Nanophotonic quantum computer based on atomic quantum transistor
NASA Astrophysics Data System (ADS)
Andrianov, S. N.; Moiseev, S. A.
2015-10-01
We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks.
Acausal measurement-based quantum computing
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2014-07-01
In measurement-based quantum computing, there is a natural "causal cone" among qubits of the resource state, since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we study the possibility of acausal measurement-based quantum computing by using the process matrix framework [Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076]. We construct a resource process matrix for acausal measurement-based quantum computing restricting local operations to projective measurements. The resource process matrix is an analog of the resource state of the standard causal measurement-based quantum computing. We find that if we restrict local operations to projective measurements the resource process matrix is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from the graph state of the corresponding causal measurement-based quantum computing. We also show that it is possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum computing.
Waveguide-QED-Based Photonic Quantum Computation
NASA Astrophysics Data System (ADS)
Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.
2013-08-01
We propose a new scheme for quantum computation using flying qubits—propagating photons in a one-dimensional waveguide interacting with matter qubits. Photon-photon interactions are mediated by the coupling to a four-level system, based on which photon-photon π-phase gates (controlled-not) can be implemented for universal quantum computation. We show that high gate fidelity is possible, given recent dramatic experimental progress in superconducting circuits and photonic-crystal waveguides. The proposed system can be an important building block for future on-chip quantum networks.
Blind topological measurement-based quantum computation
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki; Fujii, Keisuke
2012-09-01
Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3×10-3, which is comparable to that (7.5×10-3) of non-blind topological quantum computation. As the error per gate of the order 10-3 was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.
Symmetrically private information retrieval based on blind quantum computing
NASA Astrophysics Data System (ADS)
Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling
2015-05-01
Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.
Milestones toward Majorana-based quantum computing
NASA Astrophysics Data System (ADS)
Alicea, Jason
Experiments on nanowire-based Majorana platforms now appear poised to move beyond the preliminary problem of zero-mode detection and towards loftier goals of realizing non-Abelian statistics and quantum information applications. Using an approach that synthesizes recent materials growth breakthroughs with tools long successfully deployed in quantum-dot research, I will outline a number of relatively modest milestones that progressively bridge the gap between the current state of the art and these grand longer-term challenges. The intermediate Majorana experiments surveyed in this talk should be broadly adaptable to other approaches as well. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech.
Milestones Toward Majorana-Based Quantum Computing
NASA Astrophysics Data System (ADS)
Aasen, David; Hell, Michael; Mishmash, Ryan V.; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason
2016-07-01
We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current, (2) validation of a prototype topological qubit, and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and read out schemes as well.
NASA Astrophysics Data System (ADS)
Steffen, Matthias
2013-03-01
Quantum mechanics plays a crucial role in many day-to-day products, and has been successfully used to explain a wide variety of observations in Physics. While some quantum effects such as tunneling limit the degree to which modern CMOS devices can be scaled to ever reducing dimensions, others may potentially be exploited to build an entirely new computing architecture: The quantum computer. In this talk I will review several basic concepts of a quantum computer. Why quantum computing and how do we do it? What is the status of several (but not all) approaches towards building a quantum computer, including IBM's approach using superconducting qubits? And what will it take to build a functional machine? The promise is that a quantum computer could solve certain interesting computational problems such as factoring using exponentially fewer computational steps than classical systems. Although the most sophisticated modern quantum computing experiments to date do not outperform simple classical computations, it is increasingly becoming clear that small scale demonstrations with as many as 100 qubits are beginning to be within reach over the next several years. Such a demonstration would undoubtedly be a thrilling feat, and usher in a new era of controllably testing quantum mechanics or quantum computing aspects. At the minimum, future demonstrations will shed much light on what lies ahead.
Could one make a diamond-based quantum computer?
Stoneham, A Marshall; Harker, A H; Morley, Gavin W
2009-09-01
We assess routes to a diamond-based quantum computer, where we specifically look towards scalable devices, with at least 10 linked quantum gates. Such a computer should satisfy the deVincenzo rules and might be used at convenient temperatures. The specific examples that we examine are based on the optical control of electron spins. For some such devices, nuclear spins give additional advantages. Since there have already been demonstrations of basic initialization and readout, our emphasis is on routes to two-qubit quantum gate operations and the linking of perhaps 10-20 such gates. We analyse the dopant properties necessary, especially centres containing N and P, and give results using simple scoping calculations for the key interactions determining gate performance. Our conclusions are cautiously optimistic: it may be possible to develop a useful quantum information processor that works above cryogenic temperatures. PMID:21832328
Entanglement-Based Machine Learning on a Quantum Computer
NASA Astrophysics Data System (ADS)
Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.
2015-03-01
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
Entanglement-based machine learning on a quantum computer.
Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W
2015-03-20
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning. PMID:25839250
Optimized entanglement purification schemes for modular based quantum computers
NASA Astrophysics Data System (ADS)
Krastanov, Stefan; Jiang, Liang
The choice of entanglement purification scheme strongly depends on the fidelities of quantum gates and measurements, as well as the imperfection of initial entanglement. For instance, the purification scheme optimal at low gate fidelities may not necessarily be the optimal scheme at higher gate fidelities. We employ an evolutionary algorithm that efficiently optimizes the entanglement purification circuit for given system parameters. Such optimized purification schemes will boost the performance of entanglement purification, and consequently enhance the fidelity of teleportation-based non-local coupling gates, which is an indispensible building block for modular-based quantum computers. In addition, we study how these optimized purification schemes affect the resource overhead caused by error correction in modular based quantum computers.
Closed timelike curves in measurement-based quantum computation
Dias da Silva, Raphael; Galvao, Ernesto F.; Kashefi, Elham
2011-01-15
Many results have been recently obtained regarding the power of hypothetical closed timelike curves (CTCs) in quantum computation. Here we show that the one-way model of measurement-based quantum computation encompasses in a natural way the CTC model proposed by Bennett, Schumacher, and Svetlichny. We identify a class of CTCs in this model that can be simulated deterministically and point to a fundamental limitation of Deutsch's CTC model which leads to predictions conflicting with those of the one-way model.
Quantum robots and quantum computers
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum Computation and Quantum Information
NASA Astrophysics Data System (ADS)
Nielsen, Michael A.; Chuang, Isaac L.
2010-12-01
Part I. Fundamental Concepts: 1. Introduction and overview; 2. Introduction to quantum mechanics; 3. Introduction to computer science; Part II. Quantum Computation: 4. Quantum circuits; 5. The quantum Fourier transform and its application; 6. Quantum search algorithms; 7. Quantum computers: physical realization; Part III. Quantum Information: 8. Quantum noise and quantum operations; 9. Distance measures for quantum information; 10. Quantum error-correction; 11. Entropy and information; 12. Quantum information theory; Appendices; References; Index.
Phonon-based scalable quantum computing and sensing (Presentation Video)
NASA Astrophysics Data System (ADS)
El-Kady, Ihab
2015-04-01
Quantum computing fundamentally depends on the ability to concurrently entangle and individually address/control a large number of qubits. In general, the primary inhibitors of large scale entanglement are qubit dependent; for example inhomogeneity in quantum dots, spectral crowding brought about by proximity-based entanglement in ions, weak interactions of neutral atoms, and the fabrication tolerances in the case of Si-vacancies or SQUIDs. We propose an inherently scalable solid-state qubit system with individually addressable qubits based on the coupling of a phonon with an acceptor impurity in a high-Q Phononic Crystal resonant cavity. Due to their unique nonlinear properties, phonons enable new opportunities for quantum devices and physics. We present a phononic crystal-based platform for observing the phonon analogy of cavity quantum electrodynamics, called phonodynamics, in a solid-state system. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables strong coupling of the phonon modes to the energy levels of the atom. A qubit is then created by entangling a phonon at the resonance frequency of the cavity with the atomic acceptor states. We show theoretical optimization of the cavity design and excitation waveguides, along with estimated performance figures of the phoniton system. Qubits based on this half-sound, half-matter quasi-particle, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.
Novel schemes for measurement-based quantum computation.
Gross, D; Eisert, J
2007-06-01
We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics-based on finitely correlated or projected entangled pair states-to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems. PMID:17677826
Scalable optical quantum computer
Manykin, E A; Mel'nichenko, E V
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
NASA Astrophysics Data System (ADS)
Ekert, Artur
1994-08-01
As computers become faster they must become smaller because of the finiteness of the speed of light. The history of computer technology has involved a sequence of changes from one type of physical realisation to another - from gears to relays to valves to transistors to integrated circuits and so on. Quantum mechanics is already important in the design of microelectronic components. Soon it will be necessary to harness quantum mechanics rather than simply take it into account, and at that point it will be possible to give data processing devices new functionality.
Quantum Nondeterministic Computation based on Statistics Superselection Rules
NASA Astrophysics Data System (ADS)
Castagnoli, G.
Quantum states which obey certain symmetry superselection rules under identical particles permutation can be interpreted as computational states satisfying corresponding Boolean predicates. Given the NP-complete problem of testing the satisfiability of a generic Boolean predicate P, we investigate the possibility of achieving quantum nondeterministic computation by deriving, from P, a physical situation in which the computational states satisfy P iff they satisfy a special fermion statistics.
Adiabatic topological quantum computing
NASA Astrophysics Data System (ADS)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
Universal quantum gates for Single Cooper Pair Box based quantum computing
NASA Technical Reports Server (NTRS)
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
NASA Astrophysics Data System (ADS)
Barz, Stefanie
2013-05-01
Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. In this talk I will present a series of experiments in the field of photonic quantum computing. The first experiment is in the field of photonic state engineering and realizes the generation of heralded polarization-entangled photon pairs. It overcomes the limited applicability of photon-based schemes for quantum information processing tasks, which arises from the probabilistic nature of photon generation. The second experiment uses polarization-entangled photonic qubits to implement ``blind quantum computing,'' a new concept in quantum computing. Blind quantum computing enables a nearly-classical client to access the resources of a more computationally-powerful quantum server without divulging the content of the requested computation. Finally, the concept of blind quantum computing is applied to the field of verification. A new method is developed and experimentally demonstrated, which verifies the entangling capabilities of a quantum computer based on a blind Bell test.
Quantum Computation Based on Photons with Three Degrees of Freedom.
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun
2016-01-01
Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems. PMID:27174302
Quantum Computation Based on Photons with Three Degrees of Freedom
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun
2016-05-01
Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems.
Quantum Computation Based on Photons with Three Degrees of Freedom
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun
2016-01-01
Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems. PMID:27174302
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via its bifurcation with a slowly varying parameter. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing. To distinguish them, we refer to the present approach as bifurcation-based adiabatic quantum computation. Our numerical simulation results suggest that quantum superposition and quantum fluctuation work effectively to find optimal solutions.
NASA Technical Reports Server (NTRS)
Zak, M.
1998-01-01
Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.
Wei, Hai-Rui; Deng, Fu-Guo
2014-01-01
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low. PMID:25518899
Wei, Hai-Rui; Deng, Fu-Guo
2014-01-01
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low. PMID:25518899
Kendon, Viv
2014-12-04
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.
Calarco, T.; Datta, A.; Fedichev, P.; Zoller, P.; Pazy, E.
2003-07-01
We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects and evaluate quantitatively its fidelity.
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
NASA Astrophysics Data System (ADS)
Zhang, Yong; Zhang, Kun; Pang, Jinglong
2016-01-01
This paper focuses on the study of topological features in teleportation-based quantum computation and aims at presenting a detailed review on teleportation-based quantum computation (Gottesman and Chuang in Nature 402: 390, 1999). In the extended Temperley-Lieb diagrammatical approach, we clearly show that such topological features bring about the fault-tolerant construction of both universal quantum gates and four-partite entangled states more intuitive and simpler. Furthermore, we describe the Yang-Baxter gate by its extended Temperley-Lieb configuration and then study teleportation-based quantum circuit models using the Yang-Baxter gate. Moreover, we discuss the relationship between the extended Temperley-Lieb diagrammatical approach and the Yang-Baxter gate approach. With these research results, we propose a worthwhile subject, the extended Temperley-Lieb diagrammatical approach, for physicists in quantum information and quantum computation.
O'Brien, J. L.; Schofield, S. R.; Simmons, M. Y.; Clark, R. G.; Dzurak, A. S.; Curson, N. J.; Kane, B. E.; McAlpine, N. S.; Hawley, M. E.; Brown, G. W.
2001-01-01
Quantum computers offer the promise of formidable computational power for certain tasks. Of the various possible physical implementations of such a device, silicon based architectures are attractive for their scalability and ease of integration with existing silicon technology. These designs use either the electron or nuclear spin state of single donor atoms to store quantum information. Here we describe a strategy to fabricate an array of single phosphorus atoms in silicon for the construction of such a silicon based quantum computer. We demonstrate the controlled placement of single phosphorus bearing molecules on a silicon surface. This has been achieved by patterning a hydrogen mono-layer 'resist' with a scanning tunneling microscope (STM) tip and exposing the patterned surface to phosphine (PH3) molecules. We also describe preliminary studies into a process to incorporate these surface phosphorus atoms into the silicon crystal at the array sites. Keywords: Quantum computing, nanotechriology scanning turincling microscopy, hydrogen lithography
Introduction to Quantum Computation
NASA Astrophysics Data System (ADS)
Ekert, A.
A computation is a physical process. It may be performed by a piece of electronics or on an abacus, or in your brain, but it is a process that takes place in nature and as such it is subject to the laws of physics. Quantum computers are machines that rely on characteristically quantum phenomena, such as quantum interference and quantum entanglement in order to perform computation. In this series of lectures I want to elaborate on the computational power of such machines.
Quantum computer games: quantum minesweeper
NASA Astrophysics Data System (ADS)
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-01-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-01-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997
Quantum information and computation
Bennett, C.H.
1995-10-01
A new quantum theory of communication and computation is emerging, in which the stuff transmitted or processed is not classical information, but arbitrary superpositions of quantum states. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}.
Quantum Computing since Democritus
NASA Astrophysics Data System (ADS)
Aaronson, Scott
2013-03-01
1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.
Simulation of Si:P spin-based quantum computer architecture
Chang Yiachung; Fang Angbo
2008-11-07
We present realistic simulation for single and double phosphorous donors in a silicon-based quantum computer design by solving a valley-orbit coupled effective-mass equation for describing phosphorous donors in strained silicon quantum well (QW). Using a generalized unrestricted Hartree-Fock method, we solve the two-electron effective-mass equation with quantum well confinement and realistic gate potentials. The effects of QW width, gate voltages, donor separation, and donor position shift on the lowest singlet and triplet energies and their charge distributions for a neighboring donor pair in the quantum computer(QC) architecture are analyzed. The gate tunability are defined and evaluated for a typical QC design. Estimates are obtained for the duration of spin half-swap gate operation.
Quantum Dots Based Rad-Hard Computing and Sensors
NASA Technical Reports Server (NTRS)
Fijany, A.; Klimeck, G.; Leon, R.; Qiu, Y.; Toomarian, N.
2001-01-01
Quantum Dots (QDs) are solid-state structures made of semiconductors or metals that confine a small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well-conducting region. Thus, they can be viewed as artificial atoms. They therefore represent the ultimate limit of the semiconductor device scaling. Additional information is contained in the original extended abstract.
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
Probabilistic Cloning and Quantum Computation
NASA Astrophysics Data System (ADS)
Gao, Ting; Yan, Feng-Li; Wang, Zhi-Xi
2004-06-01
We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning. In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.
Atomic physics: A milestone in quantum computing
NASA Astrophysics Data System (ADS)
Bartlett, Stephen D.
2016-08-01
Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63
Efficient universal blind quantum computation.
Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G
2013-12-01
We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation. PMID:24476238
Efficient Universal Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G.
2013-12-01
We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party’s quantum computer without revealing either which computation is performed, or its input and output. The first party’s computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.
Architecture Framework for Trapped-Ion Quantum Computer based on Performance Simulation Tool
NASA Astrophysics Data System (ADS)
Ahsan, Muhammad
The challenge of building scalable quantum computer lies in striking appropriate balance between designing a reliable system architecture from large number of faulty computational resources and improving the physical quality of system components. The detailed investigation of performance variation with physics of the components and the system architecture requires adequate performance simulation tool. In this thesis we demonstrate a software tool capable of (1) mapping and scheduling the quantum circuit on a realistic quantum hardware architecture with physical resource constraints, (2) evaluating the performance metrics such as the execution time and the success probability of the algorithm execution, and (3) analyzing the constituents of these metrics and visualizing resource utilization to identify system components which crucially define the overall performance. Using this versatile tool, we explore vast design space for modular quantum computer architecture based on trapped ions. We find that while success probability is uniformly determined by the fidelity of physical quantum operation, the execution time is a function of system resources invested at various layers of design hierarchy. At physical level, the number of lasers performing quantum gates, impact the latency of the fault-tolerant circuit blocks execution. When these blocks are used to construct meaningful arithmetic circuit such as quantum adders, the number of ancilla qubits for complicated non-clifford gates and entanglement resources to establish long-distance communication channels, become major performance limiting factors. Next, in order to factorize large integers, these adders are assembled into modular exponentiation circuit comprising bulk of Shor's algorithm. At this stage, the overall scaling of resource-constraint performance with the size of problem, describes the effectiveness of chosen design. By matching the resource investment with the pace of advancement in hardware technology
Toward a superconducting quantum computer
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers. PMID:20431256
Continuous-Variable Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2012-12-01
Blind quantum computation is a secure delegated quantum computing protocol where Alice, who does not have sufficient quantum technology at her disposal, delegates her computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice’s input, output, and algorithm. Protocols of blind quantum computation have been proposed for several qudit measurement-based computation models, such as the graph state model, the Affleck-Kennedy-Lieb-Tasaki model, and the Raussendorf-Harrington-Goyal topological model. Here, we consider blind quantum computation for the continuous-variable measurement-based model. We show that blind quantum computation is possible for the infinite squeezing case. We also show that the finite squeezing causes no additional problem in the blind setup apart from the one inherent to the continuous-variable measurement-based quantum computation.
Quantum computation using geometric algebra
NASA Astrophysics Data System (ADS)
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Quantum computing with trapped ions
Hughes, R.J.
1998-01-01
The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.
Quantum computation: Honesty test
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2013-11-01
Alice does not have a quantum computer so she delegates a computation to Bob, who does own one. But how can Alice check whether the computation that Bob performs for her is correct? An experiment with photonic qubits demonstrates such a verification protocol.
Quantum computation and hidden variables
NASA Astrophysics Data System (ADS)
Aristov, V. V.; Nikulov, A. V.
2008-03-01
Many physicists limit oneself to an instrumentalist description of quantum phenomena and ignore the problems of foundation and interpretation of quantum mechanics. This instrumentalist approach results to "specialization barbarism" and mass delusion concerning the problem, how a quantum computer can be made. The idea of quantum computation can be described within the limits of quantum formalism. But in order to understand how this idea can be put into practice one should realize the question: "What could the quantum formalism describe?", in spite of the absence of an universally recognized answer. Only a realization of this question and the undecided problem of quantum foundations allows to see in which quantum systems the superposition and EPR correlation could be expected. Because of the "specialization barbarism" many authors are sure that Bell proved full impossibility of any hidden-variables interpretation. Therefore it is important to emphasize that in reality Bell has restricted to validity limits of the no-hidden-variables proof and has shown that two-state quantum system can be described by hidden variables. The later means that no experimental result obtained on two-state quantum system can prove the existence of superposition and violation of the realism. One should not assume before unambiguous experimental evidence that any two-state quantum system is quantum bit. No experimental evidence of superposition of macroscopically distinct quantum states and of a quantum bit on base of superconductor structure was obtained for the present. Moreover same experimental results can not be described in the limits of the quantum formalism.
NASA Astrophysics Data System (ADS)
Sau, Jay; Barkeshli, Maissam
The idea of topological quantum computation (TQC) is to encode and manipulate quantum information in an intrinsically fault-tolerant manner by utilizing the physics of topologically ordered phases of matter. Currently, the most promising platforms for a topological qubit are either in terms of Majorana fermion zero modes (MZMs) in spin-orbit coupled superconducting nanowires or in terms of the Kitaev Z2 surface code. However, the topologically robust operations that are possible in these systems are not sufficient for realizing a universal gate set for topological quantum computation. Here, we show that an array of coupled semiconductor/superconductor nanowires with MZM edge states can be used to realize a more sophisticated type of non-Abelian defect, a genon in an Ising X Ising topological state. This leads to a possible implementation of the missing topologically protected pi/8 phase gate and thus paves a path for universal topological quantum computation based on semiconductor-superconductor nanowire technology. We provide detailed numerical estimates of the relevant energy scales, which we show to lie within accessible ranges. J. S. was supported by Microsoft Station Q, startup funds from the University of Maryland and NSF-JQI-PFC.
Quantum Computation and Quantum Metrology based on Single Electron Spin in Diamond
NASA Astrophysics Data System (ADS)
Du, Jiangfeng
2015-03-01
It is of great challenge to perform the accurate controlling the electron spin qubits in realistic system, due to the noises aroused from the noisy spin bath and the driving field. Firstly, we adopted dynamically corrected gates to realize robust and high-fidelity quantum gates. In this work, the quantum gate's performance was pushed to T1r limit. Then, a new Rabi Oscillations (ROs) resulting from Landau-Zener (LZ) transitions is observed useful to suppress the fluctuations of the driving field. Besides, quantum error correction is experimentally employed to overcome the noise effect in diamonds. Precise quantum control and effectively supressing noise of the environment are of great importance for quantum metrology. We succeeded in sensing and atomic-scale analysis of single nuclear spin clusters in diamond at room temperature, and also have succeed to detect a few nuclear spins with single spin sensitivity.
Entanglement and adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Ahrensmeier, D.
2006-06-01
Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.
NASA Astrophysics Data System (ADS)
Kashefi, Elham
Over the next five to ten years we will see a state of flux as quantum devices become part of the mainstream computing landscape. However adopting and applying such a highly variable and novel technology is both costly and risky as this quantum approach has an acute verification and validation problem: On the one hand, since classical computations cannot scale up to the computational power of quantum mechanics, verifying the correctness of a quantum-mediated computation is challenging; on the other hand, the underlying quantum structure resists classical certification analysis. Our grand aim is to settle these key milestones to make the translation from theory to practice possible. Currently the most efficient ways to verify a quantum computation is to employ cryptographic methods. I will present the current state of the art of various existing protocols where generally there exists a trade-off between the practicality of the scheme versus their generality, trust assumptions and security level. EK gratefully acknowledges funding through EPSRC Grants EP/N003829/1 and EP/M013243/1.
General Quantum Interference Principle and Duality Computer
NASA Astrophysics Data System (ADS)
Long, Gui-Lu
2006-05-01
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.
Universal measurement-based quantum computation with spin-2 Affleck-Kennedy-Lieb-Tasaki states
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert
2015-07-01
We demonstrate that the spin-2 Affleck-Kennedy-Lieb-Tasaki (AKLT) state on a square lattice is a universal resource for measurement-based quantum computation. Our proof is done by locally converting the AKLT to two-dimensional random planar graph states and by certifying that with a high probability the resulting random graphs are in the supercritical phase of percolation using Monte Carlo simulations. One key enabling point is the exact weight formula that we derive for arbitrary measurement outcomes according to a spin-2 positive operator-valued measure on all spins. We also argue that the spin-2 AKLT state on a three-dimensional diamond lattice is a universal resource, the advantage of which would be the possibility of implementing fault-tolerant quantum computation with topological protection. In addition, as we deform the AKLT Hamiltonian, there is a finite region in which the ground state can still support a universal resource before making a transition in its quantum computational power.
Programming Non-Trivial Algorithms in the Measurement Based Quantum Computation Model
Alsing, Paul; Fanto, Michael; Lott, Capt. Gordon; Tison, Christoper C.
2014-01-01
We provide a set of prescriptions for implementing a quantum circuit model algorithm as measurement based quantum computing (MBQC) algorithm1, 2 via a large cluster state. As means of illustration we draw upon our numerical modeling experience to describe a large graph state capable of searching a logical 8 element list (a non-trivial version of Grover's algorithm3 with feedforward). We develop several prescriptions based on analytic evaluation of cluster states and graph state equations which can be generalized into any circuit model operations. Such a resulting cluster state will be able to carry out the desired operation with appropriate measurements and feed forward error correction. We also discuss the physical implementation and the analysis of the principal 3-qubit entangling gate (Toffoli) required for a non-trivial feedforward realization of an 8-element Grover search algorithm.
Quantum Computing using Photons
NASA Astrophysics Data System (ADS)
Elhalawany, Ahmed; Leuenberger, Michael
2013-03-01
In this work, we propose a theoretical model of two-quantum bit gates for quantum computation using the polarization states of two photons in a microcavity. By letting the two photons interact non-resonantly with four quantum dots inside the cavity, we obtain an effective photon-photon interaction which we exploit for the implementation of an universal XOR gate. The two-photon Hamiltonian is written in terms of the photons' total angular momentum operators and their states are written using the Schwinger representation of the total angular momentum.
Computational quantum chemistry website
1997-08-22
This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage.
NASA Astrophysics Data System (ADS)
Landahl, Andrew
2012-10-01
Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with
NASA Astrophysics Data System (ADS)
Miyazaki, Jisho; Hajdušek, Michal; Murao, Mio
2015-05-01
In measurement-based quantum computation (MBQC), elementary quantum operations can be more parallelized than the quantum circuit model by employing a larger Hilbert space of graph states used as the resource. Thus MBQC can be regarded as a method of quantum computation where the temporal resource described by the depth of quantum operations can be reduced compared to the quantum circuit model by using the extra spatial resource described by graph states. To analyze the trade-off relationship of the spatial and temporal resources, we consider a method to obtain quantum circuit decompositions of general unitary transformations represented by MBQC on graph states with a certain underlying geometry called generalized flow. We present a method to translate any MBQC with generalized flow into quantum circuits without extra spatial resource. We also show an explicit way to unravel acausal gates without postselection that appear in the quantum circuit decomposition derived by a translation method [V. Danos and E. Kashefi, Phys. Rev. A 74, 052310 (2006), 10.1103/PhysRevA.74.052310] and that represents an effect of the reduction of the temporal resource in MBQC. Finally, by considering a way to deterministically simulate these acausal gates, we investigate a general framework to analyze the trade-off between the spatial and temporal resources for quantum computation.
Undergraduate computational physics projects on quantum computing
NASA Astrophysics Data System (ADS)
Candela, D.
2015-08-01
Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.
Universal quantum computation using the discrete-time quantum walk
Lovett, Neil B.; Cooper, Sally; Everitt, Matthew; Trevers, Matthew; Kendon, Viv
2010-04-15
A proof that continuous-time quantum walks are universal for quantum computation, using unweighted graphs of low degree, has recently been presented by A. M. Childs [Phys. Rev. Lett. 102, 180501 (2009)]. We present a version based instead on the discrete-time quantum walk. We show that the discrete-time quantum walk is able to implement the same universal gate set and thus both discrete and continuous-time quantum walks are computational primitives. Additionally, we give a set of components on which the discrete-time quantum walk provides perfect state transfer.
Layered Architectures for Quantum Computers and Quantum Repeaters
NASA Astrophysics Data System (ADS)
Jones, Nathan C.
This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.
Quantum computers: Definition and implementations
Perez-Delgado, Carlos A.; Kok, Pieter
2011-01-15
The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.
Quantum computers: Definition and implementations
NASA Astrophysics Data System (ADS)
Pérez-Delgado, Carlos A.; Kok, Pieter
2011-01-01
The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.
Quantum computing on encrypted data
NASA Astrophysics Data System (ADS)
Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
Quantum computing on encrypted data.
Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems. PMID:24445949
Quantum Computing's Classical Problem, Classical Computing's Quantum Problem
NASA Astrophysics Data System (ADS)
Van Meter, Rodney
2014-08-01
Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical computers continue to advance, but those advances are now constrained by thermodynamics, and will soon be limited by the discrete nature of atomic matter and ultimately quantum effects. Technological advances benefit both quantum and classical machinery, altering the competitive landscape. Can we build quantum computing systems that out-compute classical systems capable of some logic gates per month? This article will discuss the interplay in these competing and cooperating technological trends.
Quantum computing with defects.
Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D
2010-05-11
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors. PMID:20404195
Molecular Realizations of Quantum Computing 2007
NASA Astrophysics Data System (ADS)
Nakahara, Mikio; Ota, Yukihiro; Rahimi, Robabeh; Kondo, Yasushi; Tada-Umezaki, Masahito
2009-06-01
Liquid-state NMR quantum computer: working principle and some examples / Y. Kondo -- Flux qubits, tunable coupling and beyond / A. O. Niskanen -- Josephson phase qubits, and quantum communication via a resonant cavity / M. A. Sillanpää -- Quantum computing using pulse-based electron-nuclear double resonance (ENDOR): molecular spin-qubits / K. Sato ... [et al.] -- Fullerene C[symbol]: a possible molecular quantum computer / T. Wakabayashi -- Molecular magnets for quantum computation / T. Kuroda -- Errors in a plausible scheme of quantum gates in Kane's model / Y. Ota -- Yet another formulation for quantum simultaneous noncooperative bimatrix games / A. SaiToh, R. Rahimi, M. Nakahara -- Continuous-variable teleportation of single-photon states and an accidental cloning of a photonic qubit in two-channel teleportation / T. Ide.
NASA Astrophysics Data System (ADS)
Chappell, James M.; Iqbal, Azhar; Lohe, M. A.; von Smekal, Lorenz; Abbott, Derek
2013-04-01
The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and most intuitive formalism possible. We show firstly, that Clifford's geometric algebra, provides a significantly simpler representation than the conventional bra-ket notation, and secondly, that the basis defined by the states of maximum and minimum weight in the Grover search space, allows a simple visualization of the Grover search analogous to the precession of a spin-{1/2} particle. Using this formalism we efficiently solve the exact search problem, as well as easily representing more general search situations. We do not claim the development of an improved algorithm, but show in a tutorial paper that geometric algebra provides extremely compact and elegant expressions with improved clarity for the Grover search algorithm. Being a key algorithm in quantum computing and one of the most studied, it forms an ideal basis for a tutorial on how to elucidate quantum operations in terms of geometric algebra—this is then of interest in extending the applicability of geometric algebra to more complicated problems in fields of quantum computing, quantum decision theory, and quantum information.
NASA Astrophysics Data System (ADS)
O'Brien, J. L.; Schofield, S. R.; Simmons, M. Y.; Clark, Robert G.; Dzurak, Andrew S.; Curson, N. J.; Kane, Bruce E.; McAlpine, N. S.; Hawley, Marilyn E.; Brown, Geoffrey W.
2001-11-01
Quantum computers offer the promise of formidable computational power for certain tasks. Of the various possible physical implementations of such a device, silicon based architectures are attractive for their scalability and ease of integration with existing silicon technology. These designs use either the electron or nuclear spin state of single donor atoms to store quantum information. Here we describe a strategy to fabricate an array of single phosphorus atoms in silicon for the construction of such a silicon based quantum computer. We demonstrate the controlled placement of single phosphorus bearing molecules on a silicon surface. This has been achieved by patterning a hydrogen mono-layer resist with a scanning tunneling microscope (STM) tip and exposing the patterned surface to phosphine (PH3) molecules. We also describe preliminary studies into a process to incorporate these surface phosphorus atoms into the silicon crystal at the array sites.
Universal quantum computation by discontinuous quantum walk
Underwood, Michael S.; Feder, David L.
2010-10-15
Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.
Communication Capacity of Quantum Computation
NASA Astrophysics Data System (ADS)
Bose, S.; Rallan, L.; Vedral, V.
2000-12-01
By considering quantum computation as a communication process, we relate its efficiency to its classical communication capacity. This formalism allows us to derive lower bounds on the complexity of search algorithms in the most general context. It enables us to link the mixedness of a quantum computer to its efficiency and also allows us to derive the critical level of mixedness beyond which there is no quantum advantage in computation.
Deterministic linear-optics quantum computing based on a hybrid approach
Lee, Seung-Woo; Jeong, Hyunseok
2014-12-04
We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources.
Geometry of discrete quantum computing
NASA Astrophysics Data System (ADS)
Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung
2013-05-01
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.
Brain Neurons as Quantum Computers:
NASA Astrophysics Data System (ADS)
Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.
The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.
Towards Quantum Computing With Light
NASA Astrophysics Data System (ADS)
Pysher, Matthew
This thesis presents experimental progress towards the realization of an optical quantum computer. Quantum computers replace the bits used in classical computing with quantum systems and promise an exponential speedup over their classical counterparts for certain tasks such as integer factoring and the simulation of quantum systems. A recently proposed quantum computing protocol known as one-way quantum computing has paved the way for the use of light in a functional quantum computer. One-way quantum computing calls for the generation of a large (consisting of many subsystems) entangled state known as a cluster state to serve as a quantum register. Entangled states are comprised of subsystems linked in such a way that the state cannot be separated into individual components. A recent proposal has shown that is possible to make arbitrarily large cluster states by linking the resonant frequency modes of a single optical parametric oscillator (OPO). In this thesis, we present two major steps towards the creation of such a cluster state. Namely, we successfully design and test the exotic nonlinear crystal needed in this proposal and use a slight variation on this proposal to simultaneously create over 15 four-mode cluster states in a single OPO. We also explore the possibility of scaling down the physical size of an optical quantum computer by generating squeezed states of light in a compact optical waveguide. Additionally, we investigate photon-number-resolving measurements on continuous quantum light sources, which will be necessary to obtain the desired speedups for a quantum computer over a classical computer.
A direct approach to fault-tolerance in measurement-based quantum computation via teleportation
NASA Astrophysics Data System (ADS)
Silva, Marcus; Danos, Vincent; Kashefi, Elham; Ollivier, Harold
2007-06-01
We discuss a simple variant of the one-way quantum computing model (Raussendorf R and Briegel H-J 2001 Phys. Rev. Lett. 86 5188), called the Pauli measurement model, where measurements are restricted to be along the eigenbases of the Pauli X and Y operators, while qubits can be initially prepared both in the {|}{+_{\\pi\\over 4}}\\rangle:={1/\\sqrt{2}}({|}0\\rangle+\\e^{i(\\pi/4)}{|}{1}\\rangle) state and the usual {|}{+}\\rangle:={1/ \\sqrt{2}}({|}{0}\\rangle+{|}{1}\\rangle) state. We prove the universality of this quantum computation model, and establish a standardization procedure which permits all entanglement and state preparation to be performed at the beginning of computation. This leads us to develop a direct approach to fault-tolerance by simple transformations of the entanglement graph and preparation operations, while error correction is performed naturally via syndrome-extracting teleportations.
Computational quantum-classical boundary of noisy commuting quantum circuits.
Fujii, Keisuke; Tamate, Shuhei
2016-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039
Computational quantum-classical boundary of noisy commuting quantum circuits
Fujii, Keisuke; Tamate, Shuhei
2016-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039
Computational quantum-classical boundary of noisy commuting quantum circuits
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Tamate, Shuhei
2016-05-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.
Quantum Nash Equilibria and Quantum Computing
NASA Astrophysics Data System (ADS)
Fellman, Philip Vos; Post, Jonathan Vos
In 2004, At the Fifth International Conference on Complex Systems, we drew attention to some remarkable findings by researchers at the Santa Fe Institute (Sato, Farmer and Akiyama, 2001) about hitherto unsuspected complexity in the Nash Equilibrium. As we progressed from these findings about heteroclinic Hamiltonians and chaotic transients hidden within the learning patterns of the simple rock-paper-scissors game to some related findings on the theory of quantum computing, one of the arguments we put forward was just as in the late 1990's a number of new Nash equilibria were discovered in simple bi-matrix games (Shubik and Quint, 1996; Von Stengel, 1997, 2000; and McLennan and Park, 1999) we would begin to see new Nash equilibria discovered as the result of quantum computation. While actual quantum computers remain rather primitive (Toibman, 2004), and the theory of quantum computation seems to be advancing perhaps a bit more slowly than originally expected, there have, nonetheless, been a number of advances in computation and some more radical advances in an allied field, quantum game theory (Huberman and Hogg, 2004) which are quite significant. In the course of this paper we will review a few of these discoveries and illustrate some of the characteristics of these new "Quantum Nash Equilibria". The full text of this research can be found at http://necsi.org/events/iccs6/viewpaper.php?id-234
Quantum computing with defects
NASA Astrophysics Data System (ADS)
Varley, Joel
2011-03-01
The development of a quantum computer is contingent upon the identification and design of systems for use as qubits, the basic units of quantum information. One of the most promising candidates consists of a defect in diamond known as the nitrogen-vacancy (NV-1) center, since it is an individually-addressable quantum system that can be initialized, manipulated, and measured with high fidelity at room temperature. While the success of the NV-1 stems from its nature as a localized ``deep-center'' point defect, no systematic effort has been made to identify other defects that might behave in a similar way. We provide guidelines for identifying other defect centers with similar properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate systems. To elucidate these points, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). Using hybrid functionals, we report formation energies, configuration-coordinate diagrams, and defect-level diagrams to compare and contrast the properties of these defects. We find that the NC VSi - 1 center in SiC, a structural analog of the NV-1 center in diamond, may be a suitable center with very different optical transition energies. We also discuss how the proposed criteria can be translated into guidelines to discover NV analogs in other tetrahedrally coordinated materials. This work was performed in collaboration with J. R. Weber, W. F. Koehl, B. B. Buckley, A. Janotti, C. G. Van de Walle, and D. D. Awschalom. This work was supported by ARO, AFOSR, and NSF.
Quantum Computing: Solving Complex Problems
DiVincenzo, David [IBM Watson Research Center
2009-09-01
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Quantum Computing: Solving Complex Problems
DiVincenzo, David
2007-04-12
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Quantum Computing: Solving Complex Problems
DiVincenzo, David
2007-04-11
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
The Physics of Quantum Computation
NASA Astrophysics Data System (ADS)
Falci, Giuseppe; Paladino, Elisabette
2015-10-01
Quantum Computation has emerged in the past decades as a consequence of down-scaling of electronic devices to the mesoscopic regime and of advances in the ability of controlling and measuring microscopic quantum systems. QC has many interdisciplinary aspects, ranging from physics and chemistry to mathematics and computer science. In these lecture notes we focus on physical hardware, present day challenges and future directions for design of quantum architectures.
Video Encryption and Decryption on Quantum Computers
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
Universal quantum computation with weakly integral anyons
NASA Astrophysics Data System (ADS)
Cui, Shawn X.; Hong, Seung-Moon; Wang, Zhenghan
2015-08-01
Harnessing non-abelian statistics of anyons to perform quantum computational tasks is getting closer to reality. While the existence of universal anyons by braiding alone such as the Fibonacci anyon is theoretically a possibility, accessible anyons with current technology all belong to a class that is called weakly integral—anyons whose squared quantum dimensions are integers. We analyze the computational power of the first non-abelian anyon system with only integral quantum dimensions—, the quantum double of . Since all anyons in have finite images of braid group representations, they cannot be universal for quantum computation by braiding alone. Based on our knowledge of the images of the braid group representations, we set up three qutrit computational models. Supplementing braidings with some measurements and ancillary states, we find a universal gate set for each model.
Duality quantum computer and the efficient quantum simulations
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Long, Gui-Lu
2016-03-01
Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11-12):901-924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.
Quantum Information and Computing
NASA Astrophysics Data System (ADS)
Accardi, L.; Ohya, Masanori; Watanabe, N.
2006-03-01
Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An
Effective pure states for bulk quantum computation
Knill, E.; Chuang, I.; Laflamme, R.
1997-11-01
In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.
Conceptual aspects of geometric quantum computation
NASA Astrophysics Data System (ADS)
Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.
2016-07-01
Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
NASA Technical Reports Server (NTRS)
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Cryptography, quantum computation and trapped ions
Hughes, Richard J.
1998-03-01
The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.
Superadiabatic Controlled Evolutions and Universal Quantum Computation
Santos, Alan C.; Sarandy, Marcelo S.
2015-01-01
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064
Superadiabatic Controlled Evolutions and Universal Quantum Computation
NASA Astrophysics Data System (ADS)
Santos, Alan C.; Sarandy, Marcelo S.
2015-10-01
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts.
Using computer algebra in quantum computation and quantum games
NASA Astrophysics Data System (ADS)
Bolívar, David A.
2011-05-01
Research in contemporary physics is emphasizing the development and evolution of computer systems to facilitate the calculations. Quantum computing is a branch of modern physics is believed promising results for the future, Thanks to the ability of qubits to store more information than a bit. The work of this paper focuses on the simulation of certain quantum algorithms such as the prisoner's dilemma in its quantum version using the MATHEMATICA® software and implementing stochastic version of the software MAPLE ® and the Grover search algorithm that simulates finding a needle in a haystack.
Hybrid quantum computing: semicloning for general database retrieval
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco; Uhlmann, Jeffrey K.
2005-05-01
Quantum computing (QC) has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing (CC). In particular, QC is able to exploit the special properties of quantum superposition to achieve computational parallelism beyond what can be achieved with parallel CC computers. However, these special properties are not applicable for general computation. Therefore, we propose the use of "hybrid quantum computers" (HQCs) that combine both classical and quantum computing architectures in order to leverage the benefits of both. We demonstrate how an HQC can exploit quantum search to support general database operations more efficiently than is possible with CC. Our solution is based on new quantum results that are of independent significance to the field of quantum computing. More specifically, we demonstrate that the most restrictive implications of the quantum No-Cloning Theorem can be avoided through the use of semiclones.
Quantum chromodynamics with advanced computing
Kronfeld, Andreas S.; /Fermilab
2008-07-01
We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.
Hyper-parallel photonic quantum computation with coupled quantum dots
NASA Astrophysics Data System (ADS)
Ren, Bao-Cang; Deng, Fu-Guo
2014-04-01
It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF.
Iterated Gate Teleportation and Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2015-06-01
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.
Iterated Gate Teleportation and Blind Quantum Computation.
Pérez-Delgado, Carlos A; Fitzsimons, Joseph F
2015-06-01
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements. PMID:26196609
Faster quantum chemistry simulation on fault-tolerant quantum computers
NASA Astrophysics Data System (ADS)
Cody Jones, N.; Whitfield, James D.; McMahon, Peter L.; Yung, Man-Hong; Van Meter, Rodney; Aspuru-Guzik, Alán; Yamamoto, Yoshihisa
2012-11-01
Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ɛ, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log ɛ) or O(log log ɛ) with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride.
Massively parallel quantum computer simulator
NASA Astrophysics Data System (ADS)
De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.
2007-01-01
We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.
Semiconductor-inspired superconducting quantum computing
NASA Astrophysics Data System (ADS)
Shim, Yun-Pil
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit based quantum computing. Here we present an architecture for superconducting quantum computing based on selective design principles deduced from spin-based systems. We propose an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is especially suited to qubits based on variable super-semi junctions.
Pfaffian States: Quantum Computation
Shrivastava, Keshav N.
2009-09-14
The Pfaffian determinant is sometimes used to multiply the Laughlin's wave function at the half filled Landau level. The square of the Pfaffian gives the ordinary determinant. We find that the Pfaffian wave function leads to four times larger energies and two times faster time. By the same logic, the Pfaffian breaks the supersymmetry of the Dirac equation. By using the spin properties and the Landau levels, we correctly interpret the state with 5/2 filling. The quantum numbers which represent the state vectors are now products of n (Landau level quantum number), l(orbital angular momentum quantum number and the spin, s |n, l, s>. In a circuit, the noise measures the resistivity and hence the charge. The Pfaffian velocity is different from that of the single-particle states and hence it has important consequences in the measurement of the charge of the quasiparticles.
Topological Code Architectures for Quantum Computation
NASA Astrophysics Data System (ADS)
Cesare, Christopher Anthony
This dissertation is concerned with quantum computation using many-body quantum systems encoded in topological codes. The interest in these topological systems has increased in recent years as devices in the lab begin to reach the fidelities required for performing arbitrarily long quantum algorithms. The most well-studied system, Kitaev's toric code, provides both a physical substrate for performing universal fault-tolerant quantum computations and a useful pedagogical tool for explaining the way other topological codes work. In this dissertation, I first review the necessary formalism for quantum information and quantum stabilizer codes, and then I introduce two families of topological codes: Kitaev's toric code and Bombin's color codes. I then present three chapters of original work. First, I explore the distinctness of encoding schemes in the color codes. Second, I introduce a model of quantum computation based on the toric code that uses adiabatic interpolations between static Hamiltonians with gaps constant in the system size. Lastly, I describe novel state distillation protocols that are naturally suited for topological architectures and show that they provide resource savings in terms of the number of required ancilla states when compared to more traditional approaches to quantum gate approximation.
Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing
NASA Astrophysics Data System (ADS)
Venkataraman, Vivek; Saha, Kasturi; Gaeta, Alexander L.
2013-02-01
The ability of a few-photon light field to impart an appreciable phase shift on another light field is critical for many quantum information applications. A recently proposed paradigm for quantum computation utilizes weak nonlinearities, where a strong field mediates such cross-phase shifts between single photons. Such a protocol promises to be feasible in terms of scalability to many qubits if a cross-phase shift of 10-5 to 10-2 radians per photon can be achieved. A promising platform to achieve such cross-phase shifts is the hollow-core photonic bandgap fibre, which can highly confine atomic vapours and light over distances much greater than the diffraction length. Here, we produce large cross-phase shifts of 0.3 mrad per photon with a fast response time (<5 ns) using rubidium atoms confined to a hollow-core photonic bandgap fibre, which represents, to our knowledge, the largest such nonlinear phase shift induced in a single pass through a room-temperature medium.
NASA Astrophysics Data System (ADS)
Mishmash, Ryan V.; Aasen, David; Hell, Michael; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason
We introduce a scheme for preparation, manipulation, and readout of Majorana zero modes in semiconducting wires coated with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate-control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. Recently, we have outlined a sequence of relatively modest milestones which interpolate between zero-mode detection and longer term quantum computing applications. In this talk, I will discuss two of these milestones: (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensing or Majorana-mediated charge pumping and (2) validation of a prototype topological qubit via unconventional scaling relations between the time-averaged qubit splitting and its decoherence times T1 and T2. Both of these proposed experiments require only a single wire with two islands--a hardware configuration already available in the laboratory. Furthermore, these pre-braiding experiments can be adapted to other manipulation and readout schemes as well.
Quantumness, Randomness and Computability
NASA Astrophysics Data System (ADS)
Solis, Aldo; Hirsch, Jorge G.
2015-06-01
Randomness plays a central role in the quantum mechanical description of our interactions. We review the relationship between the violation of Bell inequalities, non signaling and randomness. We discuss the challenge in defining a random string, and show that algorithmic information theory provides a necessary condition for randomness using Borel normality. We close with a view on incomputablity and its implications in physics.
Prospects for quantum computing: Extremely doubtful
NASA Astrophysics Data System (ADS)
Dyakonov, M. I.
2014-09-01
The quantum computer is supposed to process information by applying unitary transformations to 2N complex amplitudes defining the state of N qubits. A useful machine needing N 103 or more, the number of continuous parameters describing the state of a quantum computer at any given moment is at least 21000 10300 which is much greater than the number of protons in the Universe. However, the theorists believe that the feasibility of large-scale quantum computing has been proved via the “threshold theorem”. Like for any theorem, the proof is based on a number of assumptions considered as axioms. However, in the physical world none of these assumptions can be fulfilled exactly. Any assumption can be only approached with some limited precision. So, the rather meaningless “error per qubit per gate” threshold must be supplemented by a list of the precisions with which all assumptions behind the threshold theorem should hold. Such a list still does not exist. The theory also seems to ignore the undesired free evolution of the quantum computer caused by the energy differences of quantum states entering any given superposition. Another important point is that the hypothetical quantum computer will be a system of 103 -106 qubits PLUS an extremely complex and monstrously sophisticated classical apparatus. This huge and strongly nonlinear system will generally exhibit instabilities and chaotic behavior.
Universal quantum computation with unlabelled qubits
NASA Astrophysics Data System (ADS)
Severini, Simone
2006-06-01
We show that an nth root of the Walsh-Hadamard transform (obtained from the Hadamard gate and a cyclic permutation of the qubits), together with two diagonal matrices, namely a local qubit-flip (for a fixed but arbitrary qubit) and a non-local phase-flip (for a fixed but arbitrary coefficient), can do universal quantum computation on n qubits. A quantum computation, making use of n qubits and based on these operations, is then a word of variable length, but whose letters are always taken from an alphabet of cardinality three. Therefore, in contrast with other universal sets, no choice of qubit lines is needed for the application of the operations described here. A quantum algorithm based on this set can be interpreted as a discrete diffusion of a quantum particle on a de Bruijn graph, corrected on-the-fly by auxiliary modifications of the phases associated with the arcs.
Power of one qumode for quantum computation
NASA Astrophysics Data System (ADS)
Liu, Nana; Thompson, Jayne; Weedbrook, Christian; Lloyd, Seth; Vedral, Vlatko; Gu, Mile; Modi, Kavan
2016-05-01
Although quantum computers are capable of solving problems like factoring exponentially faster than the best-known classical algorithms, determining the resources responsible for their computational power remains unclear. An important class of problems where quantum computers possess an advantage is phase estimation, which includes applications like factoring. We introduce a computational model based on a single squeezed state resource that can perform phase estimation, which we call the power of one qumode. This model is inspired by an interesting computational model known as deterministic quantum computing with one quantum bit (DQC1). Using the power of one qumode, we identify that the amount of squeezing is sufficient to quantify the resource requirements of different computational problems based on phase estimation. In particular, we can use the amount of squeezing to quantitatively relate the resource requirements of DQC1 and factoring. Furthermore, we can connect the squeezing to other known resources like precision, energy, qudit dimensionality, and qubit number. We show the circumstances under which they can likewise be considered good resources.
Computations in quantum mechanics made easy
NASA Astrophysics Data System (ADS)
Korsch, H. J.; Rapedius, K.
2016-09-01
Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong
2016-07-01
Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.
Accelerating commutation circuits in quantum computer networks
NASA Astrophysics Data System (ADS)
Jiang, Min; Huang, Xu; Chen, Xiaoping; Zhang, Zeng-ke
2012-12-01
In a high speed and packet-switched quantum computer network, a packet routing delay often leads to traffic jams, becoming a severe bottleneck for speeding up the transmission rate. Based on the delayed commutation circuit proposed in Phys. Rev. Lett. 97, 110502 (2006), we present an improved scheme for accelerating network transmission. For two more realistic scenarios, we utilize the characteristic of a quantum state to simultaneously implement a data switch and transmission that makes it possible to reduce the packet delay and route a qubit packet even before its address is determined. This circuit is further extended to the quantum network for the transmission of the unknown quantum information. The analysis demonstrates that quantum communication technology can considerably reduce the processing delay time and build faster and more efficient packet-switched networks.
Biologically inspired path to quantum computer
NASA Astrophysics Data System (ADS)
Ogryzko, Vasily; Ozhigov, Yuri
2014-12-01
We describe an approach to quantum computer inspired by the information processing at the molecular level in living cells. It is based on the separation of a small ensemble of qubits inside the living system (e.g., a bacterial cell), such that coherent quantum states of this ensemble remain practically unchanged for a long time. We use the notion of a quantum kernel to describe such an ensemble. Quantum kernel is not strictly connected with certain particles; it permanently exchanges atoms and molecules with the environment, which makes quantum kernel a virtual notion. There are many reasons to expect that the state of quantum kernel of a living system can be treated as the stationary state of some Hamiltonian. While the quantum kernel is responsible for the stability of dynamics at the time scale of cellular life, at the longer inter-generation time scale it can change, varying smoothly in the course of biological evolution. To the first level of approximation, quantum kernel can be described in the framework of qubit modification of Jaynes-Cummings-Hubbard model, in which the relaxation corresponds to the exchange of matter between quantum kernel and the rest of the cell and is represented as Lindblad super-operators.
Effective pure states for bulk quantum computation
Knill, E.; Chuang, I.; Laflamme, R.
1998-05-01
In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) [Science {bold 275}, 350 (1997)] and Cory {ital et al.} (spatial averaging) [Proc. Natl. Acad. Sci. USA {bold 94}, 1634 (1997)] for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla quantum bits, and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high-temperature and low-temperature bulk quantum computing and analyze the signal-to-noise behavior of each. Most of these algorithms require only a constant multiple of the number of experiments needed by the other methods for creating effective pure states. {copyright} {ital 1998} {ital The American Physical Society}
Quantum Computing and Number Theory
NASA Astrophysics Data System (ADS)
Sasaki, Yoshitaka
2013-09-01
The prime factorization can be efficiently solved on a quantum computer. This result was given by Shor in 1994. In the first half of this article, a review of Shor's algorithm with mathematical setups is given. In the second half of this article, the prime number theorem which is an essential tool to understand the distribution of prime numbers is given.
ASCR Workshop on Quantum Computing for Science
Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward; Gaitan, Frank; Humble, Travis; Jordan, Stephen; Landahl, Andrew J; Love, Peter; Lucas, Robert; Preskill, John; Muller, Richard P.; Svore, Krysta; Wiebe, Nathan; Williams, Carl
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
Trading Classical and Quantum Computational Resources
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Smith, Graeme; Smolin, John A.
2016-04-01
We propose examples of a hybrid quantum-classical simulation where a classical computer assisted by a small quantum processor can efficiently simulate a larger quantum system. First, we consider sparse quantum circuits such that each qubit participates in O (1 ) two-qubit gates. It is shown that any sparse circuit on n +k qubits can be simulated by sparse circuits on n qubits and a classical processing that takes time 2O (k )poly (n ) . Second, we study Pauli-based computation (PBC), where allowed operations are nondestructive eigenvalue measurements of n -qubit Pauli operators. The computation begins by initializing each qubit in the so-called magic state. This model is known to be equivalent to the universal quantum computer. We show that any PBC on n +k qubits can be simulated by PBCs on n qubits and a classical processing that takes time 2O (k )poly (n ). Finally, we propose a purely classical algorithm that can simulate a PBC on n qubits in a time 2α npoly (n ) , where α ≈0.94 . This improves upon the brute-force simulation method, which takes time 2npoly (n ). Our algorithm exploits the fact that n -fold tensor products of magic states admit a low-rank decomposition into n -qubit stabilizer states.
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
NASA Astrophysics Data System (ADS)
Smith, A. Matthew; Alsing, P. M.; Lott, G. E.; Fanto, M. L.
2015-11-01
We provide a set of prescriptions for implementing a circuit model algorithm as measurement-based quantum computing algorithm via a large discrete cluster state constructed sequentially, from qubits implemented as single photons. We describe a large optical discrete graph state capable of searching logical 4 and 8 element lists as an example. To do so we have developed several prescriptions based on analytic evaluation of the evolution of discrete cluster states and graph state equations. We describe the cluster state as a sequence of repeated entanglement and measurement steps using a small number of single photons for each step. These prescriptions can be generalized to implement any logical circuit model operation with appropriate single-photon measurements and feed forward error corrections. Such a cluster state is not guaranteed to be optimal (i.e. minimum number of photons, measurements, run time).
Quantum computing with parafermions
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Loss, Daniel
2016-03-01
Zd parafermions are exotic non-Abelian quasiparticles generalizing Majorana fermions, which correspond to the case d =2 . In contrast to Majorana fermions, braiding of parafermions with d >2 allows one to perform an entangling gate. This has spurred interest in parafermions, and a variety of condensed matter systems have been proposed as potential hosts for them. In this work, we study the computational power of braiding parafermions more systematically. We make no assumptions on the underlying physical model but derive all our results from the algebraical relations that define parafermions. We find a family of 2 d representations of the braid group that are compatible with these relations. The braiding operators derived this way reproduce those derived previously from physical grounds as special cases. We show that if a d -level qudit is encoded in the fusion space of four parafermions, braiding of these four parafermions allows one to generate the entire single-qudit Clifford group (up to phases), for any d . If d is odd, then we show that in fact the entire many-qudit Clifford group can be generated.
NASA Astrophysics Data System (ADS)
Huang, Zhihong; Faraon, Andrei; Santori, Charles; Acosta, Victor; Beausoleil, Raymond G.
2013-03-01
The negatively-charged nitrogen-vacancy centers in diamond has motivated many groups building scalable quantum information processors based on diamond photonics. This is owning to the long-lived electronic spin coherence and the capability for spin manipulation and readout of NV centers.1-4 The primitive operation is to create entanglement between two NV centers, based on schemes such as 'atom-photon entanglement' proposed by Cabrillo et al.5To scale this type of scheme beyond two qubits, one important component is an optical switch that allows light emitted from a particular device to be routed to multiple locations. With such a switch, one has choices of routing photons to specified paths and has the benefit of improving the entanglement speed by entangling multiple qubits at the same time. Yield of the existing diamond cavities coupled with NV centers are inevitably low, due to the nature of randomness for NV placement and orientation, variation of spectral stability, and variation of cavity resonance frequency and quality factor. An optical switch provides the capability to tolerate a large fraction of defective devices by routing only to the working devices. Many type of switching devices were built on conventional semiconductor materials with mechanisms from mechanical, thermal switching to carrier injection, photonics crystal, and polymer refractive index tuning .6-8 In this paper, we build an optical-thermal switch on diamond with micro-ring waveguides, mainly for the simplicity of the diamond fabrication. The the switching function was realized by locally tuning the temperature of the diamond waveguides. Switching efficiency of 31% at 'drop' port and 73% at 'through' port were obtained.
Quantum dissonance and deterministic quantum computation with a single qubit
NASA Astrophysics Data System (ADS)
Ali, Mazhar
2014-11-01
Mixed state quantum computation can perform certain tasks which are believed to be efficiently intractable on a classical computer. For a specific model of mixed state quantum computation, namely, deterministic quantum computation with a single qubit (DQC1), recent investigations suggest that quantum correlations other than entanglement might be responsible for the power of DQC1 model. However, strictly speaking, the role of entanglement in this model of computation was not entirely clear. We provide conclusive evidence that there are instances where quantum entanglement is not present in any part of this model, nevertheless we have advantage over classical computation. This establishes the fact that quantum dissonance (a kind of quantum correlations) present in fully separable (FS) states provide power to DQC1 model.
NASA Astrophysics Data System (ADS)
Gordon, Luke
Our era is defined by its technology, and our future is dependent on its continued evolution. Over the past few decades, we have witnessed the expansion of advanced technology into all walks of life and all industries, driven by the exponential increase in the speed and power of semiconductor-based devices. However, as the length scale of devices reaches the atomic scale, a deep understanding of atomistic theory and its application is increasingly crucial. In order to illustrate the power of an atomistic approach to understanding devices, we will present results and conclusions from three interlinked projects: n-type doping of III-nitride semiconductors, defects for quantum computing, and macroscopic simulations of devices. First, we will study effective n-type doping of III-nitride semiconductors and their alloys, and analyze the barriers to effective n-type doping of III-nitrides and their alloys. In particular, we will study the formation of DX centers, and predict alloy composition onsets for various III-nitride alloys. In addition, we will perform a comprehensive study of alternative dopants, and provide potential alternative dopants to improve n-type conductivity in AlN and wide-band-gap nitride alloys. Next, we will discuss how atomic-scale defects can act as a curse for the development of quantum computers by contributing to decoherence at an atomic scale, specifically investigating the effect of two-level state defects (TLS) systems in alumina as a source of decoherence in superconducting qubits based on Josephson junctions; and also as a blessing, by allowing the identification of wholly new qubits in different materials, specifically showing calculations on defects in SiC for quantum computing applications. Finally, we will provide examples of recent calculations we have performed for devices using macrosopic device simulations, largely in conjunction with first-principles calculations. Specifically, we will discuss the power of using a multi
Quantum fully homomorphic encryption scheme based on universal quantum circuit
NASA Astrophysics Data System (ADS)
Liang, Min
2015-08-01
Fully homomorphic encryption enables arbitrary computation on encrypted data without decrypting the data. Here it is studied in the context of quantum information processing. Based on universal quantum circuit, we present a quantum fully homomorphic encryption (QFHE) scheme, which permits arbitrary quantum transformation on any encrypted data. The QFHE scheme is proved to be perfectly secure. In the scheme, the decryption key is different from the encryption key; however, the encryption key cannot be revealed. Moreover, the evaluation algorithm of the scheme is independent of the encryption key, so it is suitable for delegated quantum computing between two parties.
Novel Image Encryption based on Quantum Walks
Yang, Yu-Guang; Pan, Qing-Xiang; Sun, Si-Jia; Xu, Peng
2015-01-01
Quantum computation has achieved a tremendous success during the last decades. In this paper, we investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption algorithm. Simulations and performance comparisons show that the proposal is secure enough for image encryption and outperforms prior works. It also opens the door towards introducing quantum computation into image encryption and promotes the convergence between quantum computation and image processing. PMID:25586889
Novel image encryption based on quantum walks.
Yang, Yu-Guang; Pan, Qing-Xiang; Sun, Si-Jia; Xu, Peng
2015-01-01
Quantum computation has achieved a tremendous success during the last decades. In this paper, we investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption algorithm. Simulations and performance comparisons show that the proposal is secure enough for image encryption and outperforms prior works. It also opens the door towards introducing quantum computation into image encryption and promotes the convergence between quantum computation and image processing. PMID:25586889
Computer Visualization of Many-Particle Quantum Dynamics
Ozhigov, A. Y.
2009-03-10
In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.
Computer Visualization of Many-Particle Quantum Dynamics
NASA Astrophysics Data System (ADS)
Ozhigov, A. Y.
2009-03-01
In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.
Universal computation by multiparticle quantum walk.
Childs, Andrew M; Gosset, David; Webb, Zak
2013-02-15
A quantum walk is a time-homogeneous quantum-mechanical process on a graph defined by analogy to classical random walk. The quantum walker is a particle that moves from a given vertex to adjacent vertices in quantum superposition. We consider a generalization to interacting systems with more than one walker, such as the Bose-Hubbard model and systems of fermions or distinguishable particles with nearest-neighbor interactions, and show that multiparticle quantum walk is capable of universal quantum computation. Our construction could, in principle, be used as an architecture for building a scalable quantum computer with no need for time-dependent control. PMID:23413349
Computational multiqubit tunnelling in programmable quantum annealers.
Boixo, Sergio; Smelyanskiy, Vadim N; Shabani, Alireza; Isakov, Sergei V; Dykman, Mark; Denchev, Vasil S; Amin, Mohammad H; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut
2016-01-01
Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797
Computational multiqubit tunnelling in programmable quantum annealers
Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut
2016-01-01
Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797
NASA Astrophysics Data System (ADS)
Barz, Stefanie
2015-04-01
Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. This tutorial reviews the fundamental tools of photonic quantum information processing. The basics of theoretical quantum computing are presented and the quantum circuit model as well as measurement-based models of quantum computing are introduced. Furthermore, it is shown how these concepts can be implemented experimentally using photonic qubits, where information is encoded in the photons’ polarization.
The Quantum Human Computer (QHC) Hypothesis
ERIC Educational Resources Information Center
Salmani-Nodoushan, Mohammad Ali
2008-01-01
This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…
Ion photon networks for quantum computing and quantum repeaters
NASA Astrophysics Data System (ADS)
Clark, Susan; Hayes, David; Hucul, David; Inlek, I. Volkan; Monroe, Christopher
2013-03-01
Quantum information based on ion-trap technology is well regarded for its stability, high detection fidelity, and ease of manipulation. Here we demonstrate a proof of principle experiment for scaling this technology to large numbers of ions in separate traps by linking the ions via photons. We give results for entanglement between distant ions via probabilistic photonic gates that is then swapped between ions in the same trap via deterministic Coulombic gates. We report fidelities above 65% and show encouraging preliminary results for the next stage of experimental improvement. Such a system could be used for quantum computing requiring large numbers of qubits or for quantum repeaters requiring the qubits to be separated by large distances.
Quantum game simulator, using the circuit model of quantum computation
NASA Astrophysics Data System (ADS)
Vlachos, Panagiotis; Karafyllidis, Ioannis G.
2009-10-01
We present a general two-player quantum game simulator that can simulate any two-player quantum game described by a 2×2 payoff matrix (two strategy games).The user can determine the payoff matrices for both players, their strategies and the amount of entanglement between their initial strategies. The outputs of the simulator are the expected payoffs of each player as a function of the other player's strategy parameters and the amount of entanglement. The simulator also produces contour plots that divide the strategy spaces of the game in regions in which players can get larger payoffs if they choose to use a quantum strategy against any classical one. We also apply the simulator to two well-known quantum games, the Battle of Sexes and the Chicken game. Program summaryProgram title: Quantum Game Simulator (QGS) Catalogue identifier: AEED_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEED_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3416 No. of bytes in distributed program, including test data, etc.: 583 553 Distribution format: tar.gz Programming language: Matlab R2008a (C) Computer: Any computer that can sufficiently run Matlab R2008a Operating system: Any system that can sufficiently run Matlab R2008a Classification: 4.15 Nature of problem: Simulation of two player quantum games described by a payoff matrix. Solution method: The program calculates the matrices that comprise the Eisert setup for quantum games based on the quantum circuit model. There are 5 parameters that can be altered. We define 3 of them as constant. We play the quantum game for all possible values for the other 2 parameters and store the results in a matrix. Unusual features: The software provides an easy way of simulating any two-player quantum games. Running time: Approximately
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong
2016-01-01
Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong
2016-01-01
Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767
NASA Astrophysics Data System (ADS)
Cao, Zhenwei
Over the years, people have found Quantum Mechanics to be extremely useful in explaining various physical phenomena from a microscopic point of view. Anderson localization, named after physicist P. W. Anderson, states that disorder in a crystal can cause non-spreading of wave packets, which is one possible mechanism (at single electron level) to explain metal-insulator transitions. The theory of quantum computation promises to bring greater computational power over classical computers by making use of some special features of Quantum Mechanics. The first part of this dissertation considers a 3D alloy-type model, where the Hamiltonian is the sum of the finite difference Laplacian corresponding to free motion of an electron and a random potential generated by a sign-indefinite single-site potential. The result shows that localization occurs in the weak disorder regime, i.e., when the coupling parameter lambda is very small, for energies E ≤ --Clambda 2. The second part of this dissertation considers adiabatic quantum computing (AQC) algorithms for the unstructured search problem to the case when the number of marked items is unknown. In an ideal situation, an explicit quantum algorithm together with a counting subroutine are given that achieve the optimal Grover speedup over classical algorithms, i.e., roughly speaking, reduce O(2n) to O(2n/2), where n is the size of the problem. However, if one considers more realistic settings, the result shows this quantum speedup is achievable only under a very rigid control precision requirement (e.g., exponentially small control error).
Non-unitary probabilistic quantum computing
NASA Technical Reports Server (NTRS)
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Gate sequence for continuous variable one-way quantum computation
Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi
2013-01-01
Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.
Zeno effect for quantum computation and control.
Paz-Silva, Gerardo A; Rezakhani, A T; Dominy, Jason M; Lidar, D A
2012-02-24
It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We derive rigorous performance bounds which demonstrate that the Zeno effect can be used to protect appropriately encoded arbitrary states to arbitrary accuracy while at the same time allowing for universal quantum computation or quantum control. PMID:22463507
NASA Astrophysics Data System (ADS)
Bedoya-Martínez, O. N.; Barrat, Jean-Louis; Rodney, David
2014-01-01
The thermal conductivity of a model for solid argon is investigated using nonequilibrium molecular dynamics methods, as well as the traditional Boltzmann transport equation approach with input from molecular dynamics calculations, both with classical and quantum thermostats. A surprising result is that, at low temperatures, only the classical molecular dynamics technique is in agreement with the experimental data. We argue that this agreement is due to a compensation of errors and raise the issue of an appropriate method for calculating thermal conductivities at low (below Debye) temperatures.
Contextuality supplies the `magic' for quantum computation
NASA Astrophysics Data System (ADS)
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-01
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via `magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple `hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms. PMID:24919152
Quantum Computation: Theory, Practice, and Future Prospects
NASA Astrophysics Data System (ADS)
Chuang, Isaac
2000-03-01
Information is physical, and computation obeys physical laws. Ones and zeros -- elementary classical bits of information -- must be represented in physical media to be stored and processed. Traditionally, these objects are well described by classical physics, but increasingly, as we edge towards the limits of semiconductor technology, we reach a new regime where the laws of quantum physics become dominant. Strange new phenomena, like entanglement and quantum coherence, become available as new resources. How can such resources be utilized for computation? What physical systems allow construction and control of quantum phenomena? How is this relevant to future directions in information technology? The theoretical promise of quantum computation is polynomial speedup of searches, and exponentially speedups for other certain problems such as factoring. But the experimental challenge to realize such algorithms in practice is enormous: to date, quantum computers with only a handful of quantum bits have been realized in the laboratory, using electromagnetically trapped ions, and with magnetic resonance techniques. On the other hand, quantum information has been communicated over long distances using single photons. The future of quantum computation is currently subject to intense scrutiny. It may well be that these machines will not be practical. More quantum algorithms must be discovered, and new physical implementations must be realized. Quantum computation and quantum information are young fields with major issues to be overcome, but already, they have forever changed the way we think of the physical world and what can be computed with it.
Heterotic quantum and classical computing on convergence spaces
NASA Astrophysics Data System (ADS)
Patten, D. R.; Jakel, D. W.; Irwin, R. J.; Blair, H. A.
2015-05-01
Category-theoretic characterizations of heterotic models of computation, introduced by Stepney et al., combine computational models such as classical/quantum, digital/analog, synchronous/asynchronous, etc. to obtain increased computational power. A highly informative classical/quantum heterotic model of computation is represented by Abramsky's simple sequential imperative quantum programming language which extends the classical simple imperative programming language to encompass quantum computation. The mathematical (denotational) semantics of this classical language serves as a basic foundation upon which formal verification methods can be developed. We present a more comprehensive heterotic classical/quantum model of computation based on heterotic dynamical systems on convergence spaces. Convergence spaces subsume topological spaces but admit finer structure from which, in prior work, we obtained differential calculi in the cartesian closed category of convergence spaces allowing us to define heterotic dynamical systems, given by coupled systems of first order differential equations whose variables are functions from the reals to convergence spaces.
Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation
NASA Astrophysics Data System (ADS)
Broadbent, Anne
2016-08-01
In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.
Scheme for Quantum Computing Immune to Decoherence
NASA Technical Reports Server (NTRS)
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report
Quantum computing. Defining and detecting quantum speedup.
Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias
2014-07-25
The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question. PMID:25061205
Prospects for quantum computation with trapped ions
Hughes, R.J.; James, D.F.V.
1997-12-31
Over the past decade information theory has been generalized to allow binary data to be represented by two-state quantum mechanical systems. (A single two-level system has come to be known as a qubit in this context.) The additional freedom introduced into information physics with quantum systems has opened up a variety of capabilities that go well beyond those of conventional information. For example, quantum cryptography allows two parties to generate a secret key even in the presence of eavesdropping. But perhaps the most remarkable capabilities have been predicted in the field of quantum computation. Here, a brief survey of the requirements for quantum computational hardware, and an overview of the in trap quantum computation project at Los Alamos are presented. The physical limitations to quantum computation with trapped ions are discussed.
Quantum Computational Logics and Possible Applications
NASA Astrophysics Data System (ADS)
Chiara, Maria Luisa Dalla; Giuntini, Roberto; Leporini, Roberto; di Francia, Giuliano Toraldo
2008-01-01
In quantum computational logics meanings of formulas are identified with quantum information quantities: systems of qubits or, more generally, mixtures of systems of qubits. We consider two kinds of quantum computational semantics: (1) a compositional semantics, where the meaning of a compound formula is determined by the meanings of its parts; (2) a holistic semantics, which makes essential use of the characteristic “holistic” features of the quantum-theoretic formalism. The compositional and the holistic semantics turn out to characterize the same logic. In this framework, one can introduce the notion of quantum-classical truth table, which corresponds to the most natural way for a quantum computer to calculate classical tautologies. Quantum computational logics can be applied to investigate different kinds of semantic phenomena where holistic, contextual and gestaltic patterns play an essential role (from natural languages to musical compositions).
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990. PMID:25571750
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-03-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-07-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
Some Thoughts Regarding Practical Quantum Computing
NASA Astrophysics Data System (ADS)
Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey
2006-03-01
Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.
A scheme for efficient quantum computation with linear optics
NASA Astrophysics Data System (ADS)
Knill, E.; Laflamme, R.; Milburn, G. J.
2001-01-01
Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.
Possible topological quantum computation via Khovanov homology: D-brane topological quantum computer
NASA Astrophysics Data System (ADS)
Vélez, Mario; Ospina, Juan
2009-05-01
A model of a D-Brane Topological Quantum Computer (DBTQC) is presented and sustained. The model is based on four-dimensional TQFTs of the Donaldson-Witten and Seiber-Witten kinds. It is argued that the DBTQC is able to compute Khovanov homology for knots, links and graphs. The DBTQC physically incorporates the mathematical process of categorification according to which the invariant polynomials for knots, links and graphs such as Jones, HOMFLY, Tutte and Bollobás-Riordan polynomials can be computed as the Euler characteristics corresponding to special homology complexes associated with knots, links and graphs. The DBTQC is conjectured as a powerful universal quantum computer in the sense that the DBTQC computes Khovanov homology which is considered like powerful that the Jones polynomial.
The Heisenberg representation of quantum computers
Gottesman, D.
1998-06-24
Since Shor`s discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers--the difficulty of describing them on classical computers--also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in understanding an important class of quantum operations. States used in error correction and certain communication protocols can be described by their stabilizer, a group of tensor products of Pauli matrices. Even this simple group structure is sufficient to allow a rich range of quantum effects, although it falls short of the full power of quantum computation.
Quantum Computer Games: Schrodinger Cat and Hounds
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
Cluster State Quantum Computation and the Repeat-Until Scheme
NASA Astrophysics Data System (ADS)
Kwek, L. C.
Cluster state computation or the one way quantum computation (1WQC) relies on an initially highly entangled state (called a cluster state) and an appropriate sequence of single qubit measurements along different directions, together with feed-forward based on the measurement results, to realize a quantum computation process. The final result of the computation is obtained by measuring the last remaining qubits in the computational basis. In this short tutorial on cluster state quantum computation, we will also describe the basic ideas of a cluster state and proceed to describe how a single qubit operation can be done on a cluster state. Recently, we proposed a repeat-until-success (RUS) scheme that could effectively be used to realize one-way quantum computer on a hybrid system of photons and atoms. We will briefly describe this RUS scheme and show how it can be used to entangled two distant stationary qubits.
Secure Multiparty Quantum Computation for Summation and Multiplication
NASA Astrophysics Data System (ADS)
Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2016-01-01
As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.
Secure Multiparty Quantum Computation for Summation and Multiplication
Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2016-01-01
As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197
Secure Multiparty Quantum Computation for Summation and Multiplication.
Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2016-01-01
As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197
Geometry of Quantum Computation with Qudits
Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710
Determining Ramsey numbers on a quantum computer
NASA Astrophysics Data System (ADS)
Wang, Hefeng
2016-03-01
We present a quantum algorithm for computing the Ramsey numbers whose computational complexity grows superexponentially with the number of vertices of a graph on a classical computer. The problem is mapped to a decision problem on a quantum computer, and a probe qubit is coupled to a register that represents the problem and detects the energy levels of the problem Hamiltonian. The decision problem is solved by detecting the decay dynamics of the probe qubit.
Computable measure of total quantum correlations of multipartite systems
NASA Astrophysics Data System (ADS)
Behdani, Javad; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen
2016-04-01
Quantum discord as a measure of the quantum correlations cannot be easily computed for most of density operators. In this paper, we present a measure of the total quantum correlations that is operationally simple and can be computed effectively for an arbitrary mixed state of a multipartite system. The measure is based on the coherence vector of the party whose quantumness is investigated as well as the correlation matrix of this part with the remainder of the system. Being able to detect the quantumness of multipartite systems, such as detecting the quantum critical points in spin chains, alongside with the computability characteristic of the measure, makes it a useful indicator to be exploited in the cases which are out of the scope of the other known measures.
Measurement-Based Classical Computation
NASA Astrophysics Data System (ADS)
Hoban, Matty J.; Wallman, Joel J.; Anwar, Hussain; Usher, Naïri; Raussendorf, Robert; Browne, Dan E.
2014-04-01
Measurement-based quantum computation (MBQC) is a model of quantum computation, in which computation proceeds via adaptive single qubit measurements on a multiqubit quantum state. It is computationally equivalent to the circuit model. Unlike the circuit model, however, its classical analog is little studied. Here we present a classical analog of MBQC whose computational complexity presents a rich structure. To do so, we identify uniform families of quantum computations [refining the circuits introduced by Bremner et al. Proc. R. Soc. A 467, 459 (2010)] whose output is likely hard to exactly simulate (sample) classically. We demonstrate that these circuit families can be efficiently implemented in the MBQC model without adaptive measurement and, thus, can be achieved in a classical analog of MBQC whose resource state is a probability distribution which has been created quantum mechanically. Such states (by definition) violate no Bell inequality, but, if widely held beliefs about computational complexity are true, they, nevertheless, exhibit nonclassicality when used as a computational resource—an imprint of their quantum origin.
Universal quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-05-01
We theoretically show that a nonlinear oscillator network with controllable parameters can be used for universal quantum computation. The initialization is achieved by a quantum-mechanical bifurcation based on quantum adiabatic evolution, which yields a Schrödinger cat state. All the elementary quantum gates are also achieved by quantum adiabatic evolution, in which dynamical phases accompanying the adiabatic evolutions are controlled by the system parameters. Numerical simulation results indicate that high gate fidelities can be achieved, where no dissipation is assumed.
Experimental demonstration of deterministic one-way quantum computation on a NMR quantum computer
Ju, Chenyong; Zhu Jing; Peng Xinhua; Chong Bo; Zhou Xianyi; Du Jiangfeng
2010-01-15
One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report an experimental realization of the complete process of deterministic one-way quantum Deutsch-Josza algorithm in NMR, including graph state preparation, single-qubit measurements, and feed-forward corrections. The findings in our experiment may shed light on the future scalable one-way quantum computation.
NASA Technical Reports Server (NTRS)
Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-02-01
In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.
Numerical computation for teaching quantum statistics
NASA Astrophysics Data System (ADS)
Price, Tyson; Swendsen, Robert H.
2013-11-01
The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.
Fast graph operations in quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Liming; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2016-03-01
The connection between certain entangled states and graphs has been heavily studied in the context of measurement-based quantum computation as a tool for understanding entanglement. Here we show that this correspondence can be harnessed in the reverse direction to yield a graph data structure, which allows for more efficient manipulation and comparison of graphs than any possible classical structure. We introduce efficient algorithms for many transformation and comparison operations on graphs represented as graph states, and prove that no classical data structure can have similar performance for the full set of operations studied.
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Yoo, Seokwon
2014-12-01
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
Concatenated codes for fault tolerant quantum computing
Knill, E.; Laflamme, R.; Zurek, W.
1995-05-01
The application of concatenated codes to fault tolerant quantum computing is discussed. We have previously shown that for quantum memories and quantum communication, a state can be transmitted with error {epsilon} provided each gate has error at most c{epsilon}. We show how this can be used with Shor`s fault tolerant operations to reduce the accuracy requirements when maintaining states not currently participating in the computation. Viewing Shor`s fault tolerant operations as a method for reducing the error of operations, we give a concatenated implementation which promises to propagate the reduction hierarchically. This has the potential of reducing the accuracy requirements in long computations.
One-way quantum computation with circuit quantum electrodynamics
Wu Chunwang; Han Yang; Chen Pingxing; Li Chengzu; Zhong Xiaojun
2010-03-15
In this Brief Report, we propose a potential scheme to implement one-way quantum computation with circuit quantum electrodynamics (QED). Large cluster states of charge qubits can be generated in just one step with a superconducting transmission line resonator (TLR) playing the role of a dispersive coupler. A single-qubit measurement in the arbitrary basis can be implemented using a single electron transistor with the help of one-qubit gates. By examining the main decoherence sources, we show that circuit QED is a promising architecture for one-way quantum computation.
Protecting software agents from malicious hosts using quantum computing
NASA Astrophysics Data System (ADS)
Reisner, John; Donkor, Eric
2000-07-01
We evaluate how quantum computing can be applied to security problems for software agents. Agent-based computing, which merges technological advances in artificial intelligence and mobile computing, is a rapidly growing domain, especially in applications such as electronic commerce, network management, information retrieval, and mission planning. System security is one of the more eminent research areas in agent-based computing, and the specific problem of protecting a mobile agent from a potentially hostile host is one of the most difficult of these challenges. In this work, we describe our agent model, and discuss the capabilities and limitations of classical solutions to the malicious host problem. Quantum computing may be extremely helpful in addressing the limitations of classical solutions to this problem. This paper highlights some of the areas where quantum computing could be applied to agent security.
Materials Frontiers to Empower Quantum Computing
Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher
2015-06-11
This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.
Symbolic Quantum Computation Simulation in SymPy
NASA Astrophysics Data System (ADS)
Cugini, Addison; Curry, Matt; Granger, Brian
2010-10-01
Quantum computing is an emerging field which aims to use quantum mechanics to solve difficult computational problems with greater efficiency than on a classical computer. There is a need to create software that i) helps newcomers to learn the field, ii) enables practitioners to design and simulate quantum circuits and iii) provides an open foundation for further research in the field. Towards these ends we have created a package, in the open-source symbolic computation library SymPy, that simulates the quantum circuit model of quantum computation using Dirac notation. This framework builds on the extant powerful symbolic capabilities of SymPy to preform its simulations in a fully symbolic manner. We use object oriented design to abstract circuits as ordered collections of quantum gate and qbit objects. The gate objects can either be applied directly to the qbit objects or be represented as matrices in different bases. The package is also capable of performing the quantum Fourier transform and Shor's algorithm. A notion of measurement is made possible through the use of a non-commutative gate object. In this talk, we describe the software and show examples of quantum circuits on single and multi qbit states that involve common algorithms, gates and measurements.
Reducing computational complexity of quantum correlations
NASA Astrophysics Data System (ADS)
Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal
2015-12-01
We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems. We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of local measurements. We find that the determination allows us to obtain a closed form of quantum discord and quantum work deficit for several classes of states, with a low error. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained optimization can be used with advantage in analyzing such systems in quantum information-theoretic language. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord and quantum work deficit for these bound entangled states.
Is the Brain a Quantum Computer?
ERIC Educational Resources Information Center
Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul
2006-01-01
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic…
Algorithms Bridging Quantum Computation and Chemistry
NASA Astrophysics Data System (ADS)
McClean, Jarrod Ryan
The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use
Braid group representation on quantum computation
Aziz, Ryan Kasyfil; Muchtadi-Alamsyah, Intan
2015-09-30
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.
Delayed commutation in quantum computer networks.
García-Escartín, Juan Carlos; Chamorro-Posada, Pedro
2006-09-15
In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communication. We propose a nonclassical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes, we can route a qubit packet after part of it has left the network node. PMID:17025870
Adiabatic Quantum Computation with Neutral Atoms
NASA Astrophysics Data System (ADS)
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
Quantum computation for large-scale image classification
NASA Astrophysics Data System (ADS)
Ruan, Yue; Chen, Hanwu; Tan, Jianing; Li, Xi
2016-07-01
Due to the lack of an effective quantum feature extraction method, there is currently no effective way to perform quantum image classification or recognition. In this paper, for the first time, a global quantum feature extraction method based on Schmidt decomposition is proposed. A revised quantum learning algorithm is also proposed that will classify images by computing the Hamming distance of these features. From the experimental results derived from the benchmark database Caltech 101, and an analysis of the algorithm, an effective approach to large-scale image classification is derived and proposed against the background of big data.
Universal linear Bogoliubov transformations through one-way quantum computation
Ukai, Ryuji; Yoshikawa, Jun-ichi; Iwata, Noriaki; Furusawa, Akira; Loock, Peter van
2010-03-15
We show explicitly how to realize an arbitrary linear unitary Bogoliubov (LUBO) transformation on a multimode quantum state through homodyne-based one-way quantum computation. Any LUBO transformation can be approximated by means of a fixed, finite-sized, sufficiently squeezed Gaussian cluster state that allows for the implementation of beam splitters (in form of three-mode connection gates) and general one-mode LUBO transformations. In particular, we demonstrate that a linear four-mode cluster state is a sufficient resource for an arbitrary one-mode LUBO transformation. Arbitrary-input quantum states including non-Gaussian states could be efficiently attached to the cluster through quantum teleportation.
The geometric approach to quantum correlations: computability versus reliability
NASA Astrophysics Data System (ADS)
Tufarelli, Tommaso; MacLean, Tom; Girolami, Davide; Vasile, Ruggero; Adesso, Gerardo
2013-07-01
We propose a modified metric based on the Hilbert-Schmidt norm and adopt it to define a rescaled version of the geometric measure of quantum discord. Such a measure is found not to suffer from pathological dependence on state purity. Although the employed metric is still non-contractive under quantum operations, we show that the resulting indicator of quantum correlations is in agreement with other bona fide discord measures in a number of physical examples. We present a critical assessment of the requirements of reliability versus computability when approaching the task of quantifying, or measuring, general quantum correlations in a bipartite state.
Continuous-Variable Quantum Computation of Oracle Decision Problems
NASA Astrophysics Data System (ADS)
Adcock, Mark R. A.
Quantum information processing is appealing due its ability to solve certain problems quantitatively faster than classical information processing. Most quantum algorithms have been studied in discretely parameterized systems, but many quantum systems are continuously parameterized. The field of quantum optics in particular has sophisticated techniques for manipulating continuously parameterized quantum states of light, but the lack of a code-state formalism has hindered the study of quantum algorithms in these systems. To address this situation, a code-state formalism for the solution of oracle decision problems in continuously-parameterized quantum systems is developed. Quantum information processing is appealing due its ability to solve certain problems quantitatively faster than classical information processing. Most quantum algorithms have been studied in discretely parameterized systems, but many quantum systems are continuously parameterized. The field of quantum optics in particular has sophisticated techniques for manipulating continuously parameterized quantum states of light, but the lack of a code-state formalism has hindered the study of quantum algorithms in these systems. To address this situation, a code-state formalism for the solution of oracle decision problems in continuously-parameterized quantum systems is developed. In the infinite-dimensional case, we study continuous-variable quantum algorithms for the solution of the Deutsch--Jozsa oracle decision problem implemented within a single harmonic-oscillator. Orthogonal states are used as the computational bases, and we show that, contrary to a previous claim in the literature, this implementation of quantum information processing has limitations due to a position-momentum trade-off of the Fourier transform. We further demonstrate that orthogonal encoding bases are not unique, and using the coherent states of the harmonic oscillator as the computational bases, our formalism enables quantifying
Hamiltonian quantum computer in one dimension
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Liang, John C.
2015-12-01
Quantum computation can be achieved by preparing an appropriate initial product state of qudits and then letting it evolve under a fixed Hamiltonian. The readout is made by measurement on individual qudits at some later time. This approach is called the Hamiltonian quantum computation and it includes, for example, the continuous-time quantum cellular automata and the universal quantum walk. We consider one spatial dimension and study the compromise between the locality k and the local Hilbert space dimension d . For geometrically 2-local (i.e., k =2 ), it is known that d =8 is already sufficient for universal quantum computation but the Hamiltonian is not translationally invariant. As the locality k increases, it is expected that the minimum required d should decrease. We provide a construction of a Hamiltonian quantum computer for k =3 with d =5 . One implication is that simulating one-dimensional chains of spin-2 particles is BQP-complete (BQP denotes "bounded error, quantum polynomial time"). Imposing translation invariance will increase the required d . For this we also construct another 3-local (k =3 ) Hamiltonian that is invariant under translation of a unit cell of two sites but that requires d to be 8.
Quantum perceptron over a field and neural network architecture selection in a quantum computer.
da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa
2016-04-01
In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. PMID:26878722
Entanglement-Based Quantum Cryptography and Quantum Communication
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
2007-03-01
Quantum entanglement, to Erwin Schroedinger the essential feature of quantum mechanics, has become a central resource in various quantum communication protocols including quantum cryptography and quantum teleportation. From a fundamental point of view what is exploited in these experiments is the very fact which led Schroedinger to his statement namely that in entangled states joint properties of the entangled systems may be well defined while the individual subsystems may carry no information at all. In entanglement-based quantum cryptography it leads to the most elegant possible solution of the classic key distribution problem. It implies that the key comes into existence at spatially distant location at the same time and does not need to be transported. A number recent developments include for example highly efficient, robust and stable sources of entangled photons with a broad bandwidth of desired features. Also, entanglement-based quantum cryptography is successfully joining other methods in the work towards demonstrating quantum key distribution networks. Along that line recently decoy-state quantum cryptography over a distance of 144 km between two Canary Islands was demonstrated successfully. Such experiments also open up the possibility of quantum communication on a really large scale using LEO satellites. Another important possible future branch of quantum communication involves quantum repeaters in order to cover larger distances with entangled states. Recently the connection of two fully independent lasers in an entanglement swapping experiment did demonstrate that the timing control of such systems on a femtosecond time scale is possible. A related development includes recent demonstrations of all-optical one-way quantum computation schemes with the extremely short cycle time of only 100 nanoseconds.
Simulating physical phenomena with a quantum computer
NASA Astrophysics Data System (ADS)
Ortiz, Gerardo
2003-03-01
In a keynote speech at MIT in 1981 Richard Feynman raised some provocative questions in connection to the exact simulation of physical systems using a special device named a ``quantum computer'' (QC). At the time it was known that deterministic simulations of quantum phenomena in classical computers required a number of resources that scaled exponentially with the number of degrees of freedom, and also that the probabilistic simulation of certain quantum problems were limited by the so-called sign or phase problem, a problem believed to be of exponential complexity. Such a QC was intended to mimick physical processes exactly the same as Nature. Certainly, remarks coming from such an influential figure generated widespread interest in these ideas, and today after 21 years there are still some open questions. What kind of physical phenomena can be simulated with a QC?, How?, and What are its limitations? Addressing and attempting to answer these questions is what this talk is about. Definitively, the goal of physics simulation using controllable quantum systems (``physics imitation'') is to exploit quantum laws to advantage, and thus accomplish efficient imitation. Fundamental is the connection between a quantum computational model and a physical system by transformations of operator algebras. This concept is a necessary one because in Quantum Mechanics each physical system is naturally associated with a language of operators and thus can be considered as a possible model of quantum computation. The remarkable result is that an arbitrary physical system is naturally simulatable by another physical system (or QC) whenever a ``dictionary'' between the two operator algebras exists. I will explain these concepts and address some of Feynman's concerns regarding the simulation of fermionic systems. Finally, I will illustrate the main ideas by imitating simple physical phenomena borrowed from condensed matter physics using quantum algorithms, and present experimental
Irreconcilable difference between quantum walks and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
Quantum-cellular-automata quantum computing with endohedral fullerenes
NASA Astrophysics Data System (ADS)
Twamley, J.
2003-05-01
We present a scheme to perform universal quantum computation using global addressing techniques as applied to a physical system of endohedrally doped fullerenes. The system consists of an ABAB linear array of group-V endohedrally doped fullerenes. Each molecule spin site consists of a nuclear spin coupled via a hyperfine interaction to an electron spin. The electron spin of each molecule is in a quartet ground state S=3/2. Neighboring molecular electron spins are coupled via a magnetic dipole interaction. We find that an all-electron construction of a quantum cellular automaton is frustrated due to the degeneracy of the electronic transitions. However, we can construct a quantum-cellular-automata quantum computing architecture using these molecules by encoding the quantum information on the nuclear spins while using the electron spins as a local bus. We deduce the NMR and ESR pulses required to execute the basic cellular automaton operation and obtain a rough figure of merit for the number of gate operations per decoherence time. We find that this figure of merit compares well with other physical quantum computer proposals. We argue that the proposed architecture meets well the first four DiVincenzo criteria and we outline various routes toward meeting the fifth criterion: qubit readout.
Surface code quantum computing by lattice surgery
NASA Astrophysics Data System (ADS)
Horsman, Clare; Fowler, Austin G.; Devitt, Simon; Van Meter, Rodney
2012-12-01
In recent years, surface codes have become a leading method for quantum error correction in theoretical large-scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural two-dimensional nearest-neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect-based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance-3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.
Classical versus quantum errors in quantum computation of dynamical systems.
Rossini, Davide; Benenti, Giuliano; Casati, Giulio
2004-11-01
We analyze the stability of a quantum algorithm simulating the quantum dynamics of a system with different regimes, ranging from global chaos to integrability. We compare, in these different regimes, the behavior of the fidelity of quantum motion when the system's parameters are perturbed or when there are unitary errors in the quantum gates implementing the quantum algorithm. While the first kind of errors has a classical limit, the second one has no classical analog. It is shown that, whereas in the first case ("classical errors") the decay of fidelity is very sensitive to the dynamical regime, in the second case ("quantum errors") it is almost independent of the dynamical behavior of the simulated system. Therefore, the rich variety of behaviors found in the study of the stability of quantum motion under "classical" perturbations has no correspondence in the fidelity of quantum computation under its natural perturbations. In particular, in this latter case it is not possible to recover the semiclassical regime in which the fidelity decays with a rate given by the classical Lyapunov exponent. PMID:15600737
Qubus ancilla-driven quantum computation
Brown, Katherine Louise; De, Suvabrata; Kendon, Viv; Munro, Bill
2014-12-04
Hybrid matter-optical systems offer a robust, scalable path to quantum computation. Such systems have an ancilla which acts as a bus connecting the qubits. We demonstrate how using a continuous variable qubus as the ancilla provides savings in the total number of operations required when computing with many qubits.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.
Quantum computations: algorithms and error correction
NASA Astrophysics Data System (ADS)
Kitaev, A. Yu
1997-12-01
Contents §0. Introduction §1. Abelian problem on the stabilizer §2. Classical models of computations2.1. Boolean schemes and sequences of operations2.2. Reversible computations §3. Quantum formalism3.1. Basic notions and notation3.2. Transformations of mixed states3.3. Accuracy §4. Quantum models of computations4.1. Definitions and basic properties4.2. Construction of various operators from the elements of a basis4.3. Generalized quantum control and universal schemes §5. Measurement operators §6. Polynomial quantum algorithm for the stabilizer problem §7. Computations with perturbations: the choice of a model §8. Quantum codes (definitions and general properties)8.1. Basic notions and ideas8.2. One-to-one codes8.3. Many-to-one codes §9. Symplectic (additive) codes9.1. Algebraic preparation9.2. The basic construction9.3. Error correction procedure9.4. Torus codes §10. Error correction in the computation process: general principles10.1. Definitions and results10.2. Proofs §11. Error correction: concrete procedures11.1. The symplecto-classical case11.2. The case of a complete basis Bibliography
Blind quantum computation over a collective-noise channel
NASA Astrophysics Data System (ADS)
Takeuchi, Yuki; Fujii, Keisuke; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki
2016-05-01
Blind quantum computation (BQC) allows a client (Alice), who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server (Bob) in such a way that Bob cannot know Alice's inputs, algorithm, and outputs. The quantum channel between Alice and Bob is noisy, and the loss over the long-distance quantum communication should also be taken into account. Here we propose to use decoherence-free subspace (DFS) to overcome the collective noise in the quantum channel for BQC, which we call DFS-BQC. We propose three variations of DFS-BQC protocols. One of them, a coherent-light-assisted DFS-BQC protocol, allows Alice to faithfully send the signal photons with a probability proportional to a transmission rate of the quantum channel. In all cases, we combine the ideas based on DFS and the Broadbent-Fitzsimons-Kashefi protocol, which is one of the BQC protocols, without degrading unconditional security. The proposed DFS-based schemes are generic and hence can be applied to other BQC protocols where Alice sends quantum states to Bob.
Analysis of an Atom-Optical Architecture for Quantum Computation
NASA Astrophysics Data System (ADS)
Devitt, Simon J.; Stephens, Ashley M.; Munro, William J.; Nemoto, Kae
Quantum technology based on photons has emerged as one of the most promising platforms for quantum information processing, having already been used in proof-of-principle demonstrations of quantum communication and quantum computation. However, the scalability of this technology depends on the successful integration of experimentally feasible devices in an architecture that tolerates realistic errors and imperfections. Here, we analyse an atom-optical architecture for quantum computation designed to meet the requirements of scalability. The architecture is based on a modular atom-cavity device that provides an effective photon-photon interaction, allowing for the rapid, deterministic preparation of a large class of entangled states. We begin our analysis at the physical level, where we outline the experimental cavity quantum electrodynamics requirements of the basic device. Then, we describe how a scalable network of these devices can be used to prepare a three-dimensional topological cluster state, sufficient for universal fault-tolerant quantum computation. We conclude at the application level, where we estimate the system-level requirements of the architecture executing an algorithm compiled for compatibility with the topological cluster state.
Quantum learning in a quantum lattice gas computer
NASA Astrophysics Data System (ADS)
Behrman, Elizabeth; Steck, James
2015-04-01
Quantum lattice gas is the logical generalization of quantum cellular automata. At low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.
Quantum learning for a quantum lattice gas computer
NASA Astrophysics Data System (ADS)
Behrman, Elizabeth; Steck, James
2015-03-01
Quantum lattice gas is the logical generalization of quantum cellular automata. In low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.
Entanglement and Quantum Computation: An Overview
Perez, R.B.
2000-06-27
This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.
Information-theoretic temporal Bell inequality and quantum computation
Morikoshi, Fumiaki
2006-05-15
An information-theoretic temporal Bell inequality is formulated to contrast classical and quantum computations. Any classical algorithm satisfies the inequality, while quantum ones can violate it. Therefore, the violation of the inequality is an immediate consequence of the quantumness in the computation. Furthermore, this approach suggests a notion of temporal nonlocality in quantum computation.
Applications of computational quantum mechanics
NASA Astrophysics Data System (ADS)
Temel, Burcin
This original research dissertation is composed of a new numerical technique based on Chebyshev polynomials that is applied on scattering problems, a phenomenological kinetics study for CO oxidation on RuO2 surface, and an experimental study on methanol coupling with doped metal oxide catalysts. Minimum Error Method (MEM), a least-squares minimization method, provides an efficient and accurate alternative to solve systems of ordinary differential equations. Existing methods usually utilize matrix methods which are computationally costful. MEM, which is based on the Chebyshev polynomials as a basis set, uses the recursion relationships and fast Chebyshev transforms which scale as O(N). For large basis set calculations this provides an enormous computational efficiency in the calculations. Chebyshev polynomials are also able to represent non-periodic problems very accurately. We applied MEM on elastic and inelastic scattering problems: it is more efficient and accurate than traditionally used Kohn variational principle, and it also provides the wave function in the interaction region. Phenomenological kinetics (PK) is widely used in industry to predict the optimum conditions for a chemical reaction. PK neglects the fluctuations, assumes no lateral interactions, and considers an ideal mix of reactants. The rate equations are tested by fitting the rate constants to the results of the experiments. Unfortunately, there are numerous examples where a fitted mechanism was later shown to be erroneous. We have undertaken a thorough comparison between the phenomenological equations and the results of kinetic Monte Carlo (KMC) simulations performed on the same system. The PK equations are qualitatively consistent with the KMC results but are quantitatively erroneous as a result of interplays between the adsorption and desorption events. The experimental study on methanol coupling with doped metal oxide catalysts demonstrates the doped metal oxides as a new class of catalysts
Silicon enhancement mode nanostructures for quantum computing.
Carroll, Malcolm S.
2010-03-01
Development of silicon, enhancement mode nanostructures for solid-state quantum computing will be described. A primary motivation of this research is the recent unprecedented manipulation of single electron spins in GaAs quantum dots, which has been used to demonstrate a quantum bit. Long spin decoherence times are predicted possible in silicon qubits. This talk will focus on silicon enhancement mode quantum dot structures that emulate the GaAs lateral quantum dot qubit but use an enhancement mode field effect transistor (FET) structure. One critical concern for silicon quantum dots that use oxides as insulators in the FET structure is that defects in the metal oxide semiconductor (MOS) stack can produce both detrimental electrostatic and paramagnetic effects on the qubit. Understanding the implications of defects in the Si MOS system is also relevant for other qubit architectures that have nearby dielectric passivated surfaces. Stable, lithographically defined, single-period Coulomb-blockade and single-electron charge sensing in a quantum dot nanostructure using a MOS stack will be presented. A combination of characterization of defects, modeling and consideration of modified approaches that incorporate SiGe or donors provides guidance about the enhancement mode MOS approach for future qubits and quantum circuit micro-architecture.
Computational Modeling: From Remote Sensing to Quantum Computing
NASA Astrophysics Data System (ADS)
Healy, Dennis
2001-03-01
Recent DARPA investments have contributed to significant advances in numerically sound and computationally efficient physics-based modeling, enabling a wide variety of applications of critical interest to the DoD and Industry. Specific examples may be found in a wide variety of applications ranging from the design and operation of advanced synthetic aperture radar systems to the virtual integrated prototyping of reactors and control loops for the manufacture of thin-film functional material systems. This talk will survey the development and application of well-conditioned fast operators for particular physical problems and their critical contributions to various real world problems. We'll conclude with an indication of how these methods may contribute to exploring the revolutionary potential of quantum information theory.
Tempel, David G.; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms. PMID:22553483
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms. PMID:22553483
Random Numbers and Quantum Computers
ERIC Educational Resources Information Center
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Towards universal quantum computation through relativistic motion
Bruschi, David Edward; Sabín, Carlos; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette
2016-01-01
We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tuneable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes. PMID:26860584
Using graph states for quantum computation and communication
NASA Astrophysics Data System (ADS)
Goyal, Kovid
In this work, we describe a method to achieve fault tolerant measurement based quantum computation in two and three dimensions. The proposed scheme has an threshold of 7.8*10^-3 and poly-logarithmic overhead scaling. The overhead scaling below the threshold is also studied. The scheme uses a combination of topological error correction and magic state distillation to construct a universal quantum computer on a qubit lattice. The chapters on measurement based quantum computation are written in review form with extensive discussion and illustrative examples.In addition, we describe and analyze a family of entanglement purification protocols that provide a flexible trade-off between overhead, threshold and output quality. The protocols are studied analytically, with closed form expressions for their threshold.
QCMPI: A parallel environment for quantum computing
NASA Astrophysics Data System (ADS)
Tabakin, Frank; Juliá-Díaz, Bruno
2009-06-01
QCMPI is a quantum computer (QC) simulation package written in Fortran 90 with parallel processing capabilities. It is an accessible research tool that permits rapid evaluation of quantum algorithms for a large number of qubits and for various "noise" scenarios. The prime motivation for developing QCMPI is to facilitate numerical examination of not only how QC algorithms work, but also to include noise, decoherence, and attenuation effects and to evaluate the efficacy of error correction schemes. The present work builds on an earlier Mathematica code QDENSITY, which is mainly a pedagogic tool. In that earlier work, although the density matrix formulation was featured, the description using state vectors was also provided. In QCMPI, the stress is on state vectors, in order to employ a large number of qubits. The parallel processing feature is implemented by using the Message-Passing Interface (MPI) protocol. A description of how to spread the wave function components over many processors is provided, along with how to efficiently describe the action of general one- and two-qubit operators on these state vectors. These operators include the standard Pauli, Hadamard, CNOT and CPHASE gates and also Quantum Fourier transformation. These operators make up the actions needed in QC. Codes for Grover's search and Shor's factoring algorithms are provided as examples. A major feature of this work is that concurrent versions of the algorithms can be evaluated with each version subject to alternate noise effects, which corresponds to the idea of solving a stochastic Schrödinger equation. The density matrix for the ensemble of such noise cases is constructed using parallel distribution methods to evaluate its eigenvalues and associated entropy. Potential applications of this powerful tool include studies of the stability and correction of QC processes using Hamiltonian based dynamics. Program summaryProgram title: QCMPI Catalogue identifier: AECS_v1_0 Program summary URL
Wong, Kin-Yiu; Gao, Jiali
2009-01-01
In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert’s variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H3 reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H2, HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property of
Mizel, Ari
2004-07-01
Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.
Symmetry-protected topologically ordered states for universal quantum computation
NASA Astrophysics Data System (ADS)
Poulsen Nautrup, Hendrik; Wei, Tzu-Chieh
Measurement-based quantum computation (MBQC) is a model for quantum information processing utilizing only local measurements on suitably entangled resource states for the implementation of quantum gates. A complete characterization for universal resource states is still missing. It has been shown that symmetry-protected topological order (SPTO) in one dimension can be exploited for the protection of certain quantum gates in MBQC. Here we investigate whether any 2D nontrivial SPTO states can serve as resource for MBQC. In particular, we show that the nontrivial SPTO ground state of the CZX model on the square lattice by Chen et al. [Phys. Rev. B 84, 235141 (2011)] can be reduced to a 2D cluster state by local measurement, hence a universal resource state. Such ground states have been generalized to qudits with symmetry action described by three cocycles of a finite group G of order d and shown to exhibit nontrivial SPTO. We also extend these to arbitary lattices and show that the generalized two-dimensional plaquette states on arbitrary lattices exhibit nontrivial SPTO in terms of symmetry fractionalization and that they are universal resource states for quantum computation. SPTO states therefore can provide a new playground for measurement-based quantum computation. This work was supported in part by the National Science Foundation.
Universality of computation in real quantum theory
NASA Astrophysics Data System (ADS)
Belenchia, A.; D'Ariano, G. M.; Perinotti, P.
2013-10-01
Recently de la Torre et al. (Phys. Rev. Lett., 109 (2012) 090403) reconstructed Quantum Theory from its local structure on the basis of local discriminability and the existence of a one-parameter group of bipartite transformations containing an entangling gate. This result relies on universality of any entangling gate for quantum computation. Here we prove universality of C-NOT with local gates for Real Quantum Theory (RQT), showing that the universality requirement would not be sufficient for the result, whereas local discriminability and the local qubit structure play a crucial role. For reversible computation, generally an extra rebit is needed for RQT. As a by-product we also provide a short proof of universality of C-NOT for CQT.
Simulations of Probabilities for Quantum Computing
NASA Technical Reports Server (NTRS)
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
The quantum computer game: citizen science
NASA Astrophysics Data System (ADS)
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
Blind Quantum Computing with Weak Coherent Pulses
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-01
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.
Magnetic resonance force microscopy and a solid state quantum computer.
Pelekhov, D. V.; Martin, I.; Suter, A.; Reagor, D. W.; Hammel, P. C.
2001-01-01
A Quantum Computer (QC) is a device that utilizes the principles of Quantum Mechanics to perform computations. Such a machine would be capable of accomplishing tasks not achievable by means of any conventional digital computer, for instance factoring large numbers. Currently it appears that the QC architecture based on an array of spin quantum bits (qubits) embedded in a solid-state matrix is one of the most promising approaches to fabrication of a scalable QC. However, the fabrication and operation of a Solid State Quantum Computer (SSQC) presents very formidable challenges; primary amongst these are: (1) the characterization and control of the fabrication process of the device during its construction and (2) the readout of the computational result. Magnetic Resonance Force Microscopy (MRFM)--a novel scanning probe technique based on mechanical detection of magnetic resonance-provides an attractive means of addressing these requirements. The sensitivity of the MRFM significantly exceeds that of conventional magnetic resonance measurement methods, and it has the potential for single electron spin detection. Moreover, the MRFM is capable of true 3D subsurface imaging. These features will make MRFM an invaluable tool for the implementation of a spin-based QC. Here we present the general principles of MRFM operation, the current status of its development and indicate future directions for its improvement.
Degree of quantum correlation required to speed up a computation
NASA Astrophysics Data System (ADS)
Kay, Alastair
2015-12-01
The one-clean-qubit model of quantum computation (DQC1) efficiently implements a computational task that is not known to have a classical alternative. During the computation, there is never more than a small but finite amount of entanglement present, and it is typically vanishingly small in the system size. In this paper, we demonstrate that there is nothing unexpected hidden within the DQC1 model—Grover's search, when acting on a mixed state, provably exhibits a speedup over classical, with guarantees as to the presence of only vanishingly small amounts of quantum correlations (entanglement and quantum discord)—while arguing that this is not an artifact of the oracle-based construction. We also present some important refinements in the evaluation of how much entanglement may be present in the DQC1 and how the typical entanglement of the system must be evaluated.
Deterministic quantum computation with one photonic qubit
NASA Astrophysics Data System (ADS)
Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.
2015-07-01
We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.
Quantum Computation with Phase Drift Errors
NASA Astrophysics Data System (ADS)
Miquel, César; Paz, Juan Pablo; Zurek, Wojciech Hubert
1997-05-01
We numerically simulate the evolution of an ion trap quantum computer made out of 18 ions subject to a sequence of nearly 15 000 laser pulses in order to find the prime factors of N = 15. We analyze the effect of random and systematic phase drift errors arising from inaccuracies in the laser pulses which induce over (under) rotation of the quantum state. Simple analytic estimates of the tolerance for the quality of driving pulses are presented. We examine the use of watchdog stabilization to partially correct phase drift errors concluding that, in the regime investigated, it is rather inefficient.
Discrete Wigner functions and quantum computational speedup
Galvao, Ernesto F.
2005-04-01
Gibbons et al. [Phys. Rev. A 70, 062101 (2004)] have recently defined a class of discrete Wigner functions W to represent quantum states in a finite Hilbert space dimension d. I characterize the set C{sub d} of states having non-negative W simultaneously in all definitions of W in this class. For d{<=}5 I show C{sub d} is the convex hull of stabilizer states. This supports the conjecture that negativity of W is necessary for exponential speedup in pure-state quantum computation.
Graphene-based qubits in quantum communications
NASA Astrophysics Data System (ADS)
Wu, G. Y.; Lue, N.-Y.
2012-07-01
We explore the potential application of graphene-based qubits in photonic quantum communications. In particular, the valley pair qubit in double quantum dots of gapped graphene is investigated as a quantum memory in the implementation of quantum repeaters. For the application envisioned here, our work extends the recent study of the qubit [Wu , arXiv:1104.0443; Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.195463 84, 195463 (2011)] to the case where the qubit is placed in an in-plane magnetic field configuration. It develops, for the configuration, a method of qubit manipulation, based on a unique ac electric field-induced, valley-orbit interaction-derived mechanism in gapped graphene. It also studies the optical response of graphene quantum dots in the configuration, in terms of valley excitation with respect to photonic polarization, and illustrates faithful photon ↔ valley quantum state transfers. This work suggests the interesting prospect of an all-graphene approach for the solid state components of a quantum network, e.g., quantum computers and quantum memories in communications.
Quantum computing with acceptor spins in silicon
NASA Astrophysics Data System (ADS)
Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie
2016-06-01
The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin–orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin–orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin–orbit induced dipole–dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin–orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin–orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.
Scalable neutral atom quantum computing with MEMS micromirrors
NASA Astrophysics Data System (ADS)
Knoernschild, Caleb; Lu, Felix; Ryu, Hoon; Feng, Michael; Kim, Jungsang
2010-03-01
In order to realize a useful atom-based quantum computer, a means to efficiently distribute critical laser resources to multiple trap locations is essential. Optical micro-electromechanical systems (MEMS) can provide the scalability, flexibility, and stability needed to help bridge the gap between fundamental demonstrations of quantum gates to large scale quantum computing of multiple qubits. Using controllable, broadband micromirrors, an arbitrary atom in a 1, 2, or 3 dimensional optical lattice can be addressed with a single laser source. It is straightforward to scale this base system to address n arbitrary set of atoms simultaneously using n laser sources. We explore on-demand addressability of individual atoms trapped in a 1D lattice, as well as investigate the effect the micromirrors have on the laser beam quality and phase stability.
Measurement and Information Extraction in Complex Dynamics Quantum Computation
NASA Astrophysics Data System (ADS)
Casati, Giulio; Montangero, Simone
Quantum Information processing has several di.erent applications: some of them can be performed controlling only few qubits simultaneously (e.g. quantum teleportation or quantum cryptography) [1]. Usually, the transmission of large amount of information is performed repeating several times the scheme implemented for few qubits. However, to exploit the advantages of quantum computation, the simultaneous control of many qubits is unavoidable [2]. This situation increases the experimental di.culties of quantum computing: maintaining quantum coherence in a large quantum system is a di.cult task. Indeed a quantum computer is a many-body complex system and decoherence, due to the interaction with the external world, will eventually corrupt any quantum computation. Moreover, internal static imperfections can lead to quantum chaos in the quantum register thus destroying computer operability [3]. Indeed, as it has been shown in [4], a critical imperfection strength exists above which the quantum register thermalizes and quantum computation becomes impossible. We showed such e.ects on a quantum computer performing an e.cient algorithm to simulate complex quantum dynamics [5,6].
Quantum computation: algorithms and implementation in quantum dot devices
NASA Astrophysics Data System (ADS)
Gamble, John King
In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques
Scalable Quantum Computing Over the Rainbow
NASA Astrophysics Data System (ADS)
Pfister, Olivier; Menicucci, Nicolas C.; Flammia, Steven T.
2011-03-01
The physical implementation of nontrivial quantum computing is an experimental challenge due to decoherence and the need for scalability. Recently we proved a novel theoretical scheme for realizing a scalable quantum register of very large size, entangled in a cluster state, in the optical frequency comb (OFC) defined by the eigenmodes of a single optical parametric oscillator (OPO). The classical OFC is well known as implemented by the femtosecond, carrier-envelope-phase- and mode-locked lasers which have redefined frequency metrology in recent years. The quantum OFC is a set of harmonic oscillators, or Qmodes, whose amplitude and phase quadratures are continuous variables, the manipulation of which is a mature field for one or two Qmodes. We have shown that the nonlinear optical medium of a single OPO can be engineered, in a sophisticated but already demonstrated manner, so as to entangle in constant time the OPO's OFC into a finitely squeezed, Gaussian cluster state suitable for universal quantum computing over continuous variables. Here we summarize our theoretical result and survey the ongoing experimental efforts in this direction.
Dual field theories of quantum computation
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2016-06-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N +1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N -torus
Toward Practical Solid-State Based Quantum Memories
NASA Astrophysics Data System (ADS)
Heshami, Khabat
Quantum information processing promises to have transformative impacts on information and communication science and technology. Photonic implementation of quantum information processing is among successful candidates for implementation of quantum computation and is an essential part of quantum communication. Linear optical quantum computation, specifically the KLM scheme [1], and quantum repeaters [2, 3] are prominent candidates for practical photonic quantum computation and long-distance quantum communication. Quantum memories for photons are key elements for any practical implementation of these schemes. Practical quantum memories require theoretical and experimental investigations into quantum memory protocols and physical systems for implementations. The present thesis is focused on studying new approaches toward practical solid-state based quantum memories. First, I present a proposal for a new quantum memory protocol called the controllable-dipole quantum memory [4]. It represents a protocol, in a two-level system, without any optical control that is shown to be equivalent to the Raman type-quantum memory. Then I include our studies on the quantum memory based on the refractive index modulation of the host medium [5]. It is shown that it can resemble the gradient echo quantum memory without a spatial gradient in the external field. These two protocols can be implemented in rare-earth doped crystals. With regards to using new physical systems, I present a proposal based on nitrogen vacancy centers [6]. This may pave the way toward micron-scale on-chip quantum memories that may contribute to the implementation of integrated quantum photonics. Finally, I studied the precision requirements for the spin echo technique [7]. This technique is necessary to extend the storage time in solid-state quantum memories, in which the coherence times are limited by spin inhomogeneous broadening.
Measurement-based quantum communication
NASA Astrophysics Data System (ADS)
Zwerger, M.; Briegel, H. J.; Dür, W.
2016-03-01
We review and discuss the potential of using measurement-based elements in quantum communication schemes, where certain tasks are realized with the help of entangled resource states that are processed by measurements. We consider long-range quantum communication based on the transmission of encoded quantum states, where encoding, decoding and syndrome readout are implemented using small-scale resource states. We also discuss entanglement-based schemes and consider measurement-based quantum repeaters. An important element in these schemes is entanglement purification, which can also be implemented in a measurement-based way. We analyze the influence of noise and imperfections in these schemes and show that measurement-based implementation allows for very large error thresholds of the order of 10 % noise per qubit and more. We show how to obtain optimal resource states for different tasks and discuss first experimental realizations of measurement-based quantum error correction using trapped ions and photons.