Equilibration of quantum chaotic systems.
Zhuang, Quntao; Wu, Biao
2013-12-01
The quantum ergordic theorem for a large class of quantum systems was proved by von Neumann [Z. Phys. 57, 30 (1929)] and again by Reimann [Phys. Rev. Lett. 101, 190403 (2008)] in a more practical and well-defined form. However, it is not clear whether the theorem applies to quantum chaotic systems. With a rigorous proof still elusive, we illustrate and verify this theorem for quantum chaotic systems with examples. Our numerical results show that a quantum chaotic system with an initial low-entropy state will dynamically relax to a high-entropy state and reach equilibrium. The quantum equilibrium state reached after dynamical relaxation bears a remarkable resemblance to the classical microcanonical ensemble. However, the fluctuations around equilibrium are distinct: The quantum fluctuations are exponential while the classical fluctuations are Gaussian. PMID:24483425
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Quantum-classical correspondence principle for work distributions in a chaotic system
NASA Astrophysics Data System (ADS)
Zhu, Long; Gong, Zongping; Wu, Biao; Quan, H. T.
2016-06-01
We numerically study the work distributions in a chaotic system and examine the relationship between quantum work and classical work. Our numerical results suggest that there exists a correspondence principle between quantum and classical work distributions in a chaotic system. This correspondence was proved for one-dimensional integrable systems in a recent work [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015), 10.1103/PhysRevX.5.031038]. Our investigation further justifies the definition of quantum work via two-point energy measurements.
Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics
NASA Astrophysics Data System (ADS)
Wang, Guang-Lei; Ying, Lei; Lai, Ying-Cheng; Grebogi, Celso
2013-05-01
Quantum chaotic scattering is referred to as the study of quantum behaviors of open Hamiltonian systems that exhibit transient chaos in the classical limit. Traditionally a central issue in this field is how the elements of the scattering matrix or their functions fluctuate as a system parameter, e.g., the electron Fermi energy, is changed. A tacit hypothesis underlying previous works was that the underlying classical phase-space structure remains invariant as the parameter varies, so semiclassical theory can be used to explain various phenomena in quantum chaotic scattering. There are, however, experimental situations where the corresponding classical chaotic dynamics can change characteristically with some physical parameter. Multiple-terminal quantum dots are one such example where, when a magnetic field is present, the classical chaotic-scattering dynamics can change between being nonhyperbolic and being hyperbolic as the Fermi energy is changed continuously. For such systems semiclassical theory is inadequate to account for the characteristics of conductance fluctuations with the Fermi energy. To develop a general framework for quantum chaotic scattering associated with variable classical dynamics, we use multi-terminal graphene quantum-dot systems as a prototypical model. We find that significant conductance fluctuations occur with the Fermi energy even for fixed magnetic field strength, and the characteristics of the fluctuation patterns depend on the energy. We propose and validate that the statistical behaviors of the conductance-fluctuation patterns can be understood by the complex eigenvalue spectrum of the generalized, complex Hamiltonian of the system which includes self-energies resulted from the interactions between the device and the semi-infinite leads. As the Fermi energy is increased, complex eigenvalues with extremely smaller imaginary parts emerge, leading to sharp resonances in the conductance.
Zurek, W.H.; Pas, J.P. |
1995-08-01
Violation of correspondence principle may occur for very macroscopic byt isolated quantum systems on rather short timescales as illustrated by the case of Hyperion, the chaotically tumbling moon of Saturn, for which quantum and classical predictions are expected to diverge on a timescale of approximately 20 years. Motivated by Hyperion, we review salient features of ``quantum chaos`` and show that decoherence is the essential ingredient of the classical limit, as it enables one to solve the apparent paradox caused by the breakdown of the correspondence principle for classically chaotic systems.
Universal Impedance, Admittance and Scattering Fluctuations in Quantum-chaotic Systems
NASA Astrophysics Data System (ADS)
Hemmady, Sameer
2006-03-01
We experimentally investigate fluctuations in the eigenvalues of the impedance, admittance and scattering matrices of wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We consider a 2-D, time-reversal symmetric chaotic microwave resonator driven by two non-ideally coupled ports. The system-specific coupling effects are removed using the measured radiation impedance matrix (3pt<->Z Rad) [1] of the two ports. A normalized impedance matrix (3pt<->z ) is thus obtained, and the Probability Density Function (PDF) of its eigenvalues is predicted to be universal depending only on the cavity loss. We observe remarkable agreement between the statistical properties of 3pt<->z and 3pt<->y =3pt<->z -1 for all degrees of loss, which is in accordance with [1, 2] and Random Matrix Theory (RMT). We compare the joint PDF of the eigenphases of the normalized scattering matrix (3pt<->s ) with that obtained from RMT for varying degrees of loss. We study the joint PDF of the eigenvalues of 3pt<->s 3pt<->s ^ and find good agreement with [3]. [1] X. Zheng, et al., -- Electromagnetics (in press); condmat/0408317; S. Hemmady, et al., Phys. Rev. Lett. 94, 014102 (2005).[2] Y. V. Fyodorov, et al.,-- condmat/0507016.[3] P. W. Brouwer and C. W. J Beenakker -- PRB 55, 4695 (1997). Work supported by DOD MURI AFOSR Grant F496200110374, DURIP Grants FA95500410295 and FA95500510240.
Universal Impedance, Admittance and Scattering Fluctuations in Quantum-chaotic Systems.
NASA Astrophysics Data System (ADS)
Hemmady, Sameer; Zheng, Xing; Antonsen, Thomas; Ott, Edward; Anlage, Steven M.
2006-03-01
We experimentally investigate fluctuations in the eigenvalues of the impedance, admittance and scattering matrices of wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We consider a 2-D, time-reversal symmetric chaotic microwave resonator driven by two non-ideally coupled ports. The system-specific coupling effects are removed using the measured radiation impedance matrix (3pt<->Z Rad) [1] of the two ports. A normalized impedance matrix (3pt<->z ) is thus obtained, and the Probability Density Function (PDF) of its eigenvalues is predicted to be universal depending only on the cavity loss. We observe remarkable agreement between the statistical properties of 3pt<->z and 3pt<->y =3pt<->z -1 for all degrees of loss, which is in accordance with [1, 2] and Random Matrix Theory (RMT). We compare the joint PDF of the eigenphases of the normalized scattering matrix (3pt<->s ) with that obtained from RMT for varying degrees of loss. We study the joint PDF of the eigenvalues of 3pt<->s 3pt<->s ^ and find good agreement with [3]. [1] X. Zheng, et al., -- Electromagnetics (in press); condmat/0408317; S. Hemmady, et al., Phys. Rev. Lett. 94, 014102 (2005).[2] Y. V. Fyodorov, et al.,-- condmat/0507016.[3] P. W. Brouwer and C. W. J Beenakker -- PRB 55, 4695 (1997). Work supported by DOD MURI AFOSR Grant F496200110374, DURIP Grants FA95500410295 and FA95500510240.
Quantum dot microlasers with external feedback: a chaotic system close to the quantum limit
NASA Astrophysics Data System (ADS)
Albert, Ferdinand; Hopfmann, Caspar; Schneider, Christian; Höfling, Sven; Worschech, Lukas; Kamp, Martin; Kinzel, Wolfgang; Forchel, Alfred; Reitzenstein, Stephan; Kanter, Ido
2012-06-01
Studying cavity quantum electrodynamical effects is an emerging and important field of research for the understanding of the many body quantum theory as well as for the generation of a new type of efficient lasers. Here we report a dramatic change in the photon statistics of quantum dot based micropillar lasers where a finite fraction of the emission is reflected back into the microcavity after a roundtrip time τ in an external cavity, where τ greatly exceeds the coherence time. Photon bunching was observed above the threshold current where the second order autocorrelation function g(2)(τ) at zero-lag can reach values up to 3.51+/-0.06. The change in the photon statistics of the two non-degenerated fundamental modes were found to be correlated, indicating non-trivial interactions between both cavity modes. Furthermore the optical feedback led to revivals of the bunching signal in integer multiples of the round trip time of the external cavity and to a decrease in the coherence time of the laser. These phenomena compare well with milliwatt chaotic lasers induced by an external feedback, indicating that chaos might occur in the nanowatt lasing regime where fluctuations in the photon statistics are in the leading order.
Quantum stress in chaotic billiards.
Berggren, Karl-Fredrik; Maksimov, Dmitrii N; Sadreev, Almas F; Höhmann, Ruven; Kuhl, Ulrich; Stöckmann, Hans-Jürgen
2008-06-01
This paper reports on a joint theoretical and experimental study of the Pauli quantum-mechanical stress tensor T_{alphabeta}(x,y) for open two-dimensional chaotic billiards. In the case of a finite current flow through the system the interior wave function is expressed as psi=u+iv . With the assumption that u and v are Gaussian random fields we derive analytic expressions for the statistical distributions for the quantum stress tensor components T_{alphabeta} . The Gaussian random field model is tested for a Sinai billiard with two opposite leads by analyzing the scattering wave functions obtained numerically from the corresponding Schrödinger equation. Two-dimensional quantum billiards may be emulated from planar microwave analogs. Hence we report on microwave measurements for an open two-dimensional cavity and how the quantum stress tensor analog is extracted from the recorded electric field. The agreement with the theoretical predictions for the distributions for T_{alphabeta}(x,y) is quite satisfactory for small net currents. However, a distinct difference between experiments and theory is observed at higher net flow, which could be explained using a Gaussian random field, where the net current was taken into account by an additional plane wave with a preferential direction and amplitude. PMID:18643352
Quantum chaotic tunneling in graphene systems with electron-electron interactions
NASA Astrophysics Data System (ADS)
Ying, Lei; Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng
2014-12-01
An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes.
NASA Astrophysics Data System (ADS)
Ramos, J. G. G. S.; Barbosa, A. L. R.; Carlson, B. V.; Frederico, T.; Hussein, M. S.
2016-01-01
We derive analytical expressions for the correlation functions of the electronic conductance fluctuations of an open quantum dot under several conditions. Both the variation of energy and that of an external parameter, such as an applied perpendicular or parallel magnetic fields, are considered in the general case of partial openness. These expressions are then used to obtain the ensemble-averaged density of maxima, a measure recently suggested to contain invaluable information concerning the correlation widths of chaotic systems. The correlation width is then calculated for the case of energy variation, and a significant deviation from the Weisskopf estimate is found in the case of two terminals. The results are extended to more than two terminals. All of our results are analytical. The use of these results in other fields, such as nuclei, where the system can only be studied through a variation of the energy, is then discussed.
Ramos, J G G S; Barbosa, A L R; Carlson, B V; Frederico, T; Hussein, M S
2016-01-01
We derive analytical expressions for the correlation functions of the electronic conductance fluctuations of an open quantum dot under several conditions. Both the variation of energy and that of an external parameter, such as an applied perpendicular or parallel magnetic fields, are considered in the general case of partial openness. These expressions are then used to obtain the ensemble-averaged density of maxima, a measure recently suggested to contain invaluable information concerning the correlation widths of chaotic systems. The correlation width is then calculated for the case of energy variation, and a significant deviation from the Weisskopf estimate is found in the case of two terminals. The results are extended to more than two terminals. All of our results are analytical. The use of these results in other fields, such as nuclei, where the system can only be studied through a variation of the energy, is then discussed. PMID:26871076
Synchronization of chaotic systems
Pecora, Louis M.; Carroll, Thomas L.
2015-09-15
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.
Synchronization of chaotic systems
NASA Astrophysics Data System (ADS)
Pecora, Louis M.; Carroll, Thomas L.
2015-09-01
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.
Initial-state dependence of the quench dynamics in integrable quantum systems. III. Chaotic states
NASA Astrophysics Data System (ADS)
He, Kai; Rigol, Marcos
2013-04-01
We study sudden quantum quenches in which the initial states are selected to be either eigenstates of an integrable Hamiltonian that is nonmappable to a noninteracting one or a nonintegrable Hamiltonian, while the Hamiltonian after the quench is always integrable and mappable to a noninteracting one. By studying weighted energy densities and entropies, we show that quenches starting from nonintegrable (chaotic) eigenstates lead to an “ergodic” sampling of the eigenstates of the final Hamiltonian, while those starting from the integrable eigenstates do not (or at least it is not apparent for the system sizes accessible to us). This goes in parallel with the fact that the distribution of conserved quantities in the initial states is thermal in the nonintegrable cases and nonthermal in the integrable ones, and means that, in general, thermalization occurs in integrable systems when the quench starts form an eigenstate of a nonintegrable Hamiltonian (away from the edges of the spectrum), while it fails (or requires larger system sizes than those studied here to become apparent) for quenches starting at integrable points. We test those conclusions by studying the momentum distribution function of hard-core bosons after a quench.
NASA Astrophysics Data System (ADS)
Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás
2013-04-01
There are numerous physical situations in which a hole or leak is introduced in an otherwise closed chaotic system. The leak can have a natural origin, it can mimic measurement devices, and it can also be used to reveal dynamical properties of the closed system. A unified treatment of leaking systems is provided and applications to different physical problems, in both the classical and quantum pictures, are reviewed. The treatment is based on the transient chaos theory of open systems, which is essential because real leaks have finite size and therefore estimations based on the closed system differ essentially from observations. The field of applications reviewed is very broad, ranging from planetary astronomy and hydrodynamical flows to plasma physics and quantum fidelity. The theory is expanded and adapted to the case of partial leaks (partial absorption and/or transmission) with applications to room acoustics and optical microcavities in mind. Simulations in the limaçon family of billiards illustrate the main text. Regarding billiard dynamics, it is emphasized that a correct discrete-time representation can be given only in terms of the so-called true-time maps, while traditional Poincaré maps lead to erroneous results. Perron-Frobenius-type operators are generalized so that they describe true-time maps with partial leaks.
Parametric number covariance in quantum chaotic spectra
NASA Astrophysics Data System (ADS)
Vinayak, Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated. PMID:27078354
Quantum double pendulum: study of an autonomous classically chaotic quantum system.
Perotti, Luca
2004-12-01
A numerical study of the quantum double pendulum is conducted. A suitable quantum scaling is found which allows us to have as the only parameters the ratios of the lengths and masses of the two pendula and a (quantum) gravity parameter containing Planck's constant. Comparison with classical and semiclassical results is used to understand the behavior of the energy curves of the levels, to define regimes in terms of the gravity parameter, and to classify the (resonant) interactions among levels by connecting them to various classical phase space structures (resonance islands). PMID:15697495
Quantum-Behaved Particle Swarm Optimization with Chaotic Search
NASA Astrophysics Data System (ADS)
Yang, Kaiqiao; Nomura, Hirosato
The chaotic search is introduced into Quantum-behaved Particle Swarm Optimization (QPSO) to increase the diversity of the swarm in the latter period of the search, so as to help the system escape from local optima. Taking full advantages of the characteristics of ergodicity and randomicity of chaotic variables, the chaotic search is carried out in the neighborhoods of the particles which are trapped into local optima. The experimental results on test functions show that QPSO with chaotic search outperforms the Particle Swarm Optimization (PSO) and QPSO.
NASA Astrophysics Data System (ADS)
Aguilar-López, Ricardo; López-Pérez, Pablo A.; Lara-Cisneros, Gerardo; Femat, Ricardo
2016-09-01
In this paper, a robust nonlinear feedback control scheme with adaptive gain is proposed to control the chaotic behavior in a Bose-Einstein condensate (BEC). The control goal concerns the track or regulation purposes. The BEC system is represented as stochastic ordinary differential equations with measured output perturbed by Gaussian noise, which represents the nature of the quantum systems. The convergence of the BEC control law is analyzed under the frame of the Lyapunov stability theory. Numerical experiments show an adequate performance of the proposed methodology under the required conditions. The results are applicable when the shape of the condensate is sufficiently simple.
Cascade Chaotic System With Applications.
Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip
2015-09-01
Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level. PMID:25373135
Will Quantum Cosmology Resurrect Chaotic Inflation Model?
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo; Kim, Won
2016-07-01
The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.
Chaotic Systems with Absorption
NASA Astrophysics Data System (ADS)
Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás
2013-10-01
Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.
Using Chaotic System in Encryption
NASA Astrophysics Data System (ADS)
Findik, Oğuz; Kahramanli, Şirzat
In this paper chaotic systems and RSA encryption algorithm are combined in order to develop an encryption algorithm which accomplishes the modern standards. E.Lorenz's weather forecast' equations which are used to simulate non-linear systems are utilized to create chaotic map. This equation can be used to generate random numbers. In order to achieve up-to-date standards and use online and offline status, a new encryption technique that combines chaotic systems and RSA encryption algorithm has been developed. The combination of RSA algorithm and chaotic systems makes encryption system.
Exploring Classically Chaotic Potentials with a Matter Wave Quantum Probe
Gattobigio, G. L.; Couvert, A.; Georgeot, B.; Guery-Odelin, D.
2011-12-16
We study an experimental setup in which a quantum probe, provided by a quasimonomode guided atom laser, interacts with a static localized attractive potential whose characteristic parameters are tunable. In this system, classical mechanics predicts a transition from regular to chaotic behavior as a result of the coupling between the different degrees of freedom. Our experimental results display a clear signature of this transition. On the basis of extensive numerical simulations, we discuss the quantum versus classical physics predictions in this context. This system opens new possibilities for investigating quantum scattering, provides a new testing ground for classical and quantum chaos, and enables us to revisit the quantum-classical correspondence.
Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems.
Xu, Hongya; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2015-01-01
Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems. PMID:25758591
Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems
Xu, Hongya; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2015-01-01
Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems. PMID:25758591
Conductance fluctuations in chaotic bilayer graphene quantum dots.
Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2015-07-01
Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit. PMID:26274258
Conductance fluctuations in chaotic bilayer graphene quantum dots
NASA Astrophysics Data System (ADS)
Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2015-07-01
Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit.
Chaotic systems with absorption.
Altmann, Eduardo G; Portela, Jefferson S E; Tél, Tamás
2013-10-01
Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D(q) obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D(1) in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results. PMID:24138240
Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems
NASA Astrophysics Data System (ADS)
Bäcker, A.
Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.
Quantum localization of chaotic eigenstates and the level spacing distribution
NASA Astrophysics Data System (ADS)
Batistić, Benjamin; Robnik, Marko
2013-11-01
The phenomenon of quantum localization in classically chaotic eigenstates is one of the main issues in quantum chaos (or wave chaos), and thus plays an important role in general quantum mechanics or even in general wave mechanics. In this work we propose two different localization measures characterizing the degree of quantum localization, and study their relation to another fundamental aspect of quantum chaos, namely the (energy) spectral statistics. Our approach and method is quite general, and we apply it to billiard systems. One of the signatures of the localization of chaotic eigenstates is a fractional power-law repulsion between the nearest energy levels in the sense that the probability density to find successive levels on a distance S goes like ∝Sβ for small S, where 0≤β≤1, and β=1 corresponds to completely extended states. We show that there is a clear functional relation between the exponent β and the two different localization measures. One is based on the information entropy and the other one on the correlation properties of the Husimi functions. We show that the two definitions are surprisingly linearly equivalent. The approach is applied in the case of a mixed-type billiard system [M. Robnik, J. Phys. A: Math. Gen.JPHAC50305-447010.1088/0305-4470/16/17/014 16, 3971 (1983)], in which the separation of regular and chaotic eigenstates is performed.
Quantum localization of chaotic eigenstates and the level spacing distribution.
Batistić, Benjamin; Robnik, Marko
2013-11-01
The phenomenon of quantum localization in classically chaotic eigenstates is one of the main issues in quantum chaos (or wave chaos), and thus plays an important role in general quantum mechanics or even in general wave mechanics. In this work we propose two different localization measures characterizing the degree of quantum localization, and study their relation to another fundamental aspect of quantum chaos, namely the (energy) spectral statistics. Our approach and method is quite general, and we apply it to billiard systems. One of the signatures of the localization of chaotic eigenstates is a fractional power-law repulsion between the nearest energy levels in the sense that the probability density to find successive levels on a distance S goes like [proportionality]S(β) for small S, where 0≤β≤1, and β=1 corresponds to completely extended states. We show that there is a clear functional relation between the exponent β and the two different localization measures. One is based on the information entropy and the other one on the correlation properties of the Husimi functions. We show that the two definitions are surprisingly linearly equivalent. The approach is applied in the case of a mixed-type billiard system [M. Robnik, J. Phys. A: Math. Gen. 16, 3971 (1983)], in which the separation of regular and chaotic eigenstates is performed. PMID:24329337
Chakraborty, Debdutta; Kar, Susmita; Chattaraj, Pratim Kumar
2015-12-21
The orbital free density functional theory and the single density equation approach are formally equivalent. An orbital free density based quantum dynamical strategy is used to study the quantum-classical correspondence in both weakly and strongly coupled van der Pol and Duffing oscillators in the presence of an external electric field in one dimension. The resulting quantum hydrodynamic equations of motion are solved through an implicit Euler type real space method involving a moving weighted least square technique. The Lagrangian framework used here allows the numerical grid points to follow the wave packet trajectory. The associated classical equations of motion are solved using a sixth order Runge-Kutta method and the Ehrenfest dynamics is followed through the solution of the time dependent Schrodinger equation using a time dependent Fourier Grid Hamiltonian technique. Various diagnostics reveal a close parallelism between classical regular as well as chaotic dynamics and that obtained from the Bohmian mechanics. PMID:26033095
Chaotic synchronization system and electrocardiogram
NASA Astrophysics Data System (ADS)
Pei, Liuqing; Dai, Xinlai; Li, Baodong
1997-01-01
A mathematical model of chaotic synchronization of the heart-blood flow coupling dynamics is proposed, which is based on a seven dimension nonlinear dynamical system constructed by three subsystems of the sinoatrial node natural pacemaker, the cardiac relaxation oscillator and the dynamics of blood-fluid in heart chambers. The existence and robustness of the self-chaotic synchronization of the system are demonstrated by both methods of theoretical analysis and numerical simulation. The spectrum of Lyapunov exponent, the Lyapunov dimension and the Kolmogorov entropy are estimated when the system was undergoing the state of self-chaotic synchronization evolution. The time waveform of the dynamical variable, which represents the membrane potential of the cardiac integrative cell, shows a shape which is similar to that of the normal electrocardiogram (ECG) of human, thus implies that the model possesses physiological significance functionally.
Mutual stabilization of chaotic systems through entangled cupolets
NASA Astrophysics Data System (ADS)
Morena, Matthew Allan
Recent experimental and theoretical work has detected signatures of chaotic behavior in nearly every physical science, including quantum entanglement. In some instances, chaos either plays a significant role or, as an underlying presence, explains perplexing observations. There are certain properties of chaotic systems which are consistently encountered and become focal points of the investigations. For instance, chaotic systems typically admit a dense set of unstable periodic orbits around an attractor. These orbits collectively provide a rich source of qualitative information about the associated system and their abundance has been utilized in a variety of applications. We begin this thesis by describing a control scheme that stabilizes the unstable periodic orbits of chaotic systems and we go on to discuss several properties of these orbits. This technique allows for the creation of thousands of periodic orbits, known as cupolets ( Chaotic Unstable Periodic Orbit-lets ). We then present several applications of cupolets for investigating chaotic systems. First, we demonstrate an effective technique that combines cupolets with algebraic graph theory in order to transition between their orbits. This also induces certainty into the control of nonlinear systems and effectively provides an efficient algorithm for the steering and targeting of chaotic systems. Next, we establish that many higher-order cupolets are amalgamations of simpler cupolets, possibly through bifurcations. From a sufficiently large set of cupolets, we obtain a hierarchal subset of fundamental cupolets from which other cupolets may be assembled and dynamical invariants approximated. We then construct an independent coordinate system aligned to the local dynamical geometry and that reveals the local stretching and folding dynamics which characterize chaotic behavior. This partitions the dynamical landscape into regions of high or low chaoticity, thereby supporting prediction capabilities. Finally
Information encoder/decoder using chaotic systems
Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson
1997-01-01
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.
Information encoder/decoder using chaotic systems
Miller, S.L.; Miller, W.M.; McWhorter, P.J.
1997-10-21
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.
Enhanced predictability in chaotic geophysical systems
Brindley, J.; Kapitaniak, T.
1996-06-01
Using the Lorenz equations as an example we show that one chaotic system can be controlled by synchronizing its behavior with the chaotic behavior of another system. We particularly discuss the implications of this phenomenon in geophysical systems. {copyright} {ital 1996 American Institute of Physics.}
Nonlinear Dynamics, Chaotic and Complex Systems
NASA Astrophysics Data System (ADS)
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
A Chaotic System with Different Shapes of Equilibria
NASA Astrophysics Data System (ADS)
Pham, Viet-Thanh; Jafari, Sajad; Wang, Xiong; Ma, Jun
Although many chaotic systems have been introduced in the literature, a few of them possess uncountably infinite equilibrium points. The aim of our short work is to widen the current knowledge of the chaotic systems with an infinite number of equilibria. A three-dimensional system with special properties, for example, exhibiting chaotic attractor with circular equilibrium, chaotic attractor with ellipse equilibrium, chaotic attractor with square-shaped equilibrium, and chaotic attractor with rectangle-shaped equilibrium, is proposed.
Electric circuit networks equivalent to chaotic quantum billiards
Bulgakov, Evgeny N.; Maksimov, Dmitrii N.; Sadreev, Almas F.
2005-04-01
We consider two electric RLC resonance networks that are equivalent to quantum billiards. In a network of inductors grounded by capacitors, the eigenvalues of the quantum billiard correspond to the squared resonant frequencies. In a network of capacitors grounded by inductors, the eigenvalues of the billiard are given by the inverse of the squared resonant frequencies. In both cases, the local voltages play the role of the wave function of the quantum billiard. However, unlike for quantum billiards, there is a heat power because of the resistance of the inductors. In the equivalent chaotic billiards, we derive a distribution of the heat power which describes well the numerical statistics.
Applied mathematics of chaotic systems
Jen, E.; Alber, M.; Camassa, R.; Choi, W.; Crutchfield, J.; Holm, D.; Kovacic, G.; Marsden, J.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objectives of the project were to develop new mathematical techniques for describing chaotic systems and for reexpressing them in forms that can be solved analytically and computationally. The authors focused on global bifurcation analysis of rigid body motion in an ideal incompressible fluid and on an analytical technique for the exact solution of nonlinear cellular automata. For rigid-body motion, they investigated a new completely integrable partial differential equation (PDE) representing model motion of fronts in nematic crystals and studied perturbations of the integrable PDE. For cellular automata with multiple domain structures, the work has included: (1) identification of the associated set of conserved quantities for each type of domain; (2) use of the conserved quantities to construct isomorphism between the nonlinear system and a linear template; and (3) use of exact solvability methods to characterize detailed structure of equilibrium states and to derive bounds for maximal transience times.
Chaotic dynamics of weakly nonlinear systems
Vavriv, D.M.
1996-06-01
A review is given on the recent results in studying chaotic phenomena in weakly nonlinear systems. We are concerned with the class of chaotic states that can arise in physical systems with any degree of nonlinearity however small. The conditions for, and the mechanisms of, the transitions to chaos are discussed. These findings are illustrated by the results of the stability analysis of practical microwave and optical devices. {copyright} {ital 1996 American Institute of Physics.}
A review of sigma models for quantum chaotic dynamics
NASA Astrophysics Data System (ADS)
Altland, Alexander; Gnutzmann, Sven; Haake, Fritz; Micklitz, Tobias
2015-07-01
We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.
A review of sigma models for quantum chaotic dynamics.
Altland, Alexander; Gnutzmann, Sven; Haake, Fritz; Micklitz, Tobias
2015-07-01
We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization. PMID:26181515
Multiple channel secure communication using chaotic system encoding
Miller, S.L.
1996-12-31
fA new method to encrypt signals using chaotic systems has been developed that offers benefits over conventional chaotic encryption methods. The method simultaneously encodes multiple plaintext streams using a chaotic system; a key is required to extract the plaintext from the chaotic cipertext. A working prototype demonstrates feasibility of the method by simultaneously encoding and decoding multiple audio signals using electrical circuits.
Ontic and epistemic descriptions of chaotic systems
NASA Astrophysics Data System (ADS)
Atmanspacher, Harald
2000-05-01
Traditional philosophical discourse draws a distinction between ontology and epistemology and generally enforces this distinction by keeping the two subject areas separated and unrelated. In addition, the relationship between the two areas is of central importance to physics and philosophy of physics. For instance, all kinds of measurement-related problems force us to consider both our knowledge of the states and observables of a system (epistemic perspective) and its states and observables independent of such knowledge (ontic perspective). This applies to quantum systems in particular. In this contribution we present an example which shows the importance of distinguishing between ontic and epistemic levels of description even for classical systems. Corresponding conceptions of ontic and epistemic states and their evolution will be introduced and discussed with respect to aspects of stability and information flow. These aspects show why the ontic/epistemic distinction is particularly important for systems exhibiting deterministic chaos. Moreover, this distinction provides some understanding of the relationships between determinism, causation, predictability, randomness, and stochasticity in chaotic systems.
Controlled transitions between cupolets of chaotic systems
Morena, Matthew A. Short, Kevin M.; Cooke, Erica E.
2014-03-15
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems.
Controlled transitions between cupolets of chaotic systems
Morena, Matthew A.; Short, Kevin M.; Cooke, Erica E.
2014-01-01
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems. PMID:24697373
Controlled transitions between cupolets of chaotic systems
NASA Astrophysics Data System (ADS)
Morena, Matthew A.; Short, Kevin M.; Cooke, Erica E.
2014-03-01
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems.
Controlled transitions between cupolets of chaotic systems.
Morena, Matthew A; Short, Kevin M; Cooke, Erica E
2014-03-01
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems. PMID:24697373
Urey Prize Lecture - Chaotic dynamics in the solar system
NASA Technical Reports Server (NTRS)
Wisdom, Jack
1987-01-01
Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.
Desktop chaotic systems: Intuition and visualization
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.
1993-01-01
This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.
Numerical experiments on quantum chaotic billiards
NASA Astrophysics Data System (ADS)
de Menezes, D. D.; Jar e Silva, M.; de Aguiar, F. M.
2007-06-01
A recently proposed numerical technique for generation of high-quality unstructured meshes is combined with a finite-element method to solve the Helmholtz equation that describes the quantum mechanics of a particle confined in two-dimensional cavities. Different shapes are treated on equal footing, including Sinai, stadium, annular, threefold symmetric, mushroom, cardioid, triangle, and coupled billiards. The results are shown to be in excellent agreement with available measurements in flat microwave resonator counterparts with nonintegrable geometries.
Numerical experiments on quantum chaotic billiards.
de Menezes, D D; Jar e Silva, M; de Aguiar, F M
2007-06-01
A recently proposed numerical technique for generation of high-quality unstructured meshes is combined with a finite-element method to solve the Helmholtz equation that describes the quantum mechanics of a particle confined in two-dimensional cavities. Different shapes are treated on equal footing, including Sinai, stadium, annular, threefold symmetric, mushroom, cardioid, triangle, and coupled billiards. The results are shown to be in excellent agreement with available measurements in flat microwave resonator counterparts with nonintegrable geometries. PMID:17614670
Urey Prize Lecture - Chaotic dynamics in the solar system
NASA Astrophysics Data System (ADS)
Wisdom, J.
1987-11-01
Newton's equations have chaotic solutions as well as regular solutions. There are several physical situations in the solar system where chaotic solutions of Newton's equations play an important role. There are examples of both chaotic rotation and chaotic orbital evolution. Hyperion is currently tumbling chaotically. Many of the other irregularly shaped satellites in the solar system have had chaotic rotations in the past. This episode of chaotic tumbling could have had a significant effect on the orbital histories of these satellites. Chaotic orbital evolution seems to be an essential ingredient in the explanation of the Kirkwood gaps in the distribution of asteroids. Chaotic trajectories at the 3/1 commensurability have the correct properties to provide a dynamical route for the transport of meteoritic material from the asteroid belt to Earth.
Relativistic wavepackets in classically chaotic quantum cosmological billiards
NASA Astrophysics Data System (ADS)
Koehn, Michael
2012-03-01
Close to a spacelike singularity, pure gravity and supergravity in 4 to 11 spacetime dimensions admit a cosmological billiard description based on hyperbolic Kac-Moody groups. We investigate the quantum cosmological billiards of relativistic wavepackets towards the singularity, employing flat and hyperbolic space descriptions for the quantum billiards. We find that the strongly chaotic classical billiard motion of four-dimensional pure gravity corresponds to a spreading wavepacket subject to successive redshifts and tending to zero as the singularity is approached. We discuss the possible implications of these results in the context of singularity resolution and compare them with those of known semiclassical approaches. As an aside, we obtain exact solutions for the one-dimensional relativistic quantum billiards with moving walls.
A semiclassical reversibility paradox in simple chaotic systems.
Tomsovic, Steven
2016-06-13
Using semiclassical methods, it is possible to construct very accurate approximations in the short-wavelength limit of quantum dynamics that rely exclusively on classical dynamical input. For systems whose classical realization is strongly chaotic, there is an exceedingly short logarithmic Ehrenfest time scale, beyond which the quantum and classical dynamics of a system necessarily diverge, and yet the semiclassical construction remains valid far beyond that time. This fact leads to a paradox if one ponders the reversibility and predictability properties of quantum and classical mechanics. They behave very differently relative to each other, with classical dynamics being essentially irreversible/unpredictable, whereas quantum dynamics is reversible/stable. This begs the question: 'How can an accurate approximation to a reversible/stable dynamics be constructed from an irreversible/unpredictable one?' The resolution of this incongruity depends on a couple of key ingredients: a well-known, inherent, one-way structural stability of chaotic systems; and an overlap integral not being amenable to the saddle point method. PMID:27140974
Complexity and synchronization in stochastic chaotic systems
NASA Astrophysics Data System (ADS)
Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo
2016-02-01
We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.
The study of effects of small perturbations on chaotic systems
Grebogi, C.; Yorke, J.A.
1991-12-01
This report discusses the following topics: controlling chaotic dynamical systems; embedding of experimental data; effect of noise on critical exponents of crises; transition to chaotic scattering; and distribution of floaters on a fluid surface. (LSP)
Chaotic Orbits for Systems of Nonlocal Equations
NASA Astrophysics Data System (ADS)
Dipierro, Serena; Patrizi, Stefania; Valdinoci, Enrico
2016-07-01
We consider a system of nonlocal equations driven by a perturbed periodic potential. We construct multibump solutions that connect one integer point to another one in a prescribed way. In particular, heteroclinic, homoclinic and chaotic trajectories are constructed. This is the first attempt to consider a nonlocal version of this type of dynamical systems in a variational setting and the first result regarding symbolic dynamics in a fractional framework.
CALL FOR PAPERS: Special Issue on `Trends in Quantum Chaotic Scattering'
NASA Astrophysics Data System (ADS)
Fyodorov, Y. V.; Kottos, T.; Stöckmann, H.-J.
2005-04-01
Quantum scattering of waves in classically chaotic systems has been the subject of rather intensive research activity for more than two decades, both theoretically and experimentally. This interest was motivated by phenomena discovered in various areas, ranging from nuclear, atomic and molecular physics, to mesoscopics and theory of electron transport, quantum chaos, and classical wave scattering. Recently, the interest in this subject was renewed due to technological developments in quantum optics (in particular the ability to construct microlasers with chaotic resonators which produce high-power directional emission) as well as the experimental realizations of the so-called random lasers where the feedback is due to multiple scattering within the medium. The articles collected in this special issue, which contains both review-style contributions and regular research papers, should give an up-to-date, fairly representative (but definitely not complete) picture of current activity related to the various facets of chaotic wave scattering, and its diverse manifestations. We hope that this will serve as a good basis for boosting the research in this fascinating area to a new level of understanding.
NASA Astrophysics Data System (ADS)
Wang, Xing-Yuan; Bao, Xue-Mei
2013-05-01
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption.
A chaotic view of behavior change: a quantum leap for health promotion
Resnicow, Ken; Vaughan, Roger
2006-01-01
Background The study of health behavior change, including nutrition and physical activity behaviors, has been rooted in a cognitive-rational paradigm. Change is conceptualized as a linear, deterministic process where individuals weigh pros and cons, and at the point at which the benefits outweigh the cost change occurs. Consistent with this paradigm, the associated statistical models have almost exclusively assumed a linear relationship between psychosocial predictors and behavior. Such a perspective however, fails to account for non-linear, quantum influences on human thought and action. Consider why after years of false starts and failed attempts, a person succeeds at increasing their physical activity, eating healthier or losing weight. Or, why after years of success a person relapses. This paper discusses a competing view of health behavior change that was presented at the 2006 annual ISBNPA meeting in Boston. Discussion Rather than viewing behavior change from a linear perspective it can be viewed as a quantum event that can be understood through the lens of Chaos Theory and Complex Dynamic Systems. Key principles of Chaos Theory and Complex Dynamic Systems relevant to understanding health behavior change include: 1) Chaotic systems can be mathematically modeled but are nearly impossible to predict; 2) Chaotic systems are sensitive to initial conditions; 3) Complex Systems involve multiple component parts that interact in a nonlinear fashion; and 4) The results of Complex Systems are often greater than the sum of their parts. Accordingly, small changes in knowledge, attitude, efficacy, etc may dramatically alter motivation and behavioral outcomes. And the interaction of such variables can yield almost infinite potential patterns of motivation and behavior change. In the linear paradigm unaccounted for variance is generally relegated to the catch all "error" term, when in fact such "error" may represent the chaotic component of the process. The linear and
Targeting engineering synchronization in chaotic systems
NASA Astrophysics Data System (ADS)
Bhowmick, Sourav K.; Ghosh, Dibakar
2016-07-01
A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.
Jacobs, E.W.; Bulsara, A.R.; Schieve, W.C.
1989-06-01
We consider a simple model of the flux in an rf superconducting quantum-interference device (SQUID) subjected to an external periodic magnetic field. The dynamic equation describing the flux response of the SQUID is solved analytically in the absence of damping and external driving terms. These terms are then introduced as perturbations, and the Melnikov function for the system is constructed. The transition from periodic to chaotic behavior is studied through a calculation of the Lyapunov exponents for the systems, and the dimension of the strange attracting set is calculated.
Topological analysis of chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Gilmore, Robert
1998-10-01
Topological methods have recently been developed for the analysis of dissipative dynamical systems that operate in the chaotic regime. They were originally developed for three-dimensional dissipative dynamical systems, but they are applicable to all ``low-dimensional'' dynamical systems. These are systems for which the flow rapidly relaxes to a three-dimensional subspace of phase space. Equivalently, the associated attractor has Lyapunov dimension dL<3. Topological methods supplement methods previously developed to determine the values of metric and dynamical invariants. However, topological methods possess three additional features: they describe how to model the dynamics; they allow validation of the models so developed; and the topological invariants are robust under changes in control-parameter values. The topological-analysis procedure depends on identifying the stretching and squeezing mechanisms that act to create a strange attractor and organize all the unstable periodic orbits in this attractor in a unique way. The stretching and squeezing mechanisms are represented by a caricature, a branched manifold, which is also called a template or a knot holder. This turns out to be a version of the dynamical system in the limit of infinite dissipation. This topological structure is identified by a set of integer invariants. One of the truly remarkable results of the topological-analysis procedure is that these integer invariants can be extracted from a chaotic time series. Furthermore, self-consistency checks can be used to confirm the integer values. These integers can be used to determine whether or not two dynamical systems are equivalent; in particular, they can determine whether a model developed from time-series data is an accurate representation of a physical system. Conversely, these integers can be used to provide a model for the dynamical mechanisms that generate chaotic data. In fact, the author has constructed a doubly discrete classification of strange
Sporadically Fractal Basin Boundaries of Chaotic Systems
Hunt, B.R.; Ott, E.; Rosa, E. Jr.
1999-05-01
We demonstrate a new type of basin boundary for typical chaotic dynamical systems. For the case of a two dimensional map, this boundary has the character of the graph of a function that is smooth and differentiable except on a set of fractal dimensions less than one. In spite of the basin boundary being smooth {open_quotes}almost everywhere,{close_quotes} its fractal dimension exceeds one (implying degradation of one{close_quote}s ability to predict the attractor an orbit approaches in the presence of small initial condition uncertainty). We call such a boundary {ital sporadically fractal}. {copyright} {ital 1999} {ital The American Physical Society}
Chaotic system detection of weak seismic signals
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, B. J.; Badal, J.; Zhao, X. P.; Lin, H. B.; Li, R. L.
2009-09-01
When the signal-to-noise (S/N) ratio is less than -3 dB or even 0 dB, seismic events are generally difficult to identify from a common shot record. To overcome this type of problem we present a method to detect weak seismic signals based on the oscillations described by a chaotic dynamic system in phase space. The basic idea is that a non-linear chaotic oscillator is strongly immune to noise. Such a dynamic system is less influenced by noise, but it is more sensitive to periodic signals, changing from a chaotic state to a large-scale periodic phase state when excited by a weak signal. With the purpose of checking the possible contamination of the signal by noise, we have performed a numerical experiment with an oscillator controlled by the Duffing-Holmes equation, taking a distorted Ricker wavelet sequence as input signal. In doing so, we prove that the oscillator system is able to reach a large-scale periodic phase state in a strong noise environment. In the case of a common shot record with low S/N ratio, the onsets reflected from a same interface are similar to one other and can be put on a single trace with a common reference time and the periodicity of the so-generated signal follows as a consequence of moveout at a particular scanning velocity. This operation, which is called `horizontal dynamic correction' and leads to a nearly periodic signal, is implemented on synthetic wavelet sequences taking various sampling arrival times and scanning velocities. Thereafter, two tests, both in a noisy ambient of -3.7 dB, are done using a chaotic oscillator: the first demonstrates the capability of the method to really detect a weak seismic signal; the second takes care of the fundamental weakness of the dynamic correction coming from the use of a particular scanning velocity, which is investigated from the effect caused by near-surface lateral velocity variation on the periodicity of the reconstructed seismic signal. Finally, we have developed an application of the
Cryptography based on spatial chaotic system
NASA Astrophysics Data System (ADS)
Sun, Fuyan; Lü, Zongwang
2010-08-01
Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity and high redundancy, which is generally difficult to handle by traditional methods. This paper proposes a new spatial chaos system(SCS), which is investigated by conducting FIPS 140-1 statistic test, and is especially useful for encryption of digital images. It is shown how to adapt a two dimensional(2D) ergodic matrix obtained from SCS to permute the positions of image pixels and confuse the relationship between the cipher image and plain image simultaneously. Experimental results show that the performance and security of the proposed cryptographic system are better than those of existing lower dimensional chaotic cryptographic systems.
Active control technique of fractional-order chaotic complex systems
NASA Astrophysics Data System (ADS)
Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.
2016-06-01
Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.
Flights in a pseudo-chaotic system
NASA Astrophysics Data System (ADS)
Lowenstein, J. H.; Vivaldi, F.
2011-09-01
We consider the problem of transport in a one-parameter family of piecewise rotations of the torus, for rotation number approaching 1/4. This is a zero-entropy system which in this limit exhibits a divided phase space, with island chains immersed in a "pseudo-chaotic" region. We identify a novel mechanism for long-range transport, namely the adiabatic destruction of accelerator-mode islands. This process originates from the approximate translational invariance of the phase space and leads to long flights of linear motion, for a significant measure of initial conditions. We show that the asymptotic probability distribution of the flight lengths is determined by the geometric properties of a partition of the accelerator-mode island associated with the flight. We establish the existence of flights travelling distances of order O(1) in phase space. We provide evidence for the existence of a scattering process that connects flights travelling in opposite directions.
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Chaotic carrier pulse position modulation communication system and method
Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.
2001-01-01
A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.
Chaotic and hyperchaotic attractors of a complex nonlinear system
NASA Astrophysics Data System (ADS)
Mahmoud, Gamal M.; Al-Kashif, M. A.; Farghaly, A. A.
2008-02-01
In this paper, we introduce a complex nonlinear hyperchaotic system which is a five-dimensional system of nonlinear autonomous differential equations. This system exhibits both chaotic and hyperchaotic behavior and its dynamics is very rich. Based on the Lyapunov exponents, the parameter values at which this system has chaotic, hyperchaotic attractors, periodic and quasi-periodic solutions and solutions that approach fixed points are calculated. The stability analysis of these fixed points is carried out. The fractional Lyapunov dimension of both chaotic and hyperchaotic attractors is calculated. Some figures are presented to show our results. Hyperchaos synchronization is studied analytically as well as numerically, and excellent agreement is found.
NASA Astrophysics Data System (ADS)
Pecora, Louis; Wu, Dong Ho; Kim, Christopher
Tunneling rates in closed, double well quantum or wave systems in two dimensions or higher are radically different between wells with classically regular or chaotic behavior. Wells with regular dynamics have tunneling rates that fluctuate by several orders of magnitude as a function of energy or frequency. Wells with chaotic dynamics have fluctuations smaller than one order of magnitude (a regularization of the fluctuations). We examine a more realistic experimental system, a single well with two channels with tunneling barriers at their junctions with the wells. Former theories for conductance in quantum dots will not apply here. We developed a theory, which uses proper boundary conditions at the barriers and yields the scattering matrix. Results show that the transmission rates fluctuate by orders of magnitude in the regular-shaped well, but are greatly reduced (regularized) for the chaotic-shaped well. We will show experimental results that test these theoretical findings for microwave transmission through a chaotic-shaped cavity, which is made of copper and has two ports with tunneling barriers.
Synchronization of Randomly Multiplexed Chaotic Systems with Application to Communication
NASA Astrophysics Data System (ADS)
Sundar, Shyam; Minai, Ali A.
2000-12-01
Synchronized chaotic systems have recently been applied to the area of secure communications in a variety of ways. At the same time, there have also been significant advances in deciphering messages masked by chaotic signals. It is important, therefore, to explore more secure approaches to using chaos in communication. We show that multiple chaotic systems can be synchronized through a scalar coupling which carries a stochastic signal generated by random multiplexing of the source systems. This approach, which is a variant of the active-passive decomposition method, promises enhanced security in chaos-based communication.
An optical CDMA system based on chaotic sequences
NASA Astrophysics Data System (ADS)
Liu, Xiao-lei; En, De; Wang, Li-guo
2014-03-01
In this paper, a coherent asynchronous optical code division multiple access (OCDMA) system is proposed, whose encoder/decoder is an all-optical generator. This all-optical generator can generate analog and bipolar chaotic sequences satisfying the logistic maps. The formula of bit error rate (BER) is derived, and the relationship of BER and the number of simultaneous transmissions is analyzed. Due to the good property of correlation, this coherent OCDMA system based on these bipolar chaotic sequences can support a large number of simultaneous users, which shows that these chaotic sequences are suitable for asynchronous OCDMA system.
CHAOTIC DISINTEGRATION OF THE INNER SOLAR SYSTEM
Batygin, Konstantin; Morbidelli, Alessandro; Holman, Mathew J.
2015-02-01
On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.
Chaotic system for self-synchronizing Doppler measurement.
Carroll, Thomas L
2005-03-01
In a radar system, it is necessary to measure both range and velocity of a target. The movement of the target causes a Doppler shift of the radar signal, and the size of the Doppler shift is used to measure the velocity of the target. In this work, a chaotic drive-response system is simulated that detects a Doppler shift in a chaotic signal. The response system can detect Doppler shifts in more than one signal at a time. PMID:15836263
Digital Cryptography and Feedback Synchronization of Chaotic Systems
NASA Astrophysics Data System (ADS)
Mitra, Mala; Banerjee, Santo
Secure communications via chaotic synchronization is demonstrated in this literature. At first we have designed a feedback controller for chaotic synchronization utilizing the Lyapunov stability theory for cascade-connected systems.The method has been applied successfully to make two identical systems globally asymptotically synchronized. The result of numerical simulations are given to validate the effectiveness of this method. Then we have discussed a new method of cryptography for this coupled system which is very simple to implement and effective.
NASA Astrophysics Data System (ADS)
Hur, Gwang-Ok
The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are
Chaotic diffusion in the Gliese-876 planetary system
NASA Astrophysics Data System (ADS)
Martí, J. G.; Cincotta, P. M.; Beaugé, C.
2016-07-01
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
Chaotic Diffusion in the Gliese-876 Planetary System
NASA Astrophysics Data System (ADS)
Martí, J. G.; Cincotta, P. M.; Beaugé, C.
2016-05-01
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disk, and a natural consequence of irregular motion. In this paper we show that resonant multi-planetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over timescales comparable to their age.Using the GJ-876 system as an example, we analyze the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behavior of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
Conductance stability in chaotic and integrable quantum dots with random impurities.
Wang, Guanglei; Ying, Lei; Lai, Ying-Cheng
2015-08-01
For a quantum dot system of fixed geometry, in the presence of random impurities the average conductance over an appropriate range of the Fermi energy decreases as the impurity strength is increased. Can the nature of the corresponding classical dynamics in the dot region affect the rate of decrease? Utilizing graphene quantum dots with two semi-infinite, single-mode leads as a prototypical model, we address the device stability issue by investigating the combined effects of classical dynamics and impurities on the average conductance over the energy range of the first transverse mode. We find that, for chaotic dot systems, the rate of decrease in the average conductance with the impurity strength is in general characteristically smaller than that for integrable dots. We develop a semiclassical analysis for the phenomenon and also obtain an understanding based on the random matrix theory. Our results demonstrate that classical chaos can generally lead to a stronger stability in the device performance, strongly advocating exploiting chaos in the development of nanoscale quantum transport devices. PMID:26382470
Quasibound states in a chaotic molecular system
NASA Astrophysics Data System (ADS)
Barr, Alex M.; Na, Kyungsun; Reichl, L. E.
2011-06-01
We show the influence of stable and unstable periodic orbits on the energy eigenstates of the HOCl molecule, both below and above dissociation. The energy range considered is low enough to hold the HO bond fixed, allowing a two-dimensional model of the molecule. Above dissociation unstable periodic orbits, in a chaotic sea, anchor quasibound states of the molecule. Quasibound states are calculated using reaction matrix theory and are found to have lifetimes ranging over five orders of magnitude.
Quasibound states in a chaotic molecular system
Barr, Alex M.; Na, Kyungsun; Reichl, L. E.
2011-06-15
We show the influence of stable and unstable periodic orbits on the energy eigenstates of the HOCl molecule, both below and above dissociation. The energy range considered is low enough to hold the HO bond fixed, allowing a two-dimensional model of the molecule. Above dissociation unstable periodic orbits, in a chaotic sea, anchor quasibound states of the molecule. Quasibound states are calculated using reaction matrix theory and are found to have lifetimes ranging over five orders of magnitude.
Pinning Control in a System of Mobile Chaotic Oscillators
NASA Astrophysics Data System (ADS)
Dariani, Reza; Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia
2011-09-01
In this paper, pinning control in a system of moving agents (each one associated to a chaotic dynamical system) has been investigated. In particular, we have studied and compared two different strategies for pinning control and discussed the not trivial relation between synchronization and control of the chaotic agents. Our results show how system parameters like agent density are critical in order to reach a synchronous behavior of the agents as well as to reach global control of the system by only pinning a reduced set of agents.
Active synchronization between two different chaotic dynamical system
Maheri, M.; Arifin, N. Md; Ismail, F.
2015-05-15
In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.
Active synchronization between two different chaotic dynamical system
NASA Astrophysics Data System (ADS)
Maheri, M.; Arifin, N. Md; Ismail, F.
2015-05-01
In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.
Novel Public Key Encryption Technique Based on Multiple Chaotic Systems
NASA Astrophysics Data System (ADS)
Bose, Ranjan
2005-08-01
Public key encryption was first introduced by Diffie and Hellman in 1976. Since then, the Diffie-Hellman key exchange protocol has been used in developing public key systems such as Rivest-Shamir-Adleman and elliptic curve cryptography. Chaotic functions, so far, have been used for symmetric cryptography only. In this Letter we propose, for the first time, a methodology to use multiple chaotic systems and a set of linear functions for key exchange over an insecure channel. To the best of our knowledge, this is the first Letter that reports the use of chaotic systems for public key cryptography. We have shown that the security of the proposed algorithm grows as (NP)m, where N, P, and m are large numbers that can be chosen as the parameters of the cryptosystem.
Novel public key encryption technique based on multiple chaotic systems.
Bose, Ranjan
2005-08-26
Public key encryption was first introduced by Diffie and Hellman in 1976. Since then, the Diffie-Hellman key exchange protocol has been used in developing public key systems such as Rivest-Shamir-Adleman and elliptic curve cryptography. Chaotic functions, so far, have been used for symmetric cryptography only. In this Letter we propose, for the first time, a methodology to use multiple chaotic systems and a set of linear functions for key exchange over an insecure channel. To the best of our knowledge, this is the first Letter that reports the use of chaotic systems for public key cryptography. We have shown that the security of the proposed algorithm grows as (NP)(m), where N, P, and m are large numbers that can be chosen as the parameters of the cryptosystem. PMID:16197262
Fundamentals of synchronization in chaotic systems, concepts, and applications.
Pecora, Louis M.; Carroll, Thomas L.; Johnson, Gregg A.; Mar, Douglas J.; Heagy, James F.
1997-12-01
The field of chaotic synchronization has grown considerably since its advent in 1990. Several subdisciplines and "cottage industries" have emerged that have taken on bona fide lives of their own. Our purpose in this paper is to collect results from these various areas in a review article format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with emphases on the geometry of synchronization and stability criteria. Several widely used coupling configurations are examined and, when available, experimental demonstrations of their success (generally with chaotic circuit systems) are described. Particular focus is given to the recent notion of synchronous substitution-a method to synchronize chaotic systems using a larger class of scalar chaotic coupling signals than previously thought possible. Connections between this technique and well-known control theory results are also outlined. Extensions of the technique are presented that allow so-called hyperchaotic systems (systems with more than one positive Lyapunov exponent) to be synchronized. Several proposals for "secure" communication schemes have been advanced; major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled chaotic systems have received a great deal of attention lately and have spawned a host of interesting and, in some cases, counterintuitive phenomena including bursting above synchronization thresholds, destabilizing transitions as coupling increases (short-wavelength bifurcations), and riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization is discussed, along with data analysis techniques that can be used to decide whether two systems satisfy the mathematical requirements of generalized synchronization. (c) 1997 American Institute of Physics. PMID:12779679
Jamming and chaotic dynamics in different granular systems
NASA Astrophysics Data System (ADS)
Maghsoodi, Homayoon; Luijten, Erik
Although common in nature and industry, the jamming transition has long eluded a concrete, mechanistic explanation. Recently, Banigan et al. (Nat. Phys. 9, 288-292, 2013) proposed a method for characterizing this transition in a granular system in terms of the system's chaotic properties, as quantified by the largest Lyapunov exponent. They demonstrated that in a two-dimensional shear cell the jamming transition coincides with the bulk density at which the system's largest Lyapunov exponent changes sign, indicating a transition between chaotic and non-chaotic regimes. To examine the applicability of this observation to realistic granular systems, we study a model that includes frictional forces within an expanded phase space. Furthermore, we test the generality of the relation between chaos and jamming by investigating the relationship between jamming and the chaotic properties of several other granular systems, notably sheared systems (Howell, D., Behringer R. P., Veje C., Phys. Rev. Lett. 82, 5241-5244, 1999) and systems with a free boundary. Finally, we quantify correlations between the largest Lyapunov vector and collective rearrangements of the system to demonstrate the predictive capabilities enabled by adopting this perspective of jamming.
Quantum smearing in hybrid inflation with chaotic potentials
NASA Astrophysics Data System (ADS)
Ahmed, Waqas; Ishaque, Ommair; Rehman, Mansoor Ur
2016-01-01
We study the impact of 1-loop radiative corrections in a nonsupersymmetric model of hybrid inflation (HI) with chaotic (polynomial-like) potential, V0 + λpϕp. These corrections can arise from the possible couplings of inflaton with other fields which can play an active role in the reheating process. The tree-level predictions of these models are shown to lie outside of the Planck’s latest bounds on the scalar spectral index ns and the tensor to scalar ratio r. However, the radiatively corrected version of these models, V0 + λpϕp + Aϕ4ln ϕ, is fully consistent with the Planck’s data. More specifically, fermionic radiative correction (A < 0) reduces the tensor to scalar ratio significantly and a red-tilted spectral index ns < 1, consistent with Planck’s data, is obtained even for sub-Planckian field-values.
El Nino: a chaotic dynamical system
Vallis, G.K.
1986-04-11
Most of the principal qualitative features of the El Nino-Southern Oscillation phenomenon can be explained by a simple but physically motivated theory. These features are the occurrence of sea-surface warmings in the eastern equatorial Pacific and the associated trade wind reversal; the aperiodicity of these events; the preferred onset time with respect to the seasonal cycle; and the much weaker events in the Atlantic and Indian oceans. The theory, in its simplest form, is a conceptual model for the interaction of just three variables, namely near-surface temperatures in the east and west equatorial ocean and a wind-driven current advecting the temperature field. For a large range of parameters, the model is naturally chaotic and aperiodically produces El Nino-like events. For a smaller basin, representing a smaller ocean, the events are proportionally less intense.
Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry
Novaes, Marcel
2015-10-15
We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.
On precision of wavelet phase synchronization of chaotic systems
Postnikov, E. B.
2007-10-15
It is shown that time-scale synchronization of chaotic systems with ill-defined conventional phase is achieved by using wavelet transforms with center frequencies above a certain threshold value. It is found that the possibility of synchronization detection by introducing a wavelet phase is related to diffusion averaging of the analyzed signals.
Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters
NASA Astrophysics Data System (ADS)
Zhang, Gang; Liu, Zengrong; Zhang, Jianbao
2008-01-01
This Letter investigates the problem of synchronization between two different chaotic systems. A generic adaptive synchronization scheme is proposed for a class of chaotic systems with uncertain parameters. Based on the Lyapunov stability theorem, an adaptive controller and the corresponding parameters update laws are designed to synchronize two chaotic systems. Numerical simulations are also given to show the effectiveness of the proposed method.
Grebogi, C.; Yorke, J.A.
1991-12-01
This report discusses the following topics: controlling chaotic dynamical systems; embedding of experimental data; effect of noise on critical exponents of crises; transition to chaotic scattering; and distribution of floaters on a fluid surface. (LSP)
Delayed feedback control method for dynamical systems with chaotic saddles
NASA Astrophysics Data System (ADS)
Kobayashi, Miki U.; Aihara, Kazuyuki
2012-08-01
We consider systems whose orbits diverge after chaotic transient for a finite time, and propose a controlmethod for preventing the divergence. These systems generally possess not chaotic attractors but some chaotic saddles. Our aim of control, i.e., the prevention of divergence, is achieved through the stabilization of unstable periodic orbits embedded in the chaotic saddle by making use of the delayed feedback controlmethod. The key concept of our control strategy is the application of the Proper Interior Maximum (PIM) triple method and the method to detect unstable periodic orbits from time series, originally developed by Lathrop and Kostelich, as initial steps before adding the delayed feedback control input. We show that our control method can be applied to the Hénon map and an intermittent androgen suppression (IAS) therapy model, which is a model for therapy of advanced prostate cancer. The fact that our method can be applied to the IAS therapy model indicates that our control strategy may be useful in the therapy of advanced prostate cancer.
Complex network synchronization of chaotic systems with delay coupling
Theesar, S. Jeeva Sathya Ratnavelu, K.
2014-03-05
The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.
Regular and chaotic quantum dynamics in atom-diatom reactive collisions
Gevorkyan, A. S.; Nyman, G.
2008-05-15
A new microirreversible 3D theory of quantum multichannel scattering in the three-body system is developed. The quantum approach is constructed on the generating trajectory tubes which allow taking into account influence of classical nonintegrability of the dynamical quantum system. When the volume of classical chaos in phase space is larger than the quantum cell in the corresponding quantum system, quantum chaos is generated. The probability of quantum transitions is constructed for this case. The collinear collision of the Li + (FH) {sup {yields}}(LiF) + H system is used for numerical illustration of a system generating quantum (wave) chaos.
Universal Scaling of Spectral Fluctuation Transitions for Interacting Chaotic Systems.
Srivastava, Shashi C L; Tomsovic, Steven; Lakshminarayan, Arul; Ketzmerick, Roland; Bäcker, Arnd
2016-02-01
The statistical properties of interacting strongly chaotic systems are investigated for varying interaction strength. In order to model tunable entangling interactions between such systems, we introduce a new class of random matrix transition ensembles. The nearest-neighbor-spacing distribution shows a very sensitive transition from Poisson statistics to those of random matrix theory as the interaction increases. The transition is universal and depends on a single scaling parameter only. We derive the analytic relationship between the model parameters and those of a bipartite system, with explicit results for coupled kicked rotors, a dynamical systems paradigm for interacting chaotic systems. With this relationship the spectral fluctuations for both are in perfect agreement. An accurate approximation of the nearest-neighbor-spacing distribution as a function of the transition parameter is derived using perturbation theory. PMID:26894713
Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium
NASA Astrophysics Data System (ADS)
Jafari, Sajad; Pham, Viet-Thanh; Kapitaniak, Tomasz
Recently, many rare chaotic systems have been found including chaotic systems with no equilibria. However, it is surprising that such a system can exhibit multiscroll chaotic sea. In this paper, a novel no-equilibrium system with multiscroll hidden chaotic sea is introduced. Besides having multiscroll chaotic sea, this system has two more interesting properties. Firstly, it is conservative (which is a rare feature in three-dimensional chaotic flows) but not Hamiltonian. Secondly, it has a coexisting set of nested tori. There is a hidden torus which coexists with the chaotic sea. This new system is investigated through numerical simulations such as phase portraits, Lyapunov exponents, Poincaré map, and frequency spectra. Furthermore, the feasibility of such a system is verified through circuital implementation.
Forward and adjoint sensitivity computation of chaotic dynamical systems
Wang, Qiqi
2013-02-15
This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged “statistical” quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.
Classical and quantum chaotic angular-momentum pumps.
Dittrich, T; Dubeibe, F L
2015-03-01
We study directed transport of charge and intrinsic angular momentum by periodically driven scattering in the regime of fast and strong driving. A spin-orbit coupling through a kicked magnetic field confined to a compact region in space leads to irregular scattering and triggers spin flips in a spatially asymmetric manner which allows us to generate polarized currents. The dynamical mechanisms responsible for the spin separation carry over to the quantum level and give rise to spin pumping. Our theory based on the Floquet formalism is confirmed by numerical solutions of the time-dependent inhomogeneous Schrödinger equation with a continuous source term. PMID:25793818
Spectral statistics of chaotic many-body systems
NASA Astrophysics Data System (ADS)
Dubertrand, Rémy; Müller, Sebastian
2016-03-01
We derive a trace formula that expresses the level density of chaotic many-body systems as a smooth term plus a sum over contributions associated to solutions of the nonlinear Schrödinger (or Gross-Pitaevski) equation. Our formula applies to bosonic systems with discretised positions, such as the Bose-Hubbard model, in the semiclassical limit as well as in the limit where the number of particles is taken to infinity. We use the trace formula to investigate the spectral statistics of these systems, by studying interference between solutions of the nonlinear Schrödinger equation. We show that in the limits taken the statistics of fully chaotic many-particle systems becomes universal and agrees with predictions from the Wigner-Dyson ensembles of random matrix theory. The conditions for Wigner-Dyson statistics involve a gap in the spectrum of the Frobenius-Perron operator, leaving the possibility of different statistics for systems with weaker chaotic properties.
Selective image encryption using a spatiotemporal chaotic system.
Xiang, Tao; Wong, Kwok-wo; Liao, Xiaofeng
2007-06-01
A universal selective image encryption algorithm, in which the spatiotemporal chaotic system is utilized, is proposed to encrypt gray-level images. In order to resolve the tradeoff between security and performance, the effectiveness of selective encryption is discussed based on simulation results. The scheme is then extended to encrypt RGB color images. Security analyses for both scenarios show that the proposed schemes achieve high security and efficiency. PMID:17614669
NASA Astrophysics Data System (ADS)
Liu, Xiaojun; Hong, Ling; Jiang, Jun
2016-08-01
Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.
Liu, Xiaojun; Hong, Ling; Jiang, Jun
2016-08-01
Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems. PMID:27586621
Pluhacek, Michal; Davendra, Donald; Oplatková Kominkova, Zuzana
2014-01-01
Evolutionary technique differential evolution (DE) is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions. PMID:25243230
Communications with chaotic optoelectronic systems cryptography and multiplexing
NASA Astrophysics Data System (ADS)
Rontani, Damien
With the rapid development of optical communications and the increasing amount of data exchanged, it has become utterly important to provide effective architectures to protect sensitive data. The use of chaotic optoelectronic devices has already demonstrated great potential in terms of additional computational security at the physical layer of the optical network. However, the determination of the security level and the lack of a multi-user framework are two hurdles which have prevented their deployment on a large scale. In this thesis, we propose to address these two issues. First, we investigate the security of a widely used chaotic generator, the external cavity semiconductor laser (ECSL). This is a time-delay system known for providing complex and high-dimensional chaos, but with a low level of security regarding the identification of its most critical parameter, the time delay. We perform a detailed analysis of the in uence of the ECSL parameters to devise how higher levels of security can be achieved and provide a physical interpretation of their origin. Second, we devise new architectures to multiplex optical chaotic signals and realize multi-user communications at high bit rates. We propose two different approaches exploiting known chaotic optoelectronic devices. The first one uses mutually coupled ECSL and extends typical chaos-based encryption strategies, such as chaos-shift keying (CSK) and chaos modulation (CMo). The second one uses an electro-optical oscillator (EOO) with multiple delayed feedback loops and aims first at transposing coded-division multiple access (CDMA) and then at developing novel strategies of encryption and decryption, when the time-delays of each feedback loop are time-dependent.
Regular and Chaotic Motion in Hamiltonian Systems
NASA Astrophysics Data System (ADS)
Varvoglis, Harry
All laws that describe the time evolution of a continuous system are given in the form of differential equations, ordinary (if the law involves one independent variable) or partial (if the law involves two or more independent variables). Historically the first law of this type was Newton's second law of motion. Since then Dynamics, as it is customary to name the branch of Mechanics that studies the motion of a body as the result of a force acting on it, has become the “typical„ case that comes into one's mind when a system of ordinary differential equation is given, although this system might as well describe any other system, e.g. physical, chemical, biological, financial etc. In particular the study of “conservative„ dynamical systems, i.e. systems of ordinary differential equations that originate from a time-independent Hamiltonian function, has become a thoroughly developed area, because of the fact that mechanical energy is very often conserved, although many other physical phenomena, beyond motion, can be described by Hamiltonian systems as well. In what follows we will restrict ourselves exactly to the study of Hamiltonian systems, as typical dynamical systems that find applications in many scientific disciplines.
Chaotic Transport in Semiconductor, Optical, and Cold-Atom Systems
NASA Astrophysics Data System (ADS)
Judd, T.; Henning, A.; Hardwick, D.; Scott, R.; Balanov, A.; Wilkinson, P.; Fowler, D.; Martin, A.; Fromhold, T.
We show that the reflection of quantum-mechanical waves from semiconductor surfaces creates new regimes of nonlinear dynamics, which offer sensitive control of electrons and ultra-cold atoms. For electrons in superlattices, comprising alternating layers of different semiconductor materials, multiple reflections of electron waves from the layer interfaces induce a unique type of chaotic electron motion when a bias voltage and tilted magnetic field are applied. Changing the field parameters switches the chaos on and off abruptly, thus producing a sharp increase in the measured current flow by creating unbounded electron orbits. These orbits correspond to either intricate web patterns or attractors in phase space depending on the electron decoherence rate. We show that related dynamics provide a mechanism for controlling the transmission of electromagnetic waves through spatially-modulated photonic crystals. Finally, we consider the quantum dynamics of a Bose-Einstein condensate, comprising 120,000 rubidium atoms cooled to 10 nK, incident on a stadium billiard etched in a room-temperature silicon surface. Despite the huge temperature difference between the condensate and the billiard, quantum-mechanical reflection can shield the cold atoms from the disruptive influence of the surface, thus enabling the billiard to imprint signatures of single-particle classical trajectories in the collective motion of the reflected atom cloud.
Sensing small changes in a wave chaotic scattering system
Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward; Anlage, Steven M.
2010-12-01
Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acoustic resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.
The chaotic history of the Solar System
NASA Astrophysics Data System (ADS)
Morbidelli, Alessandro
2015-08-01
I will provide a review of the models proposed to explain the structure of the Solar System, with emphasis on their predicitions regarding the origin of asteroids and comets and the build-up of the two major cometary reservoirs: the scattered disk and the Oort cloud
The equal combination synchronization of a class of chaotic systems with discontinuous output
Luo, Runzi; Zeng, Yanhui
2015-11-15
This paper investigates the equal combination synchronization of a class of chaotic systems. The chaotic systems are assumed that only the output state variable is available and the output may be discontinuous state variable. By constructing proper observers, some novel criteria for the equal combination synchronization are proposed. The Lorenz chaotic system is taken as an example to demonstrate the efficiency of the proposed approach.
Chaotic scattering in a molecular system
NASA Astrophysics Data System (ADS)
Barr, Alex M.; Na, Kyungsun; Reichl, L. E.; Jung, Christof
2009-02-01
We study the classical dynamics of bound state and scattering trajectories of the chlorine atom interacting with the HO molecule using a two-dimensional model in which the HO bond length is held fixed. The bound state system forms the HOCl molecule and at low energies is predominantly integrable. Below dissociation a number of bifurcations are observed, most notably a series of saddle-center bifurcations related to a 2:1 and at higher energies 3:1 resonance between bend and stretch motions. At energies above dissociation the classical phase space becomes dominated by a homoclinic tangle which induces a fractal distribution of singularities in all scattering functions. The structure of the homoclinic tangle is examined directly using Poincaré surfaces of section as well as indirectly through its influence on the time delay of the scattered chlorine atom and the angular momentum of the scattered HO molecule.
Synchronization and an application of a novel fractional order King Cobra chaotic system
Muthukumar, P. Balasubramaniam, P.; Ratnavelu, K.
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results.
Synchronization and an application of a novel fractional order King Cobra chaotic system.
Muthukumar, P; Balasubramaniam, P; Ratnavelu, K
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results. PMID:25273185
Synchronization in complex dynamical networks coupled with complex chaotic system
NASA Astrophysics Data System (ADS)
Wei, Qiang; Xie, Cheng-Jun; Wang, Bo
2015-11-01
This paper investigates synchronization in complex dynamical networks with time delay and perturbation. The node of complex dynamical networks is composed of complex chaotic system. A complex feedback controller is designed to realize different component of complex state variable synchronize up to different scaling complex function when complex dynamical networks realize synchronization. The synchronization scaling function is changed from real field to complex field. Synchronization in complex dynamical networks with constant delay and time-varying coupling delay are investigated, respectively. Numerical simulations show the effectiveness of the proposed method.
Chaotic Patterns in Lotka-Volterra Systems with Behavioral Adaptation
NASA Astrophysics Data System (ADS)
Lacitignola, D.; Tebaldi, C.
2006-03-01
We study the properties of a n2-dimensional Lotka-Volterra system describing competition among species with behaviorally adaptive abilities, in which one species is made ecologically differentiated with respect to the others by carrying capacity and intrinsic growth rate. The case in which one species has a carrying capacity higher than the others is considered here. Stability of equilibria and time-dependent regimes have been investigated in the case of four species: an interesting example of chaotic window and period-adding sequences is presented and discussed.
NASA Astrophysics Data System (ADS)
Martienssen, W.; Hübinger, B.; Doerner, R.
A method to transfer secret information using chaotic dynamical systems is proposed. It is based on modulating a chaotic system with the message such that its time evolution contains the hidden information. Decryption of the cipher is achieved by chaos control. Operation of the scheme is demonstrated by en- and decoding a short german text.
An Anti-Cheating Visual Cryptography Scheme Based on Chaotic Encryption System
NASA Astrophysics Data System (ADS)
Han, Yanyan; Xu, Zhuolin; Ge, Xiaonan; He, Wencai
By chaotic encryption system and introducing the trusted third party (TTP), in this paper, an anti-cheating visual cryptography scheme (VCS) is proposed. The scheme solved the problem of dishonest participants and improved the security of chaotic encryption system. Simulation results and analysis show that the recovery image is acceptable, the system can detect the cheating in participants effectively and with high security.
SLYRB measures: natural invariant measures for chaotic systems
NASA Astrophysics Data System (ADS)
Hunt, Brian R.; Kennedy, Judy A.; Li, Tien-Yien; Nusse, Helena E.
2002-08-01
In many applications it is useful to consider not only the set that constitutes an attractor but also (if it exists) the asymptotic distribution of a typical trajectory converging to the attractor. Indeed, in the physics literature such a distribution is often assumed to exist. When it exists, it is called a “natural invariant measure”. The results by Lasota and Yorke, and by Sinai, Ruelle and Bowen represent two approaches both of which establish the existence of an invariant measure. The goal of this paper is to relate the “Lasota-Yorke measure” for chaotic attractors in one-dimensional maps and the “Sinai-Ruelle-Bowen measure” for chaotic attractors in higher-dimensional dynamical systems. We introduce the notion of “ SLYRB measure”. (We pronounce the term “SLYRB” as a single word “slurb”.) The SRB concept of measure can be motivated by asking how a trajectory from a typical initial point is distributed asymptotically. Similarly the SLYRB concept of measure can be motivated by asking what the average distribution is for trajectories of a large collection of initial points in some region not necessarily restricted to a single basin. The latter is analogous to ask where all the rain drops from a rain storm go and the former asks about where a single rain drop goes, perhaps winding up distributed throughout a particular lake.
Chaotic motion in a primordial comet disk beyond Neptune and comet influx to the solar system
NASA Astrophysics Data System (ADS)
Torbett, M. V.; Smoluchowski, R.
1990-05-01
Previous calculations using a heliocentric frame have shown that a scattered disk of cometesimals beyond Neptune develops chaotic motions with divergence timescales less than 1 Myr. Here, improved numerical simulations using a baryocentric system and thus including the additional frequencies associated with motions of the sun are described. Because the onset of chaotic motion is characterized by the appearance of broadband noise, the inclusion of these additional perturbations should increase the likelihood of stochastic behavior and thus the chaotic zone should be larger. The results indicate that comets in a low-eccentricity primordial disk beyond Neptune can exhibit chaotic motions which lead to interesting consequences for the dynamics of comets.
A new cryptosystem based on spatial chaotic system
NASA Astrophysics Data System (ADS)
Sun, Fuyan; Lü, Zongwang; Liu, Shutang
2010-05-01
Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity and high redundancy, which is generally difficult to handle by traditional methods. This paper proposes a new spatial chaos system (SCS), which is investigated by conducting FIPS 140-1 statistic test, and is especially useful for encryption of digital images. It is shown how to adapt a two dimensional (2D) ergodic matrix obtained from SCS to permute the positions of image pixels and confuse the relationship between the cipher image and plain image simultaneously. Experimental results show that the performance and security of the proposed cryptographic system are better than those of existing lower dimensional chaotic cryptographic systems.
A chaotic system with a single unstable node
NASA Astrophysics Data System (ADS)
Sprott, J. C.; Jafari, Sajad; Pham, Viet-Thanh; Hosseini, Zahra Sadat
2015-09-01
This paper describes an unusual example of a three-dimensional dissipative chaotic flow with quadratic nonlinearities in which the only equilibrium is an unstable node. The region of parameter space with bounded solutions is relatively small as is the basin of attraction, which accounts for the difficulty of its discovery. Furthermore, for some values of the parameters, the system has an attracting torus, which is uncommon in three-dimensional systems, and this torus can coexist with a strange attractor or with a limit cycle. The limit cycle and strange attractor exhibit symmetry breaking and attractor merging. All the attractors appear to be hidden in that they cannot be found by starting with initial conditions in the vicinity of the equilibrium, and thus they represent a new type of hidden attractor with important and potentially problematic engineering consequences.
Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system
NASA Astrophysics Data System (ADS)
Xue, Wei; Qi, Guo-Yuan; Mu, Jing-Jing; Jia, Hong-Yan; Guo, Yan-Ling
2013-08-01
In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincaré maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.
Analysis and circuitry realization of a novel three-dimensional chaotic system
NASA Astrophysics Data System (ADS)
Abooee, A.; Yaghini-Bonabi, H. A.; Jahed-Motlagh, M. R.
2013-05-01
In this paper a new three-dimensional chaotic system is introduced. Some basic dynamical properties are analyzed to show chaotic behavior of the presented system. These properties are covered by dissipation of system, instability of equilibria, strange attractor, Lyapunov exponents, fractal dimension and sensitivity to initial conditions. Through altering one of the system parameters, various dynamical behaviors are observed which included chaos, periodic and convergence to an equilibrium point. Eventually, an analog circuit is designed and implemented experimentally to realize the chaotic system.
Macek, M. Leviatan, A.
2014-12-15
We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between spherical and deformed shapes, associated with its U(5) and SU(3) dynamical symmetry limits. A classical analysis of the intrinsic dynamics reveals a rich but simply-divided phase space structure with a Hénon–Heiles type of chaotic dynamics ascribed to the spherical minimum and a robustly regular dynamics ascribed to the deformed minimum. The simple pattern of mixed but well-separated dynamics persists in the coexistence region and traces the crossing of the two minima in the Landau potential. A quantum analysis discloses a number of regular low-energy U(5)-like multiplets in the spherical region, and regular SU(3)-like rotational bands extending to high energies and angular momenta, in the deformed region. These two kinds of regular subsets of states retain their identity amidst a complicated environment of other states and both occur in the coexistence region. A symmetry analysis of their wave functions shows that they are associated with partial U(5) dynamical symmetry (PDS) and SU(3) quasi-dynamical symmetry (QDS), respectively. The pattern of mixed but well-separated dynamics and the PDS or QDS characterization of the remaining regularity, appear to be robust throughout the QPT. Effects of kinetic collective rotational terms, which may disrupt this simple pattern, are considered.
Bifurcation and chaotic threshold of Duffing system with jump discontinuities
NASA Astrophysics Data System (ADS)
Tian, Ruilan; Zhou, Yufeng; Wang, Qiubao; Zhang, Lili
2016-01-01
Like for the smooth system, it is important to determine a criteria for bifurcation of the non-smooth system with jump discontinuities. Previously, the criteria have been constructed in some non-smooth systems with jump discontinuities which are the endpoints of interval. The research on bifurcation for non-smooth system with jump discontinuities, which are the interior points of interval, seems to be a new area. We construct the Duffing system with jump discontinuities in open interval. Bifurcation diagram of the unperturbed system is detected and Hamilton phase diagrams are simulated using Matlab. The jump discontinuities for the non-smooth Homoclinic orbit lead to a barrier for conventional nonlinear techniques to obtain the criteria for chaotic motion. Traditionally, these non-smooth factors were considered term by term. We will give a reasonable compromise based on all of characteristics of the non-smooth homoclinic orbits with the jump discontinuities. The extended Melnikov function is explicitly detected to judge the stable and unstable manifolds whether intersect transversally at any position of trajectory under the perturbation of damping and external forcing. It is worthwhile noting that the result reveals the effects of the non-smooth restoring force on the behaviors of nonlinear dynamical systems. The efficiency of the theoretical results is verified by the phase portraits, Poincaré surface of section, Largest Lyapnnov exponents diagram and bifurcation diagram.
Synchronisation of fractional-order time delayed chaotic systems with ring connection
NASA Astrophysics Data System (ADS)
He, S.; Sun, K.; Wang, H.
2016-02-01
In this paper, synchronisation of fractional-order time delayed chaotic systems in ring networks is investigated. Based on Lyapunov stability theory, a new generic synchronisation criterion for N-coupled chaotic systems with time delay is proposed. The synchronisation scheme is applied to N-coupled fractional-order time delayed simplified Lorenz systems, and the Adomian decomposition method (ADM) is developed for solving these chaotic systems. Performance analysis of the synchronisation network is carried out. Numerical experiments demonstrate that synchronisation realises in both state variables and intermediate variables, which verifies the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Eyre, T. M. W.
Given a polynomial function f of classical stochastic integrator processes whose differentials satisfy a closed Ito multiplication table, we can express the stochastic derivative of f as
Chaotic signal reconstruction with application to noise radar system
NASA Astrophysics Data System (ADS)
Liu, Lidong; Hu, Jinfeng; He, Zishu; Han, Chunlin; Li, Huiyong; Li, Jun
2011-12-01
Chaotic signals are potentially attractive in engineering applications, most of which require an accurate estimation of the actual chaotic signal from a noisy background. In this article, we present an improved symbolic dynamics-based method (ISDM) for accurate estimating the initial condition of chaotic signal corrupted by noise. Then, a new method, called piecewise estimation method (PEM), for chaotic signal reconstruction based on ISDM is proposed. The reconstruction performance using PEM is much better than that using the existing initial condition estimation methods. Next, PEM is applied in a noncoherent reception noise radar scheme and an improved noncoherent reception scheme is given. The simulation results show that the improved noncoherent scheme has better correlation performance and range resolution especially at low signal-to-noise ratios (SNRs).
Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system
NASA Astrophysics Data System (ADS)
Schanz, Holger; Esser, Bernd
1997-05-01
The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.
Blended particle filters for large-dimensional chaotic dynamical systems.
Majda, Andrew J; Qi, Di; Sapsis, Themistoklis P
2014-05-27
A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
NASA Astrophysics Data System (ADS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Runge-Kutta model-based nonlinear observer for synchronization and control of chaotic systems.
Beyhan, Selami
2013-07-01
This paper proposes a novel nonlinear gradient-based observer for synchronization and observer-based control of chaotic systems. The model is based on a Runge-Kutta model of the chaotic system where the evolution of the states or parameters is derived based on the error-square minimization. The stability and convergence conditions of observer and control methods are analyzed using a Lyapunov stability approach. In numerical simulations, the proposed observer and well-known sliding-mode observer are compared for the synchronization of a Lü chaotic system and observer-based stabilization of a Chen chaotic system. The noisy case for synchronization and parameter uncertainty case for stabilization are also considered for both observer-based methods. PMID:23672740
NASA Astrophysics Data System (ADS)
Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng
2016-06-01
Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Sorting quantum systems efficiently
NASA Astrophysics Data System (ADS)
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Sorting quantum systems efficiently.
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Efficient sensitivity analysis method for chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Liao, Haitao
2016-05-01
The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.
OPEN PROBLEM: Orbits' statistics in chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Arnold, V.
2008-07-01
This paper shows how the measurement of the stochasticity degree of a finite sequence of real numbers, published by Kolmogorov in Italian in a journal of insurances' statistics, can be usefully applied to measure the objective stochasticity degree of sequences, originating from dynamical systems theory and from number theory. Namely, whenever the value of Kolmogorov's stochasticity parameter of a given sequence of numbers is too small (or too big), one may conclude that the conjecture describing this sequence as a sample of independent values of a random variables is highly improbable. Kolmogorov used this strategy fighting (in a paper in 'Doklady', 1940) against Lysenko, who had tried to disprove the classical genetics' law of Mendel experimentally. Calculating his stochasticity parameter value for the numbers from Lysenko's experiment reports, Kolmogorov deduced, that, while these numbers were different from the exact fulfilment of Mendel's 3 : 1 law, any smaller deviation would be a manifestation of the report's number falsification. The calculation of the values of the stochasticity parameter would be useful for many other generators of pseudorandom numbers and for many other chaotically looking statistics, including even the prime numbers distribution (discussed in this paper as an example).
Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.
Pal, Harinder; Vyas, Manan; Tomsovic, Steven
2016-01-01
The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories. PMID:26871079
Bounds for a new chaotic system and its application in chaos synchronization
NASA Astrophysics Data System (ADS)
Zhang, Fuchen; Shu, Yonglu; Yang, Hongliang
2011-03-01
This paper has investigated the localization problem of compact invariant sets of a new chaotic system with the help of the iteration theorem and the first order extremum theorem. If there are more iterations, then the estimation for the bound of the system will be more accurate, because the shape of the chaotic attractor is irregular. We establish that all compact invariant sets of this system are located in the intersection of a ball with two frusta and we also compute its parameters. It is a great advantage that we can attain a smaller bound of the chaotic attractor compared with the classical method. One numerical example illustrating a localization of a chaotic attractor is presented as well.
Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes
NASA Astrophysics Data System (ADS)
Farzan Sabahi, Mohammad; Dehghanfard, Ali
2014-12-01
The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid
NASA Astrophysics Data System (ADS)
Païdoussis, M. P.; Li, G. X.; Moon, F. C.
1989-11-01
Experiments have shown that a cantilevered pipe conveying fluid, the limit-cycle motions of which (beyond the Hopf bifurcation) interact with motion-limiting non-linear constraints, exhibits region of chaotic motions. In this paper the planar dynamics of the flexible pipe system are examined theoretically by means of a two-degree-of-freedom (four-dimensional) analytical model, exploring the existence of chaotic oscillations in the parameter space of this autonomous system. Calculations of the Lyapunov exponents, phase portraits of the oscillation, bifurcation diagrams and Poincaré maps establish definitively the existence of chaotic motions. The route to chaos is shown to be via period-doubling bifurcations. The effect of some key parameters on the chaotic regions is investigated.
Periodic and Chaotic Dynamics of the Ehrhard-Müller System
NASA Astrophysics Data System (ADS)
Park, Junho; Lee, Hyunho; Baik, Jong-Jin
2016-06-01
This paper investigates nonlinear ordinary differential equations of the Ehrhard-Müller system which describes natural convection in a single-phase loop in the presence of nonsymmetric heating. Stability and dynamics of periodic and chaotic behaviors of the equations are investigated and the periodicity diagram is obtained in wide ranges of parameters. Regimes of both periodic and chaotic solutions are observed with complex behaviors such that the periodic regimes enclose the chaotic regime while they are also immersed inside the chaotic regime with various shapes. An asymptotic analysis is performed for sufficiently large parameters to understand the enclosure by the periodic regimes and asymptotic limit cycles are obtained to compare with limit cycles obtained from numerical results.
Celso Grebogi
2000-02-29
This is the final report on a research project that explored (a) controlling complex dynamical systems; (b) using controlled chaotic signals for communication (c) methods of controlling chaos via targeting; (d) deterministic modeling; and miscellaneous work on the interface between chaotic and stable periodic behavior as system parameters vary, bifurcations of non-smooth systems that describe impact oscillators; phenomena that occur in quasiperiodically forced systems, and the fractal and topological properties of chaotic inveriant sets, in particular those arising in fluid flow.
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system
NASA Astrophysics Data System (ADS)
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2016-07-01
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2016-07-01
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations. PMID:27475067
Quantum electromechanical systems
NASA Astrophysics Data System (ADS)
Milburn, Gerard J.; Polkinghorne, Rodney
2001-11-01
We discuss the conditions under which electromechanical systems, fabricated on a sub micron scale, require a quantum description. We illustrate the discussion with the example of a mechanical electroscope for which the resonant frequency of a cantilever changes in response to a local charge. We show how such devices may be used as a quantum noise limited apparatus for detection of a single charge or spin with applications to quantum computing.
Investigation on the synchronized characteristics of the incoherent optical feedback chaotic system
NASA Astrophysics Data System (ADS)
Xu, Li; Wu, Zhengmao; Li, Linfu; Fan, Li; Fan, Yan; Xia, Guangqiong
2007-11-01
Based on the theoretical model of the synchronization system with incoherent optical feedback, the influence of the internal parameter mismatch on the synchronized characteristics of the chaotic system has been investigated. The result shows that the chaotic system with incoherent optical feedback can be realized more easily than the complete synchronized system, and has higher security than injection locking synchronization system. Using encoding of chaos shift keying, the message can be hidden efficiently during the transmission in the system and decoded easily in receiver.
Ma, Huanfei; Lin, Wei; Lai, Ying-Cheng
2013-05-01
Detecting unstable periodic orbits (UPOs) in chaotic systems based solely on time series is a fundamental but extremely challenging problem in nonlinear dynamics. Previous approaches were applicable but mostly for low-dimensional chaotic systems. We develop a framework, integrating approximation theory of neural networks and adaptive synchronization, to address the problem of time-series-based detection of UPOs in high-dimensional chaotic systems. An example of finding UPOs from the classic Mackey-Glass equation is presented. PMID:23767476
Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
NASA Astrophysics Data System (ADS)
Sun, Jun; Zhao, Ji; Wu, Xiaojun; Fang, Wei; Cai, Yujie; Xu, Wenbo
2010-06-01
Inspired by the motion of electrons in metal conductors in an electric field, we propose a variant of Particle Swarm Optimization (PSO), called Drift Particle Swarm Optimization (DPSO) algorithm, and apply it in estimating the unknown parameters of chaotic dynamic systems. The principle and procedure of DPSO are presented, and the algorithm is used to identify Lorenz system and Chen system. The experiment results show that for the given parameter configurations, DPSO can identify the parameters of the systems accurately and effectively, and it may be a promising tool for chaotic system identification as well as other numerical optimization problems in physics.
Experimentally determined chaotic phase synchronization in a neuronal system
Makarenko, Vladimir; Llinás, Rodolfo
1998-01-01
Mathematical analysis of the subthreshold oscillatory properties of inferior olivary neurons in vitro indicates that the oscillation is nonlinear and supports low dimensional chaotic dynamics. This property leads to the generation of complex functional states that can be attained rapidly via phase coherence that conform to the category of “generalized synchronization.” Functionally, this translates into neuronal ensemble properties that can support maximum functional permissiveness and that rapidly can transform into robustly determined multicellular coherence. PMID:9861041
NASA Astrophysics Data System (ADS)
Dušek, Miloslav; Haderka, Ondřej; Hendrych, Martin; Myška, Robert
1999-07-01
A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and sequences are ``refueled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.
Single state feedback stabilization of unified chaotic systems and circuit implementation
NASA Astrophysics Data System (ADS)
Jing, Chun-Guo; He, Ping; Fan, Tao; Li, Yangmin; Chen, Changzhong; Song, Xin
2014-11-01
This paper focuses on the single state feedback stabilization problem of unified chaotic system and circuit implementation. Some stabilization conditions will be derived via the single state feedback control scheme. The robust performance of controlled unified chaotic systems with uncertain parameter will be investigated based on maximum and minimum analysis of uncertain parameter, the robust controller which only requires information of a state of the system is proposed and the controller is linear. Both the unified chaotic system and the designed controller are synthesized and implemented by an analog electronic circuit which is simpler because only three variable resistors are required to be adjusted. The numerical simulation and control in MATLAB/Simulink is then provided to show the effectiveness and feasibility of the proposed method which is robust against some uncertainties. The results presented in this paper improve and generalize the corresponding results of recent works.
NASA Astrophysics Data System (ADS)
Yang, Dong-Sheng; Liu, Zhen-Wei; Zhao, Yan; Liu, Zhao-Bing
2012-04-01
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.
Control of the new 4th-order hyper-chaotic system with one input
NASA Astrophysics Data System (ADS)
Loría, Antonio
2010-06-01
We solve the problem of chaos suppression of Lü's hyper-chaotic system via feedback control. We use only one control input and moreover the controller is a simple proportional feedback and uses the measurement of only one variable. We show that this simple control law suffices to stabilize the hyper-chaotic system to the zero equilibrium globally and asymptotically. We present stability proofs based on Lyapunov's direct method and integration of solutions. As a corollary of our main result we draw the conclusion that the system is globally stabilizable by simply varying one parameter, when possible. Simulation experiments that show the effectiveness of our method are also presented.
Physical layer security in CO-OFDM transmission system using chaotic scrambling
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Yu, Jianjun
2013-03-01
This paper proposes a novel method for the optical OFDM system to improve the physical layer security based on chaotic scrambling. The 1-D Logistic map is adopted for chaos mapping. The chaotic scrambling algorithm can dynamically change the scrambling matrices according to the secure key, which further enhances the confidentiality of the physical layer. The experiment with Logistic mapped chaos scrambling is also given to demonstrate the efficiency of security algorithm. Meanwhile, the benchmark performance of the optical OFDM system is experimentally investigated in terms of the bit error rate (BER). The analysis indicates that the system can be robust against eavesdropping.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Feedback control of digital chaotic systems with application to pseudorandom number generator
NASA Astrophysics Data System (ADS)
Deng, Yashuang; Hu, Hanping; Liu, Lingfeng
2015-07-01
The dynamical properties will degrade when chaotic systems are implemented in digital computers with finite precisions, and such degradation often has serious negative influence on some digital chaos-based systems. Degradation reduction for a class of digital chaotic systems is investigated in this paper. A varying parameter control method is proposed based on the state feedback control technology at first. Then two chaotic maps are applied to verify its validity. Finally, a novel pseudorandom number generator is constructed, which can pass all the tests of NIST SP800-22 at both level-one and level-two approaches and also most of the tests of TestU01. Moreover, it performs better than some existing pseudorandom number generators. Thus, it has acceptable quality of randomness and can be used for cryptography and other applications.
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos
2016-07-01
The Derivative-free nonlinear Kalman Filter is used for developing a communication system that is based on a chaotic modulator such as the Duffing system. In the transmitter's side, the source of information undergoes modulation (encryption) in which a chaotic signal generated by the Duffing system is the carrier. The modulated signal is transmitted through a communication channel and at the receiver's side demodulation takes place, after exploiting the estimation provided about the state vector of the chaotic oscillator by the Derivative-free nonlinear Kalman Filter. Evaluation tests confirm that the proposed filtering method has improved performance over the Extended Kalman Filter and reduces significantly the rate of transmission errors. Moreover, it is shown that the proposed Derivative-free nonlinear Kalman Filter can work within a dual Kalman Filtering scheme, for performing simultaneously transmitter-receiver synchronisation and estimation of unknown coefficients of the communication channel.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
A novel hybrid color image encryption algorithm using two complex chaotic systems
NASA Astrophysics Data System (ADS)
Wang, Leyuan; Song, Hongjun; Liu, Ping
2016-02-01
Based on complex Chen and complex Lorenz systems, a novel color image encryption algorithm is proposed. The larger chaotic ranges and more complex behaviors of complex chaotic systems, which compared with real chaotic systems could additionally enhance the security and enlarge key space of color image encryption. The encryption algorithm is comprised of three step processes. In the permutation process, the pixels of plain image are scrambled via two-dimensional and one-dimensional permutation processes among RGB channels individually. In the diffusion process, the exclusive-or (XOR for short) operation is employed to conceal pixels information. Finally, the mixing RGB channels are used to achieve a multilevel encryption. The security analysis and experimental simulations demonstrate that the proposed algorithm is large enough to resist the brute-force attack and has excellent encryption performance.
Characterization of normality of chaotic systems including prediction and detection of anomalies
NASA Astrophysics Data System (ADS)
Engler, Joseph John
Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational
Entanglement and localization transitions in eigenstates of interacting chaotic systems.
Lakshminarayan, Arul; Srivastava, Shashi C L; Ketzmerick, Roland; Bäcker, Arnd; Tomsovic, Steven
2016-07-01
The entanglement and localization in eigenstates of strongly chaotic subsystems are studied as a function of their interaction strength. Excellent measures for this purpose are the von Neumann entropy, Havrda-Charvát-Tsallis entropies, and the averaged inverse participation ratio. All the entropies are shown to follow a remarkably simple exponential form, which describes a universal and rapid transition to nearly maximal entanglement for increasing interaction strength. An unexpectedly exact relationship between the subsystem averaged inverse participation ratio and purity is derived that prescribes the transition in the localization as well. PMID:27575066
Analysis of the time structure of synchronization in multidimensional chaotic systems
Makarenko, A. V.
2015-05-15
A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.
Synchronization in node of complex networks consist of complex chaotic system
Wei, Qiang; Xie, Cheng-jun; Liu, Hong-jun; Li, Yan-hui
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Danilov, Viatcheslav; Nagaitsev, Sergei; /Fermilab
2011-11-01
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.
NASA Astrophysics Data System (ADS)
Drótos, G.; Jung, C.
2016-06-01
The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.
Chaotic component obscured by strong periodicity in voice production system
Tao, Chao; Jiang, Jack J.
2010-01-01
The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenomenon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude chaotic component. The only difference between the two-mass model and the composite model is in their descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a small-amplitude chaotic component obscured by strong periodicity. PMID:18643315
A Double-Wing Chaotic System Based on Ion Migration Memristor and Its Sliding Mode Control
NASA Astrophysics Data System (ADS)
Min, Guoqi; Duan, Shukai; Wang, Lidan
The ion migration memristor is a nonlinear element with memory function and nanoscale size, it is considered as a potential candidate to reduce system power consumption and circuit size. When it works as the nonlinear part of the chaotic system, rich nonlinear curves will be produced, and at the same time, the complexity of chaotic systems and the randomness of signals will be enhanced. So in this paper, by Matlab numerical simulation, a new double-wing chaotic system based on an ion migration memristor is designed. In reality, there are many systems interfered inevitably by random noise, so in this paper the random bounded noises are also considered. The power spectrum, Lyapunov exponent spectrum, Poincaré map and bifurcation diagram are used to investigate its complex dynamic characteristics. Then, a SPICE-based analog circuit is presented to verify the feasibility of the system, for which the simulation results are consistent with the numerical simulation. Finally, the sliding mode variable structure control is applied to overcome the shortcomings of traditional control method, so that the chaotic orbits can be controlled to any fixed points or periodic orbits, and this provides an insight into chaos control in power electronics systems.
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-03-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-07-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
Chaotically Spiking Canards in an Excitable System with 2D Inertial Fast Manifolds
NASA Astrophysics Data System (ADS)
Marino, Francesco; Marin, Francesco; Balle, Salvador; Piro, Oreste
2007-02-01
We introduce a new class of excitable systems with two-dimensional fast dynamics that includes inertia. A novel transition from excitability to relaxation oscillations is discovered where the usual Hopf bifurcation is followed by a cascade of period doubled and chaotic small excitable attractors and, as they grow, by a new type of canard explosion where a small chaotic background erratically but deterministically triggers excitable spikes. This scenario is also found in a model for a nonlinear Fabry-Perot cavity with one pendular mirror.
NASA Astrophysics Data System (ADS)
Roopaei, M.; Zolghadri Jahromi, M.
2008-12-01
In this paper, an adaptive sliding mode control method for synchronization of a class of chaotic systems with fully unknown parameters is introduced. In this method, no knowledge of the bounds of parameters is required in advance and the parameters are updated through an adaptive control process. We use our proposed method to synchronize two chaotic gyros, which has been the subject of intense study during the recent years for its application in the navigational, aeronautical, and space engineering domains. The effectiveness of our method is demonstrated in simulation environment and the results are compared with some recent schemes proposed in the literature for the same task.
Manos, Thanos; Robnik, Marko
2013-06-01
We study the kicked rotator in the classically fully chaotic regime using Izrailev's N-dimensional model for various N≤4000, which in the limit N→∞ tends to the quantized kicked rotator. We do treat not only the case K=5, as studied previously, but also many different values of the classical kick parameter 5≤K≤35 and many different values of the quantum parameter kε[5,60]. We describe the features of dynamical localization of chaotic eigenstates as a paradigm for other both time-periodic and time-independent (autonomous) fully chaotic or/and mixed-type Hamilton systems. We generalize the scaling variable Λ=l(∞)/N to the case of anomalous diffusion in the classical phase space by deriving the localization length l(∞) for the case of generalized classical diffusion. We greatly improve the accuracy and statistical significance of the numerical calculations, giving rise to the following conclusions: (1) The level-spacing distribution of the eigenphases (or quasienergies) is very well described by the Brody distribution, systematically better than by other proposed models, for various Brody exponents β(BR). (2) We study the eigenfunctions of the Floquet operator and characterize their localization properties using the information entropy measure, which after normalization is given by β(loc) in the interval [0,1]. The level repulsion parameters β(BR) and β(loc) are almost linearly related, close to the identity line. (3) We show the existence of a scaling law between β(loc) and the relative localization length Λ, now including the regimes of anomalous diffusion. The above findings are important also for chaotic eigenstates in time-independent systems [Batistić and Robnik, J. Phys. A: Math. Gen. 43, 215101 (2010); arXiv:1302.7174 (2013)], where the Brody distribution is confirmed to a very high degree of precision for dynamically localized chaotic eigenstates, even in the mixed-type systems (after separation of regular and chaotic eigenstates). PMID
Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
NASA Astrophysics Data System (ADS)
Wang, Rui; Sun, Hui; Wang, Jie-Zhi; Wang, Lu; Wang, Yan-Chao
2015-02-01
Modularized circuit designs for chaotic systems are introduced in this paper. Especially, a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation. In this paper, the detailed design procedures are described. Multisim simulations and physical experiments are conducted, and the simulation results are compared with Matlab simulation results for different system parameter pairs. These results are consistent with each other and they verify the existence of the hyper-chaotic attractor for this new hyper-chaotic system. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61403395), the Natural Science Foundation of Tianjin, China (Grant No. 13JCYBJC39000), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China, the Fund from the Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China (Grant No. 104003020106), the National Basic Research Program of China (Grant No. 2014CB744904), and the Fund for the Scholars of Civil Aviation University of China (Grant No. 2012QD21x).
Application of Ica-Eemd to Secure Communications in Chaotic Systems
NASA Astrophysics Data System (ADS)
Lin, Shih-Lin; Tung, Pi-Cheng; Huang, Norden E.
2012-04-01
We propose the application of ICA-EEMD to secure communication systems. ICA-EEMD is employed to retrieve the message data encrypted by a mixture of Gaussian white noise and chaotic noise. The results showed that ICA-EEMD can effectively extract the two original message data.
NASA Astrophysics Data System (ADS)
Li, Damei; Lu, Jun-An; Wu, Xiaoqun; Chen, Guanrong
2006-11-01
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. In this paper, we attempt to investigate the ultimate bound and positively invariant set for two specific systems, the Lorenz system and a unified chaotic system. We derive an ellipsoidal estimate of the ultimate bound and positively invariant set for the Lorenz system, for all the positive values of its parameters a, b and c, and obtain the minimum value of volume for the ellipsoid. Comparing with the best results in the current literature [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534; X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419], our new results fill up the gap of the estimate for the cases of 0chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419]. Furthermore, the estimation derived here contains the results given in [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534] and [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419] as special cases. Along the same line, we also provide estimates of cylindrical and ellipsoidal bounds for a unified chaotic system, for its parameter range , and obtain the minimum value of volume for the ellipsoid. The estimate is more accurate than and also extends the result of [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos
A novel memristive time-delay chaotic system without equilibrium points
NASA Astrophysics Data System (ADS)
Pham, V.-T.; Vaidyanathan, S.; Volos, C. K.; Jafari, S.; Kuznetsov, N. V.; Hoang, T. M.
2016-02-01
Memristor and time-delay are potential candidates for constructing new systems with complex dynamics and special features. A novel time-delay system with a presence of memristive device is proposed in this work. It is worth noting that this memristive time-delay system can generate chaotic attractors although it possesses no equilibrium points. In addition, a circuitry implementation of such time-delay system has been introduced to show its feasibility.
Chaotic attractors based on unstable dissipative systems via third-order differential equation
NASA Astrophysics Data System (ADS)
Campos-Cantón, E.
2016-07-01
In this paper, we present an approach how to yield 1D, 2D and 3D-grid multi-scroll chaotic systems in R3 based on unstable dissipative systems via third-order differential equation. This class of systems is constructed by a switching control law(SCL) changing the equilibrium point of an unstable dissipative system. The switching control law that governs the position of the equilibrium point varies according to the number of scrolls displayed in the attractor.
Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System
NASA Astrophysics Data System (ADS)
Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung
At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.
Scheme of thinking quantum systems
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Sornette, D.
2009-11-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
Casimir force between integrable and chaotic pistons
Alvarez, Ezequiel; Mazzitelli, Francisco D.; Wisniacki, Diego A.; Monastra, Alejandro G.
2010-11-15
We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in the Casimir effect.
A secure communication using cascade chaotic computing systems on clinical decision support.
Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat
2016-06-01
Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line. PMID:25992507
NASA Astrophysics Data System (ADS)
Hassan, Emad S.; Zhu, Xu; El-Khamy, Said E.; Dessouky, Moawad I.; El-Dolil, Sami A.; Abd El-Samie, Fathi E.
2013-01-01
In this article, we propose a chaotic interleaving scheme for continuous-phase modulation-based orthogonal frequency-division multiplexing (CPM-OFDM) systems. The idea of chaotic maps randomisation (CMR) is exploited in this scheme. CMR generates permuted sequences from the sequences to be transmitted with lower correlation among their samples, and hence a better Bit Error Rate (BER) performance can be achieved. The proposed CMR-CPM-OFDM system combines the advantages of frequency diversity and power efficiency from CPM-OFDM and performance improvement from chaotic interleaving. The BER performance of the CPM-OFDM system with and without chaotic interleaving is evaluated by computer simulations. Also, a comparison between chaotic interleaving and block interleaving is performed. Simulation results show that, the proposed chaotic interleaving scheme can greatly improve the performance of CPM-OFDM systems. Furthermore, the results show that the proposed chaotic interleaving scheme outperforms the traditional block interleaving scheme for CPM-OFDM systems. The results show also that, the proposed CMR-CPM-OFDM system provides a good trade-off between system performance and bandwidth efficiency.
Curtright, Thomas; Mezincescu, Luca
2007-09-15
Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+{nu}){sup 2}+{sigma}{sub k>0}{mu}{sub k} exp(ikx). In some nontrivial cases, equivalent Hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.
NASA Astrophysics Data System (ADS)
Li, Xiang-Tao; Yin, Ming-Hao
2012-05-01
We study the parameter estimation of a nonlinear chaotic system, which can be essentially formulated as a multidimensional optimization problem. In this paper, an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy. Experiments are conducted on the Lorenz system and the Chen system. The proposed algorithm is used to estimate the parameters for these two systems. Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.
NASA Astrophysics Data System (ADS)
Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás
2015-02-01
We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space, ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.
NASA Astrophysics Data System (ADS)
Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman
2012-11-01
This research deals with a synthesis of control law for selected discrete chaotic system - logistic equation by means of analytic programming. The novelty of the approach is that a tool for symbolic regression - analytic programming - is used for the purpose of stabilization of higher periodic orbits - oscillations between several values of chaotic system. The paper consists of the descriptions of analytic programming as well as used chaotic system and detailed proposal of cost function used in optimization process. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming and Differential evolution (DE) as second algorithm for meta-evolution were used.
Wang, Zhiheng; Huo, Zhanqiang; Shi, Wenbo
2015-01-01
With rapid development of computer technology and wide use of mobile devices, the telecare medicine information system has become universal in the field of medical care. To protect patients' privacy and medial data's security, many authentication schemes for the telecare medicine information system have been proposed. Due to its better performance, chaotic maps have been used in the design of authentication schemes for the telecare medicine information system. However, most of them cannot provide user's anonymity. Recently, Lin proposed a dynamic identity based authentication scheme using chaotic maps for the telecare medicine information system and claimed that their scheme was secure against existential active attacks. In this paper, we will demonstrate that their scheme cannot provide user anonymity and is vulnerable to the impersonation attack. Further, we propose an improved scheme to fix security flaws in Lin's scheme and demonstrate the proposed scheme could withstand various attacks. PMID:25486894
Radwan, A G; Moaddy, K; Salama, K N; Momani, S; Hashim, I
2014-01-01
This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters. PMID:25685479
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
Numerical test for hyperbolicity of chaotic dynamics in time-delay systems
NASA Astrophysics Data System (ADS)
Kuptsov, Pavel V.; Kuznetsov, Sergey P.
2016-07-01
We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos.
Synchronization-based approach for estimating all model parameters of chaotic systems
NASA Astrophysics Data System (ADS)
Konnur, Rahul
2003-02-01
The problem of dynamic estimation of all parameters of a model representing chaotic and hyperchaotic systems using information from a scalar measured output is solved. The variational calculus based method is robust in the presence of noise, enables online estimation of the parameters and is also able to rapidly track changes in operating parameters of the experimental system. The method is demonstrated using the Lorenz, Rossler chaos, and hyperchaos models. Its possible application in decoding communications using chaos is discussed.
Numerical test for hyperbolicity of chaotic dynamics in time-delay systems.
Kuptsov, Pavel V; Kuznetsov, Sergey P
2016-07-01
We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos. PMID:27575062
NASA Astrophysics Data System (ADS)
Xia, H. M.; Shu, C.; Wan, S. Y. M.; Chew, Y. T.
2006-01-01
A micromixer is a key component of various microfluidic systems, such as microreactors and μ-total analysis systems. One important strategy for passive mixer design is to generate chaotic advection using channel geometry, which usually has spatially periodic structures. In this paper, the influence of the Reynolds number on chaotic mixing in such mixers is studied with three mixer models. Characterization of the mixer with dynamical system techniques is also studied. The influence of fluid inertial effects on the occurrence of chaotic advection is first discussed. It is found that at low Re(Re < 1), the flow could become reversible in the mixer, which raises the difficulty to generate chaotic advection. In this case, specific fluid manipulations, such as stretching and folding processes, are necessary. This study also proposes a characterization method using Lyapunov exponent (λ) and Poincaré mapping information, which allows us to analyze the mixing performance of the mixer with one single mixer unit. Results show that it objectively reflects the dynamical properties of the mixers, such as being globally chaotic, partially chaotic or stable. So it can be used as an analytical tool to differentiate, evaluate and optimize various chaotic micromixers.
Symmetry of quantum phase space in a degenerate Hamiltonian system
NASA Astrophysics Data System (ADS)
Berman, G. P.; Demikhovskii, V. Ya.; Kamenev, D. I.
2000-09-01
The structure of the global "quantum phase space" is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2μ (where μ is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaotic behavior.
Applications of fidelity measures to complex quantum systems.
Wimberger, Sandro
2016-06-13
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967
A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT
NASA Astrophysics Data System (ADS)
Yuxia, Zhao; Jingbo, Fan
A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.
NASA Astrophysics Data System (ADS)
Chao, Luo
2015-11-01
In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.
NASA Astrophysics Data System (ADS)
Čelikovský, Sergej; Lynnyk, Volodymyr
This paper focuses on the design of the novel chaotic masking scheme via message embedded synchronization. A general class of the systems allowing the message embedded synchronization is presented here, moreover, it is shown that the generalized Lorenz system belongs to this class. Furthermore, the secure encryption scheme based on the message embedded synchronization is proposed. This scheme injects the embedded message into the dynamics of the transmitter as well, ensuring thereby synchronization with theoretically zero synchronization error. To ensure the security, the embedded message is a sum of the message and arbitrary bounded function of the internal transmitter states that is independent of the scalar synchronization signal. The hexadecimal alphabet will be used to form a ciphertext making chaotic dynamics of the transmitter even more complicated in comparison with the transmitter influenced just by the binary step-like function. All mentioned results and their security are tested and demonstrated by numerical experiments.
Shinbrot, T.; Ditto, W.; Grebogi, C.; Ott, E.; Spano, M.; Yorke, J.A. Department of Physics, The College of Wooster, Wooster, Ohio 44691 Naval Surface Warfare Center, Silver Spring, Maryland 20902 )
1992-05-11
In this paper we present the first experimental verification that the sensitivity of a chaotic system to small perturbations (the butterfly effect'') can be used to rapidly direct orbits from an arbitrary initial state to an arbitrary accessible desired state.
Encrypting three-dimensional information system based on integral imaging and multiple chaotic maps
NASA Astrophysics Data System (ADS)
Xing, Yan; Wang, Qiong-Hua; Xiong, Zhao-Long; Deng, Huan
2016-02-01
An encrypting three-dimensional (3-D) information system based on integral imaging (II) and multiple chaotic maps is proposed. In the encrypting process, the elemental image array (EIA) which represents spatial and angular information of the real 3-D scene is picked up by a microlens array. Subsequently, R, G, and B color components decomposed by the EIA are encrypted using multiple chaotic maps. Finally, these three encrypted components are interwoven to obtain the cipher information. The decryption process implements the reverse operation of the encryption process for retrieving the high-quality 3-D images. Since the encrypted EIA has the data redundancy property due to II, and all parameters of the pickup part are the secret keys of the encrypting system, the system sensitivity on the changes of the plaintext and secret keys can be significantly improved. Moreover, the algorithm based on multiple chaotic maps can effectively enhance the security. A preliminary experiment is carried out, and the experimental results verify the effectiveness, robustness, and security of the proposed system.
Function projective synchronization in partially linear drive-response chaotic systems
NASA Astrophysics Data System (ADS)
Zhang, Rong; Xu, Zhen-Yuan
2010-12-01
This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.
A Novel Medical Image Protection Scheme Using a 3-Dimensional Chaotic System
Fu, Chong; Zhang, Gao-yuan; Bian, Ou; Lei, Wei-min; Ma, Hong-feng
2014-01-01
Recently, great concerns have been raised regarding the issue of medical image protection due to the increasing demand for telemedicine services, especially the teleradiology service. To meet this challenge, a novel chaos-based approach is suggested in this paper. To address the security and efficiency problems encountered by many existing permutation-diffusion type image ciphers, the new scheme utilizes a single 3D chaotic system, Chen's chaotic system, for both permutation and diffusion. In the permutation stage, we introduce a novel shuffling mechanism, which shuffles each pixel in the plain image by swapping it with another pixel chosen by two of the three state variables of Chen's chaotic system. The remaining variable is used for quantification of pseudorandom keystream for diffusion. Moreover, the selection of state variables is controlled by plain pixel, which enhances the security against known/chosen-plaintext attack. Thorough experimental tests are carried out and the results indicate that the proposed scheme provides an effective and efficient way for real-time secure medical image transmission over public networks. PMID:25541941
Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field
NASA Technical Reports Server (NTRS)
Konkov, L. E.; Prants, S. V.
1996-01-01
Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.
Study on a new chaotic bitwise dynamical system and its FPGA implementation
NASA Astrophysics Data System (ADS)
Wang, Qian-Xue; Yu, Si-Min; Guyeux, C.; Bahi, J.; Fang, Xiao-Le
2015-06-01
In this paper, the structure of a new chaotic bitwise dynamical system (CBDS) is described. Compared to our previous research work, it uses various random bitwise operations instead of only one. The chaotic behavior of CBDS is mathematically proven according to the Devaney's definition, and its statistical properties are verified both for uniformity and by a comprehensive, reputed and stringent battery of tests called TestU01. Furthermore, a systematic methodology developing the parallel computations is proposed for FPGA platform-based realization of this CBDS. Experiments finally validate the proposed systematic methodology. Project supported by China Postdoctoral Science Foundation (Grant No. 2014M552175), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Chinese Education Ministry, the National Natural Science Foundation of China (Grant No. 61172023), and the Specialized Research Foundation of Doctoral Subjects of Chinese Education Ministry (Grant No. 20114420110003).
Anomalous Diffusion and Mixing of Chaotic Orbits in Hamiltonian Dynamical Systems
NASA Astrophysics Data System (ADS)
Ishizaki, R.; Horita, T.; Mori, H.
1993-05-01
Anomalous behaviors of the diffusion and mixing of chaotic orbits due to the intermittent sticking to the islands of normal tori and accelerator-mode tori in a widespread chaotic sea are studied numerically and theoretically for Hamiltonian systems with two degrees of freedom. The probability distribution functions for the coarse-grained velocity (characterizing the diffusion) and the coarse-grained expansion rate (characterizing the mixing) turn out to obey an anomalous scaling law which is quite different from the Gaussian. The scaling law is confirmed for both diffusion and mixing by numerical experiments on the heating map introduced by Karney, which exhibits remarkable statistical properties more clearly than the standard map. Its scaling exponents for the two cases, however, are found to be different from each other.
On the Inherent Self-Excited Macroscopic Randomness of Chaotic Three-Body Systems
NASA Astrophysics Data System (ADS)
Liao, Shijun; Li, Xiaoming
What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human beings. In this paper, 10 000 samples of reliable (convergent), multiple-scale (from 10-60 to 102) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 10-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopic randomness (at the level O(1)) until t = T*, the so-called physical limit time of prediction, but propagates algebraically thereafter when accurate prediction of orbit is impossible. Note that these 10 000 samples use micro-level, inherent physical fluctuations of initial position, which have nothing to do with human beings. Especially, the differences of these 10 000 fluctuations are mathematically so small (in the level of 10-60) that they are physically the same since a distance shorter than a Planck length does not make physical sense according to the string theory. This indicates that the macroscopic randomness of the chaotic three-body system is self-excited, say, without any external force or disturbances, from the inherent micro-level uncertainty. It provides us the new concept "self-excited macroscopic randomness (uncertainty)". The macroscopic randomness is found to be dependent upon microscopic uncertainty, from the statistical viewpoint. In addition, it is found that, without any external disturbance, the chaotic three-body system might randomly disrupt with symmetry-breaking at t = 1000 in about 25% probability, which provides us new concepts "self-excited random disruption", "self-excited random escape" and "self-excited symmetry breaking" of the chaotic three-body system. Hence, it suggests that a chaotic three-body system might randomly evolve by itself, without any external forces or disturbance. Thus, the world is essentially uncertain, since such kind of self
Topological invariants in the study of a chaotic food chain system
NASA Astrophysics Data System (ADS)
Duarte, Jorge; Januário, Cristina; Martins, Nuno
2008-06-01
The study of ecological systems has generated deep interest in exploring the complexity of chaotic food chains. The role of chaos in ecosystems is not entirely understood. One approach to have a better comprehension of ecological chaos is by analyzing it in mathematical models of basic food chains. In this article it is considered a classical chaotic food chain model from the literature. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of kneading sequences associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The topological entropy allows us to distinguish different chaotic states in some realistic system parameter region. Another numerical invariant is introduced in order to characterize isentropic dynamics. Studying a set of maps with the same topological entropy, we exhibit numerical results about the relation between the second topological invariant and each of the control parameters in consideration. This work provides an illustration of how our understanding of ecological models can be enhanced by the theory of symbolic dynamics.
Quantum coherence in multipartite systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Xing; Ge, Li; Sun, C. P.
2015-08-01
Within the unified framework of exploiting the relative entropy as a distance measure of quantum correlations, we make explicit the hierarchical structure of quantum coherence, quantum discord, and quantum entanglement in multipartite systems. On this basis, we define a basis-independent measure of quantum coherence and prove that it is exactly equivalent to quantum discord. Furthermore, since the original relative entropy of coherence is a basis-dependent quantity, we investigate the local and nonlocal unitary creation of quantum coherence, focusing on the two-qubit unitary gates. Intriguingly, our results demonstrate that nonlocal unitary gates do not necessarily outperform the local unitary gates. Finally, the additivity relationship of quantum coherence in tripartite systems is discussed in detail, where the strong subadditivity of von Neumann entropy plays an essential role.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
Image encryption with chaotically coupled chaotic maps
NASA Astrophysics Data System (ADS)
Pisarchik, A. N.; Zanin, M.
2008-10-01
We present a novel secure cryptosystem for direct encryption of color images, based on chaotically coupled chaotic maps. The proposed cipher provides good confusion and diffusion properties that ensures extremely high security because of the chaotic mixing of pixels’ colors. Information is mixed and distributed over a complete image using a complex strategy that makes known plaintext attack unfeasible. The encryption algorithm guarantees the three main goals of cryptography: strong cryptographic security, short encryption/decryption time, and robustness against noise and other external disturbances. Due to the high speed, the proposed cryptosystem is suitable for application in real-time communication systems.
Parameter Identification of Chaotic Systems by a Novel Dual Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Jiang, Yunxiang; Lau, Francis C. M.; Wang, Shiyuan; Tse, Chi K.
In this paper, we propose a dual particle swarm optimization (PSO) algorithm for parameter identification of chaotic systems. We also consider altering the search range of individual particles adaptively according to their objective function value. We consider both noiseless and noisy channels between the original system and the estimation system. Finally, we verify the effectiveness of the proposed dual PSO method by estimating the parameters of the Lorenz system using two different data acquisition schemes. Simulation results show that the proposed method always outperforms the traditional PSO algorithm.
Open fermionic quantum systems
Artacho, E.; Falicov, L.M. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )
1993-01-15
A method to treat a quantum system in interaction with a fermionic reservoir is presented. Its most important feature is that the dynamics of the exchange of particles between the system and the reservoir is explicitly included via an effective interaction term in the Hamiltonian. This feature gives rise to fluctuations in the total number of particles in the system. The system is to be considered in its full structure, whereas the reservoir is described only in an effective way, as a source of particles characterized by a small set of parameters. Possible applications include surfaces, molecular clusters, and defects in solids, in particular in highly correlated electronic materials. Four examples are presented: a tight-binding model for an adsorbate on the surface of a one-dimensional lattice, the Anderson model of a magnetic impurity in a metal, a two-orbital impurity with interorbital hybridization (intermediate-valence center), and a two-orbital impurity with interorbital repulsive interactions.
Quantum transport in chaotic and integrable ballistic cavities with tunable shape
NASA Astrophysics Data System (ADS)
Lee, Y.; Faini, G.; Mailly, D.
1997-10-01
We have performed magnetotransport measurements in ballistic cavities and obtained the average by small modulations on the shapes and/or on the Fermi level. We work with cavities whose underlying classical dynamics is chaotic (stadia and Sinaï billiards) and integrable (circles and rectangles). The former show a Lorentzian weak-localization peak, in agreement with semiclassical predictions and other averaging methods that have been used in recent measurements. For integrable cavities our measurements show that the shape of the weak localization is very sensitive to the exact geometry of the sample: a linear magnetoconductance has been observed for rectangles as expected by the theory for integrable cavities, whereas for circles the shape is always Lorentzian. These discrepancies illustrate the nongeneric behavior of scattering through integrable geometries, that we analyze taking into account the interplay of integrability with smooth disorder and geometrical effects. The power spectra of the conductance fluctuations are also analyzed, the deduced typical areas are in good agreement with those obtained from the weak localization. Periodic orbits in nonaveraged Fourier transforms of the magnetoconductance for regular cavities are clearly identified indicating the good quality of our samples.
Dynamics of the stochastic Lorenz chaotic system with long memory effects
Zeng, Caibin Yang, Qigui
2015-12-15
Little seems to be known about the ergodic dynamics of stochastic systems with fractional noise. This paper is devoted to discern such long time dynamics through the stochastic Lorenz chaotic system (SLCS) with long memory effects. By a truncation technique, the SLCS is proved to generate a continuous stochastic dynamical system Λ. Based on the Krylov-Bogoliubov criterion, the required Lyapunov function is further established to ensure the existence of the invariant measure of Λ. Meanwhile, the uniqueness of the invariant measure of Λ is proved by examining the strong Feller property, together with an irreducibility argument. Therefore, the SLCS has exactly one adapted stationary solution.
Hardware implementation of Lorenz circuit systems for secure chaotic communication applications.
Chen, Hsin-Chieh; Liau, Ben-Yi; Hou, Yi-You
2013-01-01
This paper presents the synchronization between the master and slave Lorenz chaotic systems by slide mode controller (SMC)-based technique. A proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. Then, extending the concept of equivalent control and using some basic electronic components, a secure communication system is constructed. Experimental results show the feasibility of synchronizing two Lorenz circuits via the proposed SMC. PMID:23429512
Towards a Social Theory of School Administrative Practice in a Complex, Chaotic, Quantum World.
ERIC Educational Resources Information Center
Beavis, Allan K.
Educational administration, like many other social sciences, has traditionally followed the rubrics of classical science with its emphasis on prediction and control and attempts to understand the whole by understanding in ever finer detail how the parts fit together. However, the "new" science (especially quantum mechanics, complexity, and chaos…
Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems
NASA Astrophysics Data System (ADS)
de Oliveira, Gilson F.; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; de Souza Cavalcante, Hugo L. D.
2015-11-01
Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.
Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems
Oliveira, Gilson F. de Chevrollier, Martine; Oriá, Marcos; Passerat de Silans, Thierry; Souza Cavalcante, Hugo L. D. de
2015-11-15
Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.
Dynamics of chaotic systems with attractive and repulsive couplings.
Chen, Yuehua; Xiao, Jinghua; Liu, Weiqing; Li, Lixiang; Yang, Yixian
2009-10-01
Together with attractive couplings, repulsive couplings play crucial roles in determining important evolutions in natural systems, such as in learning and oscillatory processes of neural networks. The complex interactions between them have great influence on the systems. A detailed understanding of the dynamical properties under this type of couplings is of practical significance. In this paper, we propose a model to investigate the dynamics of attractive and repulsive couplings, which give rise to rich phenomena, especially for amplitude death (AD). The relationship among various dynamics and possible transitions to AD are illustrated. When the system is in the maximally stable AD, we observe the transient behavior of in-phase (high frequency) and out-of-phase (low frequency) motions. The mechanism behind the phenomenon is given. PMID:19905414
Chaotic vibrations of the duffing system with fractional damping
Syta, Arkadiusz; Litak, Grzegorz; Lenci, Stefano; Scheffler, Michael
2014-03-15
We examined the Duffing system with a fractional damping term. Calculating the basins of attraction, we demonstrate a broad spectrum of non-linear behaviour connected with sensitivity to the initial conditions and chaos. To quantify dynamical response of the system, we propose the statistical 0-1 test as well as the maximal Lyapunov exponent; the application of the latter encounter a few difficulties because of the memory effect due to the fractional derivative. The results are confirmed by bifurcation diagrams, phase portraits, and Poincaré sections.
Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system
NASA Astrophysics Data System (ADS)
Marino, Francesco; Marin, Francesco
2013-05-01
The multiple time scale dynamics induced by radiation pressure and photothermal effects in a high-finesse optomechanical resonator is experimentally studied. At difference with two-dimensional slow-fast systems, the transition from the quasiharmonic to the relaxational regime occurs via chaotic canard explosions, where large-amplitude relaxation spikes are separated by an irregular number of subthreshold oscillations. We also show that this regime coexists with other periodic attractors, on which the trajectories evolve on a substantially faster time scale. The experimental results are reproduced and analyzed by means of a detailed physical model of our system.
Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system.
Marino, Francesco; Marin, Francesco
2013-05-01
The multiple time scale dynamics induced by radiation pressure and photothermal effects in a high-finesse optomechanical resonator is experimentally studied. At difference with two-dimensional slow-fast systems, the transition from the quasiharmonic to the relaxational regime occurs via chaotic canard explosions, where large-amplitude relaxation spikes are separated by an irregular number of subthreshold oscillations. We also show that this regime coexists with other periodic attractors, on which the trajectories evolve on a substantially faster time scale. The experimental results are reproduced and analyzed by means of a detailed physical model of our system. PMID:23767597
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system
NASA Astrophysics Data System (ADS)
Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes
2015-01-01
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).
A chaotic map-based authentication scheme for telecare medicine information systems.
Hao, Xinhong; Wang, Jiantao; Yang, Qinghai; Yan, Xiaopeng; Li, Ping
2013-04-01
With the development of Internet, patients could enjoy health-care delivery services through telecare medicine information systems (TMIS) in their home. To control the access to remote medical servers' resources, many authentication schemes using smart cards have been proposed. However, the performance of these schemes is not satisfactory since modular exponential operations are used in these schemes. In the paper, we propose a chaotic map-based authentication scheme for telecare medicine information systems. The security and performance analysis shows our scheme is more suitable for TMIS. PMID:23334801
ZOCT and chaotic oscillator applied to fault section determination in distribution system
NASA Astrophysics Data System (ADS)
Shang, Qiufeng; Zhou, Wenchang
2006-11-01
It's a new idea for using zero-sequence optical current transducer (ZOCT) to solve the measure problem of single-phase-to-ground fault section determination in distribution system. However the outputs of ZOCT are weak and mixed with noises, decreasing the detection sensitivity. Chaotic oscillator system is sensitive to certain signal and immune to noise, so the signal detection based on Duffing oscillator can improve the detection sensitivity and anti-interference capability. In this paper, combining Duffing oscillator with ZOCT, a new scheme of fault section determination is presented, with good sensitivity and reliability. The results of simulation and experiments proved this method is effective and feasible.
Castro-Ramírez, Joel; Martínez-Guerra, Rafael; Cruz-Victoria, Juan Crescenciano
2015-10-15
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.
Castro-Ramírez, Joel; Martínez-Guerra, Rafael; Cruz-Victoria, Juan Crescenciano
2015-10-01
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system. PMID:26520094
NASA Astrophysics Data System (ADS)
Castro-Ramírez, Joel; Martínez-Guerra, Rafael; Cruz-Victoria, Juan Crescenciano
2015-10-01
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.
Adaptive sliding mode control for a class of chaotic systems
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-30
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
NASA Astrophysics Data System (ADS)
Kotulski, Zbigniew; Szczepaski, Janusz
In the paper we propose a new method of constructing cryptosystems utilising a nonpredictability property of discrete chaotic systems. We formulate the requirements for such systems to assure their safety. We also give examples of practical realisation of chaotic cryptosystems, using a generalisation of the method presented in [7]. The proposed algorithm of encryption and decryption is based on multiple iteration of a certain dynamical chaotic system. We assume that some part of the initial condition is a plain message. As the secret key we assume the system parameter(s) and additionally another part of the initial condition.
New taste sensor system combined with chaotic recognition
NASA Astrophysics Data System (ADS)
Hu, Jie; Wang, Ping; Li, Rong
2001-09-01
Taste sensor as a new kind of chemical sensor has been studied by many researchers. We have developed several types of taste sensor system and some new recognition methods for taste substance. Kiyoshi Toko et al proposed a new kind of chaos taste sensor that is based on sensor chaos dynamics. In this paper, we improve the taste sensor based on chaos dynamics and proposed a new method for the pattern recognition of tastes. We use three kinds of tastes, i.e., sweetness, salty taste, and sourness. They cause the membrane oscillate in different form, and the complexity is not the same. We can detect taste based on the new method.
NASA Astrophysics Data System (ADS)
Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai
2008-06-01
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdös-Rényi networks.
Hybrid information privacy system: integration of chaotic neural network and RSA coding
NASA Astrophysics Data System (ADS)
Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.
2005-03-01
Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.
Chaotic dynamics of one-dimensional systems with periodic boundary conditions
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Miller, Bruce N.
2014-12-01
We provide appropriate tools for the analysis of dynamics and chaos for one-dimensional systems with periodic boundary conditions. Our approach allows for the investigation of the dependence of the largest Lyapunov exponent on various initial conditions of the system. The method employs an effective approach for defining the phase-space distance appropriate for systems with periodic boundaries and allows for an unambiguous test-orbit rescaling in the phase space required to calculate the Lyapunov exponents. We elucidate our technique by applying it to investigate the chaotic dynamics of a one-dimensional plasma with periodic boundaries. Exact analytic expressions are derived for the electric field and potential using Ewald sums, thereby making it possible to follow the time evolution of the plasma in simulations without any special treatment of the boundary. By employing a set of event-driven algorithms, we calculate the largest Lyapunov exponent, the radial distribution function, and the pressure by following the evolution of the system in phase space without resorting to numerical manipulation of the equations of motion. Simulation results are presented and analyzed for the one-dimensional plasma with a view to examining the dynamical and chaotic behavior exhibited by small and large versions of the system.
Quantum Effects in Biological Systems
NASA Astrophysics Data System (ADS)
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Neighborhoods of periodic orbits and the stationary distribution of a noisy chaotic system.
Heninger, Jeffrey M; Lippolis, Domenico; Cvitanović, Predrag
2015-12-01
The finest state-space resolution that can be achieved in a physical dynamical system is limited by the presence of noise. In the weak-noise approximation, the stochastic neighborhoods of deterministic periodic orbits can be computed from distributions stationary under the action of a local Fokker-Planck operator and its adjoint. We derive explicit formulas for widths of these distributions in the case of chaotic dynamics, when the periodic orbits are hyperbolic. The resulting neighborhoods form a basis for functions on the attractor. The global stationary distribution, needed for calculation of long-time expectation values of observables, can be expressed in this basis. PMID:26764789