2006-03-01

288

Spectroscopic (FT-IR, FT-Raman, and UV-visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole.  

PubMed

Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers of 1-acetylindole were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. The FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational wavenumbers were calculated and a good correlation between experimental and scaled calculated wavenumbers has been accomplished. Electric dipole moment, polarizability and first static hyperpolarizability values of 1-acetylindole have been calculated at the same level of theory and basis set. The results show that the 1-acetylindole molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the molecule was recorded in the region 200-500nm and the electronic properties like HOMO and LUMO energies and composition were obtained using TD-DFT method. The calculated energies and oscillator strengths are in good correspondence with the experimental data. The thermodynamic properties of the compound under investigation were calculated at different temperatures. PMID:24996206

Shukla, Vikas K; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Sachan, Alok K; Pathak, Shilendra K; Kumar, Amarendra; Prasad, Onkar; Bishnoi, Abha; Sinha, Leena

2014-12-10

289

Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration  

Microsoft Academic Search

Previous descriptions of thermal emission spectroscopy have presented techniques that vary in accuracy and reproducibility. Contributions of thermal energy from the instrument and environment are major calibration factors that limit accuracy in emissivity determination. Reproducibility is related to the stability of these quantities. Sample temperature determination is also a significant factor in arriving at accurate emissivity. All of the factors

Steven W. Ruff; Philip R. Christensen; Paul W. Barbera; Donald L. Anderson

1997-01-01

290

Quantitative analysis of pork dry-cured sausages to quality control by NIR spectroscopy  

Microsoft Academic Search

Near infrared spectroscopy technology (diode array instrument) was used to study the feasibility of applying quality controls to typical Spanish sausages by performing a proximate analysis (fat, moisture and protein) on the finished product (intact and homogenized). This could be used to provide quality controls at various stages once the finished product was obtained: finished product, storage, distribution and marketing.

A. J. Gaitán-Jurado; V. Ortiz-Somovilla; F. España-España; J. Pérez-Aparicio; E. J. De Pedro-Sanz

2008-01-01

291

Single molecule fluorescence spectroscopy: approaches toward quantitative investigations of structure and dynamics in living cells  

Microsoft Academic Search

The investigation of the structure and dynamics of biomolecules and biomolecular assemblies in living cells is of current interest in molecular biology. Recent developments in single molecule fluorescence spectroscopy (SMFS) have opened ways for investigating the dynamics and stoichiometry of individual biomolecular complexes e.g., by application of single pair fluorescence resonance energy transfer (spFRET) with alternating laser excitation (ALEX), and

Daniel Siegberg; Christian Michael Roth; Dirk-Peter Herten

2006-01-01

292

The Quantitative Determination of Bis-Phenol Antioxidant Additives in Petroleum Oils by Infrared Spectroscopy.  

National Technical Information Service (NTIS)

For the determining bis-phenolic antioxidants in petroleum oils by infrared spectroscopy, the bands corresponding to the hydroxyle groups are convenient as analytical bands, i.e., 3496/cm for 2,2-methylene-bis (4-methyl-6-tert-butylphenol), 3435/cm for 2,...

A. A. Kadushin S. Korchek

1968-01-01

293

Methane detection using Wavelength Modulation Spectroscopy and a multiline quantitation method  

Microsoft Academic Search

In this paper the application of the Inverse Least Squares algorithm (ILS) to the detection of methane using its behaviour in the near-infrared band is presented. In order to test the effectiveness of this method, different methane concentrations were measured. Wavelength Modulation Spectroscopy (WMS) was employed to obtain the first and second harmonics of the modulation signal. The use of

Ana M. Cubillas; Olga M. Conde; María Ángeles Quintela; Adolfo Cobo; José Miguel López-Higuera

2005-01-01

294

Remote gas detection and quantitative analysis from infrared emission spectra obtained by Fourier transform infrared spectroscopy  

Microsoft Academic Search

Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed

Moira Hilton; Alan H. Lettington; Ian M. Mills

1994-01-01

295

Quantitative FT-IR spectroscopy of gypsum raw material for industry  

Microsoft Academic Search

Today quality control (QC) is a big issue for being competitive in the gypsum industry. Knowledge and understanding of the raw material help to enhance the quality and permanence of products. Therefore a rapid, precise and user-friendly FT-IR spectroscopic method for quantitative analysis of gypsum, anhydrite, magnesite and dolomite from the gypsum deposit of Puchberg, Austria is being developed. There

K. Schwendtner; E. Libowitzky; M. A. Götzinger; S. Koss

2003-01-01

296

[Usefulness of quantitative H-MR spectroscopy for the differentiation between radiation necrosis and recurrence of anaplastic oligodendroglioma].  

PubMed

We report a case, in which quantitative 1H-MR spectroscopy (MRS) was useful for the differentiation between radiation necrosis and a recurrent tumor. The present case is a 44-year-old man who underwent the subtotal removal of a mass lesion in the left frontal lobe. The histological diagnosis was anaplastic oligodendroglioma (WHO grade III). Postoperatively, a fractionated radiotherapy (total 64Gy) and chemotherapy were performed. MRI after the radiotherapy showed no contrast enhancing lesion. MRI, 5 years after the radiotherapy, showed a growing enhancing lesion and a T1 hypointensity lesion without enhancement, both of which indicated a recurrent tumor. MR spectroscopy was performed for the differential diagnosis of these lesions. The spectrum was acquired by the point resolved spectroscopy (PRESS) method by TR/TE=2,000 ms/68 ms, 136 ms, and 272 ms and evaluated with peak pattern and quantification value of metabolite. MRS of the enhancing lesion demonstrated a decrease of the Choline-containing compounds (Cho) concentration, disappearance of N-acetylaspartate (NAA), decrease of Creatine/ Phosphocreatine (t-Cr) and presence of Lipids (Lip) and Lactate (Lac), all of which are characteristic finding of a radiation necrosis. The histological diagnosis of this lesion showed evidence also of radiation necrosis. On the other hand, MRS of the T1 hypointensity lesion without enhancement showed, a marked high peak of the Cho concentration, which is characteristic for a recurrent tumor. The histological findings of this lesion showed a diffuse proliferation of recurrent tumor cells. Quantitative 1H-MRS is a useful tool for the differentiation between radiation necrosis and recurrent tumors. PMID:21512199

Isobe, Tomonori; Akutsu, Hiroyoshi; Yamamoto, Tetsuya; Shiigai, Masanari; Masumoto, Tomohiko; Nakai, Kei; Takano, Shingo; Anno, Izumi; Matsumura, Akira

2011-05-01

297

The quantitative monitoring of mechanochemical reaction between solid L-tartaric acid and sodium carbonate monohydrate by terahertz spectroscopy  

NASA Astrophysics Data System (ADS)

The solid-state reaction of chiral tartaric acid and alkali carbonate was studied by terahertz time-domain spectroscopy (THz-TDS). The sodium tartrate dihydrate was synthesized with high efficiency by mechanical grinding in the solid-state without waste that is particularly sustainable and environmentally benign. Distinct THz absorptions were observed for reactants and products. It indicates that THz spectroscopy is sensitive to different materials and crystal structures. The characteristic THz absorption peak at 1.09 THz of L (+)-Tartaric acid was selected for quantitative analysis. The reaction kinetics could be expressed by the Second-order equation and the Jander equation, which is consistent with a three-dimensional diffusion mechanism. The combination of multi-techniques including synchrotron radiation X-ray powder diffraction (SRXRPD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) was used to investigate the grinding process and presented supporting evidences. The results demonstrate that THz spectroscopy technique has great potential applications in process monitoring and analysis in pharmaceutical and chemical synthesis industry.

Liu, Xiaohong; Liu, Guifeng; Zhao, Hongwei; Zhang, Zengyang; Wei, Yongbo; Liu, Min; Wen, Wen; Zhou, Xingtai

2011-11-01

298

Quantitative analysis of hydrogenated diamondlike carbon films by visible Raman spectroscopy  

NASA Astrophysics Data System (ADS)

The correlations between properties of hydrogenated diamondlike carbon films and their Raman spectra have been investigated. The films are prepared by plasma deposition technique, keeping different hydrogen to methane ratios during the growth process. The hydrogen concentration, sp3 content, hardness, and optical Tauc gap of the materials have been estimated from a detailed analysis of their Raman spectra. We have also measured the same parameters of the films by using other commonly used techniques, such as sp3 content in films by x-ray photoelectron spectroscopy, their Tauc gap by ellipsometric measurements, and hardness by microhardness testing. The reasons for the mismatch between the characteristics of the films, as obtained by Raman measurements and by the above mentioned techniques, have been discussed. We emphasize on the importance of the visible Raman spectroscopy in reliably predicting the above key properties of diamondlike carbon films.

Singha, Achintya; Ghosh, Aditi; Roy, Anushree; Ray, Nihar Ranjan

2006-08-01

299

Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation  

NASA Astrophysics Data System (ADS)

Terahertz (THz) radiation probes intermolecular interactions through crystal lattice vibrations, allowing the characterization of solid materials. Thus, THz spectroscopy is a promising alternative to mainstream solid-state analytical tools such as X-ray diffraction or thermal analysis. The method provides the benefits of online measurement, remote sampling and three-dimensional imaging, all of which are attractive for quality control and security applications. In the context of pharmaceutical solids, THz spectroscopy can differentiate and quantify different forms of active pharmaceutical ingredients. Here, we apply this technique to monitor a dynamic process involving two molecular crystals. In particular, we follow the mechanochemical construction of a two-component cocrystal by grinding together phenazine (phen) and mesaconic acid (mes). To rationalize the observed changes in the spectra, we conduct lattice dynamics calculations that lead to the tentative assignment of at least one feature in the cocrystal THz spectrum.

Lien Nguyen, K.; Friš?i?, Tomislav; Day, Graeme M.; Gladden, Lynn F.; Jones, William

2007-03-01

300

Quantitative analysis of borophosphosilicate glass films on silicon using infrared external reflection--absorption spectroscopy  

Microsoft Academic Search

Borophosphosilicate glass (BPSG) dielectric thin films deposited on both bare and oxide-coated undoped silicon wafers have been analyzed using infrared external reflection--absorption spectroscopy (IRRAS). The partial least-squares (PLS1) algorithm was used to simultaneously determine boron content, phosphorous content, and film thickness, with standard errors of prediction of 0.08 wt %, 0.11 wt %, and 24 A, respectively, in the BPSG

James E. Franke; L. Zhang; T. M. Niemczyk; D. M. Haaland; K. J. Radigan

1995-01-01

301

Validation of Reflectance Infrared Spectroscopy as a Quantitative Method to Measure Percutaneous Absorption In Vivo  

Microsoft Academic Search

Attenuated total-reflectance infrared (ATR-IR) spectroscopy has been used to follow the penetration of a model compound (4-cyanophenol; CP) across human stratum corneum (SC) in vivo, in man. CP was administered for periods of 1, 2, or 3 hr, either (a) as a 10% (w\\/v) solution in propylene glycol or (b) in an identical vehicle which also contained 5% (v\\/v) oleic

Naruhito Higo; Aarti Naik; D. Bommi Bommannan; Russell O. Potts; Richard H. Guy

1993-01-01

302

Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and urine samples using nuclear magnetic resonance spectroscopy  

Microsoft Academic Search

Rapid, specific and simple methods for determining levofloxacin and rifampicin antibiotic drugs in pharmaceutical and human urine samples were developed. The methods are based on 1H NMR spectroscopy using maleic acid as an internal standard and DMSO-d6 as NMR solvent. Integration of NMR signals at 8.9 and 8.2ppm were, respectively, used for calculating the concentration of levofloxacin and rifampicin drugs

A. A. Salem; H. A. Mossa; B. N. Barsoum

2005-01-01

303

Saturated polarization spectroscopy with a picosecond laser for quantitative concentration measurements  

SciTech Connect

The collisional dependence of saturated polarization spectroscopy with a picosecond laser is investigated by probing hydroxyl in a flow cell. While nanosecond lasers have been used often for nonlinear diagnostic measurements of flame composition, picosecond lasers provide a potentially superior source for such techniques. Compared to a nanosecond laser, picosecond lasers produce significantly greater peak power for the same pulse energy, and this could improve the signal strength of multi-photon techniques such as degenerate four-wave mixing (DFWM) and polarization spectroscopy (PS). It has been suggested that the signal produced by such lasers would be less dependent on the collisional environment because the behavior of the molecular system probed by short-pulse lasers is governed more by the spectral width of the laser and the Doppler effect. To investigate the collisional dependence of the polarization spectroscopy signal generated with a picosecond laser, the authors probe the A{sup 2}{Sigma}{sup +}-X{sup 2}{Pi} (0,0) band of OH in a flow cell. In this well-controlled environment, the authors monitor the change in signal strength as they vary the buffer gas pressure by a factor of 50. Hydroxyl (OH) is created by photolysis of hydrogen peroxide using a Nd:YAG laser.

T. A. Reichardt; R. L. Farrow; F. D. Teodoro; R. P. Lucht

2000-02-11

304

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters, such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) of 0.9451 and root-mean-square error of prediction (RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.

Shao, Yongni; He, Yong; Mao, Jingyuan

2007-09-01

305

Quantitative determination of dimethylaminoethanol in cosmetic formulations by nuclear magnetic resonance spectroscopy.  

PubMed

A nuclear magnetic resonance (NMR) spectroscopic method was validated for the quantitative determination of dimethylaminoethanol (DMAE) in cosmetic formulations. The linearity in the range from 0.5000 to 1.5000 g (DMAE salt/mass maleic acid) presents a correlation coefficient > 0.99 for all DMAE salts. The repeatability (intraday), expressed as relative standard deviation, ranged from 1.08 to 1.44% for samples and 1.31 to 1.88% for raw materials. The detection limit and quantitation limit were 0.0017 and 0.0051 g for DMAE, 0.0018 and 0.0054 g for DMAE bitartrate, and 0.0023 and 0.0071 g for DMAE acetamidobenzoate, respectively. The proposed method is simple, precise, and accurate and can be used in the quality control of raw materials and cosmetic gels containing these compounds as active substances. PMID:19202790

Batista, Ivani Aparecida Soares de Andrade; Gonçalves, Maria Inês de Almeida; Singh, Anil Kumar; Hackmann, Erika Rosa Maria Kedor; Santoro, Maria Inês Rocha Miritello

2008-01-01

306

Probing the Si-Si Dimer Breaking of Si(100)2×1 Surfaces upon Molecule Adsorption by Optical Spectroscopy  

Microsoft Academic Search

The adsorption of atoms and molecules of several gases of the Si(100)2×1 silicon reconstructed surface is investigated by surface differential reflectance spectroscopy. This UV-visible optical spectroscopy makes possible the discrimination between two adsorption modes, depending on whether or not the adsorption leads to breaking the Si-Si dimers. The observation of two different optical features is assigned to the bonding on

Y. Borensztein; O. Pluchery; N. Witkowski

2005-01-01

307

Photochemical formation of chromium (V) in dichromated materials: a quantitative and comparative approach  

NASA Astrophysics Data System (ADS)

We have been working on dichromated photosensitive materials for several years. After investigating the photochemical process in various systems, it appears that the chemical structure of the polymeric matrix plays an essential role in the progress of the reaction that takes place upon irradiation by the laser beams. If the primary photochemical process is always the electron transfer from the matrix to the metallic cation giving rise to chromium (V) and a macroradical, the fate of chromium (V) in the system strongly depends on the chemical structure of the polymer. In dichromated poly(acrylic acid) DCPAA, chromium (V) is an unstable species only detectably by ESR spectroscopy upon irradiation: it disappears after stopping the irradiation very fast. On the contrary, chromium (V) is surprisingly stable in poly(vinyl alcohol) and in gelatin. The first spectral evolution corresponds to the only reduction of chromium (VI) into chromium (V) as evidenced by the presence of an isosbestic point. The subsequent reduction of chromium (V) is a very slow process: the complete transformation into chromium (III) is only achieved after several days. As a result, we were able to estimate the UV-visible spectrum of chromium (V) in the matrix and for the first time, it was possible to quantitatively follow the formation of this species and to draw some conclusion about the complexation sites in gelatin.

Bolte, Michele; Pizzocaro, Christine; Lafond, Christophe

1998-09-01

308

Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods.  

PubMed

This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400cm(-1) and 3500-100cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (?0) and related properties (?, ?0 and ??) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined. PMID:24813291

Saravanan, S; Balachandran, V

2014-09-15

309

Experimental spectroscopic (FTIR, FT-Raman, FT-NMR, UV-Visible) and DFT studies of 1-ethyl-1,4-dihydro-7-methyl-4oxo-1,8 napthyridine-3-carboxylic acids.  

PubMed

The solid phase FTIR and FT-Raman spectra of 1-ethyl-1,4-dihydro-7-methyl-4oxo-1,8 napthyridine-3-carboxylic acid (EDMONCA) have been recorded in the regions 4000-500 and 4000-400 cm(-1) respectively. The equilibrium geometry, harmonic vibrational frequencies have been investigated by DFT/B3LYP and B3PW91 methods with 6-311G (d,p) basis set. The different between the observed and scaled wave number values of most of the fundamental is very small. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFFM). Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the compound was recorded and the electronic properties HOMO and LOMO energies were measured. The electric dipole moment (?D) and first hyperpolarizability (?tot) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the EDMONCA molecule may have microscopic nonlinear optics (NLO) behavior with non-zero values. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. Thermal stability of EDMONCA was studied by thermogravimetric analysis (TGA). Next Fukui function was calculated to explain the chemical selectivity or reactivity site in EDMONCA. Finally molecular electrostatic potential (MEP) and other molecular properties were performed. PMID:23948564

Muthu, S; Elamurugu Porchelvi, E

2013-12-01

310

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy  

SciTech Connect

Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) of 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.

Shao Yongni; He Yong; Mao Jingyuan

2007-09-01

311

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy.  

PubMed

Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters, such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) of 0.9451 and root-mean-square error of prediction (RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique. PMID:17805379

Shao, Yongni; He, Yong; Mao, Jingyuan

2007-09-01

312

Domain Dynamics in Piezoresponse Force Spectroscopy: Quantitative Deconvolution and Hysteresis Loop Fine Structure  

SciTech Connect

Domain dynamics in the Piezoresponse Force Spectroscopy (PFS) experiment is studied using the combination of local hysteresis loop acquisition with simultaneous domain imaging. The analytical theory for PFS signal from domain of arbitrary cross-section and length is developed for the analysis of experimental data on Pb(Zr,Ti)O3 polycrystalline films. The results suggest formation of oblate domain at early stage of the nucleation and growth, consistent with efficient screening of depolarization field. The fine structure of the hysteresis loop is shown to be related to the observed jumps in the domain geometry during domain wall propagation (nanoscale Barkhausen jumps), indicative of strong domain-defect interactions.

Bdikin, Igor [University of Aveiro, Portugal; Kholkin, Andrei [University of Aveiro, Portugal; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Svechnikov, S. V. [National Academy of Science of Ukraine, Kiev, Ukraine; Kim, S.-H. [INOSTEK Inc., Gyeonggi, Korea; Kalinin, Sergei V [ORNL

2008-01-01

313

Multivariate calibration applied to near-infrared spectroscopy for the quantitative analysis of dilute aqueous solutions  

NASA Astrophysics Data System (ADS)

The penetration depths possible with near-infrared spectroscopy make it well suited for reagentless monitoring of analytes in body fluids or noninvasive monitoring of human tissue. As an initial step in achieving these goals, we have conducted near-infrared in-vitro experiments of dilute aqueous solutions containing analytes of physiological importance. By combining partial least squares (PLS) multivariate calibration methods with Latin Hypercube statistical designs, we have obtained precise near-infrared spectral determinations of urea, creatinine, and NaCl in dilute aqueous solutions. Cross-validated PLS calibrations for the three analytes and temperature were very precise and resulted in R2 values greater than 0.997.

Haaland, David M.; Jones, Howland D. T.

1994-01-01

314

Comparison of electron energy-loss and quantitative optical spectroscopy on individual optical gold antennas  

NASA Astrophysics Data System (ADS)

Using a rather large set of different individual metallic optical antennas, we compare directly measured electron energy-loss spectra with measured quantitative optical extinction and scattering cross-section spectra on the identical antennas. All antenna resonances lie near 1.4 µm wavelength. In contrast to other reports, we find identical resonance positions for electrons and photons to within the experimental errors. We discuss possible artifacts which can lead to seemingly different resonance positions in experiments. Our experimental results agree well with complete numerical calculations of both sorts of spectra.

Husnik, Martin; von Cube, Felix; Irsen, Stephan; Linden, Stefan; Niegemann, Jens; Busch, Kurt; Wegener, Martin

2013-10-01

315

Methane detection using Wavelength Modulation Spectroscopy and a multiline quantitation method  

NASA Astrophysics Data System (ADS)

In this paper the application of the Inverse Least Squares algorithm (ILS) to the detection of methane using its behaviour in the near-infrared band is presented. In order to test the effectiveness of this method, different methane concentrations were measured. Wavelength Modulation Spectroscopy (WMS) was employed to obtain the first and second harmonics of the modulation signal. The use of both harmonics in spectroscopy eliminates the dependence of the measured absorbance on parameters such as: fiber misalignments, optical power fluctuations, etc. This property greatly increases the accuracy of the concentration readings. The benefits of analysing multiple lines in gas detection are discussed together with the capabilities of the ILS algorithm. The ILS algorithm is based on the Beer-Lambert law. This law is extended to include multiple wavelengths and rearranged in such a way that the concentration of the chemical species depends on the measured absorbances. In order to apply the previous algorithm, three absorption lines centered at 1665.961 nm, 1666.201 nm and 1666.483 nm were used. The obtained results are compared with the most usual single-line calibration method based on linear regression. This comparison shows that ILS gives a superior performance. Specifically, results indicate that the ILS multiline algorithm is less noise dependent and has a higher reliability than single-line calibration methods.

Cubillas, Ana M.; Conde, Olga M.; Quintela, María Ángeles; Cobo, Adolfo; López-Higuera, José Miguel

2005-09-01

316

In vitro quantitation of human femoral artery atherosclerosis using near-infrared Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Near-infrared Raman spectroscopy has been used in vitro to identify calcified atherosclerotic plaques in human femoral arteries. Raman techniques allow for the identification of these plaques in a nondestructive manner, which may allow for the diagnosis of coronary artery disease in cardiac patients in the future. As Raman spectroscopy also reveals chemical information about the composition of the arteries, it can also be used as a prognostic tool. The in vivo detection of atherosclerotic plaques at risk for rupture in cardiac patients will enhance treatment methods while improving clinical outcomes for these procedures. Raman spectra were excited by an Invictus 785-nm NIR laser and measured with a fiber-coupled micro-Raman RXN system (Kaiser Optical Systems, Inc., Ann Arbor, MI) equipped with a 785 nm CW laser and CCD detector. Chemical mapping of arteries obtained post mortem allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and carbonate apatite, which are known to be present in calcified plaques. By mapping the locations of these peaks the boundaries of the plaques can be precisely determined. Areas of varying degrees of calcification were also identified. Because this can be useful in determining the degree of plaque calcification and vessel stenosis, this may have a significant impact on the clinical treatment of atherosclerotic plaques in the future.

Dykes, Ava C.; Anastasiadis, Pavlos; Allen, John S., III; Sharma, Shiv K.

2012-05-01

317

Quantitative determination of pulegone in pennyroyal oil by FT-IR spectroscopy.  

PubMed

Pulegone constitutes a monoterpene occurring in Mentha species and primarily in Mentha pulegium L. (pennyroyal). A major source of human exposure to pulegone is the use of pennyroyal essential oil in flavorings, confectionery and cosmetics. The rapid quantification of pulegone in hydrodistilled pennyroyal oils (which were also "spiked" to increase the validation range) by Fourier transform infrared spectroscopy (FT-IR) combined with partial least-squares (PLS) regression was evaluated, using the spectral region 1650-1260 cm(-1). Gas chromatography was applied as the reference method for pennyroyal oil samples, which ranged in pulegone content from 157 to 860 mg/mL. The two methods were subjected to statistical tests and proved equivalent in terms of accuracy and reproducibility (99% confidence level). The use of FT-IR spectroscopy could offer a viable alternative to the standard analysis procedures presently applied for quantification of valuable plant substances and could also provide the processing industry with a simple and high-throughput technique for the fast quality check of incoming raw materials such as pennyroyal oils. PMID:19817373

Petrakis, Eleftherios A; Kimbaris, Athanasios C; Pappas, Christos S; Tarantilis, Petros A; Polissiou, Moschos G

2009-11-11

318

Quantitative determination of the cubic-to-monoclinic phase transformation in fully stabilized zirconias by Raman spectroscopy  

SciTech Connect

Vibrational Raman spectroscopy was used successfully for the quantitative determination of the cubic and monoclinic phases of zirconia. Pressed pellets with known composition were prepared using monoclinic and cubic powders from different manufacturers and were used as standard mixtures. An intensity ratio plot of the 617-cm[sup [minus]1] band, which is attributed to the presence of both phases, to either the 177-cm[sup [minus]1] or 476-cm[sup [minus]1] monoclinic band against the inverse monoclinic molar fraction ([chi]) yielded a straight line which was described by ratio = 0.11[chi][sup [minus]1] + 0.26 and ratio = 0.12 [chi][sup [minus]1] + 0.29, respectively. The method was found to be independent of the origin of the powders.

Kontoyannis, C.G.; Carountzos, G. (Univ. of Patras (Greece))

1994-08-01

319

Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations.  

PubMed

Recent NMR spectroscopy developments, such as high-resolution magic angle spinning (HRMAS) probes and correlation-enhanced 2D sequences, now allow improved investigations of phospholipid (Plp) metabolism. Using these modalities we previously demonstrated that a mouse-bearing melanoma tumor responded to chloroethyl nitrosourea (CENU) treatment in vivo by altering its Plp metabolism. The aims of the present study were to investigate whether HRMAS proton total correlation spectroscopy (TOCSY) could be used as a quantitative technique to probe Plp metabolism, and to determine the Plp metabolism response of cultured B16 melanoma cells to CENU treatment in vitro. The exploited TOCSY signals of Plp derivatives arose from scalar coupling among the protons of neighbor methylene groups within base headgroups (choline and ethanolamine). For strongly expressed Plp derivatives, TOCSY signals were compared to saturation recovery signals and demonstrated a linear relationship. HRMAS proton TOCSY was thus used to provide concentrations of Plp derivatives during long-term follow-up of CENU-treated cell cultures. Strong Plp metabolism alteration was observed in treated cultured cells in vitro involving a down-regulation of phosphocholine, and a dramatic and irreversible increase of phosphoethanolamine. These findings are discussed in relation to previous in vivo data, and to Plp metabolism enzymatic involvement. PMID:12541243

Morvan, Daniel; Demidem, Aicha; Papon, Janine; Madelmont, Jean Claude

2003-02-01

320

Characterization and quantitation of a tertiary mixture of salts by Raman spectroscopy in simulated hydrothermal vent fluid.  

PubMed

This article will demonstrate that Raman spectroscopy can be a useful tool for monitoring the chemical composition of hydrothermal vent fluids in the deep ocean. Hydrothermal vent systems are difficult to study because they are commonly found at depths greater than 1000 m under high pressure (200-300 bar) and venting fluid temperatures are up to 400 degrees C. Our goal in this study was to investigate the use of Raman spectroscopy to characterize and quantitate three Raman-active salts that are among the many chemical building blocks of deep ocean vent chemistry. This paper presents initial sampling and calibration studies as part of a multiphase project to design, develop, and deploy a submersible deep sea Raman instrument for in situ analysis of hydrothermal vent systems. Raman spectra were collected from designed sets of seawater solutions of carbonate, sulfate, and nitrate under different physical conditions of temperature and pressure. The role of multivariate analysis techniques to preprocess the spectral signals and to develop optimal calibration models to accurately estimate the concentrations of a set of mixtures of simulated seawater are discussed. The effects that the high-pressure and high-temperature environment have upon the Raman spectra of the analytes were also systematically studied. Information gained from these lab experiments is being used to determine design criteria and performance attributes for a deployable deep sea Raman instrument to study hydrothermal vent systems in situ. PMID:16854265

Dable, Brian K; Love, Brooke A; Battaglia, Tina M; Booksh, Karl S; Lilley, Marvin D; Marquardt, Brian J

2006-07-01

321

Qualitative and quantitative study of polymorphic forms in drug formulations by near infrared FT-Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Near infrared FT-Raman spectroscopy was applied for the determination of polymorphic forms in a number of commercial drug products containing the polymorphic drug compounds sorbitol, mannitol, famotidine, acemetacin, carbamazepine, meprobamate and phenylbutazone. The crystal forms present in the drug products were identified based on the position, intensity and shape of characteristic bands. Quantitative analysis of a mixture of two crystal forms of mannitol in a drug product was carried out using a partial least-squares method. In drug products containing meprobamate, sorbitol, and carbamazepine, the thermodynamically stable form was found exclusively, whereas metastable polymorphs were found in solid dosage forms of acemetacin, phenylbutazone, famotidine and mannitol. A mixture of two polymorphic forms of mannitol in Lipobay tablets was determined to consist of 30.8±3.8% of the metastable modification I. The simple sample preparation, the occurrence of sharp bands in the spectra as well as the high reproducibility and accuracy qualifies FT-Raman spectroscopy for the identification and quantification of crystal forms in drug products. The method is perfectly suited to meet the regulatory requirements of monitoring crystal forms during processing and storage and often succeeds in detecting the present crystal form in drug products even when the used excipients are not known.

Auer, Martin E.; Griesser, Ulrich J.; Sawatzki, Juergen

2003-12-01

322

Quantitative analysis of entacapone isomers using surface-enhanced Raman spectroscopy and partial least squares regression.  

PubMed

Surface-enhanced Raman spectroscopy (SERS) and partial least squares (PLS) regression have been applied for the quantification of entacapone isomers E and Z in solution. Nine mixtures of isomers Z and E in ethanol ranging from 0% to 100% w/w were analyzed, for a total entacapone concentration of 1 × 10(-3) mol L(-1). Upon deposition onto commercially available Klarite® gold plates, highly intense and reproducible SERS spectra were obtained from the entacapone isomers. Based on the spectral measurements, a two-component PLS model for correlation of predicted and real content of the isomers mixtures was developed. Root-mean-square error of the predicted composition was found to be 8% of isomer Z in the isomers mixture, corresponding to the absolute concentration of 8 × 10(-5) mol L(-1) of isomer Z in solution. PMID:23231910

Ratkaj, Marina; Biljan, Tomislav; Miljani?, Snežana

2012-12-01

323

Quantitative analysis of minerals in oil shales by fourier transform in frared spectroscopy  

SciTech Connect

Infrared spectroscopy provides several advantages for mineral analyses of oil shales. The technique can be applied to samples of minimal size, masses of 100 micrograms generally being sufficient to obtain useful spectra. The spectral measurement times can range from seconds to a few minutes depending on application. Detection of mineral phases by infrared does not require crystallinity, and the sensitivity of the technique to amorphous, microcrystalline and crystalline phases is often comparable. In addition, infrared can generally distinguish structural isomeric and isomorphic materials. Infrared can generally detect and differentiate the mineral phases commonly found in oil shales including the clays, feldspars and carbonates, which are often more difficult to determine by other methods. While the utility of infrared for mineral analyses has led to a variety of qualitative applications of the technique, few attempts have been reported where the technique is applied for complete quantification of mineral phases.

Brown, J.M.; Elliott, J.J.

1987-04-01

324

[Quantitative analysis of contents in compound fertilizer and application research using near infrared reflectance spectroscopy].  

PubMed

In the present study, a new approach to fast determining the content of urea, biuret and moisture in compound fertilizer composed of urea, ammonium dihydrogenphosphate and potassium chloride was proposed by using near infrared diffuse reflectance spectroscopy. After preprocessing the original spectrum, partial least squares (PLS) models of urea, biuret and moisture were built with the R2 values of 0.9861, 0.9770 and 0.9713 respectively, the root mean square errors of cross validation were 2.59, 0.38, 0.132 respectively. And the prediction correlation factors were 0.9733, 0.9215 and 0.9679 respectively. The authors detected six kinds of compound fertilizer in market for the model verification, the correlation factors were 0.9237, 0.9786 and 0.9874 respectively. The data implied that the new method can be used for situ quality control in the production process of compound fertilizer. PMID:24783536

Song, Le; Zhang, Hong; Ni, Xiao-Yu; Wu, Lin; Liu, Bin-Mei; Yu, Li-Xiang; Wang, Qi; Wu, Yue-Jin

2014-01-01

325

Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy.  

PubMed

Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data. These results demonstrate that confocal Raman spectroscopy holds promise as a tool for practical, minimally invasive, label-free measurement of microbicide drug concentrations in fluids, gels and tissues. PMID:24386455

Chuchuen, Oranat; Henderson, Marcus H; Sykes, Craig; Kim, Min Sung; Kashuba, Angela D M; Katz, David F

2013-01-01

326

Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy  

PubMed Central

Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data. These results demonstrate that confocal Raman spectroscopy holds promise as a tool for practical, minimally invasive, label-free measurement of microbicide drug concentrations in fluids, gels and tissues.

Chuchuen, Oranat; Henderson, Marcus H.; Sykes, Craig; Kim, Min Sung; Kashuba, Angela D. M.; Katz, David F.

2013-01-01

327

Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy.  

PubMed

Monitoring the onset of erythema following external beam radiation therapy has the potential to offer a means of managing skin toxicities via biological targeted agents - prior to full progression. However, current skin toxicity scoring systems are subjective and provide at best a qualitative evaluation. Here, we investigate the potential of diffuse optical spectroscopy (DOS) to provide quantitative metrics for scoring skin toxicity. A DOS fiberoptic reflectance probe was used to collect white light spectra at two probing depths using two short fixed source-collector pairs with optical probing depths sensitive to the skin surface. The acquired spectra were fit to a diffusion theory model of light transport in tissue to extract optical biomarkers (hemoglobin concentration, oxygen saturation, scattering power and slope) from superficial skin layers of nude mice, which were subjected to erythema inducing doses of ionizing radiation. A statistically significant increase in oxygenated hemoglobin (p < 0.0016) was found in the skin post-irradiation - confirming previous reports. More interesting, we observed for the first time that the spectral scattering parameters, A (p = 0.026) and k (p = 0.011), were an indicator of erythema at day 6 and could potentially serve as an early detection optical biomarker of skin toxicity. Our data suggests that reflectance DOS may be employed to provide quantitative assessment of skin toxicities following curative doses of external beam radiation. PMID:24876997

Yohan, Darren; Kim, Anthony; Korpela, Elina; Liu, Stanley; Niu, Carolyn; Wilson, Brian C; Chin, Lee Cl

2014-05-01

328

A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples  

NASA Technical Reports Server (NTRS)

The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

2011-01-01

329

Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples  

NASA Technical Reports Server (NTRS)

The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

2010-01-01

330

Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy  

PubMed Central

Monitoring the onset of erythema following external beam radiation therapy has the potential to offer a means of managing skin toxicities via biological targeted agents – prior to full progression. However, current skin toxicity scoring systems are subjective and provide at best a qualitative evaluation. Here, we investigate the potential of diffuse optical spectroscopy (DOS) to provide quantitative metrics for scoring skin toxicity. A DOS fiberoptic reflectance probe was used to collect white light spectra at two probing depths using two short fixed source-collector pairs with optical probing depths sensitive to the skin surface. The acquired spectra were fit to a diffusion theory model of light transport in tissue to extract optical biomarkers (hemoglobin concentration, oxygen saturation, scattering power and slope) from superficial skin layers of nude mice, which were subjected to erythema inducing doses of ionizing radiation. A statistically significant increase in oxygenated hemoglobin (p < 0.0016) was found in the skin post-irradiation – confirming previous reports. More interesting, we observed for the first time that the spectral scattering parameters, A (p = 0.026) and k (p = 0.011), were an indicator of erythema at day 6 and could potentially serve as an early detection optical biomarker of skin toxicity. Our data suggests that reflectance DOS may be employed to provide quantitative assessment of skin toxicities following curative doses of external beam radiation.

Yohan, Darren; Kim, Anthony; Korpela, Elina; Liu, Stanley; Niu, Carolyn; Wilson, Brian C; Chin, Lee CL

2014-01-01

331

Quantitative X-ray Absorption and Emission Spectroscopies: Electronic Structure Elucidation of Cu2S and CuS  

PubMed Central

The electronic structures of Cu2S and CuS have been under intense scrutiny, with the aim of understanding the relationship between their electronic structures and commercially important physical properties. Here, X-ray absorption and emission spectroscopic data have been analyzed using a quantitative, molecular orbital (MO) based approach to understand the electronic structure of these two complex systems. Cu2S is shown to have a significant amount of Cu2+ sites and therefore Cu0 centers. The presence of low-valent Cu is correlated with the electrical conductivity of Cu2S, especially at high temperatures. CuS is shown to have tetrahedral Cu2+ and trigonal Cu1+ sites, with crystal planes that have alternating high and low charge on the Cu centers. These alternating charges may contribute to internal energy transitions required for photoluminescence properties. The in-depth electronic structure solutions presented here not only solve a complicated much-debated problem, but also demonstrate the strength of quantitative MO based approach to X-ray spectroscopies

Kumar, Prashant; Nagarajan, Rajamani

2013-01-01

332

Compartment syndrome: A quantitative study of high-energy phosphorus compounds using sup 31 P-magnetic resonance spectroscopy  

SciTech Connect

The purpose of this study was to quantitate the intracellular high-energy phosphate compounds during 6 hours of tissue ischemia in the anterior tibial compartment of beagles subjected to an induced traumatized compartment syndrome. The goal of this work was to provide clinicians with objective criteria to augment clinical judgment regarding surgical intervention in the impending compartment syndrome. A beagle model was utilized in which the Delta pressure (difference between the mean arterial pressure and compartment pressure) could be controlled. The model, in conjunction with {sup 31}P-magnetic resonance spectroscopy (MRS), allowed a measure of high-energy phosphate compounds and pH in the compartment at various Delta pressures. The extent of ischemic metabolic insult in the compartment was then quantitated. Our data suggest the following: (1) lower Delta pressures result in a proportionally greater drop in the intracellular phosphocreatine ratio and pH; (2) at lower Delta pressures, there is proportionally greater decline in the percentage recovery post-fasciotomy; (3) blood pressure is extremely important and periods of hypotension may result in increased muscle damage at lower compartment pressures.

Heppenstall, R.B.; Sapega, A.A.; Izant, T.; Fallon, R.; Shenton, D.; Park, Y.S.; Chance, B. (Veterans Administration Medical Center, Philadelphia, PA (USA))

1989-08-01

333

Evaluation of the ERETIC Method as an Improved Quantitative Reference for 1H HR-MAS Spectroscopy of Prostate Tissue  

PubMed Central

The Electronic REference To access In vivo Concentrations (ERETIC) method was applied to 1H HR-MAS spectroscopy. The accuracy, precision, and stability of ERETIC as a quantitative reference were evaluated in solution and human prostate tissue samples. For comparison, the reliability of 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid (TSP) as a quantitation reference was also evaluated. The ERETIC and TSP peak areas were found to be stable in solution over the short-term and long-term, with long-term relative standard deviations (RSDs) of 4.10% and 2.60%, respectively. Quantification of TSP in solution using the ERETIC peak as a reference and a calibrated, rotor-dependent conversion factor yielded results with a precision ?2.9% and an accuracy error ?4.2% when compared with the expected values. The ERETIC peak area reproducibility was superior to TSP’s reproducibility, corrected for mass, in both prostate surgical and biopsy samples (4.53% vs. 21.2% and 3.34% vs. 31.8%, respectively). Furthermore, the tissue TSP peaks exhibited only 27.5% of the expected area, which would cause an overestimation of metabolite concentrations if used as a reference. The improved quantification accuracy and precision provided by ERETIC may enable the detection of smaller metabolic differences that may exist between individual tissue samples and disease states.

Albers, Mark J.; Butler, Thomas N.; Rahwa, Iman; Bao, Nguyen; Keshari, Kayvan R.; Swanson, Mark G.; Kurhanewicz, John

2010-01-01

334

Evaluation of the ERETIC method as an improved quantitative reference for 1H HR-MAS spectroscopy of prostate tissue.  

PubMed

The Electronic REference To access In vivo Concentrations (ERETIC) method was applied to (1)H HR-MAS spectroscopy. The accuracy, precision, and stability of ERETIC as a quantitative reference were evaluated in solution and human prostate tissue samples. For comparison, the reliability of 3-(trimethylsilyl)propionic-2,2,3,3-d(4) acid (TSP) as a quantitation reference was also evaluated. The ERETIC and TSP peak areas were found to be stable in solution over the short-term and long-term, with long-term relative standard deviations (RSDs) of 4.10% and 2.60%, respectively. Quantification of TSP in solution using the ERETIC peak as a reference and a calibrated, rotor-dependent conversion factor yielded results with a precision < or =2.9% and an accuracy error < or =4.2% when compared with the expected values. The ERETIC peak area reproducibility was superior to TSP's reproducibility, corrected for mass, in both prostate surgical and biopsy samples (4.53% vs. 21.2% and 3.34% vs. 31.8%, respectively). Furthermore, the tissue TSP peaks exhibited only 27.5% of the expected area, which would cause an overestimation of metabolite concentrations if used as a reference. The improved quantification accuracy and precision provided by ERETIC may enable the detection of smaller metabolic differences that may exist between individual tissue samples and disease states. PMID:19235261

Albers, Mark J; Butler, Thomas N; Rahwa, Iman; Bao, Nguyen; Keshari, Kayvan R; Swanson, Mark G; Kurhanewicz, John

2009-03-01

335

Quantitative study of spin noise spectroscopy in a classical gas of {sup 41}K atoms  

SciTech Connect

We present a general derivation of the electron spin noise power spectrum in alkali gases as measured by optical Faraday rotation, which applies to both classical gases at high temperatures as well as ultracold quantum gases. We show that the spin-noise power spectrum is determined by an electron spin-spin correlation function, and we find that measurements of the spin-noise power spectra for a classical gas of {sup 41}K atoms are in good agreement with the predicted values. Experimental and theoretical spin noise spectra are directly and quantitatively compared in both longitudinal and transverse magnetic fields up to the high magnetic-field regime (where Zeeman energies exceed the intrinsic hyperfine energy splitting of the {sup 41}K ground state)

Mihaila, Bogdan [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Crooker, Scott A.; Rickel, Dwight G. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Blagoev, Krastan B.; Smith, Darryl L. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Littlewood, Peter B. [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

2006-10-15

336

Remote gas detection and quantitative analysis from infrared emission spectra obtained by Fourier transform infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed rotational lines. The spatial distribution of the CO2 in a methane flame has been reconstructed tomographically using a matrix inversion technique. The spectrometer has been calibrated against a black body source at different temperatures and a self absorption correction has been applied to the data avoiding the need to measure the transmission directly. Reconstruction artifacts have been reduced by applying a smoothing routine to the inversion matrix.

Hilton, Moira; Lettington, Alan H.; Mills, Ian M.

1994-06-01

337

Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas.  

PubMed

By using a recently introduced approach combining a focus-modulation technique with a common-path interferometer, we measure quantitatively the extinction, scattering, and absorption cross-section spectra of individual optical antennas. The experimental results on thin-wire antennas, slot antennas, bow-tie antennas, rectangular antennas, and square-shaped antennas resonating at around 1.4 ?m wavelength are discussed. We find increased resonant scattering cross sections for the latter four antennas compared to the thin-wire antenna, both in absolute terms and relative to the absorption cross section. The square-shaped antenna's resonant extinction cross section approaches the limit of a coherent point dipole. However, the ratio of the resonant extinction cross section to the geometrical cross section of 38 is largest for the simple thin-wire antenna. PMID:24322083

Husnik, Martin; Niegemann, Jens; Busch, Kurt; Wegener, Martin

2013-11-15

338

Quantitative analysis of carbonaceous aerosols using Laser-Induced Breakdown Spectroscopy: A study on mass loading induced plasma matrix effects.  

SciTech Connect

We present results indicating mass loading induced plasma matrix effects on the application of quantitative laser-induced breakdown spectroscopy (LIBS) for estimation of carbon contents in aerosols. An in-house flow-controlled powder-dispersion system generated carbonaceous aerosols with varying bi-modal particle size distributions ({approx} 1 {micro}m and 10 {micro}m median diameters), thereby resulting in a wide mass loading range. For ease of chemical handling and to eliminate toxic effects, common talcum powder was used as our standard aerosol. Normalized atomic species concentrations of C, i.e., (C)/(Si) ratios, were calculated from atomic emission lines of C I (248 nm), Si I (252 nm), and plasma temperatures estimated from a series of Mg I lines. The results show a decrease in (C)/(Si) ratio to about 65% of the initial value as relative mass loadings increased (5.5-100%) due to the increase in number concentrations of larger sized particles ({approx}10 {micro}m median diameter). As a comparison, normalized ratio of (Mg)/(Si) did not exhibit any marked change with increased mass loading. The normalized total absorption of photon flux across the C I (248 nm) spectral line indicated a strong correlation to the percentage decrease in (C)/(Si) ratio. We used an impactor with a cut-off size of around 10 {micro}m diameter to generate mono-modal aerosolized powders ({approx}1 {micro}m median diameter) that had lower relative mass loadings (0.32-0.16%). Similar LIBS analysis on these did not indicate any of the matrix effects. We conclude that for aerosol systems with widely varying mass loadings, quantitative LIBS analysis can be significantly affected by plasma matrix effects, specifically for the C I (248 nm) emission line as noticed in this study. This bears significance for the application of quantitative LIBS in the chemical characterization of all forms of carbonaceous aerosols.

Mukherjee, Dibyendu [ORNL; Cheng, Mengdawn [ORNL

2008-01-01

339

(Compensation for peak shifts and variable background responses in fluorescence spectroscopy)  

SciTech Connect

In the past year, we have made significant progress in several areas. Most of our research has focused on improvements in data analysis methodologies for fluorescence spectroscopic detection in thin-layer and high performance liquid chromatographies, although some experiments have extended the applicability of uv-visible detection methods on thin-layer chromatographic plates. One area of research has focused on the development and evaluation of methods for background correction in fluorescence spectroscopy.

Rutan, S.C.

1989-01-01

340

Quantitative Sulfur Analysis using Stand-off Laser-Induced Breakdown Spectroscopy  

NASA Astrophysics Data System (ADS)

The laser-induced breakdown spectrometer (LIBS) in the ChemCam instrument on Mars Science Laboratory has the capability to produce robust, quantitative analyses not only for major elements, but also for a large range of light elements and trace elements that are of great interest to geochemists. However, sulfur presents a particular challenge because it reacts easily with oxygen in the plasma and because the brightest S emission lines lie outside ChemCam's spectral range. This work was undertaken within the context of our larger effort to identify and compensate for matrix effects, which are chemical properties of the material that influence the ratio of a given emission line to the abundance of the element producing that line. Samples for this study include two suites of rocks: a suite of 12 samples that are mixtures of sulfate minerals and host rocks, generally with high S contents (0.1-26.0 wt% S), and a large suite of 118 igneous rocks from varying parageneses with S contents in the 0-2 wt% range. These compositions provide several different types of matrices to challenge our calibration procedures. Samples were analyzed under ChemCam-like conditions: a Nd:YAG laser producing 17 mJ per 10ns pulse was directed onto samples positioned 5-9 m away from the laser and tele­scope. The samples were placed in a vacuum chamber filled with 7 Torr CO2 to replicate the Martian surface pressure as the atmospheric pressure influences the LIBS plasma. Some of the LIBS plasma emission is collected with a telescope and transmitted through a 1 m, 300 um, 0.22NA optical fiber connected to a commercial Ocean Optics spectrometer. We are testing and comparing three different strategies to evaluate sulfur contents. 1) We have calculated regression lines comparing the intensity at each channel to the S content. This analysis shows that there are dozens of S emission lines in the ChemCam wavelength range that are suitable for use in quantitative analysis, even in the presence of Fe. 2) Partial least-squares analyses of these data show that S can be predicted with better than 10% accuracy, even when present at levels <0.15 wt%. 3) When peaks in the spectra are fit, the resultant peak areas can be regressed against concentration using step-wise multiple regression analysis to determine which subset of S lines gives the most accurate concentrations. All three methods of calibration show that excellent S analyses can be produced under Mars conditions at stand-off distances of up to 9 m.

Dyar, M. D.; Tucker, J. M.; Clegg, S. M.; Barefield, J. E.; Wiens, R. C.

2008-12-01

341

Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy  

PubMed Central

Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method to characterize the mode of motion of nanocarriers and to quantify their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA and DC-Chol-DOPE/DNA lipoplexes in CHO-K1 live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient, D ? 0.003 µm2/s). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity ? ? 0.03 µm/s and random motion. The method permitted us to generate intracellular transport map showing several regions of concerted motion of lipoplexes.

Coppola, S; Pozzi, D; De Sanctis, S Candeloro; Digman, M A; Gratton, E; Caracciolo, G

2013-01-01

342

Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy.  

PubMed

Interactions of glyphosate (N-phosphonomethylglycine) herbicide (GLY) with soluble fulvic acids (FAs) and humic acids (HAs) at pH 5.2 and 7 were studied by (1)H and (31)P NMR spectroscopy. Increasing concentrations of soluble humic matter determined broadening and chemical shift drifts of proton and phosphorus GLY signals, thereby indicating the occurrence of weak interactions between GLY and humic superstructures. Binding was larger for FAs and pH 5.2 than for HAs and pH 7, thus suggesting formation of hydrogen bonds between GLY carboxyl and phosphonate groups and protonated oxygen functions in humic matter. Changes in relaxation and correlation times of (1)H and (31)P signals and saturation transfer difference NMR experiments confirmed the noncovalent nature of GLY-humic interactions. Diffusion-ordered NMR spectra allowed calculation of the glyphosate fraction bound to humic superstructures and association constants (K(a)) and Gibbs free energies of transfer for GLY-humic complex formation at both pH values. These values showed that noncovalent interactions occurred most effectively with FAs and at pH 5.2. Our findings indicated that glyphosate may spontaneously and significantly bind to soluble humic matter by noncovalent interactions at slightly acidic pH and, thus, potentially pollute natural water bodies by moving through soil profiles in complexes with dissolved humus. PMID:22591574

Mazzei, Pierluigi; Piccolo, Alessandro

2012-06-01

343

Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions.  

PubMed

Four newly synthesized poly (propylene amine) dendrimers from first and second generation modified with 1,8-naphthalimide units in the dendrimer periphery have been investigated as ligands for the detection of heavy metal ions (Al(3+), Sb(2+), As(2+), Cd(2+) and Pb(2+)) by surface-enhanced Raman spectroscopy. Calibration curves were established for all metal ions between the concentration ranges of 1 x 10(-6) to 5 x 10(-4) M. It has been shown that these dendrimers can be coordinated, especially with different metal ions. Using dendrimer molecules and silver colloids at the same time allowed us to obtain an SERS signal from the abovementioned metal ions at very low concentrations. Principle component analysis (PCA) analysis was also applied to the collected SERS data. Four different PCA models were developed to accomplish the discrimination of five metal ions, which interacted with each of the four dendrimer molecules, separately. A detailed investigation was performed in the present study to provide the basis of a new approach for heavy metal detection. PMID:23973576

Temiz, Havva Tumay; Boyaci, Ismail Hakki; Grabchev, Ivo; Tamer, Ugur

2013-12-01

344

Quantitative analysis of adhesive resin in the hybrid layer using Raman spectroscopy  

PubMed Central

The objective was to determine absolute molar concentration of adhesive resin components in the hybrid layer by establishing methods based on Raman spectroscopy fundamentals. The hybrid layer was treated as a three-component system consisting of collagen and an adhesive resin containing two monomers. Adhesive standard specimens and Raman peak area ratios obtained with a 785 nm excitation wavelength were used to construct separate calibration curves for comonomer relative molar concentration and Bis-GMA absolute molar concentration. Since collagen and water had no measurable peaks in the fingerprint region, a dilution coefficient Kj was defined to describe their impact on Raman peak area and to calculate HEMA absolute molar concentration. Methodology was validated using an analogous system containing acetone/ethanol/water. The absolute molar concentration of Bis-GMA and HEMA decreased 87% and 83%, respectively, from the top quarter to the middle of the hybrid layer. Additionally, less Bis-GMA penetrated the hybrid layer than HEMA, as indicated by the ?20% decrease in comonomer molar concentration ratio between the adhesive resin layer and the top half of the hybrid layer. Lack of complete monomer infiltration will further challenge dentin-adhesive bond longevity.

Zou, Yuan; Armstrong, Steven R.; Jessop, Julie L. P.

2009-01-01

345

Heterogeneous nanostructures for plasmonic interaction with luminescence and quantitative surface-enhanced Raman spectroscopy  

NASA Astrophysics Data System (ADS)

NIR-to-visible up-conversion nanomaterials have been investigated in many promising applications including nextgeneration displays, solar cells, and biological labels. When doped with different trivalent lanthanide ions, NaYF4 nanoparticles can produce up-converted emission from visible to infra-red wavelengths. However, the quantum yield of this class of materials is low. Noble metals in the vicinity of the phosphor can increase the phosphorescence by local field enhancement due to plasmonic resonances, and by modification of the radiative rate of the phosphor. Most previous studies have investigated the phenomenon by placing nanophosphors onto a metal substrate, or by fabrication of nano structures with spacers such as polymers, dielectric materials (silica). By contrast, we have studied the interaction between the luminescence and the surface plasmon using a core-shell type nanostructure where a uniform shell of silver is shown to grown on doped-NaYF4 nanophosphors by Ostwald ripening. We further demonstrate the proximity effect of metal-enhanced luminescence by exciting an undoped NaYF4 shell. The result shows a significant synergistic enhancement of up-conversion luminescence due to the active shell as spacer layer. In addition, we have shown this novel nanostructure may be useful in surface-enhanced Raman spectroscopy (SERS).

Das, Gautom K.; Sudheendra, L.; Kennedy, Ian M.

2014-03-01

346

[Quantitative analysis of goose and duck mixed down using visible/NIR spectroscopy].  

PubMed

Goose down and duck down have very similar appearance but the quality of goose down is better than that of duck down in general. There is a highest allowable limit as specified by the various national standards of feather and down for the percentage of duck feather or down mixed in goose feather or down. Traditional detection method, manual inspection with a high-scale microscope, is labor intensive and not suitable for large-volume samples analysis and on-site rapid testing. In the present paper, visible/near-infrared (NIR) spectroscopy combined with successive projection algorithm (SPA) for characteristic wavelengths selection was used to determinate the content of duck down mixed in goose down. In the range of 450-930 nm, the multiple linear regression (MLR) model established with the 8 characteristic wavelengths selected by SPA achieved good prediction, the correlation coefficient of 0.983, root mean square error of calibration (RMSEC) of 5.44%, and root mean square error of prediction (RMSEP) of 5.75%. Therefore, it is expected to be used for rapid detection of feather and down quality in future. PMID:22715765

Xu, Hui-rong; Song, Bao-guo; Wan, Wang-jun; Zhou, Ying; Ying, Yi-bin

2012-04-01

347

Compact focusing von Hamos spectrometer for quantitative x-ray spectroscopy  

NASA Astrophysics Data System (ADS)

A compact focusing crystal spectrometer based on the von Hamos scheme is described. Cylindrically curved mica and graphite crystals with a radius of curvature of R=20 mm are used in the spectrometer. A front illuminated charge-coupled device (CCD) linear array detector makes this spectrometer useful for real-time spectroscopy of laser-produced plasma x-ray sources within the wavelength range of ?=1.8-10 Å. Calibration of crystals and the CCD linear array makes it possible to measure absolute photon fluxes. X-ray spectra in an absolute intensity scale were obtained from Mg, Ti, and Fe laser-produced plasmas, with a spectral resolution ?/??=800-2000 for the mica and ?/??=200-300 for graphite crystal spectrometers. The spectrometer has high efficiency in a wide spectral range, it is compact (40 mm diam, 150 mm length), easy to align, and flexible. The spectrometer is promising for absolute spectral measurements of x-ray radiation of low-intensity sources (femtosecond laser-produced plasmas, micropinches, electron-beam-ion-trap sources, etc.).

Shevelko, A. P.; Kasyanov, Yu. S.; Yakushev, O. F.; Knight, L. V.

2002-10-01

348

Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy.  

PubMed

Proton spectroscopy can noninvasively provide useful information on brain tumor type and grade. Short- (30 ms) and long- (136 ms) echo time (TE) (1)H spectra were acquired from normal white matter (NWM), meningiomas, grade II astrocytomas, anaplastic astrocytomas, glioblastomas, and metastases. Very low myo-Inositol ([mI]) and creatine ([Cr]) were characteristic of meningiomas, and high [mI] characteristic of grade II astrocytomas. Tumor choline ([Cho]) was greater than NWM and increased with grade for grade II and anaplastic astrocytomas, but was highly variable for glioblastomas. Higher [Cho] and [Cr] correlated with low lipid and lactate (P < 0.05), indicating a dilution of metabolite concentrations due to necrosis in high-grade tumors. Metabolite peak area ratios showed no correlation with lipids and mI/Cho (at TE = 30 ms), and Cr/Cho (at TE = 136 ms) best correlated with tumor grade. The quantified lipid, macromolecule, and lactate levels increased with grade of tumor, consistent with progression from hypoxia to necrosis. Quantification of lipids and macromolecules at short TE provided a good marker for tumor grade, and a scatter plot of the sum of alanine, lactate, and delta 1.3 lipid signals vs. mI/Cho provided a simple way to separate most tumors by type and grade. PMID:12541241

Howe, F A; Barton, S J; Cudlip, S A; Stubbs, M; Saunders, D E; Murphy, M; Wilkins, P; Opstad, K S; Doyle, V L; McLean, M A; Bell, B A; Griffiths, J R

2003-02-01

349

Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and urine samples using nuclear magnetic resonance spectroscopy  

NASA Astrophysics Data System (ADS)

Rapid, specific and simple methods for determining levofloxacin and rifampicin antibiotic drugs in pharmaceutical and human urine samples were developed. The methods are based on 1H NMR spectroscopy using maleic acid as an internal standard and DMSO-d6 as NMR solvent. Integration of NMR signals at 8.9 and 8.2 ppm were, respectively, used for calculating the concentration of levofloxacin and rifampicin drugs per unit dose. Maleic acid signal at 6.2 ppm was used as the reference signal. Recoveries of (97.0-99.4) ± 0.5 and (98.3-99.7) ± 1.08% were obtained for pure levofloxacin and rifampicin, respectively. Corresponding recoveries of 98.5-100.3 and 96.8-100.0 were, respectively, obtained in pharmaceutical capsules and urine samples. Relative standard deviations (R.S.D.) values ?2.7 were obtained for analyzed drugs in pure, pharmaceutical and urine samples. Statistical Student's t-test gave t-values ?2.87 indicating insignificant difference between the real and the experimental values at the 95% confidence level. F-test revealed insignificant difference in precisions between the developed NMR methods and each of fluorimetric and HPLC methods for analyzing levofloxacin and rifampicin.

Salem, A. A.; Mossa, H. A.; Barsoum, B. N.

2005-11-01

350

Qualitative and quantitative analysis of chlorinated solvents using Raman spectroscopy and machine learning  

NASA Astrophysics Data System (ADS)

The unambiguous identification and quantification of hazardous materials is of increasing importance in many sectors such as waste disposal, pharmaceutical manufacturing, and environmental protection. One particular problem in waste disposal and chemical manufacturing is the identification of solvents into chlorinated or non-chlorinated. In this work we have used Raman spectroscopy as the basis for a discrimination and quantification method for chlorinated solvents. Raman spectra of an extensive collection of solvent mixtures (200+) were collected using a JY-Horiba LabRam, infinity with a 488 nm excitation source. The solvent mixtures comprised of several chlorinated solvents: dichloromethane, chloroform, and 1,1,1-trichloroethane, mixed with solvents such as toluene, cyclohexane and/or acetone. The spectra were then analysed using a variety of chemometric techniques (Principal Component Analysis and Principal Component Regression) and machine learning (Neural Networks and Genetic Programming). In each case models were developed to identify the presence of chlorinated solvents in mixtures at levels of ~5%, to identify the type of chlorinated solvent and then to accurately quantify the amount of chlorinated solvent.

Conroy, Jennifer; Ryder, Alan G.; Leger, Marc N.; Hennessey, Kenneth; Madden, Michael G.

2005-06-01

351

Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions  

NASA Astrophysics Data System (ADS)

Four newly synthesized poly (propylene amine) dendrimers from first and second generation modified with 1,8-naphthalimide units in the dendrimer periphery have been investigated as ligands for the detection of heavy metal ions (Al3+, Sb2+, As2+, Cd2+ and Pb2+) by surface-enhanced Raman spectroscopy. Calibration curves were established for all metal ions between the concentration ranges of 1 x 10-6 to 5 x 10-4 M. It has been shown that these dendrimers can be coordinated, especially with different metal ions. Using dendrimer molecules and silver colloids at the same time allowed us to obtain an SERS signal from the abovementioned metal ions at very low concentrations. Principle component analysis (PCA) analysis was also applied to the collected SERS data. Four differentPCA models were developed to accomplish the discrimination of five metal ions, which interacted with each of the four dendrimer molecules, separately. A detailed investigation was performed in the present study to provide the basis of a new approach for heavy metal detection.

Temiz, Havva Tumay; Boyaci, Ismail Hakki; Grabchev, Ivo; Tamer, Ugur

2013-12-01

352

Quantitative analysis of borophosphosilicate glass films on silicon using infrared external reflection--absorption spectroscopy  

SciTech Connect

Borophosphosilicate glass (BPSG) dielectric thin films deposited on both bare and oxide-coated undoped silicon wafers have been analyzed using infrared external reflection--absorption spectroscopy (IRRAS). The partial least-squares (PLS1) algorithm was used to simultaneously determine boron content, phosphorous content, and film thickness, with standard errors of prediction of 0.08 wt %, 0.11 wt %, and 24 A, respectively, in the BPSG films on oxide-coated wafers (similar results were obtained with the bare wafer BPSG sample set). These results were statistically equivalent to the precisions of the reference methods used to determine each BPSG property, indicating that the precisions of the PLS1 models were limited by the precisions of the reference methods. IRRAS reproducibility and repeatability results verified that the method can be more precise than the reference methods. The reproducibility results were derived from the standard deviation of ten PLS1 predictions of ten IRRAS spectra that were obtained from a single BPSG sample that was moved in and out of the sample chamber between each spectral measurement. The repeatability results were obtained similarly, but the sample was not moved between acquiring the ten spectra. The precision of the IRRAS method from the repeatability data was found to be {plus_minus}0.006 wt % B, {plus_minus}0.011 wt % P, and {plus_minus}4 A film thickness. The reproducibility results were generally less precise than the repeatability results. Studies done as a function of spectral resolution and signal averaging showed that very rapid IRRAS measurements could be made (up to 2 Hz) with high PLS1 prediction precision for the three calibrated BPSG properties. The results show that the IRRAS technique has great potential for rapid, at-line quality control monitoring of BPSG thin films on undoped silicon wafers. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

Franke, J.E.; Zhang, L.; Niemczyk, T.M. [Chemistry Department, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Chemistry Department, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Haaland, D.M. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0343 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-0343 (United States); Radigan, K.J. [National Semiconductor Corporation, Santa Clara, California 95052 (United States)] [National Semiconductor Corporation, Santa Clara, California 95052 (United States)

1995-07-01

353

Open Slit Spectroscopy for Quantitative Analysis and Uv-Resonance Raman  

NASA Astrophysics Data System (ADS)

In emission spectral measurement with a dispersive spectrometer, if the entrance slit is widely opened, more light from a relatively large sample area can be collected, thus both energy throughput and spatial averaging advantages can be achieved in the measurement. With the entrance slit widely opened, the spectral bandpass becomes large. Radiations of different wavelengths likely fall on the same area of the detector. This can lead to a multiplex advantage and also extend the accessible wavelength range for a given spectral window. The problem for opening the entrance slit is the decrease of spectral resolution. This project aimed to overcome this problem so that all the advantages associated with opening entrance slit are retained without loss of spectral resolution. The research we have done to solve this problem is to apply Hadamard transform and deconvolution in spectral measurements. The way we implement Hadamard transform in emission spectroscopy is to take spectra with a Hadamard mask in place of the conventional entrance slit, then inversely transform the measured data to recover the well-resolved spectra with improved signal-to-noise ratio. A spectrum can also be taken simply with the entrance slit widely opened. By deconvolving the slit function with such a wide-slit spectrum a best resolved spectrum can be recovered. Major difficulties involving in deconvolution have been discussed in Chapter 5 of this dissertation, and a novel algorithm is proposed there as well. Another important aspect involved in this project is the incorporation of fiber optics with Hadamard transform and deconvolution in spectral measurements. This greatly improved the flexibility and collection efficiency in our measurement system.

Zhu, Jianxiong

354

Quantitation of ten 30S ribosomal assembly intermediates using fluorescence triple correlation spectroscopy  

PubMed Central

The self-assembly of bacterial 30S ribosomes involves a large number of RNA folding and RNA-protein binding steps. The sequence of steps determines the overall assembly mechanism and the structure of the mechanism has ramifications for the robustness of biogenesis and resilience against kinetic traps. Thermodynamic interdependencies of protein binding inferred from omission-reconstitution experiments are thought to preclude certain assembly pathways and thus enforce ordered assembly, but this concept is at odds with kinetic data suggesting a more parallel assembly landscape. A major challenge is deconvolution of the statistical distribution of intermediates that are populated during assembly at high concentrations approaching in vivo assembly conditions. To specifically resolve the intermediates formed by binding of three ribosomal proteins to the full length 16S rRNA, we introduce Fluorescence Triple-Correlation Spectroscopy (F3CS). F3CS identifies specific ternary complexes by detecting coincident fluctuations in three-color fluorescence data. Triple correlation integrals quantify concentrations and diffusion kinetics of triply labeled species, and F3CS data can be fit alongside auto-correlation and cross-correlation data to quantify the populations of 10 specific ribosome assembly intermediates. The distribution of intermediates generated by binding three ribosomal proteins to the entire native 16S rRNA included significant populations of species that were not previously thought to be thermodynamically accessible, questioning the current interpretation of the classic omission-reconstitution experiments. F3CS is a general approach for analyzing assembly and function of macromolecular complexes, especially those too large for traditional biophysical methods.

Ridgeway, William K.; Millar, David P.; Williamson, James R.

2012-01-01

355

X-ray absorption spectroscopy of a quantitatively Mo(V) dimethyl sulfoxide reductase species.  

PubMed

Molybdenum K-edge X-ray absorption spectroscopy (XAS) has been used to probe the structure of a Mo(V) species that has been suggested to be a catalytic intermediate in the reaction of dimethyl sulfoxide (DMSO) reductase with the alternative substrate trimethylamine N-oxide (Bennet et al. Eur. J. Biochem. 1994, 255, 321-331; Cobb et al. J. Biol. Chem. 2005, 280, 11007-11017; Mtei, et al. J. Am. Chem. Soc. 2011, 133, 9672-9774). The oxidized Mo(VI) state of DMSO reductase has previously been structurally characterized as being six coordinate, with four sulfurs from pyranopterin dithiolene molybdenum cofactors, a terminal oxygen ligand, and an additional oxygen coordination from a serine residue. We find the most plausible structure for the Mo(V) active site is a five-coordinate species with four sulfur donors from the two pyranopterin dithiolene ligands, with an average Mo-S bond-length of 2.35 Å, plus a single oxygen donor at 1.99 Å, very likely from an Mo-OH ligand. Our results thus suggest that the oxygen of the serine residue has dissociated from the metal ion, suggesting hitherto unsuspected flexibility of the active site, and calling into question whether this putative intermediate is catalytically relevant. The relevance to previous Mo(V) electron paramagnetic resonance and other spectroscopic studies on DMSO reductase is discussed. XAS of an extensively studied Mo(V) form of Rhodobacter sphaeroides DMSO reductase (the high-g split species) shows that previously suggested structures for the active site are likely incorrect. PMID:23445435

Pushie, M Jake; Cotelesage, Julien J H; Lyashenko, Ganna; Hille, Russ; George, Graham N

2013-03-18

356

Non-invasive quantitative assessment of oxidative metabolism in quadriceps muscles by near infrared spectroscopy  

PubMed Central

Background—Near infrared spectroscopy can be used in non-invasive monitoring of changes in skeletal muscle oxygenation in exercising subjects. Objective—To evaluate whether this method can be used to assess metabolic capacity of muscles. Two distinctive variables abstracted from a curve of changes in muscle oxygenation were assessed. Methods—Exercise on a cycle ergometer was performed by 18 elite male athletes and eight healthy young men. A measuring probe was placed on the skin of the quadriceps muscle to measure reflected light at two wavelengths (760 and 850 nm), so that the relative index of muscle oxygenation could be calculated. Exercise intensity was increased from 50 W in 50 W increments until the subject was exhausted. During exercise, changes in muscle oxygenation and blood lactate concentration were recorded. The following two variables for assessment of muscle oxygenation were then abstracted and analysed by plotting curves of changes in muscle oxygenation: the rate of recovery of muscle oxygen saturation (RR) and the relative value of the effective decrease in muscle oxygenation (Deff). Results—Data analysis showed a correlation between muscle oxygenation and blood lactate concentration at the various exercise intensities and verified the feasibility of the experiment. Data for the athletes were compared with those for the controls using the Aspin-Welch test of significance; t = 2.3 and 2.86 for RR and Deff respectively. There were significant differences (p = 0.05) between the athletes and the control group with respect to these two variables. Conclusion—RR and Deff may be distinctive variables that can be used to characterise muscle oxidative metabolism during human body movement. Key Words: recovery; muscle; oxygen saturation; exercise; elite athletes

Ding, H; Wang, G; Lei, W; Wang, R; Huang, L; Xia, Q; Wu, J

2001-01-01

357

Analyzing poly(3-hexyl-thiophene):1-(3-methoxy-carbonyl)propyl-1-phenyl-(6,6)C61 bulk-heterojunction solar cells by UV-visible spectroscopy and optical simulations  

NASA Astrophysics Data System (ADS)

A nondestructive method for assessing the thickness of the photoactive layer in poly(3-hexyl-thiophene):1-(3-methoxy-carbonyl)propyl-1-phenyl-(6,6)C61 (P3HT:PCBM) solar cells is reported. In the approach the absorption spectrum of the solar cell as derived by optical simulations is fitted to the corresponding measured spectrum, varying only the P3HT:PCBM layer thickness. Within the 50-250 nm thickness range, a linear correlation between the position of a certain spectral minimum and the P3HT:PCBM layer thickness is shown, based on simulated absorption spectra. As an initial application, absorption spectra for 240 P3HT:PCBM solar cells prepared at four different spin-coating speeds were recorded, and the average P3HT:PCBM layer thickness estimated for each spin-coating speed. The simulated fraction of light absorbed in the P3HT:PCBM layer of the solar cells is compared with the P3HT:PCBM absorption spectra measured for films spin coated on simpler substrate types. The latter spectra cannot account for the light harvested in the photoactive layer of P3HT:PCBM solar cells because of substantial optical interference in the solar cells. The measured short circuit current densities Jsc for the solar cells vary with the spin-coating speed in a manner confirmed by optical simulations of the maximal short circuit current densities. The measured efficiencies follow the same pattern. On average the measured Jsc is 1-2 mA/cm2 below the simulated maximal short circuit current densities. Based on the resemblance of the measured and simulated absorption spectra such difference can be attributed to recombination exclusively.

Sylvester-Hvid, Kristian O.; Ziegler, Tobias; Riede, Moritz K.; Keegan, Nicholas; Niggemann, Michael; Gombert, Andreas

2007-09-01

358

Analyzing poly(3-hexyl-thiophene):1-(3-methoxy-carbonyl)propyl-1-phenyl-(6,6)C61 bulk-heterojunction solar cells by UV-visible spectroscopy and optical simulations  

Microsoft Academic Search

A nondestructive method for assessing the thickness of the photoactive layer in poly(3-hexyl-thiophene):1-(3-methoxy-carbonyl)propyl-1-phenyl-(6,6)C61 (P3HT:PCBM) solar cells is reported. In the approach the absorption spectrum of the solar cell as derived by optical simulations is fitted to the corresponding measured spectrum, varying only the P3HT:PCBM layer thickness. Within the 50-250 nm thickness range, a linear correlation between the position of a

Kristian O. Sylvester-Hvid; Tobias Ziegler; Moritz K. Riede; Nicholas Keegan; Michael Niggemann; Andreas Gombert

2007-01-01

359

La Spectroscopie Raman (SR) : un nouvel outil adapté au Contrôle de Qualité Analytique des préparations injectables en milieu de soins. Comparaison de la SR aux techniques CLHP et UV\\/visible-IRTF appliquée à la classe des anthracyclines en cancérologie  

Microsoft Academic Search

The study compares the performances of three analytical methods devoted to Analytical Quality Control (AQC) of therapeutic solutions formed into care environment, we are talking about Therapeutics ObjectsTN (TOsTN). We explored the pharmacological model of two widely used anthracyclines i.e. adriamycin and epirubicin. We compared the performance of the HPLC vs two vibrational spectroscopic techniques: a tandem UV\\/Vis-FTIR one hand

P. Bourget; A. Amin; A. Moriceau; B. Cassard; F. Vidal; R. Clement

360

Syntheses, crystal structures and UV-visible absorption properties of five metal-organic frameworks constructed from terphenyl-2,5,2',5'-tetracarboxylic acid and bis(imidazole) bridging ligands.  

PubMed

The solvothermal reactions of terphenyl-2,5,2',5'-tetracarboxylic acid (H4tptc) and transition metal cations (Ni(II), Mn(II)) afford five novel coordination polymers (CPs) in the presence of four bis(imidazole) bridging ligands (1,3-bimb = 1,3-bis(imidazol-1-ylmethyl)benzene, 1,4-bmib = 1,4-bis(2-methylimidazol-1-ylmethyl)benzene, 4,4'-bibp = 4,4'-bis(imidazol-1-yl)biphenyl, 4,4'-bimbp = 4,4'-bis(imidazol-1-ylmethyl)biphenyl), namely, [M(tptc)(0.5)(1,3-bimb)(H2O)]n (M = Ni for 1, Mn for 2), {[Ni(tptc)(0.5)(1,4-bmib)]·0.25H2O}n (3), {[Ni(tptc)(0.5)(4,4'-bibp)2(H2O)]·2H2O}n (4) and {[Ni(tptc)(0.5)(4,4'-bimbp)(1.5)(H2O)]·H2O}n (5). Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complexes 1 and 2 are isomorphous and exhibit a 3D (3,4)-connected tfi framework with the point Schläfli symbol of (4·6(2))(4·6(6)·8(3)). Complex 3 shows an unprecedented 3D (4,4)-connected framework with the point Schläfli symbol of (4·6(4)·8(2))2(4(2)·8(4)). Complex 4 displays a novel 2D self-catenating 5-connected network with the Schläfli symbol of (4(6)·6(4)) based on three interpenetrating 4(4)-sql subnets. Complex 5 features a 2D 3-connected 6(3)-hcb network built from interesting chains with loops. To the best of our knowledge, the 3D (4,4)-connected (4·6(4)·8(2))2(4(2)·8(4)) host-framework of 3 and 2D self-catenating 5-connected (4(6)·6(4)) network of 4 have never been documented to date. Moreover, the UV-Visible absorption spectra of complexes 1-5 have been investigated. PMID:24638083

Fan, Liming; Zhang, Xiutang; Zhang, Wei; Ding, Yuanshuai; Fan, Weiliu; Sun, Liming; Pang, Yue; Zhao, Xian

2014-05-14

361

Quantitative Spectroscopy of Blue Supergiants in Metal-poor Dwarf Galaxy NGC 3109  

NASA Astrophysics Data System (ADS)

We present a quantitative analysis of the low-resolution (~4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T eff indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [\\bar{Z}] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([\\bar{Z}] = –0.93 ± 0.07), suggesting a low ?/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

Hosek, Matthew W., Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio; Urbaneja, Miguel A.; Evans, Christopher J.; Pietrzy?ski, Grzegorz; Gieren, Wolfgang; Przybilla, Norbert; Carraro, Giovanni

2014-04-01

362

Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy  

NASA Astrophysics Data System (ADS)

Two new approaches to quantify sulfur functionalities in natural organic matter from S K-edge XANES spectroscopy are presented. In the first, the K-edge spectrum is decomposed into Gaussian and two arctangent functions, as in the usual Gaussian curve fitting (GCF) method, but the applicability of the model is improved by a rigorous simulation procedure that constrains the model-fit to converge toward chemically and physically realistic values. Fractions of each type of functionality are obtained after spectral decomposition by correcting Gaussian areas for the change in X-ray absorption cross-section with increasing oxidation state. This correction is made using published calibration curves and a new curve obtained in this study. Calibration-induced errors, inherent to the choice of a particular curve, are typically lower than 5% of total sulfur for oxidized species (e.g., sulfate), may reach 10% for organic reduced sulfur, and may be as high as 30-40% for inorganic reduced sulfur. A generic curve, which reduces the calibration-induced uncertainty by a factor of two on data collected to avoid X-ray overabsorption, is derived. In the second analytical scheme, the K-edge spectrum is partitioned into a weighted sum of component species, as in the usual linear combination fitting (LCF) method, but is fit to an extended database of reference spectra under the constraint of non-negativity in the loadings (Combo fit). The fraction of each sulfur functionality is taken as the sum of all positive fractions of references with similar oxidation state of sulfur. The two proposed methods are applied to eight humic and fulvic acids from the International Humic Substances Society (IHSS). The nature and fractions of sulfur functionalities obtained by the two analytical approaches are consistent with each other. The accuracy of the derived values, expressed as the difference in values of a fraction obtained on the same material by the two independent methods, is on average 4.5 ± 3.0% of total sulfur for exocyclic reduced sulfur, 4.1 ± 2.1% for heterocyclic reduced sulfur, and 1.6 ± 1.4% for sulfate. Total reduced sulfur has a better accuracy of estimation (2.4 ± 1.6%) than either exocyclic and heterocyclic sulfur, because the errors on the two reduced pools have opposite sign. Experimental difficulties and uncertainties of the results associated with the analysis of concentrated and heterogeneous samples are discussed. The spectra of the IHSS materials and the reference compounds are made available as an open source for interlaboratory testing.

Manceau, Alain; Nagy, Kathryn L.

2012-12-01

363

The assessment of chromophores in bleached cellulosic pulps employing UV-Raman spectroscopy.  

PubMed

UV-Resonance Raman (UV-RR) coupled with UV-visible Diffuse Reflectance (UV-vis DR) spectroscopy was applied to a solid-state study of chromophores in Eucalyptus globulus kraft cellulosic pulps bleached by chlorine dioxide and hydrogen peroxide. The UV-RR spectra were acquired at 325nm laser beam excitation, which was shown to be appropriate for selective analysis of chromophore structures in polysaccharides. The proposed approach allowed the monitoring of chromophores in pulps and to track the extent of polysaccharide oxidation. However, precaution was suggested while performing a quantitative analysis of chromophores at the characteristic band of approximately 1600cm(-1) because of charge transfer complexes (CTCs) that exist in the pulp. These CTCs can affect the intensity of the aforementioned band by diminishing the conjugate state in the chromophore moieties. The amount of carbonyl and carboxyl groups in polysaccharides correlated with the intensity of the band at 1093cm(-1). The analysis of UV-RR spectra revealed xylan as an important source of chromophores in eucalypt kraft pulp. PMID:20334853

Loureiro, Pedro E G; Fernandes, António J S; Carvalho, M Graça V S; Evtuguin, Dmitry V

2010-07-01

364

Quantitative Zn speciation in a contaminated dredged sediment by ?-PIXE, ?-SXRF, EXAFS spectroscopy and principal component analysis  

NASA Astrophysics Data System (ADS)

Dredging and disposal of sediments onto agricultural soils is a common practice in industrial and urban areas that can be hazardous to the environment when the sediments contain heavy metals. This chemical hazard can be assessed by evaluating the mobility and speciation of metals after sediment deposition. In this study, the speciation of Zn in the coarse (500 to 2000 ?m) and fine (<2 ?m) fractions of a contaminated sediment dredged from a ship canal in northern France and deposited on an agricultural soil was determined by physical analytical techniques on raw and chemically treated samples. Zn partitioning between coexisting mineral phases and its chemical associations were first determined by micro-particle-induced X-ray emission and micro-synchrotron-based X-ray radiation fluorescence. Zn-containing mineral species were then identified by X-ray diffraction and powder and polarized extended X-ray absorption fine structure spectroscopy (EXAFS). The number, nature, and proportion of Zn species were obtained by a coupled principal component analysis (PCA) and least squares fitting (LSF) procedure, applied herein for the first time to qualitatively (number and nature of species) and quantitatively (relative proportion of species) speciate a metal in a natural system. The coarse fraction consists of slag grains originating from nearby Zn smelters. In this fraction, Zn is primarily present as sphalerite (ZnS) and to a lesser extent as willemite (Zn 2SiO 4), Zn-containing ferric (oxyhydr)oxides, and zincite (ZnO). In the fine fraction, ZnS and Zn-containing Fe (oxyhydr)oxides are the major forms, and Zn-containing phyllosilicate is the minor species. Weathering of ZnS, Zn 2SiO 4, and ZnO under oxidizing conditions after the sediment disposal accounts for the uptake of Zn by Fe (oxyhydr)oxides and phyllosilicates. Two geochemical processes can explain the retention of Zn by secondary minerals: uptake on preexisting minerals and precipitation with dissolved Fe and Si. The second process likely occurs because dissolved Zn and Si are supersaturated with respect to Zn phyllosilicate. EXAFS spectroscopy, in combination with PCA and LSF, is shown to be a meaningful approach to quantitatively determining the speciation of trace elements in sediments and soils.

Isaure, Marie-Pierre; Laboudigue, Agnès; Manceau, Alain; Sarret, Géraldine; Tiffreau, Christophe; Trocellier, Patrick; Lamble, Géraldine; Hazemann, Jean-Louis; Chateigner, Daniel

2002-05-01

365

A method for quantitative mapping of thick oil spills using imaging spectroscopy  

USGS Publications Warehouse

In response to the Deepwater Horizon oil spill in the Gulf of Mexico, a method of near-infrared imaging spectroscopic analysis was developed to map the locations of thick oil floating on water. Specifically, this method can be used to derive, in each image pixel, the oil-to-water ratio in oil emulsions, the sub-pixel areal fraction, and its thicknesses and volume within the limits of light penetration into the oil (up to a few millimeters). The method uses the shape of near-infrared (NIR) absorption features and the variations in the spectral continuum due to organic compounds found in oil to identify different oil chemistries, including its weathering state and thickness. The method is insensitive to complicating conditions such as moderate aerosol scattering and reflectance level changes from other conditions, including moderate sun glint. Data for this analysis were collected by the NASA Airborne Visual Infrared Imaging Spectrometer (AVIRIS) instrument, which was flown over the oil spill on May 17, 2010. Because of the large extent of the spill, AVIRIS flight lines could cover only a portion of the spill on this relatively calm, nearly cloud-free day. Derived lower limits for oil volumes within the top few millimeters of the ocean surface directly probed with the near-infrared light detected in the AVIRIS scenes were 19,000 (conservative assumptions) to 34,000 (aggressive assumptions) barrels of oil. AVIRIS covered about 30 percent of the core spill area, which consisted of emulsion plumes and oil sheens. Areas of oil sheen but lacking oil emulsion plumes outside of the core spill were not evaluated for oil volume in this study. If the core spill areas not covered by flight lines contained similar amounts of oil and oil-water emulsions, then extrapolation to the entire core spill area defined by a MODIS (Terra) image collected on the same day indicates a minimum of 66,000 to 120,000 barrels of oil was floating on the surface. These estimates are preliminary and subject to revision pending further analysis. Based on laboratory measurements, near-infrared (NIR) photons penetrate only a few millimeters into oil-water emulsions. As such, the oil volumes derived with this method are lower limits. Further, the detection is only of thick surface oil and does not include sheens, underwater oil, or oil that had already washed onto beaches and wetlands, oil that had been burned or evaporated as of May 17. Because NIR light penetration within emulsions is limited, and having made field observations that oil emulsions sometimes exceeded 20 millimeters in thickness, we estimate that the volume of oil, including oil thicker than can be probed in the AVIRIS imagery, is possibly as high as 150,000 barrels in the AVIRIS scenes. When this value is projected to the entire spill, it gives a volume of about 500,000 barrels for thick oil remaining on the sea surface as of May 17. AVIRIS data cannot be used to confirm this higher volume, and additional field work including more in-situ measurements of oil thickness would be required to confirm this higher oil volume. Both the directly detected minimum range of oil volume, and the higher possible volume projection for oil thicker than can be probed with NIR spectroscopy imply a significantly higher total volume of oil relative to that implied by the early NOAA (National Oceanic and Atmospheric Administration) estimate of 5,000 barrels per day reported on their Web site.

Clark, Roger N.; Swayze, Gregg A.; Leifer, Ira; Livo, K. Eric; Kokaly, Raymond; Hoefen, Todd; Lundeen, Sarah; Eastwood, Michael; Green, Robert O.; Pearson, Neil; Sarture, Charles; McCubbin, Ian; Roberts, Dar; Bradley, Eliza; Steele, Denis; Ryan, Thomas; Dominguez, Roseanne; the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Team

2010-01-01

366

Spectroscopy  

NSDL National Science Digital Library

This page is a set of concept test questions about organic chemistry spectroscopy. There are ten questions about topics including trans isomer and NMR spectra, C-X vibration, wavenumber absorption, and carbon signals.

2008-03-11

367

Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r2=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL.min-1.100 g-1 (CI0.95: -19.63 mL.min-1.100 g-1-13.9 mL.min-1.100 g-1). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care.

Elliott, Jonathan T.; Diop, Mamadou; Tichauer, Kenneth M.; Lee, Ting-Yim; Lawrence, Keith St.

2010-05-01

368

Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: quantitative data analysis.  

PubMed

Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS) has recently [S. Yordanov et al., Optics Express 17, 21149 (2009)] been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence occurs only for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions provide only rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. First, Brownian dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Second, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero. PMID:22304189

Schmitz, R; Yordanov, S; Butt, H J; Koynov, K; Dünweg, B

2011-12-01

369

Quantitative study of protein-protein interactions in live cell by dual-color fluorescence correlation spectroscopy.  

PubMed

Dual-color FCS is a powerful method to monitor protein-protein interactions in living cells. The main idea is based on the cross-correlation analysis of temporal fluorescence intensity fluctuations of two fluorescent proteins to obtain their co-diffusion and relative concentration. But, when performing these experiments, the spectral overlap in the emission of the two colors produces an artifact that corrupts the cross-correlation data: spectral bleed-through. We have shown that problems with cross talk are overcome with Fluorescence Lifetime Correlation Spectroscopy (FLCS). FLCS applied to dual-color cross-correlation, utilizing for example eGFP and mCherry fluorescent proteins, allows the determination of protein-protein interactions in living cells without the need of spectral bleed-through calibration. Here, we present in detail how this methodology can be implemented using a commercial setup (Microtime from PicoQuant, SP8 SMD from Leica or any conventional confocal with PicoQuant TCSPC module, and also with a Becker and Hickl TCSPC module). The dual-color FLCS experimental procedure where the different laser intensities do not have to be controlled during the experiment constitutes a very powerful technique to quantitatively study protein interactions in live samples. PMID:24108650

Padilla-Parra, Sergi; Audugé, Nicolas; Coppey-Moisan, Maïté; Tramier, Marc

2014-01-01

370

Artificial neural network for Cu quantitative determination in soil using a portable Laser Induced Breakdown Spectroscopy system  

NASA Astrophysics Data System (ADS)

Laser Induced Breakdown Spectroscopy (LIBS) is an advanced analytical technique for elemental determination based on direct measurement of optical emission of excited species on a laser induced plasma. In the realm of elemental analysis, LIBS has great potential to accomplish direct analysis independently of physical sample state (solid, liquid or gas). Presently, LIBS has been easily employed for qualitative analysis, nevertheless, in order to perform quantitative analysis, some effort is still required since calibration represents a difficult issue. Artificial neural network (ANN) is a machine learning paradigm inspired on biological nervous systems. Recently, ANNs have been used in many applications and its classification and prediction capabilities are especially useful for spectral analysis. In this paper an ANN was used as calibration strategy for LIBS, aiming Cu determination in soil samples. Spectra of 59 samples from a heterogenic set of reference soil samples and their respective Cu concentration were used for calibration and validation. Simple linear regression (SLR) and wrapper approach were the two strategies employed to select a set of wavelengths for ANN learning. Cross validation was applied, following ANN training, for verification of prediction accuracy. The ANN showed good efficiency for Cu predictions although the features of portable instrumentation employed. The proposed method presented a limit of detection (LOD) of 2.3 mg dm - 3 of Cu and a mean squared error (MSE) of 0.5 for the predictions.

Ferreira, Edilene C.; Milori, Débora M. B. P.; Ferreira, Ednaldo J.; Da Silva, Robson M.; Martin-Neto, Ladislau

2008-10-01

371

Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping  

PubMed Central

Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars is functionalized with aptamers for sensitive and specific detection of target molecules. In this study, TAMRA-labeled vasopressin molecules in the picomolar regime (1 pM to 1 nM) are specifically captured by aptamers on the nanostructured SERS substrate and monitored by using an automated SERS signal mapping technique. From the experimental results, we show concentration-dependent SERS responses in the picomolar range by integrating SERS signal intensities over a scanning area. It is also noted that our signal mapping approach significantly improves statistical reproducibility and accounts for spot-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient and reliable analysis of each measurement. Combining our SERS mapping analysis with an aptamer-functionalized nanopillar substrate is found to be extremely efficient for detection of low-abundance biomolecules.

Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo Giacomo; Rindzevicius, Tomas; Alstr?m, Tommy Sonne; Schmidt, Michael Stenbaek; Boisen, Anja; Ju, Jingyue; Lin, Qiao

2013-01-01

372

Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: Quantitative data analysis  

NASA Astrophysics Data System (ADS)

Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS) has recently [S. Yordanov , Optics ExpressOPEXFF1094-408710.1364/OE.17.021149 17, 21149 (2009)] been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence occurs only for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions provide only rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. First, Brownian dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Second, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero.

Schmitz, R.; Yordanov, S.; Butt, H. J.; Koynov, K.; Dünweg, B.

2011-12-01

373

Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV.  

PubMed

In the present study, we examined the relationships among cognitive function, magnetic resonance spectroscopy (MRS) brain metabolite indices measured in the basal ganglia, and quantitative magnetic resonance imaging (MRI) of the caudate nucleus and the putamen in the earliest stages of HIV-related cognitive involvement. Participants included 22 HIV-positive individuals and 20 HIV-negative individuals. HIV-positive individuals performed significantly more poorly than the HIV-negative individuals on several cognitive measures. In addition, the choline/creatine ratio was significantly higher and the N-acetyl aspartate/choline ratio was significantly lower among HIV patients. The caudate and putamen sizes were smaller among HIV-positive patients compared with controls; however, the differences did not reach statistical significance. Correlation analyses revealed associations between cognitive function and select MRS indices. In addition, caudate size was significantly correlated with performances on higher-order thinking tests whereas putamen size was significantly correlated with performances on motor tests. The results suggest that MRS differences are more pronounced than area size differences between seropositive and seronegative individuals in mild stages of HIV-related cognitive impairment. However, basal ganglia size remains an important contributor to cognitive status in this population. Longitudinal studies are needed to determine the evolution of these imaging correlates of HIV-cognitive impairment in HIV. PMID:18764968

Paul, Robert H; Ernst, Thomas; Brickman, Adam M; Yiannoutsos, Constantin T; Tate, David F; Cohen, Ronald A; Navia, Bradford A

2008-09-01

374

Spectroscopy  

NSDL National Science Digital Library

This site describes the theory and practice of IR and NMR spectroscopy for classroom and laboratory instruction. Although it is written for a course at the University of Colorado, Boulder, this site is appropriate for anyone doing analytical measurements with infrared or NMR.

2011-08-05

375

Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy.  

PubMed

Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10(5)e/nm(2) despite the fact that observable damage begins at doses as low as 10(3)e/nm(2). The resulting spatial resolution of 10nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum. PMID:20447768

Yakovlev, Sergey; Misra, Manoj; Shi, Shanling; Firlar, Emre; Libera, Matthew

2010-06-01

376

Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy.  

PubMed

A rational approach to investigate the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy (GERS) is developed. A planar molecule, copper phthalocyanine (CuPc), is used as probe molecule. Annealing allows the CuPc molecule in a Langmuir-Blodgett film to change orientation from upstanding to lying down. The UV-visible absorption spectra prove the change of the molecular orientation, as well as the variation of the interaction between the CuPc molecule and graphene. The Raman spectra of the molecule in the two different orientations are compared and analyzed. The results show that chemical enhancement is highly sensitive to the molecular orientation. The different molecular orientations induce different magnitudes of the interaction between the molecule and graphene. The stronger the interaction, the more the Raman signal is enhanced. Furthermore, the sensitivity of GERS to molecular orientation is promising to determine the orientation of the molecule on graphene. Based on this molecular orientation sensitive Raman enhancement, quantitative calculation of the magnitude of the chemical enhancement is implemented for a series of Pc derivatives. It shows that the magnitude of the chemical enhancement can be used to evaluate the degree of interaction between the molecules and graphene. Moreover, an understanding of the chemical enhancement in GERS is promoted and the effect of molecular orientation on the intensity of chemical enhancement is explained. PMID:22359411

Ling, Xi; Wu, Juanxia; Xu, Weigao; Zhang, Jin

2012-05-01

377

The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy  

Microsoft Academic Search

Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-volatile (<2wt.%) silicate samples (90 rock slabs, corresponding powders, and 22 geostandards)

Ryan B. Anderson; Richard V. Morris; Samuel M. Clegg; James F. Bell; Roger C. Wiens; Seth D. Humphries; Trevor G. Graff; Rhonda McInroy

2011-01-01

378

The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy  

Microsoft Academic Search

Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-volatile (<2 wt.%) silicate samples (90 rock slabs, corresponding powders, and 22

Ryan B. Anderson; Richard V. Morris; Samuel M. Clegg; James F. Bell; Roger C. Wiens; Seth D. Humphries; Trevor G. Graff; Rhonda McInroy

2011-01-01

379

Development and validation of a direct, non-destructive quantitative method for medroxyprogesterone acetate in a pharmaceutical suspension using FT-Raman spectroscopy  

Microsoft Academic Search

A simple linear regression method was developed and statistically validated for the direct and non-destructive quantitative analysis—without sample preparation—of the active pharmaceutical ingredient (API) medroxyprogesterone acetate (MPA) in an aqueous pharmaceutical suspension (150mg in 1.0ml) using FT-Raman spectroscopy. The linear regression was modelled by plotting the highest peak intensity of the vector normalized spectral band between 1630 and 1590cm?1 against

T. R. M. De Beer; G. J. Vergote; W. R. G. Baeyens; J. P. Remon; C. Vervaet; F. Verpoort

2004-01-01

380

Quantitative analysis of CN\\/TiCN\\/TiN multilayers and their thermal stability by Auger electron spectroscopy and Rutherford backscattering spectrometry depth profiles  

Microsoft Academic Search

CN\\/TiCN\\/TiN multilayers and the respective single layers have been deposited on Si(100) substrates using a dual ion-beam sputtering system. Both the multilayers and the respective single layers have been chemically characterized by Auger electron spectroscopy (AES) depth profiling combined with factor analysis and by Rutherford backscattering spectrometry (RBS). The combination of AES and RBS allows a quantitative chemical characterization of

P. Prieto; C. Morant; A. Munoz; E. Elizalde; J. M. Sanz

2006-01-01

381

Spectroscopy  

Microsoft Academic Search

The hyperfine splittings of the nuclear energy levels in rare-earth (R) isotopes are sen- sitive measures of the complex interplay between magnetic exchange and electrostatic crystal-field interactions operating at the atomic level. Mössbauer spectroscopy has been used to great effect in the on-going investigation of these fundamental interactions in R compounds and in this paper we present an overview of

J. M. CADOGAN; D. H. RYAN

382

Quantitation of Absorbers in Turbid Media Using Time-Integrated Spectroscopy Based on Microscopic Beer-Lambert Law  

Microsoft Academic Search

Based on the microscopic Beer-Lambert law, two practical time-integrated spectroscopy (TIS) methods, called dual-wavelength spectroscopy method, and dual-wavelength and dual-site spectroscopy method, are described to determine the absolute concentration of an absorber in variously shaped turbid media. We demonstrate, for the first time, the validity of the TIS methods by means of experiments in which the absolute concentrations of an

Hedong Zhang; Mitsuharu Miwa; Yutaka Yamashita; Yutaka Tsuchiya

1998-01-01

383

Quantitative chemical derivatization technique in time-of-flight secondary ion mass spectrometry for surface amine groups on plasma-polymerized ethylenediamine film.  

PubMed

A chemical derivatization technique in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been developed to quantify the surface density of amine groups of plasma-polymerized ethylenediamine thin film deposited on a glass surface by inductively coupled plasma chemical vapor deposition. Chemical tags of 4-nitrobenzaldehyde or pentafluorobenzaldehyde were hybridized with the surface amine groups and were detected in TOF-SIMS spectra as characteristic molecular secondary ions. The surface amine density was controlled in a reproducible manner as a function of deposition plasma power and was also quantified using UV-visible spectroscopy. A good linear correlation was observed between the results of TOF-SIMS and UV-visible measurements as a function of plasma power. This shows that the chemical derivatization technique in TOF-SIMS analysis would be useful in quantifying the surface density of specific functional groups that exist on the organic surface. PMID:15987119

Kim, Jinmo; Shon, Hyun Kyong; Jung, Donggeun; Moon, Dae Won; Han, Sang Yun; Lee, Tae Geol

2005-07-01

384

In vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin™ in Lescol® XL tablets in a USP-IV dissolution cell.  

PubMed

Swellable polymeric matrices are key systems in the controlled drug release area. Currently, the vast majority of research is still focused on polymer swelling dynamics. This study represents the first quantitative multi-nuclear (((1))H and ((19))F) fast magnetic resonance imaging study of the complete dissolution process of a commercial (Lescol® XL) tablet, whose formulation is based on the hydroxypropyl methylcellulose (HPMC) polymer under in vitro conditions in a standard USP-IV (United States Pharmacopeia apparatus IV) flow-through cell that is incorporated into high field superconducting magnetic resonance spectrometer. Quantitative RARE ((1))H magnetic resonance imaging (MRI) and ((19))F nuclear magnetic resonance (NMR) spectroscopy and imaging methods have been used to give information on: (i) dissolution media uptake and hydrodynamics; (ii) active pharmaceutical ingredient (API) mobilisation and dissolution; (iii) matrix swelling and dissolution and (iv) media activity within the swelling matrix. In order to better reflect the in vivo conditions, the bio-relevant media Simulated Gastric Fluid (SGF) and Fasted State Simulated Intestinal Fluid (FaSSIF) were used. A newly developed quantitative ultra-fast MRI technique was applied and the results clearly show the transport dynamics of media penetration and hydrodynamics along with the polymer swelling processes. The drug dissolution and mobility inside the gel matrix was characterised, in parallel to the ((1))H measurements, by ((19))F NMR spectroscopy and MRI, and the drug release profile in the bulk solution was recorded offline by UV spectrometer. We found that NMR spectroscopy and 1D-MRI can be uniquely used to monitor the drug dissolution/mobilisation process within the gel layer, and the results from ((19))F NMR spectra indicate that in the gel layer, the physical mobility of the drug changes from "dissolved immobilised drug" to "dissolved mobilised drug". PMID:21911016

Zhang, Qilei; Gladden, Lynn; Avalle, Paolo; Mantle, Michael

2011-12-20

385

[Study on rapid quantitative analysis of the active ingredient in ABC extinguishing agent and type identification of extinguishing agent powders using near infrared spectroscopy].  

PubMed

A new quantitative method to determine the NH4H2PO4 in ABC powder extinguishing agent and to distinguish between ABC and BC powder extinguishing agents using near infrared diffuse reflectance spectroscopy is proposed. A PLS calibration model for the NH4H2PO4 content in extinguishing agent powder was established, with RMSECV = 2.1, RMSEP = 2.4. An identification model for ABC and BC powder extinguishing agents was built by SIMCA and the identification accuracy rate is 100%. This method, compared to the present standard method, has the characteristics of rapidness and easy operation, whichis fit for the quantitative analysis and type distinguishing of the fire products on site. PMID:23156767

Hu, Ai-qin; Yuan, Hong-fu; Xue, Gang; Song, Chun-feng; Li, Xiao-yu; Xie, Jin-chun

2012-08-01

386

Fast and accurate quantitative metabolic profiling of body fluids by nonlinear sampling of 1H–13C two-dimensional nuclear magnetic resonance spectroscopy.  

PubMed

Two-dimensional (2D) nuclear magnetic resonance (NMR) methods have shown to be an excellent analytical tool for the identification and characterization of statistically relevant changes in low-abundance metabolites in body fluid. The advantage of 2D NMR in terms of minimized ambiguities in peak assignment, aided in metabolite identifications and comprehensive metabolic profiling comes with the cost of increased NMR data collection time; making it inconvenient choice for routine metabolic profiling. We present here a method for the reduction in NMR data collection time of 2D (1)H-(13)C NMR spectroscopy for the purpose of quantitative metabolic profiling. Our method combines three techniques; which are nonlinear sampling (NLS), forward maximum (FM) entropy reconstruction, and J-compensated quantitative heteronuclear single quantum (HSQC) (1)H-(13)C NMR spectra. We report here that approximately 22-fold reduction in 2D NMR data collection time for the body fluid samples can be achieved by this method, without any compromise in quantitative information recovery of various low abundance metabolites. The method has been demonstrated in standard mixture solution, native, and lyophilized human urine samples. Our proposed method has potential to make quantitative metabolic profiling by 2D NMR as a routine method for various metabonomic studies. PMID:23061661

Rai, Ratan Kumar; Sinha, Neeraj

2012-11-20

387

Quantitative nonlinear spectroscopy: a direct comparison of degenerate four-wave mixing with cavity ring-down spectroscopy applied to NaH  

Microsoft Academic Search

Cavity ring-down spectroscopy and degenerate four-wave mixing have been applied for spectroscopic studies, temperature determination, and measurement of relative dipole transition moments of photochemically produced sodium hydride. In our experiment, NaH was formed within a heat-pipe oven after 3p excitation of sodium in a hydrogen atmosphere with a second dye laser. The reaction product NaH was probed in the near

Leo Lehr; Peter Hering

1997-01-01

388

Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Ordered vertical silicon nanocones arrays coated with silver nanoparticles (AgNPs@SiNCs) are developed as surface-enhanced Raman scattering (SERS)-active substrate, which features good uniformity and reliable reproducibility of SERS signals. Label-free DNA at low concentrations (10-8 M) could be quantitatively analyzed via SERS using the AgNPs@SiNCs. The Raman peak at 732 cm-1 due to adenine breathing mode was selected as an endogenous Raman marker for quantitative detection of label-free DNA. The AgNPs@SiNCs as high-performance SERS-active substrates are attractive for surface enhancement mechanism investigation and biochemical sensing applications.

Xu, Ting-Ting; Huang, Jian-An; He, Li-Fang; He, Yao; Su, Shao; Lee, Shuit-Tong

2011-10-01

389

FT-NIR-Spektroskopia Viljatuotteiden Pitoisuus- Ja Laatumittauksessa (FT-NIR Spectroscopy in Quantitative and Qualitative Measurements of Cereal Products).  

National Technical Information Service (NTIS)

The theoretical basis of IR/NIR spectroscopy and equipment techniques are addressed. In the NIR range the most important molecular groups in foodstuffs are the C-H, the O-H and the N-H groups. Equipment technology is divided into that of filtering, disper...

J. Sorvaniemi A. Kinnunen Y. Maelkki

1992-01-01

390

Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning  

Microsoft Academic Search

Beef is a commercially important and widely consumed muscle food and central to the protein intake of many societies. In the food industry no technology exists for the rapid and accurate detection of microbiologically spoiled or contaminated beef. Fourier transform infrared (FT-IR) spectroscopy is a rapid, reagentless and non-destructive analytical technique whose continued development is resulting in manifold applications across

David I. Ellis; David Broadhurst; Royston Goodacre

2004-01-01

391

Products of the reaction between alpha- or gamma-tocopherol and nitrogen oxides analyzed by high-performance liquid chromatography with UV-visible and atmospheric pressure chemical ionization mass spectrometric detection.  

PubMed

The reaction products of alpha- or gamma-tocopherol with nitric oxide in the presence of molecular oxygen were isolated and characterized. The consumption of tocopherols and the formation of the major products were monitored by high-performance liquid chromatography (HPLC) by a gradient elution method. The quantitative analysis of these compounds with UV-Vis detectors, however, was interfered by several minor products having similar UV spectra and retention times as those of the major ones. In order to establish a quantitative analytical method for the products, we investigated other detection methods, and found that atmospheric pressure chemical ionization (APCI), LC-MS was a more selective and better analytical method for these compounds. PMID:15146919

Nagata, Yoshiko; Matsumoto, Yohta; Kanazawa, Hideko

2004-05-21

392

Quantitative Surface Analysis of NBS Standard Materials and Mt. St. Helens Ash by Electron Spectroscopy for Chemical Analysis  

Microsoft Academic Search

Results are presented which develop a quantitative method of surface analysis by ESCA for complex heterogeneous systems. Calibration and application of the method to determination of surface weight percentages are discussed. Mt. St. Helens Ash is used to authenticate the method; results agree with bulk analysis to ±20%. Results from NBS standard materials are used to establish detection limits of

Joseph A. Gardella Jr; David M. Hercules

1983-01-01

393

Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy  

Microsoft Academic Search

Noninvasive and real-time analysis of skin properties is useful in a wide variety of applications. In particular, the quantitative assessment of skin in terms of hemoglobin and melanin content, as well as in terms of its light scattering properties, is a challenging problem in dermatology. We present here a technique for examining human skin, based on the in vivo measurement

George Zonios; Julie Bykowski; Nikiforos Kollias

2001-01-01

394

Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics  

NASA Astrophysics Data System (ADS)

High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.

Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.

2011-11-01

395

Rapid evaluation and quantitative analysis of thyme, origano and chamomile essential oils by ATR-IR and NIR spectroscopy  

Microsoft Academic Search

The essential oils obtained from various chemotypes of thyme, origano and chamomile species were studied by ATR\\/FT-IR as well as NIR spectroscopy. Application of multivariate statistics (PCA, PLS) in conjunction with analytical reference data leads to very good IR and NIR calibration results. For the main essential oil components (e.g. carvacrol, thymol, ?-terpinene, ?-bisabolol and ?-farnesene) standard errors are in

Hartwig Schulz; Rolf Quilitzsch; Hans Krüger

2003-01-01

396

High-Resolution NMR Spectroscopy: An Alternative Fast Tool for Qualitative and Quantitative Analysis of Diacylglycerol (DAG) Oil  

Microsoft Academic Search

Multinuclear (1H, 13C, 31P) and multidimensional NMR spectroscopy was employed for the analysis of diacylglycerol (DAG) oil and the quantification\\u000a of its acylglycerols and acyl chains composition. A number of gradient selected two dimensional NMR techniques (TOCSY, HSQC-DEPT,\\u000a HSQC-TOCSY, and HMBC) facilitated the assignment of the complex one dimensional 1H- and 13C-NMR spectra. In several cases, the aforementioned 2D-NMR techniques

Emmanuel Hatzakis; Alexia Agiomyrgianaki; Sarantos Kostidis; Photis Dais

397

Standardization and validation of a new atomic absorption spectroscopy technique for determination and quantitation of Aluminium adjuvant in immunobiologicals  

Microsoft Academic Search

In the present study, Aluminium quantification in immunobiologicals has been described using atomic absorption spectroscopy (AAS) technique. The assay was found to be linear in 25–125?g\\/ml Aluminium range. The procedure was found to be accurate for different vaccines with recoveries of external additions ranging between 93.26 and 103.41%. The mean Limit of Variation (L.V.) for both intra- and inter-assay precision

Arti Mishra; Sumir Rai Bhalla; Sameera Rawat; Vivek Bansal; Rakesh Sehgal; Sunil Kumar

2007-01-01

398

The aqueous geochemistry of rare earth elements: V. Application of photoacoustic spectroscopy to speciation at low rare earth element concentrations  

NASA Astrophysics Data System (ADS)

Photoacoustic spectroscopy (PAS) yields information on complexation identical to that obtainable with conventional UV-visible absorption spectroscopy, but is up to three orders of magnitude more sensitive. The applicability of PAS to the study of Er 3+ oxalate and hydroxide complexes, at 25°C and 1 bar, has been demonstrated. Spectra can be obtained at concentrations as low as 10-20 ?M, and observed spectral changes as a function of pH and oxalate concentration are consistent with the most reliable thermodynamic data available for these systems.

Wood, Scott A.; Drew Tait, C.; Janecky, David R.; Constantopoulos, Term L.

1995-12-01

399

Using wide-field quantitative diffuse reflectance spectroscopy in combination with high-resolution imaging for margin assessment  

NASA Astrophysics Data System (ADS)

Due to the large number of women diagnosed with breast cancer and the lack of intra-operative tools, breast cancer margin assessment presents a significant unmet clinical need. Diffuse reflectance spectral imaging provides a method for quantitatively interrogating margins of lumpectomy specimens. We have previously found that [?- carotene]/?s' is a diagnostically important parameter but both parameters, [?-carotene] and ?s', were derived from a low resolution parameter map and are subject to the tissue type and heterogeneity present in the breast. In this study, we used diffuse reflectance measurements from individual sites co-registered with high resolution microendoscopy (HRME) images to determine if the combined performance of these technologies could improve margin assessment. By comparing the optical parameters of [?-carotene] and ?s' to the quantitative HRME image endpoints of feature size, feature density and normalized fluorescence, we determined that adding HRME to spectral imaging can improve the specificity of our diffuse reflectance spectral imaging system.

Kennedy, Stephanie; Mueller, Jenna; Bydlon, Torre; Brown, J. Quincy; Ramanujam, Nimmi

2011-02-01

400

Rapid separation and quantitation of curcuminoids combining pseudo two-dimensional liquid flash chromatography and NMR spectroscopy.  

PubMed

Rapid separation, characterization and quantitation of curcuminoids are important owing to their numerous pharmacological properties including antimicrobial, antiviral, antifungal, anticancer, and anti-inflammatory activities. In the present study, pseudo two-dimensional liquid flash chromatography was used for the separation of four curcuminoids (curcumin, demethoxy curcumin, bisdemethoxy curcumin and dihydro bisdemethoxy curcumin) for the first time. Silica and diol columns were used for separation of curcuminoids using gradient mobile phase. The separated peaks were monitored at 244, 360nm to obtain four compounds. The purity of compounds were determined by rapid quantitative (1)H NMR (qNMR) using 3-(trimethylsilyl) propionic-(2,2,3,3-d4) acid sodium salt (TSP-d4) (0.012%) in D2O. These results were compared with those obtained by HPLC method. The purity of isolated curcuminoids using pseudo 2D chromatography was found to be in the range of 92.4-95.45%. The structures of these compounds were characterized unambiguously using (13)C (APT) NMR spectra. The developed pseudo 2D separation technique has the advantage of simplified automation with shorter run time compared to conventional separation techniques. The method that combines rapid pseudo 2D separation and simple quantitation using qNMR reported herein can be of wide utility for routine analysis of curcuminoids in complex mixtures. PMID:24013126

Jayaprakasha, G K; Nagana Gowda, G A; Marquez, Sixto; Patil, Bhimanagouda S

2013-10-15

401

Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal  

NASA Astrophysics Data System (ADS)

We present a ratioing algorithm for quantitative analysis of the passive Fourier-transform infrared spectrum of a chemical plume. We show that the transmission of a near-field plume is given by tau plume = (Lobsd - Lbb-plume)/(Lbkgd - Lbb-plume), where tau plume is the frequency-dependent transmission of the plume, L obsd is the spectral radiance of the scene that contains the plume, Lbkgd is the spectral radiance of the same scene without the plume, and Lbb-plume is the spectral radiance of a blackbody at the plume temperature. The algorithm simultaneously achieves background removal, elimination of the spectrometer internal signature, and quantification of the plume spectral transmission. It has applications to both real-time processing for plume visualization and quantitative measurements of plume column densities. The plume temperature (Lbb-plume ), which is not always precisely known, can have a profound effect on the quantitative interpretation of the algorithm and is discussed in detail. Finally, we provide an illustrative example of the use of the algorithm on a trichloroethylene and acetone plume.

Polak, Mark L.; Hall, Jeffrey L.; Herr, Kenneth C.

1995-08-01

402

Estimation of soil clay and organic matter using two quantitative methods (PLSR and MARS) based on reflectance spectroscopy  

NASA Astrophysics Data System (ADS)

A rapid and inexpensive soil analytical technique is needed for soil quality assessment and accurate mapping. This study investigated a method for improved estimation of soil clay (SC) and organic matter (OM) using reflectance spectroscopy. Seventy soil samples were collected from Sinai peninsula in Egypt to estimate the soil clay and organic matter relative to the soil spectra. Soil samples were scanned with an Analytical Spectral Devices (ASD) spectrometer (350-2500 nm). Three spectral formats were used in the calibration models derived from the spectra and the soil properties: (1) original reflectance spectra (OR), (2) first-derivative spectra smoothened using the Savitzky-Golay technique (FD-SG) and (3) continuum-removed reflectance (CR). Partial least-squares regression (PLSR) models using the CR of the 400-2500 nm spectral region resulted in R2 = 0.76 and 0.57, and RPD = 2.1 and 1.5 for estimating SC and OM, respectively, indicating better performance than that obtained using OR and SG. The multivariate adaptive regression splines (MARS) calibration model with the CR spectra resulted in an improved performance (R2 = 0.89 and 0.83, RPD = 3.1 and 2.4) for estimating SC and OM, respectively. The results show that the MARS models have a great potential for estimating SC and OM compared with PLSR models. The results obtained in this study have potential value in the field of soil spectroscopy because they can be applied directly to the mapping of soil properties using remote sensing imagery in arid environment conditions. Key Words: soil clay, organic matter, PLSR, MARS, reflectance spectroscopy.

Nawar, Said; Buddenbaum, Henning; Hill, Joachim

2014-05-01

403

ERDA Paper: Quantitative Measurement of Chromium, Manganese, Rhenium, and Magnesium in Liquid by Laser-Induced Breakdown Spectroscopy  

SciTech Connect

A technique is needed to measure Tc during the waste process at DOE Hanford site. Laser induced breakdown spectroscopy (LIBS), a laser-based, non-intrusive, and sensitive optical diagnostic technique for measuring the concentration of various atomic and molecular species in test media, has the potential to be an on-line monitor to monitor Tc in the effluent from the Tc removal column to track the technetium removal process. In this work, we evaluate the analytical figure of merit of LIBS system for the element that has similar properties to Tc.

Keller, E.L.

2000-06-27

404

Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women  

NASA Astrophysics Data System (ADS)

Previous investigation has proved time-resolved spectroscopy to be applicable to measurement of optical parameters in the human breast. To increase knowledge of these properties in vivo, the optical parameters of healthy breasts were measured using time-resolved reflectance spectroscopy. A time-correlated single-photon counting method was used to obtain time-response curves for the breasts of 30 Japanese women. Values of (mu) a and (mu) s$' were analyzed by fitting the curves to the diffusion equation. The relationships of optical parameters to age, body mass index, thickness of the breast, number of pregnancies, and menstrual status were examined. The (mu) a and (mu) s' ranged from 0.0024 to 0.0078/mm and from 0.63 to 1.08/mm, respectively. The values of (mu) a and (mu) s' showed a high correlation with properties may be strongly influenced by changes in tissue components related to aging, menstrual status, and so on. This optical information will contribute to the investigation of photon migration in the human breast.

Suzuki, Kazunori; Yamashita, Yutaka; Ohta, Kazuyoshi; Kaneko, Masao; Yoshida, Masayuki; Chance, Britton

1996-07-01

405

Quantitative Nano-structural and Single Molecule Force Spectroscopy bio-molecular analysis of human saliva derived exosomes  

PubMed Central

Exosomes are naturally occurring nanoparticles with unique structure, surface biochemistry and mechanical characteristics. These distinct nanometer sized bio-particles are secreted from the surface of oral epithelial cells into saliva, and are of interest as oral-cancer biomarkers. We use high- resolution AFM to show single vesicle quantitative differences between exosomes derived from normal and oral cancer patient’s saliva. Compared to normal exosomes (circular; 67.4 ± 2.9 nm), our findings indicate that cancer exosomes populations are significantly increased in saliva and display irregular morphologies, increased vesicle size (98.3 ± 4.6 nm) and higher inter-vesicular aggregation. At the single vesicle level, cancer exosomes exhibit significantly (P<0.05) increased CD63 surface densities. To our knowledge, it represents the first report detecting single exosome surface protein variations. Additionally, high- resolution AFM imaging of cancer saliva samples revealed discrete multi-vesicular bodies with intra-luminal exosomes enclosed. We discuss the use of quantitative, nanoscale ultra-structural and surface bio-molecular analysis of saliva exosomes, at the single vesicle and single protein level sensitivity, as a potentially new oral cancer diagnostic.

Sharma, Shivani; Gillespie, Boyd M; Palanisamy, Viswanathan; Gimzewski, James K.

2011-01-01

406

Quantitative analysis of melamine by multi-way partial least squares model with two-dimensional near-infrared correlation spectroscopy  

NASA Astrophysics Data System (ADS)

A new approach for quantitative analysis of melamine in milk was proposed based on two-dimensional (2D) correlation near-infrared spectroscopy and multi-way partial least squares (N-PLS) in this paper. 40 pure milk samples and 40 milk samples adulterated with different contents of melamine were prepared. The near-infrared transmittance spectra of all samples were measured at room temperature. Then 2D NIR-NIR correlation spectroscopy under the perturbation of adulterant concentration was calculated and N-PLS model for the melamine concentration was established with 2D correlation spectra (28x51x51). For the prediction set, the root mean square errors of prediction (RMSEP) for melamine concentration was 0.067 g/L and the coefficient correlation between actual reference values and predicted values was 0.999, which means the model has good predictive ability. For comparison purpose, partial least squares (PLS) model was also built using the conventional one-dimensional near-infrared spectra (28x51), where the RMSEP and the coefficient correlation were 0.079 g/L and 0.998, respectively. The average relative prediction error was 22.9% for N-PLS model; whereas it was 122.4% for PLS model. The N-PLS models yielded relatively low RMSEP and average relative prediction error as compared to PLS model. Therefore, N-PLS method was more robust than PLS method for accurate quantification of the concentration of melamine in milk.

Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

2014-03-01

407

Quantitative 3.0T MR Spectroscopy Reveals Decreased Creatine Concentration in the Dorsolateral Prefrontal Cortex of Patients with Social Anxiety Disorder  

PubMed Central

Background The brain biochemical changes of social anxiety have not been clarified although there have been a limited number of MR spectroscopic studies which utilized metabolite/creatine ratios. Present study aimed to explore the alteration of absolute metabolite concentration in social anxiety disorder using quantitative MR spectroscopy. Materials and Methods With a 3.0T MR scanner, single voxel MR spectroscopy (stimulated echo acquisition mode, TR/TE/TM?=?2000/20/16 ms) was performed in the left dorsolateral prefrontal cortex and related regions of nine medication-free patients with social anxiety disorder and nine controls. Absolute metabolite concentration was calculated using tissue water as the internal reference and corrected for the partial volume of cerebrospinal fluid. Results In the left dorsolateral prefrontal cortex, the N-acetyl aspartate/creatine ratio of patients was significantly higher than that of controls, and this was due to the decrease of creatine concentration instead of the increase of N-acetyl aspartate concentration. Furthermore, the creatine concentration of the left dorsolateral prefrontal cortex was negatively correlated with the scores of Liebowitz social anxiety scale. Conclusions The alteration of creatine level in the left dorsolateral prefrontal cortex suggests abnormal energy metabolism and correlates with symptom severity in social anxiety disorder. And metabolite concentration is preferable to metabolite/creatine ratio for the investigation of individual, absolute metabolite changes in this region of social anxiety disorder.

Nie, Xiaojing; Wu, Qizhu; Li, Jun; Zhang, Wei; Huang, Xiaoqi; Gong, Qiyong

2012-01-01

408

Quantitative compositional profiling of conjugated quantum dots with single atomic layer depth resolution via time-of-flight medium-energy ion scattering spectroscopy.  

PubMed

We report the quantitative compositional profiling of 3-5 nm CdSe/ZnS quantum dots (QDs) conjugated with a perfluorooctanethiol (PFOT) layer using the newly developed time-of-flight (TOF) medium-energy ion scattering (MEIS) spectroscopy with single atomic layer resolution. The collection efficiency of TOF-MEIS is 3 orders of magnitude higher than that of conventional MEIS, enabling the analysis of nanostructured materials with minimized ion beam damage and without ion neutralization problems. The spectra were analyzed using PowerMEIS ion scattering simulation software to allow a wide acceptance angle. Thus, the composition and core-shell structure of the CdSe cores and ZnS shells were determined with a 3% composition uncertainty and a 0.2-nm depth resolution. The number of conjugated PFOT molecules per QD was also quantified. The size and composition of the QDs were consistent with those obtained from high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy, respectively. We suggest TOF-MEIS as a nanoanalysis technique to successfully elucidate the core-shell and conjugated layer structures of QDs, which is critical for the practical application of QDs in various nano- and biotechnologies. PMID:24350771

Jung, Kang-Won; Yu, Hyunung; Min, Won Ja; Yu, Kyu-Sang; Sortica, M A; Grande, Pedro L; Moon, DaeWon

2014-01-21

409

Quantitative comparison between theoretical predictions and experimental results for Bragg spectroscopy of a strongly interacting Fermi superfluid  

SciTech Connect

Theoretical predictions for the dynamic structure factor of a harmonically trapped Fermi superfluid near the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer (BEC-BCS) crossover are compared with recent Bragg spectroscopy measurements at large transferred momenta. The calculations are based on a random-phase (or time-dependent Hartree-Fock-Gorkov) approximation generalized to the strongly interacting regime. Excellent agreement with experimental spectra at low temperatures is obtained, with no free parameters. Theoretical predictions for zero-temperature static structure factor are also found to agree well with the experimental results and independent theoretical calculations based on the exact Tan relations. The temperature dependence of the structure factors at unitarity is predicted.

Zou Peng [Department of Physics, Renmin